WO2022057655A1 - 一种无线局域网的协作传输方法及装置 - Google Patents

一种无线局域网的协作传输方法及装置 Download PDF

Info

Publication number
WO2022057655A1
WO2022057655A1 PCT/CN2021/116682 CN2021116682W WO2022057655A1 WO 2022057655 A1 WO2022057655 A1 WO 2022057655A1 CN 2021116682 W CN2021116682 W CN 2021116682W WO 2022057655 A1 WO2022057655 A1 WO 2022057655A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
shared
sta
transmission
uplink
Prior art date
Application number
PCT/CN2021/116682
Other languages
English (en)
French (fr)
Inventor
申晓曼
王云贵
丁报昆
淦明
李云波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21868480.1A priority Critical patent/EP4207852A4/en
Publication of WO2022057655A1 publication Critical patent/WO2022057655A1/zh
Priority to US18/185,622 priority patent/US20230224944A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and device for cooperative transmission of a wireless local area network.
  • High-density deployment refers to the deployment of a large number of wireless access points (APs) and a large number of active stations (stations, STAs) within a limited geographic coverage. High-density deployments have dramatically increased the demand for transmission resources.
  • APs wireless access points
  • STAs active stations
  • IEEE 802.11be draft proposes a multi-AP cooperative transmission scheme, allowing multiple APs to share transmission resources to improve transmission resource utilization and improve system throughput.
  • multi-AP cooperative transmission there will be multiple concurrent transmission links, and there will be interference between the concurrent transmission links. If the interference is uncontrollable, it will not only fail to realize the cooperative transmission of multiple APs, but will reduce the system throughput.
  • the interference may be uncontrollable, so that concurrent transmission cannot be achieved.
  • a method for cooperative transmission of a wireless local area network includes the following steps: when a condition is satisfied, a shared access point AP sends a first frame to a first station STA on a channel to detect an interference resource unit RU, wherein , the shared AP is the serving AP of the first STA, the first STA is the STA that the shared AP is going to send downlink data to, and the STA served by the shared AP is called a shared STA, and the first frame includes an The first STA replies to the first frame with the indication of using the first RU, the interfering RU is the first RU that has not received the reply from the first STA, and the condition includes that the shared AP is ready to use the first RU.
  • the channel is used for downlink transmission, and the channel is a channel for cooperative transmission between the shared AP and the first shared AP.
  • the shared AP will obtain the detection result of the interfering RU, that is, the shared AP will know whether the first RU is the interfering RU.
  • the detection result of the interfering RU can be used for interference management and control, so that the interference in the multi-AP cooperative transmission can be effectively controlled.
  • condition further includes: the first shared AP prepares to use the channel for uplink transmission.
  • the shared AP can also negotiate the cooperative transmission direction with the shared AP.
  • the negotiation can be performed in the following two ways.
  • the shared AP specifies the transmission direction of the shared AP during cooperative transmission.
  • the shared AP sends a cooperative transmission notification C-SR-A frame to the first shared AP, where the C-SR-A frame is used to indicate the transmission direction of the first shared AP during the cooperative transmission for the up.
  • the shared AP decides the transmission direction for cooperative transmission.
  • the shared AP sends a cooperative transmission notification C-SR-A frame to the first shared AP, where the C-SR-A frame is used to instruct the first shared AP to select transmission during the cooperative transmission direction;
  • the shared AP receives a first response frame from the first shared AP, where the first response frame is used to indicate that the transmission direction selected by the first shared AP during the cooperative transmission is: up.
  • the shared AP in response to detecting the interfering RU, sends an indication frame to the first shared AP, where the indication frame is used to indicate that the first shared AP is not allowed to use the
  • the sub-channel where the interfering RU is located performs uplink transmission; the shared AP performs downlink transmission on the channel.
  • the shared AP sends an instruction frame to the shared AP, indicating that the shared AP is not allowed to use the sub-channel where the interfering RU is located for uplink transmission, so as to avoid the possible interference of the sharing STA receiving downlink data frames on the sub-channel where the interfering RU is located, and realize the interference Controllable.
  • the shared AP After instructing the shared AP to prohibit uplink transmission on the subchannel where the interfering RU is located, the shared AP can perform downlink transmission on the entire channel without being interfered by the uplink transmission of the shared STA.
  • the STA served by the shared AP is called the shared STA.
  • the sharing AP instructs the first shared AP to send a second frame to the second STA, where the second frame is used to indicate that the second STA is receiving the second frame
  • a second acknowledgment frame is returned to the first shared AP
  • the second STA is the STA that the first shared AP intends to use the first RU for uplink transmission.
  • the sending moment of the first frame and the second frame is the same, and the length of the first frame is greater than the sum of the length of the second frame and the short inter-frame interval SIFS.
  • the shared AP can determine whether the first RU is an interfering RU by whether it receives a reply from the first STA to the first frame.
  • the shared AP further cooperates with the second shared AP to transmit on the transmission resource, and the transmission direction of the first shared AP during the cooperative transmission is uplink, and the When the transmission direction of the second shared AP during the cooperative transmission is downlink, the shared AP instructs the second shared AP to send a third frame to the third STA, and the second shared AP is the first shared AP.
  • Serving AP of three STAs the third STA is the STA that the second shared AP intends to send downlink data on the second RU, and the third frame is used to indicate that the third STA receives the After three frames, the second RU returns a third confirmation frame to the second shared AP.
  • the sending moment of the second frame is the same as that of the third frame, and the length of the third frame is greater than the sum of the length of the second frame and the short inter-frame interval SIFS.
  • the second frame and the third frame are sent at the same time, and the second STA starts to reply to the second confirmation frame, the third frame has not been completely sent.
  • the second acknowledgment frame in the uplink direction and the third frame in the downlink direction will exist.
  • the second shared AP can determine whether the second RU is an interfering RU by whether it receives a reply from the third STA to the third frame. In this way, the downlink transmission of the first shared AP can also be prevented from interfering with the uplink transmission of the second shared AP, thereby realizing cooperative transmission of multiple APs.
  • the shared AP prohibits downlink transmission on the subchannel where the interfering RU is located. After the shared AP prohibits downlink transmission on the sub-channel where the interfering RU is located, the first shared AP can perform uplink transmission on the entire channel without being interfered by the downlink transmission of the shared AP.
  • the shared AP receives an uplink trigger frame from the first shared AP, where the uplink trigger frame is used to trigger the second STA served by the shared AP to perform uplink transmission;
  • the sending of the first frame by the first STA includes: in response to the uplink trigger frame, sending the first frame to the first STA.
  • the sharing AP sends the first frame to the first STA after receiving the uplink trigger frame from the shared AP, it can be guaranteed that the first STA receives the first frame in the downlink direction on the first RU, and the second STA is in the An RU sends an uplink data frame to a shared AP, and there is an intersection in the time domain and the frequency domain.
  • the uplink data frame sent by the second STA may interfere with the first frame, and the shared AP can determine whether the first RU is interfering with the RU by whether it receives a reply from the first STA to the first frame.
  • the sending moment of the first frame is the same as that of the uplink trigger frame sent by the first shared AP, and the length of the first frame is greater than the sum of the lengths of the uplink trigger frame and the SIFS;
  • the uplink trigger frame is used to trigger the second STA served by the first shared AP to perform uplink transmission. In this way, when the first frame and the uplink trigger frame are sent at the same time, when the second STA receives the uplink trigger frame, the first frame has not been completely sent. Then, there will be frames transmitted in the uplink direction on the first RU.
  • the uplink frame sent by the second STA and the first frame in the downlink direction of the shared AP have an intersection in the time domain and frequency domain, then The uplink frame sent by the second STA may cause interference to the first frame in the downlink direction.
  • the shared AP can determine whether the first RU is an interfering RU by whether it receives a reply from the first STA to the first frame.
  • the first frame is a short data frame.
  • the first frame is a control frame
  • the modulation and coding mode MCS order and flow number of the first frame are the same as the MCS order and flow number of the data frame, that is, the first frame
  • the MCS order of the modulation and coding mode of the frame is the same as the MCS order of the data frame
  • the number of streams of the first frame is the same as the number of streams of the data frame.
  • the cooperative transmission mode is cooperative spatial multiplexing CSR.
  • the channel includes one or more sub-channels.
  • a method for cooperative transmission of a wireless local area network includes the following steps: when a condition is satisfied, a shared access point AP sends a first frame to a second STA on a channel to detect an interference resource unit RU, wherein , the shared AP is the serving AP of the second STA, the first frame includes an instruction to use the first RU when replying the first frame to the second STA, and the interfering RU is not received
  • the condition includes that the shared AP prepares to use the channel for downlink transmission, and the channel is a channel for cooperative transmission between the shared AP and the shared AP;
  • the shared AP prohibits downlink transmission on the subchannel where the interfering RU is located.
  • the shared AP will obtain the detection result of the interfering RU, that is, the shared AP will know whether the first RU is the interfering RU.
  • the detection result of the interfering RU can be used for interference management and control, so that the interference in the multi-AP cooperative transmission can be effectively controlled.
  • the possible interference caused by the first STA sending the uplink data frame on the subchannel where the interfering RU is located can be avoided, and the interference can be controlled.
  • the shared AP is the serving AP of the first STA.
  • condition further includes: the shared AP prepares to use the channel for uplink transmission.
  • the shared AP receives an uplink trigger frame from the shared AP, and the uplink trigger frame is used to trigger the first STA to perform uplink transmission; the sending the first frame to the second STA , comprising: sending the first trigger frame to the second STA in response to the uplink trigger frame.
  • the shared AP sends the first frame to the second STA after receiving the uplink trigger frame from the shared AP, it can be ensured that the second STA receives the first frame in the downlink direction on the first RU, and the first STA is in the An RU sends an uplink data frame to a shared AP, and there is an intersection in the time domain and the frequency domain.
  • the uplink data frame sent by the first STA may interfere with the first frame, and the shared AP can determine whether the first RU is interfering with the RU by whether it receives a reply from the second STA to the first frame.
  • the sending moment of the first frame is the same as that of the uplink trigger frame sent by the shared AP, and the length of the first frame is greater than the sum of the length of the uplink trigger frame and the short frame interval SIFS;
  • the uplink trigger frame is used to trigger the STA sharing the service of the AP to perform uplink transmission.
  • the first frame and the uplink trigger frame are sent at the same time, when the first STA receives the uplink trigger frame, the first frame has not been completely sent. Then, there will be frames transmitted in the uplink direction on the first RU.
  • the uplink frame sent by the first STA and the first frame in the downlink direction of the shared AP have an intersection in the time domain and the frequency domain. Then the uplink frame sent by the first STA may cause interference to the first frame in the downlink direction.
  • the shared AP can determine whether the first RU is an interfering RU by whether it receives a reply from the second STA to the first frame.
  • the shared AP can also negotiate the cooperative transmission direction with the shared AP.
  • the negotiation can be performed in the following two ways.
  • the shared AP receives the cooperative transmission notification C-SR-A frame from the shared AP, and the C-SR-A frame is used to indicate the transmission direction of the shared AP during the cooperative transmission for downlink.
  • the shared AP receives the cooperative transmission notification C-SR-A frame from the shared AP, and the C-SR-A frame is used to instruct the shared AP to select transmission during the cooperative transmission direction; the shared AP sends a response frame to the shared AP, where the response frame is used to indicate that the transmission direction selected by the shared AP during the cooperative transmission is downlink.
  • the first frame is a short data frame.
  • the first frame is a control frame
  • the MCS order and flow number of the modulation and coding mode of the first frame are the same as the MCS order and flow number of the data frame.
  • the cooperative transmission mode is cooperative spatial multiplexing CSR.
  • the channel includes one or more sub-channels.
  • a method for cooperative transmission of a wireless local area network includes the following steps: when a shared access point AP is satisfied, a first frame is sent to a first station STA on a channel to detect an interference resource unit RU, The shared AP is the serving AP of the first STA, the first frame includes an instruction to use the first RU when replying the first frame to the first STA, and the interfering RU is not received To the first RU in reply to the first STA, the condition includes that the shared AP is ready to use the channel for uplink transmission, and the channel is a channel for the shared AP to perform cooperative transmission with the shared AP.
  • the shared AP will obtain the detection result of the interfering RU, that is, the shared AP will know whether the first RU is the interfering RU.
  • the detection result of the interfering RU can be used for interference management and control, so that the interference in the multi-AP cooperative transmission can be effectively controlled.
  • condition further includes: the shared AP prepares to use the channel for downlink transmission.
  • the shared AP can also negotiate the cooperative transmission direction with the shared AP.
  • the negotiation can be performed in the following two ways.
  • the shared AP receives the cooperative transmission notification C-SR-A frame from the shared AP, and the C-SR-A frame is used to indicate the transmission direction of the shared AP during the cooperative transmission for downlink.
  • the shared AP receives the cooperative transmission notification C-SR-A frame from the shared AP, and the C-SR-A frame is used to instruct the shared AP to select transmission during the cooperative transmission direction; the shared AP sends a first response frame to the shared AP, where the first response frame is used to indicate that the transmission direction selected by the shared AP during the cooperative transmission is uplink.
  • the shared AP does not use the subchannel where the interfering RU is located for uplink transmission.
  • the possible interference of the shared STA in sending the uplink data frame on the subchannel where the interfering RU is located can be avoided, and the interference can be controlled.
  • the sending moment of the first frame and the second frame sent by the shared AP to the second STA are the same, and the length of the second frame is greater than that between the first frame and the short frame The sum of the lengths of the interval SIFS.
  • the first frame is a short data frame.
  • the first frame is a control frame
  • the MCS order and flow number of the modulation and coding mode of the first frame are the same as the MCS order and flow number of the data frame.
  • the cooperative transmission mode is cooperative spatial multiplexing CSR.
  • the channel includes one or more sub-channels.
  • a method for cooperative transmission of a wireless local area network includes the following steps: when a condition is satisfied, the shared AP sends a first frame to the shared STA on a channel, wherein the channel is the shared AP and the shared STA.
  • the channel on which the shared AP performs cooperative transmission the condition includes that the transmission direction of the shared AP during the cooperative transmission is downlink, and the first frame is used to instruct the shared STA to monitor the first resource unit RU,
  • the shared AP is the serving AP of the shared STA
  • the first frame is the same as the second frame sent by the shared AP to the shared STA
  • the second frame is longer than the first frame and the shared STA.
  • the sum of the lengths of SIFS, the second frame includes an indication of using the first RU when replying to the second frame to the shared STA; the shared AP does not receive the response returned by the shared STA frame, it is forbidden to trigger uplink transmission on the subchannel where the first RU is located, and the response frame is used to indicate that the first RU is not occupied.
  • the shared AP will obtain the detection result of the interfering RU, that is, the shared AP will know whether the first RU is the interfering RU.
  • the detection result of the interfering RU can be used for interference management and control, so that the interference in the multi-AP cooperative transmission can be effectively controlled.
  • the first frame is further used to indicate the time period for the shared STA to monitor the first RU, and to indicate the shared STA within the time period if the first RU is not If occupied, the response frame is returned.
  • the condition further includes: the transmission direction of the shared AP during the cooperative transmission is downlink.
  • the shared AP can also negotiate the cooperative transmission direction with the shared AP.
  • the negotiation can be performed in the following two ways.
  • the shared AP receives the cooperative transmission notification C-SR-A frame from the shared AP, and the C-SR-A frame is used to indicate the transmission direction of the shared AP during the cooperative transmission for the up.
  • the shared AP receives the cooperative transmission notification C-SR-A frame from the shared AP, and the C-SR-A frame is used to instruct the shared AP to select transmission during the cooperative transmission direction; the shared AP sends a first response frame to the shared AP, where the first response frame is used to indicate that the transmission direction selected by the shared AP during the cooperative transmission is uplink.
  • the sending moment of the first frame and the second frame sent by the shared AP to the second STA are the same, and the length of the second frame is greater than that between the first frame and the short frame The sum of the lengths of the interval SIFS. Since the transmission time of the first frame and the second frame is the same, the length of the first frame is greater than the sum of the length of the second frame and the SIFS, the second STA will listen to the first RU after receiving the second frame and interval STS. . When the second STA monitors the first RU, the first frame has not been completely sent.
  • the second STA monitors that the first RU is occupied, it means that the second STA can use the first RU to send the uplink frame, which can cause interference to the first STA to receive the downlink frame of the shared AP.
  • the second STA monitors that the first RU is not occupied or the first RU is idle, the second STA returns a response frame to the shared AP.
  • the first frame is a short data frame.
  • the first frame is a control frame
  • the MCS order and flow number of the modulation and coding mode of the first frame are the same as the MCS order and flow number of the data frame.
  • the cooperative transmission mode is cooperative spatial multiplexing CSR.
  • the channel includes one or more sub-channels.
  • a communication device in a fifth aspect, can be a shared access point AP, or a device (eg, a chip, or a chip system, or a circuit) in the shared AP, or can be used in combination with the shared AP. installation.
  • the communication device may include modules corresponding to one-to-one execution of the methods/operations/steps/actions described in the first aspect, and the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the communication device may include a processing module and a communication module. The processing module is used to call the communication module to perform the function of receiving and/or sending. Exemplarily:
  • the processing module is configured to determine that when the condition is satisfied, send the first frame to the first station STA through the communication module on the channel to detect the interference resource unit RU, wherein the shared AP is the first frame of the first STA.
  • Serving AP the first frame includes an instruction to use the first RU when replying to the first frame to the first STA, and the interference resource unit is the first STA that has not received a reply from the first STA RU
  • the condition includes that the shared AP prepares to use the channel for downlink transmission, and the channel is a channel for cooperative transmission between the shared AP and the first shared AP.
  • condition further includes: the first shared AP prepares to use the channel for uplink transmission.
  • the processing module is further configured to: send a cooperative transmission notification C-SR-A frame to the first shared AP through the communication module, where the C-SR-A frame is used to indicate The transmission direction of the first shared AP during the cooperative transmission is uplink.
  • the processing module is further configured to: send a cooperative transmission notification C-SR-A frame to the first shared AP through the communication module, where the C-SR-A frame is used to indicate selecting, by the first shared AP, a transmission direction during the cooperative transmission; and receiving a first response frame from the first shared AP, where the first response frame is used to indicate the first shared AP
  • the selected transmission direction in the cooperative transmission is uplink.
  • the processing module is further configured to: in response to detecting the interfering RU, send an indication frame to the first shared AP through the communication module, where the indication frame is used to indicate the The first shared AP is not allowed to use the subchannel where the interfering RU is located to perform uplink transmission; and perform downlink transmission on the channel.
  • the processing module is further configured to: instruct the first shared AP to send a second frame to the second STA, where the second frame is used to indicate that the second STA is receiving After the second frame, a second acknowledgment frame is returned to the first shared AP; the second STA is a STA that the first shared AP intends to use the first RU for uplink transmission.
  • the sending moment of the first frame and the second frame is the same, and the length of the first frame is greater than the sum of the length of the second frame and the short inter-frame interval SIFS.
  • the shared AP further cooperates with a second shared AP to transmit on the transmission resource
  • the second shared AP is the serving AP of the third STA
  • the processing module is further configured to: When the transmission direction of the first shared AP during the coordinated transmission is uplink, and the transmission direction of the second shared AP during the coordinated transmission is downlink, instructing the second shared AP to
  • the third STA sends a third frame, where the third frame is used to instruct the third STA to return a third acknowledgment frame to the second shared AP after receiving the third frame; through the communication
  • the module receives a second response frame from the second shared AP, where the second response frame is used to indicate that the second RU is an interfering unit.
  • the processing module is further configured to: prohibit downlink transmission on the subchannel where the interfering RU is located.
  • the processing module is further configured to: receive, through the communication module, an uplink trigger frame from the first shared AP, where the uplink trigger frame is used to trigger the STA served by the shared AP performing uplink transmission; and in response to the uplink trigger frame, sending the first frame to the first STA.
  • the sending moment of the first frame is the same as that of the uplink trigger frame sent by the first shared AP, and the length of the first frame is greater than the sum of the lengths of the uplink trigger frame and the SIFS;
  • the uplink trigger frame is used to trigger the STA served by the first shared AP to perform uplink transmission.
  • a communication device in a sixth aspect, can be a shared access point AP, or a device (eg, a chip, or a chip system, or a circuit) in the shared AP, or can be shared with the shared AP.
  • AP matches the device used.
  • the communication device may include a one-to-one module for performing the methods/operations/steps/actions described in the second aspect, and the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the communication device may include a processing module and a communication module. The processing module is used to call the communication module to perform the function of receiving and/or sending.
  • the processing module is configured to, when a condition is satisfied, send a first frame to the shared STA on the channel through the communication module to detect the interference resource unit RU, wherein the shared AP is the shared STA The serving AP of the STA, the first frame includes an instruction to use the first RU when replying the first frame to the shared STA, and the interfering RU is the first RU that has not received the reply from the shared STA
  • the condition includes that the shared AP prepares to use the channel for downlink transmission, and the channel is a channel for cooperative transmission between the shared AP and the shared AP; the processing module is further configured to prohibit all Downlink transmission is performed on the subchannel where the interfering RU is located.
  • condition further includes: the shared AP prepares to use the channel for uplink transmission.
  • the processing module is further configured to: receive, through the communication module, an uplink trigger frame from the shared AP, where the uplink trigger frame is used to trigger the STA served by the shared AP to perform uplink transmission;
  • the processing module is configured to, in response to the uplink trigger frame, send the first trigger frame to the shared STA through the communication module.
  • the sending moment of the first frame is the same as that of the uplink trigger frame sent by the shared AP, and the length of the first frame is greater than the sum of the length of the uplink trigger frame and the short frame interval SIFS;
  • the uplink trigger frame is used to trigger the STA sharing the service of the AP to perform uplink transmission.
  • the processing module is further configured to: receive, through the communication module, a C-SR-A frame for notification of cooperative transmission from the shared AP, where the C-SR-A frame is used to indicate the The transmission direction of the shared AP during the cooperative transmission is downlink.
  • the processing module is further configured to: receive, through the communication module, a C-SR-A frame for notification of cooperative transmission from the shared AP, where the C-SR-A frame is used to indicate the The shared AP selects the transmission direction during the cooperative transmission; and sends a response frame to the shared AP, where the response frame is used to indicate that the shared AP selects the transmission direction during the cooperative transmission to be downlink .
  • the first frame is a short data frame.
  • the first frame is a control frame
  • the MCS order and flow number of the modulation and coding mode of the first frame are the same as the MCS order and flow number of the data frame.
  • the cooperative transmission mode is cooperative spatial multiplexing CSR.
  • the channel includes one or more sub-channels.
  • a communication device in a seventh aspect, can be a shared access point AP, or a device (eg, a chip, or a chip system, or a circuit) in the shared AP, or can be shared with AP matches the device used.
  • the communication device may include modules corresponding to one-to-one execution of the methods/operations/steps/actions described in the third aspect, and the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the communication device may include a processing module and a communication module. The processing module is used to call the communication module to perform the function of receiving and/or sending.
  • the processing module is configured to, when the condition is satisfied, send a first frame to the first station STA through the communication module on the channel to detect the interference resource unit RU, wherein the shared AP is the The serving AP of the first STA, the first frame includes an indication of using the first RU when replying the first frame to the first STA, and the interfering RU is the one that has not received the reply from the first STA.
  • the first RU the condition includes that the shared AP prepares to use the channel for uplink transmission, and the channel is a channel for cooperative transmission between the shared AP and the shared AP.
  • condition further includes: the shared AP prepares to use the channel for downlink transmission.
  • the processing module is further configured to receive, through the communication module, a C-SR-A frame for notification of cooperative transmission from the shared AP, where the C-SR-A frame is used to indicate the The transmission direction of the shared AP during the cooperative transmission is downlink.
  • the processing module is further configured to receive, through the communication module, a C-SR-A frame for notification of cooperative transmission from the shared AP, where the C-SR-A frame is used to indicate the a transmission direction selected by the shared AP during the cooperative transmission; and used for sending a first response frame to the shared AP, where the first response frame is used to indicate that the shared AP selected a transmission direction during the cooperative transmission When the transmission direction is upstream.
  • the processing module is further configured to perform uplink transmission without using the subchannel where the interfering RU is located.
  • the sending moment of the first frame and the second frame sent by the shared AP to the second STA are the same, and the length of the second frame is greater than that between the first frame and the short frame The sum of the lengths of the interval SIFS.
  • the first frame is a short data frame.
  • the first frame is a control frame
  • the MCS order and flow number of the modulation and coding mode of the first frame are the same as the MCS order and flow number of the data frame.
  • the cooperative transmission mode is cooperative spatial multiplexing CSR.
  • the channel includes one or more sub-channels.
  • a communication device in an eighth aspect, can be a shared access point AP, or a device (eg, a chip, or a chip system, or a circuit) in the shared AP, or can be shared with the shared AP.
  • AP matches the device used.
  • the communication device may include modules corresponding to one-to-one execution of the methods/operations/steps/actions described in the fourth aspect, and the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the communication device may include a processing module and a communication module. The processing module is used to call the communication module to perform the function of receiving and/or sending.
  • the processing module is configured to send the first frame to the shared STA through the communication module on a channel when the condition is satisfied, where the channel is a shared AP and the shared AP for cooperative transmission
  • the condition includes that the transmission direction of the shared AP during the cooperative transmission is downlink, the first frame is used to instruct the shared STA to monitor the first resource unit RU, and the shared AP is the The serving AP of the shared STA, the first frame is the same as the second frame sent by the shared AP to the shared STA, and the length of the second frame is greater than the sum of the lengths of the first frame and the SIFS, so
  • the second frame includes an instruction to use the first RU when replying to the second frame to the shared STA; the processing module is further configured to disable the response frame returned by the shared STA when it is not received.
  • Uplink transmission is triggered on the subchannel where the first resource unit is located, and the response frame is used to indicate that the first RU is not occupied.
  • the first frame is further used to instruct the shared STA to monitor the first RU for a period of time, and to indicate that the shared STA within the period of time if the first resource unit does not If it is occupied, the response frame will be returned.
  • the condition further includes: the transmission direction of the shared AP during the cooperative transmission is downlink.
  • the processing module is further configured to receive, through the communication module, a C-SR-A frame for notification of cooperative transmission from the shared AP, where the C-SR-A frame is used to indicate the The transmission direction of the shared AP during the cooperative transmission is uplink.
  • the processing module is further configured to receive, through the communication module, a C-SR-A frame for notification of cooperative transmission from the shared AP, where the C-SR-A frame is used to indicate the The shared AP selects the transmission direction during the cooperative transmission; and sends a first response frame to the shared AP, where the first response frame is used to indicate the transmission direction selected by the shared AP during the cooperative transmission.
  • the transmission direction is upstream.
  • the sending moment of the first frame and the second frame sent by the shared AP to the second STA are the same, and the length of the second frame is greater than that between the first frame and the short frame The sum of the lengths of the interval SIFS.
  • the first frame is a short data frame.
  • the first frame is a control frame
  • the MCS order and flow number of the modulation and coding mode of the first frame are the same as the MCS order and flow number of the data frame.
  • the cooperative transmission mode is cooperative spatial multiplexing CSR.
  • the channel includes one or more sub-channels.
  • an embodiment of the present application provides a communication apparatus, the communication apparatus includes a communication interface and a processor, and the communication interface is used for the apparatus to communicate with other devices, such as data or signal transmission and reception.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the processor is configured to invoke a set of programs, instructions or data to execute the method described in the first aspect.
  • the apparatus may also include a memory for storing programs, instructions or data invoked by the processor. The memory is coupled to the processor, and when the processor executes the instructions or data stored in the memory, the method described in the first aspect can be implemented.
  • an embodiment of the present application provides a communication apparatus, the communication apparatus includes a communication interface and a processor, and the communication interface is used for the apparatus to communicate with other devices, such as data or signal transmission and reception.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the processor is configured to invoke a set of programs, instructions or data to execute the method described in the first aspect.
  • the apparatus may also include a memory for storing programs, instructions or data invoked by the processor. The memory is coupled to the processor, and when the processor executes the instructions or data stored in the memory, the method described in the second aspect above can be implemented.
  • an embodiment of the present application provides a communication device, where the communication device includes a communication interface and a processor, and the communication interface is used for the device to communicate with other devices, such as data or signal transmission and reception.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the processor is configured to invoke a set of programs, instructions or data to execute the method described in the first aspect.
  • the apparatus may also include a memory for storing programs, instructions or data invoked by the processor. The memory is coupled to the processor, and when the processor executes the instructions or data stored in the memory, the method described in the third aspect can be implemented.
  • an embodiment of the present application provides a communication apparatus, the communication apparatus includes a communication interface and a processor, and the communication interface is used for the apparatus to communicate with other devices, such as data or signal transmission and reception.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the processor is configured to invoke a set of programs, instructions or data to execute the method described in the first aspect.
  • the apparatus may also include a memory for storing programs, instructions or data invoked by the processor. The memory is coupled to the processor, and when the processor executes the instructions or data stored in the memory, the method described in the fourth aspect can be implemented.
  • the embodiments of the present application further provide a computer-readable storage medium, where computer-readable instructions are stored in the computer-readable storage medium, and when the computer-readable instructions are executed on a computer, the computer A method as described in the first aspect or any possible design of the first aspect is performed.
  • embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to execute the second aspect or any one of the possible designs of the second aspect. the method described.
  • the embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to execute the third aspect or any one of the possible designs of the third aspect. the method described.
  • embodiments of the present application further provide a computer-readable storage medium, including instructions, which, when executed on a computer, cause the computer to execute the fourth aspect or any one of the possible designs of the fourth aspect. the method described.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, and may also include a memory, for implementing the first aspect or any possible design of the first aspect. method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, and may also include a memory, for implementing the second aspect or any possible design of the second aspect. method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, and may also include a memory, for implementing the third aspect or any of the possible designs of the third aspect. method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor, and may further include a memory, for implementing the fourth aspect or any possible design of the fourth aspect. method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a computer program product containing instructions that, when run on a computer, cause the methods described in the above aspects and any possible designs of the aspects to be performed.
  • FIG. 1 is a schematic diagram of a WLAN system architecture in an embodiment of the present application
  • FIG. 2 is the second schematic diagram of the WLAN system architecture in the embodiment of the application.
  • FIG. 3 is a schematic diagram of a scenario of a transmission direction of cooperative transmission by two APs in an embodiment of the present application
  • FIG. 4 is a schematic diagram of division of multiple AP cooperative transmission channels in an embodiment of the present application.
  • FIG. 5 is one of the schematic flowcharts of the cooperative transmission method of the wireless local area network in the embodiment of the application.
  • FIG. 6a is one of the schematic diagrams of time frame interaction of cooperative transmission in a fixed mode in a scenario according to an embodiment of the present application
  • FIG. 6b is one of the schematic diagrams of the time frame interaction of cooperative transmission in a flexible mode in a scenario according to an embodiment of the present application
  • FIG. 7a is the second schematic diagram of time frame interaction in a fixed mode of cooperative transmission in a scenario according to an embodiment of the present application.
  • FIG. 7b is the second schematic diagram of the time frame interaction of cooperative transmission in a flexible mode in a scenario according to an embodiment of the present application.
  • FIG. 8a is the second schematic diagram of time frame interaction in a fixed mode cooperative transmission in a scenario according to an embodiment of the present application.
  • FIG. 8b is the second schematic diagram of the time frame interaction of cooperative transmission in a flexible mode in a scenario according to an embodiment of the present application.
  • FIG. 9 is a second schematic flowchart of a method for cooperative transmission of a wireless local area network in an embodiment of the present application.
  • FIG. 10a is a schematic diagram of time frame interaction of cooperative transmission in a fixed mode in yet another scenario according to an embodiment of the present application.
  • FIG. 10b is a schematic diagram of time frame interaction of cooperative transmission in a flexible mode in yet another scenario according to an embodiment of the present application.
  • FIG. 11 is the third schematic flowchart of the cooperative transmission method of the wireless local area network according to the embodiment of the application.
  • FIG. 12a is a schematic diagram of time frame interaction of cooperative transmission in a fixed mode in another scenario according to an embodiment of the present application.
  • FIG. 12b is a schematic diagram of time frame interaction for cooperative transmission in a flexible mode in another scenario according to an embodiment of the present application.
  • FIG. 13 is the fourth schematic flowchart of the cooperative transmission method of the wireless local area network in the embodiment of the application.
  • FIG. 14a is a schematic diagram of time frame interaction of cooperative transmission in a fixed mode in still another scenario according to an embodiment of the present application.
  • FIG. 14b is a schematic diagram of time frame interaction for cooperative transmission in a flexible mode in yet another scenario according to an embodiment of the application;
  • FIG. 15 is the fifth schematic flowchart of the cooperative transmission method of the wireless local area network according to the embodiment of the application.
  • FIG. 16a is a schematic diagram of time frame interaction of cooperative transmission in a fixed mode in yet another scenario according to an embodiment of the present application
  • FIG. 16b is a schematic diagram of time frame interaction of cooperative transmission in a flexible mode in yet another scenario according to an embodiment of the present application.
