WO2022134046A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022134046A1
WO2022134046A1 PCT/CN2020/139553 CN2020139553W WO2022134046A1 WO 2022134046 A1 WO2022134046 A1 WO 2022134046A1 CN 2020139553 W CN2020139553 W CN 2020139553W WO 2022134046 A1 WO2022134046 A1 WO 2022134046A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink reference
resource
resources
reference signal
information
Prior art date
Application number
PCT/CN2020/139553
Other languages
English (en)
French (fr)
Inventor
张云昊
郭英昊
李超君
吴艺群
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/139553 priority Critical patent/WO2022134046A1/zh
Priority to CN202080107642.5A priority patent/CN116711426A/zh
Priority to JP2023538902A priority patent/JP2024500487A/ja
Priority to EP20966611.4A priority patent/EP4247094A4/en
Publication of WO2022134046A1 publication Critical patent/WO2022134046A1/zh
Priority to US18/339,746 priority patent/US20230337223A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method and apparatus.
  • RRC radio resource control
  • RRC-connected state RRC-connected state
  • RRC-idle state state
  • RRC-inactive state the terminal equipment in the RRC connected state
  • the terminal equipment in the RRC inactive state wants to perform data transmission with the access network equipment.
  • the terminal device in the RRC inactive state needs to first enter the RRC connected state, and then perform data transmission with the access network device.
  • a solution for the small packet data transmission scenario is currently provided, that is, the terminal equipment can send uplink data to the access network equipment when the RRC is in the inactive state without entering the RRC connected state. Then send the uplink data.
  • further research is required for the solution for the small packet data transmission scenario, so as to improve the receiving performance of the access network equipment for receiving the small packet data.
  • the present application provides a communication method and apparatus for improving the reception performance of an access network device for receiving uplink data sent by a terminal device on a CG resource.
  • the embodiments of the present application provide a communication method, which is used to implement functions on the terminal device side.
  • the method can be applied to a terminal device or a chip in the terminal device, and the embodiments of the present application are not limited to the specifics of the method. executor.
  • the terminal device receives first configuration information from an access network device, where the first configuration information is used to configure M CG resources corresponding to N downlink reference signals.
  • the terminal device may send uplink information on the CG resource according to the first configuration information.
  • the uplink information may be information carried on PUSCH and/or PUCCH.
  • the access network device can configure the terminal device with M CG resources corresponding to N downlink reference signals. Therefore, when the terminal device sends uplink data (such as small packet data) on the CG resource corresponding to a certain downlink reference signal, The access network device can use the corresponding receiving beam to receive uplink data on the CG resource, so that the receiving performance of the access network device for receiving the uplink data can be effectively improved.
  • uplink data such as small packet data
  • the terminal device after the terminal device enters the disconnected state, it can also receive the first reconfiguration information from the access network device, and the first reconfiguration information is used to reconfigure some or all of the M CG resources.
  • the corresponding downlink reference signal is updated; wherein, M and N are positive integers.
  • the first reconfiguration information may be carried in a DCI, MACCE or RRC message; or, the first reconfiguration information may also be carried in a message transmitted in the random access process, such as MsgB in the two-step random access process, Or Msg2 or Msg4 in the four-step random access procedure.
  • the access network device can send the first reconfiguration information to the terminal device to update the correspondence between CG resources and downlink reference signals, so that when the terminal device moves in the RRC disconnected state, the CG can be adjusted flexibly in time
  • the correspondence between resources and downlink reference signals enables the terminal equipment to have more CG resources to send uplink data after selecting the current downlink reference signal, so as to ensure data transmission of the terminal equipment in the RRC disconnected state.
  • the DCI may further include second information, where the second information includes HARQ feedback information and/or scheduling information; the HARQ feedback information is used for Indicates whether the uplink data of the terminal device is successfully received, and the scheduling information is used to schedule the PUSCH or PDSCH of the terminal device.
  • the uplink information includes the uplink data.
  • M CG resources correspond to N downlink reference signals, including at least one of the following: the M CG resources belong to one or more sets of CG resources, and each CG resource belongs to one set of CG resources , each set of CG resources corresponds to one or more downlink reference signals in the N downlink reference signals; the M CG resources are located in one or more cycles, each CG resource is located in one of the cycles, and each cycle corresponds to the One or more downlink reference signals in the N downlink reference signals; one or more CG resources in the M CG resources correspond to one or more downlink reference signals in the at least one downlink reference signal.
  • the access network device when configuring the M CG resources corresponding to the N downlink reference signals, can configure the CG resources according to various possible granularities (for example, according to the granularity of "set”, “period”, “number”, etc.)
  • the configuration of the corresponding relationship makes the corresponding relationship more flexible, so that the terminal device also has high flexibility when selecting CG resources, which is convenient for data transmission under RRC disconnection.
  • the M CG resources belong to W sets of CG resources
  • the W sets of CG resources include a first set of CG resources
  • the first configuration information includes at least one of the following: the first set of CG resources
  • the type of the downlink reference signal corresponding to the resource the identifier of the downlink reference signal corresponding to the first set of CG resources, and the measurement threshold of the downlink reference signal (for example, the first threshold).
  • the terminal device may use the CG resource corresponding to the downlink reference signal to send uplink data.
  • the method further includes: receiving P downlink reference signals from the access network device, where the P downlink reference signals include N downlink reference signals; wherein P is a positive integer, and P is greater than or equal to N; and further, send the first information to the access network device according to the measured values of the P downlink reference signals.
  • the first information may be used to request to update the correspondence between the CG resource and the downlink reference signal.
  • the terminal device can actively request the access network device to update the corresponding relationship between the CG resource and the downlink reference signal; for example, the access network device can update the corresponding relationship according to the first information after receiving the first information. After receiving the first information, the corresponding relationship may not be updated temporarily.
  • the N downlink reference signals include the first downlink reference signal; the method further includes: sending the first information to the access network device on the CG resource corresponding to the first downlink reference signal.
  • the method further includes: sending uplink data to the access network device on the CG resource corresponding to the first downlink reference signal.
  • the terminal device can send the first information and the uplink data together with the CG resource corresponding to the first downlink reference signal, so that the CG resource can be more fully utilized.
  • the method before sending the first information to the access network device on the CG resource corresponding to the first downlink reference signal, the method further includes: according to the measured values of the N downlink reference signals, from N The first downlink reference signal is selected from the number of downlink reference signals; wherein, the measured value of the first downlink reference signal is greater than or equal to the first threshold; or, the measured value of the first downlink reference signal is greater than or equal to N downlink reference signals Measured values of other downlink reference signals in .
  • the P downlink reference signals include a second downlink reference signal, and the measurement value of the second downlink reference signal is greater than the measurement value of the first downlink reference signal; the first information includes the first downlink reference signal.
  • the M CG resources include the first CG resource, the first configuration information is used to configure the first CG resource and the first CG resource corresponds to the first downlink reference signal; the first reconfiguration information is used to configure The first CG resource corresponds to the second downlink reference signal.
  • the M CG resources further include a second CG resource
  • the first configuration information is used to configure the second CG resource and the second CG resource corresponds to the second downlink reference signal
  • the first reconfiguration information further includes Used to configure the second CG resource to correspond to the first downlink reference signal.
  • the P downlink reference signals include a third downlink reference signal; the method further includes: initiating a random access procedure according to random access resources corresponding to the third downlink reference signal; the first information It is carried in the first message, and the first message is used for the random access procedure.
  • the M CG resources include the third CG resource, the first configuration information is used to configure the third CG resource and the third CG resource corresponds to the fourth downlink reference signal; the first reconfiguration information is used to configure the third CG resource.
  • the three CG resources correspond to the third downlink reference signal.
  • the M CG resources further include a fourth CG resource
  • the first configuration information is used to configure the fourth CG resource and the third downlink reference signal corresponding to the fourth CG resource; the first reconfiguration The information is also used to configure the fourth CG resource corresponding to the fourth downlink reference signal.
  • the M CG resources include the fifth CG resource, the HARQ process number corresponding to the fifth CG resource is obtained according to the first offset, and the first offset is corresponding to the fifth CG resource determined by the downlink reference signal.
  • the HARQ process number corresponding to the CG resource is related to the downlink reference signal corresponding to the CG resource, it is convenient to increase the number of CG resources corresponding to a certain HARQ process number, that is, to increase the selection opportunity of the terminal equipment and reduce the uplink data. transmission delay.
  • the method further includes: receiving second configuration information from the access network device, where the second configuration information is used to configure the maximum number of retransmissions of the HARQ process corresponding to the HARQ process number and /or the effective duration of the HARQ process corresponding to the HARQ process number.
  • the embodiments of the present application provide a communication method, which is used to implement functions on the device side of the access network, for example, can be applied to the access network device or a chip in the access network device, and the embodiment of the present application is not limited to The specific execution body of this method.
  • the access network device sends first configuration information to the terminal device, where the first configuration information is used to configure M configuration authorized CG resources corresponding to N downlink reference signals,
  • the M CG resources are used to receive uplink information from the terminal device when the terminal device is in the disconnected state; after the terminal device enters the disconnected state, the access network device can receive uplink information on the CG resources according to the first configuration information.
  • the access network device may send the first reconfiguration information to the terminal device, where the first reconfiguration information is used to reconfigure some or all of the M CG resources
  • the corresponding downlink reference signal is updated; wherein, M and N are positive integers.
  • sending the first reconfiguration information to the terminal device includes: receiving the first information from the terminal device; and sending the first reconfiguration information to the terminal device according to the first information.
  • the N downlink reference signals include a first downlink reference signal; the method further includes: receiving first information from the terminal device on a CG resource corresponding to the first downlink reference signal .
  • the method further includes: receiving uplink data from the terminal device on the CG resource corresponding to the first downlink reference signal.
  • the measurement value of the first downlink reference signal is greater than or equal to the first threshold; or, the measurement value of the first downlink reference signal is greater than or equal to the measurement value of other downlink reference signals in the N downlink reference signals value.
  • the method further includes: sending P downlink reference signals, where the P downlink reference signals include N downlink reference signals; where P is a positive integer, and P is greater than or equal to N; the P downlink reference signals
  • the signal includes a second downlink reference signal; the first information includes a measurement value of the first downlink reference signal and a measurement value of the second downlink reference signal, and the measurement value of the second downlink reference signal is greater than the measurement value of the first downlink reference signal;
  • the first information includes an index of the second downlink reference signal; or, the first information includes measurement values of P downlink reference signals.
  • the M CG resources include the first CG resource, the first configuration information is used to configure the first CG resource and the first CG resource corresponds to the first downlink reference signal; the first reconfiguration information is used to configure The first CG resource corresponds to the second downlink reference signal.
  • the M CG resources further include a second CG resource, and the first configuration information is used to configure the second CG resource and the second CG resource corresponds to the second downlink reference signal; the first reconfiguration information is also used to configure the second CG resource.
  • the second CG resource is configured to correspond to the first downlink reference signal.
  • the method further includes: sending P downlink reference signals, where the P downlink reference signals include N downlink reference signals; where P is a positive integer, and P is greater than or equal to N; the P downlink reference signals
  • the signal includes a third downlink reference signal; the first information is carried in the first message, the first message is used for the random access process, and the resource used for carrying the first message is the random access resource corresponding to the third downlink reference signal.
  • the M CG resources include the third CG resource, the first configuration information is used to configure the third CG resource and the third CG resource corresponds to the fourth downlink reference signal; the first reconfiguration information is used to configure the third CG resource.
  • the three CG resources correspond to the third downlink reference signal.
  • the M CG resources further include a fourth CG resource, and the first configuration information is used to configure the fourth CG resource and the fourth CG resource corresponds to the third downlink reference signal; the first reconfiguration information is also used to configure the third downlink reference signal.
  • the fourth CG resource is configured to correspond to the fourth downlink reference signal.
  • the M CG resources include the fifth CG resource, the HARQ process number corresponding to the fifth CG resource is obtained according to the first offset, and the first offset is corresponding to the fifth CG resource determined by the downlink reference signal.
  • the method further includes: sending second configuration information to the terminal device, where the second configuration information is used to configure the maximum number of retransmissions of the HARQ process corresponding to the HARQ process number and/or the HARQ Valid duration of the HARQ process corresponding to the process ID.
  • an embodiment of the present application provides a communication device, where the communication device may be a terminal device or a chip that can be provided inside the terminal device.
  • the communication device has the function of implementing the first aspect.
  • the communication device includes modules or units or means (means) corresponding to the steps involved in executing the first aspect, and the functions, units or means may be implemented by software. , or implemented by hardware, or by executing corresponding software by hardware.
  • the communication device includes a processing unit and a communication unit, wherein the communication unit can be used to send and receive signals to realize communication between the communication device and other devices, for example, the communication unit is used to receive data from Configuration information of the access network equipment; the processing unit can be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the operations involved in the first aspect above.
  • the communication apparatus includes a processor, and may also include a transceiver, where the transceiver is used for transmitting and receiving signals, and the processor utilizes the transceiver to complete any possible implementation of the first aspect above.
  • the communication apparatus may further include one or more memories, where the memories are configured to be coupled with the processor, and the memories may store computer programs or instructions for implementing the functions involved in the first aspect above.
  • the processor may execute computer programs or instructions stored in the memory, and when the computer programs or instructions are executed, cause the communication apparatus to implement the method in any possible design or implementation manner of the first aspect.
  • the communication device includes a processor, which may be operative to couple with the memory.
  • the memory may store computer programs or instructions that implement the functions involved in the first aspect above.
  • the processor may execute computer programs or instructions stored in the memory, and when the computer programs or instructions are executed, cause the communication apparatus to implement the method in any possible design or implementation manner of the first aspect.
  • the communication device includes a processor and an interface circuit, wherein the processor is configured to communicate with other devices through the interface circuit, and execute the method in any possible design or implementation of the first aspect above .
  • an embodiment of the present application provides a communication device, where the communication device may be an access network device or a chip that can be provided inside the access network device.
  • the communication device has the function of implementing the second aspect.
  • the communication device includes modules or units or means corresponding to the operations involved in the second aspect.
  • the modules, units, or means may be implemented by software, or by It can be realized by hardware, and can also be realized by executing corresponding software by hardware.
  • the communication device includes a processing unit and a communication unit, wherein the communication unit can be used to send and receive signals to implement communication between the communication device and other devices, for example, the communication unit is used to receive data from Uplink information of the terminal equipment; the processing unit can be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the operations involved in the second aspect above.
  • the communication apparatus includes a processor, and may further include a transceiver, where the transceiver is used for transmitting and receiving signals, and the processor utilizes the transceiver to accomplish any possible implementation of the second aspect above.
  • the communication apparatus may further include one or more memories, where the memories are configured to be coupled with the processor, and the memories may store computer programs or instructions for implementing the functions involved in the second aspect above.
  • the processor can execute computer programs or instructions stored in the memory, and when the computer programs or instructions are executed, cause the communication apparatus to implement the method in any possible design or implementation manner of the second aspect.
  • the communication device includes a processor, which may be operative to couple with the memory.
  • the memory may store computer programs or instructions for implementing the functions involved in the second aspect above.
  • the processor can execute computer programs or instructions stored in the memory, and when the computer programs or instructions are executed, cause the communication apparatus to implement the method in any possible design or implementation manner of the second aspect.
  • the communication device includes a processor and an interface circuit, wherein the processor is configured to communicate with other devices through the interface circuit, and execute the method in any possible design or implementation of the second aspect above .
  • the processor may be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in a memory.
  • the above processors may be one or more, and the memory may be one or more.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor. In a specific implementation process, the memory and the processor may be integrated on the same chip, or may be separately provided on different chips. The embodiment of the present application does not limit the type of the memory and the manner of setting the memory and the processor.
  • an embodiment of the present application provides a communication system, where the communication system includes the communication device described in the third aspect and the communication device described in the fourth aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where computer-readable instructions are stored in the computer storage medium, and when a computer reads and executes the computer-readable instructions, the computer executes the first A method in any possible design of the aspect or the second aspect.
  • an embodiment of the present application provides a computer program product that, when a computer reads and executes the computer program product, causes the computer to execute the method in any possible design of the first aspect or the second aspect.
  • an embodiment of the present application provides a chip, where the chip includes a processor, and the processor is coupled to a memory and configured to read and execute a software program stored in the memory, so as to implement the above-mentioned first aspect or The method in any possible design of the second aspect.
  • FIGS. 1 to 3 are schematic diagrams of network architectures to which the embodiments of the present application are applied;
  • FIG. 4 is an example diagram of a terminal device transitioning in three RRC states according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of an SSB provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a synchronization burst set provided by an embodiment of the present application.
  • FIG. 7 is an example diagram of the correspondence between the SSB and the RO provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of two random access processes provided in an embodiment of the present application.
  • FIG. 9 is a schematic flowchart corresponding to the communication method provided in Embodiment 1 of the present application.
  • FIG. 10 is a schematic diagram of a beam corresponding to an SSB provided by an embodiment of the present application.
  • FIG. 11 to FIG. 13 are schematic diagrams of corresponding situations between CG resources and downlink reference signals according to an embodiment of the present application.
  • FIG. 14 is a schematic flowchart corresponding to the communication method provided in Embodiment 2 of the present application.
  • FIG. 15 is a schematic diagram of the correspondence between CG resources and downlink reference signals according to an embodiment of the present application.
  • FIG. 16 is a possible exemplary block diagram of the apparatus involved in the embodiment of the application.
  • FIG. 17 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of an access network device according to an embodiment of the present application.
  • LTE long term evolution
  • 5G fifth generation
  • wireless-fidelity wireless-fidelity
  • WiFi wireless-fidelity
  • future communication system future communication system
  • NR new radio
  • Communication between communication devices may include, but is not limited to, communication between an access network device and a terminal device, communication between an access network device and an access network device, and/or communication between a terminal device and a terminal device.
  • the term “communication” may also be described as “transmission”, “information transmission”, “data transmission”, or “signal transmission” and the like. Transmission can include sending and/or receiving.
  • the technical solutions of the embodiments of the present application are described by taking the communication between the access network device and the terminal device as an example. Those skilled in the art can also use the technical solutions for communication between other scheduling entities and subordinate entities, such as macro base stations and micro base stations. Communication between base stations, such as communication between a first terminal device and a second terminal device.
  • the scheduling entity may allocate radio resources, such as air interface resources, to the subordinate entities.
  • Terminal device It can be referred to as a terminal for short, and is a wireless terminal device that can wirelessly communicate with an access network device. For example, it can receive scheduling information and instruction information of the access network device.
  • a wireless end device may be a device that provides voice and/or data connectivity to a user, or a handheld device with wireless connectivity, or other processing device.
  • Terminal devices can communicate with one or more core networks or the Internet via a radio access network (RAN).
  • RAN radio access network
  • Terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal equipment may be user equipment (user equipment, UE).
  • the UE includes a handheld device, a vehicle-mounted device, a wearable device or a computing device with a wireless communication function.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, intelligent Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the device for implementing the function of the terminal device may be the terminal device; it may also be a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device or connected with the terminal device. Match use.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Access network equipment It may be a device in a wireless network.
  • an access network device may be a RAN node that accesses a terminal device to a wireless network, and may also be called a RAN device or a base station.
  • Some examples of access network equipment are: generation Node B (gNodeB), transmission reception point (TRP), evolved node B (evolved node B, eNB), radio network controller (radio network) controller, RNC), node B (node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved Node B, or home Node B , HNB), base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wi-Fi) access point (access point, AP), etc.
  • generation Node B gNodeB
  • TRP transmission reception point
  • eNB evolved node B
  • RNC radio network controller
  • node B node B (
  • the access network device may be a centralized unit (centralized unit, CU) node, a distributed unit (distributed unit, DU) node, or an access network device including a CU node and a DU node.
  • the access network equipment may be other apparatuses that provide wireless communication functions for the terminal equipment.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the access network device. For convenience of description, in this embodiment of the present application, a device that provides a wireless communication function for a terminal device is referred to as an access network device.
  • the device for implementing the function of the access network device may be the access network device; it may also be a device capable of supporting the access network device to realize the function, such as a chip system, and the device may be installed in the access network device. It can be used in the network access device or matched with the access network device.
  • the technical solutions provided by the embodiments of the present application are described by taking the apparatus for implementing the functions of the access network equipment as an example of the access network equipment.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • At least one means one or more, and “plurality” means two or more.
  • And/or which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one of A, B and C includes A, B, C, A and B, A and C, B and C, or A, B and C.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the number, order, sequence, priority or priority of multiple objects. Importance.
  • FIG. 1 is a schematic diagram of a network architecture to which an embodiment of the present application is applied.
  • a terminal device can access a wireless network to obtain services from an external network (eg, the Internet) through the wireless network, or communicate with other devices through the wireless network, such as communicating with other terminal devices.
  • the wireless network includes a RAN and a core network (core network, CN), wherein the RAN is used for connecting terminal equipment (such as terminal equipment 1301 or terminal equipment 1302) to the wireless network, and the CN is used for managing the terminal equipment and providing and The gateway for external network communication.
  • core network core network
  • the RAN may include one or more access network devices, such as access network device 1101 and access network device 1102 .
  • One or more CN devices may be included in the CN.
  • the CN may include an access and mobility management function (AMF) entity, a session management function (SMF) entity and a user A user plane function (UPF) entity.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user A user plane function
  • each device in the communication system shown in FIG. 1 is only for illustration, and the embodiments of the present application are not limited thereto. In practical applications, the communication system may also include more terminal devices and more access networks. equipment, and may also include other equipment.
  • FIG. 2 is a schematic diagram of another network architecture to which this embodiment of the present application is applied.
  • the network architecture includes CN equipment, access network equipment and terminal equipment.
  • the access network equipment includes a baseband device and a radio frequency device, wherein the baseband device can be implemented by one node or multiple nodes, and the radio frequency device can be implemented independently from the baseband device, or can be integrated in the baseband device, or Some functions are integrated independently, and some functions are integrated in the baseband device.
  • the access network equipment includes a baseband device and a radio frequency device, wherein the radio frequency device can be arranged remotely from the baseband device, for example, a remote radio unit (remote radio unit, RRU) is arranged remotely from the BBU end wireless unit.
  • a remote radio unit remote radio unit, RRU
  • the control plane protocol layer structure may include a radio resource control (radio resource control, RRC) layer, a packet data convergence layer protocol (packet data convergence protocol, PDCP) ) layer, radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical layer and other protocol layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • the user plane protocol layer structure may include functions of protocol layers such as the PDCP layer, the RLC layer, the MAC layer, and the physical layer; in a possible implementation, the PDCP layer of the user plane protocol layer structure may also include service data adaptation ( service data adaptation protocol, SDAP) layer.
  • SDAP service data adaptation protocol
  • the access network device may implement the functions of the RRC layer, the PDCP layer, the RLC layer, the MAC layer, the physical layer and other protocol layers by one node, or may implement the functions of these protocol layers by multiple nodes.
  • the access network device may include CU and DU, and multiple DUs may be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layer of the wireless network.
  • the functions of the PDCP layer and the above protocol layers are set in the CU, and the protocol layers below PDCP, such as the function settings of the RLC layer, the MAC layer and the physical layer, etc. in DU.
  • this protocol layer is only an example, and it can also be divided at other protocol layers, for example, at the RLC layer, the functions of the RLC layer and the above protocol layers are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU; Alternatively, in a certain protocol layer, for example, some functions of the RLC layer and functions of the protocol layers above the RLC layer are placed in the CU, and the remaining functions of the RLC layer and the functions of the protocol layers below the RLC layer are placed in the DU. In addition, it can also be divided in other ways, for example, by time delay, the functions whose processing time needs to meet the delay requirements are set in the DU, and the functions that do not need to meet the delay requirements are set in the CU.
  • radio frequency device may be integrated independently, not placed in the DU, may also be integrated in the DU, or partially remote and partially integrated in the DU, which is not limited herein.
  • FIG. 3 is a schematic diagram of another network architecture to which this embodiment of the present application is applied.
  • the control plane (CP) and user plane (UP) of the CU can also be separated and divided into different entities for implementation, namely the control plane (CP) CU entity ( That is, the CU-CP entity) and the user plane (user plane, UP) CU entity (that is, the CU-UP entity).
  • CP control plane
  • UP user plane
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the terminal device can be delivered to the CU through the DU.
  • the signaling of the RRC layer or the PDCP layer is finally processed as the signaling of the PHY layer and sent to the terminal device, or is converted from the received signaling of the PHY layer.
  • the signaling of the RRC or PDCP layer can also be considered to be sent by the DU, or sent by the DU and radio frequency loading.
  • the network architecture shown in FIG. 1 , FIG. 2 or FIG. 3 can be applied to communication systems of various radio access technologies (RATs), for example, a 4G communication system, or a 5G communication system, or It can be a transition system between a 4G communication system and a 5G communication system.
  • the transition system can also be called a 4.5G communication system, and of course it can be a future communication system.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the evolution of the network architecture and the emergence of new service scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the apparatuses in the following embodiments of the present application may be located in terminal equipment or access network equipment according to the functions implemented by them.
  • the access network device may be a CU, or a DU, or an access network device including a CU and a DU.
  • the terminal equipment can perform the RRC connection establishment process with the access network equipment. After the RRC connection is established with the access network equipment, the RRC status of the terminal equipment is RRC connected state. Subsequently, the RRC state of the terminal equipment can be transitioned in the following states: RRC idle state, RRC connected state and RRC inactive state.
  • the access network device knows that the terminal device is within the coverage of the access network device or within the management scope of the access network device, for example, the access network device knows that the terminal device is managed by the access network device
  • the core network knows which access network device covers or manages the terminal device, and the core network knows through which access network device the terminal device can be located or found.
  • the access network device and the terminal device can transmit the specific data channel and/or control channel of the terminal device, so as to transmit the specific information or unicast information of the terminal device.
  • the access network device may send a terminal device-specific physical downlink control channel (PDCCH) and/or a physical downlink shared channel (PDSCH) to the terminal device, and/or the terminal device may send the terminal device a specific physical downlink control channel (PDCCH) and/or a physical downlink shared channel (PDSCH).
  • the network access device sends the terminal device-specific physical uplink shared channel (PUSCH) and/or physical uplink control channel (PUCCH).
  • the terminal device can receive the uplink scheduling indication or the downlink scheduling indication sent by the access network device through the PDCCH.
  • the terminal device may send hybrid automatic repeat request (HARQ) information to the access network device through the PUCCH, which is used to indicate the demodulation of the downlink data by the terminal device.
  • HARQ hybrid automatic repeat request
  • the terminal device when the terminal device is in the RRC idle state, the RRC connection between the terminal device and the access network is released. At this time, the terminal device may receive a paging message, a broadcast channel, and/or system information and the like from the access network device.
  • the access network device may not know whether the terminal device is within the coverage of the access network device or whether it is within the management range of the access network device, for example, the access network The device may not know whether the terminal device is within the coverage of the cell managed by the access network device; the core network may not know which access network device the terminal device is within the coverage or management range, and the core network may not know Through which access network device the terminal device can be located or found.
  • the access network device may not know whether the terminal device is within the coverage of the access network device or whether it is within the management scope of the access network device. For example, the access network device may not know whether the terminal device is within the coverage of the access network device.
  • the access network device is within the coverage of the cell managed by the access network device; the core network may know which access network device or access network devices the terminal device is within the coverage or management range, and the core network may know which access network device or access network devices Locate or find the terminal device.
  • the terminal device may receive a paging message, a synchronization signal, a broadcast message, and/or system information, etc. from the access network device.
  • the RRC inactive state and the RRC idle state may be collectively referred to as the RRC disconnected state.
  • FIG. 4 is an example diagram of a terminal equipment transitioning in the above-mentioned three RRC states. As shown in Figure 4, the following possible conversion scenarios can be included:
  • the access network device may send an RRC connection release (RRC connection release) message to the terminal device, so that the terminal device is converted from the RRC connected state to the RRC idle state.
  • RRC connection release RRC connection release
  • the access network device may send an RRC connection suspend (RRC connection suspend) message or an RRC connection release message to the terminal device, so that the terminal device is converted from the RRC connected state to the RRC inactive state.
  • RRC connection suspend RRC connection suspend
  • RRC connection release RRC connection release message
  • the terminal device may transition from the RRC idle state to the RRC connected state through the RRC connection establishment process with the access network device.
  • the RRC establishment process may be triggered by the upper layer of the terminal device.
  • the RRC establishment process is triggered by the higher layer of the terminal device.
  • the RRC establishment process may also be triggered by the access network device.
  • the access network device sends a paging message to the terminal device, where the paging message includes the identifier of the terminal device.
  • the terminal device triggers the RRC establishment process.
  • the RRC connection establishment process may be that the terminal device sends an RRC connection establishment request (RRC connection request) message to the access network device.
  • RRC connection request RRC connection establishment request
  • the access network device After the access network device receives the request message, if the access network device sends an RRC connection setup (RRC connection setup) message to the terminal device, it means that the access network device agrees to the terminal device to access, then the RRC state of the terminal device Can be converted to RRC connected state.
  • RRC connection reject RRC connection reject
  • the RRC state of the terminal device may be converted to the RRC connected state through an RRC connection establishment or RRC connection recovery process.
  • the terminal device can initiate an RRC recovery process, trying to restore the RRC connection with the access network device to enter the RRC connected state.
  • the RRC recovery process between the terminal device and the access network device includes: the terminal device sends an RRC connection resume request (RRC connection resume request) message to the access network device, and after receiving the request: the access network device sends an RRC connection resume request message to the terminal device.
  • the access network device sends an RRC release message to the terminal device, so that the state of the terminal device is converted from RRC inactive state to RRC Idle state; or, the access network device sends an RRC connection rejection message to the terminal device, so that the terminal device continues to stay in the RRC inactive state.
  • the access network device can make the terminal device transition from the RRC inactive state to the RRC idle state through a release process.
  • beamforming beamforming, BF
  • the beamforming in the communication system is not limited to high frequency bands, but can also be applied to low frequency bands less than 6 GHz.
  • a beam can be understood as a communication resource, and the beam can be a wide beam, a narrow beam, or other types of beams. Different beams can be considered as different communication resources, and the same information or different information can be sent through different beams.
  • Beams include transmit beams and receive beams. Transmit beams can refer to the distribution of signal strengths formed in different directions in space when signals are transmitted through antennas. Receive beams can refer to antenna arrays that strengthen or weaken wireless signals in different directions in space. Received distribution. The transmit beam can be implemented by configuring a transmit filter, and the receive beam can be implemented by configuring a receive filter.
  • the filters described in the embodiments of the present application may include digital filters, analog filters, or digital-analog hybrid filters. Specifically, Not limited.
  • the access network device uses the transmit beam x to send the downlink reference signal.
  • the terminal device can receive the downlink reference signal by using the receive beam y.
  • the transmit beam x and the receive beam y can be understood as one beam. right.
  • the access network equipment uses the receiving beam x' to receive the receiving performance of the signal sent by the terminal equipment. Also better.
  • the receiving beam x' and the transmitting beam x have a high degree of correlation, that is to say, the parameters of the receiving filter corresponding to the receiving beam x' and the transmitting filter corresponding to the transmitting beam x are the same or highly similar, which is reflected in the result, That is, the shaping effects of the receiving beam x' and the transmitting beam x are the same or similar.
  • the terminal device can broadcast the channel block (synchronous signal/physical broadcast channel block, SS/PBCH block, also referred to as synchronous signal/physical broadcast channel block, SS/PBCH block for short) by receiving the synchronous signal sent by the access network device.
  • SSB synchronous signal/physical broadcast channel block
  • the SSB may include a primary synchronization signal (primary synchronisation signal, PSS), a secondary synchronization signal (secondary synchronisation signal, SSS), and a physical broadcast channel (physical broadcast channel, PBCH).
  • primary synchronisation signal primary synchronisation signal
  • secondary synchronisation signal secondary synchronisation signal
  • PBCH physical broadcast channel
  • OFDM orthogonal frequency division multiplexing
  • PSS is located on the middle 127 sub-carriers of symbol 0
  • SSS is located on the middle 127 sub-carriers of symbol 2.
  • the guard sub-carriers are not used to carry signals, and sub-carriers are reserved on both sides of the SSS as guard sub-carriers.
  • the blank areas on both sides of the SSS are the guard sub-carriers. carrier.
  • PBCH occupies all sub-carriers of symbol 1 and symbol 3, and occupies a part of the remaining sub-carriers in all sub-carriers of symbol 2 except the sub-carriers occupied by SSS (that is, the remaining sub-carriers except the guard sub-carriers) subcarriers other than the carrier).
  • the access network device can transmit the SSB through different transmit beams at different times, so as to complete the broadcast beam coverage of the cell.
  • the access network device transmits SSB#0 through transmit beam 0, transmits SSB#1 through transmit beam 1, and transmits SSB#2 through transmit beam 2; at this time, it can be understood that transmit beam 0 corresponds to SSB #0, transmit beam 1 corresponds to SSB#1, transmit beam 2 corresponds to SSB#2.
  • the set of SSBs sent by an access network device during a beam scanning process may be called a synchronization signal burst set (SS burst set) or an SSB burst set.
  • the period of the SS burst set is equivalent to the period of the SSB corresponding to a specific beam, and can be configured as 5ms (milliseconds), 10ms, 20ms, 40ms, 80ms or 160ms, etc.
  • the carrier frequency band is less than or equal to 3GHz, there are at most 4 SSBs in one SS burst set. where each SS burst set is located within a time interval of 5ms.
  • FIG. 6 For a schematic illustration of the SS burst set, reference may be made to FIG. 6 .
  • the period of the SS burst set is 20ms, and one SS burst set includes P SSBs as an example, where P is a positive integer.
  • the P SSBs are located within a 5ms period within the 20ms.
  • SSB corresponds to random access channel (RACH) occasion (referred to as RO)
  • the access network device may indicate the corresponding relationship between the SSB and the RO to the terminal device.
  • the network device may indicate the corresponding relationship between the SSB and the RO to the terminal device through system information.
  • the correspondence between the SSB and the RO may also be predefined by the protocol.
  • the RO can be understood as a random access resource or a random access opportunity, that is, a time-frequency resource used to carry a random access preamble.
  • the access network device may indicate the number of SSBs corresponding to one RO and the number of candidate preambles corresponding to one SSB in one RO.
  • the following takes an SSBburst set including 4 SSBs (SSB1 to SSB4 respectively), and the frequency division multiplexing parameter of RO is 4 (that is, there are 4 ROs on a time unit for frequency division multiplexing) as an example, combining two
  • the example describes the correspondence between SSB and RO.
  • Example 1 as shown in (a) in FIG. 7 , the access network device indicates that the number of SSBs corresponding to one RO is oneEighth, and indicates that the number of candidate preambles corresponding to one SSB in one RO is four.
  • the number of SSBs corresponding to 1 RO is 1/8, that is, 8 ROs correspond to one SSB. Therefore, the 8 ROs of the first two time units correspond to SSB1, and the 8 ROs of the next two time units correspond to SSB2. , and so on, and the index of the corresponding preamble in each RO is 0-3.
  • the terminal device obtains that the measured value of SSB1 is relatively high, it can arbitrarily select one RO from among the 8 ROs corresponding to SSB1 to send any preamble with an index of 0 to 3.
  • Example 2 as shown in (b) of FIG. 7 , the access network device indicates that the number of SSBs corresponding to one RO is Two, and indicates that the number of candidate preambles corresponding to one SSB in one RO is 16. In this case, the number of SSBs corresponding to 1 RO is 2. Therefore, the RO at the first frequency domain position on the first time unit corresponds to SSB1 and SSB2, and the RO at the second frequency domain position on the first time unit corresponds to SSB1 and SSB2.
  • the RO at the third frequency domain position on the first time unit corresponds to SSB1 and SSB2
  • the RO at the fourth frequency domain position on the first time unit corresponds to SSB3 and SSB4, and so on.
  • the index of the preamble corresponding to SSB1 is 0-15
  • the index of the preamble corresponding to SSB2 is 16-31
  • the index of the preamble corresponding to SSB3 is 0-15
  • the index of the preamble corresponding to SSB4 is 16-31.
  • time unit involved in the above two examples may include one or more symbols, or include one or more time slots, and the specific length of the time unit may not be limited in this embodiment of the present application.
  • the terminal equipment in the RRC non-connected state taking the RRC inactive state as an example
  • the mobile communication standardization organization 3rd generation partnership project (3rd generation partnership project, 3GPP) version 16 Before Release 16
  • the terminal equipment in the RRC inactive state does not support unicast data transmission, that is, the terminal equipment needs to restore the RRC connection and enter the RRC connected state before performing unicast data transmission.
  • the data packets that the terminal equipment in the RRC inactive state needs to transmit is usually very small (that is, small data). Entering the RRC connected state from the RRC inactive state will result in unnecessary power consumption and signaling overhead.
  • small packet data transmission can specifically cover smartphone-related services, such as instant messages of WeChat or QQ, heartbeat packets or push messages of applications (application, APP); and non-smartphone-related services, such as Periodic data of wearable devices (such as heartbeat packets), periodic data sent by industrial wireless sensor networks, etc.
  • smartphone-related services such as instant messages of WeChat or QQ, heartbeat packets or push messages of applications (application, APP); and non-smartphone-related services, such as Periodic data of wearable devices (such as heartbeat packets), periodic data sent by industrial wireless sensor networks, etc.
  • non-smartphone-related services such as Periodic data of wearable devices (such as heartbeat packets), periodic data sent by industrial wireless sensor networks, etc.
  • the specific size of the small packet data in the embodiment of the present application may not be limited.
  • a data packet of 100-300 bytes may be regarded as a small packet of data, and for example, a data packet that can be sent in one time slot may be
  • the user plane data packets and/or control plane data packets sent in the inactive state may be regarded as small data packets.
  • the terminal device can be supported to transmit small-packet data in the RRC inactive state without performing state transition, thereby significantly reducing signaling overhead and power consumption of the terminal device.
  • the terminal device performs small packet data transmission when the RRC is in an inactive state, which can be specifically implemented by the following two methods.
  • data transmission based on random access means that the terminal device sends uplink data to the access network device during the random access process (for simplicity, the data described in the following embodiments of the present application If not specified, all represent user plane data) or receive downlink data.
  • the random access procedure may include a four-step random access procedure and a two-step random access procedure.
  • the terminal device can send uplink data through message 3 (Msg3) in the four-step random access process, or receive downlink data through message 4 (Msg4); MsgA) sends uplink data, or receives downlink data through message B (MsgB).
  • Msg3 message 3
  • Msg4 message 4
  • MsgA sends uplink data
  • MsgB downlink data through message B
  • FIG. 8 is a schematic diagram of a four-step random access process provided by an embodiment of the present application. As shown in (a) of Figure 8, the four-step random access procedure may include:
  • the terminal device sends a random access preamble (preamble) to the access network device through a physical random access channel (physical random access channel, PRACH), that is, sends a message 1 (Msg1) to the access network device.
  • preamble a random access preamble
  • PRACH physical random access channel
  • the preamble may be a sequence for the access network device to determine the amount of timing advance (TA) of the terminal device.
  • TA timing advance
  • the access network device after detecting the random access preamble sent by the terminal device, the access network device sends a random access response (random access response, RAR) to the terminal device, that is, sends a message 2 (Msg2) to the terminal device.
  • RAR random access response
  • message 2 may indicate the resource location of the PUSCH.
  • the terminal device sends a message 3 to the access network device through the PUSCH according to the resource location of the PUSCH indicated by the message 2.
  • the message 3 may include uplink data, such as uplink small packet data, and optionally, the identifier of the terminal device.
  • the access network device receives message 3, and sends message 4 to the terminal device, where message 4 may include feedback information for informing the terminal device whether the uplink data is successfully received.
  • the PRACH resources, preambles, and resources for receiving RARs involved in the above-mentioned four-step random access process may all be configured by the access network device for the terminal device.
  • the access network device may configure dedicated resources for the terminal device when the terminal device is in a connected state, or may broadcast resources for competing use in system messages.
  • FIG. 8 is a schematic diagram of a two-step random access process provided by an embodiment of the present application.
  • the two-step random access procedure may include:
  • the terminal device sends a message A to the access network device. Specifically, the terminal device sends a random access preamble to the access network device through PRACH, and sends uplink data (such as uplink small packet data) to the access network device through the corresponding PUSCH. logo.
  • the access network device after receiving the message A, sends the message B to the terminal device.
  • the message B may include the RAR
  • the RAR may include the feedback information of the message A, which is used to inform the terminal device whether the uplink data is successfully received.
  • the PRACH resources, preambles, PUSCH resources (including demodulation reference signal (DMRS) resources in the PUSCH) and resources for receiving RAR involved in the above two-step random access process are all It can be configured for access network equipment and terminal equipment.
  • the access network device may configure dedicated resources for the terminal device when the terminal device is in a connected state, or may broadcast resources for competing use in system messages.
  • Data transmission based on CG resources means that the access network equipment can configure resources for the terminal equipment for uplink data (such as PUSCH) transmission.
  • the terminal equipment When the terminal equipment has uplink data to send, it directly uses the CG resources to send to the access network equipment. data without having to receive dynamic grants from the access network equipment and without sending a preamble.
  • Data transmission based on CG resources may also be referred to as grant free (GF) data transmission. Since the terminal equipment does not need to send a preamble, compared with the data transmission scheme based on random access, signaling overhead and power consumption of the terminal equipment can be further saved.
  • the access network equipment since the terminal equipment in the RRC inactive state does not have a beam management process similar to that in the RRC connected state, the access network equipment usually does not know the information of the terminal equipment in the RRC inactive state. location information (or channel information), and thus do not know what kind of receiving beam is used to receive the uplink data sent by the terminal device on the CG resource.
  • location information or channel information
  • the access network device does not know the channel information of the terminal device, if the access network device receives the uplink data through the omnidirectional antenna, it will cause loss of reception performance; one way to improve the performance is to rely on digital filtering processing, but when there is no terminal device In the case of the channel information of the device, the receiving complexity of the access network device will be significantly increased.
  • the access network equipment does not know the channel information of the terminal equipment and causes the loss of reception performance
  • a possible idea is to establish a corresponding relationship between the CG resources and the channel information.
  • the access network equipment can The channel information corresponding to the resource is used to receive the uplink data on the CG resource by using the corresponding receiving beam, thereby improving the reception performance of the uplink data.
  • the access network equipment can periodically broadcast the downlink reference signal. It is a basic behavior for the terminal equipment to measure the downlink reference signal in the RRC disconnected state, and based on the reciprocity relationship of the spatial channel, when the terminal equipment measures the downlink reference signal signal, when it is determined that the measured value of a certain downlink reference signal is large (for example, the measured value of downlink reference signal 1 is large, and the beam used by the access network equipment to send the downlink reference signal 1 is the transmit beam x), the access network equipment uses The receiving performance of the corresponding receiving beam x' to receive the signal sent by the terminal equipment is also good.
  • the communication method provided in Embodiment 1 of the present application may include: the access network device may send first configuration information to the terminal device, where the first configuration information is used to configure M CG resources corresponding to N downlink reference signals, and N downlink reference signals
  • the signal includes downlink reference signal 1; further, after the terminal device enters the RRC disconnected state, it can send uplink data on the CG resource corresponding to the downlink reference signal 1, and accordingly, the access network device can use the corresponding receiving beam to receive the terminal.
  • M and N are positive integers.
  • Embodiment 1 of the present application will be described in detail below with reference to FIG. 9 .
  • FIG. 9 is a schematic flowchart corresponding to the communication method provided in Embodiment 1 of the present application. As shown in FIG. 9 , the method includes:
  • the terminal device enters an RRC connection state.
  • the terminal equipment can convert the RRC state to the RRC connected state through the RRC connection establishment or RRC connection recovery process.
  • the access network device sends first configuration information to the terminal device, where the first configuration information is used to configure the M CG resources corresponding to the N downlink reference signals.
  • the terminal device may receive the first configuration information from the access network device.
  • the access network device may further configure M CG resources for the terminal device.
  • the access network device may configure M CG resources for the terminal device through the first configuration information, that is, the first configuration information may be used to configure M CG resources and configure M CG resources corresponding to N downlinks reference signal.
  • the access network device may send the first configuration information to the terminal device in a variety of ways, for example, the access network device may send an RRC message to the terminal device, where the RRC message includes the first configuration information.
  • the RRC message may be an RRC connection release message, or other possible messages, which are not specifically limited.
  • the access network device may configure M CG resources for the terminal device through the third configuration information.
  • the access network device may send the first configuration information and the third configuration information to the terminal device through the same message; alternatively, the access network device may also send the first configuration information and the third configuration to the terminal device through different messages.
  • the access network device may first send RRC message 1 to the terminal device, the RRC message 1 includes the third configuration information, and then send RRC message 2 to the terminal device, and the RRC message 2 includes the first configuration information.
  • the M CG resources can be used by the terminal device to send uplink information to the access network device in the RRC disconnected state.
  • the M CG resources can be dedicated to the terminal equipment to send uplink information in the RRC disconnected state; for another example, the M CG resources can be used for the terminal equipment to send uplink information in the RRC connected state, and can also be used for the terminal equipment to send uplink information in the RRC disconnected state.
  • Uplink information is sent when it is in the state.
  • the uplink information may include uplink data and/or uplink signaling, and the uplink signaling may include at least one of the following: physical layer signaling, MAC layer signaling, and RRC layer signaling. These uplink data and/or uplink signaling may be carried on PUSCH and/or PUCCH specific to the terminal device.
  • the CG resource may support multiple possible granularities, such as “set” as the granularity, “period” as the granularity, and “individual” as the granularity.
  • a set of CG resources may correspond to a period (length), and one period may include one or more CG resources.
  • One CG resource can be used for one data transmission, multiple CG resources included in one cycle can be used to repeatedly transmit the same data, and the redundancy versions of the data transmitted by the multiple CG resources can be the same or different. That is to say, multiple CG resources included in one cycle can be understood as multiple repetition opportunities. Any two different CG resources among the multiple CG resources in one period may be time-division and/or frequency-division, which is not limited.
  • the access network device is used as the terminal device to send (for example, through the first configuration information) configuration information of W sets of CG resources, where W is a positive integer.
  • W is a positive integer.
  • W sets of CG resources may include a first set of CG resources, a second set of CG resources, and a third set of CG resources.
  • the configuration information of the first set of CG resources may include at least one of the following: (1) the duration of the period corresponding to the first set of CG resources; (2) the number of repetitions in a period, or In other words, the number of repetition opportunities included in a cycle, or the number of CG resources included in a cycle; (3) the time-frequency location information of each CG resource in a cycle.
  • a set of CG resources may also be called a set of CG resources or other names, which are not limited.
  • the configuration information of the first set of CG resources may also include other possible information, such as one or more of the following: frequency hopping indication information (used to indicate frequency hopping within a time slot or between time slots), DMRS configuration Information (used to indicate the type, location, length, and/or precoding of DMRS, etc.), modulation and coding scheme (modulation and coding scheme, MCS) table, resource allocation method (used to indicate Type0, Type1 or dynamic switching) , power control indication information, the number of HARQ processes (for example, it can be one of 1 to 16), and the redundancy version used during repetition, etc., which are not specifically limited.
  • frequency hopping indication information used to indicate frequency hopping within a time slot or between time slots
  • DMRS configuration Information used to indicate the type, location, length, and/or precoding of DMRS, etc.
  • modulation and coding scheme modulation and coding scheme, MCS
  • resource allocation method used to indicate Type0, Type1 or dynamic switching
  • power control indication information for example, it can
  • the N downlink reference signals are introduced.
  • the downlink reference signal may be an SSB, a channel state information reference signal (CSI-RS), a positioning reference signal (positioning reference signal, PRS), a downlink DMRS or other possible downlink reference signals, specifically Not limited.
  • CSI-RS channel state information reference signal
  • PRS positioning reference signal
  • downlink DMRS downlink DMRS or other possible downlink reference signals, specifically Not limited.
  • description is made by taking the lower row reference signal as an SSB as an example.
  • an SS burst set can include multiple SSBs.
  • an SS burst set includes 4 SSBs, namely SSB1, SSB2, SSB3, and SSB4, then N can be a positive integer less than or equal to 4, That is, the N downlink reference signals may include at least one of SSB1, SSB2, SSB3, and SSB4.
  • an SS burst set includes 8 SSBs, namely SSB1, SSB2, ..., SSB8, then N can be a positive integer less than or equal to 8, that is, the N downlink reference signals can include SSB1, At least one of SSB2, ..., SSB8.
  • Correspondence mode 1 M CG resources correspond to N downlink reference signals with "set" as the granularity.
  • the M CG resources belong to one or more sets of CG resources, wherein each CG resource may belong to and only belong to one set of CG resources.
  • Each set of CG resources may correspond to one or more downlink reference signals among the N downlink reference signals.
  • one downlink reference signal may also correspond to one or more sets of CG resources.
  • M CG resources belong to W sets of CG resources.
  • the W sets of CG resources may include the first set of CG resources, the second set of CG resources, and the third set of CG resources.
  • the M CG resources may include all the CG resources included in the first set of CG resources.
  • the N downlink reference signals include SSB1, SSB2, SSB3, and SSB4. Among them, SSB1 corresponds to transmit beam 1, SSB2 corresponds to transmit beam 2, SSB3 corresponds to transmit beam 3, and SSB4 corresponds to transmit beam 4, as shown in FIG. 10 .
  • the first set of CG resources may correspond to SSB1
  • the second set of CG resources may correspond to SSB2
  • the third set of CG resources may correspond to SSB3 and SSB4. It can be understood that all CG resources included in the first set of CG resources correspond to SSB1, all CG resources included in the second set of CG resources correspond to SSB2, and all CG resources included in the third set of CG resources correspond to SSB3 and SSB2.
  • M CG resources belong to W sets of CG resources.
  • the W set of CG resources may include a first set of CG resources, a second set of CG resources, and a third set of CG resources.
  • the first set of CG resources includes 2 CG resources in one cycle
  • the second set of CG resources includes 3 CG resources in one cycle
  • the third set of CG resources includes 3 CG resources in one cycle
  • a possible corresponding situation is: the first set of CG resources may correspond to SSB1, the second set of CG resources may correspond to SSB2, and the third set of CG resources may correspond to SSB3 and SSB4.
  • the 2 CG resources in each cycle of the first set of CG resources correspond to SSB1
  • the 3 CG resources in each cycle of the second set of CG resources correspond to SSB2
  • the third set of CG resources in each cycle The 3 CG resources of , all correspond to SSB3 and SSB4.
  • M CG resources correspond to N downlink reference signals with "period" as the granularity.
  • M CG resources are located in one or more periods, and each CG resource may be located in only one of the periods.
  • Each period may correspond to one or more downlink reference signals among the N downlink reference signals, and in addition, one downlink reference signal may correspond to one or more periods.
  • the M CG resources are located in multiple periods, which may mean that the M CG resources are located in multiple periods of a set of CG resources, that is, the M CG resources include CG resources located in multiple periods of the set of CG resources. .
  • M CG resources are located in period i, period i+1, and period i+2 of the set of CG resources, that is, the M CG resources include CG resources located in period i, period i+1, and period i+2, and i can be is a positive integer.
  • the N downlink reference signals include SSB1, SSB2, SSB3, and SSB4, where SSB1 corresponds to transmit beam 1, SSB2 corresponds to transmit beam 2, SSB3 corresponds to transmit beam 3, and SSB4 corresponds to transmit beam 4, as shown in FIG. 10 .
  • a possible corresponding situation is: period i corresponds to SSB1, period i+1 corresponds to SSB2, and period i+2 corresponds to SSB3 and SSB4. That is, all CG resources located in period i correspond to SSB1, all CG resources located in period i+1 correspond to SSB2, and all CG resources located in period i+3 correspond to SSB3 and SSB4.
  • the M CG resources are located in multiple periods, which may also mean that the M CG resources are located in multiple periods of multiple sets of CG resources.
  • M CG resources are located in one or more periods of the first set of CG resources (such as period i, period i+1, period i+2) and one or more periods of the second set of CG resources (such as period j, period j, period i+2) Period j+1, period j+2), that is, the M CG resources include CG resources located in one or more periods of the first set of CG resources and CG resources located in one or more periods of the second set of CG resources .
  • the N downlink reference signals include SSB1, SSB2, SSB3, and SSB4, where SSB1 corresponds to transmit beam 1, SSB2 corresponds to transmit beam 2, SSB3 corresponds to transmit beam 3, and SSB4 corresponds to transmit beam 4, as shown in FIG. 10 .
  • period i corresponds to SSB1, period i+1 corresponds to SSB2, and period i+2 corresponds to SSB3 and SSB4;
  • period j and period j+1 correspond to SSB1, period j+2 corresponds to SSB2, period j+3 corresponds to SSB3 and SSB4, and j may be a positive integer.
  • the period of the first set of CG resources and the period of the second set of CG resources may correspond to the downlink reference signals independently, for example, when the CG resources in the period i of the first set of CG resources and the second set of CG resources When the CG resources in the period j of the CG resources overlap in the time domain, the period i of the first set of CG resources and the period j of the second set of CG resources may correspond to the same SSB, or may correspond to different SSBs, which are not specifically limited.
  • the corresponding relationship shown in FIG. 12 enables the terminal device to have better flexibility in the selection of the period.
  • the M CG resources correspond to N downlink reference signals with a granularity of "number".
  • one or more CG resources in the M CG resources correspond to one or more downlink reference signals in the at least one downlink reference signal. That is, one CG resource may correspond to one or more downlink reference signals, and/or, one downlink reference signal may correspond to one or more CG resources.
  • the M CG resources may be M CG resources in a set of CG resources.
  • the N downlink reference signals include SSB1, SSB2, SSB3, and SSB4, where SSB1 corresponds to transmit beam 1, SSB2 corresponds to transmit beam 2, SSB3 corresponds to transmit beam 3, and SSB4 corresponds to transmit beam 4, as shown in FIG. 10 .
  • a possible corresponding situation is: as shown in FIG. 1)
  • the first CG resource corresponds to SSB1
  • the second CG resource corresponds to SSB2
  • the third CG resource corresponds to SSB3 and SSB4.
  • the corresponding relationship shown in FIG. 13 enables the terminal device to have better flexibility in the selection of CG resources.
  • the access network device may use one of the corresponding mode 1, the corresponding mode 2, and the corresponding mode 3 alone, or may also combine Two or three corresponding modes of corresponding mode 1, corresponding mode 2, and corresponding mode 3 are adopted.
  • the second set of CG resources, the M CG resources include the CG resources located in period i, period i+1, and period i+2 of the first set of CG resources, and those located in period j and period j+1 of the second set of CG resources CG resources.
  • the N downlink reference signals include SSB1, SSB2, SSB3, and SSB4.
  • a possible corresponding situation is: in the first set of CG resources, period i corresponds to SSB1, period i+1 corresponds to SSB2, and period i+2 corresponds to SSB3 and SSB4; in the second set of CG resources, period j
  • the first and second CG resources in cycle j correspond to SSB1
  • the third CG resource in cycle j corresponds to SSB2
  • the remaining CG resources in cycle j (such as the fourth, fifth, and sixth CG resources in cycle j) correspond to SSB3 and SSB4
  • all CG resources in period j+1 correspond to SSB1.
  • the terminal device enters an RRC disconnected state.
  • the terminal device may enter the RRC disconnected state.
  • the access network device may send an RRC connection release message to the terminal device, and then the terminal device may enter the RRC disconnected state after receiving the RRC connection release message.
  • the terminal device when the terminal device is in a weak coverage area, if the signal reception quality is poor and the RRC connection state cannot be maintained, the terminal device can actively enter the non-connected state.
  • the access network device sends P downlink reference signals, where the P downlink reference signals may include N downlink reference signals.
  • an SS burst set includes 4 SSBs, namely SSB1, SSB2, SSB3, and SSB4, then P can be equal to 4, and the P downlink reference signals include SSB1, SSB2, SSB3, and SSB4; N can be less than or equal to 4 A positive integer of , the N downlink reference signals include at least one of SSB1, SSB2, SSB3, and SSB4.
  • an SS burst set includes 8 SSBs, namely SSB1, SSB2, ..., SSB8, then P can be equal to 8, and the P downlink reference signals include SSB1, SSB2, ..., SSB8; N can be less than or a positive integer equal to 8, the N downlink reference signals include at least one of SSB1, SSB2, SSB3, and SSB4.
  • the terminal device receives the P downlink reference signals, and measures the P downlink reference signals.
  • the terminal device can obtain the measured values of the P downlink reference signals.
  • the measured value of each downlink reference signal may include at least one of the following: reference signal receiving power (reference signal receiving power, RSRP), reference signal receiving quality (reference signal receiving quality, RSRQ), and signal-to-interference-noise ratio (signal-to-interference-noise ratio). to interference plus noise ratio, SINR), there is no specific limitation.
  • the terminal device sends uplink data to the access network device on the CG resource corresponding to the downlink reference signal 1.
  • the terminal device determines that uplink data needs to be sent, it can select downlink reference signal 1 from the N downlink reference signals according to the measured values of the N downlink reference signals, and send uplink data on the CG resource corresponding to the downlink reference signal 1 .
  • the terminal device may select the downlink reference signal 1 from the N downlink reference signals according to the measured values of the N downlink reference signals in various ways. For example, the terminal device determines, according to the measured values of the N downlink reference signals, one or more downlink reference signals (such as downlink reference signal 1 and downlink reference signal 2) whose measurement value is greater than or equal to the first threshold among the N downlink reference signals. , and then select one of the downlink reference signals (eg, downlink reference signal 1) from these downlink reference signals; wherein, the first threshold can be set according to actual needs, which is not specifically limited. For another example, the terminal device selects the downlink reference signal (eg, downlink reference signal 1) with the largest measurement value from the N downlink reference signals according to the measurement values of the N downlink reference signals.
  • the terminal device selects the downlink reference signal (eg, downlink reference signal 1) with the largest measurement value from the N downlink reference signals according to the measurement values of the N downlink reference signals.
  • the access network device uses a corresponding receive beam to receive uplink data on the CG resource corresponding to the downlink reference signal 1.
  • the terminal device can send uplink data on the CG resource corresponding to SSB1, for example, select a CG resource from the first set of CG resources. (eg CG resource 1) to send uplink data.
  • a CG resource from the first set of CG resources. (eg CG resource 1) to send uplink data.
  • the access network device configures the CG resource for the terminal device, it can use the corresponding beam on the configured CG resource to try to receive, for example, the access network device can use the receiving beam 1' to try to receive on the CG resource 1, thereby Uplink data sent by terminal equipment can be received.
  • the receiving beam 1' and the transmitting beam 1 have a high degree of correlation.
  • the terminal device can send uplink data on the CG resource corresponding to SSB2, for example, select a CG resource (such as CG resource 2) from the second set of CG resources to send uplink data.
  • the access network device can use the receiving beam 2' to try to receive on the CG resource 2, so that it can receive the uplink data sent by the terminal device.
  • the receiving beam 2' and the transmitting beam 2 have a high degree of correlation, for example, the receiving beam 2' may be the same as or similar to the transmitting beam 2.
  • the terminal device can send uplink data on the CG resource corresponding to SSB3 (or SSB4), for example, select a CG resource (such as a CG resource) from the third set of CG resources. resource 3) to send uplink data.
  • the access network device can use the receiving beam 3' to try to receive it on the CG resource 3, so as to receive the uplink data sent by the terminal device; wherein, the receiving beam 3' has a high correlation with the transmitting beam 3 and the transmitting beam 4 Spend.
  • the access network device may also use the receive beam 3a' or the receive beam 3b' to receive uplink data on the CG resource 3; wherein the receive beam 3a' and the transmit beam 3 have a high degree of correlation, and the receive beam 3b' and the transmit beam 4 has a high degree of correlation.
  • the terminal device can send uplink data on the CG resource corresponding to SSB1, for example, select the CG from the period i of the first set of resources. resources to transmit uplink data, and/or select CG resources from period j and/or period j+1 of the second set of resources to transmit uplink data.