  • FIG. 17 is one of the schematic structural diagrams of a communication device in an embodiment of the present application.
  • FIG. 18 is the second schematic diagram of the structure of the communication device according to the embodiment of the present application.
  • Embodiments of the present application provide a method and device for cooperative transmission of a wireless local area network, so as to improve the performance and quality of cooperative transmission of the wireless local area network.
  • the methods and devices are conceived based on the same or similar technologies. Since the principles of the methods and devices for solving problems are similar, the implementation of the devices and the methods can be referred to each other, and repeated descriptions will not be repeated here.
  • "and/or" describes the association relationship of the associated objects, indicating that there may be three kinds of relationships, for example, A and/or B may indicate that A exists alone, A and B exist simultaneously, and a single relationship exists. There are three cases of B.
  • the plural referred to in this application refers to two or more.
  • the wireless local area network communication method provided by the embodiments of the present application may be applied to a fourth generation (4th generation, 4G) communication system, such as long term evolution (LTE), and may also be applied to a fifth generation (5th generation, 5G) communication system Communication systems, such as 5G new radio (NR), or applied to various communication systems in the future.
  • 4G fourth generation
  • 5G fifth generation
  • Communication systems such as 5G new radio (NR)
  • the cooperative transmission method of the wireless local area network can be applied to a WLAN system, and can be applied to an IEEE 802.11 system standard, such as the IEEE 802.11ax standard, the IEEE 802.11be standard draft, or the next-generation or next-generation standards.
  • IEEE 802.11 system standard such as the IEEE 802.11ax standard, the IEEE 802.11be standard draft, or the next-generation or next-generation standards.
  • a WLAN system 100 to which the embodiments of the present application are applicable may include multiple stations (station, STA), and the multiple STAs include APs and non-AP STAs.
  • the WLAN system 100 may include: one or more APs, one or more non-AP STAs).
  • the non-AP STA may be simply referred to as a STA.
  • the AP may be associated with one or more STAs, the AP may schedule transmission resources for the STAs associated with the AP, and communicate with the scheduled STAs on the scheduled transmission resources.
  • the AP can connect to a distributed system (DS).
  • DS distributed system
  • FIG. 1 takes the WLAN system 100 including one AP 101 and two STAs as an example, and the two STAs are represented by STA102-1 and STA102-2.
  • AP101 associates with STA102-1 and STA102-2. It is understood that AP 101 may schedule more or less STAs.
  • the WLAN system 100 may include multiple APs.
  • FIG. 2 takes two APs as an example, and each AP connects two STAs as an example for example. It can be understood that the WLAN system may also include more APs and more STAs.
  • two APs are represented by AP101-1 and AP101-2, respectively, and AP101-1 is connected to two STAs, represented by STA102-1 and STA102-2.
  • AP101-2 connects two STAs, which are represented by STA102-3 and STA102-4.
  • AP101-1 can associate with STA102-1 and STA102-2, and can provide services for STA102-1 and STA102-2.
  • AP101-1 is the serving AP of STA102-1 and STA102-2.
  • AP101-2 associates with STA102-3 and STA102-4, and can provide services for STA102-3 and STA102-4.
  • AP101-2 is the serving AP of STA102-3 and STA102-4.
  • An AP an entity with STA functions, can provide access to distribution services for associated STAs through a wireless medium (wireless medium, WM).
  • the AP may include a STA and a distribution system access function (DSAF).
  • DSAF distribution system access function
  • APs may also be referred to as wireless access points or bridges or hotspots.
  • APs can access servers or communication networks.
  • the AP can be used as the backbone of the WLAN system.
  • the AP can be a base station, a router, a gateway, a repeater, a communication server, a switch, or a bridge.
  • the devices mentioned above are collectively referred to as APs in the embodiments of the present application.
  • a STA here a non-AP station, a logical entity, is a single addressable instance of the medium access control (MAC) layer and physical layer (PHY) interface accessing the wireless medium.
  • STAs may be various user terminals, user devices, access devices, subscriber stations, subscriber units, mobile stations, user agents, user equipment or other names with wireless communication functions, wherein the user terminals may include various wireless communication functions.
  • handheld devices in-vehicle devices, wearable devices, computing devices, or other processing devices connected to wireless modems, as well as various forms of user equipment (UE), mobile station (MS), terminal (terminal) , terminal equipment, portable communication device, handset, portable computing device, entertainment device, gaming device or system, global positioning system device or any other suitable device configured for network communication via a wireless medium, and the like.
  • UE user equipment
  • MS mobile station
  • terminal terminal equipment
  • portable communication device handset
  • portable computing device portable computing device
  • entertainment device gaming device or system
  • global positioning system device global positioning system device or any other suitable device configured for network communication via a wireless medium, and the like.
  • each AP and the STA associated with the AP can form a basic service set (basic service set, BSS).
  • BSS basic service set
  • Multiple BSSs can use the same transmission resources, thereby improving the utilization rate of the transmission resources of the wireless local area network.
  • APs in different BSSs can use the same transmission resources in a cooperative manner to implement cooperative transmission.
  • Cooperative transmission means that in a WLAN system, two or more APs provide services for different STAs on the same transmission resources, including uplink (uplink, UL) transmission and/or downlink (downlink, DL) transmission transmission.
  • One way of multi-AP cooperative transmission is coordinated spatial reuse (CSR), that is, APs negotiate transmit power according to interference measurement information to enable multi-link concurrent transmission.
  • CSR coordinated spatial reuse
  • the embodiments of the present application may be applicable to the cooperative transmission mode of CSR.
  • AP101-1 and AP101-2 may use the same transmission resources for cooperative transmission.
  • the transmission resource may be of channel granularity or resource unit (resource unit, RU) as granularity.
  • AP101-1 and AP101-2 use the same channel for cooperative transmission.
  • the bandwidth of the cooperative transmission channel may be, for example, 20 MHz, 40 MHz or 80 MHz. Assuming that the bandwidth of the cooperative transmission channel is 80MHz, both AP101-1 and AP101-2 can use the channel with the 80MHz bandwidth.
  • AP 101-1 may allocate part or all of the 80 MHz bandwidth channel to STA 102-1 and STA 102-2.
  • the AP 101-2 may also allocate part or all of the 80 MHz bandwidth channel to the STA 102-3 and the STA 102-4.
  • AP101-1 can communicate with STA102-1/STA102-2, and AP101-2 can communicate with STA102-3/STA102-4.
  • the AP that has seized the transmission opportunity is generally called a sharing AP (sharing AP).
  • An AP that cooperates with the sharing AP to transmit is called a shared AP (shared AP).
  • the sharing AP can also be called the master AP or other names, and the shared AP can also be called the slave AP or other names.
  • the shared AP may still be the same AP, or it may change.
  • STAs associated with the shared AP may be referred to as shared STAs, and STAs associated with the shared AP may be referred to as shared STAs.
  • the transmission link in which the sharing AP participates may be referred to as the first link
  • the transmission link in which the shared AP participates may be referred to as the second link.
  • the transmission directions of the first link and the second link may be the same, and both may be downlink or both uplink.
  • the transmission directions of the first link and the second link may be different, for example, the transmission direction of the first link is uplink, and the transmission direction of the second link is downlink; for another example, the transmission direction of the first link is Downlink, the transmission direction of the second link is uplink.
  • the transmission direction of the first link is uplink, which means that the shared STA sends an uplink frame to the shared AP through the first link; the transmission direction of the first link is downlink, which means that the shared AP sends the shared STA to the shared STA through the first link. Send downlink frames.
  • the transmission direction of the second link is uplink, which means that the shared STA sends uplink frames to the shared AP through the second link; the transmission direction of the second link is downlink, which means that the shared AP sends the shared AP to the shared AP through the second link.
  • the shared STA sends downlink frames.
  • the cooperative transmission of multiple APs may also be called hybrid uplink and downlink transmission.
  • FIG. 3 shows several scenarios in which the transmission directions of the first link and the second link are different.
  • the two APs in cooperative transmission are identified by AP1 and AP2, AP1 is associated with STA1, and AP2 is associated with STA2.
  • the link between AP1 and STA1 is denoted as the first link, and the link between AP2 and STA2 is denoted as the second link.
  • the link direction is indicated by a solid arrow.
  • the sources of interference are indicated by dashed arrows.
  • the transmission direction of the first link is downlink
  • the transmission direction of the second link is downlink.
  • STA1 When STA1 receives downlink data sent by AP1, AP2 sends downlink data to STA2, then STA1 may be affected by Interference from AP2.
  • the transmission direction of the first link is uplink, and the transmission direction of the second link is uplink.
  • AP1 receives uplink data sent by STA1, STA2 sends uplink data to AP2, then AP1 may receive Interference from STA2.
  • the transmission direction of the first link is uplink, and the transmission direction of the second link is downlink.
  • AP1 receives uplink data sent by STA1, AP2 sends downlink data to STA2, and AP1 may receive interference from AP2.
  • the transmission direction of the first link is downlink
  • the transmission direction of the second link is uplink.
  • STA1 sends downlink data to STA1
  • STA2 sends uplink data to AP2
  • STA1 may receive data from STA2. interference.
  • AP1 and AP2 can obtain the channel loss by measuring the channel, and negotiate the transmission power of the first link and the second link according to the channel loss, so that the two links can be The interference is controllable due to cooperative transmission between them.
  • the transmit power of the sharing AP remains unchanged, and the sharing AP limits the maximum transmit power of the shared AP.
  • STA1 can measure the channel loss of AP2 by means of listening, STA1 can listen to the beacon frame of AP2, the beacon frame carries the original power, and STA1 calculates the original power and the beacon frame.
  • the difference between the RSSI and the channel loss can be obtained, and STA1 can report the channel loss of AP2->STA1 to AP1.
  • AP1 determines the maximum downlink transmit power of AP2 according to the channel loss, the average transmit power of AP2, and the maximum acceptable interference level of AP1->STA1 (signal-to-noise ratio at 10% bit error rate), and indicates the transmit power to AP2. In this way, AP2 reschedules qualified STAs to perform downlink concurrent transmission according to the transmit power indicated by AP1, so as to avoid interference to downlink transmission of AP1.
  • This condition means that the maximum acceptable interference level (signal-to-noise ratio at 10% bit error rate) of AP1->STA2 is greater than the RSSI of AP1->STA2.
  • AP1 can measure the channel loss of STA2->AP1 by receiving the signal of STA2, so as to calculate and instruct AP2 to schedule the transmit power of STA2 uplink transmission in a similar way to achieve interference Control.
  • beacon management frames are regularly exchanged between AP1 and AP2.
  • AP1 measures the channel loss of AP2->AP1 by receiving the beacon management frame of AP2, and calculates the channel loss according to the channel loss.
  • a similar method calculates and indicates the transmit power to AP2 for interference management.
  • an embodiment of the present application provides a cooperative transmission method for a wireless local area network, so as to reduce interference in the cooperative transmission process and improve the cooperative transmission quality of the wireless local area network.
  • the shared AP and one or more shared APs perform cooperative transmission on the channel.
  • the bandwidth of the channel for cooperative transmission may be 20MHz, 40MHz, 80MHz, 160MHz, 240MHz, 320MHz, or other bandwidths supported by the WLAN.
  • the bandwidth of the cooperative transmission channel is 80 MHz
  • the shared AP and one or more shared APs perform cooperative transmission on the 80 MHz channel, and both the shared AP and the shared AP can use the 80 MHz channel.
  • the AP can use the orthogonal frequency division multiple access (OFDMA) technology to allocate resources to the associated STAs.
  • OFDMA technology further divides the air interface wireless channel time-frequency resources into multiple orthogonal resources.
  • the orthogonal resources The unit is called RU.
  • the AP allocates resources to the STA, the allocation can be based on orthogonal resources. For example, APs are allocated based on RUs, and can also be allocated based on RU groups. The AP allocates different orthogonal resources to different STAs at the same time, so that multiple STAs can access the channel efficiently.
  • the shared AP can assign the channel to one STA associated with the shared AP, or to multiple STAs associated with the shared AP based on OFDMA technology, and the shared AP can also assign the channel to the shared AP.
  • a channel includes one or more sub-channels, and one sub-channel includes one or more RUs.
  • the shared AP sends downlink data to one or more associated shared STAs on the channel or on different RUs.
  • the shared AP allocates a channel or RU to one or more STAs associated with the shared AP to send uplink data. Similarly, during downlink transmission, the shared AP sends downlink data to one or more shared STAs associated with the shared AP on channels or different RUs. One or more shared STAs associated with the shared AP send uplink data.
  • the communication between the shared AP and the shared STA and the communication between the shared AP and the shared STA may exist at the same time. For example, on one RU, the sharing AP sends downlink data to the sharing STA, and on the RU, the shared STA sends uplink data to the shared AP.
  • the sharing STA may experience interference from the shared STA.
  • the methods provided in the embodiments of the present application are intended to manage and control the interference on the same channel or the same subchannel or the same RU. It can be understood that the channel division shown in FIG. 4 is just an example. When a channel includes a sub-channel, the bandwidth of the channel is the same as that of the sub-channel, or the sub-channel is considered to be the channel.
  • the sub-channel in the WLAN system takes 20 MHz as the granularity, and the bandwidth of the sub-channel can be set to 20 MHz.
  • the channel is 40MHz, it can include 2 sub-channels.
  • the channel is 80MHz, it can include 4 sub-channels.
  • the cooperative transmission between the shared AP and the shared AP on the channel means that both the shared AP and the shared AP can use the entire channel. How the shared AP and the shared AP allocate the RU of the channel to the STA is not limited in the embodiments of this application.
  • the sharing AP and the shared AP may allocate some or all of the resources of the channel to the sharing STA and the shared STA being scheduled.
  • an interference detection frame is designed to detect the interference RU.
  • the structure or function of the interference detection frame is introduced below.
  • the first frame, The second frame or the third frame, etc. represents the interference detection frame in different embodiments.
  • the type of interference detection frame can be short data frame, or control frame.
  • the interference detection frame when used as a control frame, it may be a trigger frame (trigger frame, TF) or a multi-user request to send (MU-RTS) frame.
  • Frames are denoted as TF-N.
  • MCS modulation and coding scheme
  • the modulation and coding scheme (MCS) order of the interference detection frame can be adjusted to the MCS order of the data frame. In this way, the interference detection result based on the interference detection frame can better reflect the interference result of the data frame.
  • the AP sends an interference detection frame to the STA, and the STA responds to the AP after receiving the interference detection frame.
  • the type of frame that the STA replies to the AP corresponds to the type of the interference detection frame.
  • the interference detection frame is MU-RTS, and correspondingly, the STA replies with a clear to send (clear to send, CTS) frame.
  • the interference detection frame is a trigger frame, and correspondingly, the STA replies with a block acknowledgment (block ACK, BA).
  • the interference detection frame is a short data frame, and the STA replies with a BA to the shared AP.
  • the response frame of the interference detection frame is denoted as BA-D.
  • the interference sounding frame may also instruct the STA to reply to the RU used in response.
  • the STA replies to the AP on the designated RU.
  • the interference sounding frame can also instruct the STA to report some channel-related information through the response frame BA-D, for example, received signal strength indication (RSSI), channel state information (channel state information, CSI).
  • RSSI received signal strength indication
  • CSI channel state information
  • the STA carries the channel-related information in the response frame that the STA replies to the AP according to the interference detection frame.
  • the AP can judge the degree of interference according to the channel-related information reported by the STA, and select an appropriate MCS to send data, or select an appropriate MCS to trigger uplink transmission.
  • a specific process of a wireless local area network cooperative transmission method is as follows.
  • the shared AP sends a first frame to the first STA on the channel to detect the interfering RU.
  • the shared AP is associated with the first STA, the shared AP is the serving AP of the first STA, the shared AP can schedule the first STA on the channel, and the shared AP can allocate one or more channels on the channel to the first STA RUs, eg, the shared AP allocates the first RU on the channel for the first STA.
  • the first STA is the STA that the shared AP prepares to send downlink data.
  • This channel is a channel for cooperative transmission between the shared AP and the shared AP.
  • the interfering RU means that the shared AP may be interfered when sending the downlink data frame to the first STA on the RU.
  • the condition may be that the shared AP is ready to use the channel for downlink transmission. That is, when the shared AP intends to use the channel for downlink transmission, it sends the first frame to the first STA on the channel to detect the interfering RU.
  • the first frame includes an indication to use the first RU when replying to the first frame to the first STA.
  • the first frame includes a first field, where the first field indicates that the first STA uses the first RU when replying to the first frame. If the first STA receives the first frame, it replies to the shared AP on the first RU. If the first STA does not receive the first frame, the shared AP cannot receive the first STA's reply to the first frame.
  • the interfering RU is the first RU that has not received the reply from the first STA.
  • the first STA will not reply to the shared AP on the first RU, and the shared AP can determine that the first RU that has not received the reply from the first STA is the interference ru.
  • the first STA indicated in the first frame and the RU used by the first STA are the target STA and the RU to be used in the next downlink data transmission.
  • the shared AP will acquire the detection result of the interfering RU, that is, the shared AP will know whether the first RU is the interfering RU.
  • the solution described in S501 is aimed at the first STA.
  • the first STA is any STA currently scheduled by the shared AP, and the shared AP requires the first STA to reply that the RU used in the first frame is the currently scheduled first STA.
  • the shared AP can send the first frame to each STA currently scheduled to detect whether the used RU is an interfering RU.
  • the shared AP can learn which RUs on the channel are interfering RUs, and these interfering RUs will be interfered in the next downlink transmission.
  • the detection result of the interfering RU can be used for interference management and control, so that the interference in the multi-AP cooperative transmission can be effectively controlled.
  • the condition in S501 may also be: the shared AP prepares to use the channel for downlink transmission, and the shared AP prepares to use the channel for uplink transmission. That is, when the shared AP intends to use the channel for downlink transmission and learns that the shared AP intends to use the channel for uplink transmission, the shared AP sends the first frame to the first STA on the channel to detect the interfering RU.
  • the shared AP may also negotiate the cooperative transmission direction with the shared AP.
  • this embodiment of the present application may provide two modes of a fixed mode and a flexible mode to negotiate the cooperative transmission direction.
  • the shared AP specifies the transmission direction of the shared AP during cooperative transmission.
  • the S500 is also included.
  • the shared AP sends a coordinated spatial reuse announcement (C-SR-A) frame to the shared AP, and correspondingly, the shared AP receives the C-SR-A frame from the shared AP.
  • C-SR-A coordinated spatial reuse announcement
  • the C-SR-A frame is used to indicate that the transmission direction of the shared AP during cooperative transmission is uplink.
  • the C-SR-A frame is also used to indicate that the transmission direction of the shared AP during cooperative transmission is downlink.
  • the shared AP can determine the respective transmission directions of the shared AP and the shared AP during cooperative transmission according to the C-SR-A frame.
  • the shared AP decides the transmission direction for cooperative transmission.
  • S501 In flexible mode, before S501, it also includes S500-1 and S500-2.
  • the shared AP sends a C-SR-A frame to the shared AP, and correspondingly, the shared AP receives the C-SR-A frame from the shared AP.
  • the C-SR-A frame is used to indicate the transmission direction selected by the shared AP during cooperative transmission.
  • the C-SR-A frame may also be used to indicate that the transmission direction of the shared AP during cooperative transmission is downlink.
  • the shared AP can determine that the transmission direction of the shared AP during cooperative transmission is downlink, and select its own transmission direction during cooperative transmission according to the instruction of the C-SR-A frame.
  • the shared AP sends a response frame to the shared AP, which is recorded as the first response frame; correspondingly, the shared AP receives the first response frame from the shared AP.
  • the first response frame is used to indicate that the transmission direction selected by the shared AP during cooperative transmission is uplink.
  • specifying or negotiating the transmission direction during cooperative transmission may refer to the transmission direction in one or more TXOPs, and generally refers to the transmission direction in one TXOP.
  • the sharing AP further instructs the shared AP to send the second frame to the second STA.
  • the second STA is a STA associated with the shared AP or currently scheduled.
  • the second STA is the STA that the shared AP intends to use the first RU for uplink transmission. That is, the shared AP prepares to schedule the second STA on the first RU. After scheduling, the second STA will use the first RU to send the uplink data frame to the shared AP.
  • the first RU is the RU multiplexed by the first STA and the second STA.
  • the format and function of the second frame is similar to that of the first frame.
  • the second frame is used to instruct the second STA to return the second acknowledgment frame to the shared AP after receiving the second frame.
  • the second acknowledgement frame indicates that the second frame has been received.
  • the sending moments of the first frame and the second frame are the same, and the length of the first frame is greater than the length of the second frame.
  • the length of the first frame is greater than the interval between the second frame and the short frame (short interframe space, SIFS) and the sum of the lengths.
  • SIFS short interframe space
  • the second STA starts to reply to the second acknowledgment frame after the first frame and the second frame are sent at the same time, the first frame has not been completely sent. Then, on the first RU, there will be a second acknowledgment frame transmitted in the uplink direction and returned by the second STA to the shared AP. On the first RU, the second acknowledgment frame in the uplink direction and the first frame in the downlink direction will exist. There is an intersection in the frequency domain, and at this time, the second acknowledgment frame in the uplink direction may cause interference to the first frame in the downlink direction.
  • the second acknowledgment frame will cause interference to the first STA receiving the first frame.
  • the first STA cannot receive the first frame
  • the first STA will not return the first acknowledgment frame to the shared AP on the first RU
  • the shared AP cannot receive the first STA returned by the first STA.
  • the shared AP can determine that the first RU that has not received the first confirmation frame returned by the first STA is an interfering RU.
  • the first STA can receive the first frame, and the first STA will return the first acknowledgment frame to the shared AP, and the shared AP will determine the The first RU is not an interfering RU.
  • the sharing AP instructs the shared AP to send the second frame to the second STA, which may be indicated by the C-SR-A frame sent by the shared AP to the shared AP in S500.
  • the shared AP instructs the shared AP to send the second frame to the second STA
  • the C-SR-A frame sent by the shared AP to the shared AP in S500-1 may indicate that the frame is sent when a condition is met, and the condition refers to the C-SR-A frame.
  • -SR-A indicates that the transmission direction of the shared AP is downlink, and the transmission direction selected by the shared AP is uplink.
  • the sharing AP can send the first frame after SIFS after sending the C-SR-A frame. frame, the shared AP sends the second frame after SIFS after receiving the C-SR-A frame, so that the sending moments of the first frame and the second frame are the same. If the C-SR-A frame sent by the shared AP to the shared AP in S500-1 indicates that the shared AP satisfies the condition and sends the second frame to the second STA, then in S500-2 the shared AP receives a response from the shared AP. After sending the first response frame and passing SIFS, the shared AP sends the second frame; so that the sending moments of the first frame and the second frame are the same .
  • the shared AP sends an uplink trigger frame, and schedules the STA (for example, the second STA) served by the shared AP to perform uplink transmission, and the shared STA that receives the uplink trigger frame will send an uplink trigger frame to the
  • the shared AP sends uplink data frames.
  • the shared AP may also sense the uplink trigger frame sent by the shared AP, and the shared AP may send the first frame to the first STA in response to the uplink trigger frame. That is, the opportunity for the shared AP to send the first frame to the first STA may be in response to receiving the uplink trigger frame sent by the shared AP.
  • the STA that receives the uplink trigger frame will send the uplink data frame to the shared AP, so the second STA will send the uplink data frame to the shared AP on the first RU.
  • the sharing AP sends the first frame to the first STA after receiving the uplink trigger frame from the shared AP, it can be guaranteed that the first STA receives the first frame in the downlink direction on the first RU, and the second STA is in the An RU sends uplink data frames to the shared AP, and there is an intersection. In this way, the uplink data frame sent by the second STA may cause interference to the first frame.
  • the first STA receiving the first frame will receive the first frame from the second STA. Interference from STAs sending uplink data frames. When interference is caused, the first STA cannot receive the first frame, the first STA will not return the first acknowledgment frame to the shared AP on the first RU, and the shared AP cannot receive the first STA returned by the first STA. After confirming the frame, the shared AP can determine that the first RU that has not received the first confirmation frame returned by the first STA is an interfering RU.
  • the first STA can receive the first frame, and the first STA will return the first acknowledgment frame to the shared AP, and the shared AP will determine The first RU is not an interfering RU.
  • the uplink trigger frame is sent through the SIFS.
  • the sharing AP waits to receive (or detects) the uplink trigger frame sent by the shared AP, and sends the first frame in response to the uplink trigger frame.
  • the shared AP If the shared AP receives the C-SR-A frame from the shared AP in S500-1, the shared AP returns the first response frame to the shared AP in S500-2. After the shared AP sends the first response frame, it goes through SIFS Then send the upstream trigger frame. Through S500-2, after the shared AP receives the first response frame sent from the shared AP, the shared AP waits to receive (or detects) the uplink trigger frame sent by the shared AP, and sends the first frame in response to the uplink trigger frame.
  • the first frame is the same as the sending time of the uplink trigger frame sent by the shared AP.
  • the length of the first frame is greater than the length of the upstream trigger frame.
  • the length of the first frame is greater than the sum of the lengths of the upstream trigger frame and the SIFS.
  • the uplink trigger frame is used to trigger the STA served by the shared AP to perform uplink transmission. Specifically, when the shared AP schedules the STA (for example, the second STA) served by the shared AP to perform uplink transmission, it will send an uplink trigger frame, and the STA that receives the uplink trigger frame will send it to the shared AP after SIFS. Upstream data frame.
  • the second STA when the first frame and the uplink trigger frame are sent at the same time, when the second STA receives the uplink trigger frame, the first frame has not been completely sent.
  • the second STA After receiving the uplink trigger frame, the second STA sends an uplink data frame to the shared AP according to the uplink trigger frame at an interval of SIFS. Then, there will be frames transmitted in the uplink direction on the first RU.
  • the uplink frame sent by the second STA and the first frame in the downlink direction of the shared AP have an intersection in the frequency domain, the second STA will The transmitted upstream frame may interfere with the first frame in the downstream direction.
  • the sending of the uplink frame by the second STA will cause the first STA to receive the first frame.
  • interference When interference is caused, the first STA cannot receive the first frame, the first STA will not return the first acknowledgment frame to the shared AP on the first RU, and the shared AP cannot receive the first STA returned by the first STA.
  • the shared AP can determine that the first RU that has not received the first confirmation frame returned by the first STA is an interfering RU.
  • the first STA can receive the first frame, and the first STA will return the first acknowledgment frame to the shared AP, and the shared AP will determine the The first RU is not an interfering RU.
  • the uplink trigger frame is sent through the SIFS.
  • the sharing AP sends the first frame through SIFS, so that the sending time of the first frame and the uplink trigger frame sent by the shared AP are the same.
  • the shared AP If the shared AP receives the C-SR-A frame from the shared AP in S500-1, the shared AP returns the first response frame to the shared AP in S500-2. After the shared AP sends the first response frame, it goes through SIFS Then send the upstream trigger frame. After the shared AP receives the first response frame sent from the shared AP through S500-2, if the transmission direction of the shared AP is downlink and the transmission direction selected by the shared AP is uplink, the shared AP sends the first frame through SIFS , so that the sending moment of the first frame is the same as that of the uplink trigger frame sent by the shared AP.
  • interference detection is performed according to the shared AP by sending the first frame before downlink transmission, so as to detect whether the uplink and downlink transmission of the shared AP on the RU will be interfered by the uplink transmission of the shared STA on the RU.
  • Scheme 1 is implemented through steps S502 to S503.
  • Scheme 2 is implemented by step S502*.
  • the shared AP sends an indication frame to the shared AP in response to the detected interfering RU.
  • the shared AP receives the indication frame from the shared AP.
  • the indication frame is used to indicate that the shared AP is not allowed to use the subchannel where the interfering RU is located for uplink transmission.
  • the channel bandwidth of cooperative transmission is 80 MHz, including 4 sub-channels, denoted as sub-channel 1, sub-channel 2, sub-channel 3 and sub-channel 4.
  • the bandwidth of one subchannel is 20MHz.
  • the shared AP allocates the first RU in subchannel 1 to the first STA.
  • the shared AP learns that the first RU is the interfering RU by detecting the interfering RU.
  • the shared AP sends an instruction frame to the shared AP, indicating that the shared AP is not allowed to use the sub-channel where the interfering RU is located for uplink transmission, so as to avoid the possible interference of the sharing STA receiving downlink data frames on the sub-channel where the interfering RU is located, and realize the interference Controllable.
  • the channel bandwidth of the cooperative transmission may be greater than or equal to the bandwidth of a prohibited subchannel.
  • the channel bandwidth of cooperative transmission is 20MHz, which is equal to the bandwidth of the sub-channel, and the sharing AP may instruct the shared AP not to perform uplink transmission on the 20MHz bandwidth. That is to say, the shared AP cannot transmit cooperatively with the shared AP within this TXOP.
  • the shared AP performs downlink transmission on the channel.
  • the shared AP After instructing the shared AP to prohibit uplink transmission on the sub-channel where the interfering RU is located, the shared AP can perform downlink transmission on the entire channel without being interfered by the uplink transmission of the shared STA.
  • the shared AP does not perform downlink transmission on the subchannel where the interfering RU is located. That is, the shared AP itself is prohibited from using the interfering RU.
  • the shared AP performs downlink transmission on sub-channels in the channel other than the sub-channel where the interfering RU is located.
  • the shared AP can trigger the shared STA to perform uplink transmission on the channel.
  • the channel bandwidth of the cooperative transmission is 80 MHz, including 4 sub-channels, which are denoted as sub-channel 1, sub-channel 2, sub-channel 3 and sub-channel 4.
  • the bandwidth of one subchannel is 20MHz.
  • the shared AP allocates the first RU in subchannel 1 to the first STA.
  • the shared AP learns that the first RU is the interfering RU by detecting the interfering RU. If the shared AP performs downlink transmission on subchannel 1 where the interfering RU is located, and the shared STA also sends uplink data frames to the shared AP on this subchannel 1, the sharing STA may receive downlink data frames on this subchannel 1.
  • the shared STA It is interfered by the shared STA sending uplink data frames. Based on this, when the shared AP learns that the first RU is an interfering RU, it prohibits downlink transmission on sub-channel 1 where the interfering RU is located. Interference from shared APs. After the shared AP prohibits downlink transmission on the subchannel where the interfering RU is located, the shared STA and the shared AP can perform uplink transmission on the entire channel without being interfered by the downlink transmission of the shared AP.
  • FIG. 6a and FIG. 6b a schematic diagram of frame interaction between each AP and each STA is shown in FIG. 6a and FIG. 6b.
  • Figures 6a and 6b illustrate an example of frame interaction within a TXOP.
  • Fig. 6a shows the cooperative transmission in the fixed mode
  • Fig. 6b shows the cooperative transmission in the flexible mode.
  • the following describes the frame interaction in Figure 6a and Figure 6b. If there is no special description, the described frame interaction is applicable to both Figure 6a and Figure 6b. When there is a difference in the frame interaction, it will be specially explained. Specifically, the steps in Figure 6a Again the steps in Figure 6b.
  • STA1-1 and STA1-2 STA1-1 and STA1-2
  • STA2-1 and STA2-2 STA1-1 and STA1-2
  • the operations performed by STA1-1 and STA1-2 may refer to the operations of the first STA.
  • the operations performed by STA2-1 and STA2-2 may refer to the operations of the second STA.
  • the shared AP sends a C-SR-A frame to the shared AP, and correspondingly, the shared AP receives the C-SR-A frame from the shared AP.
  • this step may refer to S500.
  • the C-SR-A frame indicates that the transmission direction of the shared AP during cooperative transmission is uplink.
  • the C-SR-A frame further indicates that the transmission direction of the shared AP during cooperative transmission is downlink.
  • the C-SR-A frame also instructs the shared AP to send a second frame.
  • this step may refer to S500-1.
  • the C-SR-A frame indicates the transmission direction selected by the shared AP for cooperative transmission.
  • the C-SR-A frame may further indicate that the transmission direction of the shared AP during cooperative transmission is downlink.
  • the shared AP returns a response frame to the shared AP, and correspondingly, the shared AP receives the response frame from the shared AP.
  • the response frame indicates that the transmission direction selected by the shared AP during cooperative transmission is uplink. It is conceivable here that if the response frame indicates that the transmission direction selected by the shared AP during cooperative transmission is downlink, the shared AP does not perform interference detection. That is, only when the response frame indicates that the transmission direction selected by the shared AP during cooperative transmission is uplink, the shared AP will perform interference detection, that is, perform the following 2).
  • the shared AP sends the first frame to STA1-1 and STA1-2, where the first frame is represented by TF-N.
  • the shared AP sends a second frame to STA2-1 and STA2-2, and the second frame is also denoted by TF-N.
  • This step occurs when, in the fixed mode, the transmission direction of the shared AP is downlink, and the C-SR-A indicates that the transmission direction of the shared AP is uplink; and in the flexible mode, the transmission direction of the shared AP is downlink, and the shared AP responds to the C-SR The transmission direction selected by -A is upstream.
  • the first frame sent by the shared AP to STA1-2 indicates that STA1-2 uses the first RU when replying to the first frame.
  • the first frame sent by the shared AP to STA1-1 instructs STA1-1 to use other RUs different from the first RU when replying to the first frame. If STA1-1 and STA1-2 receive the first frame, they respectively return the first confirmation frame to the shared AP on the designated RU, and the first confirmation frame is represented by BA-D.
  • the second frame sent by the shared AP to STA2-1 instructs STA2-1 to use the first RU when replying to the second frame.
  • the second frame sent by the shared AP to STA2-2 instructs STA2-2 to use other RUs different from the first RU when replying to the second frame.
  • both STA1-2 and STA2-1 use the first RU, and STA1-2 and STA2-1 multiplex the first RU.
  • the shared AP may send the first frame after sending the C-SR-A frame after SIFS, and the shared AP may send the second frame after receiving the C-SR-A frame after the SIFS.
  • the shared AP may send the first frame after SIFS after receiving the response frame from the shared AP; the shared AP sends the second frame through SIFS after sending the response frame.
  • the length of the first frame is greater than the sum of the length of the second frame and the length of the SIFS.
  • STA2-1 and STA2-2 After STA2-1 and STA2-2 receive the second frame, they return the second confirmation frame to the shared AP through SIFS, and the second confirmation frame is represented by BA-D.
  • the BA frame may interfere with the first frame. For example, STA1-2 cannot successfully receive the first frame due to the interference of the BA-D frame returned by STA2-1. STA1-2 cannot return the first acknowledgment frame (BA-D frame) to the shared AP without receiving the first frame.
  • STA1-1 returns the first acknowledgment frame (BA-D frame) to the shared AP, and the shared AP receives the first acknowledgment frame (BA-D frame) returned by STA1-1, and determines that the RU corresponding to STA1-1 has not received interference.
  • the shared AP does not receive the BA-D frame returned by STA1-2, and determines that the first RU is an interfering RU.
  • the sharing AP sends an indication frame to the shared AP.
  • the shared AP receives the indication frame from the shared AP.
  • the indication frame is used to indicate that the shared AP is not allowed to use the subchannel where the interfering RU is located for uplink transmission.
  • Share AP for downlink transmission (DL data frame).
  • the shared AP sends an uplink trigger frame.
  • Uplink trigger frames are used to schedule uplink transmissions.
  • the shared AP can perform downlink transmission to STA1-1 and STA1-2. Since the shared AP instructs the shared AP to prohibit uplink transmission on the subchannel where the first RU is located, STA2-1 will not perform uplink transmission on the first RU. The shared AP sends the DL data frame to STA1-2 without being interfered by the uplink transmission of STA2-1 on the first RU.
  • the shared AP Since the shared AP receives the instruction frame, according to the instruction frame, uplink transmission on the subchannel where the first RU is located is prohibited, so the uplink trigger frame is only sent to STA2-2. After receiving the uplink trigger frame, STA2-2 sends the uplink data frame to the shared AP on the corresponding RU.
  • the shared AP may send the DL data frame after sending the instruction frame after passing the SIFS; the shared AP may send the uplink trigger frame after receiving the instruction frame and passing the SIFS.
  • STA1-1 and STA1-2 will also return an acknowledgment (BA) frame to the shared AP.
  • the shared AP After receiving the UL data frame sent by STA2-2, the shared AP returns an acknowledgment (BA) frame to STA2-2 at an interval of SIFS.
  • FIG. 7a and FIG. 7b a schematic diagram of frame interaction between each AP and each STA is shown in FIG. 7a and FIG. 7b.
  • Figures 7a and 7b illustrate an example of frame interaction within a TXOP.
  • Fig. 7a shows the cooperative transmission in the fixed mode
  • Fig. 7b shows the cooperative transmission in the flexible mode.
  • the frame interaction in Figure 7a and Figure 7b will be described below. If there is no special description, the described frame interaction means that both Figure 7a and Figure 7b are applicable. When there is a difference in the frame interaction, it will be specially explained.
  • the steps are also the steps of Figure 7b.
  • STA1-1 and STA1-2 STA1-1 and STA1-2
  • STA2-1 and STA2-2 STA2-2
  • the operations performed by STA1-1 and STA1-2 may refer to the operations of the first STA.