  • the access network device may use the receive beam 1' to attempt reception on the period i of the first set of resources, the period j of the second set of resources, and the period j+1 of the second set of resources. Other situations are similar to the description of FIG. 11 above, and are not repeated here.
  • the terminal device can send uplink data on the CG resource corresponding to SSB1, for example, select a certain period of the first set of resources.
  • the first CG resource sends uplink data.
  • the access network device may use the receive beam 1' to attempt to receive on the first CG resource of each period of the first set of resources. Other situations are similar to the description of FIG. 11 above, and are not repeated here.
  • the number of CG resources corresponding to different downlink reference signals among the N downlink reference signals may be the same or may be different.
  • the N downlink reference signals include downlink reference signal 1 and downlink reference signal 2, and the number of CG resources corresponding to downlink reference signal 1 and the number of CG resources corresponding to downlink reference signal 2 may be the same or different.
  • a service beam can be maintained between the terminal device and the access network device through the beam management process, and when the terminal device enters the RRC disconnected state, the terminal device is located in the coverage of the service beam.
  • the probability of being within range is greatest, and the probability of being within the coverage of other beams is less.
  • the serving beam is the beam corresponding to the downlink reference signal 1
  • the measured value of the downlink reference signal 1 obtained by the terminal equipment is usually the largest. Therefore, the number of CG resources corresponding to the downlink reference signal 1 may be set to be greater than or equal to the number of CG resources corresponding to other downlink reference signals in the N downlink reference signals. In this way, it is convenient for the terminal device to use the CG resource to send uplink data in the RRC disconnected state, and the air detection overhead of the access network device on the CG resource can be reduced.
  • the number of CG resources corresponding to the downlink reference signal may include at least one of the number of sets, the number of cycles, and the number of CG resources corresponding to the downlink reference signal, which is not specifically limited.
  • the access network equipment can configure the terminal equipment with M CG resources corresponding to N downlink reference signals, when the terminal equipment sends uplink data on the CG resource corresponding to a certain downlink reference signal, the access network equipment A corresponding receiving beam can be used to receive uplink data on the CG resource, thereby effectively improving the receiving performance of the access network device.
  • the access network device configures the M CG resources corresponding to the N downlink reference signals, the corresponding relationship can be configured according to various possible granularities, so that the terminal device has higher flexibility when selecting the CG resources. It is convenient for data transmission under RRC disconnection.
  • the access network device may configure the terminal device with M CG resources corresponding to N downlink reference signals.
  • the above-mentioned corresponding relationship configured by the access network device for the terminal device may be unreasonable, thereby affecting the data transmission of the terminal device in the RRC disconnected state.
  • the downlink reference signal sent by the access network device to the terminal device includes downlink reference signal 1 (corresponding to transmit beam 1), downlink reference signal 2 (corresponding to transmit beam 2), downlink reference signal 3 (corresponding to transmit beam 3) and Downlink reference signal 4 (corresponding to transmit beam 4).
  • the access network equipment configures M1 CG resources corresponding to downlink reference signal 1, M2 CG resources corresponding to downlink reference signal 2, M3 CG resources corresponding to downlink reference signal 3, and downlink reference signal 4 does not correspond to CG resources.
  • the terminal equipment in the T1 time period, the terminal equipment is located within the coverage of the transmit beam 1, and can then send uplink data to the access network equipment on the CG resource corresponding to the downlink reference signal 1; and in the T2 time period, the terminal equipment may move.
  • the terminal equipment will not be able to use the CG resources to send uplink data, thus affecting the data transmission of the terminal equipment in the RRC disconnected state.
  • the communication method provided in Embodiment 2 of the present application may include: the terminal device receives first configuration information from the access network device, where the first configuration information is used to configure M CG resources corresponding to N downlink reference signals; and, in After the terminal device enters the disconnected state, it can receive first reconfiguration information from the access network device, where the first reconfiguration information is used to update downlink reference signals corresponding to some or all of the M CG resources; wherein , where M and N are positive integers.
  • the access network device can send reconfiguration information to the terminal device to update the downlink reference signals corresponding to some or all of the M CG resources, so that the terminal device can move in the RRC disconnected state.
  • the corresponding relationship between CG resources and downlink reference signals is flexibly adjusted in time to ensure data transmission of the terminal equipment in the RRC disconnected state.
  • Embodiment 2 of the present application will be described in detail below with reference to FIG. 14 .
  • FIG. 14 is a schematic flowchart corresponding to the communication method provided in Embodiment 2 of the present application. As shown in FIG. 14 , the method includes:
  • the terminal device enters an RRC connection state.
  • the access network device sends first configuration information to the terminal device, where the first configuration information is used to configure the M CG resources corresponding to the N downlink reference signals.
  • the terminal device may receive the first configuration information from the access network device.
  • S1403 the terminal device enters an RRC disconnected state.
  • the access network device sends P downlink reference signals, where the P downlink reference signals may include N downlink reference signals.
  • the terminal device receives the P downlink reference signals, and measures the P downlink reference signals.
  • the terminal device sends the first information to the access network device according to the measured values of the P downlink reference signals.
  • the first information may be used to request to update the downlink reference signals corresponding to some or all of the M CG resources, or the first information may be used to request to update the correspondence between the CG resources and the downlink reference signals.
  • the first information may indicate measurement values of one or more downlink reference signals in the P downlink reference signals.
  • the first information may indicate an order of measurement values of one or more downlink reference signals in the P downlink reference signals.
  • the first information may indicate one or more downlink reference signals among the P downlink reference signals, the measurement value of the one or more downlink reference signals is greater than the measurement value of other reference signals, or the one or more downlink reference signals The measured values of the downlink reference signals are greater than or equal to the first threshold.
  • the P downlink reference signals include the first downlink reference signal and the second downlink reference signal, and also include other possible downlink reference signals.
  • the terminal device determines, according to the measured values of the P downlink reference signals, that the measured value of the second downlink reference signal is greater than the measured values of other downlink reference signals in the P reference signals (that is, the measured value of the second downlink reference signal in the P downlink reference signals). After the maximum), if it is determined that at least one of the following situations 1 and 2 is met, the first information may be sent to the access network device.
  • case 1 the second downlink reference signal has no corresponding CG resource, that is, the second downlink reference signal does not belong to the N downlink reference signals.
  • Scenario 2 The number of CG resources corresponding to the second downlink reference signal is small, for example, the number of CG resources corresponding to the second downlink reference signal is less than the number of CG resources corresponding to other reference signals in the N downlink reference signals.
  • the terminal device may be various specific manners for the terminal device to send the first information to the access network device. Three possible implementations are described below.
  • the terminal device may select the first downlink reference signal from the N downlink reference signals according to the measured values of the N downlink reference signals, and send the first information to the access network device on the CG resource corresponding to the first downlink reference signal .
  • the terminal device may also send uplink data to the access network device on the CG resource corresponding to the first reference signal.
  • the specific implementation of the terminal device selecting the first downlink reference signal from the N downlink reference signals may refer to the description in the first embodiment.
  • the first information may include a measurement value of the first downlink reference signal and a measurement value of the second downlink reference signal; or, the first information may include an index of the second downlink reference signal (that is, the P downlink reference signals) The index of the downlink reference signal with the largest measurement value in the signal); or, the first information may include the measurement values of P downlink reference signals.
  • the terminal device requests to update the corresponding relationship between the CG resource and the downlink reference signal in an explicit manner.
  • the access network device can indicate the correspondence between the SSB and the random access resource to the terminal device. Therefore, assuming that the downlink reference signal is an SSB as an example, the terminal device can use the random access resource corresponding to the second downlink reference signal according to the , initiate a random access process, and send first information to the access network device during the random access process. For example, the first information is carried in the first message, and the first message is used in the random access process or the first message is transmitted in the random access process. If the random access procedure is a two-step random access procedure, the first message may be MsgA; if the random access procedure is a four-step random access procedure, the first message may be Msg1 or Msg3. Optionally, the terminal device may also send uplink data to the access network device through the random access process, such as sending uplink data through MsgA or Msg3 in the random access process.
  • the first information may be a random access preamble, and in this case, it can be understood that the terminal device requests to update the correspondence between the CG resource and the downlink reference signal in an implicit manner.
  • the first information may include the measured values of P downlink reference signals, in which case it can be understood that the terminal device explicitly requests to update the correspondence between the CG resources and the downlink reference signals.
  • the terminal device may select the second downlink reference signal from the N downlink reference signals according to the measured values of the N downlink reference signals, and send the first information to the access network device on the CG resource corresponding to the second downlink reference signal.
  • the terminal device may also send uplink data to the access network device on the CG resource corresponding to the second reference signal.
  • the first information may include the measured values of the P downlink reference signals.
  • the terminal device explicitly requests to update the correspondence between the CG resources and the downlink reference signals.
  • the terminal device may send the PUCCH on the CG resource, the PUCCH includes the first information, and the PUCCH may be multiplexed in the PUSCH on the CG resource.
  • the terminal device may send a MAC control element (control element CE) on the CG resource, where the MAC CE includes the first information.
  • the terminal device may send an RRC message on the CG resource, where the RRC message includes the first information.
  • the access network device receives the first information, and sends the first reconfiguration information to the terminal device, where the first reconfiguration information is used for downlink reference signals corresponding to some or all of the M CG resources. to update.
  • the terminal device may receive the first reconfiguration information.
  • the first configuration information configures the first CG resource corresponding to the first downlink reference signal
  • the access network device receives the first information sent by the terminal device through the foregoing implementation manner 1, implementation manner 2, or implementation manner 3
  • the first reconfiguration information sent by the access network device can be used to configure the first CG resource corresponding to the second downlink reference signal.
  • the terminal device can update the CG resource corresponding to the first downlink reference signal to the CG resource corresponding to the second downlink reference signal.
  • the first reconfiguration information may also be used to configure the second CG resource to correspond to the first downlink reference signal.
  • the terminal device may also update the CG resource corresponding to the second downlink reference signal to the CG resource corresponding to the first downlink reference signal.
  • the access network device receives the first information sent by the terminal device through the foregoing implementation manner 1 or implementation manner 3, the first reconfiguration information may be carried in a DCI, MAC CE or RRC message.
  • the DCI may include second information, and the second information may include HARQ feedback information and/or scheduling information.
  • the HARQ feedback information is used to indicate whether the uplink data of the terminal device is successfully received (for example, the terminal device sends uplink data to the access network device, and then the access network device can inform the terminal device whether the uplink data is successfully received through the HARQ feedback information. ); the HARQ feedback information may be an acknowledgement (acknowledgement, ACK) or a negative acknowledgement (negative acknowledgement, NACK).
  • the scheduling information may be used to schedule subsequent uplink and downlink transmissions of the terminal device, for example, the scheduling information may be used to schedule the PUSCH or PDSCH of the terminal device.
  • the access network device receives the first information sent by the terminal device through the foregoing implementation manner 2, the first reconfiguration information may be carried in the second message, and the second message is used in the foregoing random access process or the second message is in the foregoing transmitted during random access.
  • the second message may be MsgB in the random access process, or may also be Msg2 or Msg4 in the random access process.
  • the first reconfiguration information is used to update the downlink reference signals corresponding to some CG resources in the M CG resources.
  • the first reconfiguration information may also be used to update downlink reference signals corresponding to all CG resources in the M CG resources.
  • the M CG resources include CG resource 1, CG resource 2, CG resource 3 and CG resource 4,
  • the N downlink reference signals include SSB1, SSB2, SSB3 and SSB4, and the first configuration information configures that CG resource 1 corresponds to SSB1 and CG resource 2 correspond to SSB2, CG resource 3 corresponds to SSB3, and CG resource 4 corresponds to SSB4.
  • the first reconfiguration information may include two bits, and the values of the two bits are used to indicate the number of cyclic shifts.
  • the content included in the first reconfiguration information can also refer to the content included in the first configuration information above.
  • the difference between the two is that the downlink reference signal corresponding to the CG resource configured in the first reconfiguration information It may be different from the downlink reference signal corresponding to the CG resource configured in the first configuration information.
  • the first configuration information configures the first CG resource corresponding to the first downlink reference signal
  • the access network device receives the first information sent by the terminal device through the above implementation manner 1 (that is, the terminal device is in the first After the first information sent on a CG resource)
  • the first reconfiguration information sent by the access network device may include the index of the second downlink reference signal, and the index of the second downlink reference signal indicates that the first CG resource (or The downlink reference signals corresponding to all CG resources corresponding to the first downlink reference signal) are updated to the second downlink reference signal.
  • the terminal device can request the access network device to update the corresponding relationship between the CG resource and the downlink reference signal by sending the first information, and then the access network device sends the first reconfiguration information to the terminal device according to the request of the terminal device, to update the correspondence between CG resources and downlink reference signals.
  • the access network device may also actively send the first reconfiguration information to update the correspondence between the CG resource and the downlink reference signal.
  • the terminal device may not need to send the first information to the access network device. For example, when the terminal device selects the second downlink reference signal and sends uplink data to the access network device on the CG resource corresponding to the second downlink reference signal, if the access network device determines the CG resource corresponding to the second downlink reference signal If the number is small, the first reconfiguration information may be actively sent to increase the CG resources corresponding to the second downlink reference signal.
  • the access network device can learn that the measured value of the second downlink reference signal is the largest or larger, and then can actively send the second downlink reference signal. A reconfiguration information to increase the CG resource corresponding to the second downlink reference signal.
  • the access network device after the access network device sends the first reconfiguration information to the terminal device, if the corresponding relationship between the CG resource and the downlink reference signal needs to be updated again later, it can also send the second reconfiguration information to the terminal device to update the CG. Correspondence between resources and downlink reference signals.
  • the access network device can send reconfiguration information to the terminal device to update the corresponding relationship between the CG resources and the downlink reference signal, when the terminal device moves in the RRC disconnected state, the CG resources can be adjusted flexibly in time
  • the corresponding relationship with the downlink reference signal enables the terminal device to have more CG resources to send uplink data after selecting the current downlink reference signal, so as to ensure data transmission of the terminal device in the RRC disconnected state.
  • the access network device may configure the terminal device with M CG resources corresponding to N downlink reference signals.
  • M CG resources corresponding to N downlink reference signals.
  • further research will be conducted on the HARQ process ID (HARQ process ID) corresponding to the CG resource.
  • Multiple HARQ processes may be used for data transmission between the terminal device and the access network device to support parallel transmission of multiple data packets. It should be noted that parallelism here is not equivalent to simultaneous transmission.
  • a HARQ process may include the entire process from initial transmission to the final receipt of ACK (that is, receiving the information that the receiver confirms the correct reception of the data packet), or includes the entire process from initial transmission to exceeding the maximum number of retransmissions, optionally, The two processes may include processes such as receiving NACK and sending retransmission.
  • This whole process can be marked with a HARQ process ID, so that since the HARQ process IDs of the initial transmission and the retransmission are the same, the relationship between the initially transmitted data packet and the retransmitted data packet can be established, which is convenient for the receiver to receive correctly.
  • HARQ process IDs of the initial transmission and the retransmission are the same, the relationship between the initially transmitted data packet and the retransmitted data packet can be established, which is convenient for the receiver to receive correctly.
  • the access network device may use DCI to schedule a PUSCH/PDSCH, and the DCI may include a field for indicating a HARQ process number. For example, 4 bits may be used to indicate the HARQ process ID (the HARQ process ID ranges from 0 to 15), marking the HARQ process ID of the data packet transmitted on the PUSCH/PDSCH.
  • the HARQ process ID the HARQ process ID ranges from 0 to 15
  • a method for determining the HARQ process number In order to determine the HARQ process number of the data packet according to the start time position (such as the start symbol) of the CG resource bearing the data packet. Specifically, the terminal device and the access network device can use the following formula to determine the HARQ process number of the data packet:
  • HARQ Process ID [floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2
  • CURRENT_symbol (SFN ⁇ numberOfSlotsPerFrame ⁇ numberOfSymbolsPerSlot+slot number in the frame ⁇ numberOfSymbolsPerSlot+symbol number in the slot)
  • the HARQ process IDs corresponding to the CG resources in one cycle are the same, and the HARQ process IDs corresponding to the CG resources in adjacent cycles may be different.
  • the access network device configures a set of CG resources for the terminal device and the corresponding relationship between the set of CG resources and the downlink reference signal, wherein the corresponding relationship between the set of CG resources and the downlink reference signal is:
  • SSB1 corresponds to period 1
  • SSB2 corresponds to period 2
  • SSB3 corresponds to period 3
  • SSB4 corresponds to period 4
  • SSB1 corresponds to period 5
  • SSB2 corresponds to period 6
  • SSB3 corresponds to period 7
  • SSB4 corresponds to period 8, and so on.
  • each system frame includes 10 time slots, each time slot includes 14 symbols, the length of each cycle is 1 time slot, and the system frame number where the first CG resource in cycle 1 is located is 0.
  • the time slot is time slot 0, the starting symbol is symbol 0, the total number of HARQ processes is 16, and the value of harq-ProcID-Offset2 is 0.
  • the corresponding HARQ process number can be obtained as:
  • the corresponding HARQ process number can be obtained as:
  • the corresponding HARQ process number can be obtained as:
  • the corresponding HARQ process number can be obtained as:
  • the HARQ process number corresponding to the CG resource may be obtained according to the first offset, and the first offset may be obtained according to The downlink reference signal corresponding to the CG resource is determined.
  • the first offset may be configured by the access network device for the downlink reference signal corresponding to the CG resource.
  • the HARQ process ID corresponding to the CG resource can be determined by the following formula:
  • HARQ Process ID [floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2+harq-ProcID-offset-forSSB-n
  • harq-ProcID-offset-forSSB-n is the first offset.
  • offset 1, offset 2, offset 3, and offset 4 are introduced.
  • offset 2 can be determined according to SSB2
  • the uplink data can be sent on the CG resource, or the uplink data can be sent on the CG resource corresponding to SSB4, thereby increasing the number of CG resources corresponding to a certain HARQ process number, that is, increasing the selection opportunity of the terminal device and reducing the transmission of uplink data. time delay.
  • the terminal device when the terminal device uses a HARQ process to send the initial transmission data packet and does not receive an ACK fed back by the access network device, the terminal device can use the HARQ process to retransmit one or more times.
  • the access network device may send second configuration information to the terminal device, and the second configuration information is used to configure the maximum number of HARQ processes corresponding to the HARQ process number. The valid duration of the HARQ process corresponding to the number of retransmissions and/or the HARQ process ID.
  • the access network device may send the second configuration information to the terminal device, which is not limited in this embodiment of the present application.
  • the access network device may send the first configuration information and the terminal device through the same message. second configuration information.
  • the terminal device finds that the number of retransmissions of the HARQ process corresponding to the HARQ process number reaches the maximum number of retransmissions or the duration of the HARQ process corresponding to the HARQ process number reaches the effective duration, it can discard the HARQ process number.
  • the terminal device may initiate a random access procedure to the access network device to enter the RRC connected state, or perform data transmission based on random access.
  • Embodiment 1 and Embodiment 2 above may be implemented independently, and Embodiment 3 may be implemented in combination with Embodiment 1, or may also be implemented in combination with Embodiment 2.
  • step numbers of the flowcharts described in Embodiment 1 and Embodiment 2 are only an example of the execution process, and do not constitute a restriction on the sequence of execution of the steps, and there is no sequence in the embodiments of the present application. There is no strict order of execution between the steps of a dependency. In addition, not all the steps shown in each flowchart are steps that must be executed, and some steps may be added or deleted on the basis of each flowchart according to actual needs.
  • the terminal device may include corresponding hardware structures and/or software modules for executing each function.
  • the embodiments of the present application can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the terminal device may be divided into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • FIG. 16 shows a possible exemplary block diagram of the apparatus involved in the embodiment of the present application.
  • the apparatus 1600 may include: a processing unit 1602 and a communication unit 1603 .
  • the processing unit 1602 is used to control and manage the actions of the device 1600 .
  • the communication unit 1603 is used to support the communication between the apparatus 1600 and other devices.
  • the communication unit 1603 is also referred to as a transceiving unit, and may include a receiving unit and/or a sending unit, which are respectively configured to perform receiving and sending operations.
  • the apparatus 1600 may also include a storage unit 1601 for storing program codes and/or data of the apparatus 1600 .
  • the apparatus 1600 may be the terminal device in the foregoing embodiment, or may also be a chip provided in the terminal device.
  • the processing unit 1602 can support the apparatus 1600 to perform the actions of the terminal device in each method example above.
  • the processing unit 1602 mainly performs the internal actions of the terminal device in the method example, and the communication unit 1603 may support the communication between the apparatus 1600 and other devices.
  • the communication unit 1603 is configured to receive first configuration information from an access network device, where the first configuration information is used to configure M configuration authorized CG resources corresponding to N downlink reference signals, and M CG resources
  • the resource is used for the terminal device to send uplink information in the disconnected state; and, after the terminal device enters the disconnected state, it receives the first reconfiguration information from the access network device, and the first reconfiguration information is used for M CG resources
  • the downlink reference signals corresponding to some or all of the CG resources are updated; wherein, M and N are positive integers.
  • the apparatus 1600 may be the access network device in the foregoing embodiment, or may also be a chip provided in the access network device.
  • the processing unit 1602 may support the apparatus 1600 to perform the actions of the access network device in each method example above.
  • the processing unit 1602 mainly performs the internal actions of the access network device in the method example, and the communication unit 1603 may support the communication between the apparatus 1600 and other devices.
  • the communication unit 1603 is configured to: send first configuration information to the terminal device, where the first configuration information is used to configure M configuration authorized CG resources corresponding to N downlink reference signals, and the M CG resources are used for When the terminal device is in the disconnected state, it receives the uplink information from the terminal device; and, after the terminal device enters the disconnected state, it sends first reconfiguration information to the terminal device, where the first reconfiguration information is used to update the M CG resources
  • the downlink reference signals corresponding to some or all of the CG resources are updated; wherein, M and N are positive integers.
  • each unit in the above apparatus can be realized in the form of software calling through the processing element; also can all be realized in the form of hardware; some units can also be realized in the form of software calling through the processing element, and some units can be realized in the form of hardware.
  • each unit can be a separately established processing element, or can be integrated in a certain chip of the device to be implemented, and can also be stored in the memory in the form of a program, which can be called by a certain processing element of the device and execute the unit's processing. Function.
  • each operation of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in the processor element or implemented in the form of software being invoked by the processing element.
  • a unit in any of the above apparatuses may be one or more integrated circuits configured to implement the above methods, eg, one or more application specific integrated circuits (ASICs), or, one or more Multiple microprocessors (digital singnal processors, DSPs), or, one or more field programmable gate arrays (FPGAs), or a combination of at least two of these integrated circuit forms.
  • ASICs application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs field programmable gate arrays
  • a unit in the apparatus can be implemented in the form of a processing element scheduler
  • the processing element can be a processor, such as a general-purpose central processing unit (CPU), or other processors that can invoke programs.
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the above unit for receiving is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • FIG. 17 is a schematic structural diagram of a terminal device provided by an embodiment of the present application, which may be the terminal device in the above embodiment, and is used to implement operations of the terminal device in the above embodiment.
  • the terminal device includes: an antenna 1710 , a radio frequency part 1720 , and a signal processing part 1730 .
  • the antenna 1710 is connected to the radio frequency part 1720 .
  • the radio frequency part 1720 receives the information sent by the network device through the antenna 1710, and sends the information sent by the network device to the signal processing part 1730 for processing.
  • the signal processing part 1730 processes the information of the terminal equipment and sends it to the radio frequency part 1720
  • the radio frequency part 1720 processes the information of the terminal equipment and sends it to the network equipment through the antenna 1710.
  • the signal processing part 1730 may include a modulation and demodulation subsystem, which is used to implement the processing of each communication protocol layer of the data; it may also include a central processing subsystem, which is used to implement the processing of the terminal device operating system and the application layer; in addition, it can also Including other subsystems, such as multimedia subsystem, peripheral subsystem, etc., wherein the multimedia subsystem is used to realize the control of the terminal equipment camera, screen display, etc., and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be a separate chip.
  • the modem subsystem may include one or more processing elements 1731, including, for example, a host CPU and other integrated circuits.
  • the modulation and demodulation subsystem may also include a storage element 1732 and an interface circuit 1733 .
  • the storage element 1732 is used to store data and programs, but the program used to execute the method performed by the terminal device in the above method may not be stored in the storage element 1732, but in a memory outside the modulation and demodulation subsystem, When used, the modem subsystem is loaded for use.
  • Interface circuitry 1733 is used to communicate with other subsystems.
  • the modulation and demodulation subsystem can be implemented by a chip, and the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute each step of any one of the methods performed by the above terminal equipment, and the interface circuit is used to communicate with other devices.
  • the unit for the terminal device to implement each step in the above method may be implemented in the form of a processing element scheduler.
  • an apparatus for a terminal device includes a processing element and a storage element, and the processing element calls the program stored in the storage element to Execute the method executed by the terminal device in the above method embodiments.
  • the storage element may be a storage element in which the processing element is on the same chip, that is, an on-chip storage element.
  • the program for executing the method performed by the terminal device in the above method may be in a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads the program from the off-chip storage element to the on-chip storage element, so as to call and execute the method performed by the terminal device in the above method embodiments.
  • the unit for the terminal device to implement each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the modulation and demodulation subsystem, and the processing element here may be an integrated circuit, For example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form chips.
  • the units of the terminal device implementing each step in the above method may be integrated together and implemented in the form of an SOC, and the SOC chip is used to implement the above method.
  • At least one processing element and a storage element may be integrated in the chip, and the method executed by the above terminal device may be implemented in the form of a program stored in the storage element being invoked by the processing element; or, at least one integrated circuit may be integrated in the chip to implement the above terminal.
  • the above apparatus for a terminal device may include at least one processing element and an interface circuit, where the at least one processing element is configured to execute any method performed by the terminal device provided in the above method embodiments.
  • the processing element can execute part or all of the steps performed by the terminal device in the first way: by calling the program stored in the storage element; or in the second way: by combining the instructions with the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the terminal device may be performed in the manner of the first method; of course, some or all of the steps performed by the terminal device may also be performed in combination with the first manner and the second manner.
  • the processing elements here are the same as those described above, which may be implemented by a processor, and the functions of the processing elements may be the same as those of the processing unit described in FIG. 16 .
  • the processing element may be a general-purpose processor, such as a CPU, or may be one or more integrated circuits configured to implement the above methods, such as: one or more ASICs, or, one or more microprocessors, DSPs , or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element may be implemented by a memory, and the function of the storage element may be the same as that of the storage unit described in FIG. 16 .
  • the storage element may be implemented by a memory, and the function of the storage element may be the same as that of the storage unit described in FIG. 16 .
  • the storage element can be one memory or a collective term for multiple memories.
  • the terminal device shown in FIG. 17 can implement each process involving the terminal device in the foregoing method embodiments.
  • the operations and/or functions of each module in the terminal device shown in FIG. 17 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • Access network equipment 180 may include one or more DUs 1801 and one or more CUs 1802.
  • the DU 1801 may include at least one antenna 18011, at least one radio frequency unit 18012, at least one processor 18013 and at least one memory 18014.
  • the DU 1801 part is mainly used for the transmission and reception of radio frequency signals, the conversion of radio frequency signals and baseband signals, and part of baseband processing.
  • the CU 1802 may include at least one processor 18022 and at least one memory 18021 .
  • the CU 1802 part is mainly used to perform baseband processing, control access network equipment, and the like.
  • the DU 1801 and the CU 1802 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the CU 1802 is the control center of the access network equipment, which can also be called a processing unit, and is mainly used to complete the baseband processing function.
  • the CU 1802 may be used to control the access network device to perform the operation flow of the access network device in the foregoing method embodiments.
  • the access network device 180 may include one or more radio frequency units, one or more DUs, and one or more CUs.
  • the DU may include at least one processor 18013 and at least one memory 18014
  • the radio unit may include at least one antenna 18011 and at least one radio frequency unit 18012
  • the CU may include at least one processor 18022 and at least one memory 18021.
  • the CU1802 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as a 5G network) with a single access indication, or may respectively support wireless access systems of different access standards.
  • Access network (such as LTE network, 5G network or other network).
  • the memory 18021 and the processor 18022 can serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the DU1801 can be composed of one or more single boards.
  • Multiple single boards can jointly support a wireless access network (such as a 5G network) with a single access indication, or can support a wireless access network with different access standards (such as a 5G network). LTE network, 5G network or other network).
  • the memory 18014 and processor 18013 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the access network device shown in FIG. 18 can implement each process involving the access network device in the foregoing method embodiments.
  • the operations and/or functions of each module in the access network device shown in FIG. 18 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种通信方法及装置,其中方法包括:终端设备接收来自接入网设备的第一配置信息,第一配置信息用于配置M个CG资源对应N个下行参考信号,M个CG资源用于终端设备在非连接态时发送上行信息;在终端设备进入非连接态后,接收来自接入网设备的第一重配置信息,第一重配置信息用于对M个CG资源中的部分或全部CG资源对应的下行参考信号进行更新。采用上述方式,通过配置M个CG资源对应N个下行参考信号,能够有效提高接入网设备的接收性能。通过第一重配置信息更新CG资源与下行参考信号的对应关系,从而当终端设备在RRC非连接态下移动时,能够及时灵活地调整该对应关系,以保证终端设备在RRC非连接态时的数据传输。

Description

一种通信方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种通信方法及装置。
背景技术
在第五代(the 5th generation,5G)通信系统中,终端设备存在三种无线资源控制(radio resource control,RRC)状态,分别为RRC连接(RRC-connected)态、RRC空闲(RRC-idle)态和RRC非激活(RRC-inactive)态。其中,RRC连接态的终端设备可以和接入网设备进行数据传输,而RRC非激活态(或RRC空闲态)的终端设备想要与接入网设备进行数据传输时,需要先完成多次信息交互以进入连接态。也就是说,RRC非激活态的终端设备需要先进入RRC连接态,进而与接入网设备进行数据传输。
为了降低RRC非激活态的终端设备的功耗,目前提供了针对小包数据传输场景的方案,即终端设备可以在RRC非激活态时向接入网设备发送上行数据,而无需进入RRC连接态之后再发送上行数据。然而,针对于小包数据传输场景的方案,仍需进一步的研究,以提高接入网设备接收小包数据的接收性能。
发明内容
本申请提供了一种通信方法及装置,用于提高接入网设备接收终端设备在CG资源上发送的上行数据的接收性能。
第一方面,本申请实施例提供一种通信方法,该方法用于实现终端设备侧的功能,例如该方法可以应用于终端设备或者终端设备中的芯片,本申请实施例不限该方法的具体的执行主体。以该方法应用于终端设备为例,在该方法中,终端设备接收来自接入网设备的第一配置信息,第一配置信息用于配置M个CG资源对应N个下行参考信号。可选的,终端设备在非连接态时,可以根据第一配置信息在CG资源上发送上行信息。该上行信息可以是PUSCH和/或PUCCH上携带的信息。
采用上述方式,接入网设备可以为终端设备配置M个CG资源对应N个下行参考信号,因此,当终端设备在某个下行参考信号对应的CG资源上发送上行数据(比如小包数据)时,接入网设备可以采用相应的接收波束在该CG资源上接收上行数据,从而能够有效提高接入网设备接收上行数据的接收性能。
在一种可能的设计中,终端设备进入非连接态后,还可以接收来自接入网设备的第一重配置信息,第一重配置信息用于对M个CG资源中的部分或全部CG资源对应的下行参考信号进行更新;其中,M、N为正整数。可选的,第一重配置信息可以承载于DCI、MACCE或RRC消息;或者,第一重配置信息也可以承载于随机接入过程中传输的消息,比如两步随机接入过程中的MsgB,或者四步随机接入过程中的Msg2或Msg4。
采用上述方式,接入网设备可以向终端设备发送第一重配置信息,来更新CG资源与下行参考信号的对应关系,从而当终端设备在RRC非连接态下移动时,能够及时灵活地调整CG资源与下行参考信号的对应关系,使得终端设备在选择当前下行参考信号后,能够有更多的CG资源来发送上行数据,以保证终端设备在RRC非连接态时的数据传输。
在一种可能的设计中,当第一重配置信息承载于DCI时,该DCI还可以包括第二信息,所述第二信息包括HARQ反馈信息和/或调度信息;所述HARQ反馈信息用于指示所述终端设备的上行数据是否被成功接收,所述调度信息用于调度所述终端设备的PUSCH或PDSCH。可选的,所述上行信息包括所述上行数据。
在一种可能的设计中,M个CG资源对应N个下行参考信号,包括以下至少一项:所述M个CG资源属于一套或多套CG资源,每个CG资源属于其中一套CG资源,每套CG资源对应所述N个下行参考信号中的一个或多个下行参考信号;所述M个CG资源位于一个或多个周期,每个CG资源位于其中一个周期,每个周期对应所述N个下行参考信号中的一个或多个下行参考信号;所述M个CG资源中的一个或多个CG资源对应所述至少一个下行参考信号中的一个或多个下行参考信号。
采用上述方式,接入网设备在配置M个CG资源对应N个下行参考信号时,可以按照多种可能的粒度(比如将CG资源按照“套”、“周期”、“个”等粒度)来配置该对应关系,使得对应关系较为灵活,进而终端设备在选择CG资源时也具有较高的灵活性,便于RRC非连接下的数据传输。
在一种可能的设计中,M个CG资源属于W套CG资源,所述W套CG资源中包括第一套CG资源,所述第一配置信息包括以下至少一项:所述第一套CG资源对应的下行参考信号的类型、所述第一套CG资源对应的下行参考信号的标识和下行参考信号的测量阈值(比如第一阈值)。其中,当一个下行参考信号的测量值大于或等于第一阈值时,终端设备可以使用该下行参考信号对应的CG资源发送上行数据。
在一种可能的设计中,所述方法还包括:接收来自接入网设备的P个下行参考信号,P个下行参考信号包括N个下行参考信号;其中,P为正整数,P大于或等于N;进而,根据P个下行参考信号的测量值,向接入网设备发送第一信息。此处,第一信息可以用于请求更新CG资源与下行参考信号的对应关系。
采用上述方式,终端设备可以主动请求接入网设备更新CG资源与下行参考信号的对应关系;比如,接入网设备可以在接收到第一信息后,根据第一信息更新该对应关系,若未接收到第一信息,则可以暂不更新该对应关系。
在一种可能的设计中,N个下行参考信号包括第一下行参考信号;所述方法还包括:在第一下行参考信号对应的CG资源上,向接入网设备发送第一信息。
在一种可能的设计中,所述方法还包括:在第一下行参考信号对应的CG资源上,向接入网设备发送上行数据。
采用上述方式,终端设备可以在第一下行参考信号对应的CG资源一起发送第一信息和上行数据,从而能够更加充分地利用CG资源。
在一种可能的设计中,在第一下行参考信号对应的CG资源上,向接入网设备发送第一信息之前,所述方法还包括:根据N个下行参考信号的测量值,从N个下行参考信号中选择第一下行参考信号;其中,第一下行参考信号的测量值大于或等于第一阈值;或者,第一下行参考信号的测量值大于或等于N个下行参考信号中其它下行参考信号的测量值。
在一种可能的设计中,P个下行参考信号包括第二下行参考信号,第二下行参考信号的测量值大于第一下行参考信号的测量值;第一信息包括第一下行参考信号的测量值和第二下行参考信号的测量值;或者,第一信息包括第二下行参考信号的索引;或者,第一信息包括P个下行参考信号的测量值。
在一种可能的设计中,M个CG资源包括第一CG资源,第一配置信息用于配置第一CG资源以及第一CG资源对应第一下行参考信号;第一重配置信息用于配置第一CG资源对应第二下行参考信号。
在一种可能的设计中,M个CG资源还包括第二CG资源,第一配置信息用于配置所述第二CG资源以及第二CG资源对应第二下行参考信号;第一重配置信息还用于配置第二CG资源对应第一下行参考信号。
在一种可能的设计中,P个下行参考信号包括第三下行参考信号;所述方法还包括:根据所述第三下行参考信号对应的随机接入资源,发起随机接入过程;第一信息承载于第一消息,第一消息用于所述随机接入过程。
在一种可能的设计中,M个CG资源包括第三CG资源,第一配置信息用于配置第三CG资源以及第三CG资源对应第四下行参考信号;第一重配置信息用于配置第三CG资源对应第三下行参考信号。
在一种可能的设计中,M个CG资源还包括第四CG资源,第一配置信息用于配置所述第四CG资源以及第四CG资源对应第三下行参考信号;所述第一重配置信息还用于配置第四CG资源对应第四下行参考信号。
在一种可能的设计中,M个CG资源包括第五CG资源,第五CG资源对应的HARQ进程号是根据第一偏置量得到的,第一偏置量是根据第五CG资源对应的下行参考信号确定的。
采用上述方式,由于CG资源对应的HARQ进程号与该CG资源对应的下行参考信号相关,从而便于增加某个HARQ进程号对应的CG资源的数量,即增加终端设备的选择机会,降低上行数据的传输时延。
在一种可能的设计中,所述方法还包括:接收来自所述接入网设备的第二配置信息,第二配置信息用于配置所述HARQ进程号对应的HARQ进程的最大重传次数和/或所述HARQ进程号对应的HARQ进程的有效时长。
采用上述方式,能够有效避免终端设备在HARQ进程号对应的HARQ进程进行过多重传而造成资源浪费。
第二方面,本申请实施例提供一种通信方法,该方法用于实现接入网设备侧的功能,例如可以应用于接入网设备或者接入网设备中的芯片,本申请实施例不限该方法的具体的执行主体。以该方法应用于接入网设备为例,在该方法中,接入网设备向终端设备发送第一配置信息,第一配置信息用于配置M个配置授权CG资源对应N个下行参考信号,M个CG资源用于当终端设备在非连接态时从终端设备接收上行信息;在终端设备进入非连接态后,接入网设备可以根据第一配置信息在CG资源上接收上行信息。
在一种可能的设计中,终端设备在非连接态时,接入网设备可以向终端设备发送第一重配置信息,第一重配置信息用于对M个CG资源中的部分或全部CG资源对应的下行参考信号进行更新;其中,M、N为正整数。
关于M个配置授权CG资源对应N个下行参考信号、以及第一重配置信息等的介绍请参见第一方面,此处不再赘述。
在一种可能的设计中,向终端设备发送第一重配置信息,包括:接收来自所述终端设备的第一信息;根据第一信息,向所述终端设备发送第一重配置信息。
在一种可能的设计中,N个下行参考信号包括第一下行参考信号;所述方法还包括:在第一下行参考信号对应的CG资源上,接收来自所述终端设备的第一信息。
在一种可能的设计中,所述方法还包括:在第一下行参考信号对应的CG资源上,接收来自所述终端设备的上行数据。
在一种可能的设计中,第一下行参考信号的测量值大于或等于第一阈值;或者,第一下行参考信号的测量值大于或等于N个下行参考信号中其它下行参考信号的测量值。
在一种可能的设计中,所述方法还包括:发送P个下行参考信号,P个下行参考信号包括N个下行参考信号;其中,P为正整数,P大于或等于N;P个下行参考信号包括第二下行参考信号;第一信息包括第一下行参考信号的测量值和第二下行参考信号的测量值,第二下行参考信号的测量值大于第一下行参考信号的测量值;或者,第一信息包括第二下行参考信号的索引;或者,第一信息包括P个下行参考信号的测量值。
在一种可能的设计中,M个CG资源包括第一CG资源,第一配置信息用于配置第一CG资源以及第一CG资源对应第一下行参考信号;第一重配置信息用于配置第一CG资源对应第二下行参考信号。
在一种可能的设计中,M个CG资源还包括第二CG资源,第一配置信息用于配置第二CG资源以及第二CG资源对应第二下行参考信号;第一重配置信息还用于配置第二CG资源对应第一下行参考信号。
在一种可能的设计中,所述方法还包括:发送P个下行参考信号,P个下行参考信号包括N个下行参考信号;其中,P为正整数,P大于或等于N;P个下行参考信号包括第三下行参考信号;第一信息承载于第一消息,第一消息用于随机接入过程,用于承载第一消息的资源为第三下行参考信号对应的随机接入资源。
在一种可能的设计中,M个CG资源包括第三CG资源,第一配置信息用于配置第三CG资源以及第三CG资源对应第四下行参考信号;第一重配置信息用于配置第三CG资源对应第三下行参考信号。
在一种可能的设计中,M个CG资源还包括第四CG资源,第一配置信息用于配置第四CG资源以及第四CG资源对应第三下行参考信号;第一重配置信息还用于配置第四CG资源对应第四下行参考信号。
在一种可能的设计中,M个CG资源包括第五CG资源,第五CG资源对应的HARQ进程号是根据第一偏置量得到的,第一偏置量是根据第五CG资源对应的下行参考信号确定的。
在一种可能的设计中,所述方法还包括:向终端设备发送第二配置信息,第二配置信息用于配置所述HARQ进程号对应的HARQ进程的最大重传次数和/或所述HARQ进程号对应的HARQ进程的有效时长。
需要说明的是,上述第二方面所描述的方法与第一方面所描述的方法相对应,第二方面所描述的方法中相关技术特征的有益效果可以参见第一方面的描述,具体不再赘述。
第三方面,本申请实施例提供一种通信装置,所述通信装置可以为终端设备或者能够设置于终端设备内部的芯片。所述通信装置具备实现上述第一方面的功能,比如,所述通信装置包括执行上述第一方面涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元和通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于接收来自接入网设备的配置信息;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第一方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器利用所述收发器,以完成上述第一方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,所述存储器可以保存实现上述第一方面涉及的功能的计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第一方面涉及的功能的计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面任意可能的设计或实现方式中的方法。
第四方面,本申请实施例提供一种通信装置,所述通信装置可以为接入网设备或者能够设置于接入网设备内部的芯片。所述通信装置具备实现上述第二方面的功能,比如,所述通信装置包括执行上述第二方面涉及操作所对应的模块或单元或手段,所述模块或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于接收来自终端设备的上行信息;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第二方面涉及的操作相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器利用所述收发器,以完成上述第二方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,所述存储器可以保存实现上述第二方面涉及的功能的计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第二方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器,处理器可以用于与存储器耦合。所述存储器可以保存实现上述第二方面涉及的功能的计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第二方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和接口电路,其中,处理器用于通过所述接口电路与其它装置通信,并执行上述第二方面任意可能的设计或实现方式中的方法。
可以理解地,上述第三方面或第四方面中,处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。此外,以上处理器可以为一个或多个,存储器可以为一个或多个。存储器可以与处理器集成在一起,或者存储器与处理器分离设置。在具体实现过程中,存储器可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第五方面,本申请实施例提供一种通信系统,该通信系统包括上述第三方面所述的通 信装置和上述第四方面所述的通信装置。
第六方面,本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面或第二方面的任一种可能的设计中的方法。
第七方面,本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面或第二方面的任一种可能的设计中的方法。
第八方面,本申请实施例提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面或第二方面的任一种可能的设计中的方法。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1至图3为本申请实施例适用的网络架构示意图;
图4为本申请实施例提供的终端设备在3种RRC状态中进行转换的示例图;
图5为本申请实施例提供的SSB示意图;
图6为本申请实施例提供的同步突发集示意图;
图7为本申请实施例提供的SSB与RO的对应关系示例图;
图8为本申请实施例提供的两种随机接入过程示意图;
图9为本申请实施例一提供的通信方法所对应的流程示意图;
图10为本申请实施例提供的SSB对应的波束示意图;
图11至图13为本申请实施例提供的CG资源与下行参考信号的对应情形示意图;
图14为本申请实施例二提供的通信方法所对应的流程示意图;
图15为本申请实施例提供的CG资源与下行参考信号的对应关系示意图;
图16为本申请实施例中所涉及的装置的可能的示例性框图;
图17为本申请实施例提供的一种终端设备的结构示意图;
图18为本申请实施例提供的一种接入网设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例提供的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、无线保真(wireless-fidelity,WiFi)系统、未来的通信系统、或者多种通信系统融合的系统等,本申请实施例不做限定。其中,5G还可以称为新无线(new radio,NR)。
本申请实施例提供的技术方案可以应用于通信设备间的通信。通信设备间的通信可以包括但不限于:接入网设备和终端设备间的通信、接入网设备和接入网设备间的通信、和/或终端设备和终端设备间的通信。在本申请实施例中,术语“通信”还可以描述为“传输”、“信息传输”、“数据传输”、或“信号传输”等。传输可以包括发送和/或接收。以接入网设备和终端设备间的通信为例描述本申请实施例的技术方案,本领域技术人员也可以将该技术方案用于进行其它调度实体和从属实体间的通信,例如宏基站和微基站之间的通信,例如 第一终端设备和第二终端设备间的通信。其中,调度实体可以为从属实体分配无线资源,例如空口资源。
首先,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)终端设备:可以简称为终端,是能够与接入网设备进行无线通信的无线终端设备,例如它可以接收接入网设备的调度信息和指示信息。无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或其他处理设备。终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网或者互联网进行通信。
终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)。其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中或者与终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
(2)接入网设备:可以是无线网络中的设备,例如接入网设备可以是将终端设备接入到无线网络的RAN节点,又可以称为RAN设备或基站。一些接入网设备的举例为:下一代基站(generation Node B,gNodeB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(base band unit,BBU)、或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。在一种网络结构中,接入网设备可以是集中单元(centralized unit,CU)节点、分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的接入网设备。在其它可能的情况下,接入网设备可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对接入网设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请实施例中,为终端设备提供无线通信功能的装置称为接入网设备。本申请实施例中,用于实现接入网设备的功能的装置可以是接入网设备;也可以是能够支持接入网设备实现该功能的装置,例如芯片系统,该装置可以被安装在接入网设备中或者与接入网设备匹配使用。以用于实现接入网设备的功能的装置是接入网设备为例,描述本申请实施例提供的技术方案。
(3)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个) 的任意组合。例如“A,B和C中的至少一个”包括A,B,C,A和B,A和C,B和C,或A、B和C。除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的个数、顺序、时序、优先级或者重要程度。
图1为本申请实施例适用的一种网络架构示意图。如图1所示,终端设备可接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它设备通信,如可以与其它终端设备通信。该无线网络包括RAN和核心网(core network,CN),其中,RAN用于将终端设备(比如终端设备1301或终端设备1302)接入到无线网络,CN用于对终端设备进行管理并提供与外网通信的网关。
RAN中可以包括一个或多个接入网设备,比如接入网设备1101和接入网设备1102。
CN中可以包括一个或多个CN设备,比如CN设备120。当图1所示的网络架构适用于5G通信系统时,CN中可以包括接入和移动性管理功能(access and mobility management function,AMF)实体、会话管理功能(session management function,SMF)实体和用户面功能(user plane function,UPF)实体。
应理解,图1所示的通信系统中各个设备的数量仅作为示意,本申请实施例并不限于此,实际应用中在通信系统中还可以包括更多的终端设备、更多的接入网设备,还可以包括其它设备。
图2为本申请实施例适用的又一种网络架构示意图。如图2所示,该网络架构包括CN设备、接入网设备和终端设备。其中,接入网设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成在基带装置中,或者部分功能独立集成、部分功能集成在基带装置中。例如,在LTE通信系统中,接入网设备包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置,例如射频拉远单元(remote radio unit,RRU)是相对于BBU布置的远端无线单元。
接入网设备和终端设备之间的通信遵循一定的协议层结构,例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层等协议层的功能。用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种可能的实现中,用户面协议层结构的PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
接入网设备可以由一个节点实现RRC层、PDCP层、RLC层、MAC层和物理层等协议层的功能,或者可以由多个节点实现这些协议层的功能。例如,在一种演进结构中,接入网设备可以包括CU和DU,多个DU可以由一个CU集中控制。如图2所示,CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层、MAC层和物理层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方 式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以独立集成,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
图3为本申请实施例适用的又一种网络架构示意图。相对于图2所示的网络架构,图3中还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面(control plane,CP)CU实体(即CU-CP实体)和用户面(user plane,UP)CU实体(即CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端设备,或者终端设备产生的信令可以通过DU递交给CU。例如,RRC层或PDCP层的信令最终会处理为PHY层的信令发送给终端设备,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频装载发送的。
上述图1、图2或图3所示意的网络架构可以适用于各种无线接入技术(radio access technology,RAT)的通信系统中,例如可以是4G通信系统,或者可以是5G通信系统,或者可以是4G通信系统与5G通信系统之间的过渡系统,该过渡系统也可以称为4.5G通信系统,当然也可以是未来的通信系统。本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请以下实施例中的装置,根据其实现的功能,可以位于终端设备或接入网设备。当采用以上CU-DU的结构时,接入网设备可以为CU、或DU、或包括CU和DU的接入网设备。
下面先对本申请实施例所涉及的相关技术特征进行解释说明。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
一、终端设备的RRC状态
在图1、图2或图3所示意的网络架构中,终端设备可以和接入网设备进行RRC连接建立过程,当和接入网设备建立了RRC连接后,该终端设备的RRC状态即为RRC连接态。随后,终端设备的RRC状态可以在以下状态中进行转换:RRC空闲态、RRC连接态和RRC非激活态。
首先,对终端设备的3种RRC状态进行介绍说明:
(1)RRC连接态
例如,当终端设备处于RRC连接态时,存在终端设备和接入网设备之间的RRC连接。此时,接入网设备知道该终端设备在该接入网设备的覆盖范围内或者在该接入网设备的管理范围内,例如接入网设备知道该终端设备在该接入网设备所管理的小区的覆盖范围内;核心网知道该终端设备在哪个接入网设备的覆盖范围内或者管理范围内,核心网知道通过哪个接入网设备可以定位到或者找到该终端设备。
进一步地,当终端设备处于RRC连接态时,接入网设备和终端设备可以进行该终端设备特定的数据信道和/或控制信道的传输,从而可以传输该终端设备的特定信息或单播信息。例如接入网设备可以向终端设备发送终端设备特定的物理下行控制信道(physical  downlink control channel,PDCCH)和/或物理下行共享信道(physical downlink shared channel,PDSCH),和/或终端设备可以向接入网设备发送终端设备特定的物理上行共享信道(physical uplink shared channel,PUSCH)和/或物理上行控制信道(physical uplink control channel,PUCCH)。终端设备可以通过PDCCH来接收接入网设备发送的上行调度指示或下行调度指示。终端设备可以通过PUCCH向接入网设备发送混合自动重传请求(hybrid automatic repeat request,HARQ)信息,用于指示终端设备对下行数据的解调情况。
(2)RRC空闲态
例如,当终端设备处于RRC空闲态时,释放了终端设备和接入网之间的RRC连接。此时,终端设备可以从接入网设备接收寻呼消息、广播信道、和/或系统信息等。
进一步地,当终端设备处于RRC空闲态时,接入网设备可能不知道该终端设备是否在该接入网设备的覆盖范围内或者是否在该接入网设备的管理范围内,例如接入网设备可能不知道该终端设备是否在该接入网设备所管理的小区的覆盖范围内;核心网可能不知道终端设备在哪个接入网设备的覆盖范围内或者管理范围内,核心网可能不知道通过哪个接入网设备可以定位到或者找到该终端设备。
(3)RRC非激活态
例如,当终端设备处于RRC非激活态时,没有终端设备和接入网设备之间的RRC连接。此时,接入网设备可能不知道该终端设备是否在该接入网设备的覆盖范围内或者是否在该接入网设备的管理范围内,例如接入网设备可能不知道该终端设备是否在该接入网设备所管理的小区的覆盖范围内;核心网可能知道终端设备在哪个或哪些接入网设备的覆盖范围内或者管理范围内,核心网可能知道通过哪个或哪些接入网设备可以定位到或者找到该终端设备。
进一步地,当终端设备处于RRC非激活态时,终端设备可以从接入网设备接收寻呼消息、同步信号、广播消息、和/或系统信息等。
在本申请实施例中,RRC非激活态和RRC空闲态可以统称为RRC非连接态。
图4为终端设备在上述3种RRC状态中进行转换的示例图。如图4所示,可以包含以下几种可能的转换情形:
(1)RRC连接态→RRC空闲态
示例性地,接入网设备可以向终端设备发送RRC连接释放(RRC connection release)消息,使终端设备由RRC连接态转换为RRC空闲态。
(2)RRC连接态→RRC非激活态
示例性地,接入网设备可以向终端设备发送RRC连接暂停(RRC connection suspend)消息或RRC连接释放消息,使终端设备由RRC连接态转换为RRC非激活态。
(3)RRC空闲态→RRC连接态
示例性地,终端设备可以通过与接入网设备的RRC连接建立过程,使终端设备由RRC空闲态转换为RRC连接态。其中,RRC建立过程可以是由终端设备的高层触发的,例如,终端设备有上行数据的发送需求时,由终端设备的高层触发RRC建立过程。或者,RRC建立过程也可以是由接入网设备触发的,例如,在终端设备处于RRC空闲态时,接入网设备向终端设备发送寻呼消息,该寻呼消息包含该终端设备的标识。相应地,终端设备从接入网设备接收到该寻呼消息后,触发RRC建立过程。
具体来说,RRC连接建立过程可以是终端设备向接入网设备发送RRC连接建立请求 (RRC connection request)消息。接入网设备接收到该请求消息后,若接入网设备向该终端设备发送RRC连接建立(RRC connection setup)消息,意味着接入网设备同意该终端设备接入,则终端设备的RRC状态可转换为RRC连接态。若接入网设备向该终端设备发送RRC连接拒绝(RRC connection reject)消息,意味着接入网设备拒绝该终端设备接入,则该终端设备的RRC状态继续停留在RRC空闲态。
(4)RRC非激活态→RRC连接态
示例性地,终端设备处于RRC非激活态时,可以通过RRC连接建立或RRC连接恢复过程,使终端设备的RRC状态转换为RRC连接态。
在RRC非激活态时,终端设备从接入网设备接收到寻呼消息后或者由终端设备的高层触发后,终端设备可以发起RRC恢复过程,试图恢复和接入网设备间的RRC连接以进入RRC连接态。例如,终端设备和接入网设备之间的RRC恢复过程包括:终端设备向接入网设备发送RRC连接恢复请求(RRC connection resume request)消息,接收到该请求后:接入网设备向终端设备发送RRC连接建立消息或者RRC连接恢复消息,使得终端设备的状态可以转换为RRC连接态;或者,接入网设备向终端设备发送RRC释放消息,使得终端设备的状态从RRC非激活态转换为RRC空闲态;或者,接入网设备向终端设备发送RRC连接拒绝消息,使得终端设备继续停留在RRC非激活态。