  • Operations performed by STA2-1 and STA2-2 may refer to operations performed by the second STA.
  • the shared AP sends a C-SR-A frame to the shared AP, and correspondingly, the shared AP receives the C-SR-A frame from the shared AP.
  • this step may refer to S500.
  • the C-SR-A frame is used to indicate that the transmission direction of the shared AP during cooperative transmission is uplink.
  • the C-SR-A frame is also used to indicate that the transmission direction of the shared AP during cooperative transmission is downlink.
  • this step can be parameter S500-1.
  • the C-SR-A frame is used to indicate the transmission direction selected by the shared AP during cooperative transmission.
  • the C-SR-A frame may also be used to indicate that the transmission direction of the shared AP during cooperative transmission is downlink.
  • the shared AP also returns a response frame to the shared AP, and correspondingly, the shared AP receives the response frame from the shared AP.
  • the response frame is used to indicate that the transmission direction selected by the shared AP during cooperative transmission is uplink. It is conceivable here that if the response frame indicates that the transmission direction selected by the shared AP during cooperative transmission is downlink, the shared AP does not perform interference detection. That is, only when the response frame indicates that the transmission direction selected by the shared AP during cooperative transmission is uplink, the shared AP will perform interference detection, that is, perform the following 2.
  • the shared AP sends an uplink trigger frame to STA2-1, STA2-2 and the shared AP.
  • Uplink trigger frames are used to schedule uplink transmissions.
  • STA2-1 and STA2-2 receive the uplink trigger frame from the shared AP.
  • the shared AP also receives uplink trigger frames from the shared AP.
  • the shared AP can send an uplink trigger frame after receiving the C-SR-A frame after SIFS.
  • the shared AP can send the uplink trigger frame after SIFS after sending the response frame.
  • the shared AP sends the first frame to STA1-1 and STA1-2, where the first frame is represented by TF-N. Meanwhile, after STA2-1 and STA2-2 receive the uplink trigger frame, the scheduled RU sends an uplink (UL) data frame to the shared AP.
  • UL uplink
  • the first frame sent by the shared AP to STA1-2 indicates that STA1-2 uses the first RU when replying to the first frame.
  • the first frame sent by the shared AP to STA1-1 instructs STA1-2 to use other RUs different from the first RU when replying to the first frame. If STA1-1 and STA1-2 receive the first frame, they will return the first acknowledgment frame to the shared AP on their designated RU, and the first acknowledgment frame is represented by BA-D.
  • the uplink trigger frame sent by the shared AP to STA2-1 indicates the first RU used for uplink transmission.
  • the uplink trigger frame sent by the shared AP to the STA2-2 indicates other RUs used for uplink transmission that are different from the first RU.
  • both STA1-2 and STA2-1 use the first RU, and STA1-2 and STA2-1 multiplex the first RU.
  • the sharing AP may send the first frame to STA1-1 and STA1-2 after SIFS.
  • STA2-1 and STA2-2 After STA2-1 and STA2-2 receive the uplink trigger frame, after SIFS, they will send the uplink data frame to the shared AP.
  • the sharing AP Since the sharing AP sends the first frame after receiving the uplink trigger frame from the shared AP, there is an intersection with the first frame when STA2-1 and STA2-2 perform uplink transmission.
  • the UL data frame may interfere with the first frame.
  • STA1-2 receives the first frame from the shared AP on the first RU, STA2-1 sends the UL data frame to the shared AP on the first RU, and STA1-2 may receive the UL data frame sent by STA2-1 Therefore, the first frame cannot be successfully received, and the first acknowledgment frame (BA-D) will not be returned to the shared AP.
  • BA-D first acknowledgment frame
  • STA1-1 returns the first acknowledgment frame (BA-D frame) to the shared AP, and the shared AP receives the first acknowledgment frame (BA-D frame) returned by STA1-1, and determines that the RU corresponding to STA1-1 has not received any interference.
  • the shared AP does not receive the BA-D frame returned by STA1-2, and determines that the first RU is an interfering RU.
  • the shared AP is prohibited from using the sub-channel where the interfering RU is located for downlink transmission, and the shared AP performs downlink transmission on the sub-channel where the non-interfered RU is located.
  • the shared AP determines that the first RU is an interfering RU, and prohibits downlink transmission on the subchannel where the first RU is located, that is, the shared AP does not send downlink data frames to STA1-2 on the first RU.
  • the shared AP sends a downlink data frame to STA1-1 on the subchannel where the RU corresponding to STA1-1 is located.
  • STA1-1 After STA1-1 receives the DL data frame, it will also return an acknowledgment frame (BA) to the shared AP.
  • BA acknowledgment frame
  • the shared AP After receiving the UL data frame, the shared AP will also return an acknowledgement frame (BA) to STA2-1 and STA2-2.
  • BA acknowledgement frame
  • FIG. 8a and FIG. 8b illustrate an example of frame interaction within a TXOP.
  • Figure 8a shows the fixed mode of cooperative transmission
  • Figure 8b shows the flexible mode of cooperative transmission.
  • the steps are also the steps of Figure 8b.
  • STA1-1 and STA1-2 STA1-1 and STA1-2
  • STA2-1 and STA2-2 STA1-1 and STA1-2
  • the operations performed by STA1-1 and STA1-2 may refer to the operations of the first STA.
  • the operations performed by STA2-1 and STA2-2 may refer to the operations of the second STA.
  • the shared AP sends a C-SR-A frame to the shared AP, and correspondingly, the shared AP receives the C-SR-A frame from the shared AP.
  • this step may refer to S500.
  • the C-SR-A frame is used to indicate that the transmission direction of the shared AP during cooperative transmission is uplink.
  • the C-SR-A frame is also used to indicate that the transmission direction of the shared AP during cooperative transmission is downlink.
  • this step can be parameter S500-1.
  • the C-SR-A frame is used to indicate the transmission direction selected by the shared AP during cooperative transmission.
  • the C-SR-A frame may also be used to indicate that the transmission direction of the shared AP during cooperative transmission is downlink.
  • the shared AP also returns a response frame to the shared AP, and correspondingly, the shared AP receives the response frame from the shared AP.
  • the response frame is used to indicate that the transmission direction selected by the shared AP during cooperative transmission is uplink. It is conceivable here that if the response frame indicates that the transmission direction selected by the shared AP during cooperative transmission is downlink, the shared AP does not perform interference detection. That is, only when the response frame indicates that the transmission direction selected by the shared AP during cooperative transmission is uplink, the shared AP will perform interference detection, that is, perform the latter (2).
  • the shared AP sends an uplink trigger frame to STA2-1 and STA2-2.
  • Uplink trigger frames are used to schedule uplink transmissions.
  • STA2-1 and STA2-2 receive the uplink trigger frame from the shared AP.
  • the shared AP sends the first frame to STA1-1 and STA1-2, and the first frame is denoted by TF-N.
  • the corresponding RU sends an uplink (UL) data frame to the shared AP.
  • the first frame sent by the shared AP to STA1-2 indicates that STA1-2 uses the first RU when replying to the first frame.
  • the first frame sent by the shared AP to STA1-1 instructs STA1-1 to use other RUs different from the first RU when replying to the first frame. If STA1-1 and STA1-2 receive the first frame, they will return the first acknowledgment frame to the shared AP, and the first acknowledgment frame is represented by BA-D.
  • the uplink trigger frame sent by the shared AP to STA2-1 indicates the first RU used for uplink transmission.
  • the uplink trigger frame sent by the shared AP to the STA2-2 indicates that another RU different from the first RU is used for uplink transmission.
  • both STA1-2 and STA2-1 use the first RU, and STA1-2 and STA2-1 multiplex the first RU.
  • the shared AP sends the first frame after sending the C-SR-A frame after SIFS.
  • the shared AP can send the uplink trigger frame after receiving the C-SR-A frame after SIFS.
  • the shared AP sends the uplink trigger frame after sending the response frame after SIFS, and the shared AP sends the first frame after receiving the response frame and after the SIFS.
  • STA2-1 and STA2-2 After STA2-1 and STA2-2 receive the uplink trigger frame, after SIFS, they will send the uplink data frame to the shared AP.
  • the length of the first frame is greater than the sum of the lengths of the upstream trigger frame and the SIFS.
  • STA2-1 and STA2-2 perform uplink transmission, there is an intersection with the first frame.
  • the UL data frame may interfere with the first frame.
  • STA1-2 receives the first frame from the shared AP on the first RU, STA2-1 sends a UL data frame to the shared AP on the first RU, and STA1-2 is interfered by the UL data frame sent by STA2-1 , so that the first frame cannot be received successfully, and the first acknowledgment frame (BA-D frame) will not be returned to the shared AP.
  • STA2-1 sends a UL data frame to the shared AP on the first RU
  • STA1-2 is interfered by the UL data frame sent by STA2-1 , so that the first frame cannot be received successfully, and the first acknowledgment frame (BA-D frame) will not be returned to the shared AP.
  • BA-D frame first acknowledgment frame
  • STA1-1 returns the first acknowledgment frame (BA-D frame) to the shared AP, and the shared AP receives the first acknowledgment frame (BA-D frame) returned by STA1-1, and determines the RU corresponding to STA1-1. Not disturbed.
  • the shared AP does not receive the BA-D frame returned by STA1-2, and determines that the first RU is an interfering RU.
  • the shared AP is prohibited from using the subchannel where the interfering RU is located to perform downlink transmission, and the shared AP performs downlink transmission on the subchannel where the RU that is not interfered is located.
  • the shared AP determines that the first RU is an interfering RU, and prohibits downlink transmission on the subchannel where the first RU is located, that is, the shared AP does not send downlink data frames to the STA1-2 on the first RU.
  • the shared AP sends a downlink data frame to STA1-1 on the subchannel where the RU corresponding to STA1-1 is located.
  • STA1-1 After STA1-1 receives the DL data frame, it will also return an acknowledgment frame (BA) to the shared AP.
  • BA acknowledgment frame
  • the shared AP After receiving the UL data frame, the shared AP will also return an acknowledgement frame (BA) to STA2-1 and STA2-2.
  • BA acknowledgement frame
  • the embodiment of FIG. 5 introduces the cooperative transmission method of the wireless local area network provided by the embodiment of the present application under the background of cooperative transmission between a shared AP and a shared AP on a channel.
  • the operations performed by each shared AP can be implemented as shown in Figure 5.
  • the shared AP in the example performs the operations as described.
  • the cooperative transmission direction of some shared APs is uplink
  • the cooperative transmission direction of some shared APs is downlink
  • the downlink shared APs may also be affected by the uplink shared APs. interference.
  • an embodiment of the present application provides a cooperative transmission method for a wireless local area network, and the specific process is as described in FIG. 9 .
  • the shared AP sends a first frame to the first STA on the channel to detect the interfering RU.
  • the shared AP is associated with the first STA, the shared AP is the serving AP of the first STA, the shared AP can schedule the first STA on the channel, and the shared AP can allocate one or more channels on the channel to the first STA RUs, eg, the shared AP allocates the first RU on the channel for the first STA.
  • This channel is a channel for cooperative transmission between the shared AP and multiple shared APs. Taking two shared APs as an example, it is assumed that the shared AP, the first shared AP and the second shared AP perform cooperative transmission on the channel.
  • the interfering RU means that the shared AP may be interfered when sending the downlink data frame to the first STA on the RU.
  • the condition may be that the shared AP is ready to use the channel for downlink transmission. That is, when the shared AP intends to use the channel for downlink transmission, it sends the first frame to the first STA on the channel to detect the interfering RU.
  • the first frame includes instructing the first STA to use the first RU when replying to the first frame.
  • the condition in S901 may also be: the shared AP intends to use the channel for downlink transmission, the first shared AP intends to use the channel for uplink transmission, and the second shared AP intends to use the channel for downlink transmission. That is, the transmission direction of the shared AP has both uplink and downlink.
  • the method for negotiating the cooperative transmission direction between the shared AP and the first shared AP reference may be made to the method for negotiating the cooperative transmission direction between the shared AP and the shared AP in the embodiment of FIG. 5 .
  • the first shared AP is the shared AP in the embodiment of FIG. 5 .
  • the method for negotiating the cooperative transmission direction between the shared AP and the second shared AP is similar to the method for negotiating the cooperative transmission direction between the shared AP and the shared AP in the embodiment of FIG. 5 , and may also include fixed mode and flexible mode.
  • the following is a detailed introduction.
  • the shared AP specifies the transmission direction of the second shared AP during cooperative transmission.
  • the S900 is also included.
  • the sharing AP sends the C-SR-A frame to the second shared AP, and correspondingly, the second shared AP receives the C-SR-A frame from the shared AP.
  • the C-SR-A frame is used to indicate that the transmission direction of the second shared AP during cooperative transmission is downlink.
  • the C-SR-A frame is also used to indicate that the transmission direction of the shared AP during cooperative transmission is downlink.
  • the second shared AP can determine the respective transmission directions of the shared AP and the second shared AP during cooperative transmission according to the C-SR-A frame.
  • the transmission directions of the second shared AP and the shared AP are both downlink, and the second shared AP needs to know that the direction of the first shared AP is uplink to determine interference detection.
  • the Sharing AP can simultaneously indicate the transmission directions of the first shared AP and the second shared AP through the C-SR-A frame, and can also indicate that the second shared AP needs to do interference detection through a field of the C-SR-A.
  • the second shared AP decides the transmission direction of cooperative transmission by itself.
  • the shared AP sends a C-SR-A frame to the second shared AP, and correspondingly, the second shared AP receives the C-SR-A frame from the shared AP.
  • the C-SR-A frame is used to instruct the second shared AP to select a transmission direction during cooperative transmission.
  • the C-SR-A frame may also be used to indicate that the transmission direction of the shared AP during cooperative transmission is downlink.
  • the second shared AP may determine, according to the C-SR-A frame, that the transmission direction of the shared AP during cooperative transmission is downlink.
  • the second shared AP sends a response frame to the shared AP, which is recorded as a second response frame; correspondingly, the shared AP receives the second response frame from the second shared AP.
  • the second response frame is used to indicate that the transmission direction selected by the second shared AP during cooperative transmission is downlink.
  • the shared AP may also send an indication frame to the second shared AP, the indication frame may be recorded as an indic frame, and the indication frame is used to indicate whether the shared AP needs to perform interference detection. Since the second shared AP cannot know the transmission directions of other shared APs performing cooperative transmission, the second shared AP cannot decide whether to perform interference detection. Optionally, the shared AP may also indicate to the first shared AP whether interference detection is required.
  • specifying or negotiating the transmission direction during cooperative transmission may refer to the transmission direction in one or more TXOPs, and generally refers to the transmission direction in one TXOP.
  • the sharing AP before S901, the sharing AP further instructs the first shared AP to send the second frame to the second STA, and the sharing AP further instructs the second shared AP to send the third frame to the third STA.
  • the second STA is a STA associated with or currently scheduled by the first shared AP.
  • the second STA is the STA that the first shared AP intends to use the first RU to trigger uplink transmission. That is, the first shared AP prepares to schedule the second STA on the first RU.
  • the first STA and the second STA multiplex the first RU.
  • the third STA is the STA associated with or currently scheduled by the second shared AP.
  • the third STA is the STA that the second shared AP intends to use the second RU to trigger uplink transmission. That is, the second shared AP prepares to schedule the third STA on the second RU.
  • the sharing AP further instructs the first shared AP to send the second frame to the fourth STA.
  • the first shared AP prepares to schedule the fourth STA on the second RU.
  • the third STA and the fourth STA multiplex the second RU.
  • the format and function of the second frame is similar to that of the first frame.
  • the second frame is used to instruct the second STA to return the second acknowledgment frame to the first shared AP after receiving the second frame.
  • the manner in which the shared AP determines whether the first RU is an interfering RU and other undescribed details can refer to the description in the foregoing optional manner 1, and details are not repeated here.
  • the format and function of the third frame is similar to that of the first frame.
  • the third frame is used to instruct the third STA to return the third acknowledgment frame to the second shared AP after receiving the third frame.
  • the receipt of the third acknowledgment frame by the second shared AP indicates that the third STA has received the third frame.
  • the sending moments of the second frame, the third frame and the first frame are the same, the length of the third frame and the first frame is the same, and is greater than the length of the second frame, in general, the length of the third frame and the first frame is greater than The sum of the length of the second frame and SIFS. In this way, when the third frame and the second frame are sent at the same time, when the fourth STA receives the second frame, the third frame has not been completely sent.
  • the fourth STA After receiving the second frame, the fourth STA will return a second acknowledgment frame (BA-D) to the first shared AP according to the second frame.
  • the transmission direction of the second acknowledgment frame is the upstream direction.
  • the fourth STA returns a second confirmation frame to the first shared AP.
  • the second confirmation frame in the uplink direction and the third frame in the downlink direction If there is an intersection in the time domain and the frequency domain, the second acknowledgment frame in the uplink direction may cause interference to the third frame in the downlink direction.
  • the second acknowledgment frame will cause interference to the third STA receiving the third frame.
  • the third STA cannot receive the third frame, then the third STA will not return the third acknowledgment frame to the second shared AP on the second RU, and the second shared AP cannot receive the third frame.
  • the second shared AP can determine that the second RU that has not received the third acknowledgment frame returned by the third STA is an interfering RU.
  • the third STA can receive the third frame, and the third STA will return the third acknowledgment frame to the second shared AP, then the second STA can receive the third frame.
  • the shared AP determines that the second RU is not the interfering RU.
  • the sharing AP instructs the first shared AP to send the second frame to the second STA, which may be indicated by the C-SR-A frame sent by the sharing AP to the first shared AP.
  • the first shared AP is the shared AP in the optional mode 1. It is not repeated here.
  • the sharing AP instructs the second shared AP to send the third frame to the third STA, which may be indicated by the C-SR-A frame sent by the sharing AP to the second shared AP in S900 or S900-1 . If the second shared AP is instructed to send the third frame to the third STA by sharing the C-SR-A frame sent by the AP to the second shared AP through S900, the sharing AP may go through SIFS after sending the C-SR-A frame After the first frame is sent, the second shared AP sends the third frame after SIFS after receiving the C-SR-A frame, so that the sending moments of the first frame and the third frame are the same.
  • the shared AP receives a message from the second shared AP. After the second response frame returned by the shared AP and SIFS, the third frame is sent; while the second shared AP sends the second response frame and after the SIFS, the third frame is sent; The sending time is the same.
  • S902 is also included.
  • the second shared AP sends a response frame to the shared AP, which is recorded as a third response frame.
  • the shared AP receives the third response frame from the second shared AP.
  • the third response frame is used to indicate that the second RU is an interfering RU.
  • the shared AP determines that the second RU is an interfering RU according to the third response frame. Combined with the shared AP's own detection, it is finally determined that the first RU and the second RU are interfering RUs.
  • the second RU may not be the interfering RU, and the shared AP finally determines that the first RU is the interfering RU.
  • more STAs may be associated with the shared AP, the first shared AP, and the second shared AP.
  • the shared AP When the transmission direction is downlink, the shared AP, together with the second shared AP whose transmission direction is downlink, detects interference from the first shared AP whose transmission direction is uplink.
  • the second shared AP sends the interference detection result to the shared AP, and the shared AP obtains the final interference RU by combining the interference detection result detected by itself.
  • S903 and S904 may also be included.
  • the sharing AP In response to receiving the third response frame, the sharing AP sends an indication frame to the first shared AP.
  • the first shared AP receives the indication frame from the shared AP.
  • the indication frame is used to indicate that the first shared AP is not allowed to use the subchannel where the interfering RU is located for uplink transmission.
  • the shared AP performs downlink transmission on the channel.
  • the shared AP After instructing the first shared AP to prohibit uplink transmission on the subchannel where the interfering RU is located, the shared AP can perform downlink transmission on the entire channel without being interfered by the uplink transmission of the first shared STA, and the second The downlink transmission performed by the shared AP on the entire channel will not be interfered by the uplink transmission of the first shared STA.
  • FIG. 9 Based on the above description of the embodiment of FIG. 9 , the embodiment of FIG. 9 is further described in detail below with reference to specific application scenarios.
  • Figures 10a and 10b are schematic diagrams of frame interaction between each AP and each STA.
  • Figures 10a and 10b illustrate an example of frame interaction within a TXOP.
  • FIG. 10a shows the cooperative transmission in the fixed mode
  • FIG. 10b shows the cooperative transmission in the flexible mode.
  • the following describes the frame interaction in Figure 10a and Figure 10b. If there is no special description, the described frame interaction is applicable to both Figure 10a and Figure 10b. When there is a difference in the frame interaction, it will be specially explained.
  • the steps in Figure 10a Again the steps of Figure 10b.
  • the first shared AP and the second shared AP shown in FIG. 10a are both fixed mode cooperative transmissions, and the first shared AP and the second shared AP shown in FIG.
  • FIGS. 10b are both flexible mode cooperative transmissions.
  • Figures 10a and 10b are only examples.
  • the modes of cooperative transmission of the first shared AP and the second shared AP can be different, as long as the transmission direction of the shared AP has both uplink and downlink, the cooperative transmission in the fixed mode can also refer to the description in Figure 10a, the flexible mode can also refer to the description of Figure 10b.
  • STA1-1 and STA1-2 the STAs currently scheduled by the shared AP are represented by STA1-1 and STA1-2
  • the first STAs currently scheduled by the shared AP are represented by STA2-1 and STA2-2
  • the second STAs currently scheduled by the shared AP are represented by STA3-1 and STA3-1.
  • STA3-2 indicates.
  • STA1-1 and STA1-2 For operations performed by STA1-1 and STA1-2, reference may be made to the operations of the first STA in the embodiment of FIG. 9 .
  • the operations performed by STA2-1 and STA2-2 may refer to the operations of the second STA in the embodiment of FIG. 9
  • the operations performed by STA3-1 and STA3-2 may refer to the operations of the third STA in the embodiment of FIG. 9 .
  • the shared AP sends C-SR-A frames to the first shared AP and the second shared AP respectively, and correspondingly, the first shared AP and the second shared AP receive C-SR-A frames from the shared AP respectively.
  • a frame A frame.
  • the C-SR-A frame sent by the shared AP to the first shared AP is used to indicate that the transmission direction of the first shared AP during cooperative transmission is uplink.
  • the C-SR-A frame sent to the second shared AP is used to indicate that the transmission direction of the second shared AP during cooperative transmission is downlink.
  • the shared AP uses the C-SR-A frame to indicate to the first shared AP and the second shared AP that the transmission direction of the shared AP during cooperative transmission is downlink.
  • the shared AP indicates that the transmission direction of the shared AP during cooperative transmission is both uplink, both the shared AP and the shared AP know that interference detection is required.
  • the shared AP indicates that the transmission direction of the first shared AP and the second shared AP is downlink during cooperative transmission, the shared AP knows that interference detection is not required, and the shared AP needs to use the C-SR-A frame to indicate the shared AP Interference detection is not required.
  • the sharing AP indicates that the transmission direction of the first shared AP is uplink during cooperative transmission, and the transmission direction of the second shared AP is uplink during cooperative transmission, the sharing AP knows that interference detection needs to be performed and needs to use C-SR
  • the -A frame tells the first shared AP and the second shared AP that interference detection is required, that is, the C-SR-A frame is used to indicate whether the first shared AP needs to send the second frame, and the C-SR-A frame is used to indicate the first shared AP. 2. Whether the shared AP needs to send the third frame.
  • the manner in which interference detection is performed is related to the transmission direction.
  • the shared AP sends the first frame to perform interference detection, the first shared AP whose transmission direction is uplink sends the second frame to perform interference detection, and the second shared AP whose transmission direction is downlink sends the third frame to perform interference detection.
  • the C-SR-A frame sent by the sharing AP to the first shared AP indicates that the first shared AP selects the transmission direction of the cooperative transmission.
  • the first shared AP returns a response frame to the shared AP, and the response frame indicates that the transmission direction selected by the first shared AP during cooperative transmission is uplink.
  • the C-SR-A frame sent by the sharing AP to the second shared AP indicates that the second shared AP selects the transmission direction of the cooperative transmission.
  • the second shared AP returns a response frame to the shared AP, where the response frame indicates that the transmission direction selected by the second shared AP during cooperative transmission is downlink.
  • the shared AP may also send an indication frame to the second shared AP, the indication frame may be recorded as an indic frame, and the indication frame is used to indicate whether the shared AP needs to perform interference detection. Since the second shared AP cannot know the transmission directions of other shared APs performing cooperative transmission, the second shared AP cannot decide whether to perform interference detection.
  • the shared AP may also indicate to the first shared AP whether interference detection is required. The first shared AP can also decide whether to perform interference detection. For example, the first shared AP learns that the transmission direction of the shared AP is downlink according to the C-SR-A frame, and the transmission direction of its own is uplink. Interference detection.
  • the shared AP receives response frames from each shared AP, and learns the transmission direction selected by each shared AP during cooperative transmission.
  • the shared AP performs interference detection only when the transmission directions selected by multiple shared APs are both uplink and downlink. When the transmission directions selected by the multiple shared APs are consistent with the shared AP, the shared AP does not perform interference detection.
  • different shared APs may use different modes of cooperative transmission, for example, the first shared AP uses the fixed mode, and the second shared AP uses the flexible mode.
  • the sharing AP indicates to the first shared AP that the transmission direction during cooperative transmission is uplink.
  • the second shared AP uses the flexible mode, and the second shared AP indicates to the shared AP that the selected transmission direction is downlink through a response frame. Then, when the sharing AP learns that the transmission directions selected by multiple shared APs are both uplink and downlink, the sharing AP decides and tells the shared AP to perform interference detection.
  • the C-SR-A frame sent to the first shared AP and the second shared AP may also indicate that the transmission direction of the shared APs during cooperative transmission is downlink.
  • the C-SR-A frame sent by the sharing AP to the first shared AP may also be used to instruct the first shared AP to send the second frame.
  • the C-SR-A frame sent by the sharing AP to the second shared AP may also be used to instruct the second shared AP to send the third frame.
  • the shared AP sends the first frame to STA1-1 and STA1-2, where the first frame is represented by TF-N.
  • the first shared AP sends a second frame to STA2-1 and STA2-2, and the second frame is denoted by TF-N.
  • the second shared AP sends a third frame to STA3-1 and STA3-2, and the third frame is denoted by TF-N.
  • the shared AP respectively instructs STA1-1 and STA1-2 to use the RU when replying to the first frame through the first frame.
  • the first frame sent by the shared AP to STA1-2 indicates that STA1-2 uses the first RU when replying to the first frame.
  • the first shared AP respectively instructs STA2-1 and STA2-2 through the second frame to use the RU when replying to the second frame.
  • the second frame sent by the first shared AP to STA2-1 instructs STA2-1 to use the first RU when replying to the second frame.
  • the second frame sent by the first shared AP to STA2-2 instructs STA2-2 to use the second RU when replying to the second frame.
  • the second shared AP respectively instructs STA3-1 and STA3-2 to reply the RU used in the second frame through the third frame.
  • the third frame sent by the second shared AP to STA3-1 instructs STA3-1 to use the second RU when replying to the third frame.
  • STA1-2 and STA2-1 multiplex the first RU.
  • STA2-2 and STA3-1 multiplex the second RU.
  • the transmission moments of the first frame, the second frame and the third frame should be aligned.
  • the shared AP may send the first frame after sending the C-SR-A frame after SIFS, and the first shared AP may send the second frame after receiving the C-SR-A frame and after the SIFS , the second shared AP may send the third frame after SIFS after receiving the C-SR-A frame.
  • the shared AP can send the first frame after sending the instruction frame after SIFS, the first shared AP can send the second frame after receiving the instruction frame and after SIFS, and the second shared AP can be in the After receiving the indication frame, the third frame is sent after SIFS.
  • the lengths of the first frame and the third frame are the same, and the length of the first frame and the length of the third frame are greater than the sum of the length of the second frame and the length of the SIFS.
  • STA2-1 and STA2-2 After receiving the second frame, STA2-1 and STA2-2 return the second confirmation frame to the shared AP through SIFS, and the second confirmation frame is represented by BA-D.
  • BA-D frames may interfere with the first frame.
  • STA1-2 cannot successfully receive the first frame due to the interference of the second acknowledgment frame BA-D frame returned by STA2-1.
  • STA1-2 cannot return the first acknowledgment frame (BA-D frame) to the shared AP without receiving the first frame.
  • the BA-D frame may interfere with the third frame.
  • STA3-1 cannot successfully receive the third frame due to the interference of the second acknowledgment frame BA-D frame returned by STA2-2.
  • STA3-1 cannot return the third acknowledgment frame (BA-D frame) to the second shared AP without receiving the third frame.
  • STA1-1 returns the first acknowledgment frame (BA-D frame) to the shared AP, and the shared AP receives the first acknowledgment frame (BA-D frame) returned by STA1-1, and determines that there is no RU corresponding to STA1-1. disturbed.
  • the shared AP does not receive the BA-D frame returned by STA1-2, and determines that the first RU is an interfering RU.
  • the second shared AP returns a third response frame to the shared AP, and correspondingly, the shared AP receives the third response frame from the second shared AP.
  • the third response frame is used to indicate that the second RU is an interfering RU.
  • the shared AP determines that the second RU is an interfering RU according to the third response frame.
  • the shared AP combines 4> to finally determine that the first RU and the second RU are interfering RUs.
  • the shared AP In response to receiving the third response frame, the shared AP sends an indication frame to the first shared AP. Correspondingly, the first shared AP receives the indication frame from the shared AP.
  • the indication frame is used to indicate that the first shared AP is not allowed to use the subchannel where the interfering RU is located for uplink transmission.
  • the shared AP may also send an indication frame to the second shared AP, so that the uplink and downlink transmissions of the latter three APs can be triggered simultaneously.
  • share AP for downlink transmission (DL data frame).
  • the first shared AP sends an uplink trigger frame, and the uplink trigger frame is used to schedule uplink transmission.
  • the second shared AP performs downlink transmission (DL data frame).
  • the shared AP can perform downlink transmission to STA1-1 and STA1-2. Since the shared AP instructs the first shared AP to prohibit uplink transmission on the subchannel where the first RU is located, STA2-1 will not perform uplink transmission on the first RU transmission. The shared AP sends the DL data frame to STA1-2 without being interfered by the uplink transmission of STA2-1 on the first RU.
  • the second shared AP can perform downlink transmission to STA3-1 and STA3-2. Since the shared AP instructs the first shared AP to prohibit uplink transmission on the sub-channel where the second RU is located, STA2-2 will not transmit in the second RU. uplink transmission. The second shared AP sends the DL data frame to STA3-1 without being interfered by the uplink transmission of STA2-2 on the second RU.
  • the first shared AP receives the instruction frame, and according to the instruction frame, prohibits uplink transmission on the subchannel where the first RU is located and the subchannel where the second RU is located, if the first shared AP also schedules other STAs and undergoes interference detection , the RU used by other STAs for uplink transmission is not an interfering RU, then the first shared AP can send an uplink trigger frame to the other STA. After receiving the uplink trigger frame, the other STA sends an uplink trigger frame to the first shared AP on the corresponding RU. Send upstream data frames.
  • the shared AP may send the DL data frame after sending the instruction frame after passing the SIFS; the shared AP may send the uplink trigger frame after receiving the instruction frame and passing the SIFS.
  • STA1-1 and STA1-2 After receiving the DL data frame, STA1-1 and STA1-2 will also return an acknowledgment frame (BA) to the shared AP. After receiving the DL data frame, STA3-1 and STA3-2 will also return an acknowledgement frame (BA) to the second shared AP.
  • BA acknowledgement frame
  • the shared AP detects or collects the information of the interfering RU, obtains the interference detection result, and prohibits downlink transmission on the sub-channel where the interfering RU is located according to the interference detection result, or instructs the shared AP to prohibit the interfering RU according to the interference detection result.
  • the sub-channel where it is located is used for uplink transmission.
  • the embodiment of the present application also provides a possible design, in which the shared AP detects or collects the information of the interfering RU, and performs interference processing. Alternative embodiments of this design can be described by the Figure 11 embodiment, Figure 13 embodiment and Figure 15 embodiment.
  • the shared AP sends a second frame to the shared STA on the channel.
  • the shared STA here may be recorded as the second STA.
  • the second STA receives the second frame from the shared AP.
  • the shared AP is associated with the second STA, the shared AP is the serving AP of the second STA, the shared AP can schedule the second STA on the channel, and the shared AP can allocate one or more channels on the channel for the second STA. Multiple RUs, eg, shared APs, allocate the first RU on the channel for the second STA.
  • This channel is a channel for cooperative transmission between the shared AP and the shared AP.
  • the condition for the shared AP to send the second frame may be that the transmission direction of the shared AP during cooperative transmission is downlink, and the transmission direction of the shared AP during cooperative transmission is uplink.
  • the second frame is used to instruct the second STA to monitor the first RU. That is, monitor the busyness of the first RU.
  • the second frame is the same as the first frame sent by the shared AP to the shared STA.
  • the length of the first frame is greater than the sum of the length of the second frame and the SIFS.
  • the first frame instructs the shared STA to use the first RU when replying to the first frame.
  • the first frame includes a first field, and the first field indicates that the first STA uses the first RU when replying to the first frame.
  • the shared STA may be recorded as the first STA.
  • Both the first STA and the second STA use the first RU, and the first STA and the second STA multiplex the first RU.
  • the second STA After receiving the second frame, the second STA monitors the first RU according to the indication of the second frame.
  • the second STA Since the transmission time of the first frame and the second frame is the same, the length of the first frame is greater than the sum of the length of the second frame and the SIFS, the second STA will listen to the first RU after receiving the second frame and interval STS. .
  • the first frame has not been completely sent. Then, if the second STA monitors that the first RU is occupied, it means that the second STA can use the first RU to send the uplink frame, which can cause interference to the first STA to receive the downlink frame of the shared AP.
  • the second STA monitors that the first RU is not occupied or the first RU is idle, the second STA returns a response frame to the shared AP.
  • the second frame may also be used to indicate the duration for which the shared STA monitors the first RU, and to instruct the shared STA to return a response frame if the first RU is not occupied within the duration.
  • the response frame is used to indicate that the first RU is not occupied.
  • the shared AP When the shared AP does not receive the response frame returned by the shared STA, it indicates that the second STA has monitored that the first RU is occupied, indicating that the first RU is an interfering RU.
  • the shared AP may also negotiate the cooperative transmission direction with the shared AP.
  • this embodiment of the present application may provide two modes of a fixed mode and a flexible mode to negotiate the cooperative transmission direction.
  • the two modes of negotiating the cooperative transmission direction may be introduced with reference to the embodiment of FIG. 5 .
  • S1100 is also included before S1101.
  • S1100 is the same as S500, and the description of S500 can be referred to, and details are not repeated here.
  • S1101 In flexible mode, before S1101, it also includes S1100-1 and S1100-2.
  • the S1100-1 is the same as the S500-1
  • the S1100-2 is the same as the S500-2, which will not be repeated here.
  • FIG. 11 Based on the above description of the embodiment of FIG. 11 , the embodiment of FIG. 11 will be further described in detail below with reference to specific application scenarios.
  • Figure 12a and Figure 12b show schematic diagrams of frame interaction between each AP and each STA.
  • Figures 12a and 12b illustrate an example of frame interaction within a TXOP.
  • FIG. 12a shows the cooperative transmission in the fixed mode
  • FIG. 12b shows the cooperative transmission in the flexible mode.
  • the following describes the frame interaction in Figure 12a and Figure 12b. If there is no special description, the described frame interaction is applicable to both Figure 12a and Figure 12b. When there is a difference in the frame interaction, it will be specially explained. Specifically, the steps in Figure 12a Again the steps of Figure 12b.
  • STA1-1 and STA1-2 STA1-1 and STA1-2
  • STA2-1 and STA2-2 operations performed by STA1-1 and STA1-2
  • STA2-1 and STA2-2 reference may be made to the operations of the second STA in the embodiment of FIG. 11 .
  • the shared AP sends a C-SR-A frame to the shared AP, and correspondingly, the shared AP receives the C-SR-A frame from the shared AP.
  • this step may refer to S1100.
  • the C-SR-A frame indicates that the transmission direction of the shared AP during cooperative transmission is uplink.
  • the C-SR-A frame further indicates that the transmission direction of the shared AP during cooperative transmission is downlink.
  • the C-SR-A frame also instructs the shared AP to send a second frame.
  • this step may refer to S1100-1.
  • the C-SR-A frame indicates the transmission direction selected by the shared AP for cooperative transmission.
  • the C-SR-A frame may further indicate that the transmission direction of the shared AP during cooperative transmission is downlink.
  • the shared AP returns a response frame to the shared AP, and correspondingly, the shared AP receives the response frame from the shared AP.
  • the response frame indicates that the transmission direction selected by the shared AP during cooperative transmission is uplink. It is conceivable here that if the transmission direction selected by the shared AP during cooperative transmission is downlink, the shared AP does not perform interference detection. That is, only when the transmission direction selected by the shared AP during cooperative transmission is uplink, the shared AP will perform interference detection, that is, perform the following 2".
  • the shared AP sends the first frame to STA1-1 and STA1-2, where the first frame is represented by TF-N.
  • the shared AP sends a second frame to STA2-1 and STA2-2, and the second frame is also denoted by TF-N.