(5)RRC非激活态→RRC空闲态
示例性地,终端设备处于RRC非激活态时,接入网设备可以通过释放过程,使得终端设备由RRC非激活态转换为RRC空闲态。
二、波束
由于通信系统中(例如5G通信系统或者未来的通信系统)将会采用更高的载波频率(例如大于或等于6吉赫兹(giga hertz,GHz)),比如28GHz、38GHz、或者72GHz频段等,以实现更大带宽、更高传输速率的无线通信。然而,这些载波频率中的无线信号在空间传播过程中可能经历更加严重的衰落,甚至在接收端难以检测出该无线信号。因此,该通信系统中将采用波束赋形(beamforming,BF)技术来获得具有良好方向性的波束,以提升天线增益,提高在发射方向上的功率。该通信系统中的波束赋形不限于高频段,也可应用于小于6GHz的低频段。
波束可以理解为一种通信资源,波束可以是宽波束,也可为窄波束,或其它类型的波束。不同的波束可认为是不同的通信资源,通过不同的波束可发送相同的信息或不同的信息。波束包括发射波束和接收波束,发射波束可以是指信号经天线发射出去时在空间不同方向上形成的信号强度的分布,接收波束可以是指天线阵列对无线信号在空间不同方向上进行加强或削弱接收的分布。其中,发射波束可以通过配置发射滤波器来实现,接收波束可以通过配置接收滤波器来实现,本申请实施例中所述的滤波器可以包括数字滤波器、模拟滤波或数字模拟混合滤波器,具体不做限定。
举个例子,接入网设备采用发射波束x发送下行参考信号,相应地,终端设备可采用接收波束y接收到下行参考信号,此种情形下,发射波束x和接收波束y可以理解为一个波束对。进一步地,终端设备若采用接收波束y接收到的下行参考信号的测量值较大,则基于空间信道的互易性,接入网设备采用接收波束x’去接收终端设备发送的信号的接收性能也较好。其中,接收波束x’与发射波束x具有较高关联度,也就是说,接收波束x’对应的接收滤波器与发射波束x对应的发射滤波器的参数相同或高度接近,体现在结果上, 即为接收波束x’与发射波束x的赋形效果相同或相近似。
三、SSB
在图1、图2或图3所示意的网络架构中,终端设备可以通过接收接入网设备发送的同步信号广播信道块(synchronous signal/physical broadcast channel block,SS/PBCH block,也可以简称为SSB),来实现与接入网设备的同步,以及获取系统信息等。
(1)SSB的构成
本申请实施例中,SSB可以包括主同步信号(primary synchronisation signal,PSS)、辅同步信号(secondary synchronisation signal,SSS)和物理广播信道(physical broadcast channel,PBCH)。如图5所示,在时域上,1个SSB占用4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol),记为符号0~符号3,在频域上,1个SSB占用20个资源块(resource block,RB)(一个RB包括12个子载波),也就是240个子载波,子载波编号为0~239。PSS位于符号0的中间的127个子载波上,SSS位于符号2的中间的127个子载波上。为了保护PSS和SSS,分别有不同的保护子载波,保护子载波不用于承载信号,在SSS两侧分别留有子载波作为保护子载波,如图5中的SSS两侧的空白区域就是保护子载波。PBCH占用符号1和符号3的全部子载波,以及占用符号2的全部子载波中除了SSS所占用的子载波之外的剩余的子载波中的一部分子载波(即剩余的子载波中除了保护子载波之外的子载波)。
(2)SSB的发送机制
针对于一个小区(或者说载波),接入网设备可以在不同时刻通过不同的发射波束发送SSB,来完成小区的广播波束覆盖。如图6所示,接入网设备通过发射波束0发送SSB#0,通过发射波束1发送SSB#1,通过发射波束2发送SSB#2等;此时,可以理解为,发射波束0对应SSB#0,发射波束1对应SSB#1,发射波束2对应SSB#2。
接入网设备在一次波束扫描过程中所发送的SSB的集合可以称为一个同步突发集(synchronization signal burst set,SS burst set)或者说SSB burst set。SS burst set的周期相当于一个特定波束对应的SSB的周期,可以被配置为5ms(毫秒)、10ms、20ms、40ms、80ms或160ms等。
示例性地,授权频谱内一个SS burst set内最多有4个、8个或64个SSB。当载波频段小于或等于3GHz时,一个SS burst set内最多有4个SSB。其中,每个SS burst set位于5ms的时间间隔内。对于SS burst set的示意可参考图6,图6以SS burst set的周期是20ms、且以一个SS burst set包括P个SSB为例,其中P为正整数。图6中,该P个SSB位于该20ms内的一个5ms时间内。
(3)SSB与随机接入信道(random access channel,RACH)时机(occasion)(简称为RO)对应
接入网设备可以向终端设备指示SSB与RO的对应关系,比如,网络设备可通过系统信息向终端设备指示SSB与RO的对应关系。在其它可能的示例中,也可以由协议预先定义SSB与RO的对应关系。其中,RO可以理解为随机接入资源或随机接入机会,即用于承载随机接入前导码的时频资源。
示例性地,接入网设备在向终端设备指示SSB与RO的对应关系时,可以指示一个RO对应的SSB的数量以及1个RO中1个SSB对应的候选前导码的数量。下面以一个SSBburst set中包括4个SSB(分别为SSB1~SSB4),且RO的频分复用参数为4(即一个时间 单元上有4个RO进行频分复用)为例,结合两个示例对SSB与RO的对应关系进行描述。
示例1,参见图7中的(a)所示,接入网设备指示一个RO对应的SSB的数量为oneEighth,以及指示1个RO中1个SSB对应的候选前导码的数量为4。此种情形下,1个RO对应的SSB数量为1/8,即8个RO对应一个SSB,因此,前两个时间单元的8个RO对应SSB1,随后两个时间单元的8个RO对应SSB2,以此类推,且每个RO中对应的前导码的索引均为0~3。当终端设备测量得到SSB1的测量值较高时,便可在SSB1对应的8个RO中任意选择一个RO上发送索引为0~3中的任意一个前导码。
示例2中,参见图7中的(b)所示,接入网设备指示一个RO对应的SSB的数量为Two,以及指示1个RO中1个SSB对应的候选前导码的数量为16。此种情形下,1个RO对应的SSB数量为2,因此,第一个时间单元上第一个频域位置的RO对应SSB1和SSB2,第一个时间单元上第二个频域位置的RO对应SSB3和SSB4,第一个时间单元上第三个频域位置的RO对应SSB1和SSB2,第一个时间单元上第四个频域位置的RO对应SSB3和SSB4,以此类推。此外,SSB1对应的前导码的索引为0~15,SSB2对应的前导码的索引为16~31,SSB3对应的前导码的索引为0~15,SSB4对应的前导码的索引为16~31。当终端设备测量得到SSB1的测量值较高时,便可选择在SSB1对应的任意一个RO上发送索引为0~15中的任意的一个前导码。
需要说明的是,上述两个示例中所涉及的时间单元可以包括一个或多个符号,或者包括一个或多个时隙,本申请实施例中对时间单元的具体长度可以不做限定。
基于上述相关技术特征的描述,针对于RRC非连接态(以RRC非激活态为例)的终端设备,在移动通信标准化组织第三代合作伙伴计划(3rd generation partnership project,3GPP)的版本16(Release16)之前,不支持RRC非激活态的终端设备进行单播数据传输,即终端设备需要重新恢复RRC连接进入RRC连接态后才能进行单播数据传输。然而,在某些场景下,RRC非激活态的终端设备所需要传输的数据包通常很小(即小包数据(small data)),如果终端设备每次进行数据传输都发生RRC连接建立过程,以从RRC非激活态进入RRC连接态,则会导致不必要的功耗和信令开销。
其中,小包数据传输场景可以有多种,具体可以涵盖智能手机相关业务,比如微信或QQ的即时消息、应用程序(application,APP)的心跳包或推送消息;以及非智能手机的相关业务,比如可穿戴设备的周期性数据(例如心跳包)、工业无线传感器网络所发送的周期性数据等等。此外,本申请实施例中对小包数据的具体大小可以不做限定,比如100~300字节的数据包可以认为是小包数据,又比如能在一个时隙中发送完的数据包可以认为是小包数据(例如带宽资源为5M、子载波间隔为30kHz的一个时隙,若以正交相移键控(quadrature phase shift keying,QPSK)调制,则大约可传500个字节),又比如在RRC非激活态时发送的用户面数据包和/或控制面数据包可以认为是小包数据。
针对小包数据传输场景,可以支持终端设备在RRC非激活态时进行小包数据传输,而不进行状态转换,从而显著降低信令开销和终端设备的功耗。
示例性地,终端设备在RRC非激活态时进行小包数据传输,具体可以通过如下两类方法来实现。
(1)基于随机接入(random access,RA)的数据传输
有别于传统的随机接入,基于随机接入的数据传输是指终端设备在随机接入过程中,向接入网设备发送上行数据(为简单起见,本申请实施例下文中所述的数据如果没有特别指出,均代表用户面数据)或接收下行数据。
示例性地,随机接入过程可以包括四步随机接入过程和两步随机接入过程。终端设备可以通过四步随机接入过程中的消息3(Msg3)发送上行数据,或通过消息4(Msg4)接收下行数据;或者,终端设备也可以通过两步随机接入过程中的消息A(MsgA)发送上行数据,或通过消息B(MsgB)接收下行数据。
图8中的(a)为本申请实施例提供的一种四步随机接入过程示意图。如图8中的(a)所示,四步随机接入过程可以包括:
S8011,终端设备通过物理随机接入信道(physical random access channel,PRACH)向接入网设备发送随机接入前导码(preamble),即向接入网设备发送消息1(Msg1)。
示例性地,前导码可以是一个序列,用于接入网设备确定终端设备的时间提前(timing advance,TA)量。
S8012,接入网设备在检测到终端设备发送的随机接入前导码后,向终端设备发送随机接入响应(random access response,RAR),即向终端设备发送消息2(Msg2)。其中,消息2可以指示PUSCH的资源位置。
S8013,终端设备根据消息2指示的PUSCH的资源位置,通过PUSCH向接入网设备发送消息3。其中,消息3可以包括上行数据,比如上行小包数据,可选地,还可以包括终端设备的标识。
S8014,接入网设备接收消息3,并向终端设备发送消息4,消息4可以包括反馈信息,用于告知终端设备是否成功接收到上行数据。
需要说明的是,上述四步随机接入过程中所涉及的PRACH资源、前导码以及接收RAR的资源,均可以为接入网设备为终端设备配置的。比如接入网设备可以在终端设备处于连接态时为终端设备配置专属的资源,或者,也可以在系统消息中广播竞争使用的资源。
图8中的(b)为本申请实施例提供的一种两步随机接入过程示意图。如图8中的(b)所示,两步随机接入过程可以包括:
S8021,终端设备向接入网设备发送消息A。具体来说,终端设备通过PRACH向接入网设备发送随机接入前导码,并通过对应的PUSCH向接入网设备发送上行数据(比如上行小包数据),可选地,还可以发送终端设备的标识。
S8022,接入网设备接收到消息A后,向终端设备发送消息B。其中,消息B中可以包括RAR,RAR可以包括消息A的反馈信息,用于告知终端设备是否成功接收到上行数据。
需要说明的是,上述两步随机接入过程中所涉及的PRACH资源、前导码、PUSCH资源(包括PUSCH中的解调参考信号(demodulation reference signal,DMRS)资源)、以及接收RAR的资源,均可以为接入网设备为终端设备配置的。比如接入网设备可以在终端设备处于连接态时为终端设备配置专属的资源,或者,也可以在系统消息中广播竞争使用的资源。
(2)基于配置授权(configured grant,CG)资源的数据传输
基于CG资源的数据传输是指,接入网设备可以为终端设备配置用于上行数据(例如PUSCH)传输的资源,当终端设备有上行数据需要发送时,直接使用CG资源向接入网设 备发送数据,而不必接收接入网设备的动态授权(dynamic grant),也不必发送前导码。基于CG资源的数据传输也可以称作免授权(grant free,GF)数据传输。由于终端设备不需要发送前导码,相比基于随机接入的数据传输方案,可以进一步节省信令开销和终端设备的功耗。
然而,在基于CG资源的数据传输中,由于RRC非激活态的终端设备没有类似RRC连接态的波束管理(beam management)过程,因此,接入网设备通常不知晓RRC非激活态的终端设备的位置信息(或信道信息),进而也不知晓使用什么样的接收波束去接收终端设备在CG资源上发送的上行数据。当接入网设备不知晓终端设备的信道信息时,若接入网设备通过全向天线接收上行数据,将会造成接收性能损失;一种提升性能的方式是依赖数字滤波处理,但在没有终端设备的信道信息的情况下,会显著增加接入网设备的接收复杂度。
基于此,本申请实施例将针对基于CG资源的数据传输的相关实现进行研究。
下面结合实施例一至实施例三对本申请实施例进行详细描述。
实施例一
为解决接入网设备不知晓终端设备的信道信息,而造成接收性能损失的问题,一种可能的思路是,建立CG资源与信道信息之间的对应关系,如此,接入网设备可以根据CG资源对应的信道信息,采用相应的接收波束在CG资源上接收上行数据,从而提高上行数据的接收性能。
具体来说,接入网设备可以周期性广播下行参考信号,终端设备在RRC非连接态时测量下行参考信号是一个基础行为,且基于空间信道的互易性关系,当终端设备通过测量下行参考信号,确定某个下行参考信号的测量值较大(比如下行参考信号1的测量值较大,接入网设备发送下行参考信号1所采用的波束为发射波束x)时,接入网设备采用相应的接收波束x’去接收终端设备发送的信号的接收性能也较好。因此,本申请实施例一提供的通信方法可以包括:接入网设备可以向终端设备发送第一配置信息,第一配置信息用于配置M个CG资源对应N个下行参考信号,N个下行参考信号包括下行参考信号1;进而,终端设备在进入RRC非连接态后,可以在下行参考信号1对应的CG资源上发送上行数据,相应地,接入网设备可以采用相应的接收波束去接收终端设备在该CG资源上发送的上行数据。其中,M和N为正整数。相比于接入网设备不知晓终端设备的信道信息而通过全向天线接收上行数据的方式来说,该方式能够有效提升接入网设备的接收性能。
下面结合图9对本申请实施例一提供的通信方法进行详细描述。
图9为本申请实施例一提供的通信方法所对应的流程示意图,如图9所示,该方法包括:
可选的,S900,终端设备进入RRC连接态。
此处,终端设备可以通过RRC连接建立或RRC连接恢复过程,将RRC状态转换为RRC连接态。
可选的,S901,接入网设备向终端设备发送第一配置信息,第一配置信息用于配置M个CG资源对应N个下行参考信号。
相应地,在S902中,终端设备可以接收来自接入网设备的第一配置信息。
此处,接入网设备还可以为终端设备配置M个CG资源。在一个示例中,接入网设备可以通过第一配置信息为终端设备配置M个CG资源,也就是说,第一配置信息可以用于配置M个CG资源以及配置M个CG资源对应N个下行参考信号。其中,接入网设备向终端设备发 送第一配置信息的方式可以有多种,比如接入网设备可以向终端设备发送RRC消息,RRC消息中包括第一配置信息。示例性地,RRC消息可以为RRC连接释放消息,或者其它可能的消息,具体不做限定。
在又一个示例中,接入网设备可以通过第三配置信息为终端设备配置M个CG资源。示例性地,接入网设备可以通过同一条消息向终端设备发送第一配置信息和第三配置信息;或者,接入网设备也可以通过不同消息向终端设备发送第一配置信息和第三配置信息,比如接入网设备可以先向终端设备发送RRC消息1,RRC消息1中包括第三配置信息,然后向终端设备发送RRC消息2,RRC消息2中包括第一配置信息。
一、针对M个CG资源进行介绍。
M个CG资源可用于终端设备在RRC非连接态时向接入网设备发送上行信息。比如,M个CG资源可以专用于终端设备在RRC非连接态时发送上行信息;又比如,M个CG资源可用于终端设备在RRC连接态时发送上行信息,也可用于终端设备在RRC非连接态时发送上行信息。上行信息可以包括上行数据和/或上行信令,上行信令可以包括以下至少一项:物理层的信令、MAC层的信令、RRC层的信令。这些上行数据和/或上行信令可以携带于终端设备特定的PUSCH和/或PUCCH上。
本申请实施例中,CG资源可以支持多种可能的粒度,比如以“套”为粒度、以“周期”为粒度、以“个”为粒度。例如,一套CG资源可以对应一种周期(长度),一个周期内可以包括一个或多个CG资源。一个CG资源可以用于一次数据传输,一个周期内所包括的多个CG资源可以用于重复传输相同的数据,该多个CG资源所传输的数据的冗余版本可以相同或不同。也就是说,一个周期内所包括的多个CG资源可以理解为多个重复机会。该一个周期内的多个CG资源中的任意2个不同的CG资源可以是时分的、和/或频分的,不予限制。
以接入网设备为终端设备发送(例如,通过第一配置信息)W套CG资源的配置信息,其中,W为正整数。比如,W=3,W套CG资源可以包括第一套CG资源、第二套CG资源和第三套CG资源。以第一套CG资源为例,第一套CG资源的配置信息可以包括以下至少一项:(1)第一套CG资源所对应的周期的时长;(2)一个周期内的重复次数,或者说,一个周期内所包括的重复机会的个数,又或者说,一个周期内所包括的CG资源的个数;(3)一个周期内各CG资源的时频位置信息。可选地,一套CG资源还可以称为一组CG资源或者其他名称,不予限制。
可选地,第一套CG资源的配置信息还可以包括其它可能的信息,比如以下一项或多项:跳频指示信息(用于指示时隙内或时隙间跳频)、DMRS的配置信息(用于指示DMRS的类型、位置、长度、和/或是否预编码等)、调制和编码方案(modulation and coding scheme,MCS)表格、资源分配方式(用于指示Type0、Type1或动态切换)、功控指示信息、HARQ进程数(比如可以为1~16的一种)和重复时使用的冗余版本等,具体不做限定。
二、针对N个下行参考信号进行介绍。
示例性地,下行参考信号可以为SSB、信道状态信息参考信号(channel state information reference signal,CSI-RS)、定位参考信号(positioning reference signal,PRS)、下行DMRS或其它可能的下行参考信号,具体不做限定。本申请实施例中,将以下行参考信号为SSB为例进行描述。
如前文所述,一个SS burst set内可以包括多个SSB,比如若一个SS burst set内包括4个SSB,分别为SSB1、SSB2、SSB3、SSB4,则N可以为小于或等于4的正整数,也就是说, N个下行参考信号可以包括SSB1、SSB2、SSB3、SSB4中的至少一个。又比如,若一个SS burst set内包括8个SSB,分别为SSB1、SSB2、……、SSB8,则N可以为小于或等于8的正整数,也就是说,N个下行参考信号可以包括SSB1、SSB2、……、SSB8中的至少一个。
三、针对M个CG资源对应N个下行参考信号进行介绍。
示例性地,M个CG资源对应N个下行参考信号的具体对应方式可以有多种,下面描述三种可能的对应方式。
(1)对应方式1:M个CG资源以“套”为粒度对应N个下行参考信号。比如,M个CG资源属于一套或多套CG资源,其中,每个CG资源可以属于且只属于其中一套CG资源。每套CG资源可以对应N个下行参考信号中的一个或多个下行参考信号,此外,一个下行参考信号也可以对应一套或多套CG资源。
举个例子,M个CG资源属于W套CG资源。以W=3为例,W套CG资源可以包括第一套CG资源、第二套CG资源和第三套CG资源,比如,M个CG资源可以包括第一套CG资源所包括的所有CG资源、第二套CG资源所包括的所有CG资源和第三套CG资源所包括的所有CG资源。N个下行参考信号包括SSB1、SSB2、SSB3、SSB4。其中,SSB1对应发射波束1,SSB2对应发射波束2,SSB3对应发射波束3,SSB4对应发射波束4,参见图10所示。此种情形下,一种可能的对应情形为:参见图11所示,第一套CG资源可以对应SSB1,第二套CG资源可以对应SSB2,第三套CG资源可以对应SSB3和SSB4。则可以理解为,第一套CG资源所包括的所有CG资源均对应SSB1,第二套CG资源所包括的所有CG资源均对应SSB2,第三套CG资源所包括的所有CG资源均对应SSB3和SSB4。
再举个例子,M个CG资源属于W套CG资源。以W=3为例,W套CG资源可以包括第一套CG资源、第二套CG资源和第三套CG资源。例如,第一套CG资源一个周期内包括2个CG资源,第二套CG资源一个周期内包括3个CG资源,第三套CG资源一个周期内包括3个CG资源,则M个资源即为2+3+3=8个CG资源。此种情形下,一种可能的对应情形为:第一套CG资源可以对应SSB1,第二套CG资源可以对应SSB2,第三套CG资源可以对应SSB3和SSB4。则可以理解为,第一套CG资源每个周期中的2个CG资源均对应SSB1,第二套CG资源每个周期中的3个CG资源均对应SSB2,第三套CG资源每个周期中的3个CG资源均对应SSB3和SSB4。
当接入网设备采用该对应方式配置M个CG资源对应N个下行参考信号时,针对其中任一套CG资源,一种可能的配置示例如下:
Figure PCTCN2020139553-appb-000001
Figure PCTCN2020139553-appb-000002
(2)对应方式2:M个CG资源以“周期”为粒度对应N个下行参考信号。比如,M个CG资源位于一个或多个周期,每个CG资源可以位于且只位于其中一个周期。每个周期可以对应N个下行参考信号中的一个或多个下行参考信号,此外,一个下行参考信号可以对应一个或多个周期。
举个例子,M个CG资源位于多个周期,可以是指,M个CG资源位于一套CG资源的多个周期,即M个CG资源包括位于该套CG资源的多个周期中的CG资源。比如,M个CG资源位于该套CG资源的周期i、周期i+1、周期i+2,即M个CG资源包括位于周期i、周期i+1、周期i+2的CG资源,i可以为正整数。N个下行参考信号包括SSB1、SSB2、SSB3、SSB4,其中,SSB1对应发射波束1,SSB2对应发射波束2,SSB3对应发射波束3,SSB4对应发射波束4,参见图10所示。此种情形下,一种可能的对应情形为:周期i对应SSB1,周期i+1对应SSB2,周期i+2对应SSB3和SSB4。也就是说,位于周期i的所有CG资源均对应SSB1,位于周期i+1的所有CG资源均对应SSB2,位于周期i+3的所有CG资源均对应SSB3和SSB4。
再举个例子,M个CG资源位于多个周期,也可以是指,M个CG资源位于多套CG资源的多个周期。比如,M个CG资源位于第一套CG资源的一个或多个周期(比如周期i、周期i+1、周期i+2)以及第二套CG资源的一个或多个周期(比如周期j、周期j+1、周期j+2),即M个CG资源包括位于第一套CG资源的一个或多个周期中的CG资源和位于第二套CG资源的一个或多个周期中的CG资源。N个下行参考信号包括SSB1、SSB2、SSB3、SSB4,其中,SSB1对应发射波束1,SSB2对应发射波束2,SSB3对应发射波束3,SSB4对应发射波束4,参见图10所示。此种情形下,一种可能的对应情形为:参见图12所示,第一套CG资源中,周期i对应SSB1,周期i+1对应SSB2,周期i+2对应SSB3和SSB4;第二套CG资源中,周期j和周期j+1对应SSB1,周期j+2对应SSB2,周期j+3对应SSB3和SSB4,j可以为正整数。需要说明的是,第一套CG资源的周期和第二套CG资源的周期可以分别独立地与下行参考信号对应,比如当第一套CG资源的周期i中的CG资源与第二套CG资源的周期j中的CG资源在时域上重叠时,第一套CG资源的周期i和第二套CG资源的周期j可以对应相同的SSB,或者也可以对应不同的SSB,具体不做限定。此外,可以看出,图12所示的对应关系相比于图11所示的对应关系来说,能够使得终端设备在对周期的选择上具有更好的灵活性。
(3)对应方式3:M个CG资源以“个”为粒度对应N个下行参考信号。比如,M个CG资源中的一个或多个CG资源对应至少一个下行参考信号中的一个或多个下行参考信号。也就是说,一个CG资源可以对应一个或多个下行参考信号,和/或,一个下行参考信号可以对应一个或多个CG资源。
举个例子,M个CG资源可以为一套CG资源中的M个CG资源。或者,M个CG资源也可以为多套CG资源中的M个CG资源,比如M个CG资源可以包括第一套CG资源中的M1个CG资源和第二套CG资源中的M2个CG资源,M1、M2为正整数,且M1+M2=M。N个下行参考信号包括SSB1、SSB2、SSB3、SSB4,其中,SSB1对应发射波束1,SSB2对应发射波束2,SSB3对应发射波束3,SSB4对应发射波束4,参见图10所示。以M个CG资源可以为一套CG 资源中的M个CG资源为例,此种情形下,一种可能的对应情形为:参见图13所示,该套CG资源的每个周期(比如周期1)的第一个CG资源对应SSB1,第二个CG资源对应SSB2,第三个CG资源对应SSB3和SSB4。此外,可以看出,图13所示的对应关系相比于图11或图12所示的对应关系来说,能够使得终端设备在对CG资源的选择上具有更好的灵活性。
需要说明的是,接入网设备在配置M个CG资源对应N个下行参考信号时,可以单独采用对应方式1、对应方式2、对应方式3中的某一种对应方式,或者,也可以结合采用对应方式1、对应方式2、对应方式3中的两种或三种对应方式。以接入网设备结合采用对应方式2和对应方式3为例,比如,M个CG资源为W套CG资源中的CG资源,比如W=2,W套CG资源可以包括第一套CG资源、第二套CG资源,M个CG资源包括位于第一套CG资源的周期i、周期i+1、周期i+2中的CG资源和位于第二套CG资源的周期j、周期j+1中的CG资源。N个下行参考信号包括SSB1、SSB2、SSB3、SSB4。此种情形下,一种可能的对应情形为:第一套CG资源中,周期i对应SSB1,周期i+1对应SSB2,周期i+2对应SSB3和SSB4;第二套CG资源中,周期j中的第一个和第二个CG资源对应SSB1,周期j中的第三个CG资源对应SSB2,周期j中的其余CG资源(比如周期j中的第四、五、六个CG资源)对应SSB3和SSB4;周期j+1中的所有CG资源均对应SSB1。
S903,终端设备进入RRC非连接态。
此处,终端设备进入RRC非连接态的方式可以有多种。比如,接入网设备可以向终端设备发送RRC连接释放消息,进而终端设备接收到RRC连接释放消息后,可以进入RRC非连接态。又比如,终端设备处于弱覆盖区域时,若信号接收质量较差而无法保持RRC连接态,则终端设备可以主动进入非连接态。
可选的,S904,接入网设备发送P个下行参考信号,P个下行参考信号可以包括N个下行参考信号。
比如,若一个SS burst set内包括4个SSB,分别为SSB1、SSB2、SSB3、SSB4,则P可以等于4,P个下行参考信号包括SSB1、SSB2、SSB3、SSB4;N可以为小于或等于4的正整数,N个下行参考信号包括SSB1、SSB2、SSB3、SSB4中的至少一个。又比如,若一个SS burst set内包括8个SSB,分别为SSB1、SSB2、……、SSB8,则P可以等于8,P个下行参考信号包括SSB1、SSB2、……、SSB8;N可以为小于或等于8的正整数,N个下行参考信号包括SSB1、SSB2、SSB3、SSB4中的至少一个。
可选的,S905,终端设备接收P个下行参考信号,并对P个下行参考信号进行测量。
终端设备通过对P个下行参考信号进行测量,可以得到P个下行参考信号的测量值。其中,每个下行参考信号的测量值可以包括以下至少一项:参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、和信号干扰噪声比(signal to interference plus noise ratio,SINR),具体不做限定。
可选的,S906,终端设备在下行参考信号1对应的CG资源上向接入网设备发送上行数据。
终端设备若确定需要发送上行数据,则可以根据N个下行参考信号的测量值,从N个下行参考信号中选择下行参考信号1,并在下行参考信号1对应的CG资源上发送上行数据。
示例性地,终端设备根据N个下行参考信号的测量值,从N个下行参考信号中选择下行参考信号1的方式可以有多种。比如,终端设备根据N个下行参考信号的测量值,确定出N个下行参考信号中测量值大于或等于第一阈值的一个或多个下行参考信号(比如下行参考 信号1和下行参考信号2),进而从这些下行参考信号中选择其中一个下行参考信号(比如下行参考信号1);其中,第一阈值可以根据实际需要进行设置,具体不做限定。又比如,终端设备根据N个下行参考信号的测量值,从N个下行参考信号中选择测量值最大的下行参考信号(比如下行参考信号1)。
可选的,S907,接入网设备采用相应的接收波束在下行参考信号1对应的CG资源上接收上行数据。
以图11所示的对应关系为例,若终端设备测量得到SSB1的测量值最高或较高,则可以在SSB1对应的CG资源上发送上行数据,比如从第一套CG资源中选择一个CG资源(比如CG资源1)来发送上行数据。相应地,接入网设备为终端设备配置CG资源后,可以在所配置的CG资源上采用相应波束去尝试接收,比如接入网设备可以采用接收波束1’在CG资源1上去尝试接收,从而可以接收到终端设备发送的上行数据。其中,接收波束1’与发射波束1具有较高关联度。
若终端设备测量得到SSB2的测量值最高或较高,则可以在SSB2对应的CG资源上发送上行数据,比如从第二套CG资源中选择一个CG资源(比如CG资源2)来发送上行数据。相应地,接入网设备可以采用接收波束2’在CG资源2上去尝试接收,从而可以接收到终端设备发送的上行数据。其中,接收波束2’与发射波束2具有较高关联度,比如接收波束2’可以与发射波束2相同或相类似。
若终端设备测量得到SSB3(或SSB4)的测量值最高或较高,则可以在SSB3(或SSB4)对应的CG资源上发送上行数据,比如从第三套CG资源中选择一个CG资源(比如CG资源3)来发送上行数据。相应地,接入网设备可以采用接收波束3’在CG资源3上去尝试接收,从而可以接收到终端设备发送的上行数据;其中,接收波束3’与发射波束3、发射波束4具有较高关联度。或者,接入网设备也可以采用接收波束3a’或接收波束3b’在CG资源3上接收上行数据;其中,接收波束3a’和发射波束3具有较高关联度,接收波束3b’和发射波束4具有较高关联度。
以图12所示的对应关系为例,若测量得到SSB1的测量值最高或较高,则终端设备可以在SSB1对应的CG资源上发送上行数据,比如从第一套资源的周期i中选择CG资源来发送上行数据,和/或从第二套资源的周期j和/或周期j+1中选择CG资源来发送上行数据。相应地,接入网设备可以采用接收波束1’在第一套资源的周期i上、第二套资源的周期j以及第二套资源的周期j+1上尝试接收。其它情形类似于上述图11的描述,不再赘述。