  • the first frame sent by the shared AP to STA1-2 indicates that STA1-2 uses the first RU when replying to the first frame.
  • the first frame sent by the shared AP to STA1-1 instructs STA1-1 to use other RUs different from the first RU when replying to the first frame. If STA1-1 and STA1-2 receive the first frame, they respectively return the first confirmation frame to the shared AP on the designated RU, and the first confirmation frame is represented by BA-D.
  • the second frame is used to instruct STA2-1 to monitor the first RU, and may also instruct the second STA to use the first RU for uplink transmission subsequently.
  • the second frame is also used to instruct STA2-2 to monitor other designated RUs, and may also instruct STA2-2 to use the designated other RUs for uplink transmission subsequently.
  • the shared AP may send the first frame after sending the C-SR-A frame after SIFS, and the shared AP may send the second frame after receiving the C-SR-A frame after the SIFS.
  • the shared AP can send the first frame after SIFS after receiving the response frame from the shared AP; the shared AP sends the second frame through SIFS after sending the response frame.
  • STA2-1 After receiving the second frame, STA2-1 monitors the first RU.
  • STA2-2 After receiving the second frame, STA2-2 monitors the other designated RU.
  • STA2-1 monitors that the first RU is occupied
  • STA2-2 monitors that other designated RUs are not occupied.
  • STA2-2 returns a response frame to the shared AP, where the response frame is used to indicate that the other RU specified by the shared AP is not occupied.
  • the shared AP determines that the first RU is the interfering RU.
  • STA1-1 and STA1-2 respectively return the first acknowledgment frame BA-D to the shared AP.
  • the shared AP After receiving the first acknowledgment frame, the shared AP performs downlink transmission through SIFS, and sends DL data frames to STA1-1 and STA1-2 respectively.
  • the shared AP sends an uplink trigger frame.
  • Uplink trigger frames are used to schedule uplink transmissions.
  • the shared AP After the shared AP receives the response frame returned from STA2-2, it sends an uplink trigger frame to STA2-2 through SIFS. Since the first RU is an interfering RU, the shared AP will not trigger STA2-1 to perform uplink on the first RU. transmission. The shared AP sends the DL data frame to STA1-2 without being interfered by the uplink transmission of STA2-1 on the first RU.
  • STA1-1 and STA1-2 After receiving the DL data frame, STA1-1 and STA1-2 will also return an acknowledgment frame (BA) to the shared AP. After receiving the UL data frame sent by STA2-2, the shared AP returns an acknowledgement frame (BA) to STA2-2 at an interval of SIFS.
  • BA acknowledgment frame
  • sequence numbers do not represent the sequence of frames, and reference may be made to the schematic diagrams in FIG. 12a and FIG. 12b.
  • sequence numbers in other frame interaction diagrams also do not represent a strict sequence of frames.
  • the shared AP sends a second frame to the shared STA on the channel to detect the interfering RU.
  • the shared STA here may be recorded as the second STA.
  • the second STA receives the second frame from the shared AP.
  • the shared AP is associated with the second STA, the shared AP is the serving AP of the second STA, the shared AP can schedule the second STA on the channel, and the shared AP can allocate one or more channels on the channel for the second STA. Multiple RUs, eg, shared APs, allocate the first RU on the channel for the second STA.
  • This channel is a channel for cooperative transmission between the shared AP and the shared AP.
  • the condition for the shared AP to send the second frame may be that the transmission direction of the shared AP during cooperative transmission is downlink, and the transmission direction of the shared AP during cooperative transmission is uplink.
  • the second frame includes an indication to use the first RU when replying to the second STA with the second frame.
  • the second frame includes a first field, where the first field indicates that the second STA uses the first RU when replying to the second frame.
  • the second frame is sent at the same time as the first frame sent by the shared AP to the shared STA, and the shared STA may be recorded as the first STA.
  • the first frame includes an indication to use the first RU when replying to the first frame to the first STA.
  • the first frame includes a first field, where the first field indicates that the first STA uses the first RU when replying to the first frame.
  • the shared STA may be recorded as the first STA.
  • Both the first STA and the second STA use the first RU, and the first STA and the second STA multiplex the first RU.
  • the embodiment in FIG. 13 is the same as the optional mode 1 in the embodiment in FIG. 5 in that both the shared AP and the shared AP send frames to detect interference, the shared AP sends the first frame, and when the first STA receives the first frame A first acknowledgment frame is returned to the shared AP, and the first frame instructs the first STA to return the first acknowledgment frame to the shared AP on the first RU.
  • the shared AP sends a second frame, the second frame instructs the second STA to return the second acknowledgment frame to the shared AP on the first RU, and the second STA will return the second acknowledgment frame to the shared AP after receiving the second frame .
  • the length of the first frame of the optional mode 1 in the embodiment of FIG. 5 is greater than the length of the second frame, while the length of the second frame in the embodiment of FIG. 13 The length is greater than the length of the first frame.
  • the length of the second frame is greater than the sum of the lengths of the first frame and the SIFS.
  • the SIFS interval is Return the first acknowledgment frame to the shared AP.
  • the second frame has not been completely sent.
  • the first STA replies to the first RU that the first acknowledgment frame is in the uplink direction, and the first acknowledgment frame in the uplink direction is the same as that in the downlink direction.
  • the second frame has an intersection in the frequency domain.
  • the first confirmation frame in the uplink direction may cause interference to the second frame in the downlink direction.
  • the first acknowledgment frame will cause interference to the second STA receiving the second frame.
  • the second STA cannot receive the second frame
  • the second STA will not return the second acknowledgment frame to the shared AP on the second RU
  • the shared AP cannot receive the second STA's return frame.
  • the shared AP can determine that the first RU that has not received the second acknowledgment frame returned by the second STA is an interfering RU.
  • the transmission direction of the shared AP during cooperative transmission is downlink
  • the transmission direction of the shared AP during cooperative transmission is uplink.
  • the shared AP performs interference detection, it is measured that the uplink pair of the shared AP is shared.
  • Downlink interference of the AP It can be understood that the second uplink acknowledgment frame sent by the first STA to the shared AP on the first RU interferes with the second STA receiving the second downlink frame from the shared AP.
  • the uplink frame sent by the STA to the shared AP on the first RU will cause interference to the downlink frame sent by the sharing AP to the first STA on the first RU. Based on this, the shared AP determines that the first RU is the interfering RU.
  • the shared AP when using this symmetric method to judge the interference, sends the first frame to instruct the first STA to reply the first confirmation frame and correspondingly increases the transmit power to filter The case where the STA transmit power is different.
  • the shared AP does not perform uplink transmission on the subchannel where the interfering RU is located. That is, the shared AP itself is prohibited from using the interfering RU.
  • Shared APs can perform downlink transmissions on the channel.
  • the shared AP When the shared AP learns that the first RU is the interfering RU, it prohibits uplink transmission on the subchannel where the interfering RU is located. It will be interfered by the uplink transmission of the second STA. After the shared AP is prohibited from performing uplink transmission on the sub-channel where the interfering RU is located, the shared AP can perform downlink transmission on the entire channel without being interfered by the uplink transmission of the shared AP.
  • the shared AP may also negotiate the cooperative transmission direction with the shared AP.
  • this embodiment of the present application may provide two modes of a fixed mode and a flexible mode to negotiate the cooperative transmission direction.
  • the two modes of negotiating the cooperative transmission direction may be introduced with reference to the embodiment of FIG. 5 .
  • S1300 is also included before S1301.
  • S1300 is the same as S500, and the description of S500 can be referred to, and details are not repeated here.
  • S1300-1 is the same as the S500-1
  • S1300-2 is the same as the S500-2, which will not be repeated here.
  • FIG. 14a shows the cooperative transmission in the fixed mode
  • Fig. 14b shows the cooperative transmission in the flexible mode.
  • the following describes the frame interaction in Figure 14a and Figure 14b. If there is no special description, the described frame interaction is applicable to both Figure 14a and Figure 14b. When there is a difference in the frame interaction, a special description will be given. Specifically, the steps in Figure 14a Again the steps of Figure 14b.
  • STA1-1 and STA1-2 STA1-1 and STA1-2
  • STA2-1 and STA2-2 operations performed by STA1-1 and STA1-2
  • STA2-1 and STA2-2 reference may be made to the operations of the second STA in the embodiment of FIG. 13 .
  • the sharing AP sends a C-SR-A frame to the shared AP, and correspondingly, the shared AP receives the C-SR-A frame from the shared AP.
  • this step may refer to S1300.
  • the C-SR-A frame indicates that the transmission direction of the shared AP during cooperative transmission is uplink.
  • the C-SR-A frame further indicates that the transmission direction of the shared AP during cooperative transmission is downlink.
  • the C-SR-A frame also instructs the shared AP to send a second frame.
  • this step may refer to S1300-1.
  • the C-SR-A frame indicates the transmission direction selected by the shared AP for cooperative transmission.
  • the C-SR-A frame may further indicate that the transmission direction of the shared AP during cooperative transmission is downlink.
  • the shared AP returns a response frame to the shared AP, and correspondingly, the shared AP receives the response frame from the shared AP.
  • the response frame indicates that the transmission direction selected by the shared AP during cooperative transmission is uplink. It is conceivable here that if the transmission direction selected by the shared AP during cooperative transmission is downlink, the shared AP does not perform interference detection. That is, only when the transmission direction selected by the shared AP during cooperative transmission is uplink, the shared AP will perform interference detection, that is, perform the following "2".
  • the shared AP sends the first frame to STA1-1 and STA1-2, where the first frame is represented by TF-N.
  • the shared AP sends a second frame to STA2-1 and STA2-2, and the second frame is also denoted by TF-N.
  • the first frame sent by the shared AP to STA1-2 indicates that STA1-2 uses the first RU when replying to the first frame.
  • the first frame sent by the shared AP to STA1-1 indicates that STA1-1 uses other RUs different from the first RU when replying to the first frame. If STA1-1 and STA1-2 receive the first frame, they respectively return the first confirmation frame to the shared AP on the designated RU, and the first confirmation frame is represented by BA-D.
  • the second frame sent by the shared AP to STA2-1 instructs STA2-1 to use the first RU when replying to the second frame.
  • the second frame sent by the shared AP to STA2-2 includes using other RUs different from the first RU when replying the second frame to STA2-2.
  • both STA1-2 and STA2-1 use the first RU, and STA1-2 and STA2-1 multiplex the first RU.
  • the sharing AP may send the first frame after SIFS after sending the C-SR-A frame, and the shared AP may send the second frame after receiving the C-SR-A frame after SIFS.
  • the shared AP may send the first frame after SIFS after receiving the response frame from the shared AP; the shared AP sends the second frame through SIFS after sending the response frame.
  • the length of the second frame is greater than the sum of the length of the first frame and the length of the SIFS.
  • STA1-1 and STA1-2 after receiving the first frame, STA1-1 and STA1-2 return the first confirmation frame to the shared AP through SIFS, and the first confirmation frame is represented by BA-D.
  • the first acknowledgment frame BA-D may cause interference to the second frame.
  • STA2-1 cannot successfully receive the second frame due to the interference of the BA-D frame returned by STA1-2.
  • STA2-1 cannot return the second acknowledgment frame (BA-D) to the shared AP without receiving the second frame.
  • STA2-2 returns the second acknowledgment frame (BA-D) to the shared AP, and the shared AP receives the second acknowledgment frame (BA-D) returned by STA2-2, and determines that the RU corresponding to STA2-2 is on the Not disturbed.
  • the shared AP does not receive the BA-D returned by STA2-1, and determines that the first RU is the interfering RU.
  • the shared AP can perform downlink transmission to STA1-1 and STA1-2.
  • the shared AP does not perform uplink transmission on the sub-channel where the first RU is located, that is, the shared AP will not trigger the uplink transmission of STA2-1.
  • the shared AP sends the DL data frame to STA1-2 without being interfered by the uplink transmission of STA2-1 on the first RU.
  • the shared AP sends the uplink trigger frame to STA2-2. After receiving the uplink trigger frame, STA2-2 sends the uplink data frame to the shared AP on the corresponding RU.
  • STA1-1 and STA1-2 will also return an acknowledgment frame (BA) to the shared AP.
  • BA acknowledgement frame
  • the shared AP After receiving the UL data frame sent by STA2-2, the shared AP returns an acknowledgement frame (BA) to STA2-2 at an interval of SIFS.
  • the embodiment of the present application also provides a cooperative transmission method for a wireless local area network, and the specific process is shown in FIG. 15 . It can be understood that, in the embodiment of FIG. 15 , the operations performed by the shared AP and the shared AP in the embodiment of FIG.
  • the shared AP performs the operation of the shared AP in the embodiment of FIG. 5
  • the shared AP performs the operation of the shared AP in the embodiment of FIG. 5
  • the first STA performs the operations of the second STA in the embodiment of FIG. 5 .
  • the shared AP sends a first frame to the second STA on the channel to detect the interfering RU.
  • the shared AP may negotiate the cooperative transmission direction with the shared AP, and reference may be made to the description of the embodiment in FIG. 5 , wherein the shared AP performs the operation of the shared AP in the embodiment of FIG. 5 , and the shared AP performs the operation of the shared AP in the embodiment of FIG. 5
  • the only difference is that the direction of the shared AP during cooperative transmission is the uplink, and the direction of the shared AP during the cooperative transmission is the downlink, which will not be repeated here.
  • optional manner 2 and optional manner 3 for an optional implementation manner of detecting the interfering RU by the shared AP in S1501, reference may be made to optional manner 2 and optional manner 3 in the embodiment of FIG. 5 .
  • the shared AP performs the operation of the shared AP in the embodiment of FIG. 5
  • the shared AP performs the operation of the shared AP in the embodiment of FIG. 5 , which will not be repeated here.
  • S1502 may also be performed.
  • the shared AP does not perform downlink transmission on the subchannel where the interfering RU is located. That is, the shared AP itself is prohibited from using the interfering RU.
  • S1502 may refer to step S502*.
  • the shared AP performs the operation of the shared AP in the embodiment of FIG. 5 .
  • FIG. 15 Based on the above description of the embodiment of FIG. 15 , the embodiment of FIG. 15 is further described in detail below with reference to specific application scenarios.
  • Figure 16a and Figure 16b show schematic diagrams of frame interaction between each AP and each STA.
  • Figures 16a and 16b illustrate an example of frame interaction within a TXOP.
  • FIG. 16a shows the cooperative transmission in the fixed mode
  • FIG. 16b shows the cooperative transmission in the flexible mode.
  • the frame interaction in Figure 16a and Figure 16b will be described below. If there is no special description, the described frame interaction is applicable to both Figure 16a and Figure 16b. When there is a difference in the frame interaction, a special description will be given. Specifically, the frame interaction in Figure 16a The steps are again the steps of Figure 16b.
  • STAs currently scheduled by the shared AP are represented by STA1-1 and STA1-2, and the STAs currently scheduled by the shared AP are represented by STA2-1 and STA2-2.
  • the shared AP sends a C-SR-A frame to the shared AP, and correspondingly, the shared AP receives the C-SR-A frame from the shared AP.
  • the C-SR-A frame is used to indicate that the transmission direction of the shared AP during cooperative transmission is downlink.
  • the C-SR-A frame is further used to indicate that the transmission direction of the shared AP during cooperative transmission is uplink.
  • the C-SR-A frame is used to indicate the transmission direction selected by the shared AP during cooperative transmission.
  • the C-SR-A frame may also be used to indicate that the transmission direction of the shared AP during cooperative transmission is uplink.
  • the shared AP also returns a response frame to the shared AP, and correspondingly, the shared AP receives the response frame from the shared AP.
  • the response frame is used to indicate that the transmission direction selected by the shared AP during cooperative transmission is downlink. It is conceivable here that if the transmission direction selected by the shared AP during cooperative transmission is uplink, which is consistent with the transmission direction of the shared AP, the shared AP does not perform interference detection. That is, only when the transmission direction selected by the shared AP during cooperative transmission is downlink, the shared AP will perform interference detection, that is, perform the following 2*.
  • the shared AP sends an uplink trigger frame to STA1-1, STA1-2 and the shared AP.
  • Uplink trigger frames are used to schedule uplink transmissions.
  • STA1-1 and STA1-2 receive the uplink trigger frame from the shared AP.
  • the shared AP will also receive the uplink trigger frame from the shared AP.
  • the shared AP in the fixed mode, can send the uplink trigger frame after sending the C-SR-A frame after SIFS.
  • the shared AP can send the uplink trigger frame after SIFS after receiving the response frame.
  • the shared AP sends the first frame to STA2-1 and STA2-2, and the first frame is denoted by TF-N. Meanwhile, after STA1-1 and STA1-2 receive the uplink trigger frame, the scheduled RU sends an uplink (UL) data frame to the shared AP.
  • UL uplink
  • the first frame sent by the shared AP to STA2-1 instructs STA2-1 to use the first RU when replying to the first frame.
  • the first frame sent by the shared AP to STA2-2 instructs STA2-2 to use other RUs different from the first RU when replying to the first frame. If STA2-1 and STA2-2 receive the first frame, they will return the first acknowledgment frame to the shared AP on their designated RUs, and the first acknowledgment frame is represented by BA-D.
  • the uplink trigger frame sent by the shared AP to the STA1-2 indicates the first RU used for uplink transmission.
  • the uplink trigger frame sent by the shared AP to STA1-1 indicates that another RU different from the first RU is used for uplink transmission.
  • both STA2-1 and STA1-2 use the first RU, and STA1-2 and STA2-1 multiplex the first RU.
  • the shared AP may send the first frame to STA2-1 and STA2-2 after SIFS after receiving the uplink trigger frame from the shared AP.
  • STA1-1 and STA1-2 After SIFS, they will send uplink data frames to the shared AP.
  • the shared AP Since the shared AP sends the first frame after receiving the uplink trigger frame from the shared AP, there is an intersection with the first frame when STA1-1 and STA1-2 perform uplink transmission.
  • the UL data frame may interfere with the first frame.
  • STA2-1 receives the first frame from the shared AP on the first RU
  • STA1-2 sends the UL data frame to the shared AP on the first RU
  • STA2-1 may be affected by the UL data frame sent by STA1-2. Therefore, the first frame cannot be successfully received, and the first acknowledgment frame (BA-D) will not be returned to the shared AP.
  • BA-D first acknowledgment frame
  • STA2-2 returns the first acknowledgment frame (BA-D) to the shared AP, and the shared AP receives the first acknowledgment frame (BA-D) returned by STA2-2, and determines that there is no RU on the RU corresponding to STA2-2. disturbed.
  • the shared AP does not receive the BA-D returned by STA2-1, and determines that the first RU is an interfering RU.
  • the shared AP does not use the sub-channel where the interfering RU is located for downlink transmission, and the shared AP performs downlink transmission on the sub-channel where the non-interfered RU is located.
  • the shared AP determines that the first RU is an interfering RU and is not in downlink transmission on the subchannel where the first RU is located, that is, the shared AP does not send downlink data frames to STA2-1 on the first RU.
  • the shared AP sends a downlink data frame to STA2-2 on the subchannel where the RU corresponding to STA2-2 is located.
  • the STA1-2 when the STA1-2 sends the uplink data frame to the shared AP, since there is no downlink transmission of the shared AP on the subchannel where the first RU is located, the STA1-2 will not be interfered when sending the uplink data frame.
  • STA2-2 after receiving the DL data frame, STA2-2 also returns an acknowledgement frame (BA) to the shared AP.
  • BA acknowledgement frame
  • the shared AP after learning of the interfering RU, does not perform downlink transmission on the subchannel where the interfering RU is located, or the shared AP instructs the shared AP to prohibit uplink transmission on the subchannel where the interfering RU is located.
  • the shared AP learns of the interfering RU, it does not perform uplink transmission on the sub-channel where the interfering RU is located. It can be seen that the detection of interference is performed in units of RUs, but the prohibition of transmission to control interference is performed in units of subchannels. This is because the number of STAs scheduled by the shared AP and the shared AP may be inconsistent with the size of the RU used and cannot correspond.
  • the RU size used by each AP is very likely to be different.
  • the shared AP uses 4 RUs 106 on 40 MHz to communicate with 4 STAs in total, wherein, there are 2 RUs 106 on every 20 MHz, and each RU106 is equivalent to 2 RU52 and 4 RU26s.
  • the shared AP uses 1 RU106, 2 RU52, and 8 RU26 on 40MHz to communicate with 11 STAs in total. Then the size and position of the RUs used by the two APs are asymmetric, and it is difficult to correspond. Therefore, the interference control is performed in units of the sub-channel where the interfering RU is located, and the interference control can be implemented more effectively.
  • interference management and control may also be performed using the interference RU as the granularity.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspectives of shared AP, shared STA, shared AP and shared STA, and interaction between various devices.
  • the shared AP and the shared AP may include hardware structures and/or software modules, and the above-mentioned various functions are implemented in the form of hardware structures, software modules, or hardware structures plus software modules. Function. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • an embodiment of the present application also provides a communication device 1700, and the communication device 1700 may be a shared AP or a shared AP, or a device in a shared AP or a shared AP, Or a device that can be used with or by a shared AP.
  • the communication apparatus 1700 may include modules that perform one-to-one correspondence with the methods/operations/steps/actions performed by the shared AP or by the shared AP in the above method embodiments.
  • the module may be a hardware circuit or a software. It can also be implemented by a hardware circuit combined with software.
  • the communication device may include a processing module 1701 and a communication module 1702 .
  • the processing module 1701 is used to call the communication module 1702 to perform the function of receiving and/or sending.
  • the processing module 1701 is configured to determine that when the condition is satisfied, the first frame is sent to the first station STA through the communication module 1702 to detect the interference resource unit, wherein the shared AP is the serving AP of the first STA, and the first frame includes The instruction to use the first resource unit when replying the first frame to the first STA, and the interference resource unit is the first resource unit that has not received the reply from the first STA, and the condition includes that the shared AP plans to use the channel for downlink transmission, and the channel is the shared AP A channel for cooperative transmission with the first shared AP.
  • the above conditions further include: the first shared AP is ready to use the channel for uplink transmission.
  • the processing module 1701 is further configured to: send a cooperative transmission notification C-SR-A frame to the first shared AP through the communication module 1702, where the C-SR-A frame is used to indicate that the first shared AP is in The transmission direction during cooperative transmission is uplink.
  • the processing module 1701 is further configured to: send a cooperative transmission notification C-SR-A frame to the first shared AP through the communication module 1702, where the C-SR-A frame is used to indicate that the first shared AP selects the transmission direction during cooperative transmission; and receiving a first response frame from the first shared AP, where the first response frame is used to indicate that the transmission direction during cooperative transmission selected by the first shared AP is uplink.
  • the processing module 1701 is further configured to: in response to detecting the interference resource unit, send an indication frame to the first shared AP through the communication module, where the indication frame is used to indicate that the first shared AP is not allowed to use the interference resource Uplink transmission is performed on the sub-channel where the unit is located; and downlink transmission is performed on the channel.
  • the processing module 1701 is further configured to: instruct the first shared AP to send a second frame to the second STA, and the second frame is used to instruct the second STA to send the first shared frame to the first shared AP after receiving the second frame
  • the AP returns a second acknowledgment frame
  • the second STA is the STA that the first shared AP intends to use the first resource unit for uplink transmission.
  • the sending time of the first frame and the second frame are the same, and the length of the first frame is greater than the sum of the lengths of the second frame and the short inter-frame interval SIFS.
  • the shared AP also cooperates with the second shared AP to transmit on transmission resources
  • the second shared AP is the serving AP of the third STA
  • the processing module 1701 is further configured to: when the first shared AP is in the When the transmission direction during cooperative transmission is uplink and the transmission direction of the second shared AP during cooperative transmission is downlink, the second shared AP is instructed to send a third frame to the third STA, and the third frame is used to indicate the third STA
  • a third confirmation frame is returned to the second shared AP; the second response frame from the second shared AP is received through the communication module 1702, and the second response frame is used to indicate that the second resource unit is an interference unit .
  • the processing module 1701 is further configured to: prohibit downlink transmission on the subchannel where the interference resource unit is located.
  • the processing module 1701 is further configured to: receive an uplink trigger frame from the first shared AP through the communication module 1702, where the uplink trigger frame is used to trigger the STA served by the shared AP to perform uplink transmission; and respond to the uplink Trigger frame, send the first frame to the first STA.
  • the first frame is sent at the same time as the uplink trigger frame sent by the first shared AP, and the length of the first frame is greater than the sum of the lengths of the uplink trigger frame and the SIFS; the uplink trigger frame is used to trigger the first frame STAs served by the shared AP perform uplink transmission.
  • the processing module 1701 is configured to send a first frame to the shared STA on the channel through the communication module 1702 to detect the interference resource unit when the condition is satisfied, wherein the shared AP is the serving AP of the shared STA, and the first frame includes the communication to the shared STA.
  • condition further includes: the shared AP prepares to use the channel for uplink transmission.
  • the processing module 1701 is further configured to: receive an uplink trigger frame from the shared AP through the communication module 1702, and the uplink trigger frame is used to trigger the STA served by the shared AP to perform uplink transmission; When the frame is triggered, the processing module 1701 is configured to, in response to the uplink trigger frame, send the first trigger frame to the shared STA through the communication module 1702 .
  • the first frame is sent at the same time as the uplink trigger frame sent by the shared AP, and the length of the first frame is greater than the sum of the length of the uplink trigger frame and the short frame interval SIFS; the uplink trigger frame is used to trigger the shared AP
  • the serving STA performs uplink transmission.
  • the processing module 1701 is further configured to: receive the cooperative transmission notification C-SR-A frame from the shared AP through the communication module 1702, and the C-SR-A frame is used to indicate the shared AP’s cooperative transmission during cooperative transmission.
  • the transmission direction is downlink.
  • the processing module 1701 is further configured to: receive the cooperative transmission notification C-SR-A frame from the shared AP through the communication module 1702, and the C-SR-A frame is used to indicate that the shared AP selects the cooperative transmission during cooperative transmission and sending a response frame to the shared AP, where the response frame is used to indicate that the transmission direction selected by the shared AP during cooperative transmission is downlink.
  • the first frame is a short data frame.
  • the first frame is a control frame
  • the MCS order of the modulation and coding mode of the first frame is the same as the MCS order of the data frame.
  • the cooperative transmission mode is cooperative spatial multiplexing of CSR.
  • the channel includes one or more sub-channels.
  • the processing module 1701 is configured to send a first frame to the first station STA on the channel through the communication module 1702 to detect the interference resource unit when the condition is satisfied, wherein the shared AP is the serving AP of the first STA, and the first frame includes The instruction to use the first resource unit when replying the first frame to the first STA, the interference resource unit is the first resource unit that has not received the reply from the first STA, and the condition includes that the shared AP plans to use the channel for uplink transmission, and the channel is shared The channel for cooperative transmission between APs and shared APs.
  • condition further includes: the shared AP is ready to use the channel for downlink transmission.
  • the processing module 1701 is further configured to receive the cooperative transmission notification C-SR-A frame from the shared AP through the communication module 1702, and the C-SR-A frame is used to indicate that the shared AP is in cooperative transmission.
  • the transmission direction is downlink.
  • the processing module 1701 is further configured to receive, through the communication module 1702, a C-SR-A frame for notification of cooperative transmission from the shared AP, and the C-SR-A frame is used to indicate that the shared AP selects a cooperative transmission during cooperative transmission. and is used to send a first response frame to the shared AP, where the first response frame is used to indicate that the transmission direction selected by the shared AP during cooperative transmission is uplink.
  • the processing module 1701 is further configured to perform uplink transmission without using the subchannel where the interference resource unit is located.
  • the sending moment of the first frame is the same as that of the second frame sent by the shared AP to the second STA, and the length of the second frame is greater than the sum of the length of the first frame and the short inter-frame interval SIFS.
  • the first frame is a short data frame.
  • the first frame is a control frame
  • the MCS order of the modulation and coding mode of the first frame is the same as the MCS order of the data frame.
  • the cooperative transmission mode is cooperative spatial multiplexing of CSR.
  • the channel includes one or more sub-channels.
  • the processing module 1701 is used to send the first frame to the shared STA through the communication module 1702 on the channel when the condition is satisfied, wherein the channel is the channel for the shared AP and the shared AP to perform cooperative transmission, and the condition includes that the shared AP is in the cooperative transmission.
  • the first frame is used to instruct the shared STA to monitor the first resource unit
  • the shared AP is the serving AP of the shared STA
  • the transmission time of the first frame and the second frame sent by the shared AP to the shared STA The same, the length of the second frame is greater than the sum of the lengths of the first frame and the SIFS, and the second frame includes an instruction to use the first resource unit when replying to the second frame to the shared STA;
  • the processing module 1701 is also used for When the response frame returned by the STA is shared, it is prohibited to trigger uplink transmission on the subchannel where the first resource unit is located, and the response frame is used to indicate that the first resource unit is not occupied.
  • the first frame is further used to indicate the duration of monitoring the first resource unit by the shared STA, and to instruct the shared STA to return a response frame if the first resource unit is not occupied within the duration.
  • condition further includes: the transmission direction of the shared AP during cooperative transmission is downlink.
  • the processing module 1701 is further configured to receive the cooperative transmission notification C-SR-A frame from the shared AP through the communication module 1702, and the C-SR-A frame is used to indicate that the shared AP is in cooperative transmission.
  • the transmission direction is upstream.
  • the processing module 1701 is further configured to receive, through the communication module 1702, a C-SR-A frame for notification of cooperative transmission from the shared AP, and the C-SR-A frame is used to indicate that the shared AP selects a cooperative transmission during cooperative transmission. and sending a first response frame to the shared AP, where the first response frame is used to indicate that the transmission direction selected by the shared AP during cooperative transmission is uplink.
  • the sending moment of the first frame is the same as that of the second frame sent by the shared AP to the second STA, and the length of the second frame is greater than the sum of the length of the first frame and the short inter-frame interval SIFS.
  • the first frame is a short data frame.
  • the first frame is a control frame
  • the MCS order of the modulation and coding mode of the first frame is the same as the MCS order of the data frame.
  • the cooperative transmission mode is cooperative spatial multiplexing of CSR.
  • the channel includes one or more sub-channels.
  • each functional module in each embodiment of this application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • a communication apparatus 1800 provided by an embodiment of the present application is used to implement the function of sharing an AP or a shared AP in the above method.
  • the communication device may be the shared AP, or may be a device in the shared AP, or a device that can be matched and used with the shared AP.
  • the device may be the shared AP, or a device in the shared AP, or a device that can be used in a matched manner with the shared AP.
  • the communication device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication apparatus 1800 includes at least one processor 1820, configured to implement the function of sharing an AP or a shared AP in the method provided in the embodiment of the present application.
  • Communication apparatus 1800 may also include communication interface 1810 .
  • the communication interface 1810 may be a transceiver, a circuit, a bus, a module or other types of communication interfaces, and is used to communicate with other devices through a transmission medium.
  • the communication interface 1810 is used by the apparatus in the apparatus 1800 to communicate with other devices.
  • the communication apparatus 1800 is a shared AP
  • the other device may be a shared AP.
  • the communication device 1800 is a shared AP
  • the other device may be a shared AP.
  • the processor 1820 uses the communication interface 1810 to send and receive frames, and is used to implement the methods described in the above method embodiments.
  • the processor 1820 is configured to determine that when the condition is satisfied, use the communication interface 1810 on the channel to send the first frame to the first station STA to detect the interference resource unit, where the shared AP is: The serving AP of the first STA, the first frame includes an instruction to use the first resource unit when replying the first frame to the first STA, the interference resource unit is the first resource unit that has not received the reply from the first STA, and the condition includes sharing the AP Prepare to use a channel for downlink transmission, where the channel is a channel for cooperative transmission between the shared AP and the first shared AP.
  • the processor 1820 when implementing the function of the shared AP, is configured to send a first frame to the shared STA through the communication interface 1810 on the channel to detect the interference resource unit when the condition is satisfied, wherein the shared AP For the serving AP of the shared STA, the first frame includes an instruction to use the first resource unit when the shared STA replies to the first frame, and the interfering resource unit is the first resource unit that has not received the reply from the shared STA, and the condition includes being
  • the shared AP prepares to use a channel for downlink transmission, and the channel is a channel for cooperative transmission between the shared AP and the shared AP; the processor 1820 is further configured to prohibit downlink transmission on the sub-channel where the interference resource is located.
  • the processor 1820 is configured to send the first frame to the first station STA through the communication interface 1810 on the channel to detect the interference resource unit when the condition is satisfied, wherein the The shared AP is the serving AP of the first STA, the first frame includes an instruction to use the first resource unit when replying to the first frame to the first STA, and the interference resource unit is the first resource unit that has not received the reply from the first STA, and the condition Including that the shared AP prepares to use the channel for uplink transmission, and the channel is the channel for cooperative transmission between the shared AP and the shared AP.
  • the processor 1820 when implementing the function of the shared AP, is configured to send the first frame to the shared STA through the communication interface 1810 on the channel when the condition is satisfied, where the channel is the shared AP and the shared AP
  • the channel for cooperative transmission the conditions include that the transmission direction of the shared AP during cooperative transmission is downlink, the first frame is used to instruct the shared STA to monitor the first resource unit, the shared AP is the serving AP of the shared STA, and the first frame is used to instruct the shared STA to monitor the first resource unit.
  • the transmission time of the second frame sent by the shared AP to the shared STA is the same, the length of the second frame is greater than the sum of the length of the first frame and the SIFS, and the second frame includes an instruction to use the first resource unit when replying to the shared STA with the second frame
  • the processor 1820 is further configured to prohibit triggering uplink transmission on the subchannel where the first resource unit is located when the response frame returned by the shared STA is not received, and the response frame is used to indicate that the first resource unit is not occupied.
  • the processor 1820 and the communication interface 1810 may also be configured to perform other corresponding steps or operations performed by the AP shared or performed by the AP in the above method embodiments, which will not be repeated here.
  • Communication apparatus 1800 may also include at least one memory 1830 for storing program instructions and/or data.
  • Memory 1830 and processor 1820 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1820 may cooperate with memory 1830.
  • Processor 1820 may execute program instructions stored in memory 1830 . At least one of the at least one memory may be included in the processor.
  • the specific connection medium between the communication interface 1810, the processor 1820, and the memory 1830 is not limited in the embodiments of the present application.
  • the memory 1830, the processor 1820, and the communication interface 1810 are connected through a bus 1840 in FIG. 18.
  • the bus is represented by a thick line in FIG. 18, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is shown in FIG. 18, but it does not mean that there is only one bus or one type of bus.
  • the communication module 1702 and the communication interface 1810 may output or receive baseband signals.
  • the output or reception of the communication module 1702 and the communication interface 1810 may be radio frequency signals.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement or The methods, steps and logic block diagrams disclosed in the embodiments of this application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 1830 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), or a volatile memory (volatile memory), Such as random-access memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • Some or all of the operations and functions performed by the shared AP described in the above method embodiments of this application, or some or all of the operations and functions performed by the shared AP, may be implemented by a chip or an integrated circuit.
  • an embodiment of the present application further provides a chip, including a processor, for supporting the communication apparatus to implement the shared AP or the shared AP involved in the foregoing method embodiments. function.
  • the chip is connected to a memory or the chip includes a memory for storing necessary program instructions and data of the communication device.
  • An embodiment of the present application provides a computer-readable storage medium storing a computer program, where the computer program includes instructions for executing the foregoing method embodiments.
  • the embodiments of the present application provide a computer program product containing instructions, which, when executed on a computer, cause the computer to execute the above method embodiments.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种无线局域网的协作传输方法及装置。该方法包括:共享接入点(AP)在条件满足时,在信道上向第一站点(STA)发送第一帧以探测干扰资源单元,其中,条件包括共享AP准备使用信道进行下行传输,信道是共享AP与第一被共享AP进行协作传输的信道,条件还可以是被共享AP准备使用信道进行上行传输。共享AP为第一STA的服务AP,第一帧指示第一STA回复第一帧时使用第一资源单元,干扰资源单元为未接收到第一STA的回复的第一资源单元。共享AP不在干扰资源单元所在的子信道上进行下行传输,或者共享AP指示被共享AP不在干扰资源单元所在的子信道上触发上行传输。

Description

一种无线局域网的协作传输方法及装置
相关申请的交叉引用
本申请要求在2020年09月18日提交的申请号为202010986741.7、申请名称为“一种无线局域网的协作传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种无线局域网的协作传输方法及装置。
背景技术
随着移动互联网的发展和智能终端的普及,数据流量快速增长。无线局域网(wireless local area network,WLAN)凭借高速率和低成本方面的优势,成为主流的移动宽带接入技术之一。随着用户设备的不断增加以及物联网(Internet of things,IoT)需求的不断发展,高密集部署场景(high-dense deployment scenarios)成为无线网络的核心场景之一。高密集部署,是指在有限地理覆盖范围内部署大量无线接入点(access point,AP),以及大量的活跃站点(stations,STAs)。高密集部署使得传输资源的需求急剧增加。
目前,正在标准化的WLAN标准修订:IEEE 802.11be草案提出多AP协作传输的方案,允许多个AP共享传输资源,以提高传输资源利用率,以及提高系统的吞吐量。多AP协作传输过程中会存在多个并发的传输链路,并发传输的链路之间会存在干扰,如果干扰不可控,不但不能实现多个AP协作传输,反而会抑制系统吞吐量。然而,在混合上下行传输时,由于STA之间的干扰不可测,将可能导致干扰不可控,从而无法实现并发传输。
因此,多AP协作的调度方案还需要进一步完善。
发明内容
第一方面,提供一种无线局域网的协作传输方法,该方法包括以下步骤:共享接入点AP在条件满足时,在信道上向第一站点STA发送第一帧以探测干扰资源单元RU,其中,所述共享AP为所述第一STA的服务AP,所述第一STA是所述共享AP准备发送下行数据的STA,共享AP服务的STA叫做共享STA,所述第一帧包括对所述第一STA回复所述第一帧时使用第一RU的指示,所述干扰RU为未接收到所述第一STA的回复的所述第一RU,所述条件包括所述共享AP准备使用所述信道进行下行传输,所述信道是所述共享AP与第一被共享AP进行协作传输的信道。通过该方法,共享AP会获取干扰RU的探测结果,即共享AP会得知第一RU是否是干扰RU。干扰RU的探测结果可以用于干扰管控,从而使得多AP协作传输中的干扰可以得到有效的控制。
在一个可能的设计中,所述条件还包括:所述第一被共享AP准备使用所述信道进行上行传输。
共享AP还可以与被共享AP协商协作传输方向,可选地,可以通过以下两种方式协商。
固定模式:由共享AP指定被共享AP在协作传输时的传输方向。所述共享AP向所述第一被共享AP发送协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述第一被共享AP在所述协作传输时的传输方向为上行。
灵活模式:由被共享AP自行决定协作传输时的传输方向。所述共享AP向所述第一被共享AP发送协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述第一被共享AP选择在所述协作传输时的传输方向;所述共享AP接收来自所述第一被共享AP的第一响应帧,所述第一响应帧用于指示所述第一被共享AP所选择的在所述协作传输时的传输方向为上行。
在一个可能的设计中,所述共享AP响应于探测到所述干扰RU,向所述第一被共享AP发送指示帧,所述指示帧用于指示所述第一被共享AP不允许使用所述干扰RU所在的子信道进行上行传输;所述共享AP在所述信道上进行下行传输。共享AP向被共享AP发送指示帧,指示被共享AP不允许使用干扰RU所在的子信道进行上行传输,从而能够避免共享STA在干扰RU所在的子信道接收下行数据帧可能受到的干扰,实现干扰可控。在指示被共享AP禁止在干扰RU所在的子信道上进行上行传输后,共享AP可以在整个信道上进行下行传输都不会受到被共享STA的上行传输的干扰。其中,被共享AP服务的STA叫作被共享STA。
在一个可能的设计中,所述共享AP指示所述第一被共享AP向所述第二STA发送第二帧,所述第二帧用于指示所述第二STA在接收到所述第二帧后向所述第一被共享AP返回第二确认帧;所述第二STA是所述第一被共享AP准备使用所述第一RU进行上行传输的STA。其中,所述第一帧与所述第二帧的发送时刻相同,所述第一帧的长度大于所述第二帧与短帧间间隔SIFS的长度之和。这样,当第一帧和第二帧同时发送,第二STA开始回复第二确认帧时,第一帧还未完全发送完毕。那么,在第一RU上就会存在上行方向的传输的、第二STA向被共享AP返回的第二确认帧,在第一RU上,上行方向的第二确认帧与下行方向的第一帧存在时域和频域上的交集,共享AP就可以通过是否收到第一STA对第一帧的回复,来判断第一RU是不是干扰RU。
在一个可能的设计中,所述共享AP还与第二被共享AP在所述传输资源上协作传输,在所述第一被共享AP在所述协作传输时的传输方向为上行、且所述第二被共享AP在所述协作传输时的传输方向为下行时,所述共享AP指示所述第二被共享AP向所述第三STA发送第三帧,所述第二被共享AP为第三STA的服务AP,所述第三STA是所述第二被共享AP准备在第二RU上发送下行数据的STA,所述第三帧用于指示所述第三STA在接收到所述第三帧后在第二RU上向所述第二被共享AP返回第三确认帧。其中,所述第二帧与所述第三帧的发送时刻相同,所述第三帧的长度大于所述第二帧与短帧间间隔SIFS的长度之和。这样,当第二帧和第三帧同时发送,第二STA开始回复第二确认帧时,第三帧还未完全发送完毕。那么,在第二RU上就会存在上行方向的传输的、第二STA向被共享AP返回的第二确认帧,在第二RU上,上行方向的第二确认帧与下行方向的第三帧存在时域和频域时上的交集,第二被共享AP就可以通过是否收到第三STA对第三帧的回复,来判断第二RU是不是干扰RU。这样,还可以避免第一被共享AP的下行传输对第二被共享AP的上行传输干扰,从而实现多AP的协作传输。
在一个可能的设计中,所述共享AP禁止在所述干扰RU所在的子信道上进行下行传输。在共享AP禁止在干扰RU所在的子信道上进行下行传输后,第一被共享AP可以在整 个信道上进行上行传输都不会受到共享AP下行传输的干扰。
在一个可能的设计中,所述共享AP接收来自所述第一被共享AP的上行触发帧,所述上行触发帧用于触发所述被共享AP服务的第二STA进行上行传输;所述向第一STA发送第一帧,包括:响应于所述上行触发帧,向所述第一STA发送所述第一帧。共享AP在接收到来自被共享AP的上行触发帧后再向第一STA发送第一帧,则能够保证:第一STA在第一RU上接收下行方向的第一帧,与第二STA在第一RU上向被共享AP发送上行数据帧,存在时域和频域上的交集。这样,第二STA发送的上行数据帧可能会对第一帧造成干扰,共享AP就可以通过是否收到第一STA对第一帧的回复,来判断第一RU是不是干扰RU。
在一个可能的设计中,所述第一帧与所述第一被共享AP发送的上行触发帧的发送时刻相同,所述第一帧的长度大于所述上行触发帧与SIFS的长度之和;所述上行触发帧用于触发所述第一被共享AP服务的第二STA进行上行传输。这样,当第一帧和上行触发帧同时发送时,第二STA接收到上行触发帧时,第一帧还未完全发送完毕。那么,在第一RU上就会存在上行方向的传输的帧,在第一RU上,第二STA发送的上行帧与共享AP下行方向的第一帧存在时域和频域上的交集,则第二STA发送的上行帧可能会对下行方向的第一帧造成干扰。共享AP就可以通过是否收到第一STA对第一帧的回复,来判断第一RU是不是干扰RU。
在一个可能的设计中,所述第一帧是短数据帧。
在一个可能的设计中,所述第一帧为控制帧,且所述第一帧的调制编码方式MCS阶数和流数与数据帧的MCS阶数和流数相同,即,所述第一帧的调制编码方式MCS阶数与数据帧的MCS阶数相同,所述第一帧的流数与数据帧的流数相同。这样,根据干扰探测帧进行干扰探测的结果更能反映数据帧受干扰的结果。
在一个可能的设计中,所述协作传输的方式为协作的空间复用CSR。
在一个可能的设计中,所述信道包括一个或多个子信道。
第二方面,提供一种无线局域网的协作传输方法,该方法包括以下步骤:被共享接入点AP在条件满足时,在信道上向第二STA发送第一帧以探测干扰资源单元RU,其中,所述被共享AP为所述第二STA的服务AP,所述第一帧包括对所述第二STA回复所述第一帧时使用第一RU的指示,所述干扰RU为未接收到所述第二STA的回复的所述第一RU,所述条件包括所述被共享AP准备使用所述信道进行下行传输,所述信道是所述被共享AP与共享AP进行协作传输的信道;所述被共享AP禁止在所述干扰RU所在的子信道上进行下行传输。通过该方法,被共享AP会获取干扰RU的探测结果,即被共享AP会得知第一RU是否是干扰RU。干扰RU的探测结果可以用于干扰管控,从而使得多AP协作传输中的干扰可以得到有效的控制。通过被共享AP禁止在所述干扰RU所在的子信道上进行下行传输,能够避免第一STA在干扰RU所在的子信道发送上行数据帧可能受到的干扰,实现干扰可控。其中,共享AP为所述第一STA的服务AP。
在一个可能的设计中,所述条件还包括:所述共享AP准备使用所述信道进行上行传输。
在一个可能的设计中,所述被共享AP接收来自所述共享AP的上行触发帧,所述上行触发帧用于触发所述第一STA进行上行传输;所述向第二STA发送第一帧,包括:响应于所述上行触发帧,向所述第二STA发送所述第一触发帧。被共享AP在接收到来自共 享AP的上行触发帧后再向第二STA发送第一帧,则能够保证:第二STA在第一RU上接收下行方向的第一帧,与第一STA在第一RU上向共享AP发送上行数据帧,存在时域和频域上的交集。这样,第一STA发送的上行数据帧可能会对第一帧造成干扰,被共享AP就可以通过是否收到第二STA对第一帧的回复,来判断第一RU是不是干扰RU。
在一个可能的设计中,所述第一帧与所述共享AP发送的上行触发帧的发送时刻相同,所述第一帧的长度大于所述上行触发帧与短帧间隔SIFS的长度之和;所述上行触发帧用于触发所述共享AP服务的STA进行上行传输。这样,当第一帧和上行触发帧同时发送时,第一STA接收到上行触发帧时,第一帧还未完全发送完毕。那么,在第一RU上就会存在上行方向的传输的帧,在第一RU上,第一STA发送的上行帧与被共享AP下行方向的第一帧存在时域和频域上的交集,则第一STA发送的上行帧可能会对下行方向的第一帧造成干扰。被共享AP就可以通过是否收到第二STA对第一帧的回复,来判断第一RU是不是干扰RU。
共享AP还可以与被共享AP协商协作传输方向,可选地,可以通过以下两种方式协商。
固定模式:所述被共享AP接收来自所述共享AP的协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP在所述协作传输时的传输方向为下行。
灵活模式:所述被共享AP接收来自所述共享AP的协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP选择在所述协作传输时的传输方向;所述被共享AP向所述共享AP发送响应帧,所述响应帧用于指示所述被共享AP所选择的在所述协作传输时的传输方向为下行。
在一个可能的设计中,所述第一帧是短数据帧。
在一个可能的设计中,所述第一帧为控制帧,且所述第一帧的调制编码方式MCS阶数和流数与数据帧的MCS阶数和流数相同。这样,根据干扰探测帧进行干扰探测的结果更能反映数据帧受干扰的结果。
在一个可能的设计中,所述协作传输的方式为协作的空间复用CSR。
在一个可能的设计中,所述信道包括一个或多个子信道。
第三方面,提供一种无线局域网的协作传输方法,该方法包括以下步骤:被共享接入点AP在条件满足时,在信道上向第一站点STA发送第一帧以探测干扰资源单元RU,其中,所述被共享AP为所述第一STA的服务AP,所述第一帧包括对所述第一STA回复所述第一帧时使用第一RU的指示,所述干扰RU为未接收到所述第一STA的回复的所述第一RU,所述条件包括所述被共享AP准备使用所述信道进行上行传输,所述信道是所述共享AP与共享AP进行协作传输的信道。通过该方法,被共享AP会获取干扰RU的探测结果,即被共享AP会得知第一RU是否是干扰RU。干扰RU的探测结果可以用于干扰管控,从而使得多AP协作传输中的干扰可以得到有效的控制。
在一个可能的设计中,所述条件还包括:所述共享AP准备使用所述信道进行下行传输。
共享AP还可以与被共享AP协商协作传输方向,可选地,可以通过以下两种方式协商。
固定模式:所述被共享AP接收来自所述共享AP的协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP在所述协作传输时的传输方向为下行。
灵活模式:所述被共享AP接收来自所述共享AP的协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP选择在所述协作传输时的传输方向;所述被共享AP向所述共享AP发送第一响应帧,所述第一响应帧用于指示所述被共享AP所选择的在所述协作传输时的传输方向为上行。
在一个可能的设计中,所述被共享AP不使用所述干扰RU所在的子信道进行上行传输。通过被共享AP禁止所述干扰资源所在的子信道上进行下行传输,能够避免共享STA在干扰RU所在的子信道发送上行数据帧可能受到的干扰,实现干扰可控。
在一个可能的设计中,所述第一帧与所述共享AP向所述第二STA发送的第二帧的发送时刻相同,所述第二帧的长度大于所述第一帧与短帧间间隔SIFS的长度之和。
在一个可能的设计中,所述第一帧是短数据帧。
在一个可能的设计中,所述第一帧为控制帧,且所述第一帧的调制编码方式MCS阶数和流数与数据帧的MCS阶数和流数相同。这样,根据干扰探测帧进行干扰探测的结果更能反映数据帧受干扰的结果。
在一个可能的设计中,所述协作传输的方式为协作的空间复用CSR。
在一个可能的设计中,所述信道包括一个或多个子信道。
第四方面,提供一种无线局域网的协作传输方法,该方法包括以下步骤:被共享AP在条件满足时,在信道上向被共享STA发送第一帧,其中,所述信道为共享AP和所述被共享AP进行协作传输的信道,所述条件包括所述共享AP在所述协作传输时的传输方向为下行,所述第一帧用于指示所述被共享STA监听第一资源单元RU,所述被共享AP是所述被共享STA的服务AP,所述第一帧与共享AP向共享STA发送的第二帧的发送时刻相同,所述第二帧的长度大于所述第一帧与SIFS的长度之和,所述第二帧包括对所述共享STA回复所述第二帧时使用所述第一RU的指示;所述被共享AP在未接收到所述被共享STA返回的响应帧时,禁止在所述第一RU所在的子信道上触发上行传输,所述响应帧用于指示所述第一RU未被占用。通过该方法,被共享AP会获取干扰RU的探测结果,即被共享AP会得知第一RU是否是干扰RU。干扰RU的探测结果可以用于干扰管控,从而使得多AP协作传输中的干扰可以得到有效的控制。
在一个可能的设计中,所述第一帧还用于指示所述被共享STA监听所述第一RU的时长,以及指示所述被共享STA在所述时长内若所述第一RU未被占用则返回所述响应帧。
在一个可能的设计中,所述条件还包括:所述共享AP在所述协作传输时的传输方向为下行。
共享AP还可以与被共享AP协商协作传输方向,可选地,可以通过以下两种方式协商。
固定模式:所述被共享AP接收来自所述共享AP的协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP在所述协作传输时的传输方向为上行。
灵活模式:所述被共享AP接收来自所述共享AP的协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP选择在所述协作传输时的传输方向;所述被共享AP向所述共享AP发送第一响应帧,所述第一响应帧用于指示所述被共享AP所选择的在所述协作传输时的传输方向为上行。
在一个可能的设计中,所述第一帧与所述共享AP向所述第二STA发送的第二帧的发送时刻相同,所述第二帧的长度大于所述第一帧与短帧间间隔SIFS的长度之和。由于第 一帧和第二帧的发送时刻是相同的,第一帧的长度大于第二帧与SIFS的长度之和,第二STA在接收到第二帧并间隔STS之后,会监听第一RU。第二STA在监听第一RU时,第一帧还未完全发送完毕。那么如果第二STA监听到第一RU被占用,说明第二STA使用第一RU发送上行帧能够对第一STA接收共享AP的下行帧造成干扰。当第二STA监听到第一RU未被占用或者第一RU空闲时,第二STA会向被共享AP返回响应帧。
在一个可能的设计中,所述第一帧是短数据帧。
在一个可能的设计中,所述第一帧为控制帧,且所述第一帧的调制编码方式MCS阶数和流数与数据帧的MCS阶数和流数相同。这样,根据干扰探测帧进行干扰探测的结果更能反映数据帧受干扰的结果。
在一个可能的设计中,所述协作传输的方式为协作的空间复用CSR。
在一个可能的设计中,所述信道包括一个或多个子信道。
第五方面,提供一种通信装置,该通信装置可以是共享接入点AP,也可以是共享AP中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和共享AP匹配使用的装置。一种设计中,该通信装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和通信模块。处理模块用于调用通信模块执行接收和/或发送的功能。示例性地:
所述处理模块,用于判断在条件满足时,在信道上通过所述通信模块向第一站点STA发送第一帧以探测干扰资源单元RU,其中,所述共享AP为所述第一STA的服务AP,所述第一帧包括对所述第一STA回复所述第一帧时使用第一RU的指示,所述干扰资源单元为未接收到所述第一STA的回复的所述第一RU,所述条件包括所述共享AP准备使用所述信道进行下行传输,所述信道是所述共享AP与第一被共享AP进行协作传输的信道。
在一个可能的设计中,所述条件还包括:所述第一被共享AP准备使用所述信道进行上行传输。
在一个可能的设计中,所述处理模块还用于:通过所述通信模块向所述第一被共享AP发送协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述第一被共享AP在所述协作传输时的传输方向为上行。
在一个可能的设计中,所述处理模块还用于:通过所述通信模块向所述第一被共享AP发送协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述第一被共享AP选择在所述协作传输时的传输方向;以及接收来自所述第一被共享AP的第一响应帧,所述第一响应帧用于指示所述第一被共享AP所选择的在所述协作传输时的传输方向为上行。
在一个可能的设计中,所述处理模块还用于:响应于探测到所述干扰RU,通过所述通信模块向所述第一被共享AP发送指示帧,所述指示帧用于指示所述第一被共享AP不允许使用所述干扰RU所在的子信道进行上行传输;以及在所述信道上进行下行传输。
在一个可能的设计中,所述处理模块还用于:指示所述第一被共享AP向所述第二STA发送第二帧,所述第二帧用于指示所述第二STA在接收到所述第二帧后向所述第一被共享AP返回第二确认帧;所述第二STA是所述第一被共享AP准备使用所述第一RU进行上行传输的STA。其中,所述第一帧与所述第二帧的发送时刻相同,所述第一帧的长度大于所述第二帧与短帧间间隔SIFS的长度之和。
在一个可能的设计中,所述共享AP还与第二被共享AP在所述传输资源上协作传输, 所述第二被共享AP为第三STA的服务AP,所述处理模块还用于:在所述第一被共享AP在所述协作传输时的传输方向为上行、且所述第二被共享AP在所述协作传输时的传输方向为下行时,指示所述第二被共享AP向所述第三STA发送第三帧,所述第三帧用于指示所述第三STA在接收到所述第三帧后向所述第二被共享AP返回第三确认帧;通过所述通信模块接收来自所述第二被共享AP的第二响应帧,所述第二响应帧用于指示第二RU为干扰单元。
在一个可能的设计中,所述处理模块还用于:禁止在所述干扰RU所在的子信道上进行下行传输。
在一个可能的设计中,所述处理模块还用于:通过所述通信模块接收来自所述第一被共享AP的上行触发帧,所述上行触发帧用于触发所述被共享AP服务的STA进行上行传输;以及响应于所述上行触发帧,向所述第一STA发送所述第一帧。
在一个可能的设计中,所述第一帧与所述第一被共享AP发送的上行触发帧的发送时刻相同,所述第一帧的长度大于所述上行触发帧与SIFS的长度之和;所述上行触发帧用于触发所述第一被共享AP服务的STA进行上行传输。
第五方面的有益效果可以参照第一方面相应的效果,在此不再赘述。
第六方面,提供一种通信装置,该通信装置可以是被共享接入点AP,也可以是被共享AP中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和被共享AP匹配使用的装置。一种设计中,该通信装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和通信模块。处理模块用于调用通信模块执行接收和/或发送的功能。示例性地:所述处理模块,用于在条件满足时,在信道上通过所述通信模块向被共享STA发送第一帧以探测干扰资源单元RU,其中,所述共享AP为所述被共享STA的服务AP,所述第一帧包括对所述被共享STA回复所述第一帧时使用第一RU的指示,所述干扰RU为未接收到所述被共享STA的回复的所述第一资RU,所述条件包括所述被共享AP准备使用所述信道进行下行传输,所述信道是所述被共享AP与共享AP进行协作传输的信道;所述处理模块,还用于禁止所述干扰RU所在的子信道上进行下行传输。
在一个可能的设计中,所述条件还包括:所述共享AP准备使用所述信道进行上行传输。
在一个可能的设计中,所述处理模块还用于:通过所述通信模块接收来自所述共享AP的上行触发帧,所述上行触发帧用于触发所述共享AP服务的STA进行上行传输;在向第二STA发送第一触发帧时,所述处理模块用于,响应于所述上行触发帧,通过所述通信模块向所述被共享STA发送所述第一触发帧。
在一个可能的设计中,所述第一帧与所述共享AP发送的上行触发帧的发送时刻相同,所述第一帧的长度大于所述上行触发帧与短帧间隔SIFS的长度之和;所述上行触发帧用于触发所述共享AP服务的STA进行上行传输。
在一个可能的设计中,所述处理模块还用于:通过所述通信模块接收来自所述共享AP的协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP在所述协作传输时的传输方向为下行。
在一个可能的设计中,所述处理模块还用于:通过所述通信模块接收来自所述共享AP 的协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP选择在所述协作传输时的传输方向;以及向所述共享AP发送响应帧,所述响应帧用于指示所述被共享AP所选择的在所述协作传输时的传输方向为下行。
在一个可能的设计中,所述第一帧是短数据帧。
在一个可能的设计中,所述第一帧为控制帧,且所述第一帧的调制编码方式MCS阶数和流数与数据帧的MCS阶数和流数相同。
在一个可能的设计中,所述协作传输的方式为协作的空间复用CSR。
在一个可能的设计中,所述信道包括一个或多个子信道。
第六方面的有益效果可以参照第二方面相应的效果,在此不再赘述。
第七方面,提供一种通信装置,该通信装置可以是被共享接入点AP,也可以是被共享AP中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和被共享AP匹配使用的装置。一种设计中,该通信装置可以包括执行第三方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和通信模块。处理模块用于调用通信模块执行接收和/或发送的功能。示例性地:所述处理模块,用于在条件满足时,在信道上通过所述通信模块向第一站点STA发送第一帧以探测干扰资源单元RU,其中,所述被共享AP为所述第一STA的服务AP,所述第一帧包括对所述第一STA回复所述第一帧时使用第一RU的指示,所述干扰RU为未接收到所述第一STA的回复的所述第一RU,所述条件包括所述被共享AP准备使用所述信道进行上行传输,所述信道是所述共享AP与共享AP进行协作传输的信道。
在一个可能的设计中,所述条件还包括:所述共享AP准备使用所述信道进行下行传输。
在一个可能的设计中,所述处理模块还用于,通过所述通信模块接收来自所述共享AP的协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP在所述协作传输时的传输方向为下行。
在一个可能的设计中,所述处理模块还用于,通过所述通信模块接收来自所述共享AP的协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP选择在所述协作传输时的传输方向;以及用于向所述共享AP发送第一响应帧,所述第一响应帧用于指示所述被共享AP所选择的在所述协作传输时的传输方向为上行。
在一个可能的设计中,所述处理模块还用于:不使用所述干扰RU所在的子信道进行上行传输。
在一个可能的设计中,所述第一帧与所述共享AP向所述第二STA发送的第二帧的发送时刻相同,所述第二帧的长度大于所述第一帧与短帧间间隔SIFS的长度之和。
在一个可能的设计中,所述第一帧是短数据帧。
在一个可能的设计中,所述第一帧为控制帧,且所述第一帧的调制编码方式MCS阶数和流数与数据帧的MCS阶数和流数相同。
在一个可能的设计中,所述协作传输的方式为协作的空间复用CSR。
在一个可能的设计中,所述信道包括一个或多个子信道。
第七方面的有益效果可以参照第三方面相应的效果,在此不再赘述。
第八方面,提供一种通信装置,该通信装置可以是被共享接入点AP,也可以是被共 享AP中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和被共享AP匹配使用的装置。一种设计中,该通信装置可以包括执行第四方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和通信模块。处理模块用于调用通信模块执行接收和/或发送的功能。示例性地:所述处理模块,用于在条件满足时,在信道上通过所述通信模块向被共享STA发送第一帧,其中,所述信道为共享AP和所述被共享AP进行协作传输的信道,所述条件包括所述共享AP在所述协作传输时的传输方向为下行,所述第一帧用于指示所述被共享STA监听第一资源单元RU,所述被共享AP是所述被共享STA的服务AP,所述第一帧与共享AP向共享STA发送的第二帧的发送时刻相同,所述第二帧的长度大于所述第一帧与SIFS的长度之和,所述第二帧包括对所述共享STA回复所述第二帧时使用所述第一RU的指示;所述处理模块,还用于在未接收到所述被共享STA返回的响应帧时,禁止在所述第一资源单元所在的子信道上触发上行传输,所述响应帧用于指示所述第一RU未被占用。
在一个可能的设计中,所述第一帧还用于指示所述被共享STA监听所述第一RU的时长,以及指示所述被共享STA在所述时长内若所述第一资源单元未被占用则返回所述响应帧。
在一个可能的设计中,所述条件还包括:所述共享AP在所述协作传输时的传输方向为下行。
在一个可能的设计中,所述处理模块还用于,通过所述通信模块接收来自所述共享AP的协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP在所述协作传输时的传输方向为上行。
在一个可能的设计中,所述处理模块还用于,通过所述通信模块接收来自所述共享AP的协作传输通知C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP选择在所述协作传输时的传输方向;以及向所述共享AP发送第一响应帧,所述第一响应帧用于指示所述被共享AP所选择的在所述协作传输时的传输方向为上行。
在一个可能的设计中,所述第一帧与所述共享AP向所述第二STA发送的第二帧的发送时刻相同,所述第二帧的长度大于所述第一帧与短帧间间隔SIFS的长度之和。
在一个可能的设计中,所述第一帧是短数据帧。
在一个可能的设计中,所述第一帧为控制帧,且所述第一帧的调制编码方式MCS阶数和流数与数据帧的MCS阶数和流数相同。
在一个可能的设计中,所述协作传输的方式为协作的空间复用CSR。
在一个可能的设计中,所述信道包括一个或多个子信道。
第八方面的有益效果可以参照第四方面相应的效果,在此不再赘述。
第九方面,本申请实施例提供一种通信装置,所述通信装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接。处理器用于调用一组程序、指令或数据,执行上述第一方面描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第一方面描述的方法。
第十方面,本申请实施例提供一种通信装置,所述通信装置包括通信接口和处理器, 所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接。处理器用于调用一组程序、指令或数据,执行上述第一方面描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第二方面描述的方法。
第十一方面,本申请实施例提供一种通信装置,所述通信装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接。处理器用于调用一组程序、指令或数据,执行上述第一方面描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第三方面描述的方法。
第十二方面,本申请实施例提供一种通信装置,所述通信装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接。处理器用于调用一组程序、指令或数据,执行上述第一方面描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第四方面描述的方法。
第十三方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得计算机执行如第一方面或第一方面中任一种可能的设计中所述的方法。
第十四方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第二方面或第二方面中任一种可能的设计中所述的方法。
第十五方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第三方面或第三方面中任一种可能的设计中所述的方法。
第十六方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第四方面或第四方面中任一种可能的设计中所述的方法。
第十七方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面或第一方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十八方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第二方面或第二方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十九方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第三方面或第三方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第二十方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第四方面或第四方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第二十一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面和各方面的任一可能的设计中所述的方法被执行。
附图说明
图1为本申请实施例中WLAN系统架构示意图之一;
图2为本申请实施例中WLAN系统架构示意图之二;
图3为本申请实施例中两个AP协作传输的传输方向的场景示意图;
图4为本申请实施例中多个AP协作传输信道的划分示意图;
图5为本申请实施例中无线局域网的协作传输方法的流程示意图之一;
图6a为本申请实施例中一种场景下固定模式的协作传输时帧交互示意图之一;
图6b为本申请实施例中一种场景下灵活模式的协作传输时帧交互示意图之一;
图7a为本申请实施例中一种场景下固定模式的协作传输时帧交互示意图之二;
图7b为本申请实施例中一种场景下灵活模式的协作传输时帧交互示意图之二;
图8a为本申请实施例中一种场景下固定模式的协作传输时帧交互示意图之二;
图8b为本申请实施例中一种场景下灵活模式的协作传输时帧交互示意图之二;
图9为本申请实施例中无线局域网的协作传输方法的流程示意图之二;
图10a为本申请实施例中又一种场景下固定模式的协作传输时帧交互示意图;
图10b为本申请实施例中又一种场景下灵活模式的协作传输时帧交互示意图;
图11为本申请实施例中无线局域网的协作传输方法的流程示意图之三;
图12a为本申请实施例中另一种场景下固定模式的协作传输时帧交互示意图;
图12b为本申请实施例中另一种场景下灵活模式的协作传输时帧交互示意图;
图13为本申请实施例中无线局域网的协作传输方法的流程示意图之四;
图14a为本申请实施例中再一种场景下固定模式的协作传输时帧交互示意图;
图14b为本申请实施例中再一种场景下灵活模式的协作传输时帧交互示意图;
图15为本申请实施例中无线局域网的协作传输方法的流程示意图之五;
图16a为本申请实施例中还一种场景下固定模式的协作传输时帧交互示意图;
图16b为本申请实施例中还一种场景下灵活模式的协作传输时帧交互示意图;
图17为本申请实施例中通信装置结构示意图之一;
图18为本申请实施例中通信装置结构示意图之二。
具体实施方式
本申请实施例提供一种无线局域网的协作传输方法及装置,以期提高无线局域网的协作传输的性能和质量。其中,方法和装置是基于相同或相似技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请中所涉及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”、“第三”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些 实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例提供的无线局域网的通信方法可以应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE),也可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR),或应用于未来的各种通信系统。
本申请实施例提供的无线局域网的协作传输方法可以应用于WLAN系统,可以适用于IEEE 802.11系统标准,例如IEEE 802.11ax标准、IEEE 802.11be标准草案,或其下一代或更下一代的标准中。
下面将结合附图,对本申请实施例进行详细描述。
本申请实施例可以适用的一种WLAN系统100可以包括多个站点(station,STA),该多个STA中包括AP,还包括非AP STA。或者说,WLAN系统100可以包括:一个或多个AP,一个或多个非AP STA)。本申请实施例中非AP STA可以简述为STA。其中,AP可以与一个或多个STA关联,AP可以为与该AP关联的STA调度传输资源,并在调度的传输资源上与被调度的STA进行通信。AP可以连接分布系统(distributed system,DS)。
图1以WLAN系统100中包括一个AP101和两个STA为示例,两个STA用STA102-1和STA102-2表示。AP101与STA102-1和STA102-2关联。可以理解的是,AP101可以调度更多或更少的STA。
如图2所示,WLAN系统100中可以包括多个AP。图2以两个AP为例,以每个AP连接两个STA为例进行示例。可以理解的是,WLAN系统中还可以包括更多个AP和更多个STA。
图2中,两个AP分别用AP101-1和AP101-2来表示,AP101-1连接两个STA,用STA102-1和STA102-2表示。AP101-2连接两个STA,用STA102-3和STA102-4表示。AP101-1可以关联STA102-1和STA102-2,可以为STA102-1和STA102-2提供服务,AP101-1是STA102-1和STA102-2的服务AP。AP101-2关联STA102-3和STA102-4,可以为STA102-3和STA102-4提供服务,AP101-2是STA102-3和STA102-4的服务AP。
以下对本申请实施例WLAN系统中的AP和STA的概念进行说明。
AP,具有STA功能的实体,可以通过无线介质(wireless medium,WM)为相关联的STA提供分发服务的访问。AP可以包括STA和分布式系统接入功能(distribution system access function,DSAF)。AP也可称之为无线访问接入点或桥接器或热点。AP可以接入服务器或通信网络。AP可用作WLAN系统的中枢。AP可以为基站、路由器、网关、中继器、通信服务器、交换机或网桥等。在此,为了描述方便,本申请实施例中将上面提到的设备统称为AP。
STA,这里是指非AP站点,一个逻辑实体,是接入无线介质的媒体访问控制(medium access control,MAC)层和物理层(physical layer,PHY)接口的单个可寻址实例。STA可以是各种具有无线通信功能的用户终端、用户装置,接入装置,订户站,订户单元,移动站,用户代理,用户装备或其他名称,其中,用户终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(user equipment,UE),移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment),便携式通信设备,手持机,便携式计算设备,娱乐设备, 游戏设备或系统,全球定位系统设备或被配置为经由无线介质进行网络通信的任何其他合适的设备等等。在此,为了描述方便,本申请实施例中将上面提到的设备统称为STA。
在WLAN系统中,每个AP和该AP关联的STA可以组成一个基本服务集(basic service set,BSS)。多个BSS可以使用相同的传输资源,从而能够提高无线局域网传输资源的利用率。不同BSS中的AP可以以协作的方式使用相同的传输资源实现协作传输。
为了更好地理解本申请实施例提供的方案,首先对“协作传输”的概念和方式进行介绍。
协作传输,是指在WLAN系统中,两个或两个以上的AP,在相同的传输资源上,为不同的STA提供服务,包括上行(uplink,UL)传输和/或下行(downlink,DL)传输。多AP协作传输的一种方式是协作的空间复用(coordinated spatial reuse,CSR),即,AP根据干扰测量信息,协商发射功率,使能多链路并发传输。本申请实施例可以适用于CSR的协作传输方式。
以两个AP协作传输为例,例如,如图2所示的WLAN系统中,AP101-1和AP101-2可以使用相同的传输资源进行协作传输。其中,传输资源可以是以信道为粒度或者以资源单元(resource unit,RU)为粒度。例如,以信道为粒度,AP101-1和AP101-2使用相同的信道进行协作传输。协作传输的信道的带宽例如可以是20MHz、40MHz或80MHz。假设协作传输的信道的带宽为80MHz,AP101-1和AP101-2都可以使用该80MHz带宽的信道。AP101-1可以将该80MHz带宽的信道的部分或全部分配给STA102-1和STA102-2。AP101-2也可以将该80MHz带宽的信道的部分或全部分配给STA102-3和STA102-4。
在协作传输的信道上,AP101-1可与STA102-1/STA102-2进行通信,AP101-2可与STA102-3/STA102-4进行通信。
多个AP协作传输时,一般将抢占了传输机会(transmission opportunity,TXOP)的AP称为共享AP(sharing AP)。与该sharing AP协作传输的AP称为被共享AP(shared AP)。当然sharing AP也可以称为主AP或其他名称,shared AP也可以称为从AP或其他名称。在下一个TXOP,共享AP可能还是相同的AP,也可能会发生改变。共享AP关联的STA可以称为共享STA,被共享AP关联的STA可以称为被共享STA。
多个AP协作传输时,存在多个并发的传输链路。sharing AP所参与的传输链路可以称为第一链路,shared AP所参与的传输链路可以称为第二链路。第一链路与第二链路的传输方向可以是相同的,可以都是下行或都是上行。第一链路与第二链路的传输方向可以是不同的,例如,第一链路的传输方向为上行,第二链路的传输方向为下行;又例如,第一链路的传输方向为下行,第二链路的传输方向为上行。其中,第一链路的传输方向为上行,是指共享STA通过第一链路向共享AP发送上行帧;第一链路的传输方向为下行,是指共享AP通过第一链路向共享STA发送下行帧。第二链路的传输方向为上行,是指被共享STA通过第二链路向被共享AP发送上行帧;第二链路的传输方向为下行,是指被共享AP通过第二链路向被共享STA发送下行帧。当第一链路和第二链路的传输方向不同时,也可以将多AP的协作传输称为混合上下行传输。
以两个AP协作传输为例,图3示出了第一链路与第二链路的传输方向不同的几种场景。协作传输的两个AP用AP1和AP2标识,AP1关联STA1,AP2关联STA2。AP1与STA1之间的链路记为第一链路,AP2与STA2之间的链路记为第二链路。用实线箭头表示链路方向。用虚线箭头表示干扰来源。图3的(a)中,第一链路的传输方向为下行,第二链路的传输方向为下行,STA1在接收AP1发送的下行数据时,AP2向STA2发送下行数 据,则STA1可能会受到来自AP2的干扰。图3的(b)中,第一链路的传输方向为上行,第二链路的传输方向为上行,AP1在接收STA1发送的上行数据时,STA2向AP2发送上行数据,则AP1可能会受到来自STA2的干扰。图3的(c)中,第一链路的传输方向为上行,第二链路的传输方向为下行,AP1在接收STA1发送的上行数据时,AP2向STA2发送下行数据,AP1可能会受到来自AP2的干扰。图3的(d)中,第一链路的传输方向为下行,第二链路的传输方向为上行,AP1向STA1发送下行数据时,STA2向AP2发送上行数据,则STA1可能会受到来自STA2的干扰。
在一个实施例中,AP1和AP2在协作传输的过程中,可以通过对信道的测量获得信道损耗,根据信道损耗协商第一链路和第二链路的传输功率,从而能够使得两条链路之间协作传输而干扰可控。通常,sharing AP发射功率不变,sharing AP限定shared AP的最大发射功率。例如,图3的(a)中,STA1可以通过侦听的方式测量AP2的信道损耗,STA1可以侦听AP2的信标帧,信标帧中携带原始功率,STA1计算原始功率与该信标帧的RSSI之差,就可以得到信道损耗,STA1可以将AP2->STA1的信道损耗报告给AP1。AP1根据该信道损耗、AP2平均发射功率、AP1->STA1最大可接受干扰水平(10%误码率时的信噪比),确定AP2下行的最大发射功率,并向AP2指示该发射功率。这样AP2根据AP1指示的发射功率重新调度符合条件的STA进行下行并发传输,就可以避免对AP1的下行传输的干扰。该条件指的是,AP1->STA2的最大可接受干扰水平(10%误码率时的信噪比)大于AP1->STA2的RSSI。又例如,在图3的(b)中,AP1可以通过接收STA2的信号来测量STA2->AP1的信道损耗,从而以类似的方法计算和向AP2指示调度STA2上行传输的发射功率,以实现干扰管控。再例如,在图3的(c)中,AP1和AP2之间会定期交换信标管理帧,AP1通过接收AP2的信标管理帧,来测量AP2->AP1的信道损耗,并根据信道损耗以类似的方法计算和向AP2指示发射功率,以实现干扰管控。
对于图3的(d)这种场景,STA1接收下行数据时的干扰来源于STA2,然而由于终端数过多,STA1无法测量来自STA2的信道损耗,即STA之间的干扰是不可测的,也就无法通过协商发射功率来进行干扰管控,使能并发传输。总之,在混合上下行传输时,由于STA之间的干扰不可测,将可能导致干扰不可控,从而无法实现多AP的协作传输。因此多AP的协作传输的方案还需要进一步改善。
基于此,本申请实施例提供一种无线局域网的协作传输方法,以期降低协作传输过程中的干扰,改善无线局域网的协作传输质量。
本申请实施例中,共享AP与一个或多个被共享AP在信道上协作传输。例如,协作传输的信道的带宽可以是20MHz、40MHz、80MHz、160MHz、240MHz、320MHz或WLAN支持的其他带宽。假设协作传输的信道的带宽为80MHz,共享AP和一个或多个被共享AP在该80MHz的信道上协作传输,共享AP和被共享AP均可以使用该80MHz的信道。
AP可以采用正交频分多址(orthogonal frequency division multiple access,OFDMA)技术为关联的STA分配资源,OFDMA技术将空口无线信道时频资源进一步划分为多个正交的资源,该正交的资源单位叫作RU。AP为STA分配资源时,可以基于正交的资源进行分配。例如AP基于RU进行分配,也可以基于RU组进行分配。AP在同一时刻为不同的STA分配不同的正交的资源,使多个STA高效地接入信道。