以图13所示的对应关系为例,若测量得到SSB1的测量值最高或较高,则终端设备可以在SSB1对应的CG资源上发送上行数据,比如选择在第一套资源的某一个周期的第一个CG资源发送上行数据。相应地,接入网设备可以采用接收波束1’在第一套资源的每个周期的第一个CG资源上尝试接收。其它情形类似于上述图11的描述,不再赘述。
需要说明的是,N个下行参考信号中不同下行参考信号对应的CG资源的数量可以相同,或者也可以不相同。比如,N个下行参考信号中包括下行参考信号1和下行参考信号2,下行参考信号1对应的CG资源的数量和下行参考信号2对应的CG资源的数量可以相同或者也可以不相同。
进一步地,当终端设备处于RRC连接态时,终端设备与接入网设备之间可以通过波束管理过程维护一个服务波束,而当终端设备进入RRC非连接态时,终端设备位于该服务波束的覆盖范围内的概率最大,而位于其他波束的覆盖范围内的概率较小。假设该服务波束 为下行参考信号1对应的波束,则当终端设备位于该服务波束的覆盖范围内时,终端设备测量得到的下行参考信号1的测量值通常最大。因此,可以设置下行参考信号1对应的CG资源的数量大于或等于N个下行参考信号中其它下行参考信号对应的CG资源的数量。如此,能够便于终端设备在RRC非连接态时使用CG资源发送上行数据,减小接入网设备在CG资源上的空检开销。
可以理解地,下行参考信号对应的CG资源的数量可以包括下行参考信号对应的CG资源的套数、周期数、个数中的至少一项,具体不做限定。
采用上述方式,由于接入网设备可以为终端设备配置M个CG资源对应N个下行参考信号,因此,当终端设备在某个下行参考信号对应的CG资源上发送上行数据时,接入网设备可以采用相应的接收波束在该CG资源上接收上行数据,从而能够有效提高接入网设备的接收性能。又一方面,由于接入网设备在配置M个CG资源对应N个下行参考信号时,可以按照多种可能的粒度来配置该对应关系,从而使得终端设备在选择CG资源时具有较高的灵活性,便于RRC非连接下的数据传输。
实施例二
如上述实施例一所述,接入网设备可以为终端设备配置M个CG资源对应N个下行参考信号。然而,由于终端设备具有移动性,从而导致在一段时间过后,接入网设备为终端设备配置的上述对应关系可能不够合理,从而影响终端设备在RRC非连接态时的数据传输。
举例来说,接入网设备向终端设备发送的下行参考信号包括下行参考信号1(对应发射波束1)、下行参考信号2(对应发射波束2)、下行参考信号3(对应发射波束3)和下行参考信号4(对应发射波束4)。接入网设备配置M1个CG资源对应下行参考信号1、M2个CG资源对应下行参考信号2、M3个CG资源对应下行参考信号3,下行参考信号4未对应CG资源。比如在T1时间段内,终端设备位于发射波束1的覆盖范围内,进而可以在下行参考信号1对应的CG资源上向接入网设备发送上行数据;而在T2时间段内,终端设备可能移动到发射波束4的覆盖范围内,由于下行参考信号4未对应CG资源,从而导致终端设备将无法使用CG资源发送上行数据,从而影响终端设备在RRC非连接态时的数据传输。
基于此,本申请实施例二提供的通信方法可以包括:终端设备接收来自接入网设备的第一配置信息,第一配置信息用于配置M个CG资源对应N个下行参考信号;以及,在终端设备进入非连接态后,可以接收来自接入网设备的第一重配置信息,第一重配置信息用于对M个CG资源中的部分或全部CG资源对应的下行参考信号进行更新;其中,M、N为正整数。如此,由于接入网设备可以向终端设备发送重配置信息来对M个CG资源中的部分或全部CG资源对应的下行参考信号进行更新,从而使得终端设备在RRC非连接态下移动时,能够及时灵活地调整CG资源与下行参考信号的对应关系,保证终端设备在RRC非连接态时的数据传输。
下面结合图14对本申请实施例二提供的通信方法进行详细描述。
图14为本申请实施例二提供的通信方法所对应的流程示意图,如图14所示,该方法包括:
可选的,S1400,终端设备进入RRC连接态。
S1401,接入网设备向终端设备发送第一配置信息,第一配置信息用于配置M个CG资源对应N个下行参考信号。
相应地,在S1402中,终端设备可以接收来自接入网设备的第一配置信息。
可选的,S1403,终端设备进入RRC非连接态。
可选的,S1404,接入网设备发送P个下行参考信号,P个下行参考信号可以包括N个下行参考信号。
可选的,S1405,终端设备接收P个下行参考信号,并对P个下行参考信号进行测量。
上述S1400至S1405的具体实现可以参见实施例一,此处不再赘述。
可选的,S1406,终端设备根据P个下行参考信号的测量值,向接入网设备发送第一信息。
第一信息可以用于请求更新M个CG资源中部分或全部CG资源对应的下行参考信号,或者说,第一信息可以用于请求更新CG资源与下行参考信号的对应关系。或者,第一信息可以指示所述P个下行参考信号中一个或多个下行参考信号的测量值。或者,第一信息可以指示所述P个下行参考信号中一个或多个下行参考信号的测量值的排序。或者,第一信息可以指示所述P个下行参考信号中的一个或多个下行参考信号,所述一个或多个下行参考信号的测量值大于其它参考信号的测量值,或者所述一个或多个下行参考信号的测量值大于或等于第一阈值。
本申请实施例中,触发终端设备向接入网设备发送第一信息的原因可以有多种。举个例子,P个下行参考信号包括第一下行参考信号和第二下行参考信号,还包括其它可能的下行参考信号。终端设备根据P个下行参考信号的测量值,确定第二下行参考信号的测量值大于P个参考信号中其它下行参考信号的测量值(即P个下行参考信号中第二下行参考信号的测量值最大)后,若确定符合以下情形1和情形2中的至少一种,则可以向接入网设备发送第一信息。其中,情形1:第二下行参考信号没有对应的CG资源,也就是说,第二下行参考信号不属于N个下行参考信号。情形2:第二下行参考信号对应的CG资源的数量较少,比如第二下行参考信号对应的CG资源的数量小于N个下行参考信号中其它参考信号对应的CG资源的数量。
本申请实施例中,终端设备向接入网设备发送第一信息的具体方式可以有多种。下面描述三种可能的实现方式。
(1)实现方式1:该实现方式可以适用于上述情形1。
终端设备可以根据N个下行参考信号的测量值,从N个下行参考信号中选择第一下行参考信号,并在第一下行参考信号对应的CG资源上向接入网设备发送第一信息。可选地,终端设备还可以在第一参考信号对应的CG资源上向接入网设备发送上行数据。其中,终端设备从N个下行参考信号中选择第一下行参考信号的具体实现可以参见实施例一中的描述。
在该实现方式中,第一信息可以包括第一下行参考信号的测量值和第二下行参考信号的测量值;或者,第一信息可以包括第二下行参考信号的索引(即P个下行参考信号中测量值最大的下行参考信号的索引);又或者,第一信息可以包括P个下行参考信号的测量值。此种情形可以理解为,终端设备通过显式的方式请求更新CG资源与下行参考信号的对应关系。
(2)实现方式2:该实现方式可以适用于上述情形1。
如前文所述,接入网设备可以向终端设备指示SSB与随机接入资源的对应关系,因此,以下行参考信号是SSB为例,终端设备可以根据第二下行参考信号对应的随机接入资源,发起随机接入过程,并在该随机接入过程中向接入网设备发送第一信息。比如,第一信息 承载于第一消息,第一消息用于该随机接入过程或者说第一消息在该随机接入过程中传输。若该随机接入过程为两步随机接入过程,则第一消息可以为MsgA;若该随机接入过程为四步随机接入过程,则第一消息可以为Msg1或Msg3。可选地,终端设备还可以通过该随机接入过程向接入网设备发送上行数据,比如通过该随机接入过程中的MsgA或Msg3发送上行数据。
在该实现方式中,第一信息可以为随机接入前导码,此种情形可以理解为,终端设备通过隐式的方式请求更新CG资源与下行参考信号的对应关系。或者,第一信息可以包括P个下行参考信号的测量值,此种情形可以理解为,终端设备通过显式的方式请求更新CG资源与下行参考信号的对应关系。
(3)实现方式3:该实现方式可以适用于上述情形2。
终端设备可以根据N个下行参考信号的测量值,从N个下行参考信号中选择第二下行参考信号,并在第二下行参考信号对应的CG资源上向接入网设备发送第一信息。可选地,终端设备还可以在第二参考信号对应的CG资源上向接入网设备发送上行数据。
在该实现方式中,第一信息可以包括P个下行参考信号的测量值,此种情形可以理解为,终端设备通过显式的方式请求更新CG资源与下行参考信号的对应关系。
需要说明的是,终端设备在CG资源上发送第一信息的具体实现可以有多种。比如,终端设备可以在CG资源上发送PUCCH,该PUCCH中包括第一信息,该PUCCH可以复用在该CG资源上的PUSCH中。又比如,终端设备可以在该CG资源上发送MAC控制元素(control element CE),该MAC CE包括第一信息。又比如,终端设备可以在该CG资源上发送RRC消息,该RRC消息包括第一信息。
可选的,S1407,接入网设备接收第一信息,并向终端设备发送第一重配置信息,第一重配置信息用于对M个CG资源中的部分或全部CG资源对应的下行参考信号进行更新。
相应地,在S1408中,终端设备可以接收第一重配置信息。
示例性地,假设第一配置信息配置了第一CG资源对应第一下行参考信号,若接入网设备接收到终端设备通过上述实现方式1、实现方式2或实现方式3发送的第一信息,则接入网设备发送的第一重配置信息可以用于配置第一CG资源对应第二下行参考信号。如此,终端设备接收到第一重配置信息后,可以将第一下行参考信号对应的CG资源更新为第二下行参考信号对应的CG资源。可选地,若第一配置信息还配置了第二CG资源对应第二下行参考信号,则第一重配置信息还可以用于配置第二CG资源对应第一下行参考信号。如此,终端设备接收到第一重配置信息后,还可以将第二下行参考信号对应的CG资源更新为第一下行参考信号对应的CG资源。
此外,若接入网设备接收到终端设备通过上述实现方式1或实现方式3发送的第一信息,则第一重配置信息可以承载于DCI、MAC CE或者RRC消息中。作为一种可能的实现,DCI中可以包括第二信息,第二信息可以包括HARQ反馈信息和/或调度信息。其中,HARQ反馈信息用于指示终端设备的上行数据是否被成功接收(比如终端设备向接入网设备了上行数据,进而接入网设备可以通过HARQ反馈信息告知终端设备是否成功接收到该上行数据);HARQ反馈信息可以为确认回答(acknowledgement,ACK)或否定回答(negativeacknowledgement,NACK)。调度信息可以用于调度终端设备后续的上下行传输,比如调度信息可以用于调度终端设备的PUSCH或PDSCH。若接入网设备接收到终端设备通过上述实现方式2发送的第一信息,则第一重配置信息可以承载于第二消息,第二消息用于上述 随机接入过程或者说第二消息在上述随机接入过程中传输。比如,第二消息可以为该随机接入过程中的MsgB,或者也可以为该随机接入过程中的Msg2或Msg4。
需要说明的是,上述是以第一重配置信息用于更新对M个CG资源中的部分CG资源对应的下行参考信号进行更新为例进行描述。在其它可能的示例中,第一重配置信息也可以用于更新对M个CG资源中的全部CG资源对应的下行参考信号。
下面结合几种可能的示例,对第一重配置信息可能包括的内容进行介绍。
在一个示例中,M个CG资源包括CG资源1、CG资源2、CG资源3和CG资源4,N个下行参考信号包括SSB1、SSB2、SSB3和SSB4,第一配置信息配置了CG资源1对应SSB1、CG资源2对应SSB2、CG资源3对应SSB3、CG资源4对应SSB4。此种情形下,第一重配置信息可以包括两个比特,两个比特的取值用于指示循环移位的次数。比如,当两个比特的取值为“01”时,表示循环移位一次,即CG资源1对应SSB2、CG资源2对应SSB3、CG资源3对应SSB4、CG资源4对应SSB1;当两个比特的取值为“10”时,表示循环移位两次,即CG资源1对应SSB3、CG资源2对应SSB4、CG资源3对应SSB1、CG资源4对应SSB2;当两个比特的取值为“11”时,表示循环移位三次,即CG资源1对应SSB4、CG资源2对应SSB1、CG资源3对应SSB2、CG资源4对应SSB3。采用该种方式,由于第一重配置信息所包括的比特个数较少,从而使得实现较为简洁,且能够更新多个CG资源对应的下行参考信号。
在又一个示例中,第一重配置信息所包括的内容也可以参照前文第一配置信息所包括的内容,二者的差别在于,第一重配置信息中所配置的CG资源对应的下行参考信号可以不同于第一配置信息中所配置的CG资源对应的下行参考信号。
在又一个示例中,假设第一配置信息配置了第一CG资源对应第一下行参考信号,若接入网设备接收到终端设备通过上述实现方式1发送的第一信息(即终端设备在第一CG资源上发送的第一信息)后,则接入网设备发送的第一重配置信息中可以包括第二下行参考信号的索引,第二下行参考信号的索引表示将第一CG资源(或者说第一下行参考信号对应的所有CG资源)对应的下行参考信号更新为第二下行参考信号。
需要说明的是,上述S1406为可选步骤。也就是说,终端设备可以通过发送第一信息,请求接入网设备更新CG资源与下行参考信号的对应关系,进而接入网设备根据终端设备的请求,向终端设备发送第一重配置信息,来更新CG资源与下行参考信号的对应关系。
或者,接入网设备也可以主动发送第一重配置信息,来更新CG资源与下行参考信号的对应关系,此种情形下,终端设备可以无需向接入网设备发送第一信息。比如,当终端设备选择第二下行参考信号,并在第二下行参考信号对应的CG资源上向接入网设备发送上行数据时,接入网设备若确定第二下行参考信号对应的CG资源的数量较少,则可以主动发送第一重配置信息,以增加第二下行参考信号对应的CG资源。又比如,当终端设备根据第二下行参考信号对应的随机接入资源,发起随机接入过程时,接入网设备可以获知第二下行参考信号的测量值最大或较大,进而可以主动发送第一重配置信息,以增加第二下行参考信号对应的CG资源。
可以理解地,接入网设备向终端设备发送第一重配置信息后,若后续需要再次更新CG资源与下行参考信号的对应关系,则还可以向终端设备发送第二重配置信息,来更新CG资源与下行参考信号的对应关系。
采用上述方式,由于接入网设备可以向终端设备发送重配置信息,来更新CG资源与下行参考信号的对应关系,从而当终端设备在RRC非连接态下移动时,能够及时灵活地调整 CG资源与下行参考信号的对应关系,使得终端设备在选择当前下行参考信号后,能够有更多的CG资源来发送上行数据,以保证终端设备在RRC非连接态时的数据传输。
实施例三
如上述实施例一或实施例二所述,接入网设备可以为终端设备配置M个CG资源对应N个下行参考信号。在此基础上,实施例三中,将进一步针对CG资源对应的HARQ进程号(HARQ process ID)进行研究。
终端设备和接入网设备之间可以采用多个HARQ进程来进行数据传输,以支持多个数据包的并行传输。需要说明的是,这里的并行不等同于同时传输。一个HARQ进程可以包括从初始传输到最终收到ACK(即收到接收方确认正确接收数据包的信息)的全部过程,或者包括从初始传输到超过最大重传次数的全部过程,可选地,这两个过程中可以包括接收NACK、发送重传等过程。这一全部过程可以用一个HARQ进程号来标记,这样由于初传与重传的HARQ进程号相同,从而可以建立起初传数据包与重传数据包之间的关系,便于接收方正确接收。当终端设备和接入网设备之间采用多个HARQ进程时,意味着可以有多个这样的过程并行,即在一个HARQ进程未结束时,可同时进行其他HARQ进程。
在动态调度的数据传输中,接入网设备可以使用DCI调度一个PUSCH/PDSCH,该DCI中可以包括一个用于指示HARQ进程号的字段。例如,可以用4个比特来指示HARQ进程号(HARQ进程号的取值范围为0~15),标记该PUSCH/PDSCH上传输的数据包的HARQ进程号。然而,在基于CG资源的数据传输中,由于没有DCI动态调度,因此,接入网设备与终端设备之间没有动态确定HARQ进程号的方法,此种情形下,一种确定HARQ进程号的方式为,根据承载数据包的CG资源的起始时间位置(比如起始符号),来确定该数据包的HARQ进程号。具体来说,终端设备与接入网设备可以通过如下公式来确定数据包的HARQ进程号:
HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2
其中,CURRENT_symbol=(SFN×numberOfSlotsPerFrame×numberOfSymbolsPerSlot+slot number in the frame×numberOfSymbolsPerSlot+symbol number in the slot)
上述公式中各个参数的含义,可以参见表1所示。
表1:各个参数的含义
Figure PCTCN2020139553-appb-000003
Figure PCTCN2020139553-appb-000004
采用上述确定HARQ进程号的方式,从CG资源的角度来看,通常一个周期内的CG资源对应的HARQ进程号相同,相邻周期内的CG资源对应的HARQ进程号可能不同。
举个例子,假设接入网设备为终端设备配置了一套CG资源以及该套CG资源与下行参考信号的对应关系,其中,该套CG资源与下行参考信号的对应关系为:参见图15所示,SSB1对应周期1,SSB2对应周期2,SSB3对应周期3,SSB4对应周期4,SSB1对应周期5,SSB2对应周期6,SSB3对应周期7,SSB4对应周期8,以此循环。再假设每个系统帧包括10个时隙,每个时隙包括14个符号,每个周期的长度为1个时隙,周期1内的第一个CG资源所在的系统帧号为0,所在的时隙为时隙0,所在的起始符号为符号0,HARQ进程总数为16,harq-ProcID-Offset2的取值为0。
此种情形下,针对于周期1内的CG资源(比如周期1内的第一个CG资源),可得到对应的HARQ进程号为:
CURRENNT_symbol=(0*10*14+0*14+0)=0
HARQ Process ID=[floor(0/14)]modulo 16=0 modulo 16=0
针对于周期2内的CG资源(比如周期2内的第一个CG资源),可得到对应的HARQ进程号为:
CURRENNT_symbol=(0*10*14+1*14+0)=14
HARQ Process ID=[floor(14/14)]modulo 16=1 modulo 16=1
针对于周期3内的CG资源(比如周期3内的第一个CG资源),可得到对应的HARQ进程号为:
CURRENNT_symbol=(0*10*14+2*14+0)=28
HARQ Process ID=[floor(28/14)]modulo 16=2 modulo 16=2
针对于周期4内的CG资源(比如周期4内的第一个CG资源),可得到对应的HARQ进程号为:
CURRENNT_symbol=(0*10*14+3*14+0)=42
HARQ Process ID=[floor(42/14)]modulo 16=3 modulo 16=3
以此类推:
针对于周期5内的CG资源,可得到对应的HARQ进程号为:HARQ Process ID=4
针对于周期6内的CG资源,可得到对应的HARQ进程号为:HARQ Process ID=5
针对于周期7内的CG资源,可得到对应的HARQ进程号为:HARQ Process ID=6
针对于周期8内的CG资源,可得到对应的HARQ进程号为:HARQ Process ID=7
然而,在一些可能的场景中,采用上述HARQ进程号的计算方式,可能会存在一些问题。比如,在上述示例中,假设SSB1~SSB4中SSB3、SSB4的测量值均大于或等于第一阈值,也就是说,终端设备可以在SSB3对应的CG资源上或SSB4对应的CG资源上发送上行数据;若终端设备发现HARQ Process ID=3的HARQ进程可用,由于周期4内的CG资源对应的 HARQ进程号为3,则终端设备只能选择在SSB4对应的CG资源上发送上行数据,而不能选择在SSB3对应的CG资源上发送上行数据,从而限制了终端设备对CG资源的选择,导致上行数据的传输时延增加。
基于此,本申请实施例三中,针对于M个CG资源中的某一CG资源,该CG资源对应的HARQ进程号可以是根据第一偏置量得到的,第一偏置量可以是根据该CG资源对应的下行参考信号确定的。示例性地,第一偏置量可以为接入网设备针对该CG资源对应的下行参考信号所配置的。
在一个示例中,该CG资源对应的HARQ进程号可以通过如下公式确定:
HARQ Process ID=[floor(CURRENT_symbol/periodicity)]modulo nrofHARQ-Processes+harq-ProcID-Offset2+harq-ProcID-offset-forSSB-n
其中,harq-ProcID-offset-forSSB-n为第一偏置量。
比如,在上述示例中,引入偏置量1、偏置量2、偏置量3、偏置量4。其中,偏置量1可以是根据SSB1确定的,比如偏置量1=3;偏置量2可以是根据SSB2确定的,比如偏置量2=2;偏置量3可以是根据SSB3确定的,比如偏置量3=1;偏置量4可以是根据SSB4确定的,比如偏置量4=0。此种情形下:
针对于周期1内的CG资源,可得到对应的HARQ进程号为:HARQ Process ID=3
针对于周期2内的CG资源,可得到对应的HARQ进程号为:HARQ Process ID=3
针对于周期3内的CG资源,可得到对应的HARQ进程号为:HARQ Process ID=3
针对于周期4内的CG资源,可得到对应的HARQ进程号为:HARQ Process ID=3
如此,当终端设备可以在SSB3对应的CG资源上或SSB4对应的CG资源上发送上行数据时,若终端设备发现HARQ Process ID=3的HARQ进程可用,则终端设备可以选择在SSB3对应的CG资源上发送上行数据,或者也可以选择在SSB4对应的CG资源上发送上行数据,从而增加了某个HARQ进程号对应的CG资源的数量,即增加了终端设备的选择机会,便于降低上行数据的传输时延。
进一步地,当终端设备利用一个HARQ进程发送初传数据包,且没有收到接入网设备反馈的ACK时,终端设备可以利用该HARQ进程进行一次或多次重传。为避免终端设备进行过多重传而造成资源浪费,本申请实施例三中,接入网设备可以向终端设备发送第二配置信息,第二配置信息用于配置HARQ进程号对应的HARQ进程的最大重传次数和/或HARQ进程号对应的HARQ进程的有效时长。其中,接入网设备向终端设备发送第二配置信息的方式可以有多种,本申请实施例对此不做限定,比如接入网设备可以通过同一条消息向终端设备发送第一配置信息和第二配置信息。如此,针对于某个HARQ进程号,当终端设备发现该HARQ进程号对应的HARQ进程的重传次数达到最大重传次数或该HARQ进程号对应的HARQ进程的时长达到有效时长后,可以丢弃该HARQ进程。可选地,终端设备可以向接入网设备发起随机接入过程以进入RRC连接态,或者进行基于随机接入的数据传输。
针对于上述实施例一至实施例三,需要说明的是:
(1)上述实施例一和实施例二可以分别单独实施,上述实施例三可以结合到实施例一中实施,或者也可以结合到实施例二中实施。
(2)上文中侧重描述了实施例一至实施例三的区别之处,除区别之处的其它内容, 实施例一至实施例三可以相互参照。
(3)实施例一和实施例二所描述的各个流程图的步骤编号仅为执行流程的一种示例,并不构成对步骤执行的先后顺序的限制,本申请实施例中相互之间没有时序依赖关系的步骤之间没有严格的执行顺序。此外,各个流程图中所示意的步骤并非全部是必须执行的步骤,可以根据实际需要在各个流程图的基础上增添或者删除部分步骤。
上述主要从接入网设备和终端设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,终端设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图16示出了本申请实施例中所涉及的装置的可能的示例性框图。如图16所示,装置1600可以包括:处理单元1602和通信单元1603。处理单元1602用于对装置1600的动作进行控制管理。通信单元1603用于支持装置1600与其他设备的通信。可选地,通信单元1603也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置1600还可以包括存储单元1601,用于存储装置1600的程序代码和/或数据。
该装置1600可以为上述实施例中的终端设备、或者还可以为设置在终端设备中的芯片。处理单元1602可以支持装置1600执行上文中各方法示例中终端设备的动作。或者,处理单元1602主要执行方法示例中的终端设备的内部动作,通信单元1603可以支持装置1600与其它设备之间的通信。
具体地,在一个实施例中,通信单元1603用于,接收来自接入网设备的第一配置信息,第一配置信息用于配置M个配置授权CG资源对应N个下行参考信号,M个CG资源用于终端设备在非连接态时发送上行信息;以及,在终端设备进入非连接态后,接收来自接入网设备的第一重配置信息,第一重配置信息用于对M个CG资源中的部分或全部CG资源对应的下行参考信号进行更新;其中,M、N为正整数。
该装置1600可以为上述实施例中的接入网设备、或者还可以为设置在接入网设备中的芯片。处理单元1602可以支持装置1600执行上文中各方法示例中接入网设备的动作。或者,处理单元1602主要执行方法示例中的接入网设备的内部动作,通信单元1603可以支持装置1600与其它设备之间的通信。
具体地,在一个实施例中,通信单元1603用于:向终端设备发送第一配置信息,第一配置信息用于配置M个配置授权CG资源对应N个下行参考信号,M个CG资源用于当终端设备在非连接态时接收来自该终端设备的上行信息;以及,在终端设备进入非连接态后,向终端设备发送第一重配置信息,第一重配置信息用于对M个CG资源中的部分或全部CG资源对应的下行参考信号进行更新;其中,M、N为正整数。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各操作或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是处理器,比如通用中央处理器(central processing unit,CPU),或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
图17为本申请实施例提供的一种终端设备的结构示意图,其可以为以上实施例中的终端设备,用于实现以上实施例中终端设备的操作。如图17所示,该终端设备包括:天线1710、射频部分1720、信号处理部分1730。天线1710与射频部分1720连接。在下行方向上,射频部分1720通过天线1710接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分1730进行处理。在上行方向上,信号处理部分1730对终端设备的信息进行处理,并发送给射频部分1720,射频部分1720对终端设备的信息进行处理后经过天线1710发送给网络设备。
信号处理部分1730可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端设备操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端设备相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。
调制解调子系统可以包括一个或多个处理元件1731,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件1732和接口电路1733。存储元件1732用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件1732中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路1733用于与其它子系统通信。
该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其 中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图16中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图16中所描述的存储单元的功能相同。存储元件可以通过存储器实现,存储元件的功能可以和图16中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。
图17所示的终端设备能够实现上述方法实施例中涉及终端设备的各个过程。图17所示的终端设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
参见图18,为本申请实施例提供的一种接入网设备的结构示意图,该接入网设备(或基站)可应用于如图1所示的系统架构中,执行上述方法实施例中接入网设备的功能。接入网设备180可包括一个或多个DU 1801和一个或多个CU 1802。所述DU 1801可以包括至少一个天线18011,至少一个射频单元18012,至少一个处理器18013和至少一个存储器18014。所述DU 1801部分主要用于射频信号的收发以及射频信号与基带信号的转换,以 及部分基带处理。CU1802可以包括至少一个处理器18022和至少一个存储器18021。
所述CU 1802部分主要用于进行基带处理,对接入网设备进行控制等。所述DU 1801与CU 1802可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU 1802为接入网设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 1802可以用于控制接入网设备执行上述方法实施例中关于接入网设备的操作流程。
此外,可选的,接入网设备180可以包括一个或多个射频单元,一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器18013和至少一个存储器18014,射频单元可以包括至少一个天线18011和至少一个射频单元18012,CU可以包括至少一个处理器18022和至少一个存储器18021。
在一个实例中,所述CU1802可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器18021和处理器18022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU1801可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器18014和处理器18013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图18所示的接入网设备能够实现上述方法实施例中涉及接入网设备的各个过程。图18所示的接入网设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (42)