多个AP协作传输时,共享AP可以将信道分配给该共享AP关联的一个STA,或基于OFDMA技术分配给该共享AP关联的多个STA,被共享AP也可以将信道分配给该被共 享AP关联的一个STA,或基于OFDMA技术分配给该被共享AP关联的多个STA。在一个可能的实施例中,如图4所示,信道包括一个或多个子信道,一个子信道包括一个或多个RU。下行传输时,共享AP在信道或不同RU上向关联的一个或多个共享STA发送下行数据。上行传输时,共享AP将信道或RU分配给与该共享AP关联的一个或多个STA发送上行数据。类似地,下行传输时,被共享AP在信道或不同RU上向该被共享AP关联的一个或多个被共享STA发送下行数据,上行传输时,被共享AP将信道或RU分配给与该被共享AP关联的一个或多个被共享STA发送上行数据。多个AP协作传输时,在同一个RU上,共享AP与共享STA之间的通信以及被共享AP与被共享STA之间的通信可能同时存在。例如,在一个RU上,共享AP向共享STA发送下行数据,并且在该RU上,被共享STA向被共享AP发送上行数据。那么在该RU上,共享STA可能受到来自被共享STA的干扰。本申请实施例提供的方法以期对相同信道或相同子信道或相同RU上的干扰进行管控。可以理解的是,图4所示的信道划分只是一种举例。当信道包括一个子信道时,信道的带宽与子信道的带宽相同,或者认为子信道就是该信道。
一般情况下,WLAN系统中子信道以20MHz为粒度,子信道的带宽可以设置为20MHz。信道为40MHz时,可以包括2个子信道。信道为80MHz时,可以包括4个子信道。
共享AP和被共享AP在信道上协作传输,是指共享AP和被共享AP均可以使用这整个信道,共享AP和被共享AP具体如何将信道的RU分配给STA,本申请实施例不作限定。共享AP和被共享AP可以将信道的部分或全部资源分配给正在调度的共享STA和被共享STA。
本申请实施例中,通过设计一种干扰探测帧,对干扰RU进行探测,下面对干扰探测帧的结构或功能进行介绍,在后续实施例的描述中,为作区分,用第一帧、第二帧或第三帧等来表示不同实施例中的干扰探测帧。
干扰探测帧的类型可以是短数据帧,或控制帧。例如,干扰探测帧用控制帧时,可以是触发帧(trigger frame,TF),也可以是多用户请求发送(multi-user request to send,MU-RTS)帧,本申请实施例中将干扰探测帧记为TF-N。可以将干扰探测帧的调制编码方式(modulation and coding scheme,MCS)阶数调整为数据帧的MCS阶数。这样,根据干扰探测帧进行干扰探测的结果更能反映数据帧受干扰的结果。
AP向STA发送干扰探测帧,STA收到干扰探测帧后,向AP回复响应。STA向AP回复的帧的类型与干扰探测帧的类型相对应。例如,干扰探测帧为MU-RTS,对应地,STA回复清楚发送(clear to send,CTS)帧。又例如干扰探测帧为触发帧,对应地,STA回复块确认(block ACK,BA)。再例如,干扰探测帧为短数据帧,STA向共享AP回复BA。本申请实施例中将干扰探测帧的响应帧记作BA-D。
干扰探测帧还可以指示STA回复响应使用的RU。STA在指定的RU上向AP回复响应。
干扰探测帧还可以指示STA通过响应帧BA-D上报一些信道相关信息,例如,接收信号强度指示(received signal strength indication,RSSI)、信道状态信息(channel state information,CSI)。STA根据干扰探测帧向AP回复的响应帧中携带这些信道相关信息。AP可以根据STA上报的信道相关信息,判断干扰程度,并选择合适的MCS发送数据,或选择合适的MCS触发上行传输。
如图5所示,本申请实施例提供的一种无线局域网的协作传输方法的具体流程如下所 述。
S501、共享AP在条件满足时,在信道上向第一STA发送第一帧以探测干扰RU。
其中,共享AP与第一STA关联,共享AP是该第一STA的服务AP,共享AP可以在该信道上调度该第一STA,共享AP可以为该第一STA分配该信道上的一个或多个RU,例如,共享AP为该第一STA分配该信道上的第一RU。第一STA是共享AP准备发送下行数据的STA。
该信道是共享AP和被共享AP进行协作传输的信道。干扰RU是指共享AP在该RU上向第一STA发送下行数据帧时可能会受到干扰。
该条件可以是:共享AP准备使用该信道进行下行传输。即,共享AP准备使用该信道进行下行传输时,在该信道上向第一STA发送第一帧以探测干扰RU。
第一帧包括对第一STA回复第一帧时使用第一RU的指示。例如,第一帧中包括第一字段,该第一字段指示第一STA回复第一帧时使用第一RU。若第一STA接收到第一帧,则在第一RU上回复共享AP。若第一STA未接收到第一帧,则共享AP就不能收到该第一STA对第一帧的回复。干扰RU为未接收到第一STA的回复的第一RU。也就是说,若第一STA未接收到第一帧,则第一STA不会在第一RU上向共享AP回复,共享AP就可以确定未接收到第一STA的回复的第一RU为干扰RU。第一帧中指示的第一STA和第一STA使用的RU即为接下来下行数据传输时的目标STA和将使用的RU。
通过S501,共享AP会获取干扰RU的探测结果,即共享AP会得知第一RU是否是干扰RU。当然,S501所描述的方案是针对第一STA的,可以理解的是,第一STA为共享AP当前调度的任意一个STA,共享AP要求第一STA回复第一帧所使用的RU为当前调度第一STA所使用的RU。共享AP对当前调度的每一个STA都可以发送第一帧以探测所使用的RU是否为干扰RU。共享AP可以获知该信道上哪些RU为干扰RU,这些干扰RU在接下来的下行传输中会受到干扰。该干扰RU的探测结果可以用于干扰管控,从而使得多AP协作传输中的干扰可以得到有效的控制。
以下对图5实施例的一些可选地实现方式进行详细说明。
S501中的该条件还可以是:共享AP准备使用该信道进行下行传输,且被共享AP准备用该信道进行上行传输。即,共享AP在准备使用该信道进行下行传输且获知被共享AP准备使用该信道进行上行传输时,在该信道上向第一STA发送第一帧以探测干扰RU。
基于此,在S501之前,共享AP还可以与被共享AP协商协作传输方向。可选地,本申请实施例可以提供固定模式和灵活模式两种方式来协商协作传输方向。
固定模式:由共享AP指定被共享AP在协作传输时的传输方向。
在固定模式下,在S501之前,还包括S500。
S500、共享AP向被共享AP发送协作传输通知(coordinated spatial reuse announcement,C-SR-A)帧,对应地,被共享AP接收来自共享AP的C-SR-A帧。
该C-SR-A帧用于指示被共享AP在协作传输时的传输方向为上行。可选地,该C-SR-A帧还用于指示共享AP在协作传输时的传输方向为下行。被共享AP根据该C-SR-A帧可以确定共享AP和被共享AP在协作传输时各自的传输方向。
灵活模式:由被共享AP自行决定协作传输时的传输方向。
在灵活模式下,在S501之前,还包括S500-1和S500-2。
S500-1、共享AP向被共享AP发送C-SR-A帧,对应地,被共享AP接收来自共享AP 的C-SR-A帧。该C-SR-A帧用于指示被共享AP选择在协作传输时的传输方向。可选地,该C-SR-A帧还可以用于指示共享AP在协作传输时的传输方向为下行。被共享AP根据该C-SR-A帧可以确定共享AP在协作传输时的传输方向为下行,并根据该C-SR-A帧的指示选择自身在协作传输时的传输方向。
S500-2、被共享AP向共享AP发送响应帧,记为第一响应帧;对应地,共享AP接收来自被共享AP的第一响应帧。
第一响应帧用于指示被共享AP所选择的在协作传输时的传输方向为上行。
本申请实施例中,指定或协商在协作传输时的传输方向,可以是指一个或多个TXOP内的传输方向,一般是指一个TXOP内的传输方向。
下面对S501中探测干扰RU的可选实现方式进行说明。
在可选方式1中,在S501之前,共享AP还会指示被共享AP向第二STA发送第二帧。其中,第二STA是被共享AP关联的或当前调度的STA。第二STA是被共享AP准备使用第一RU进行上行传输的STA。即被共享AP准备在第一RU上调度第二STA,调度后,第二STA就会使用第一RU向被共享AP发送上行数据帧。这样看来第一RU是第一STA和第二STA复用的RU。
第二帧的格式和作用与第一帧类似。第二帧用于指示第二STA在接收到第二帧后向被共享AP返回第二确认帧。第二确认帧表示已经接收到第二帧。第一帧和第二帧的发送时刻是相同的,并且第一帧的长度大于第二帧的长度,一般情况下,第一帧的长度大于第二帧与短帧间间隔(short interframe space,SIFS)的长度之和。第二STA接收到第二帧并间隔SIFS后,就会根据第二帧向被共享AP返回第二确认帧。这样,当第一帧和第二帧同时发送后,第二STA开始回复第二确认帧时,第一帧还未完全发送完毕。那么,在第一RU上就会存在上行方向的传输的、第二STA向被共享AP返回的第二确认帧,在第一RU上,上行方向的第二确认帧与下行方向的第一帧存在频域上的交集,此时,上行方向的第二确认帧可能会对下行方向的第一帧造成干扰。比如,若第一STA接收到第二确认帧的RSSI大于第一STA接收第一帧时的最大可接受干扰水平,则第二确认帧就会对第一STA接收第一帧造成干扰。当造成干扰时,第一STA就无法接收到第一帧,则第一STA就不会在第一RU上向共享AP返回第一确认帧,共享AP就无法接收到第一STA返回的第一确认帧,共享AP就可以确定未接收到第一STA返回第一确认帧的第一RU为干扰RU。相反,如果上行方向的第二确认帧未对第一帧造成干扰,则第一STA就能够接收到第一帧,第一STA就会向共享AP返回第一确认帧,则共享AP就确定该第一RU不是干扰RU。
在可选方式1中,共享AP指示被共享AP向第二STA发送第二帧,可以通过S500共享AP向被共享AP发送的C-SR-A帧来指示。或者,共享AP指示被共享AP向第二STA发送第二帧,可以通过S500-1中共享AP向被共享AP发送的C-SR-A帧指示在满足条件时发送,该条件指的是C-SR-A指示共享AP传输方向为下行,且被共享AP选择的传输方向为上行。如果通过S500共享AP向被共享AP发送的C-SR-A帧来指示被共享AP向第二STA发送第二帧,则共享AP可以在发送C-SR-A帧后经过SIFS后发送第一帧,被共享AP在接收C-SR-A帧后经过SIFS后发送第二帧,以使第一帧和第二帧的发送时刻是相同的。如果通过S500-1共享AP向被共享AP发送的C-SR-A帧来指示被共享AP满足条件时向第二STA发送第二帧,则在S500-2共享AP接收到来自被共享AP返回的第一响应帧并经过SIFS后,发送第一帧;而被共享AP在发送第一响应帧并经过SIFS后,发送第二 帧;以使第一帧和第二帧的发送时刻是相同的。
本申请实施例中,当涉及到“经过SIFS”可以是指经过一定时间的举例,具体可以替换为经过其它设定时间,该说明可以适用于全文的相关描述。
在可选方式2中,被共享AP发送上行触发帧,调度该被共享AP服务的STA(例如第二STA)进行上行传输,收到该上行触发帧的被共享STA会在经过SIFS后向被共享AP发送上行数据帧。这种情况下,共享AP也可能会侦听到被共享AP发送的该上行触发帧,共享AP可以响应于该上行触发帧,向第一STA发送第一帧。也就是说,共享AP向第一STA发送第一帧的时机可以是响应于接收到被共享AP发送的上行触发帧。因为被共享AP发送上行触发帧后,接收到上行触发帧的STA会向被共享AP发送上行数据帧,这样第二STA会在第一RU上向被共享AP发送上行数据帧。共享AP在接收到来自被共享AP的上行触发帧后再向第一STA发送第一帧,则能够保证:第一STA在第一RU上接收下行方向的第一帧,与第二STA在第一RU上向被共享AP发送上行数据帧,存在交集。这样,第二STA发送的上行数据帧可能会对第一帧造成干扰。比如,第一STA接收到第二STA发送的上行数据帧的RSSI大于第一STA接收共享AP发送的第一帧的最大可接受干扰水平,则第一STA接收第一帧会接收到来自第二STA发送上行数据帧的干扰。当造成干扰时,第一STA就无法接收到第一帧,则第一STA就不会在第一RU上向共享AP返回第一确认帧,共享AP就无法接收到第一STA返回的第一确认帧,共享AP就可以确定未接收到第一STA返回第一确认帧的第一RU为干扰RU。相反,如果第二STA发送的上行数据帧未对第一帧造成干扰,则第一STA就能够接收到第一帧,第一STA就会向共享AP返回第一确认帧,则共享AP就确定该第一RU不是干扰RU。
在可选方式2中,若通过S500被共享AP接收来自共享AP的C-SR-A帧之后,经过SIFS发送上行触发帧。通过S500共享AP向被共享AP发送的C-SR-A帧后,共享AP等待接收(或检测)被共享AP发送的上行触发帧,并响应于上行触发帧发送第一帧。
若通过S500-1被共享AP接收来自共享AP的C-SR-A帧之后,在S500-2被共享AP向共享AP返回第一响应帧,被共享AP在发送第一响应帧之后,经过SIFS后发送上行触发帧。通过S500-2共享AP在接收到来自被共享AP发送的第一响应帧之后,共享AP等待接收(或检测)被共享AP发送的上行触发帧,并响应于上行触发帧发送第一帧。
可选方式3、第一帧与被共享AP发送的上行触发帧的发送时刻相同。第一帧的长度大于上行触发帧的长度,一般来说,第一帧的长度大于上行触发帧与SIFS的长度之和。上行触发帧用于触发被共享AP服务的STA进行上行传输。具体地,被共享AP在调度该被共享AP服务的STA(例如第二STA)进行上行传输时,会发送上行触发帧,收到该上行触发帧的STA会在经过SIFS后向被共享AP发送上行数据帧。
这样,当第一帧和上行触发帧同时发送时,第二STA接收到上行触发帧时,第一帧还未完全发送完毕。第二STA接收到上行触发帧后间隔SIFS,就会根据上行触发帧向被共享AP发送上行数据帧。那么,在第一RU上就会存在上行方向的传输的帧,在第一RU上,第二STA发送的上行帧与共享AP下行方向的第一帧存在频域上的交集,则第二STA发送的上行帧可能会对下行方向的第一帧造成干扰。比如说,若第一STA接收到第二STA发送上行数据帧的RSSI大于接收共享AP发送第一帧的最大可接受干扰水平则第二STA发送上行帧就会对第一STA接收第一帧造成干扰。当造成干扰时,第一STA就无法接收到第一帧,则第一STA就不会在第一RU上向共享AP返回第一确认帧,共享AP就无法 接收到第一STA返回的第一确认帧,共享AP就可以确定未接收到第一STA返回第一确认帧的第一RU为干扰RU。相反,如果第二STA发送上行数据帧未对第一帧造成干扰,则第一STA就能够接收到第一帧,第一STA就会向共享AP返回第一确认帧,则共享AP就确定该第一RU不是干扰RU。
在可选方式3中,若通过S500被共享AP接收来自共享AP的C-SR-A帧之后,经过SIFS发送上行触发帧。通过S500共享AP向被共享AP发送的C-SR-A帧后,共享AP经过SIFS发送第一帧,以使第一帧与被共享AP发送的上行触发帧的发送时刻相同。
若通过S500-1被共享AP接收来自共享AP的C-SR-A帧之后,在S500-2被共享AP向共享AP返回第一响应帧,被共享AP在发送第一响应帧之后,经过SIFS后发送上行触发帧。通过S500-2共享AP在接收到来自被共享AP发送的第一响应帧之后,若共享AP的传输方向为下行,且被共享AP选择的传输方向为上行,则共享AP经过SIFS发送第一帧,以使第一帧与被共享AP发送的上行触发帧的发送时刻相同。
本申请实施例中,根据共享AP在下行传输之前通过发送第一帧来进行干扰探测,以探测共享AP在RU上下行传输会不会受到该RU上被共享STA上行传输的干扰。
在S501之后,还可以执行方案1和方案2两种方案。方案1通过S502~S503步骤实现。方案2通过S502*步骤实现。
方案1:
S502、共享AP响应于探测到的干扰RU,向被共享AP发送指示帧。对应地,被共享AP接收来自共享AP的该指示帧。该指示帧用于指示被共享AP不允许使用干扰RU所在的子信道进行上行传输。
假设协作传输的信道带宽为80MHz,包括4个子信道,记为子信道1、子信道2、子信道3和子信道4。一个子信道的带宽为20MHz。共享AP为第一STA分配子信道1中的第一RU。共享AP通过探测干扰RU,获知第一RU为干扰RU。共享AP向被共享AP发送指示帧,指示被共享AP不允许使用干扰RU所在的子信道进行上行传输,从而能够避免共享STA在干扰RU所在的子信道接收下行数据帧可能受到的干扰,实现干扰可控。
可以理解的是,协作传输的信道带宽可以大于或等于一个被禁止的子信道的带宽。例如,协作传输的信道带宽为20MHz,等于子信道的带宽,共享AP可以指示被共享AP不允许在该20MHz的带宽上进行上行传输。也就意味着被共享AP在这个TXOP内不能与该共享AP协作传输。
S503、共享AP在信道上进行下行传输。
在指示被共享AP禁止在干扰RU所在的子信道上进行上行传输后,共享AP可以在整个信道上进行下行传输都不会受到被共享STA的上行传输的干扰。
方案2:
S502*、共享AP不在干扰RU所在的子信道上进行下行传输。即共享AP自身禁止使用干扰RU。
对应地,共享AP在信道中除干扰RU所在的子信道之外的子信道上进行下行传输。被共享AP可以触发被共享STA在信道上进行上行传输。
仍以S502所描述的例子进行举例,假设协作传输的信道带宽为80MHz,包括4个子信道,记为子信道1、子信道2、子信道3和子信道4。一个子信道的带宽为20MHz。共享AP为第一STA分配子信道1中的第一RU。共享AP通过探测干扰RU,获知第一RU 为干扰RU。若共享AP在该干扰RU所在的子信道1进行下行传输时,被共享STA也在该子信道1向被共享AP发送上行数据帧,则共享STA在该子信道1接收下行数据帧时可能会受到被共享STA发送上行数据帧的干扰。基于此,共享AP在获知第一RU为干扰RU时,禁止在干扰RU所在的子信道1上进行下行传输,这样,被共享STA也在该子信道1向被共享AP发送上行数据帧不会受到来自共享AP的干扰。在共享AP禁止在干扰RU所在的子信道上进行下行传输后,被共享STA和被共享AP可以在整个信道上进行上行传输都不会受到共享AP的下行传输的干扰。
基于上述图5实施例的描述,下面结合具体的应用场景对图5实施例进行进一步详细说明。
当上述方案1和上述可选方式1结合时,各个AP和各个STA的帧交互示意图如图6a和图6b所示。图6a和图6b示意了一个TXOP内的帧交互示例。图6a为固定模式的协作传输,图6b为灵活模式的协作传输。以下对图6a和图6b的帧交互的说明,如果没有特殊说明,则所描述的帧交互是图6a和图6b都适用的,当帧交互存在区别时,会特殊说明具体是图6a的步骤还是图6b的步骤。
假设共享AP当前调度的STA用STA1-1和STA1-2表示,被共享AP当前调度的STA用STA2-1和STA2-2表示。STA1-1和STA1-2执行的操作可以参考第一STA的操作。STA2-1和STA2-2执行的操作可以参考第二STA的操作。
1)、共享AP向被共享AP发送C-SR-A帧,对应地,被共享AP接收来自共享AP的C-SR-A帧。
在固定模式下,如图6a所示,该步骤可以参考S500。该C-SR-A帧指示被共享AP在协作传输时的传输方向为上行。可选地,该C-SR-A帧还指示共享AP在协作传输时的传输方向为下行。该C-SR-A帧还指示被共享AP发送第二帧。
在灵活模式下,如图6b所示,该步骤可以参照S500-1。该C-SR-A帧指示被共享AP选择协作传输的传输方向。可选地,该C-SR-A帧还可以指示共享AP在协作传输时的传输方向为下行。这种情况下,被共享AP向共享AP返回响应帧,对应地,共享AP接收来自被共享AP的响应帧。响应帧指示被共享AP所选择的在协作传输时的传输方向为上行。这里可以想到的是,如果响应帧指示被共享AP所选择的在协作传输时的传输方向为下行,则共享AP不进行干扰探测。即,只有在响应帧指示被共享AP所选择的在协作传输时的传输方向为上行时,共享AP才会执行干扰探测,即执行后面2)。
2)、共享AP向STA1-1和STA1-2发送第一帧,该第一帧用TF-N表示。同时,被共享AP向STA2-1和STA2-2发送第二帧,该第二帧也用TF-N表示。该步骤发生在,固定模式时,共享AP传输方向为下行,C-SR-A指示被共享AP传输方向为上行;以及灵活模式下,共享AP传输方向为下行,被共享AP响应于C-SR-A选择的传输方向为上行。
共享AP向STA1-2发送的第一帧指示STA1-2回复第一帧时使用第一RU。类似地,共享AP向STA1-1发送的第一帧指示STA1-1回复第一帧时使用与第一RU不同的其它RU。STA1-1和STA1-2若接收到第一帧则分别在指定的RU上向共享AP返回第一确认帧,第一确认帧用BA-D表示。
被共享AP向STA2-1发送的第二帧指示STA2-1回复第二帧时使用第一RU。被共享AP向STA2-2发送的第二帧指示STA2-2回复第二帧时使用与第一RU不同的其它RU。
即,STA1-2和STA2-1都使用第一RU,STA1-2和STA2-1复用第一RU。
如图6a所示,共享AP可以是在发送C-SR-A帧经过SIFS后发送第一帧,被共享AP可以是在接收到C-SR-A帧后经过SIFS后发送第二帧。
如图6b所示,共享AP可以在接收到来自被共享AP的响应帧之后经过SIFS之后发送第一帧;被共享AP在发送响应帧之后经过SIFS发送第二帧。
第一帧的长度大于第二帧的长度和SIFS的长度之和。
3)STA2-1和STA2-2接收到第二帧之后,经过SIFS向被共享AP返回第二确认帧,第二确认帧用BA-D表示。当STA2-1和STA2-2返回BA-D时,与第一帧的发送存在交集。在同一个RU上,BA帧可能会对第一帧造成干扰。例如,STA1-2由于受到STA2-1返回的BA-D帧的干扰,无法成功接收到第一帧。STA1-2没有接收到第一帧就无法向共享AP返回第一确认帧(BA-D帧)。
4)STA1-1向共享AP返回第一确认帧(BA-D帧),共享AP接收到STA1-1返回的第一确认帧(BA-D帧),确定STA1-1对应的RU上没有受到干扰。共享AP未接收到STA1-2返回的BA-D帧,确定第一RU为干扰RU。
5)共享AP向被共享AP发送指示帧。对应地,被共享AP接收来自共享AP的该指示帧。该指示帧用于指示被共享AP不允许使用干扰RU所在的子信道进行上行传输。
该步骤可以参考上述S502。
6)共享AP进行下行传输(DL数据帧)。被共享AP发送上行触发帧。上行触发帧用于调度上行传输。
共享AP可以向STA1-1和STA1-2进行下行传输,由于共享AP指示被共享AP禁止在第一RU所在的子信道进行上行传输,因此STA2-1不会在第一RU上进行上行传输。共享AP向STA1-2发送DL数据帧并不会受到第一RU上STA2-1的上行传输的干扰。
由于被共享AP接收到指示帧,根据指示帧禁止在第一RU所在的子信道进行上行传输,因此上行触发帧只发送给STA2-2。STA2-2接收到上行触发帧后,在相应的RU上向被共享AP发送上行数据帧。
共享AP可以在发送指示帧经过SIFS后,发送DL数据帧;被共享AP可以在接收到该指示帧经过SIFS后发送上行触发帧。
7)STA1-1和STA1-2在接收到DL数据帧之后,还会向共享AP返回确认(BA)帧。被共享AP接收到STA2-2发送的UL数据帧后,间隔SIFS,向STA2-2返回确认(BA)帧。
当上述方案2和上述可选方式2结合时,各个AP和各个STA的帧交互示意图如图7a和图7b所示。图7a和图7b示意了一个TXOP内的帧交互示例。图7a为固定模式的协作传输,图7b为灵活模式的协作传输。以下对图7a和图7b的帧交互进行说明,如果没有特殊说明,则所描述的帧交互是指图7a和图7b都适用的,当帧交互存在区别时,会特殊说明具体是图7a的步骤还是图7b的步骤。
假设共享AP当前调度的STA用STA1-1和STA1-2表示,被共享AP当前调度的STA用STA2-1和STA2-2表示。STA1-1和STA1-2执行的操作可以参考第一STA的操作。STA2-1和STA2-2执行的操作可以参考第二STA的操作。
1、共享AP向被共享AP发送C-SR-A帧,对应地,被共享AP接收来自共享AP的C-SR-A帧。
在固定模式下,如图7a所示,该步骤可以参考S500。该C-SR-A帧用于指示被共享 AP在协作传输时的传输方向为上行。可选地,该C-SR-A帧还用于指示共享AP在协作传输时的传输方向为下行。
在灵活模式下,如图7b所示,该步骤可以参数S500-1。该C-SR-A帧用于指示被共享AP选择在协作传输时的传输方向。可选地,该C-SR-A帧还可以用于指示共享AP在协作传输时的传输方向为下行。这种情况下,被共享AP还会向共享AP返回响应帧,对应地,共享AP接收来自被共享AP的响应帧。响应帧用于指示被共享AP所选择的在协作传输时的传输方向为上行。这里可以想到的是,如果响应帧指示被共享AP所选择的在协作传输时的传输方向为下行,则共享AP不进行干扰探测。即,只有在响应帧指示被共享AP所选择的在协作传输时的传输方向为上行时,共享AP才会执行干扰探测,即执行后面的2。
2、被共享AP向STA2-1、STA2-2以及共享AP发送上行触发帧。上行触发帧用于调度上行传输。STA2-1和STA2-2接收来自被共享AP的上行触发帧。共享AP也会接收到来自被共享AP的上行触发帧。
如图7a所示,在固定模式下,被共享AP可以在接收到C-SR-A帧经过SIFS后发送上行触发帧。
如图7b所示,在灵活模式下,被共享AP可以在发送响应帧后经过SIFS后发送上行触发帧。
3、共享AP向STA1-1和STA1-2发送第一帧,该第一帧用TF-N表示。同时,STA2-1和STA2-2接收到上行触发帧之后,在被调度的RU向被共享AP发送上行(UL)数据帧。
共享AP向STA1-2发送的第一帧指示STA1-2回复第一帧时使用第一RU。类似地,共享AP向STA1-1发送的第一帧指示STA1-2回复第一帧时使用的与第一RU不同的其它RU。STA1-1和STA1-2若接收到第一帧则在各自指定的RU上向共享AP返回第一确认帧,第一确认帧用BA-D表示。
被共享AP向STA2-1发送的上行触发帧指示上行传输所使用的第一RU。被共享AP向STA2-2发送的上行触发帧指示上行传输所使用的与第一RU不同的其它RU。
可见,STA1-2和STA2-1都使用第一RU,STA1-2和STA2-1复用第一RU。
共享AP可以在接收到来自被共享AP的上行触发帧之后,经过SIFS后向STA1-1和STA1-2发送第一帧。STA2-1和STA2-2接收到上行触发帧之后,经过SIFS后,会向被共享AP发送上行数据帧。
由于共享AP在接收到来自被共享AP的上行触发帧之后,才发送第一帧,因此当STA2-1和STA2-2进行上行传输时与第一帧存在交集。在同一个RU上,UL数据帧可能会对第一帧造成干扰。例如,STA1-2在第一RU上接收来自共享AP的第一帧,STA2-1在第一RU上向被共享AP发送UL数据帧,STA1-2可能会受到STA2-1发送的UL数据帧的干扰,从而无法成功接收到第一帧,也就不会向共享AP返回第一确认帧(BA-D)。
4、STA1-1向共享AP返回第一确认帧(BA-D帧),共享AP接收到STA1-1返回的第一确认帧(BA-D帧),确定STA1-1对应的RU上没有受到干扰。共享AP未接收到STA1-2返回的BA-D帧,确定第一RU为干扰RU。
5、共享AP禁止使用干扰RU所在的子信道进行下行传输,共享AP在未受到干扰的RU所在的子信道上进行下行传输。
该步骤可以参考上述方案2的S502*。
例如,共享AP确定第一RU为干扰RU,禁止第一RU所在的子信道的下行传输,即 共享AP不会在第一RU上向STA1-2发送下行数据帧。共享AP在STA1-1对应的RU所在的子信道上向STA1-1发送下行数据帧。
这样,当STA2-1向被共享AP发送上行数据帧时,由于第一RU所在子信道上不存在共享AP的下行传输,所以,STA2-1发送上行数据帧,便不会受到干扰。
STA1-1在接收到DL数据帧之后,还会向共享AP返回确认帧(BA)。
被共享AP在接收到UL数据帧之后,还会向STA2-1和STA2-2返回确认帧(BA)。
当上述方案2和上述可选方式3结合时,各个AP和各个STA的帧交互示意图如图8a和图8b所示。图8a和图8b示意了一个TXOP内的帧交互示例。图8a为协作传输的固定模式,图8b为协作传输的灵活模式。以下对图8a和图8b的帧交互的说明,如果没有特殊说明,则所描述的帧交互是指图8a和图8b都适用的,当帧交互存在区别时,会特殊说明具体是图8a的步骤还是图8b的步骤。
假设共享AP当前调度的STA用STA1-1和STA1-2表示,被共享AP当前调度的STA用STA2-1和STA2-2表示。STA1-1和STA1-2执行的操作可以参考第一STA的操作。STA2-1和STA2-2执行的操作可以参考第二STA的操作。
(1)、共享AP向被共享AP发送C-SR-A帧,对应地,被共享AP接收来自共享AP的C-SR-A帧。
在固定模式下,如图8a所示,该步骤可以参考S500。该C-SR-A帧用于指示被共享AP在协作传输时的传输方向为上行。可选地,该C-SR-A帧还用于指示共享AP在协作传输时的传输方向为下行。
在灵活模式下,如图8a所示,该步骤可以参数S500-1。该C-SR-A帧用于指示被共享AP选择在协作传输时的传输方向。可选地,该C-SR-A帧还可以用于指示共享AP在协作传输时的传输方向为下行。这种情况下,被共享AP还会向共享AP返回响应帧,对应地,共享AP接收来自被共享AP的响应帧。响应帧用于指示被共享AP所选择的在协作传输时的传输方向为上行。这里可以想到的是,如果响应帧指示被共享AP所选择的在协作传输时的传输方向为下行,则共享AP不进行干扰探测。即,只有在响应帧指示被共享AP所选择的在协作传输时的传输方向为上行时,共享AP才会执行干扰探测,即执行后面(2)。
(2)、被共享AP向STA2-1和STA2-2发送上行触发帧。上行触发帧用于调度上行传输。对应地,STA2-1和STA2-2接收来自被共享AP的上行触发帧。
同时,共享AP向STA1-1和STA1-2发送第一帧,该第一帧用TF-N表示。
同时,STA2-1和STA2-2接收到上行触发帧之后,在相应的RU向被共享AP发送上行(UL)数据帧。
共享AP向STA1-2发送的第一帧指示STA1-2回复第一帧时使用第一RU。类似地,共享AP向STA1-1发送的第一帧指示STA1-1回复第一帧时使用与第一RU不同的其它RU。STA1-1和STA1-2若接收到第一帧则向共享AP返回第一确认帧,第一确认帧用BA-D表示。
被共享AP向STA2-1发送的上行触发帧指示上行传输所使用的第一RU。被共享AP向STA2-2发送的上行触发帧指示上行传输所使用与第一RU不同的其它RU。
可见,STA1-2和STA2-1都使用第一RU,STA1-2和STA2-1复用第一RU。
如图8a所示,在固定模式下,共享AP在发送C-SR-A帧经过SIFS后发送第一帧。被共享AP可以在接收到C-SR-A帧经过SIFS后发送上行触发帧。
如图8b所示,在灵活模式下,被共享AP在发送响应帧经过SIFS后发送上行触发帧,共享AP在接收到响应帧经过SIFS后发送第一帧。
STA2-1和STA2-2接收到上行触发帧之后,经过SIFS后,会向被共享AP发送上行数据帧。第一帧的长度大于上行触发帧与SIFS的长度之和。当STA2-1和STA2-2进行上行传输时与第一帧存在交集。在同一个RU上,UL数据帧可能会对第一帧造成干扰。例如,STA1-2在第一RU上接收来自共享AP的第一帧,STA2-1在第一RU上向被共享AP发送UL数据帧,STA1-2受到STA2-1发送的UL数据帧的干扰,从而无法成功接收到第一帧,也就不会向共享AP返回第一确认帧(BA-D帧)。
(3)、STA1-1向共享AP返回第一确认帧(BA-D帧),共享AP接收到STA1-1返回的第一确认帧(BA-D帧),确定STA1-1对应的RU上没有受到干扰。共享AP未接收到STA1-2返回的BA-D帧,确定第一RU为干扰RU。
(4)、共享AP禁止使用干扰RU所在的子信道进行下行传输,共享AP在未受到干扰的RU所在的子信道上进行下行传输。
该步骤可以参考上述方案2的S502*。
例如,共享AP确定第一RU为干扰RU,禁止第一RU所在的子信道的下行传输,即共享AP不会在第一RU上向STA1-2发送下行数据帧。共享AP在STA1-1对应的RU所在的子信道上向STA1-1发送下行数据帧。
这样,当STA2-1向被共享AP发送上行数据帧时,由于第一RU所在子信道上不存在共享AP的下行传输,所以,STA2-1发送上行数据帧,便不会受到干扰。
STA1-1在接收到DL数据帧之后,还会向共享AP返回确认帧(BA)。
被共享AP在接收到UL数据帧之后,还会想STA2-1和STA2-2返回确认帧(BA)。
可以理解的是,图6a、图6b、图7a、图7b、图8a和图8b中,共享AP和被共享AP调度两个STA为例对帧交互进行示意,实际中,还可以调度更多的STA,方法是类似的。
图5实施例以共享AP和一个被共享AP在信道上协作传输为背景,介绍了本申请实施例提供的无线局域网的协作传输方法。可以理解的是,当共享AP和多个被共享AP在信道上协作传输时,如果多个被共享AP的协作传输的方向为上行,则每一个被共享AP执行的操作都可以如图5实施例中的被共享AP执行操作所述。但是,若多个被共享AP中,有的被共享AP的协作传输的方向为上行,有的被共享AP的协作传输的方向为下行,那么下行的被共享AP也有可能会受到上行被共享AP的干扰。基于此,本申请实施例提供一种无线局域网的协作传输方法,具体流程如图9所述。
S901、共享AP在条件满足时,在信道上向第一STA发送第一帧以探测干扰RU。
其中,共享AP与第一STA关联,共享AP是该第一STA的服务AP,共享AP可以在该信道上调度该第一STA,共享AP可以为该第一STA分配该信道上的一个或多个RU,例如,共享AP为该第一STA分配该信道上的第一RU。
该信道是共享AP和多个被共享AP进行协作传输的信道。以两个被共享AP为例,假设共享AP和第一被共享AP以及第二被共享AP在信道上进行协作传输。
干扰RU是指共享AP在该RU上向第一STA发送下行数据帧时可能会受到干扰。
该条件可以是:共享AP准备使用该信道进行下行传输。即,共享AP准备使用该信道进行下行传输时,在该信道上向第一STA发送第一帧以探测干扰RU。
第一帧包括指示第一STA回复第一帧时使用第一RU。
本步骤未描述到的细节以及可以实现的有益效果可以参考S501的描述,在此不再赘述。
在S901的基础上,本申请实施例提供一些可选的实现方式。
S901中的该条件还可以是:共享AP准备使用该信道进行下行传输,且第一被共享AP准备用该信道进行上行传输、第二被共享AP准备使用该信道进行下行传输。即,被共享AP的传输方向既有上行,又有下行。
共享AP与第一被共享AP协商协作传输方向的方法,可以参考图5实施例中共享AP与被共享AP协商协作传输方向的方法。这里第一被共享AP即图5实施例的被共享AP。
共享AP与第二被共享AP协商协作传输方向的方法与图5实施例中共享AP与被共享AP协商协作传输方向的方法类似,也可以包括固定模式和灵活模式两种方式。以下具体介绍一下。
固定模式:由共享AP指定第二被共享AP在协作传输时的传输方向。
在固定模式下,在S901之前,还包括S900。
S900、共享AP向第二被共享AP发送C-SR-A帧,对应地,第二被共享AP接收来自共享AP的C-SR-A帧。
该C-SR-A帧用于指示第二被共享AP在协作传输时的传输方向为下行。可选地,该C-SR-A帧还用于指示共享AP在协作传输时的传输方向为下行。第二被共享AP根据该C-SR-A帧可以确定共享AP和第二被共享AP在协作传输时各自的传输方向。但是这里需要注意的是,第二被共享AP与共享AP的传输方向同为下行,第二被共享AP需要知道第一被共享AP的方向为上行,以决定做干扰探测。Sharing AP可以通过C-SR-A帧同时指示第一被共享AP和第二被共享AP的传输方向,也可以通过C-SR-A的一个字段指示第二被共享AP需要做干扰探测。
灵活模式:由第二被共享AP自行决定协作传输时的传输方向。
在灵活模式下,在S901之前,还包括S900-1和S900-2。
S900-1、共享AP向第二被共享AP发送C-SR-A帧,对应地,第二被共享AP接收来自共享AP的C-SR-A帧。
该C-SR-A帧用于指示第二被共享AP选择在协作传输时的传输方向。可选地,该C-SR-A帧还可以用于指示共享AP在协作传输时的传输方向为下行。第二被共享AP根据该C-SR-A帧可以确定共享AP在协作传输时的传输方向为下行。
S900-2、第二被共享AP向共享AP发送响应帧,记为第二响应帧;对应地,共享AP接收来自第二被共享AP的第二响应帧。
第二响应帧用于指示第二被共享AP所选择的在协作传输时的传输方向为下行。
在灵活模式下,第一被共享AP和第二被共享AP所选择的协作传输时的传输方向相互不感知,而共享AP感知。因此,共享AP还可以向第二被共享AP发送指示帧,指示帧可以记为indic帧,该指示帧用于指示被共享AP是否需要做干扰探测。由于第二被共享AP无法获知做协作传输的其它被共享AP的传输方向,因此第二被共享AP不能决定是否需要做干扰探测。可选的,共享AP也可以向第一被共享AP指示是否需要做干扰探测。
本申请实施例中,指定或协商在协作传输时的传输方向,可以是指一个或多个TXOP内的传输方向,一般是指一个TXOP内的传输方向。
下面对如何S901中探测干扰RU的可选实现方式进行说明,为作区分,这里将S901 中探测干扰RU的可选实现方式记为可选方式4。
可选方式4中,在S901之前,共享AP还会指示第一被共享AP向第二STA发送第二帧,以及共享AP还会指示第二被共享AP向第三STA发送第三帧。
其中,第二STA是第一被共享AP关联的或当前调度的STA。第二STA是第一被共享AP准备使用第一RU触发上行传输的STA。即第一被共享AP准备在第一RU上调度第二STA。第一STA和第二STA复用第一RU。
第三STA是第二被共享AP关联的或当前调度的STA。第三STA是第二被共享AP准备使用第二RU触发上行传输的STA。即第二被共享AP准备在第二RU上调度第三STA。假设第一被共享AP还关联第四STA,在S901之前,共享AP还会指示第一被共享AP向第四STA发送第二帧。第一被共享AP准备在第二RU上调度第四STA。第三STA和第四STA复用第二RU。
第二帧的格式和作用与第一帧类似。第二帧用于指示第二STA在接收到第二帧后向第一被共享AP返回第二确认帧。共享AP如何判断第一RU是不是干扰RU的方式以及其他未描述的细节均可以参考上述可选方式1中的描述,在此不再赘述。
第三帧的格式和作用与第一帧类似。第三帧用于指示第三STA在接收到第三帧后向第二被共享AP返回第三确认帧。第二被共享AP收到第三确认帧表示第三STA已经接收到第三帧。第二帧和第三帧和第一帧的发送时刻是相同的,第三帧与第一帧长度相同,并且大于第二帧的长度,一般情况下,第三帧和第一帧的长度大于第二帧与SIFS的长度之和。这样,当第三帧和第二帧同时发送时,第四STA接收到第二帧时,第三帧还未完全发送完毕。第四STA接收到第二帧,就会根据第二帧向第一被共享AP返回第二确认帧(BA-D)。第二确认帧的传输方向是上行方向。那么,在第二RU上就会存在上行方向传输的、第四STA向第一被共享AP返回第二确认帧,在第二RU上,上行方向的第二确认帧与下行方向的第三帧存在时域和频域上的交集,则上行方向的第二确认帧可能会对下行方向的第三帧造成干扰。比如说,若第三STA接收到第二确认帧的RSSI大于第三STA接收第三帧时的最大可接受干扰水平,则第二确认帧就会对第三STA接收第三帧造成干扰。当造成干扰时,第三STA就无法接收到第三帧,则第三STA就不会在第二RU上向第二被共享AP返回第三确认帧,第二被共享AP就无法接收到第三STA返回的第三确认帧,第二被共享AP就可以确定未接收到第三STA返回第三确认帧的第二RU为干扰RU。相反,如果上行方向的第二确认帧未对第三帧造成干扰,则第三STA就能够接收到第三帧,第三STA就会向第二被共享AP返回第三确认帧,则第二被共享AP就确定该第二RU不是干扰RU。
在可选方式4中,共享AP指示第一被共享AP向第二STA发送第二帧,可以通过共享AP向第一被共享AP发送的C-SR-A帧来指示。此处的细节描述可以参考上述可选方式1中的相应描述,其中,第一被共享AP即可选方式1中的被共享AP。在此不再赘述。
在可选方式4中,共享AP指示第二被共享AP向第三STA发送第三帧,可以通过S900或S900-1中共享AP向第二被共享AP发送的C-SR-A帧来指示。如果通过S900共享AP向第二被共享AP发送的C-SR-A帧来指示第二被共享AP向第三STA发送第三帧,则共享AP可以在发送C-SR-A帧后经过SIFS后发送第一帧,第二被共享AP在接收C-SR-A帧后经过SIFS后发送第三帧,以使第一帧和第三帧的发送时刻是相同的。如果通过S900-1共享AP向第二被共享AP发送的C-SR-A帧来指示第二被共享AP向第三STA发送第三帧,则在S900-2共享AP接收到来自第二被共享AP返回的第二响应帧并经过SIFS后,发送第 三帧;而第二被共享AP在发送第二响应帧并经过SIFS后,发送第三帧;以使第一帧和第三帧的发送时刻是相同的。
在S901之后,还包括S902。
S902、第二被共享AP向共享AP发送响应帧,记为第三响应帧,对应地,共享AP接收来自第二被共享AP的第三响应帧。
第三响应帧用于指示第二RU为干扰RU。共享AP根据第三响应帧,确定第二RU为干扰RU。结合共享AP自身检测最终确定第一RU和第二RU为干扰RU。
当然,第二RU也可能不是干扰RU,则共享AP最终确定第一RU为干扰RU。
可以理解的是,共享AP、第一被共享AP和第二被共享AP下均可以关联更多个STA。共享AP在传输方向为下行时,与传输方向为下行的第二被共享AP一起,检测来自传输方向为上行的第一被共享AP的干扰。第二被共享AP将干扰检测结果发送给共享AP,共享AP结合自身检测的干扰检测结果,获得最终的干扰RU。
共享AP在获得最终的干扰检测结果之后,还可以包括S903和S904。
S903、共享AP响应于接收到第三响应帧,向第一被共享AP发送指示帧。对应地,第一被共享AP接收来自共享AP的该指示帧。该指示帧用于指示第一被共享AP不允许使用干扰RU所在的子信道进行上行传输。
该步骤的细节描述可以参考S502。
S904、共享AP在信道上进行下行传输。
在指示第一被共享AP禁止在干扰RU所在的子信道上进行上行传输后,共享AP可以在整个信道上进行下行传输都不会受到第一被共享STA的上行传输的干扰,且第二被共享AP在整个信道上进行下行传输都不会受到第一被共享STA的上行传输的干扰。
基于上述图9实施例的描述,下面结合具体的应用场景对图9实施例进行进一步详细说明。
各个AP和各个STA的帧交互示意图如图10a和图10b所示。图10a和图10b示意了一个TXOP内的帧交互示例。图10a为固定模式的协作传输,图10b为灵活模式的协作传输。以下对图10a和图10b的帧交互的说明,如果没有特殊说明,则所描述的帧交互是图10a和图10b都适用的,当帧交互存在区别时,会特殊说明具体是图10a的步骤还是图10b的步骤。图10a所示意的第一被共享AP和第二被共享AP都是固定模式的协作传输,图10b所示意的第一被共享AP和第二被共享AP都是灵活模式的协作传输。当然,图10a和图10b仅仅是举例。第一被共享AP和第二被共享AP的协作传输的模式可以是不同的,只要被共享AP的传输方向既有上行又有下行,固定模式的协作传输也可以参考图10a的描述,灵活模式的协作传输也可以参考图10b的描述。
假设共享AP当前调度的STA用STA1-1和STA1-2表示,第一被共享AP当前调度的STA用STA2-1和STA2-2表示,第二被共享AP当前调度的STA用STA3-1和STA3-2表示。
STA1-1和STA1-2执行的操作可以参考图9实施例中第一STA的操作。STA2-1和STA2-2执行的操作可以参考图9实施例中第二STA的操作,STA3-1和STA3-2执行的操作可以参考图9实施例中第三STA的操作。
1>、共享AP分别向第一被共享AP和第二被共享AP发送C-SR-A帧,对应地,第一被共享AP和第二被共享AP分别接收来自共享AP的C-SR-A帧。
在固定模式下,如图10a所示。共享AP向第一被共享AP发送的C-SR-A帧用于指示第一被共享AP在协作传输时的传输方向为上行。向第二被共享AP发送的C-SR-A帧用于指示第二被共享AP在协作传输时的传输方向为下行。
具体来说,共享AP利用C-SR-A帧向第一被共享AP和第二被共享AP指示共享AP在协作传输时的传输方向为下行。此时,若共享AP指示被共享AP在协作传输时的传输方向均为上行,则共享AP和被共享AP都知道需要做干扰探测。若共享AP指示第一被共享AP和第二被共享AP在协作传输时的传输方向为下行,则共享AP知道不需要做干扰探测,并且共享AP需要利用C-SR-A帧指示被共享AP不需要做干扰探测。若共享AP指示第一被共享AP在协作传输时的传输方向为上行,且第二被共享AP在协作传输时的传输方向为上行,则共享AP知道需要做干扰探测,并需要利用C-SR-A帧告诉第一被共享AP和第二被共享AP需要做干扰探测,即利用C-SR-A帧指示第一被共享AP是否需要发送第二帧,利用C-SR-A帧指示第二被共享AP是否需要发送第三帧。
其中,执行干扰探测的方式与传输方向有关。共享AP发送第一帧执行干扰探测,传输方向为上行的第一被共享AP发送第二帧执行干扰探测,传输方向为下行的第二被共享AP发送第三帧执行干扰探测。
在灵活模式下,如图10b所示,共享AP向第一被共享AP发送的C-SR-A帧指示第一被共享AP选择协作传输的传输方向。第一被共享AP向共享AP返回响应帧,响应帧指示第一被共享AP所选择的在协作传输时的传输方向为上行。共享AP向第二被共享AP发送的C-SR-A帧指示第二被共享AP选择协作传输的传输方向。第二被共享AP向共享AP返回响应帧,响应帧指示第二被共享AP所选择的在协作传输时的传输方向为下行。
在灵活模式下,第一被共享AP和第二被共享AP所选择的协作传输时的传输方向相互不感知,而共享AP感知。因此,共享AP还可以向第二被共享AP发送指示帧,指示帧可以记为indic帧,该指示帧用于指示被共享AP是否需要做干扰探测。由于第二被共享AP无法获知做协作传输的其它被共享AP的传输方向,因此第二被共享AP不能决定是否需要做干扰探测。可选的,共享AP也可以向第一被共享AP指示是否需要做干扰探测。第一被共享AP也可以自己决定是否做干扰探测,例如第一被共享AP根据C-SR-A帧获知共享AP的传输方向为下行,已知自己的传输方向为上行,则可以确定需要做干扰探测。
在一个共享AP和多个被共享AP采用灵活模式进行协作传输的场景中,共享AP接收来自各个被共享AP的响应帧,获知每一个被共享AP所选择的在协作传输时的传输方向,当多个被共享AP所选择的传输方向既有上行也有下行时,共享AP才会执行干扰探测。当多个被共享AP所选择的传输方向与共享AP一致,则共享AP不进行干扰探测。
在一个共享AP和多个被共享AP协作传输的场景中,不同被共享AP可以使用不同模式的协作传输,例如,第一被共享AP使用固定模式,第二被共享AP使用灵活模式。共享AP向第一被共享AP指示在协作传输时的传输方向为上行。第二被共享AP使用灵活模式,第二被共享AP通过响应帧向共享AP指示所选择的传输方向为下行。则共享AP获知多个被共享AP所选择的传输方向既有上行也有下行时,共享AP决定并告诉被共享AP执行干扰探测。
无论固定模式还是灵活模式,可选地,向第一被共享AP和第二被共享AP发送的C-SR-A帧,还可以指示共享AP在协作传输时的传输方向为下行。共享AP向第一被共享AP发送的C-SR-A帧还可以用于指示第一被共享AP发送第二帧。共享AP向第二被共享 AP发送的C-SR-A帧还可以用于指示第二被共享AP发送第三帧。
2>、共享AP向STA1-1和STA1-2发送第一帧,该第一帧用TF-N表示。第一被共享AP向STA2-1和STA2-2发送第二帧,该第二帧用TF-N表示。第二被共享AP向STA3-1和STA3-2发送第三帧,该第三帧用TF-N表示。
共享AP通过第一帧分别指示STA1-1和STA1-2回复第一帧时使用的RU。例如,共享AP向STA1-2发送的第一帧指示STA1-2回复第一帧时使用第一RU。
第一被共享AP通过第二帧分别指示STA2-1和STA2-2回复第二帧时使用的RU。例如,第一被共享AP向STA2-1发送的第二帧指示STA2-1回复第二帧时使用第一RU。例如,第一被共享AP向STA2-2发送的第二帧指示STA2-2回复第二帧时使用第二RU。
第二被共享AP通过第三帧分别指示STA3-1和STA3-2回复第二帧时使用的RU。例如,第二被共享AP向STA3-1发送的第三帧指示STA3-1回复第三帧时使用第二RU。
STA1-2和STA2-1复用第一RU。STA2-2和STA3-1复用第二RU。
第一帧、第二帧和第三帧的发送时刻应该是对齐的。
如图10a所示,共享AP可以是在发送C-SR-A帧经过SIFS后发送第一帧,第一被共享AP可以是在接收到C-SR-A帧后经过SIFS后发送第二帧,第二被共享AP可以是在接收到C-SR-A帧后经过SIFS后发送第三帧。
如图10b所示,共享AP可以在发送指示帧经过SIFS后发送第一帧,第一被共享AP可以是在接收到指示帧后经过SIFS后发送第二帧,第二被共享AP可以是在接收到指示帧后经过SIFS后发送第三帧。
第一帧和第三帧的长度相同,第一帧的长度和第三帧的长度大于第二帧的长度和SIFS的长度之和。
3>、STA2-1和STA2-2接收到第二帧之后,经过SIFS向被共享AP返回第二确认帧,第二确认帧用BA-D表示。
当STA2-1和STA2-2返回第二确认帧BA-D时,与第一帧的发送存在交集。在同一个RU上,BA-D帧可能会对第一帧造成干扰。例如,STA1-2由于受到STA2-1返回的第二确认帧BA-D帧的干扰,无法成功接收到第一帧。STA1-2没有接收到第一帧就无法向共享AP返回第一确认帧(BA-D帧)。
当STA2-1和STA2-2返回第二确认帧BA-D时,与第三帧的发送存在交集。在同一个RU上,BA-D帧可能会对第三帧造成干扰。例如,STA3-1由于受到STA2-2返回的第二确认帧BA-D帧的干扰,无法成功接收到第三帧。STA3-1没有接收到第三帧就无法向第二被共享AP返回第三确认帧(BA-D帧)。
4>、STA1-1向共享AP返回第一确认帧(BA-D帧),共享AP接收到STA1-1返回的第一确认帧(BA-D帧),确定STA1-1对应的RU上没有受到干扰。共享AP未接收到STA1-2返回的BA-D帧,确定第一RU为干扰RU。
5>、第二被共享AP向共享AP返回第三响应帧,对应地,共享AP接收来自第二被共享AP的第三响应帧。
第三响应帧用于指示第二RU为干扰RU。共享AP根据第三响应帧,确定第二RU为干扰RU。共享AP结合4>最终确定第一RU和第二RU为干扰RU。
可以参考S902。
6>、共享AP响应于接收到第三响应帧,向第一被共享AP发送指示帧。对应地,第 一被共享AP接收来自共享AP的该指示帧。该指示帧用于指示第一被共享AP不允许使用干扰RU所在的子信道进行上行传输。
可选的,共享AP也可以向第二被共享AP发送指示帧,这样可以使得后面三个AP的上下行传输同时触发。
7>、共享AP进行下行传输(DL数据帧)。第一被共享AP发送上行触发帧,上行触发帧用于调度上行传输。第二被共享AP进行下行传输(DL数据帧)。
共享AP可以向STA1-1和STA1-2进行下行传输,由于共享AP指示第一被共享AP禁止在第一RU所在的子信道进行上行传输,因此STA2-1不会在第一RU上进行上行传输。共享AP向STA1-2发送DL数据帧并不会受到第一RU上STA2-1的上行传输的干扰。
第二被共享AP可以向STA3-1和STA3-2进行下行传输,由于共享AP指示第一被共享AP禁止在第二RU所在的子信道进行上行传输,因此STA2-2不会在第二RU上进行上行传输。第二被共享AP向STA3-1发送DL数据帧并不会受到第二RU上STA2-2的上行传输的干扰。
第一被共享AP接收到指示帧,根据指示帧禁止在第一RU所在的子信道和第二RU所在的子信道进行上行传输,如果第一被共享AP还调度了其它STA,且经过干扰检测,其它STA进行上行传输使用的RU不是干扰RU,则第一被共享AP可以向该其它STA发送上行触发帧,该其它STA接收到上行触发帧后,在相应的RU上向第一被共享AP发送上行数据帧。
共享AP可以在发送指示帧经过SIFS后,发送DL数据帧;被共享AP可以在接收到该指示帧经过SIFS后发送上行触发帧。
8>、STA1-1和STA1-2在接收到DL数据帧之后,还会向共享AP返回确认帧(BA)。STA3-1和STA3-2在接收到DL数据帧之后,还会向第二被共享AP返回确认帧(BA)。
以上实施例中,由共享AP探测或收集干扰RU的信息,获取干扰探测结果,根据干扰探测结果禁止在干扰RU所在的子信道进行下行传输,或者根据干扰探测结果指示被共享AP禁止在干扰RU所在的子信道进行上行传输。本申请实施例还提供一种可能的设计,由被共享AP探测或收集干扰RU的信息,并进行干扰处理。该设计的可选实施例可以通过图11实施例、图13实施例和图15实施例来描述。
如图11所示,本申请实施例提供的又一种无线局域网的协作传输方法的具体流程如下所述。
S1101、被共享AP在条件满足时,在信道上向被共享STA发送第二帧。这里的被共享STA可以记为第二STA。对应地,第二STA接收来自被共享AP的第二帧。
被共享AP与第二STA关联,被共享AP是第二STA的服务AP,被共享AP可以在该信道上调度该第二STA,被共享AP可以为该第二STA分配该信道上的一个或多个RU,例如,被共享AP为该第二STA分配该信道上的第一RU。
该信道是共享AP和被共享AP进行协作传输的信道。
被共享AP发送第二帧的条件可以是,共享AP在协作传输时的传输方向为下行、且被共享AP在协作传输时的传输方向为上行。
第二帧用于指示第二STA监听第一RU。即,监听第一RU的忙闲。
第二帧与共享AP向共享STA发送的第一帧的发送时刻相同,第一帧的长度大于第二帧与SIFS的长度之和,第一帧指示共享STA回复第一帧时使用第一RU。例如,第一帧中 包括第一字段,该第一字段指示第一STA回复第一帧时使用第一RU。共享STA可以记为第一STA。
第一STA和第二STA均使用第一RU,第一STA和第二STA复用第一RU。
S1102、第二STA接收到第二帧之后,根据第二帧的指示监听第一RU。
由于第一帧和第二帧的发送时刻是相同的,第一帧的长度大于第二帧与SIFS的长度之和,第二STA在接收到第二帧并间隔STS之后,会监听第一RU。第二STA在监听第一RU时,第一帧还未完全发送完毕。那么如果第二STA监听到第一RU被占用,说明第二STA使用第一RU发送上行帧能够对第一STA接收共享AP的下行帧造成干扰。当第二STA监听到第一RU未被占用或者第一RU空闲时,第二STA会向被共享AP返回响应帧。
可选的,第二帧还可以用于指示被共享STA监听第一RU的时长,以及指示被共享STA在该时长内若第一RU未被占用则返回响应帧。
S1103、被共享AP在未接收到被共享STA返回的响应帧时,不在第一RU所在的子信道上触发上行传输。
该响应帧用于指示第一RU未被占用。
被共享AP在未接收到被共享STA返回的响应帧时,说明第二STA监听到第一RU被占用,说明第一RU为干扰RU。
以下对图11实施例的一些可选地实现方式进行详细说明。
在S1101之前,共享AP还可以与被共享AP协商协作传输方向。可选地,本申请实施例可以提供固定模式和灵活模式两种方式来协商协作传输方向。可以参照图5实施例对协商协作传输方向的两种模式的介绍。
在固定模式下,在S1101之前,还包括S1100。S1100与S500相同,可以参照S500的描述,在此不再赘述。
在灵活模式下,在S1101之前,还包括S1100-1和S1100-2。S1100-1与S500-1相同,S1100-2与S500-2相同,在此不再赘述。
基于上述图11实施例的描述,下面结合具体的应用场景对图11实施例进行进一步详细说明。
各个AP和各个STA的帧交互示意图如图12a和图12b所示。图12a和图12b示意了一个TXOP内的帧交互示例。图12a为固定模式的协作传输,图12b为灵活模式的协作传输。以下对图12a和图12b的帧交互的说明,如果没有特殊说明,则所描述的帧交互是图12a和图12b都适用的,当帧交互存在区别时,会特殊说明具体是图12a的步骤还是图12b的步骤。
假设共享AP当前调度的STA用STA1-1和STA1-2表示,被共享AP当前调度的STA用STA2-1和STA2-2表示。STA1-1和STA1-2执行的操作可以参考图11实施例中第一STA的操作。STA2-1和STA2-2执行的操作可以参考图11实施例中第二STA的操作。
1》、共享AP向被共享AP发送C-SR-A帧,对应地,被共享AP接收来自共享AP的C-SR-A帧。
在固定模式下,如图12a所示,该步骤可以参考S1100。该C-SR-A帧指示被共享AP在协作传输时的传输方向为上行。可选地,该C-SR-A帧还指示共享AP在协作传输时的传输方向为下行。该C-SR-A帧还指示被共享AP发送第二帧。
在灵活模式下,如图12b所示,该步骤可以参照S1100-1。该C-SR-A帧指示被共享 AP选择协作传输的传输方向。可选地,该C-SR-A帧还可以指示共享AP在协作传输时的传输方向为下行。这种情况下,被共享AP向共享AP返回响应帧,对应地,共享AP接收来自被共享AP的响应帧。响应帧指示被共享AP所选择的在协作传输时的传输方向为上行。这里可以想到的是,如果被共享AP所选择的在协作传输时的传输方向为下行,则被共享AP不进行干扰探测。即,只有在被共享AP所选择的在协作传输时的传输方向为上行时,被共享AP才会执行干扰探测,即执行后面2》。
2》、共享AP向STA1-1和STA1-2发送第一帧,该第一帧用TF-N表示。同时,被共享AP向STA2-1和STA2-2发送第二帧,该第二帧也用TF-N表示。
共享AP向STA1-2发送的第一帧指示STA1-2回复第一帧时使用第一RU。类似地,共享AP向STA1-1发送的第一帧指示STA1-1回复第一帧时使用与第一RU不同的其它RU。STA1-1和STA1-2若接收到第一帧则分别在指定的RU上向共享AP返回第一确认帧,第一确认帧用BA-D表示。
第二帧用于指示STA2-1监听第一RU,还可以指示第二STA后续使用第一RU进行上行传输。第二帧还用于指示STA2-2监听指定的其它RU,还可以指示STA2-2后续使用该指定的其它RU进行上行传输。
如图12a所示,共享AP可以是在发送C-SR-A帧经过SIFS后发送第一帧,被共享AP可以是在接收到C-SR-A帧后经过SIFS后发送第二帧。
如图12b所示,共享AP可以在接收到来自被共享AP的响应帧之后经过SIFS之后发送第一帧;被共享AP在发送响应帧之后经过SIFS发送第二帧。
3》、STA2-1接收到第二帧之后,监听第一RU。
STA2-2接收到第二帧之后,监听该指定的其它RU。
例如,STA2-1监听第一RU被占用,STA2-2监听该指定的其它RU未被占用。
4》、STA2-2向被共享AP返回响应帧,该响应帧用于指示被共享AP该指定的其它RU未被占用。
被共享AP未接收到来自STA2-1返回的响应帧,则确定第一RU为干扰RU。
5》、STA1-1和STA1-2分别向共享AP返回第一确认帧BA-D。
6》、共享AP接收到第一确认帧后,经过SIFS进行下行传输,向STA1-1和STA1-2分别发送DL数据帧。
7》、被共享AP发送上行触发帧。上行触发帧用于调度上行传输。
被共享AP接收到来自STA2-2返回的响应帧后,经过SIFS向STA2-2发送上行触发帧,由于第一RU为干扰RU,被共享AP不会触发STA2-1在第一RU上进行上行传输。共享AP向STA1-2发送DL数据帧并不会受到第一RU上STA2-1的上行传输的干扰。
8》、STA1-1和STA1-2在接收到DL数据帧之后,还会向共享AP返回确认帧(BA)。被共享AP接收到STA2-2发送的UL数据帧后,间隔SIFS,向STA2-2返回确认帧(BA)。
需要说明的是,序号并不代表帧的先后顺序,可以参考图12a和图12b的示意。其它帧交互示意图中序号也不代表严格的帧先后顺序。
如图13所示,本申请实施例提供的再一种无线局域网的协作传输方法的具体流程如下所述。
S1301、被共享AP在条件满足时,在信道上向被共享STA发送第二帧以检测干扰RU。这里的被共享STA可以记为第二STA。对应地,第二STA接收来自被共享AP的第二帧。
被共享AP与第二STA关联,被共享AP是第二STA的服务AP,被共享AP可以在该信道上调度该第二STA,被共享AP可以为该第二STA分配该信道上的一个或多个RU,例如,被共享AP为该第二STA分配该信道上的第一RU。
该信道是共享AP和被共享AP进行协作传输的信道。
被共享AP发送第二帧的条件可以是,共享AP在协作传输时的传输方向为下行、且被共享AP在协作传输时的传输方向为上行。
第二帧包括对第二STA回复第二帧时使用第一RU的指示。例如,第二帧中包括第一字段,该第一字段指示第二STA回复第二帧时使用第一RU。
第二帧与共享AP向共享STA发送的第一帧的发送时刻相同,共享STA可以记为第一STA。第一帧包括对第一STA回复第一帧时使用第一RU的指示。例如,第一帧中包括第一字段,该第一字段指示第一STA回复第一帧时使用第一RU。共享STA可以记为第一STA。
第一STA和第二STA均使用第一RU,第一STA和第二STA复用第一RU。
图13实施例与图5实施例中的可选方式1相同的地方是,共享AP和被共享AP都会发送探测干扰的帧,共享AP发送第一帧,第一STA在接收到第一帧时会向共享AP返回第一确认帧,第一帧指示第一STA在第一RU上向共享AP返回第一确认帧。被共享AP发送第二帧,第二帧指示第二STA在第一RU上向被共享AP返回第二确认帧,第二STA在接收到第二帧后会向被共享AP返回第二确认帧。图13实施例与图5实施例中的可选方式1不同的地方是,图5实施例可选方式1第一帧的长度大于第二帧的长度,而图13实施例中第二帧的长度大于第一帧的长度,一般情况下,第二帧的长度大于第一帧与SIFS的长度之和。这样,根据图5实施例可选方式1的描述,可以反推过来,图13实施例可以由被共享AP进行干扰检测。第一帧和第二帧的发送时刻相同,第二帧的长度大于第一帧与SIFS的长度之和,这样,第一STA在接收到第一帧并间隔SIFS后,就会根据第一帧向共享AP返回第一确认帧。第一STA开始回复第一确认帧时,第二帧还未完全发送完毕,那么,第一STA在第一RU上回复第一确认帧为上行方向,上行方向的第一确认帧与下行方向的第二帧存在频域的交集,此时,上行方向的第一确认帧可能会对下行方向的第二帧造成干扰。比如,若第二STA接收到第一确认帧的RSSI大于第二STA接收第二帧时的最大可接受干扰水平,则第一确认帧就会对第二STA接收第二帧造成干扰。当造成干扰时,第二STA就无法接收到第二帧,则第二STA就不会在第二RU上向被共享AP返回第二确认帧,被共享AP就无法接收到第二STA返回的第二确认帧,被共享AP就可以确定未接收到第二STA返回第二确认帧的第一RU为干扰RU。
需要说明的是,共享AP在协作传输时的传输方向为下行,被共享AP在协作传输时的传输方向为上行,然而被共享AP进行干扰探测时,测得的是共享AP的上行对被共享AP的下行的干扰。可以理解的是,第一STA在第一RU上向共享AP发送的上行的第二确认帧,对第二STA接收来自被共享AP的下行的第二帧造成干扰,那么相对称地,第二STA在第一RU上向被共享AP发送的上行帧就会对共享AP在第一RU上向第一STA发送的下行帧造成干扰。以此被共享AP来判断第一RU为干扰RU。
又考虑到STA的发射功率可能不同,且不被AP感知,利用该对称方法进行干扰判断时,共享AP发送第一帧指示第一STA回复第一确认帧时相应地升高发射功率,以过滤STA发射功率不同的情况。
S1302、被共享AP不在干扰RU所在的子信道上进行上行传输。即被共享AP自身禁止使用干扰RU。
共享AP可以在信道上进行下行传输。
被共享AP在获知第一RU为干扰RU时,禁止在干扰RU所在的子信道上进行上行传输,这样,当共享AP在该干扰RU所在的子信道向第一STA发送下行数据帧时,不会受到来自第二STA上行传输的干扰。在被共享AP禁止在干扰RU所在的子信道上进行上行传输后,共享AP可以在整个信道上进行下行传输都不会受到被共享AP的上行传输的干扰。
可选地,在S1301之前,共享AP还可以与被共享AP协商协作传输方向。可选地,本申请实施例可以提供固定模式和灵活模式两种方式来协商协作传输方向。可以参照图5实施例对协商协作传输方向的两种模式的介绍。
在固定模式下,在S1301之前,还包括S1300。S1300与S500相同,可以参照S500的描述,在此不再赘述。
在灵活模式下,在S1301之前,还包括S1300-1和S1300-2。S1300-1与S500-1相同,S1300-2与S500-2相同,在此不再赘述。
基于上述图13实施例的描述,下面结合具体的应用场景对图13实施例进行进一步详细说明。
各个AP和各个STA的帧交互示意图如图14a和图14b所示。图14a和图14b示意了一个TXOP内的帧交互示例。图14a为固定模式的协作传输,图14b为灵活模式的协作传输。以下对图14a和图14b的帧交互的说明,如果没有特殊说明,则所描述的帧交互是图14a和图14b都适用的,当帧交互存在区别时,会特殊说明具体是图14a的步骤还是图14b的步骤。
假设共享AP当前调度的STA用STA1-1和STA1-2表示,被共享AP当前调度的STA用STA2-1和STA2-2表示。STA1-1和STA1-2执行的操作可以参考图13实施例中第一STA的操作。STA2-1和STA2-2执行的操作可以参考图13实施例中第二STA的操作。
《1》、共享AP向被共享AP发送C-SR-A帧,对应地,被共享AP接收来自共享AP的C-SR-A帧。
在固定模式下,如图14a所示,该步骤可以参考S1300。该C-SR-A帧指示被共享AP在协作传输时的传输方向为上行。可选地,该C-SR-A帧还指示共享AP在协作传输时的传输方向为下行。该C-SR-A帧还指示被共享AP发送第二帧。
在灵活模式下,如图14b所示,该步骤可以参照S1300-1。该C-SR-A帧指示被共享AP选择协作传输的传输方向。可选地,该C-SR-A帧还可以指示共享AP在协作传输时的传输方向为下行。这种情况下,被共享AP向共享AP返回响应帧,对应地,共享AP接收来自被共享AP的响应帧。响应帧指示被共享AP所选择的在协作传输时的传输方向为上行。这里可以想到的是,如果被共享AP所选择的在协作传输时的传输方向为下行,则被共享AP不进行干扰探测。即,只有在被共享AP所选择的在协作传输时的传输方向为上行时,被共享AP才会执行干扰探测,即执行后面《2》。
《2》、共享AP向STA1-1和STA1-2发送第一帧,该第一帧用TF-N表示。同时,被共享AP向STA2-1和STA2-2发送第二帧,该第二帧也用TF-N表示。
共享AP向STA1-2发送的第一帧指示STA1-2回复第一帧时使用第一RU。共享AP 向STA1-1发送的第一帧指示STA1-1回复第一帧时使用与第一RU不同的其它RU。STA1-1和STA1-2若接收到第一帧则分别在指定的RU上向共享AP返回第一确认帧,第一确认帧用BA-D表示。
被共享AP向STA2-1发送的第二帧指示STA2-1回复第二帧时使用第一RU。被共享AP向STA2-2发送的第二帧包括对STA2-2回复第二帧时使用与第一RU不同的其它RU。
即,STA1-2和STA2-1都使用第一RU,STA1-2和STA2-1复用第一RU。
如图14a所示,共享AP可以是在发送C-SR-A帧经过SIFS后发送第一帧,被共享AP可以是在接收到C-SR-A帧后经过SIFS后发送第二帧。
如图14b所示,共享AP可以在接收到来自被共享AP的响应帧之后经过SIFS之后发送第一帧;被共享AP在发送响应帧之后经过SIFS发送第二帧。
第二帧的长度大于第一帧的长度和SIFS的长度之和。
《3》、STA1-1和STA1-2接收到第一帧之后,经过SIFS向共享AP返回第一确认帧,第一确认帧用BA-D表示。当STA1-1和STA1-2返回BA-D时,与第二帧的发送存在交集。在同一个RU上,第一确认帧BA-D可能会对第二帧造成干扰。例如,STA2-1由于受到STA1-2返回的BA-D帧的干扰,无法成功接收到第二帧。STA2-1没有接收到第二帧就无法向被共享AP返回第二确认帧(BA-D)。
《4》、STA2-2向被共享AP返回第二确认帧(BA-D),被共享AP接收到STA2-2返回的第二确认帧(BA-D),确定STA2-2对应的RU上没有受到干扰。被共享AP未接收到STA2-1返回的BA-D,确定第一RU为干扰RU。
《5》、共享AP进行下行传输(DL数据帧)。被共享AP发送上行触发帧。上行触发帧用于调度上行传输。
共享AP可以向STA1-1和STA1-2进行下行传输。
被共享AP不在第一RU所在的子信道进行上行传输,即被共享AP不会触发STA2-1的上行传输。共享AP向STA1-2发送DL数据帧并不会受到第一RU上STA2-1的上行传输的干扰。
被共享AP将上行触发帧发送给STA2-2。STA2-2接收到上行触发帧后,在相应的RU上向被共享AP发送上行数据帧。
《6》、STA1-1和STA1-2在接收到DL数据帧之后,还会向共享AP返回确认帧(BA)。被共享AP接收到STA2-2发送的UL数据帧后,间隔SIFS,向STA2-2返回确认帧(BA)。
以上实施例是以共享AP在协作传输时的传输方向为下行、被共享AP在协作传输时的传输方向为上行为场景进行描述的,当共享AP在协作传输时的传输方向为上行、被共享AP在协作传输时的传输方向为下行时,被共享AP的下行传输也可能会受到共享AP上行的干扰,且STA之间的干扰也是不可测的,基于此,在同一个技术构思的基础上,本申请实施例还提供了一种无线局域网的协作传输方法,具体流程如图15所示。可以理解的是,图15实施例实际上是将图5实施例中共享AP和被共享AP执行的操作交换过来,第一STA和第二STA执行的操作交换过来。即,被共享AP执行图5实施例中共享AP的操作,共享AP执行图5实施例中被共享AP的操作。第一STA执行图5实施例中第二STA的操作。
S1501、被共享AP在条件满足时,在信道上向第二STA发送第一帧以探测干扰RU。
具体细节描述可以参考S501的描述,在此不再赘述。
共享AP可以与被共享AP协商协作传输方向,可以参考图5实施例的描述,其中,共享AP执行图5实施例中共享AP的操作,被共享AP执行图5实施例中被共享AP的操作,只是有一点不同的是,共享AP在协作传输时的方向为上行,被共享AP在协作传输时的方向为下行,在此不再赘述。
S1501中被共享AP探测干扰RU的可选实现方式可以参考图5实施例中可选方式2和可选方式3。具体地,被共享AP执行图5实施例中共享AP的操作,共享AP执行图5实施例中被共享AP的操作,在此不再赘述。
在S1501之后,还可以执行S1502。
S1502、被共享AP不在干扰RU所在的子信道上进行下行传输。即共享AP自身禁止使用干扰RU。
S1502可以参照S502*步骤。被共享AP执行图5实施例中共享AP的操作。
基于上述图15实施例的描述,下面结合具体的应用场景对图15实施例进行进一步详细说明。
各个AP和各个STA的帧交互示意图如图16a和图16b所示。图16a和图16b示意了一个TXOP内的帧交互示例。图16a为固定模式的协作传输,图16b为灵活模式的协作传输。以下对图16a和图16b的帧交互进行说明,如果没有特殊说明,则所描述的帧交互是指图16a和图16b都适用的,当帧交互存在区别时,会特殊说明具体是图16a的步骤还是图16b的步骤。
假设共享AP当前调度的STA用STA1-1和STA1-2表示,被共享AP当前调度的STA用STA2-1和STA2-2表示。
1*共享AP向被共享AP发送C-SR-A帧,对应地,被共享AP接收来自共享AP的C-SR-A帧。
在固定模式下,如图16a所示,该C-SR-A帧用于指示被共享AP在协作传输时的传输方向为下行。可选地,该C-SR-A帧还用于指示共享AP在协作传输时的传输方向为上行。
在灵活模式下,如图16b所示,该C-SR-A帧用于指示被共享AP选择在协作传输时的传输方向。可选地,该C-SR-A帧还可以用于指示共享AP在协作传输时的传输方向为上行。这种情况下,被共享AP还会向共享AP返回响应帧,对应地,共享AP接收来自被共享AP的响应帧。响应帧用于指示被共享AP所选择的在协作传输时的传输方向为下行。这里可以想到的是,如果被共享AP所选择的在协作传输时的传输方向为上行,与共享AP的传输方向一致,则被共享AP不进行干扰探测。即,只有被共享AP所选择的在协作传输时的传输方向为下行时,共享AP才会执行干扰探测,即执行后面的2*。
2*共享AP向STA1-1、STA1-2以及被共享AP发送上行触发帧。上行触发帧用于调度上行传输。STA1-1和STA1-2接收来自共享AP的上行触发帧。被共享AP也会接收到来自共享AP的上行触发帧。
如图16a所示,在固定模式下,共享AP可以在发送C-SR-A帧经过SIFS后发送上行触发帧。
如图16b所示,在灵活模式下,共享AP可以在接收到响应帧后经过SIFS后发送上行触发帧。
3*被共享AP向STA2-1和STA2-2发送第一帧,该第一帧用TF-N表示。同时,STA1-1和STA1-2接收到上行触发帧之后,在被调度的RU向共享AP发送上行(UL)数据帧。
被共享AP向STA2-1发送的第一帧指示STA2-1回复第一帧时使用第一RU。类似地,被共享AP向STA2-2发送的第一帧指示STA2-2回复第一帧时使用与第一RU不同的其它RU。STA2-1和STA2-2若接收到第一帧则在各自指定的RU上向被共享AP返回第一确认帧,第一确认帧用BA-D表示。
共享AP向STA1-2发送的上行触发帧指示上行传输所使用的第一RU。共享AP向STA1-1发送的上行触发帧指示上行传输使用与第一RU不同的其它RU。
可见,STA2-1和STA1-2都使用第一RU,STA1-2和STA2-1复用第一RU。
被共享AP可以在接收到来自共享AP的上行触发帧之后,经过SIFS后向STA2-1和STA2-2发送第一帧。STA1-1和STA1-2接收到上行触发帧之后,经过SIFS后,会向共享AP发送上行数据帧。
由于被共享AP在接收到来自共享AP的上行触发帧之后,才发送第一帧,因此当STA1-1和STA1-2进行上行传输时与第一帧存在交集。在同一个RU上,UL数据帧可能会对第一帧造成干扰。例如,STA2-1在第一RU上接收来自被共享AP的第一帧,STA1-2在第一RU上向共享AP发送UL数据帧,STA2-1可能受到STA1-2发送的UL数据帧的干扰,从而无法成功接收到第一帧,也就不会向被共享AP返回第一确认帧(BA-D)。
4*、STA2-2向被共享AP返回第一确认帧(BA-D),被共享AP接收到STA2-2返回的第一确认帧(BA-D),确定STA2-2对应的RU上没有受到干扰。共享AP未接收到STA2-1返回的BA-D,确定第一RU为干扰RU。
5*、被共享AP不使用干扰RU所在的子信道进行下行传输,被共享AP在未受到干扰的RU所在的子信道上进行下行传输。
例如,被共享AP确定第一RU为干扰RU,不在第一RU所在的子信道的下行传输,即被共享AP不会在第一RU上向STA2-1发送下行数据帧。被共享AP在STA2-2对应的RU所在的子信道上向STA2-2发送下行数据帧。
这样,当STA1-2向共享AP发送上行数据帧时,由于第一RU所在子信道上不存在被共享AP的下行传输,所以,STA1-2发送上行数据帧,便不会受到干扰。
可选地,STA2-2在接收到DL数据帧之后,还会向被共享AP返回确认帧(BA)。
本申请各个实施例中,共享AP获知干扰RU之后,不在干扰RU所在的子信道进行下行传输,或者共享AP指示被共享AP禁止在干扰RU所在的子信道进行上行传输。被共享AP获知干扰RU之后,不在干扰RU所在的子信道进行上行传输。可以看出,干扰探测时是以RU为单位进行探测的,但是禁止传输以控制干扰是以子信道为单位执行的。是因为共享AP和被共享AP调度的STA个数和所使用RU大小可能会不一致,无法对应。各AP使用的RU大小很大概率是不一样的。例如,共享AP在40MHz上用4个RU106,共与4个STA通信,其中,每20MHz上有2个RU106,每RU106相当于2个RU52,4个RU26。被共享AP在40MHz上用1个RU106,2个RU52,8个RU26,共与11个STA通信。那么两个AP所使用的RU大小和位置是不对称的,很难对应起来。因此,以干扰RU所在的子信道为单位进行干扰管控,能够更加有效地实现干扰管控。
当然,本申请实施例还可以以干扰RU为粒度进行干扰管控。
需要说明的是,本申请中的各个应用场景中的举例仅仅表现了一些可能的实现方式, 是为了对本申请的方法更好的理解和说明。本领域技术人员可以根据申请提供的参考信号的指示方法,得到一些演变形式的举例。
上述本申请提供的实施例中,分别从共享AP、共享STA、被共享AP和被共享STA以及各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,共享AP和被共享AP可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图17所示,基于同一技术构思,本申请实施例还提供了一种通信装置1700,该通信装置1700可以是共享AP或被共享AP,也可以是共享AP或被共享AP中的装置,或者是能够和共享AP或被共享AP匹配使用的装置。一种设计中,该通信装置1700可以包括执行上述方法实施例中共享AP或被共享AP执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块1701和通信模块1702。处理模块1701用于调用通信模块1702执行接收和/或发送的功能。
当用于执行共享AP执行的方法时:
处理模块1701,用于判断在条件满足时,在信道上通过通信模块1702向第一站点STA发送第一帧以探测干扰资源单元,其中,共享AP为第一STA的服务AP,第一帧包括对第一STA回复第一帧时使用第一资源单元的指示,干扰资源单元为未接收到第一STA的回复的第一资源单元,条件包括共享AP准备使用信道进行下行传输,信道是共享AP与第一被共享AP进行协作传输的信道。
在一个可能的设计中,上述条件还包括:第一被共享AP准备使用信道进行上行传输。
在一个可能的设计中,处理模块1701还用于:通过通信模块1702向第一被共享AP发送协作传输通知C-SR-A帧,C-SR-A帧用于指示第一被共享AP在协作传输时的传输方向为上行。
在一个可能的设计中,处理模块1701还用于:通过通信模块1702向第一被共享AP发送协作传输通知C-SR-A帧,C-SR-A帧用于指示第一被共享AP选择在协作传输时的传输方向;以及接收来自第一被共享AP的第一响应帧,第一响应帧用于指示第一被共享AP所选择的在协作传输时的传输方向为上行。
在一个可能的设计中,处理模块1701还用于:响应于探测到干扰资源单元,通过通信模块向第一被共享AP发送指示帧,指示帧用于指示第一被共享AP不允许使用干扰资源单元所在的子信道进行上行传输;以及在信道上进行下行传输。
在一个可能的设计中,处理模块1701还用于:指示第一被共享AP向第二STA发送第二帧,第二帧用于指示第二STA在接收到第二帧后向第一被共享AP返回第二确认帧;第二STA是第一被共享AP准备使用第一资源单元进行上行传输的STA。其中,第一帧与第二帧的发送时刻相同,第一帧的长度大于第二帧与短帧间间隔SIFS的长度之和。
在一个可能的设计中,共享AP还与第二被共享AP在传输资源上协作传输,第二被共享AP为第三STA的服务AP,处理模块1701还用于:在第一被共享AP在协作传输时的传输方向为上行、且第二被共享AP在协作传输时的传输方向为下行时,指示第二被共享AP向第三STA发送第三帧,第三帧用于指示第三STA在接收到第三帧后向第二被共享 AP返回第三确认帧;通过通信模块1702接收来自第二被共享AP的第二响应帧,第二响应帧用于指示第二资源单元为干扰单元。
在一个可能的设计中,处理模块1701还用于:禁止在干扰资源单元所在的子信道上进行下行传输。
在一个可能的设计中,处理模块1701还用于:通过通信模块1702接收来自第一被共享AP的上行触发帧,上行触发帧用于触发被共享AP服务的STA进行上行传输;以及响应于上行触发帧,向第一STA发送第一帧。
在一个可能的设计中,第一帧与第一被共享AP发送的上行触发帧的发送时刻相同,第一帧的长度大于上行触发帧与SIFS的长度之和;上行触发帧用于触发第一被共享AP服务的STA进行上行传输。
在一个实施例中,当用于执行被共享AP执行的方法时:
处理模块1701,用于在条件满足时,在信道上通过通信模块1702向被共享STA发送第一帧以探测干扰资源单元,其中,共享AP为被共享STA的服务AP,第一帧包括对被共享STA回复第一帧时使用第一资源单元的指示,干扰资源单元为未接收到被共享STA的回复的第一资源单元,条件包括被共享AP准备使用信道进行下行传输,信道是被共享AP与共享AP进行协作传输的信道;处理模块1701,还用于禁止干扰资源所在的子信道上进行下行传输。
在一个可能的设计中,该条件还包括:共享AP准备使用信道进行上行传输。
在一个可能的设计中,处理模块1701还用于:通过通信模块1702接收来自共享AP的上行触发帧,上行触发帧用于触发共享AP服务的STA进行上行传输;在向第二STA发送第一触发帧时,处理模块1701用于,响应于上行触发帧,通过通信模块1702向被共享STA发送第一触发帧。
在一个可能的设计中,第一帧与共享AP发送的上行触发帧的发送时刻相同,第一帧的长度大于上行触发帧与短帧间隔SIFS的长度之和;上行触发帧用于触发共享AP服务的STA进行上行传输。
在一个可能的设计中,处理模块1701还用于:通过通信模块1702接收来自共享AP的协作传输通知C-SR-A帧,C-SR-A帧用于指示被共享AP在协作传输时的传输方向为下行。
在一个可能的设计中,处理模块1701还用于:通过通信模块1702接收来自共享AP的协作传输通知C-SR-A帧,C-SR-A帧用于指示被共享AP选择在协作传输时的传输方向;以及向共享AP发送响应帧,响应帧用于指示被共享AP所选择的在协作传输时的传输方向为下行。
在一个可能的设计中,第一帧是短数据帧。
在一个可能的设计中,第一帧为控制帧,且第一帧的调制编码方式MCS阶数与数据帧的MCS阶数相同。
在一个可能的设计中,协作传输的方式为协作的空间复用CSR。
在一个可能的设计中,信道包括一个或多个子信道。
在一个实施例中,当用于执行被共享AP执行的方法时:
处理模块1701,用于在条件满足时,在信道上通过通信模块1702向第一站点STA发送第一帧以探测干扰资源单元,其中,被共享AP为第一STA的服务AP,第一帧包括对 第一STA回复第一帧时使用第一资源单元的指示,干扰资源单元为未接收到第一STA的回复的第一资源单元,条件包括被共享AP准备使用信道进行上行传输,信道是共享AP与共享AP进行协作传输的信道。
在一个可能的设计中,条件还包括:共享AP准备使用信道进行下行传输。
在一个可能的设计中,处理模块1701还用于,通过通信模块1702接收来自共享AP的协作传输通知C-SR-A帧,C-SR-A帧用于指示被共享AP在协作传输时的传输方向为下行。
在一个可能的设计中,处理模块1701还用于,通过通信模块1702接收来自共享AP的协作传输通知C-SR-A帧,C-SR-A帧用于指示被共享AP选择在协作传输时的传输方向;以及用于向共享AP发送第一响应帧,第一响应帧用于指示被共享AP所选择的在协作传输时的传输方向为上行。
在一个可能的设计中,处理模块1701还用于:不使用干扰资源单元所在的子信道进行上行传输。
在一个可能的设计中,第一帧与共享AP向第二STA发送的第二帧的发送时刻相同,第二帧的长度大于第一帧与短帧间间隔SIFS的长度之和。
在一个可能的设计中,第一帧是短数据帧。
在一个可能的设计中,第一帧为控制帧,且第一帧的调制编码方式MCS阶数与数据帧的MCS阶数相同。
在一个可能的设计中,协作传输的方式为协作的空间复用CSR。
在一个可能的设计中,信道包括一个或多个子信道。
在一个实施例中,当用于执行被共享AP执行的方法时:
处理模块1701,用于在条件满足时,在信道上通过通信模块1702向被共享STA发送第一帧,其中,信道为共享AP和被共享AP进行协作传输的信道,条件包括共享AP在协作传输时的传输方向为下行,第一帧用于指示被共享STA监听第一资源单元,被共享AP是被共享STA的服务AP,第一帧与共享AP向共享STA发送的第二帧的发送时刻相同,第二帧的长度大于第一帧与SIFS的长度之和,第二帧包括对共享STA回复第二帧时使用第一资源单元的指示;处理模块1701,还用于在未接收到被共享STA返回的响应帧时,禁止在第一资源单元所在的子信道上触发上行传输,响应帧用于指示第一资源单元未被占用。
在一个可能的设计中,第一帧还用于指示被共享STA监听第一资源单元的时长,以及指示被共享STA在时长内若第一资源单元未被占用则返回响应帧。
在一个可能的设计中,条件还包括:共享AP在协作传输时的传输方向为下行。
在一个可能的设计中,处理模块1701还用于,通过通信模块1702接收来自共享AP的协作传输通知C-SR-A帧,C-SR-A帧用于指示被共享AP在协作传输时的传输方向为上行。
在一个可能的设计中,处理模块1701还用于,通过通信模块1702接收来自共享AP的协作传输通知C-SR-A帧,C-SR-A帧用于指示被共享AP选择在协作传输时的传输方向;以及向共享AP发送第一响应帧,第一响应帧用于指示被共享AP所选择的在协作传输时的传输方向为上行。
在一个可能的设计中,第一帧与共享AP向第二STA发送的第二帧的发送时刻相同, 第二帧的长度大于第一帧与短帧间间隔SIFS的长度之和。
在一个可能的设计中,第一帧是短数据帧。
在一个可能的设计中,第一帧为控制帧,且第一帧的调制编码方式MCS阶数与数据帧的MCS阶数相同。
在一个可能的设计中,协作传输的方式为协作的空间复用CSR。
在一个可能的设计中,信道包括一个或多个子信道。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图18所示为本申请实施例提供的通信装置1800,用于实现上述方法中共享AP或被共享AP的功能。当实现共享AP的功能时,该通信装置可以是共享AP,也可以是共享AP中的装置,或者是能够和共享AP匹配使用的装置。当实现被共享AP的功能时,该装置可以是被共享AP,也可以是被共享AP中的装置,或者是能够和被共享AP匹配使用的装置。其中,该通信装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。通信装置1800包括至少一个处理器1820,用于实现本申请实施例提供的方法中共享AP或被共享AP的功能。通信装置1800还可以包括通信接口1810。在本申请实施例中,通信接口1810可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口1810用于装置1800中的装置可以和其它设备进行通信。示例性地,通信装置1800是共享AP时,该其它设备可以是被共享AP。通信装置1800是被共享AP时,该其它装置可以是共享AP。处理器1820利用通信接口1810收发帧,并用于实现上述方法实施例所述的方法。
示例性地,当实现共享AP的功能时,处理器1820用于判断在条件满足时,在信道上利用通信接口1810向第一站点STA发送第一帧以探测干扰资源单元,其中,共享AP为第一STA的服务AP,第一帧包括对第一STA回复第一帧时使用第一资源单元的指示,干扰资源单元为未接收到第一STA的回复的第一资源单元,条件包括共享AP准备使用信道进行下行传输,信道是共享AP与第一被共享AP进行协作传输的信道。
在一个实施例中,当实现被共享AP的功能时,处理器1820用于在条件满足时,在信道上通过通信接口1810向被共享STA发送第一帧以探测干扰资源单元,其中,共享AP为被共享STA的服务AP,第一帧包括对被共享STA回复第一帧时使用第一资源单元的指示,干扰资源单元为未接收到被共享STA的回复的第一资源单元,条件包括被共享AP准备使用信道进行下行传输,信道是被共享AP与共享AP进行协作传输的信道;处理器1820,还用于禁止干扰资源所在的子信道上进行下行传输。
在一个实施例中,当实现被共享AP的功能时,处理器1820用于在条件满足时,在信道上通过通信接口1810向第一站点STA发送第一帧以探测干扰资源单元,其中,被共享AP为第一STA的服务AP,第一帧包括对第一STA回复第一帧时使用第一资源单元的指示,干扰资源单元为未接收到第一STA的回复的第一资源单元,条件包括被共享AP准备使用信道进行上行传输,信道是共享AP与共享AP进行协作传输的信道。
在一个实施例中,当实现被共享AP的功能时,处理器1820用于在条件满足时,在信道上通过通信接口1810被共享STA发送第一帧,其中,信道为共享AP和被共享AP进行 协作传输的信道,条件包括共享AP在协作传输时的传输方向为下行,第一帧用于指示被共享STA监听第一资源单元,被共享AP是被共享STA的服务AP,第一帧与共享AP向共享STA发送的第二帧的发送时刻相同,第二帧的长度大于第一帧与SIFS的长度之和,第二帧包括对共享STA回复第二帧时使用第一资源单元的指示;处理器1820,还用于在未接收到被共享STA返回的响应帧时,禁止在第一资源单元所在的子信道上触发上行传输,响应帧用于指示第一资源单元未被占用。
处理器1820和通信接口1810还可以用于执行上述方法实施例共享AP或被AP执行的其它对应的步骤或操作,在此不再一一赘述。
通信装置1800还可以包括至少一个存储器1830,用于存储程序指令和/或数据。存储器1830和处理器1820耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1820可能和存储器1830协同操作。处理器1820可能执行存储器1830中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口1810、处理器1820以及存储器1830之间的具体连接介质。本申请实施例在图18中以存储器1830、处理器1820以及通信接口1810之间通过总线1840连接,总线在图18中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信装置1700和通信装置1800具体是芯片或者芯片系统时,通信模块1702和通信接口1810所输出或接收的可以是基带信号。通信装置1700和通信装置1800具体是设备时,通信模块1702和通信接口1810所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1830可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请上述方法实施例描述的共享AP所执行的操作和功能中的部分或全部,或被共享AP所执行的操作和功能中的部分或全部,可以用芯片或集成电路来完成。
为了实现上述图17或图18所述的通信装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持该通信装置实现上述方法实施例中共享AP或被共享AP所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该通信装置必要的程序指令和数据。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。