  1. 一种通信方法,其特征在于,包括:
    接收来自接入网设备的第一配置信息,所述第一配置信息用于配置M个配置授权CG资源对应N个下行参考信号,所述M个CG资源用于终端设备在非连接态时发送上行信息;
    当所述终端设备在非连接态时,接收来自所述接入网设备的第一重配置信息,所述第一重配置信息用于对所述M个CG资源中的部分或全部CG资源对应的下行参考信号进行更新;
    其中,M、N为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述M个CG资源对应N个下行参考信号,包括以下至少一项:
    所述M个CG资源属于一套或多套CG资源,每个CG资源属于其中一套CG资源,每套CG资源对应所述N个下行参考信号中的一个或多个下行参考信号;
    所述M个CG资源位于一个或多个周期,每个CG资源位于其中一个周期,每个周期对应所述N个下行参考信号中的一个或多个下行参考信号;
    所述M个CG资源中的一个或多个CG资源对应所述至少一个下行参考信号中的一个或多个下行参考信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收来自所述接入网设备的P个下行参考信号,所述P个下行参考信号包括所述N个下行参考信号;其中,P为正整数,P大于或等于N;
    根据所述P个下行参考信号的测量值,向所述接入网设备发送第一信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述N个下行参考信号包括第一下行参考信号;
    所述方法还包括:
    在所述第一下行参考信号对应的CG资源上,向所述接入网设备发送第一信息。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    在所述第一下行参考信号对应的CG资源上,向所述接入网设备发送上行数据。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一下行参考信号的测量值大于或等于第一阈值;或者,所述第一下行参考信号的测量值大于或等于所述N个下行参考信号中其它下行参考信号的测量值。
  7. 根据权利要求3至6中任一项所述的方法,其特征在于,所述P个下行参考信号包括第二下行参考信号,所述第二下行参考信号的测量值大于第一下行参考信号的测量值;
    所述第一信息包括所述第一下行参考信号的测量值和所述第二下行参考信号的测量值;或者,
    所述第一信息包括所述第二下行参考信号的索引;或者,
    所述第一信息包括所述P个下行参考信号的测量值。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述M个CG资源包括第一CG资源,所述第一配置信息用于配置所述第一CG资源以及所述第一CG资源对应第一下行参考信号;
    所述第一重配置信息用于配置所述第一CG资源对应第二下行参考信号。
  9. 根据权利要求8所述的方法,其特征在于,所述M个CG资源还包括第二CG资源,所述第一配置信息用于配置所述第二CG资源以及所述第二CG资源对应所述第二下行参考信号;
    所述第一重配置信息还用于配置所述第二CG资源对应所述第一下行参考信号。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一重配置信息承载于下行控制信息DCI、媒体接入控制MAC控制元素CE或无线资源控制RRC消息。
  11. 根据权利要求10所述的方法,其特征在于,所述DCI还包括第二信息,所述第二信息包括HARQ反馈信息和/或调度信息;所述HARQ反馈信息用于指示所述终端设备的上行数据是否被成功接收,所述调度信息用于调度所述终端设备的物理上行共享信道PUSCH或物理下行共享信道PDSCH。
  12. 根据权利要求3所述的方法,其特征在于,所述P个下行参考信号包括第三下行参考信号;
    所述方法还包括:根据所述第三下行参考信号对应的随机接入资源,发起随机接入过程;
    所述第一信息承载于第一消息,所述第一消息用于所述随机接入过程。
  13. 根据权利要求12所述的方法,其特征在于,所述M个CG资源包括第三CG资源,所述第一配置信息用于配置所述第三CG资源以及所述第三CG资源对应第四下行参考信号;
    所述第一重配置信息用于配置所述第三CG资源对应所述第三下行参考信号。
  14. 根据权利要求13所述的方法,其特征在于,所述M个CG资源还包括第四CG资源,所述第一配置信息用于配置所述第四CG资源以及所述第四CG资源对应所述第三下行参考信号;
    所述第一重配置信息还用于配置所述第四CG资源对应所述第四下行参考信号。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述第一重配置信息承载于第二消息,所述第二消息用于所述随机接入过程。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述M个CG资源包括第五CG资源,所述第五CG资源对应的混合自动重传请求HARQ进程号是根据第一偏置量得到的,所述第一偏置量是根据所述第五CG资源对应的下行参考信号确定的。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    接收来自所述接入网设备的第二配置信息,所述第二配置信息用于配置所述HARQ进程号对应的HARQ进程的最大重传次数和/或所述HARQ进程号对应的HARQ进程的有效时长。
  18. 一种通信方法,其特征在于,所述方法包括:
    向终端设备发送第一配置信息,所述第一配置信息用于配置M个配置授权CG资源对应N个下行参考信号,所述M个CG资源用于当所述终端设备在非连接态时从所述终端设备接收上行信息;
    在所述终端设备在非连接态时,向所述终端设备发送第一重配置信息,所述第一重配置信息用于对所述M个CG资源中的部分或全部CG资源对应的下行参考信号进行更新;
    其中,M、N为正整数。
  19. 根据权利要求18所述的方法,其特征在于,所述M个CG资源对应N个下行参考信号,包括以下至少一项:
    所述M个CG资源属于一套或多套CG资源,每个CG资源属于其中一套CG资源,每套CG资源对应所述N个下行参考信号中的一个或多个下行参考信号;
    所述M个CG资源位于一个或多个周期,每个CG资源位于其中一个周期,每个周期对应所述N个下行参考信号中的一个或多个下行参考信号;
    所述M个CG资源中的一个或多个CG资源对应所述至少一个下行参考信号中的一个或多个下行参考信号。
  20. 根据权利要求18或19所述的方法,其特征在于,向所述终端设备发送第一重配置信息,包括:
    接收来自所述终端设备的第一信息;
    根据所述第一信息,向所述终端设备发送所述第一重配置信息。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述N个下行参考信号包括第一下行参考信号;
    所述方法还包括:
    在所述第一下行参考信号对应的CG资源上,接收来自所述终端设备的第一信息。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    在所述第一下行参考信号对应的CG资源上,接收来自所述终端设备的上行数据。
  23. 根据权利要求21或22所述的方法,其特征在于,所述第一下行参考信号的测量值大于或等于第一阈值;或者,所述第一下行参考信号的测量值大于或等于所述N个下行参考信号中其它下行参考信号的测量值。
  24. 根据权利要求20至23中任一项所述的方法,其特征在于,所述方法还包括:发送P个下行参考信号,所述P个下行参考信号包括所述N个下行参考信号;其中,P为正整数,P大于或等于N;
    所述P个下行参考信号包括第二下行参考信号;
    所述第一信息包括所述第一下行参考信号的测量值和第二下行参考信号的测量值,所述第二下行参考信号的测量值大于所述第一下行参考信号的测量值;或者,
    所述第一信息包括所述第二下行参考信号的索引;或者,
    所述第一信息包括所述P个下行参考信号的测量值。
  25. 根据权利要求18至24中任一项所述的方法,其特征在于,所述M个CG资源包括第一CG资源,所述第一配置信息用于配置所述第一CG资源以及所述第一CG资源对应第一下行参考信号;
    所述第一重配置信息用于配置所述第一CG资源对应第二下行参考信号。
  26. 根据权利要求25所述的方法,其特征在于,所述M个CG资源还包括第二CG资源,所述第一配置信息用于配置所述第二CG资源以及所述第二CG资源对应所述第二下行参考信号;
    所述第一重配置信息还用于配置所述第二CG资源对应所述第一下行参考信号。
  27. 根据权利要求18至26中任一项所述的方法,其特征在于,所述第一重配置信息承载于DCI、MAC CE或RRC消息。
  28. 根据权利要求27所述的方法,其特征在于,所述DCI还包括第二信息,所述第二信息包括HARQ反馈信息和/或调度信息;所述HARQ反馈信息用于指示所述终端设备的上行数据是否被成功接收,所述调度信息用于调度所述终端设备的PUSCH或PDSCH。
  29. 根据权利要求20所述的方法,其特征在于,所述方法还包括:发送P个下行参考信号,所述P个下行参考信号包括所述N个下行参考信号;其中,P为正整数,P大于或等于N;
    所述P个下行参考信号包括第三下行参考信号;
    所述第一信息承载于第一消息,所述第一消息用于随机接入过程,所述随机接入过程所使用的随机接入资源为所述第三下行参考信号对应的随机接入资源。
  30. 根据权利要求29所述的方法,其特征在于,所述M个CG资源包括第三CG资源,所述第一配置信息用于配置所述第三CG资源以及所述第三CG资源对应第四下行参考信号;
    所述第一重配置信息用于配置所述第三CG资源对应所述第三下行参考信号。
  31. 根据权利要求30所述的方法,其特征在于,所述M个CG资源还包括第四CG资源,所述第一配置信息用于配置所述第四CG资源以及所述第四CG资源对应所述第三下行参考信号;
    所述第一重配置信息还用于配置所述第四CG资源对应所述第四下行参考信号。
  32. 根据权利要求29至31中任一项所述的方法,其特征在于,所述第一重配置信息承载于第二消息,所述第二消息用于所述随机接入过程。
  33. 根据权利要求18至32中任一项所述的方法,其特征在于,所述M个CG资源包括第五CG资源,所述第五CG资源对应的HARQ进程号是根据第一偏置量得到的,所述第一偏置量是根据所述第五CG资源对应的下行参考信号确定的。
  34. 根据权利要求33所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二配置信息,所述第二配置信息用于配置所述HARQ进程号对应的HARQ进程的最大重传次数和/或所述HARQ进程号对应的HARQ进程的有效时长。
  35. 一种通信装置,其特征在于,包括用于执行如权利要求1至17中任一项所述方法的模块。
  36. 一种通信装置,其特征在于,包括用于执行如权利要求18至34中任一项所述方法的模块。
  37. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于实现如权利要求1至17中任一项所述的方法。
  38. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于实现如权利要求18至34中任一项所述的方法。
  39. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至17中任一项所述的方法。
  40. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求18至34中任一项所述的方法。
  41. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至17中任一项所述的方法或者如权利要求18至34中任一项所述的方法。
  42. 一种通信系统,包括权利要求35、37和39中任一项所述的通信装置,和权利要求36、38和40中任一项所述的通信装置。
PCT/CN2020/139553 2020-12-25 2020-12-25 一种通信方法及装置 WO2022134046A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/139553 WO2022134046A1 (zh) 2020-12-25 2020-12-25 一种通信方法及装置
CN202080107642.5A CN116711426A (zh) 2020-12-25 2020-12-25 一种通信方法及装置
JP2023538902A JP2024500487A (ja) 2020-12-25 2020-12-25 通信方法及び装置
EP20966611.4A EP4247094A4 (en) 2020-12-25 2020-12-25 COMMUNICATION METHOD AND APPARATUS
US18/339,746 US20230337223A1 (en) 2020-12-25 2023-06-22 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139553 WO2022134046A1 (zh) 2020-12-25 2020-12-25 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/339,746 Continuation US20230337223A1 (en) 2020-12-25 2023-06-22 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022134046A1 true WO2022134046A1 (zh) 2022-06-30