Claims (82)

  1. 一种无线局域网的协作传输方法,其特征在于,包括:
    共享接入点(AP)在条件满足时,在信道上向第一站点(STA)发送第一帧以探测干扰资源单元,其中,所述共享AP为所述第一STA的服务AP,所述第一帧包括对所述第一STA回复所述第一帧时使用第一资源单元的指示,所述干扰资源单元为未接收到所述第一STA的回复的所述第一资源单元,所述条件包括所述共享AP准备使用所述信道进行下行传输,所述信道是所述共享AP与第一被共享AP进行协作传输的信道。
  2. 如权利要求1所述的方法,其特征在于,所述条件还包括:所述第一被共享AP准备使用所述信道进行上行传输。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:所述共享AP向所述第一被共享AP发送协作传输通知(C-SR-A)帧,所述C-SR-A帧用于指示所述第一被共享AP在所述协作传输时的传输方向为上行。
  4. 如权利要求2所述的方法,其特征在于,所述方法还包括:所述共享AP向所述第一被共享AP发送C-SR-A帧,所述C-SR-A帧用于指示所述第一被共享AP选择在所述协作传输时的传输方向;
    所述共享AP接收来自所述第一被共享AP的第一响应帧,所述第一响应帧用于指示所述第一被共享AP所选择的在所述协作传输时的传输方向为上行。
  5. 如权利要求1~4中任一项所述的方法,其特征在于,所述方法还包括:
    所述共享AP响应于探测到所述干扰资源单元,向所述第一被共享AP发送指示帧,所述指示帧用于指示所述第一被共享AP不允许使用所述干扰资源单元所在的子信道进行上行传输;
    所述共享AP在所述信道上进行下行传输。
  6. 如权利要求1~5中任一项所述的方法,其特征在于,所述方法还包括:
    所述共享AP指示所述第一被共享AP向所述第二STA发送第二帧,所述第二帧用于指示所述第二STA在接收到所述第二帧后向所述第一被共享AP返回第二确认帧;所述第二STA是所述第一被共享AP准备使用所述第一资源单元进行上行传输的STA
    其中,所述第一帧与所述第二帧的发送时刻相同,所述第一帧的长度大于所述第二帧与短帧间间隔(SIFS)的长度之和。
  7. 如权利要求1~6中任一项所述的方法,其特征在于,所述共享AP还与第二被共享AP在所述传输资源上协作传输,所述第二被共享AP为第三STA的服务AP,所述方法还包括:
    在所述第一被共享AP在所述协作传输时的传输方向为上行、且所述第二被共享AP在所述协作传输时的传输方向为下行时,所述共享AP指示所述第二被共享AP向所述第三STA发送第三帧,所述第三帧用于指示所述第三STA在接收到所述第三帧后向所述第二被共享AP返回第三确认帧;
    所述共享AP接收来自所述第二被共享AP的第二响应帧,所述第二响应帧用于指示第二资源单元为干扰单元。
  8. 如权利要求1~4任一项所述的方法,其特征在于,所述方法还包括:
    所述共享AP禁止在所述干扰资源单元所在的子信道上进行下行传输。
  9. 如权利要求1~4、或8中任一项所述的方法,其特征在于,所述方法还包括:所述共享AP接收来自所述第一被共享AP的上行触发帧,所述上行触发帧用于触发所述被共享AP服务的STA进行上行传输;
    所述向第一STA发送第一帧,包括:响应于所述上行触发帧,向所述第一STA发送所述第一帧。
  10. 如权利要求1~4、或8中任一项所述的方法,其特征在于,所述第一帧与所述第一被共享AP发送的上行触发帧的发送时刻相同,所述第一帧的长度大于所述上行触发帧与SIFS的长度之和;所述上行触发帧用于触发所述第一被共享AP服务的STA进行上行传输。
  11. 一种无线局域网的协作传输方法,其特征在于,包括:
    被共享接入点(AP)在条件满足时,在信道上向被共享站点(STA)发送第一帧以探测干扰资源单元,其中,所述共享AP为所述被共享STA的服务AP,所述第一帧包括对所述被共享STA回复所述第一帧时使用第一资源单元的指示,所述干扰资源单元为未接收到所述被共享STA的回复的所述第一资源单元,所述条件包括被共享AP准备使用所述信道进行下行传输,所述信道是所述被共享AP与共享AP进行协作传输的信道;
    所述被共享AP禁止在所述干扰资源所在的子信道上进行下行传输。
  12. 如权利要求11所述的方法,其特征在于,所述条件还包括:所述共享AP准备使用所述信道进行上行传输。
  13. 如权利要求11或12所述的方法,其特征在于,所述方法还包括:
    所述被共享AP接收来自所述共享AP的上行触发帧,所述上行触发帧用于触发所述共享AP服务的STA进行上行传输;
    所述向第二STA发送第一触发帧,包括:响应于所述上行触发帧,向所述被共享STA发送所述第一触发帧。
  14. 如权利要求11或12所述的方法,其特征在于,所述第一帧与所述共享AP发送的上行触发帧的发送时刻相同,所述第一帧的长度大于所述上行触发帧与短帧间隔SIFS的长度之和;所述上行触发帧用于触发所述共享AP服务的STA进行上行传输。
  15. 如权利要求11~14任一项所述的方法,其特征在于,所述方法还包括:
    所述被共享AP接收来自所述共享AP的协作传输通知(C-SR-A)帧,所述C-SR-A帧用于指示所述被共享AP在所述协作传输时的传输方向为下行。
  16. 如权利要求11~14任一项所述的方法,其特征在于,所述方法还包括:
    所述被共享AP接收来自所述共享AP的C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP选择在所述协作传输时的传输方向;
    所述被共享AP向所述共享AP发送响应帧,所述响应帧用于指示所述被共享AP所选择的在所述协作传输时的传输方向为下行。
  17. 如权利要求11~16任一项所述的方法,其特征在于,所述第一帧是短数据帧。
  18. 如权利要求11~16任一项所述的方法,其特征在于,所述第一帧为控制帧;
    所述第一帧的调制编码方式(MCS)阶数与数据帧的MCS阶数相同,和/或,所述第一帧的流数与数据帧的流数相同。
  19. 如权利要求11~18任一项所述的方法,其特征在于,所述协作传输的方式为协作的空间复用(CSR)。
  20. 如权利要求11~19任一项所述的方法,其特征在于,所述信道包括一个或多个子信 道。
  21. 一种无线局域网的协作传输方法,其特征在于,包括:
    被共享接入点(AP)在条件满足时,在信道上向第一站点(STA)发送第一帧以探测干扰资源单元,其中,所述被共享AP为所述第一STA的服务AP,所述第一帧包括对所述第一STA回复所述第一帧时使用第一资源单元的指示,所述干扰资源单元为未接收到所述第一STA的回复的所述第一资源单元,所述条件包括所述被共享AP准备使用所述信道进行上行传输,所述信道是所述共享AP与共享AP进行协作传输的信道。
  22. 如权利要求21所述的方法,其特征在于,所述条件还包括:所述共享AP准备使用所述信道进行下行传输。
  23. 如权利要求22所述的方法,其特征在于,所述方法还包括:所述被共享AP接收来自所述共享AP的协作传输通知(C-SR-A)帧,所述C-SR-A帧用于指示所述被共享AP在所述协作传输时的传输方向为下行。
  24. 如权利要求22所述的方法,其特征在于,所述方法还包括:所述被共享AP接收来自所述共享AP的C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP选择在所述协作传输时的传输方向;
    所述被共享AP向所述共享AP发送第一响应帧,所述第一响应帧用于指示所述被共享AP所选择的在所述协作传输时的传输方向为上行。
  25. 如权利要求21~24中任一项所述的方法,其特征在于,所述方法还包括:
    所述被共享AP不使用所述干扰资源单元所在的子信道进行上行传输。
  26. 如权利要求21~25中任一项所述的方法,其特征在于,所述第一帧与所述共享AP向所述第二STA发送的第二帧的发送时刻相同,所述第二帧的长度大于所述第一帧与短帧间间隔(SIFS)的长度之和。
  27. 如权利要求21~26中任一项所述的方法,其特征在于,所述第一帧是短数据帧。
  28. 如权利要求21~26任一项所述的方法,其特征在于,所述第一帧为控制帧;
    所述第一帧的调制编码方式(MCS)阶数与数据帧的MCS阶数相同,和/或,所述第一帧的流数与数据帧的流数相同。
  29. 如权利要求21~28任一项所述的方法,其特征在于,所述协作传输的方式为协作的空间复用CSR。
  30. 如权利要求21~29任一项所述的方法,其特征在于,所述信道包括一个或多个子信道。
  31. 一种无线局域网的协作传输方法,其特征在于,包括:
    被共享接入点(AP)在条件满足时,在信道上向被共享站点(STA)发送第一帧,其中,所述信道为共享AP和所述被共享AP进行协作传输的信道,所述条件包括所述共享AP在所述协作传输时的传输方向为下行,所述第一帧用于指示所述被共享STA监听第一资源单元,所述被共享AP是所述被共享STA的服务AP,所述第一帧与共享AP向共享STA发送的第二帧的发送时刻相同,所述第二帧的长度大于所述第一帧与SIFS的长度之和,所述第二帧包括对所述共享STA回复所述第二帧时使用所述第一资源单元的指示;
    所述被共享AP在未接收到所述被共享STA返回的响应帧时,禁止在所述第一资源单元所在的子信道上触发上行传输,所述响应帧用于指示所述第一资源单元未被占用。
  32. 如权利要求31所述的方法,其特征在于,所述第一帧还用于指示所述被共享STA 监听所述第一资源单元的时长,以及指示所述被共享STA在所述时长内若所述第一资源单元未被占用则返回所述响应帧。
  33. 如权利要求31或32所述的方法,其特征在于,所述条件还包括:所述共享AP在所述协作传输时的传输方向为下行。
  34. 如权利要求31~33任一项所述的方法,其特征在于,所述方法还包括:所述被共享AP接收来自所述共享AP的协作传输通知(C-SR-A)帧,所述C-SR-A帧用于指示所述被共享AP在所述协作传输时的传输方向为上行。
  35. 如权利要求31~33任一项所述的方法,其特征在于,所述方法还包括:所述被共享AP接收来自所述共享AP的C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP选择在所述协作传输时的传输方向;
    所述被共享AP向所述共享AP发送第一响应帧,所述第一响应帧用于指示所述被共享AP所选择的在所述协作传输时的传输方向为上行。
  36. 如权利要求31~35中任一项所述的方法,其特征在于,所述第一帧与所述共享AP向所述第二STA发送的第二帧的发送时刻相同,所述第二帧的长度大于所述第一帧与短帧间间隔(SIFS)的长度之和。
  37. 如权利要求31~36中任一项所述的方法,其特征在于,所述第一帧是短数据帧。
  38. 如权利要求31~36任一项所述的方法,其特征在于,所述第一帧为控制帧;
    所述第一帧的调制编码方式(MCS)阶数与数据帧的MCS阶数相同,和/或,所述第一帧的流数与数据帧的流数相同。
  39. 如权利要求31~38任一项所述的方法,其特征在于,所述协作传输的方式为协作的空间复用(CSR)。
  40. 如权利要求31~39任一项所述的方法,其特征在于,所述信道包括一个或多个子信道。
  41. 一种通信装置,其特征在于,应用于共享接入点(AP),包括:处理模块和通信模块;
    所述处理模块,用于判断在条件满足时,在信道上通过所述通信模块向第一站点(STA)发送第一帧以探测干扰资源单元,其中,所述共享AP为所述第一STA的服务AP,所述第一帧包括对所述第一STA回复所述第一帧时使用第一资源单元的指示,所述干扰资源单元为未接收到所述第一STA的回复的所述第一资源单元,所述条件包括所述共享AP准备使用所述信道进行下行传输,所述信道是所述共享AP与第一被共享AP进行协作传输的信道。
  42. 如权利要求41所述的装置,其特征在于,所述条件还包括:所述第一被共享AP准备使用所述信道进行上行传输。
  43. 如权利要求42所述的装置,其特征在于,所述处理模块还用于:通过所述通信模块向所述第一被共享AP发送协作传输通知(C-SR-A)帧,所述C-SR-A帧用于指示所述第一被共享AP在所述协作传输时的传输方向为上行。
  44. 如权利要求42所述的装置,其特征在于,所述处理模块还用于:通过所述通信模块向所述第一被共享AP发送C-SR-A帧,所述C-SR-A帧用于指示所述第一被共享AP选择在所述协作传输时的传输方向;以及接收来自所述第一被共享AP的第一响应帧,所述第一响应帧用于指示所述第一被共享AP所选择的在所述协作传输时的传输方向为上行。
  45. 如权利要求41~44中任一项所述的装置,其特征在于,所述处理模块还用于:响应于探测到所述干扰资源单元,通过所述通信模块向所述第一被共享AP发送指示帧,所述指示帧用于指示所述第一被共享AP不允许使用所述干扰资源单元所在的子信道进行上行传输;
    以及在所述信道上进行下行传输。
  46. 如权利要求41~45中任一项所述的装置,其特征在于,所述处理模块还用于:指示所述第一被共享AP向所述第二STA发送第二帧,所述第二帧用于指示所述第二STA在接收到所述第二帧后向所述第一被共享AP返回第二确认帧;所述第二STA是所述第一被共享AP准备使用所述第一资源单元进行上行传输的STA;
    其中,所述第一帧与所述第二帧的发送时刻相同,所述第一帧的长度大于所述第二帧与短帧间间隔(SIFS)的长度之和。
  47. 如权利要求41~46中任一项所述的装置,其特征在于,所述共享AP还与第二被共享AP在所述传输资源上协作传输,所述第二被共享AP为第三STA的服务AP,所述处理模块还用于:
    在所述第一被共享AP在所述协作传输时的传输方向为上行、且所述第二被共享AP在所述协作传输时的传输方向为下行时,指示所述第二被共享AP向所述第三STA发送第三帧,所述第三帧用于指示所述第三STA在接收到所述第三帧后向所述第二被共享AP返回第三确认帧;
    通过所述通信模块接收来自所述第二被共享AP的第二响应帧,所述第二响应帧用于指示第二资源单元为干扰单元。
  48. 如权利要求41~44任一项所述的装置,其特征在于,所述处理模块还用于:
    禁止在所述干扰资源单元所在的子信道上进行下行传输。
  49. 如权利要求41~44、或48中任一项所述的装置,其特征在于,所述处理模块还用于:通过所述通信模块接收来自所述第一被共享AP的上行触发帧,所述上行触发帧用于触发所述被共享AP服务的STA进行上行传输;以及响应于所述上行触发帧,向所述第一STA发送所述第一帧。
  50. 如权利要求41~44、或48中任一项所述的装置,其特征在于,所述第一帧与所述第一被共享AP发送的上行触发帧的发送时刻相同,所述第一帧的长度大于所述上行触发帧与SIFS的长度之和;所述上行触发帧用于触发所述第一被共享AP服务的STA进行上行传输。
  51. 一种通信装置,其特征在于,应用于被共享接入点(AP),包括处理模块和通信模块;
    所述处理模块,用于在条件满足时,在信道上通过所述通信模块向被共享站点(STA)发送第一帧以探测干扰资源单元,其中,所述共享AP为所述被共享STA的服务AP,所述第一帧包括对所述被共享STA回复所述第一帧时使用第一资源单元的指示,所述干扰资源单元为未接收到所述被共享STA的回复的所述第一资源单元,所述条件包括所述被共享AP准备使用所述信道进行下行传输,所述信道是所述被共享AP与共享AP进行协作传输的信道;
    所述处理模块,还用于禁止所述干扰资源所在的子信道上进行下行传输。
  52. 如权利要求51所述的装置,其特征在于,所述条件还包括:所述共享AP准备使 用所述信道进行上行传输。
  53. 如权利要求51或52所述的装置,其特征在于,所述处理模块还用于:通过所述通信模块接收来自所述共享AP的上行触发帧,所述上行触发帧用于触发所述共享AP服务的STA进行上行传输;
    在向第二STA发送第一触发帧时,所述处理模块用于,响应于所述上行触发帧,通过所述通信模块向所述被共享STA发送所述第一触发帧。
  54. 如权利要求51或52所述的装置,其特征在于,所述第一帧与所述共享AP发送的上行触发帧的发送时刻相同,所述第一帧的长度大于所述上行触发帧与短帧间隔(SIFS)的长度之和;所述上行触发帧用于触发所述共享AP服务的STA进行上行传输。
  55. 如权利要求51~54任一项所述的装置,其特征在于,所述处理模块还用于:通过所述通信模块接收来自所述共享AP的协作传输通知(C-SR-A)帧,所述C-SR-A帧用于指示所述被共享AP在所述协作传输时的传输方向为下行。
  56. 如权利要求51~54任一项所述的装置,其特征在于,所述处理模块还用于:通过所述通信模块接收来自所述共享AP的C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP选择在所述协作传输时的传输方向;
    以及向所述共享AP发送响应帧,所述响应帧用于指示所述被共享AP所选择的在所述协作传输时的传输方向为下行。
  57. 如权利要求51~56任一项所述的装置,其特征在于,所述第一帧是短数据帧。
  58. 如权利要求51~56任一项所述的装置,其特征在于,所述第一帧为控制帧;
    所述第一帧的调制编码方式(MCS)阶数与数据帧的MCS阶数相同,和/或,所述第一帧的流数与数据帧的流数相同。
  59. 如权利要求51~58任一项所述的装置,其特征在于,所述协作传输的方式为协作的空间复用(CSR)。
  60. 如权利要求51~59任一项所述的方法,其特征在于,所述信道包括一个或多个子信道。
  61. 一种通信装置,其特征在于,应用于被共享接入点(AP),包括处理模块和通信模块;
    所述处理模块,用于在条件满足时,在信道上通过所述通信模块向第一站点(STA)发送第一帧以探测干扰资源单元,其中,所述被共享AP为所述第一STA的服务AP,所述第一帧包括对所述第一STA回复所述第一帧时使用第一资源单元的指示,所述干扰资源单元为未接收到所述第一STA的回复的所述第一资源单元,所述条件包括所述被共享AP准备使用所述信道进行上行传输,所述信道是所述共享AP与共享AP进行协作传输的信道。
  62. 如权利要求61所述的装置,其特征在于,所述条件还包括:所述共享AP准备使用所述信道进行下行传输。
  63. 如权利要求62所述的装置,其特征在于,所述处理模块还用于,通过所述通信模块接收来自所述共享AP的协作传输通知(C-SR-A)帧,所述C-SR-A帧用于指示所述被共享AP在所述协作传输时的传输方向为下行。
  64. 如权利要求62所述的装置,其特征在于,所述处理模块还用于,通过所述通信模块接收来自所述共享AP的C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP选择在所 述协作传输时的传输方向;
    以及用于向所述共享AP发送第一响应帧,所述第一响应帧用于指示所述被共享AP所选择的在所述协作传输时的传输方向为上行。
  65. 如权利要求61~64中任一项所述的装置,其特征在于,所述处理模块还用于:
    不使用所述干扰资源单元所在的子信道进行上行传输。
  66. 如权利要求61~65中任一项所述的装置,其特征在于,所述第一帧与所述共享AP向所述第二STA发送的第二帧的发送时刻相同,所述第二帧的长度大于所述第一帧与短帧间间隔(SIFS)的长度之和。
  67. 如权利要求61~66中任一项所述的装置,其特征在于,所述第一帧是短数据帧。
  68. 如权利要求61~66任一项所述的装置,其特征在于,所述第一帧为控制帧;
    所述第一帧的调制编码方式(MCS)阶数与数据帧的MCS阶数相同,和/或,所述第一帧的流数与数据帧的流数相同。
  69. 如权利要求61~68任一项所述的装置,其特征在于,所述协作传输的方式为协作的空间复用(CSR)。
  70. 如权利要求61~69任一项所述的装置,其特征在于,所述信道包括一个或多个子信道。
  71. 一种通信装置,其特征在于,应用于被共享接入点(AP),包括处理模块和通信模块;
    所述处理模块,用于在条件满足时,在信道上通过所述通信模块向被共享站点(STA)发送第一帧,其中,所述信道为共享AP和所述被共享AP进行协作传输的信道,所述条件包括所述共享AP在所述协作传输时的传输方向为下行,所述第一帧用于指示所述被共享STA监听第一资源单元,所述被共享AP是所述被共享STA的服务AP,所述第一帧与共享AP向共享STA发送的第二帧的发送时刻相同,所述第二帧的长度大于所述第一帧与SIFS的长度之和,所述第二帧包括对所述共享STA回复所述第二帧时使用所述第一资源单元的指示;
    所述处理模块,还用于在未接收到所述被共享STA返回的响应帧时,禁止在所述第一资源单元所在的子信道上触发上行传输,所述响应帧用于指示所述第一资源单元未被占用。
  72. 如权利要求71所述的装置,其特征在于,所述第一帧还用于指示所述被共享STA监听所述第一资源单元的时长,以及指示所述被共享STA在所述时长内若所述第一资源单元未被占用则返回所述响应帧。
  73. 如权利要求71或72所述的装置,其特征在于,所述条件还包括:所述共享AP在所述协作传输时的传输方向为下行。
  74. 如权利要求71~73任一项所述的装置,其特征在于,所述处理模块还用于,通过所述通信模块接收来自所述共享AP的协作传输通知(C-SR-A)帧,所述C-SR-A帧用于指示所述被共享AP在所述协作传输时的传输方向为上行。
  75. 如权利要求71~73任一项所述的装置,其特征在于,所述处理模块还用于,通过所述通信模块接收来自所述共享AP的C-SR-A帧,所述C-SR-A帧用于指示所述被共享AP选择在所述协作传输时的传输方向;
    以及向所述共享AP发送第一响应帧,所述第一响应帧用于指示所述被共享AP所选择的在所述协作传输时的传输方向为上行。
  76. 如权利要求71~75中任一项所述的装置,其特征在于,所述第一帧与所述共享AP向所述第二STA发送的第二帧的发送时刻相同,所述第二帧的长度大于所述第一帧与短帧间间隔(SIFS)的长度之和。
  77. 如权利要求71~76中任一项所述的装置,其特征在于,所述第一帧是短数据帧。
  78. 如权利要求71~76任一项所述的装置,其特征在于,所述第一帧为控制帧;
    所述第一帧的调制编码方式(MCS)阶数与数据帧的MCS阶数相同,和/或,所述第一帧的流数与数据帧的流数相同。
  79. 如权利要求71~78任一项所述的装置,其特征在于,所述协作传输的方式为协作的空间复用(CSR)。
  80. 如权利要求71~79任一项所述的装置,其特征在于,所述信道包括一个或多个子信道。
  81. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于与其它通信装置进行通信;所述处理器用于运行一组程序,以使得如权利要求1~10任一项所述的方法被执行,或者以使得如权利要求11~20任一项所述的方法被执行,或者以使得如权利要求21~30任一项所述的方法被执行,或者以使得如权利要求31~40任一项所述的方法被执行。
  82. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,使得如执行权利要求1~10任一项所述的方法被执行,或者使得如权利要求11~20任一项所述的方法被执行,或者使得如权利要求21~30任一项所述的方法被执行,或者使得如权利要求31~40任一项所述的方法被执行。
PCT/CN2021/116682 2020-09-18 2021-09-06 一种无线局域网的协作传输方法及装置 WO2022057655A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21868480.1A EP4207852A4 (en) 2020-09-18 2021-09-06 COOPERATIVE TRANSMISSION METHOD AND APPARATUS FOR WIRELESS LOCAL NETWORK
US18/185,622 US20230224944A1 (en) 2020-09-18 2023-03-17 Coordinated Transmission Method for Wireless Local Area Network and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010986741.7A CN114205826A (zh) 2020-09-18 2020-09-18 一种无线局域网的协作传输方法及装置
CN202010986741.7 2020-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/185,622 Continuation US20230224944A1 (en) 2020-09-18 2023-03-17 Coordinated Transmission Method for Wireless Local Area Network and Apparatus

Publications (1)

Publication Number Publication Date
WO2022057655A1 true WO2022057655A1 (zh) 2022-03-24

Family

ID=80645012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116682 WO2022057655A1 (zh) 2020-09-18 2021-09-06 一种无线局域网的协作传输方法及装置

Country Status (4)

Country Link
US (1) US20230224944A1 (zh)
EP (1) EP4207852A4 (zh)
CN (1) CN114205826A (zh)
WO (1) WO2022057655A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4329414A1 (en) * 2022-08-26 2024-02-28 MediaTek Inc. Coordinated-spatial reuse (co-sr) transmission

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108476503A (zh) * 2016-01-08 2018-08-31 高通股份有限公司 信道感知资源分配
WO2020012980A1 (ja) * 2018-07-11 2020-01-16 ソニー株式会社 通信管理装置、通信装置、通信管理方法、及び通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108476503A (zh) * 2016-01-08 2018-08-31 高通股份有限公司 信道感知资源分配
WO2020012980A1 (ja) * 2018-07-11 2020-01-16 ソニー株式会社 通信管理装置、通信装置、通信管理方法、及び通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207852A4 *
SUNGJIN PARK (LG ELECTRONICS): "Coordinated Spatial Reuse Procedure", IEEE DRAFT; 11-20-0410-04-00BE-COORDINATED-SPATIAL-REUSE-PROCEDURE, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 EHT; 802.11be, no. 4, 2 April 2020 (2020-04-02), Piscataway, NJ USA , pages 1 - 23, XP068167312 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4329414A1 (en) * 2022-08-26 2024-02-28 MediaTek Inc. Coordinated-spatial reuse (co-sr) transmission

Also Published As

Publication number Publication date
CN114205826A (zh) 2022-03-18
US20230224944A1 (en) 2023-07-13
EP4207852A4 (en) 2024-01-24
EP4207852A1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
US10542557B2 (en) System and method for digital communications with interference avoidance
TWI711327B (zh) 合作車間有效資源使用方法
US20240098712A1 (en) Communication apparatus and communication method for coordinated service periods
US10194468B2 (en) Wireless channel reservation
EP4013179A1 (en) Wireless communication method using enhanced distributed channel access, and wireless communication terminal using same
WO2019153756A1 (zh) 一种多接入点ap协调传输的方法以及相关装置
KR101889515B1 (ko) 전력 제어를 위한 시스템 및 방법
US20150282066A1 (en) Method of performing power save multi-poll (psmp) procedure wireless local access network system and station supporting the procedure
KR20100067894A (ko) 초고처리율 무선랜 시스템을 위한 공간분할 다중접속 절차 및 이를 위한 채널 추정 절차
US20220394737A1 (en) Resource configuration method and network device
WO2019062746A1 (zh) 通信方法、装置和系统
JP2024504940A (ja) ビーム情報の報告および受信の方法および装置
CN112106423A (zh) 用于物理下行链路控制信道监测的方法、终端设备和基站
WO2022057655A1 (zh) 一种无线局域网的协作传输方法及装置
TWI826057B (zh) 一種實體上行控制通道的發送方法、接收方法及通信裝置
GB2595518A (en) Methods and apparatuses for optimized multi-ap coordination
US20220304042A1 (en) Enhanced Configured Grants
CN114026940A (zh) 用于上行链路传输的方法、终端设备和网络节点
WO2010110619A2 (en) Method and apparatus for scheduling wireless medium resource
WO2018171568A1 (zh) 一种信息传输方法、处理方法及装置
WO2023241171A9 (zh) 一种数据传输方法及装置
WO2023221727A1 (zh) 一种数据传输方法及装置
WO2024031540A1 (zh) 通信方法及通信装置
US20240155581A1 (en) Signal transmission method and apparatus
WO2023221726A9 (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021868480

Country of ref document: EP

Effective date: 20230327

NENP Non-entry into the national phase

Ref country code: DE