Family

ID=82157110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139553 WO2022134046A1 (zh) 2020-12-25 2020-12-25 一种通信方法及装置

Country Status (5)

Country Link
US (1) US20230337223A1 (zh)
EP (1) EP4247094A4 (zh)
JP (1) JP2024500487A (zh)
CN (1) CN116711426A (zh)
WO (1) WO2022134046A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020033895A1 (en) * 2018-08-10 2020-02-13 Intel Corporation UPLINK TRANSMISSIONS IN PRECONFIGURED RESOURCES FOR ENHANCED MACHINE TYPE COMMUNICATION (eMTC) AND NARROW-BAND INTERNET OF THINGS (NB-IoT)
US20200059964A1 (en) * 2018-08-17 2020-02-20 Huawei Technologies Co., Ltd. Network-assisted Clear Channel Assessment Bandwidth Adaptation Mechanism
CN111050400A (zh) * 2018-10-12 2020-04-21 华为技术有限公司 信息处理的方法和装置
CN111800887A (zh) * 2019-08-02 2020-10-20 维沃移动通信有限公司 非授权频段上的上行传输方法及终端设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11330443B2 (en) * 2019-01-08 2022-05-10 Ofinno, Llc HARQ feedback for configured grant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020033895A1 (en) * 2018-08-10 2020-02-13 Intel Corporation UPLINK TRANSMISSIONS IN PRECONFIGURED RESOURCES FOR ENHANCED MACHINE TYPE COMMUNICATION (eMTC) AND NARROW-BAND INTERNET OF THINGS (NB-IoT)
US20200059964A1 (en) * 2018-08-17 2020-02-20 Huawei Technologies Co., Ltd. Network-assisted Clear Channel Assessment Bandwidth Adaptation Mechanism
CN111050400A (zh) * 2018-10-12 2020-04-21 华为技术有限公司 信息处理的方法和装置
CN111800887A (zh) * 2019-08-02 2020-10-20 维沃移动通信有限公司 非授权频段上的上行传输方法及终端设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4247094A4 *
VIVO: "Enhancements for unlicensed band URLLC/IIoT", 3GPP DRAFT; R1-2007657, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 24 October 2020 (2020-10-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051946463 *

Also Published As

Publication number Publication date
CN116711426A (zh) 2023-09-05
EP4247094A4 (en) 2024-01-24
JP2024500487A (ja) 2024-01-09
US20230337223A1 (en) 2023-10-19
EP4247094A1 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
JP7389804B2 (ja) Coresetのサブセットに基づくデフォルトビーム選択
WO2020221318A1 (zh) 一种上行波束管理方法及装置
KR20140058644A (ko) 단말 간 직접 통신을 수행하는 방법과 이를 지원하는 방법 및 이를 위한 장치
CN112970214B (zh) 用于侧链路的反馈信令
JP2022539715A (ja) Rrc状態の間でのue支援型高速遷移
JP6516131B2 (ja) 基地局装置、端末装置、および通信方法
JP6516265B2 (ja) 基地局装置、端末装置、および通信方法
US11750345B2 (en) Electronic device, wireless communication method and computer readable medium
US11700616B2 (en) Default aperiodic channel state information reference signal beam for same numerology triggering
US20230025552A1 (en) Communication method and apparatus
CN115943710A (zh) Sps和ulcg增强
KR20200032530A (ko) 무선통신 시스템에서 데이터를 송수신하는 방법 및 장치
CN117242736A (zh) 针对能力降低的设备的功率节省
CN115885547A (zh) 基于远程连接至网络实体的无线通信的中继
WO2022134046A1 (zh) 一种通信方法及装置
WO2022151066A1 (zh) 一种通信方法及装置
CN117397173A (zh) 信息传输方法、设备及存储介质
WO2023143269A1 (zh) 一种通信方法及装置
WO2024046236A1 (zh) 一种数据传输方法及装置
WO2022188655A1 (zh) 一种数据传输方法及装置
WO2024032208A1 (zh) 一种通信的方法和装置
US20230247614A1 (en) Bandwidth Part Switching Method and Apparatus
WO2023011372A1 (zh) 数据传输方法及装置
US20230216640A1 (en) User equipment (ue) initiated reference signal requests
WO2024031540A1 (zh) 通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966611

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107642.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2020966611

Country of ref document: EP

Effective date: 20230613

WWE Wipo information: entry into national phase

Ref document number: 2023538902

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE