WO2018058387A1 - 用于传输数据的方法和终端设备 - Google Patents

用于传输数据的方法和终端设备 Download PDF

Info

Publication number
WO2018058387A1
WO2018058387A1 PCT/CN2016/100666 CN2016100666W WO2018058387A1 WO 2018058387 A1 WO2018058387 A1 WO 2018058387A1 CN 2016100666 W CN2016100666 W CN 2016100666W WO 2018058387 A1 WO2018058387 A1 WO 2018058387A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
timer
indication
information
time
Prior art date
Application number
PCT/CN2016/100666
Other languages
English (en)
French (fr)
Inventor
酉春华
黄曲芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/100666 priority Critical patent/WO2018058387A1/zh
Priority to CN201680089586.0A priority patent/CN109792680B/zh
Priority to EP16917141.0A priority patent/EP3509357B1/en
Publication of WO2018058387A1 publication Critical patent/WO2018058387A1/zh
Priority to US16/366,478 priority patent/US11026107B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communication technologies, and, more particularly, to a method and terminal device for transmitting data.
  • a terminal device performs uplink transmission on a corresponding subframe by receiving an uplink grant (UL grant) resource sent by the base station.
  • the LTE introduces the mode of the Assisted Access (LAA).
  • the LAA system uses the channel resources by using the Listen Before Talk (LBT) principle, that is, the channel resources of the unlicensed spectrum are detected. After idle, the channel resources of the unlicensed spectrum are used to transmit data.
  • LBT Listen Before Talk
  • a two-level scheduling mode is introduced for the LAA.
  • the terminal device When the terminal device performs an uplink transmission, it needs to acquire two levels of uplink authorization, including the first-level uplink authorization and the first-level uplink authorization. Secondary uplink authorization.
  • the related technologies for the two-level scheduling mode are not mature.
  • the related art does not involve the introduction of a discontinuous reception (DRX) mechanism in the two-level scheduling mode.
  • DRX discontinuous reception
  • the second-level authorization cannot be monitored in time, so that the terminal device cannot complete the data transmission in the two-level scheduling mode.
  • the embodiment of the invention provides a method for transmitting data and a terminal device, which can ensure that the terminal device acquires the second indication, thereby completing data transmission in the two-level scheduling mode.
  • a method for transmitting data comprising:
  • the terminal device acquires the first indication
  • the first indication and the second indication are used by the terminal device to determine a resource for data transmission.
  • the first indication and the second indication may indicate a resource used by the terminal device for data transmission, for example, a time domain location for data transmission may be indicated, which is not limited thereto.
  • the terminal device acquires the first indication, and monitors the physical channel in the predetermined first time zone to obtain the second indication, where the first indication and the second indication are used by the terminal device to determine
  • the data transmission resource can ensure that the terminal device obtains the second indication, thereby completing data transmission in the two-level scheduling mode.
  • the first indication may be understood as an uplink transmission resource, and may be specifically understood as a first uplink authorization.
  • the first indication may include the first uplink grant and the uplink resource.
  • the first indication may further include information about a range of the predetermined first time zone.
  • the information of the range of the first time zone may be the duration of the effective subframe area.
  • the first indication may further indicate that each uplink transmission of the terminal device is a new transmission or a retransmission.
  • the first uplink grant includes subframe offset information of the first subframe.
  • the first uplink grant may indicate the duration of the effective subframe region used by the terminal device for data transmission.
  • the first uplink grant indicates an uplink transmission resource (such as a frequency domain resource).
  • the first uplink authorization may further include related information for indicating one or more uplink transmissions of the terminal device, for example, a Hybrid Automatic Repeat Request (HARQ) process used for each uplink transmission. (process) identification (ID) information, as well as MCS information and the like.
  • HARQ Hybrid Automatic Repeat Request
  • ID identification
  • MCS Mobility Control Service
  • the physical layer of the terminal device may notify the MAC layer of the terminal device of the information of the first uplink authorization.
  • the first indication or the first uplink authorization may be sent by the terminal device receiving the network device.
  • the first indication or the first uplink authorization may be sent by the network device to the terminal device by using a PDCCH.
  • the physical channel may be a Physical Downlink Control Channel (PDCCH).
  • PDCH Physical Downlink Control Channel
  • the second indication may be understood as a second uplink grant, and may also be understood as an uplink transmission resource.
  • the second indication may include a second uplink grant and an uplink resource.
  • the second indication or the first uplink authorization may be that the terminal device receives the network device Sent.
  • the first indication or the first uplink authorization may be sent by the network device to the terminal device by using a PDCCH.
  • the first indication may indicate relative time information of the terminal device (such as first subframe offset information), and the second indication may indicate absolute time information of the terminal device (the first child)
  • the location of the frame, the terminal device may determine, according to the first indication and the second indication, which subframe to perform a transmission, that is, determine a time domain resource for transmitting data.
  • the first subframe is introduced for the convenience of description.
  • the first subframe may be any one of the subframes, for example, the initial uplink subframe, and the like.
  • the predetermined first time zone may be a timer configured in a DRX mechanism of the terminal device (for example, an active timer DRX In activity Timer, or a retransmission timer DRX UL Retransmission Timer, or an uplink persistent
  • the timer On Duration Timer, etc.
  • listening to the physical channel to obtain the second indication includes:
  • the terminal device If the terminal device acquires the second indication in the predetermined first time zone, the terminal device stops listening to the physical channel.
  • the terminal device can stop listening to the physical channel, such as the PDCCH, so that the power of the terminal device can be saved.
  • the method further includes:
  • the terminal device If the terminal device obtains the second indication, the terminal device performs data transmission on the resource according to the first indication and the second indication.
  • the resource can be a time domain location for data transmission of the terminal device.
  • the terminal device obtains the second indication, and the second indication includes the second uplink authorization.
  • the second uplink grant is used to indicate the location of the first subframe in the effective subframe area (indicated by the first uplink grant).
  • the terminal device may determine, according to the location of the first subframe of the second uplink grant, and the first subframe offset information of the first uplink grant, on which subframe the uplink transmission is performed, that is, determine that the terminal device sends the data. Time domain resources for data transfer.
  • listening to the physical channel to obtain the second indication in the predetermined first time region includes:
  • the terminal device starts or restarts the first timer, where the duration of the first timer is the duration of the predetermined first time region;
  • the terminal device listens to the physical channel to obtain the second indication during operation of the first timer.
  • the first timer may be any one of an active timer DRX In activity Timer, a persistent timer On Duration Timer, and an uplink retransmission timer DRX-UL Retransmission Timer.
  • the first timer may also be a re-introduced new non-continuous receiving DRX timer, or a MAC layer timer, or an RRC layer timer, which is not limited thereto.
  • the terminal device does not sleep during the operation of the first timer, unless the terminal device receives the second indication; or, it can be understood that the terminal device continues during the running of the first timer.
  • the PDCCH is monitored until the second indication is received; or, it can be understood that the terminal device maintains the DRX activation state during the operation of the first timer in order to receive the second indication.
  • the end time of the first timer may be set to be no later than the expiration time of the valid subframe region indicated by the first uplink grant. It can also be understood that the duration of the first timer can be set to be greater than or equal to the duration of the effective subframe region.
  • the duration of the first timer may be indicated by the network device by using the first uplink grant, or may be indicated by high layer signaling, for example, Radio Resource Control (RRC) signaling; or It can be stipulated in the agreement, which is not limited.
  • RRC Radio Resource Control
  • the method further includes:
  • the first timer is stopped.
  • the “first timer expires” means that the timer stops automatically after the set time expires; “the first timer stops” refers to the terminal device or the base station forcibly stopping the timer regardless of whether it reaches the set time.
  • the terminal device obtains the second indication or the second uplink authorization, if the first timer does not time out and/or does not stop, the first timer is stopped. In this way, the terminal device does not need to monitor the PDCCH after receiving the second indication or the second uplink grant, thereby saving power.
  • the terminal device starts or restarts the first timer, including:
  • the terminal device starts or restarts the first timer when or after the first indication is acquired.
  • the start timing or the trigger of the first timer may be determined according to the first indication (of course, it may also be in other reasonable forms, which is not limited thereto).
  • time or after means that the terminal device can start the first timer on the subframe in which the first uplink grant is obtained, or can start the first timer on the subframe after the first uplink grant is obtained. Not limited. Therefore, in the implementation of the present invention, the subframes of “acquiring the first indication” and “starting the first timer” are relatively flexible, and it is not necessary to fix or start the first timer on a certain subframe.
  • the method further includes:
  • the second timer is started, where the second timer is used to wait for the retransmitted uplink resource.
  • the second timer may be an uplink retransmission timer (DRX-UL Retransmission Timer).
  • DRX-UL Retransmission Timer uplink retransmission timer
  • the method further includes:
  • the third timer is started
  • the terminal device does not monitor the physical channel during the running of the third timer
  • the starting or restarting the first timer includes:
  • the first timer is started or restarted.
  • the terminal device may start a third timer when the subframe of the first uplink grant is received, or after the third timer is running, the terminal device may not monitor the PDCCH. Alternatively, if the terminal device does not satisfy the DRX activation condition, the terminal device does not monitor the PDCCH in the third timer. In this way, the terminal device can save power.
  • the duration of the third timer may be configured by the network device according to the capability information reported by the terminal device, or may be directly specified by the protocol, and is not limited thereto.
  • the duration of the first timer of the terminal device may be jointly determined according to the duration of the third timer and the duration of the effective subframe region.
  • the duration of the third timer may be indicated by the network device by using the first indication or the radio resource control RRC signaling.
  • the terminal device monitors the physical channel to obtain the second indication in the predetermined first time zone, including:
  • the terminal device listens to the physical channel to obtain the second indication during an intersection period determined by the predetermined first time zone and the running time of the fourth timer.
  • the terminal device may monitor the physical channel during the intersection time period determined by the predetermined first time zone and the running time of the fourth timer (such as an uplink retransmission timer), so as to obtain the second indication.
  • the fourth timer such as an uplink retransmission timer
  • the method further includes:
  • the fourth timer Before the obtaining the second indication, if the fourth timer is in the running period, the fourth timer is not stopped, and the fourth timer is in the predetermined first time zone;
  • the intercepting the physical channel to obtain the second indication in the predetermined first time zone includes:
  • the physical channel is listened to to obtain the second indication.
  • the fourth timer may be an active timer DRX In activity Timer, a persistent timer On Duration Timer, an uplink retransmission timer, a DRX-UL Retransmission Timer, and any one of the newly introduced timers.
  • the terminal device can directly introduce a timer, and if there is a running timer (such as a DRX-UL Retransmission Timer), the PDCCH can be directly monitored by using the running timer.
  • a running timer such as a DRX-UL Retransmission Timer
  • the terminal device uses the running timer without having to redefine the timer, saving resources for the terminal device.
  • the method further includes:
  • the terminal device stops the fourth timer.
  • the fourth timer may be stopped, thereby saving power of the terminal device.
  • a method for transmitting data comprising:
  • the first indication and the second indication are used by the terminal device to determine a resource for data transmission.
  • the terminal device obtains the first indication, and then generates the first time.
  • the first information or directly acquiring the first information of the first time, where the first information is reference information of the network device scheduling terminal device, and then acquiring the second indication, and according to the first indication, the second indication and the first information
  • a transport block in a two-stage scheduling mode can be generated for data transmission.
  • the first time may be a certain time, or may be a certain time period, such as a duration of a subframe, and is not limited thereto.
  • the first information may be control information of a buffer status (BS) and/or a power headroom (PH), and may also be one or more MAC control elements (Control Elements) , CE), or may be a transport block including a MAC CE, or the first information may be a control element for a Buffer Status Report (BSR)/Power Headroom Report (PHR), This is not limited.
  • the BSR is used by the terminal device to tell the network device how much data to be sent in the uplink buffer (Buffer), so that the network device determines how much uplink transmission resource needs to be allocated to the terminal device.
  • the PHR is used by the terminal device to report the power headroom information of each cell (ie, the difference between the UL_SCH channel estimation power and the UE maximum transmission power) to the network device, so that the network device adjusts the transmission power of the terminal device.
  • the first information is that the network device can refer to the first information, schedule appropriate resources for the terminal device, or adjust related parameters of the terminal device. For example, the network device may determine the appropriate transmission resource for the terminal device according to the BSR in the first information. For example, the network device may learn the power headroom information of each cell according to the PHR in the first information, thereby adjusting the terminal device. Transmit power.
  • the first information may assist the network device to make an appropriate reference for the scheduling of the terminal device, but may not be limited to being the first information.
  • the generation or acquisition of the "first information” and the acquisition of the "second indication” have no strict chronological order.
  • the generation or acquisition of the "first information” is preceded by the acquisition of the "second indication”; or the generation or acquisition of the "first information” is followed by the acquisition of the "second indication”. Not limited.
  • the first indication includes second time indication information, where the second indication includes third time indication information;
  • the data transmission is performed according to the first indication and the second indication, and the first information is used for data transmission, including:
  • the “second time indication information” and the “third time indication information” are introduced for the convenience of description, and are distinguished from the “first time” in the foregoing, and the number has no special meaning, and does not constitute a pair. Limitations of the invention.
  • the second time indication information may be specifically: the first subframe offset information of the first uplink grant, and the third time indication information may specifically refer to the location of the first subframe of the second uplink grant.
  • the terminal device may determine, according to the second time indication information (for example, the first subframe offset information of the first uplink grant) and the third time indication information (the location of the first subframe of the second uplink grant), The time domain location of the data (ie, which subframe is determined for an upstream transmission).
  • the terminal device performs data transmission based on the first information (such as a data packet, a MAC CE, etc.) and a time domain location.
  • the first information of the first time is generated and/or obtained, including:
  • the media access control layer MAC of the terminal device determines the buffer status BS of the terminal device according to the first time, and the first information includes the BS of the terminal device.
  • the first information of the first time is generated and/or obtained, including:
  • the physical PHY layer of the terminal device determines the power headroom PH of each activated serving cell according to the first time, and notifies the PH layer of the terminal device to the MAC layer of the terminal device, where the first information includes the terminal device PH.
  • the data volume of the previously generated transport block may be considered or not considered when the block is transmitted one time.
  • the media access control MAC layer of the terminal device acquires the first uplink grant and the second uplink grant sent by the physical PHY layer of the terminal device; and the MAC layer of the terminal device according to the indication of the first uplink grant and the second uplink grant
  • the subframe determines at least one parameter of the buffer status parameter and/or the power headroom.
  • the physical PHY layer of the terminal device notifies the MAC layer of the media access control layer of the terminal device of the acquired first uplink authorization; and the MAC layer of the terminal device is configured according to the first uplink authorization.
  • Determining a reference subframe which may be the same as or different from a subframe in which the terminal device performs data transmission; the subframe of the data transmission may be determined by the first uplink grant and the second uplink grant, or the second uplink grant.
  • the MAC layer of the terminal device determines the BSR according to the reference subframe And / or PHR.
  • the physical layer of the terminal calculates a power headroom of each activated serving cell according to the reference subframe, and notifies the MAC layer of the terminal device to generate a PHR MAC CE; for the PHR, the MAC of the terminal is calculated according to the reference subframe. Buffer status to generate BSR MAC CE.
  • the reference subframe is different from the subframe in which the terminal device performs data transmission.
  • the location of the reference subframe may be at least 4 subframes from the subframe in which the first uplink grant is received.
  • the location of the reference subframe may be specified by the protocol, or may be indicated by the base station, which is not limited thereto.
  • the method further includes:
  • the media access control layer MAC of the terminal device associates the hybrid automatic repeat request HARQ module according to the first time, and stores the first information into the HARQ module, so that the PHY layer of the terminal device transmits the first information.
  • the PHY layer of the terminal device after receiving the first indication, notifies the MAC layer of the terminal device to perform a grouping process.
  • the MAC link control protocol (LCP) module layer of the terminal device generates first information (such as a data packet) at a first time (subframe or time), and sends the data packet to the HARQ module, and notifies the terminal device
  • the PHY layer performs data transmission.
  • the PHY layer of the terminal device performs data transmission in the two-level scheduling mode according to the data packet.
  • the MAC layer of the terminal device when receiving the second uplink grant, may deliver the generated data packet to the HARQ module; or may directly consider the data packet without considering whether the second uplink grant is received. Submit to the HARQ module.
  • the terminal device may process with a reference Transmission Time Interval (TTI) when processing the HARQ process without considering whether the second uplink grant is received.
  • TTI Transmission Time Interval
  • the generated data packet may be rolled back to the Radio Link Control (RLC) layer, so as to wait for the next random
  • RLC Radio Link Control
  • the method before the obtaining the first indication, the method further includes:
  • the terminal device triggers reporting of the first information.
  • the method further includes:
  • the MAC layer of the terminal device does not receive the second indication (such as the second Line authorization) You can choose to cancel the reporting of all triggered first messages.
  • the physical PHY layer of the terminal device notifies the media access control MAC layer of the terminal device of the first uplink grant of the terminal device (including in the first indication); if the MAC layer of the terminal device obtains the first After the uplink grant (or the uplink grant is in the two-level scheduling mode), after the transport block including the BSR and/or the PHR is generated, the BSR and/or the MAC layer triggered by the first uplink grant may not be cancelled. Or PHR.
  • the PHY layer of the terminal device may calculate channel state information (CSI). Specifically, after receiving the second uplink grant, the terminal device may use, as the subframe for calculating the CSI, the subframe according to the second uplink grant indication, or may select the one that is closest to the subframe of the second uplink grant indication.
  • the downlink subframe is used as the subframe for calculating the CSI, or other reasonable reference subframes may be selected, which is not limited thereto.
  • the terminal device when the terminal device performs data transmission after receiving the second uplink grant, if the power limitation occurs, the terminal device may perform power backoff, or the terminal device may also abandon the transmission.
  • Level-scheduled uplink transmission is not limited.
  • a terminal device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the apparatus comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a terminal device for performing the method in any of the above-mentioned second aspect or any possible implementation of the second aspect.
  • the apparatus comprises means for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a terminal device in a fifth aspect, includes a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the executing causes the processor to perform the method of the first aspect or any possible implementation of the first aspect;
  • a terminal device in a sixth aspect, includes a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a computer readable storage medium storing a program causing a terminal device to perform the first aspect described above, and any one of its various implementations for transmitting data Methods.
  • a computer readable storage medium storing a program causing a terminal device to perform the second aspect described above, and any one of its various implementations for transmitting data Methods.
  • FIG. 1A is a schematic diagram of an application scenario.
  • FIG. 1B is a schematic diagram of two-level scheduling according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a method for data transmission in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an example of a method for data transmission in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a method for data transmission according to another embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a terminal device according to another embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a terminal device according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a system chip according to another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division duplex
  • UMTS universal Mobile Communication System
  • the terminal device may communicate with one or more core networks via a radio access network (Radio Access Network, hereinafter referred to as "RAN"), and the terminal device may be referred to as an access terminal.
  • RAN Radio Access Network
  • Terminal device subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the user equipment can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), and a wireless communication function.
  • the network device may be used to communicate with the user equipment, where the network device may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA, or may be a base station in the WCDMA system ( NodeB, NB), may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in the LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a base station in a future 5G network. Equipment, etc.
  • BTS Base Transceiver Station
  • NodeB, NB NodeB
  • Evolutional Node B, eNB or eNodeB evolved base station
  • the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a base station in a future 5G network. Equipment, etc.
  • the embodiment of the present invention may be applied to an access carrier assisted access system, that is, the UE performs access of an unlicensed carrier with the assistance of an authorized carrier, and the system does not support separate access of the unlicensed carrier.
  • the access of the unlicensed carrier can adopt the LBT mechanism, and the access duration of the unlicensed carrier is also limited.
  • the system is referred to as a Licensed-Assisted Access (LAA) system, but the system may have other names, which are not limited in the embodiment of the present invention.
  • LAA Licensed-Assisted Access
  • Network devices e.g., base stations or base station controllers, etc.
  • terminal devices in a cellular network may communicate using an authorized carrier or an unlicensed carrier.
  • the network device or the terminal device may compete with the nodes in the Wireless Local Area Network (WLAN) and other LAA nodes in the cellular network adopting the LAA mechanism on the unlicensed carrier before using the unlicensed carrier for data transmission.
  • the resources are used, and the data is transmitted by using the contending resources after the resources are contending.
  • the user equipment or the network device may contend for the channel based on the LBE mode or the FBE mode, which is not limited by the embodiment of the present invention.
  • Figure 1A is a schematic diagram of a scene. It should be understood that, for ease of understanding, the introduction of FIG. 1A is here. The scenario is described as an example, but does not limit the invention.
  • the terminal device 11, the terminal device 12, the terminal device 13, and the base station 21 are shown in Fig. 1A.
  • the terminal device 11 can communicate with the base station 21, the terminal device 12 can communicate with the base station 21, and the terminal device 13 communicates with the base station 21.
  • the terminal device 12 can also communicate with the terminal device 11.
  • the terminal device 13 communicates with the base station 12.
  • the terminal device and base station in FIG. 1A can be applied to the LAA system.
  • FIG. 1B shows a schematic diagram of a subframe structure of the two-level scheduling mode in the LAA system.
  • a terminal device when a terminal device (such as any one of the terminal devices in FIG. 1A) performs uplink transmission, it needs to acquire a two-level uplink grant (UL grant), that is, the first uplink grant in FIG. 1B (for example, an initial uplink grant).
  • Initial UL grant and second uplink grant (eg, triggering an upstream grant triggered UL grant).
  • the terminal device can perform data transmission after receiving the uplink authorization of the two-level scheduling.
  • the subframe in the dashed box indicates the effective subframe region of the first uplink grant indication.
  • the first-level uplink grant (referred to as the first uplink grant) is mainly used to indicate the frequency domain resource, the Modulation and Coding Scheme (MCS) information, and the first subframe of the uplink transmission of the terminal device. Frame offset information and a valid subframe area at the time of uplink transmission.
  • the first uplink authorization may also include information such as a HARQ process identifier (ID).
  • ID HARQ process identifier
  • the first uplink grant may schedule at least one subframe, and perform uplink transmission on each subframe, and each transmission uses a different HARQ process.
  • the first uplink grant may be that the base station is notified to the terminal device by using a Physical Downlink Control Channel (PDCCH), and may be scrambled by using a Cell Radio Network Temporary Identity (C-RNTI).
  • the first subframe is introduced for the convenience of description.
  • the first subframe may be any one of the subframes, for example, the initial uplink subframe, and the like.
  • the second-level uplink grant (referred to as the second uplink grant) is used to indicate the location of the first subframe in the effective subframe region (indicated by the first uplink grant).
  • the terminal device may determine, according to the location of the first subframe of the second-level uplink grant, and the first subframe offset information of the first-level uplink grant, on which one or more subframes, one or more uplink transmissions are performed, that is, Determine the time domain resource that the terminal device sends data.
  • the second uplink grant may be that the base station informs the terminal device through the dedicated PDCCH or the public PDCCH.
  • the dedicated PDCCH is performed by using C-RNTI
  • the scrambling is performed by using the Common Cell Radio Network Temporary Identity (CC-RNTI).
  • CC-RNTI Common Cell Radio Network Temporary Identity
  • the terminal device uses The number of the subframe for data transmission is: k+2.
  • the terminal device In order to obtain the first uplink grant and the second uplink grant, the terminal device needs to monitor the PDCCH. In the prior art, the terminal device may not be able to monitor the second uplink grant. The prior art does not discuss whether the DRX mechanism is introduced in the two-level scheduling. Even if the terminal device is configured with the DRX mechanism, since the DRX mechanism has an active period and a dormant period, the terminal device can only monitor the PDCCH intermittently and cannot guarantee. The second uplink grant must be monitored, resulting in the inability to complete the data transmission in the two-level scheduling mode. Moreover, if the terminal device works multiple times according to the activation period and the sleep period of the DRX mechanism, a large amount of power of the terminal device is consumed.
  • the present invention attempts to monitor the PDCCH in the two-level scheduling mode by introducing a time zone or setting a timer to ensure that the terminal device completes data transmission in the two-level scheduling mode. Further, the power of the terminal device can be saved, and some unnecessary monitoring can be reduced.
  • FIG. 2 shows a schematic flow chart of a method for transmitting data according to an embodiment of the present invention.
  • the method can be performed by a terminal device, such as any of the terminal devices of FIG. 1A.
  • the method 200 includes:
  • the terminal device acquires the first indication.
  • the first indication may be understood as an uplink transmission resource, and may be specifically understood as a first uplink authorization.
  • the first indication may include the first uplink grant and the uplink resource.
  • the first indication may further indicate that each uplink transmission of the terminal device is a new transmission or a retransmission.
  • the first uplink grant includes subframe offset information of the first subframe.
  • the first uplink grant may indicate the duration of the effective subframe region used by the terminal device for data transmission.
  • the first uplink grant indicates an uplink transmission resource (such as a frequency domain resource).
  • the first uplink authorization may further include related information for indicating one or more uplink transmissions of the terminal device, for example, a Hybrid Automatic Repeat Request (HARQ) process used for each uplink transmission. (process) identification (ID) information, as well as MCS information and the like.
  • HARQ Hybrid Automatic Repeat Request
  • ID identification
  • MCS Mobility Control Service
  • the physical layer of the terminal device may notify the MAC layer of the terminal device of the information of the first uplink authorization.
  • the first indication or the first uplink authorization may be sent by the terminal device receiving the network device.
  • the first indication or the first uplink authorization may be sent by the network device to the terminal device by using a PDCCH.
  • the terminal device monitors a physical channel to obtain a second indication in a predetermined first time zone.
  • the first indication and the second indication are used by the terminal device to determine a resource for performing data transmission.
  • the resource can be a time domain location for data transmission of the terminal device.
  • the second indication may be understood as a second uplink grant, and may also be understood as an uplink transmission resource.
  • the second indication may include a second uplink grant and an uplink resource.
  • the first indication may further include information about a range of the predetermined first time zone.
  • the information of the range of the first time zone may be the duration of the effective subframe area.
  • the physical channel may be a PDCCH.
  • the terminal may not be listening to the physical channel in all the predetermined first time regions, and may also be understood as not having to listen to all the predetermined first time regions, and may also It is understood that the terminal can selectively stop listening to the physical channel after any one of the predetermined time points or periods in the predetermined first time zone.
  • the predetermined first time zone is not forcing the terminal device to always listen to the physical channel in the predetermined first time zone, and if the second indication is monitored, the monitoring can be stopped.
  • the purpose of setting the first time zone is to be able to listen to the second indication instead of emphasizing that the time in the predetermined first time zone must be strictly monitored.
  • the terminal device may stop listening to the physical channel.
  • the second indication or the first uplink authorization may be sent by the terminal device receiving the network device.
  • the first indication or the first uplink authorization may be sent by the network device to the terminal device by using a PDCCH.
  • the predetermined first time zone may be a preset or a pre-configured duration, such as may be configured by a base station, or specified in a protocol, which is not limited thereto.
  • the terminal device may monitor the physical downlink control channel PDCCH in a predetermined first time region, so as to obtain a second indication, so as to perform data transmission according to the first indication and the second indication.
  • the predetermined first time zone may be matched by the DRX mechanism of the terminal device
  • the timer (for example, DRX In activity Timer, or DRX UL Retransmission Timer, or On Duration Timer, etc.) is implemented, or may be implemented by the duration of the effective subframe region carried in the first indication, or It can be implemented by a newly defined or newly set timer, which is not limited.
  • the first indication includes information of a range of the predetermined first time zone.
  • the information of the range of the first time zone may be specified by the protocol, or may be notified to the terminal device by using the first indication after the network side device is configured, which is not limited thereto.
  • the first indication may indicate relative time information of the terminal device (such as offset information of the first subframe), and the second indication may indicate absolute time information of the terminal device (first Subframe position), the terminal device may determine, according to the first indication and the second indication, which one or more subframes to perform one or more transmissions, that is, determine the time domain location of the transmitted data.
  • the first subframe is introduced for the convenience of description.
  • the first subframe may be any one of the subframes, for example, the initial uplink subframe, and the like.
  • the terminal device does not sleep in a predetermined first time zone unless the terminal device receives the failure of receiving the second indication and/or the first indication; or, it may be understood that the terminal The device continuously monitors the PDCCH in the predetermined first time zone until the second indication is received and/or the first indication fails; or, it can be understood that the terminal device maintains the DRX in the predetermined first time zone.
  • the state is activated until a second indication is received and/or the first indication is invalidated.
  • the "failure of the first indication" may be specifically understood as the current subframe has exceeded the valid time or subframe area indicated in the first indication, and does not fall within the valid time or subframe area.
  • the terminal device acquires the first indication, and listens to the physical channel in the predetermined first time zone to obtain the second indication, where the first indication and the second indication are used.
  • the terminal device determines the resource for data transmission, and can ensure that the terminal device obtains the second indication, thereby completing data transmission in the two-level scheduling mode.
  • the terminal device acquires a first indication, and monitors a physical channel to obtain a second indication in a predetermined first time region, where the second indication is used to generate a MAC a Service Data Unit (SDU) MAC Protocol Data Unit (PDU), the second indication is used by the terminal device to determine a time domain location for performing data transmission, and the terminal device can obtain the second indication.
  • SDU Service Data Unit
  • PDU Protocol Data Unit
  • S220 includes:
  • the terminal device stops listening to the physical channel.
  • the terminal device may stop listening to the physical channel, such as the PDCCH. Therefore, after monitoring the second indication, the terminal device stops listening to the physical channel, thereby saving power of the terminal device.
  • S220 may include:
  • the intercepting the physical channel to obtain the second indication in the predetermined first time zone includes:
  • the physical channel is listened to to obtain the second indication.
  • the terminal device may introduce a first timer, and by starting or restarting the first timer, during the operation of the first timer, the PDCCH is monitored to obtain the second indication. Therefore, in the embodiment of the present invention, by introducing the first timer, the terminal device can receive the second indication in the first timer. Compared with the time zone indicated by the “predetermined first time zone”, the embodiment of the first timer is more specific, so that the terminal device can receive the second indication in the first timer in a targeted manner, thereby The first indication and the second indication perform data transmission.
  • starting or restarting the first timer may include:
  • the first timer is started or restarted when or after the first indication is acquired.
  • the terminal device may start or restart the first timer when or after the first indication or the first uplink authorization is obtained.
  • the start timing or the trigger of the first timer can be determined according to the first indication (of course, it can also be in other reasonable forms, which is not limited thereto).
  • time or after means that the terminal device can start the first timer on the subframe in which the first uplink grant is obtained, or start the first timer after acquiring the subframe after the first uplink grant.
  • the subframes of “acquiring the first indication” and “starting the first timer” are relatively flexible, and it is not necessary to fix or start the first timer on a certain subframe.
  • the end time of the first timer may be set to be no later than the expiration time of the valid subframe region indicated by the first uplink grant. It can also be understood that the duration of the first timer can be set to be greater than or equal to the duration of the effective subframe region.
  • the terminal device does not sleep during the running of the first timer. Unless the terminal device receives the failure to receive the second indication and/or the first indication; or, it can be understood that the terminal device continuously monitors the PDCCH during the operation of the first timer until the second indication is received and/or Until the failure of the first indication; or, it can be understood that the terminal device maintains the DRX activation state during the operation of the first timer until receiving the second indication and/or the failure of the first indication.
  • the duration of the first timer may be indicated by the network device by using the first uplink grant, or may be indicated by high layer signaling, for example, Radio Resource Control (RRC) signaling; or It can be stipulated in the agreement, which is not limited.
  • RRC Radio Resource Control
  • the first timer may be any one of a DRX In activity Timer, an On Duration Timer, and a DRX-UL Retransmission Timer.
  • the first timer may also be a re-introduced new non-continuous receiving DRX timer, or a MAC layer timer, or an RRC layer timer, which is not limited thereto.
  • the first timer may be configured according to an asynchronous uplink (UL) HARQ process, that is, the first timer may be understood as a first timer maintained for one asynchronous UL HARQ; or, the first timer According to the first uplink authorization configuration, it can be understood that a first timer is maintained for a first uplink authorization; or the first timer is configured according to the MAC, which can be understood as maintaining a first timer for one MAC, which is not limited thereto. .
  • UL asynchronous uplink
  • the first timer may be a certain period of time set by the terminal device.
  • the first timer may also be a DRX activation period.
  • the terminal device can maintain the DRX activation state and directly listen to the PDCCH by using the DRX activation period.
  • the terminal device can monitor the PDCCH according to the On Duration Timer and/or the DRX In activity Timer in the DRX mechanism.
  • the On Duration Timer refers to the number of subframes of the PDCCH that the terminal device needs to monitor during each DRX cycle.
  • the terminal device starts the On Duration Timer at the beginning of each new DRX cycle.
  • the DRX In activity Timer indicates a time period during which the terminal device continuously monitors the PDCCH, during which the terminal device demodulates the newly transmitted data (ie, does not include retransmission data), and receives the first transmission data again.
  • the DRX In activity Timer can also be restarted after the indication.
  • the uplink retransmission timer in the DRX mechanism that is, the uplink retransmission of discontinuous reception
  • the DRX-UL Retransmission Timer can also be used to monitor the PDCCH.
  • the first uplink grant may indicate a new pass or a retransmission.
  • the terminal device may start when the first uplink grant indication that is monitored or acquired indicates new or retransmitted or after retransmission Or restarting the DRX In activity timer, stopping the DRX-UL Retransmission Timer, monitoring the PDCCH in the DRX In activity Timer to obtain the second uplink grant, and performing data transmission according to the first uplink grant and the second uplink grant; optionally, the terminal device is After the data is sent, the Uplink Hybrid Automatic Repeat Request Round Trip Time Timer (UL HARQ RTT Timer) can be started. If the UL HARQ RTT Timer times out, the DRX-UL Retransmission Timer can be started again. .
  • UL HARQ RTT Timer Uplink Hybrid Automatic Repeat Request Round Trip Time Timer
  • the first timer is a parameter DRX-UL Retransmission Timer in the DRX mechanism
  • the terminal device is listening or acquiring the first uplink grant indication, when the new uplink or retransmission is new or retransmitted, The DRX-UL Retransmission Timer is started or restarted, and the PDCCH is monitored in the DRX-UL Retransmission Timer to obtain the second uplink grant, and the data is transmitted according to the first uplink grant and the second uplink grant.
  • the UL HARQ RTT Timer can be started. If the UL HARQ RTT Timer times out, the DRX-UL Retransmission Timer can be started again.
  • the terminal device may start when the first uplink grant indication that is monitored or acquired indicates new or retransmitted or after. Or restarting the DRX On Duration Timer, and stopping the DRX-UL Retransmission Timer, monitoring the PDCCH in the DRX On Duration Timer to obtain the second uplink grant, and performing data transmission according to the first uplink grant and the second uplink grant; optionally, the terminal device After the data is sent, the UL HARQ RTT Timer can be started. If the UL HARQ RTT Timer times out, the DRX-UL Retransmission Timer can be started again.
  • the first timer is a parameter triggering timer DRX Trigger Timer in the DRX mechanism
  • the DRX Trigger Timer may be started or restarted, and the DRX-UL Retransmission Timer is stopped, and the PDCCH is monitored in the DRX Trigger Timer to obtain the second uplink grant, and the data transmission is performed according to the first uplink grant and the second uplink grant; optionally, the terminal device
  • the UL HARQ RTT Timer can be started, if UL HARQ RTT The Timer times out and the DRX-UL Retransmission Timer can be started again.
  • the DRX Trigger Time is a newly configured or newly introduced DRX timer.
  • the terminal device for each uplink transmission, starts the corresponding UL HARQ RTT Timer.
  • Each uplink transmission corresponds to one HARQ process, and each HARQ process has a set of DRX-UL Retransmission Timer and UL HARQ RTT Timer.
  • the terminal device acquires the first indication, and listens to the physical channel in the predetermined first time zone to obtain the second indication, where the first indication and the second indication are used.
  • the terminal device determines the resource for data transmission, and can ensure that the terminal device obtains the second indication, thereby completing data transmission in the two-level scheduling mode. Further, the power of the terminal device can be saved.
  • the method 200 further includes:
  • the terminal device may monitor the PDCCH to obtain a second indication sent by the network device, where the second indication includes a second uplink grant, in a predetermined first time region, such as a first timer.
  • the second uplink grant is used to indicate the location of the first subframe in the effective subframe area (indicated by the first uplink grant).
  • the terminal device may determine, according to the location of the first subframe of the second uplink grant, and the first subframe offset information of the first uplink grant, on which subframe the uplink transmission is performed, that is, determine that the terminal device sends the data. Time domain resources for data transfer.
  • the terminal device acquires the first uplink grant, and the first uplink grant includes information indicating a valid subframe region of the data transmission, and offset information of the first subframe. Then, the terminal device starts a first timer, and monitors the PDCCH in the first timer to obtain a second uplink grant, where the second uplink grant is used to indicate the location of the first subframe in the valid subframe region. Finally, after obtaining the second uplink authorization, the terminal device determines, according to the first uplink authorization and the second uplink authorization, a subframe position of sending data, and performs one or more data transmissions, thereby completing the two-level scheduling mode. data transmission.
  • the method 200 further includes:
  • the first timer is stopped.
  • the first timer expires means that the timer automatically stops after the set time has elapsed;
  • a timer is stopped means that the terminal device or the base station forcibly stops the timer regardless of whether it has reached the set time.
  • the terminal device obtains the second indication or the second uplink authorization, if the first timer does not time out and/or does not stop, the first timer is stopped. In this way, the terminal device does not need to monitor the PDCCH after receiving the second indication or the second uplink grant, thereby saving power.
  • the terminal device acquires the first indication, and listens to the physical channel in the predetermined first time zone to obtain the second indication, where the first indication and the second indication are used.
  • the terminal device determines the resource for data transmission, and can ensure that the terminal device obtains the second indication, thereby completing data transmission in the two-level scheduling mode.
  • the method 200 further includes:
  • the terminal device starts a second timer, where the second timer is used by the terminal device to wait for the retransmitted uplink resource.
  • the second timer is started, where the second timer is used by the terminal to wait for the retransmitted uplink resource.
  • the second timer is started, where the second timer may wait for possible uplink authorization. Resources.
  • the second timer may be an uplink retransmission timer (DRX-UL Retransmission Timer).
  • the method 200 further includes:
  • S220 includes:
  • the first timer is started or restarted.
  • the terminal device may start after receiving the subframe of the first uplink grant or after The third timer may not monitor the PDCCH during the operation of the third timer. Alternatively, if the terminal device does not satisfy the DRX activation condition, the terminal device does not monitor the PDCCH in the third timer. In this way, the terminal device can save power.
  • the duration of the third timer may be configured by the network device according to the capability information reported by the terminal device, or may be directly specified by the protocol, and is not limited thereto.
  • the duration of the first timer of the terminal device may be jointly determined according to the duration of the third timer and the duration of the effective subframe region.
  • the terminal device acquires the first indication, and listens to the physical channel in the predetermined first time zone to obtain the second indication, where the first indication and the second indication are used.
  • the terminal device determines the resource for data transmission, and can ensure that the terminal device obtains the second indication, thereby completing data transmission in the two-level scheduling mode. Further, the power of the terminal device can be saved.
  • the method 200 may further include:
  • the terminal device When the terminal device acquires the first indication, if the fourth timer is in operation, the terminal device monitors during the intersection time period determined by the predetermined first time zone and the running time of the fourth timer. The physical channel to obtain the second indication.
  • the fourth timer is not stopped
  • the intercepting the physical channel to obtain the second indication in the predetermined first time zone includes:
  • the physical channel is listened to to obtain the second indication.
  • the terminal device may choose not to stop the fourth timer.
  • the terminal device may monitor the PDCCH to obtain a second indication during operation of the fourth timer.
  • the terminal device may not introduce a timer or force a timer. If there is a running timer, the PDCCH may be directly monitored by using the running timer. Thus, to some extent, the terminal device uses the running timer without having to redefine the timer, saving resources for the terminal device.
  • the information of the predetermined first time zone is indicated by the first indication, such as valid subframe area information; during the operation of the fourth timer, only part of the predetermined first time zone may be included, May include a complete predetermined first time zone; the terminal is based on the fourth timer
  • the runtime time and the predetermined first time zone determined intersection time zone listen to the physical channel.
  • the terminal may not be listening to the physical channel in the second time zone, and may also be understood that the second time zone may not be monitored, and the terminal may be configured as Optionally, stopping listening to the physical channel after any one of the time points or periods in the second time zone.
  • the second time zone is not forcing the terminal device to always listen to the physical channel in the second time zone, and if the second indication is monitored, the monitoring can be stopped.
  • the purpose of introducing the second time zone is to be able to listen to the second indication instead of emphasizing that the time in the second time zone must be strictly monitored.
  • the terminal device may stop listening to the physical channel.
  • the terminal device may listen to the physical channel or not to listen to the physical channel, which is not required.
  • the method further includes:
  • the terminal device stops the fourth timer.
  • the fourth timer is stopped.
  • the fourth timer may be stopped, thereby saving power of the terminal device.
  • the method may further include:
  • the fourth timer When the first indication fails, if the fourth timer does not time out and/or does not stop, the fourth timer is stopped.
  • the fourth timer may be selected to stop ( It can be understood that if the effective subframe region has failed, the meaning of continuing to monitor the PDCCH is not large, then the fourth timer can be stopped).
  • the failure time of the first indication is determined by the effective subframe area of the first indication.
  • the fourth timer may be any one of a DRX In activity Timer, an On Duration Timer, and a DRX-UL Retransmission Timer.
  • the fourth timer may also be a re-introduced new discontinuous reception DRX timer, or a MAC layer timer, or an RRC layer timer.
  • the fourth timer is an uplink retransmission timer, such as a DRX-UL Retransmission Timer
  • the data transmission process of the terminal device is specifically: the terminal device passes the supervision. Listen to the PDCCH and obtain the first uplink grant.
  • the terminal device does not stop the DRX-UL Retransmission Timer.
  • the terminal device may monitor the PDCCH to obtain the second uplink grant. After receiving the second uplink grant, the terminal device stops the DRX-UL Retransmission Timer.
  • the terminal device may start or restart the DRX-UL Retransmission Timer and/or the DRX. -inactive Timer.
  • the terminal device may start or restart the DRX-UL Retransmission Timer and/or the DRX. -inactive Timer.
  • the terminal device may start or restart the DRX-UL Retransmission Timer and/or the DRX. -inactive Timer.
  • the terminal device may start or restart the DRX-UL Retransmission Timer and/or the DRX. -inactive Timer.
  • the terminal device may start or restart the DRX-UL Retransmission Timer and/or the DRX. -inactive Timer.
  • the terminal device acquires the first indication, and listens to the physical channel in the predetermined first time zone to obtain the second indication, where the first indication and the second indication are used.
  • the terminal device determines the resource for data transmission, and can ensure that the terminal device obtains the second indication, thereby completing data transmission in the two-level scheduling mode.
  • FIG. 3 shows a schematic diagram of one example of a method for transmitting data in accordance with an embodiment of the present invention.
  • the terminal device may start a third timer in a first uplink authorized subframe (a subframe not shown in FIG. 3). For example, a custom Timer).
  • the terminal device may not need to monitor the PDCCH.
  • the terminal device can start a first timer (such as a DXR-Trigger Timer and/or a DRX In activity Timer, or a newly defined timer).
  • the terminal device monitors the second uplink grant, and then performs data transmission according to the first uplink grant and the second uplink grant.
  • the terminal device starts the uplink HARQ RTT timer when the data is transmitted, and the hybrid automatic repeat request process HARQ process of each uplink transmission corresponds to one HARQ process ID (such as ID1, ID2, ID3, and ID4 in FIG. 3).
  • the terminal device starts an uplink retransmission timer to wait for a possible uplink retransmission timer.
  • the duration of the first timer may be determined according to the duration of the effective subframe region and a third timer.
  • the network device may indicate the duration of the first timer to the terminal device by using the first uplink grant.
  • the end time of the first timer in FIG. 3 does not have to overlap with the end time of the valid subframe area. If the terminal device receives the second uplink grant, the first timer may be stopped.
  • FIG. 3 is only an example. There is no limit to this.
  • the terminal device can start the uplink retransmission timer and/or the DRX-In activity timer, which is not limited.
  • the terminal device acquires the first indication, and listens to the physical channel in the predetermined first time zone to obtain the second indication, where the first indication and the second indication are used.
  • the terminal device determines the resource for data transmission, and can ensure that the terminal device obtains the second indication, thereby completing data transmission in the two-level scheduling mode.
  • the terminal device requires the MAC layer of the terminal device to generate a good transport block in advance and deliver it to the physical layer of the terminal device before receiving the second uplink grant.
  • the current problem is that if the terminal device cannot determine the scheduled uplink subframe without receiving the second uplink grant, it cannot know which subframe to generate the transport block, wherein the transport block includes one or more.
  • MAC Control Element Control Elements, CE
  • BSR Buffer Status Report
  • PHR Power Headroom Report
  • the terminal device cannot determine which sub-frame to calculate the buffer status (BS) and/or the power headroom (PH), which can also be understood as BSR and/or PHR.
  • the BSR is used by the terminal device to tell the network device how much data to be sent in the uplink buffer (Buffer), so that the network device determines how much uplink transmission resource needs to be allocated to the terminal device.
  • the PHR is used by the terminal device to report the power headroom information of each cell (ie, the difference between the UL_SCH channel estimation power and the UE maximum transmission power) to the network device, so that the network device adjusts the transmission power of the terminal device.
  • the following describes how to generate multiple transmission blocks in a two-level scheduling mode. It should be understood that for the sake of brevity, some of the concepts presented above will not be described.
  • FIG. 4 illustrates a method for transmitting data according to another embodiment of the present invention, which may be performed by a terminal device.
  • the method 400 includes:
  • S440 Perform data transmission according to the first indication and the second indication, and the first information.
  • the first indication and the second indication are used by the terminal device to determine a resource for data transmission.
  • the terminal device obtains the first information of the first time by acquiring the first indication, or directly obtains the first information of the first time, where the first information is reference information of the network device scheduling terminal device, Then, the second indication is obtained, and according to the first indication, the second indication and the first information are used for data transmission, and the transport block in the two-level scheduling mode can be generated, thereby performing data transmission.
  • the first time may be a certain time, or may be a certain time period, such as a subframe or a transmission time interval TTI.
  • the first information may be control information of a buffer status and/or a power headroom, or may be one or more MAC CEs, or may be a transport block including a MAC CE, or the first information. It may be a MAC CE for the BSR/PHR, and may also be a MAC service data unit SDU or a MAC protocol data unit PDU, which is not limited thereto.
  • the first information is that the network device can refer to the first information, schedule appropriate resources for the terminal device, or adjust related parameters of the terminal device. For example, the network device may determine the appropriate transmission resource for the terminal device according to the BSR in the first information. For example, the network device may learn the power headroom information of each cell according to the PHR in the first information, thereby adjusting the terminal device. Transmit power.
  • the first information may assist the network device to make an appropriate reference for the scheduling of the terminal device, but may not be limited to being the first information.
  • the generation or acquisition of the "first information” and the acquisition of the "second indication” have no strict chronological order.
  • the generation or acquisition of the "first information” is preceded by the acquisition of the "second indication”; or the generation or acquisition of the "first information” is followed by the acquisition of the "second indication”. Not limited.
  • the first indication includes second time indication information, where the second indication includes third time indication information;
  • the data transmission is performed according to the first indication and the second indication, and the first information is used for data transmission, including:
  • the terminal device may be configured according to the second time indication information (eg, the offset information of the first subframe of the first uplink grant) and the third time indication information (the location of the first subframe of the second uplink grant).
  • the time domain location for transmitting data is determined (ie, one or more uplink transmissions are determined over which subframe or subframes).
  • the terminal device performs data transmission based on the first information (such as a data packet, a MAC CE, etc.) and a time domain location.
  • the “second time indication information” and the “third time indication information” are introduced for the convenience of description, and are distinguished from the “first time” in the foregoing, and the number has no special meaning, and does not constitute a pair. Limitations of the invention.
  • the generating and/or obtaining the first information of the first time is also understood to be that the terminal generates and/or obtains the first information according to the first time, and may also be understood that the first information is related to the first time.
  • the status information of the terminal device, but specifically when the first information is generated is not limited.
  • the generating and/or acquiring the first information of the first time includes:
  • the media access control layer MAC of the terminal device generates a buffer status BS of the terminal device according to the first time, where the first information includes a BS of the terminal device, and the first information is a reference for the network device to schedule the terminal device. information.
  • the MCE layer of the terminal device may calculate the BS according to the first time, where the first information includes the BS.
  • the generating and/or acquiring the first information of the first time includes:
  • the physical PHY layer of the terminal device generates a power headroom PH of each activated serving cell according to the first time, and notifies the PH layer of the terminal device to the MAC layer of the terminal device, where the first information includes the terminal device PH.
  • the MCE layer of the terminal device may calculate the PH according to the first time, where the PH is included in the first information, and the PH of the terminal device is notified to the MAC layer of the terminal device.
  • the physical PHY layer of the terminal device notifies the MAC layer of the media access control layer of the terminal device of the acquired first uplink authorization; and the MAC layer of the terminal device is configured according to the first uplink authorization.
  • Determining a reference subframe which may be the same as or different from a subframe in which the terminal device performs data transmission; the subframe of the data transmission may be determined by the first uplink grant and the second uplink grant, or the second uplink grant.
  • the MAC layer of the terminal device generates a BSR and/or a PHR according to the reference subframe.
  • the PHY layer of the terminal device notifies the MAC layer of the type of the uplink grant, and the MAC layer of the terminal device may use a certain subframe as the reference subframe when generating the transport block, and then generate a BSR according to the reference subframe and/or PHR.
  • the terminal device may calculate a buffer status BS parameter and/or a power headroom PH parameter according to the reference subframe.
  • the physical layer of the terminal calculates the power headroom of each activated serving cell according to the reference subframe, and notifies the MAC layer of the terminal device to generate the PHR MAC CE.
  • the MAC of the terminal calculates the buffer status based on the reference subframe to generate the BSR MAC CE.
  • the reference subframe is different from the subframe in which the terminal device performs data transmission.
  • the location of the reference subframe may be at least 4 subframes from the subframe in which the first uplink grant is received.
  • the location of the reference subframe may be specified by the protocol, or may be indicated by the base station, which is not limited thereto.
  • the terminal device may calculate the buffer status BS of the terminal device according to the first time, and acquire the power headroom PH of each activated serving cell, thereby generating a transport block for data transmission. .
  • the method further includes:
  • the terminal device triggers the reporting of the first information.
  • the method further includes:
  • the reporting of all the triggered first information may be cancelled.
  • the physical PHY layer of the terminal device notifies the media access control MAC layer of the terminal device of the first uplink grant of the terminal device (including in the first indication); if the MAC layer of the terminal device obtains the first
  • the terminal device always reports the BSR and/or PHR MAC CE in the two-level scheduling mode.
  • the terminal device may not cancel the BSR and/or the PHR triggered by the MAC layer of the terminal device, so that the terminal device receives the uplink authorization of the first-level scheduling later.
  • the BSR/PHR MAC CE is generated, and the network device is notified in time to better deliver the scheduling policy.
  • any one of the transmissions is generated.
  • the amount of data of the previously generated transport block may or may not be considered.
  • the media access control MAC layer of the terminal device acquires the first uplink grant and the second uplink grant sent by the physical PHY layer of the terminal device; and the PHY layer of the terminal device according to the first uplink grant and the second uplink grant indication a subframe, generating a MAC SDU or a MAC PDU; the MAC layer of the terminal device generates a buffer status parameter according to the first uplink grant and the second uplink grant indication subframe; the PHY layer of the terminal device is configured according to the first uplink grant and The indication subframe of the second uplink grant generates a power headroom parameter and notifies the MAC layer.
  • the first uplink authorization and the second uplink authorization sent by the PHY layer may be acquired first, and then the transmission subframe is determined according to the first uplink authorization and the second uplink authorization.
  • the MAC layer of the terminal calculates a buffer status BS parameter according to the transmission subframe, optionally, a MAC layer of the terminal device and generates a BSR MAC CE; the PHY layer of the terminal calculates a power headroom PH parameter according to the transmission subframe, and notifies The MAC layer, optionally, the MAC layer of the terminal device and generates a PHR MAC CE.
  • the MAC layer of the terminal device can generate the transport block in the two-level scheduling mode by using the foregoing solution, and further, the parameters of the BSR and/or the PHR in the two-level scheduling mode can be calculated.
  • the method includes:
  • the media access control layer MAC of the terminal device associates the hybrid automatic repeat request HARQ module according to the first time, and stores the first information into the HARQ module, so that the PHY layer of the terminal device transmits the first information.
  • the PHY layer of the terminal device after receiving the first indication, notifies the MAC layer of the terminal device to perform a grouping process.
  • the multiplexing and assembly module layer of the MAC chain layer of the terminal device generates first information of the first time (subframe or time), such as a packet containing the PH and/or the BS, and sends the data packet to
  • the HARQ module notifies the PHY layer of the terminal device for data transmission.
  • the PHY layer of the terminal device performs data transmission in the two-level scheduling mode according to the data packet.
  • the MAC layer of the terminal device when receiving the second uplink grant, may deliver the generated data packet to the HARQ module; or may directly consider the data packet without considering whether the second uplink grant is received. Submit to the HARQ module. Wherein, in a case where the second uplink grant is not considered, the terminal device may use a reference when processing the HARQ process. The Transmission Time Interval (TTI) is processed. Alternatively, optionally, when the MAC layer of the terminal device does not receive the second uplink grant, the generated data packet may be rolled back to the Radio Link Control (RLC) layer, so as to wait for the next random
  • RLC Radio Link Control
  • the PHY layer of the terminal device may calculate channel state information (CSI).
  • CSI channel state information
  • the terminal device may use, as the subframe for calculating the CSI, the subframe according to the second uplink grant indication, or may select the one that is closest to the subframe of the second uplink grant indication.
  • the downlink subframe is used as the subframe for calculating the CSI, or other reasonable reference subframes may be selected, which is not limited thereto.
  • the PHY layer of the terminal device can calculate the CSI in the two-level scheduling mode. Further, the terminal device may select a subframe to calculate the CSI.
  • the terminal device when the terminal device performs data transmission after receiving the second uplink grant, if the power limitation occurs, the terminal device may perform power backoff, or the terminal device may also abandon the transmission.
  • Level-scheduled uplink transmission is not limited.
  • the MAC layer of the terminal device can complete the grouping process in the two-level scheduling mode, thereby implementing data transmission.
  • the terminal device may jointly determine the subframe position of the transmitted data according to the first indication and the second indication, or alternatively, the terminal device may also indicate the subframe position of the transmitted data according to only the second indication. Determine the location of the subframe in which the data is sent.
  • the first indication may indicate New Data Indication (NDI), HARQ process ID, Redundancy Version (RV), size of the time-frequency resource block, size of the uplink resource, etc., for the terminal device. Perform time-independent processing.
  • the terminal device may generate one or more MAC SDUs or MAC PDUs, where the second indication is used to indicate the subframe position at which the terminal sends data, and the terminal device performs data transmission of the MAC PDU according to the first indication and the second indication.
  • FIG. 5 shows a schematic block diagram of a terminal device 500 according to an embodiment of the present invention.
  • the terminal device 500 includes:
  • the obtaining module 510 is configured to obtain a first indication.
  • the processing module 520 is configured to listen to the physical channel to obtain the second indication in the predetermined first time zone;
  • the first indication obtained by the obtaining module 510 and the second indication obtained by the processing module 520 are used by the terminal device to determine a resource for data transmission.
  • the terminal device 500 obtains the first indication, and listens to the physical channel in the predetermined first time zone to obtain the second indication, where the first indication and the second indication are used by the terminal device to determine
  • the resource for data transmission can ensure that the terminal device obtains the second indication, thereby completing data transmission in the two-level scheduling mode.
  • the processing module 520 is configured to:
  • the physical channel is stopped to be monitored.
  • the first indication includes information of a range of the predetermined first time zone.
  • the terminal device 500 further includes:
  • a transmitting module configured to perform the data transmission on the resource according to the first indication and the second indication, if the second indication is obtained.
  • processing module 520 is specifically configured to:
  • the first timer is started or restarted, wherein the duration of the first timer is the duration of the predetermined first time zone;
  • the physical channel is listened to to obtain the second indication.
  • processing module 520 is further configured to:
  • the first timer is stopped.
  • processing module 520 is specifically configured to:
  • the first timer is started or restarted when or after the first indication is acquired.
  • processing module 520 is specifically configured to:
  • the second timer is started, where the second timer is used to wait for retransmission of the uplink resource.
  • processing module 520 is further configured to:
  • the first timer is started or restarted.
  • the duration of the first timer is indicated by the network device by using the first indication or radio resource control RRC signaling.
  • the first timer includes any one of a retransmission timer, an activity timer, a duration timer, and a newly introduced timer.
  • processing module 520 is further configured to:
  • the fourth timer is in the running period, the physical channel is intercepted in the intersection time period determined by the predetermined first time zone and the running time of the fourth timer to obtain the Second indication.
  • the fourth timer is in the running period, the fourth timer is not stopped, and the fourth timer is in the predetermined first time region;
  • the physical channel is listened to to obtain the second indication.
  • processing module 520 is specifically configured to:
  • the fourth timer is stopped.
  • the fourth timer includes any one of a retransmission timer, an activity timer, a duration timer, and a newly introduced timer.
  • the terminal device 500 may perform the method 200 for transmitting data according to an embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the terminal device 500 are respectively implemented to implement the foregoing respective methods.
  • the corresponding process for the sake of brevity, will not be described here.
  • the terminal device 500 of the embodiment of the present invention obtains the second indication by acquiring the first indication and listening to the physical channel in the predetermined first time zone, where the first indication and the second indication are used for the terminal device. Determining the resource for data transmission ensures that the terminal device obtains the second indication, thereby completing data transmission in the two-level scheduling mode.
  • the obtaining module 510 may be implemented by a transceiver
  • the processing module 520 may be implemented by a processor.
  • the terminal device 600 can include a processor 610, a transceiver 620, and a memory 630.
  • the transceiver 620 can include a receiver 621 and a transmitter 622.
  • the memory 630 can be used to store code and the like executed by the processor 610.
  • the various components in terminal device 600 are coupled together by a bus system 640, which in addition to the data bus includes a power bus, a control bus, a status signal bus, and the like.
  • the transceiver 620 is used to:
  • the processor 610 is specifically configured to:
  • the first indication and the second indication are used by the terminal device to determine a resource for data transmission.
  • the processor 610 is specifically configured to:
  • the physical channel is stopped to be monitored.
  • the processor 610 is specifically configured to:
  • the data transmission is performed on the resource according to the first indication and the second indication.
  • the first indication includes information of a range of the predetermined first time zone.
  • the processor 610 is specifically configured to:
  • the first timer is started or restarted, wherein the duration of the first timer is the duration of the predetermined first time zone;
  • the processor 610 is specifically configured to:
  • the physical channel is listened to to obtain the second indication.
  • the processor 610 is specifically configured to:
  • the first timer is stopped.
  • the processor 610 is specifically configured to:
  • the first timer is started or restarted when or after the first indication is acquired.
  • the processor 610 is specifically configured to:
  • the second timer is started, where the second timer is used to wait for the retransmitted uplink resource.
  • the processor 610 is specifically configured to:
  • the physical channel is not monitored
  • the first timer is started or restarted.
  • the duration of the first timer is indicated by the network device by using the first indication or radio resource control RRC signaling.
  • the first timer includes a retransmission timer, an active timer, a persistent timer, and a new Any of the introduced timers.
  • the processor 610 is specifically configured to:
  • the terminal device monitors the physical channel to obtain the second indication in the predetermined first time zone, including:
  • the terminal device listens to the physical channel to obtain the second indication during an intersection period determined by the predetermined first time zone and the running time of the fourth timer.
  • the fourth timer is in the running period, the fourth timer is not stopped, and the fourth timer is in the predetermined first time region;
  • the physical channel is listened to to obtain the second indication.
  • the processor 610 is specifically configured to:
  • the fourth timer is stopped.
  • the fourth timer includes any one of a retransmission timer, an activity timer, a duration timer, and a newly introduced timer.
  • the terminal device 600 of the embodiment of the present invention acquires the first indication and listens to the physical channel in the predetermined first time zone to obtain the second indication, where the first indication and the second Instructing the terminal device to determine the resource for data transmission, and ensuring that the terminal device obtains the second indication, thereby completing data transmission in the two-level scheduling mode.
  • FIG. 7 is a schematic structural diagram of a system chip according to an embodiment of the present invention.
  • the system chip 700 of FIG. 7 includes an input interface 701, an output interface 702, at least one processor 703, and a memory 704.
  • the input interface 701, the output interface 702, the processor 703, and the memory 704 are connected by a bus 705.
  • 703 is for executing code in the memory 704, and when the code is executed, the processor 703 implements the method performed by the terminal device in FIGS. 2 through 3.
  • the terminal device 500 shown in FIG. 5 or the terminal device 600 shown in FIG. 6 or the system chip 700 shown in FIG. 7 can implement the processes implemented by the terminal device in the foregoing method embodiments of FIG. 2 to FIG. 3, in order to avoid duplication. , no longer repeat them here.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor ("DSP"), an application specific integrated circuit (ASIC), or ready-made.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory (ROM), a programmable read only memory (PROM), or an erasable programmable read only memory (Erasable PROM). , referred to as "EPROM”), electrically erasable programmable read only memory (“EEPROM”) or flash memory.
  • the volatile memory may be a Random Access Memory (“RAM”), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM Synchronous DRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected to dynamic random access memory
  • DR RAM Direct Rambus RAM
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • FIG. 8 shows according to the present invention A schematic block diagram of a terminal device 800 of another embodiment. As shown in FIG. 8, the terminal device 800 includes:
  • the obtaining module 810 is configured to obtain the first indication.
  • the processing module 820 is configured to generate and/or acquire first information of the first time, where the first information is reference information that the network device schedules the terminal;
  • the obtaining module 810 is further configured to obtain a second indication.
  • the transmitting module 830 is configured to perform data transmission according to the first indication and the second indication acquired by the obtaining module 810, and the first information obtained by the processing module 820;
  • the first indication and the second indication are used by the terminal to determine a resource for data transmission.
  • the terminal device 800 obtains the first information of the first time by acquiring the first indication, or directly acquires the first information of the first time, where the first information is the network device scheduling terminal device.
  • the second indication is obtained, and according to the first indication, the second indication and the first information are used for data transmission, and the transport block in the two-level scheduling mode can be generated, thereby performing data transmission.
  • the first indication includes second time indication information, where the second indication includes third time indication information;
  • the processing module 820 is specifically configured to:
  • processing module 820 is specifically configured to:
  • the media access control layer MAC of the terminal device determines the buffer status BS of the terminal device according to the first time, and the first information includes the BS of the terminal device.
  • processing module 820 is specifically configured to:
  • the physical PHY layer of the terminal device determines the power headroom PH of each activated serving cell according to the first time, and notifies the PH layer of the terminal device to the MAC layer of the terminal device, where the first information includes the terminal device PH.
  • processing module 820 is specifically configured to:
  • the media access control layer MAC of the terminal device associates the hybrid automatic repeat request HARQ module according to the first time, and stores the first information into the HARQ module, so that the PHY layer of the terminal device transmits the first information.
  • processing module 820 is specifically configured to:
  • the terminal device triggers reporting of the first information.
  • processing module 820 is specifically configured to:
  • the terminal device 800 may perform the method 400 for transmitting data according to an embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the terminal device 800 are respectively implemented to implement the foregoing respective methods.
  • the corresponding process for the sake of brevity, will not be described here.
  • the terminal device 800 of the embodiment of the present invention obtains the first information of the first time by acquiring the first indication, or directly acquires the first information of the first time, where the first information is a network device scheduling terminal device.
  • the reference information and then obtaining the second indication, and performing data transmission according to the first indication, the second indication, and the first information, can generate a transport block in the two-level scheduling mode, thereby performing data transmission.
  • the obtaining module 810 and the transmitting module 830 may be implemented by a transceiver, and the processing module 820 may be implemented by a processor.
  • the terminal device 900 can include a processor 910, a transceiver 920, and a memory 930.
  • the transceiver 920 can include a receiver 921 and a transmitter 922, and the memory 930 can be used to store code and the like executed by the processor 910.
  • the various components in terminal device 900 are coupled together by a bus system 940, which in addition to the data bus includes a power bus, a control bus, a status signal bus, and the like.
  • the transceiver 920 is used to:
  • the processor 910 is configured to generate and/or acquire first information of the first time, where the first information is reference information that the network device schedules the terminal;
  • the transceiver 920 is further configured to obtain a second indication.
  • the transceiver 920 is further configured to perform data transmission according to the first indication and the second indication, and the first information.
  • the terminal device 900 obtains the first information of the first time by acquiring the first indication, or directly acquires the first information of the first time, where the first information is the network device scheduling terminal device.
  • the second indication is obtained, and according to the first indication, the second indication and the first information are used for data transmission, and the transport block in the two-level scheduling mode can be generated, thereby performing data transmission.
  • the first indication includes second time indication information
  • the second The indication includes third time indication information
  • the processor 910 is specifically configured to:
  • the processor 910 is specifically configured to:
  • the media access control layer MAC of the terminal device determines the buffer status BS of the terminal device according to the first time, and the first information includes the BS of the terminal device.
  • the processor 910 is specifically configured to:
  • the physical PHY layer of the terminal device determines the power headroom PH of each activated serving cell according to the first time, and notifies the PH layer of the terminal device to the MAC layer of the terminal device, where the first information includes the terminal device PH.
  • the processor 910 is specifically configured to:
  • the media access control layer MAC of the terminal device associates the hybrid automatic repeat request HARQ module according to the first time, and stores the first information into the HARQ module, so that the PHY layer of the terminal device transmits the first information.
  • the processor 910 is specifically configured to:
  • the terminal device triggers reporting of the first information.
  • the processor 910 is specifically configured to:
  • the terminal device 900 obtains the first information of the first time by acquiring the first indication, or directly acquires the first information of the first time, where the first information is the network device scheduling terminal device.
  • the second indication is obtained, and according to the first indication, the second indication and the first information are used for data transmission, and the transport block in the two-level scheduling mode can be generated, thereby performing data transmission.
  • FIG. 10 is a schematic structural diagram of a system chip according to another embodiment of the present invention.
  • the system chip 1000 of FIG. 10 includes an input interface 1001, an output interface 1002, at least one processor 1003, and a memory 1004.
  • the input interface 1001, the output interface 1002, the processor 1003, and the memory 1004 are connected by a bus 1005.
  • 1003 is for executing code in the memory 1004, and when the code is executed, the processor 1003 implements the method performed by the terminal device in FIG.
  • the terminal device 800 shown in FIG. 8 or the terminal device 900 shown in FIG. 9 or the system chip 1000 shown in FIG. 10 can implement the various processes implemented by the terminal device in the foregoing method embodiment of FIG. 4, in order to avoid repetition, here is not Let me repeat.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor ("DSP"), an application specific integrated circuit (ASIC), or a field programmable gate array (Field Programmable Gate Array). , referred to as "FPGA” or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory (ROM), a programmable read only memory (PROM), or an erasable programmable read only memory (Erasable PROM). , referred to as "EPROM”), electrically erasable programmable read only memory (“EEPROM”) or flash memory.
  • the volatile memory may be a Random Access Memory (“RAM”), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM Synchronous DRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected dynamic random access memory
  • DRAM synchronously connected dynamic random access memory
  • DR RAM direct memory bus random access memory
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. You can choose some of them according to actual needs or All units are used to achieve the objectives of the embodiment of the present embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method in accordance with various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提出了一种用于传输数据的方法和终端设备,该方法包括:终端设备获取第一指示;该终端设备在预定的第一时间区域内,监听物理信道以获取第二指示;其中,该第一指示和该第二指示用于终端设备确定进行数据传输的资源。本发明实施例的用于传输数据的方法和终端设备,能够保证终端设备获取到第二指示,从而在两级调度模式下完成数据传输。

Description

用于传输数据的方法和终端设备 技术领域
本发明涉及通信技术领域,并且更具体地,涉及一种用于传输数据的方法和终端设备。
背景技术
长期演进(Long Term Evolution,LTE)系统中,终端设备通过接收基站发送的上行授权(UL grant)资源,在相应的子帧上进行上行传输。LTE中引入辅助授权接入(License Assisted Access,LAA)的方式,LAA系统通过说前先听(Listen Before Talk,LBT)原则使用信道(channel)资源,即在侦听到非授权频谱的信道资源空闲之后,使用该非授权频谱的信道资源来传输数据。
在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)中,针对LAA引入了两级调度模式,即终端设备进行一次上行传输时,需获取两级上行授权,包括第一级上行授权和第二级上行授权。
但是在现有技术中,关于两级调度模式的相关技术不成熟,比如,现有技术中也没有涉及到两级调度模式下是否引入非连续接收(Discontinuous Reception,DRX)机制的相关方案。并且,现有技术中会存在不能及时监听到第二级授权的情况,这样就不能保证终端设备在两级调度模式下完成数据传输。在这种背景下,亟需针对如何保证终端设备在两级调度模式下完成数据传输设计一种新的方案。
发明内容
本发明实施例提供了一种用于传输数据的方法和终端设备,能够保证终端设备获取到第二指示,从而在两级调度模式下完成数据传输。
第一方面,提供了一种用于传输数据的方法,包括:
终端设备获取第一指示;
该终端设备在预定的第一时间区域内,监听物理信道以获取第二指示;
其中,该第一指示和该第二指示用于该终端设备确定进行数据传输的资源。
在本发明实施例中,第一指示和第二指示可以指示终端设备用于数据传输的资源,比如可以指示用于数据传输的时域位置,对此不作限定。
在本发明实施例中,终端设备通过获取第一指示,并在预定的第一时间区域内监听物理信道以获取第二指示,其中,该第一指示和该第二指示用于终端设备确定进行数据传输的资源,能够保证终端设备获取到第二指示,从而在两级调度模式下完成数据传输。
在本发明实施例中,第一指示可以理解为上行传输资源,具体可以理解为第一上行授权。或者,可选地,该第一指示可以包括第一上行授权以及上行资源。
可选地,该第一指示中还可以包括该预定的第一时间区域的范围的信息。比如,该第一时间区域的范围的信息可以是有效子帧区域的时长。
可选地,第一指示还可以指示终端设备的每一次上行传输是新传或重传。
可选地,该第一上行授权包括第一子帧的子帧偏置信息。比如在两级调度模式下,第一上行授权可以指示终端设备用于数据传输的有效子帧区域的时长。第一上行授权指示上行传输资源(比如频域资源)。
可选地,第一上行授权还可以包括用于指示终端设备的一次或多次上行传输的相关信息,比如,每次上行传输所使用的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程(process)标识(ID)信息,以及MCS信息等。可选地,第一上行授权还可以指示每一次上行传输是新传或重传。
可选地,终端设备的物理层可以将第一上行授权的信息通知给终端设备的MAC层。
可选地,该第一指示或该第一上行授权可以是终端设备接收网络设备发送的。可选地,该第一指示或第一上行授权可以是网络设备通过PDCCH发送给终端设备的。
可选地,在本发明实施例中,物理信道可以为物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
类似地,可选地,第二指示可理解为第二上行授权,还可以理解为上行传输资源。可选地,该第二指示可以包括第二上行授权以及上行资源。
可选地,该第二指示或该第一上行授权可以是终端设备接收网络设备发 送的。
可选地,该第一指示或第一上行授权可以是网络设备通过PDCCH发送给终端设备的。
在本发明实施例中,可选地,例如,第一指示可以指示终端设备的相对时间信息(比如第一子帧偏置信息),第二指示可以指示终端设备的绝对时间信息(第一子帧的位置),终端设备根据第一指示和第二指示可以确定出在哪一个子帧上进行一次传输,即确定发送数据的时域资源。其中,引入“第一子帧”是为了描述方便,该第一子帧可以是任意一个子帧,比如起始上行子帧等,对此不作限定。
在一些可能的实现方式中,预定的第一时间区域可以是终端设备的DRX机制中配置的定时器(比如,活动定时器DRX In activity Timer,或重传定时器DRX UL Retransmission Timer,或上行持续定时器On Duration Timer等),或者也可以是第一指示中携带的有效子帧区域的时长,或者,也可以是新定义或新设置的定时器,对此不作限定。
在一些可能的实现方式中,监听物理信道以获取第二指示,包括:
若在该预定的第一时间区域内中该终端设备获取到该第二指示,该终端设备停止监听该物理信道。
这里,终端设备在监听到第二指示后,就可以停止监听物理信道,比如PDCCH,从而能够节省终端设备的电能。
在一些可能的实现方式中,该方法还包括:
若该终端设备获取到该第二指示,该终端设备根据该第一指示和该第二指示在该资源上进行数据传输。
这里,资源可以为终端设备进行数据传输的时域位置。
比如,终端设备在获取到第二指示,该第二指示包括第二上行授权。其中,第二上行授权主要用于指示终端设备在有效子帧区域(第一上行授权指示的)中的第一子帧的位置。终端设备可以根据第二上行授权的第一子帧的位置,以及和第一上行授权的第一子帧偏置信息,确定出在哪一个子帧上面进行一次上行传输,即确定终端设备发送数据的时域资源,从而进行数据传输。
在一些可能的实现方式中,在预定的第一时间区域内,监听物理信道以获取第二指示,包括:
该终端设备启动或重启第一定时器,其中,该第一定时器的时长为该预定的第一时间区域的时长;
该终端设备在该第一定时器的运行期间,监听该物理信道以获取该第二指示。
可选地,第一定时器可以是活动定时器DRX In activity Timer,持续定时器On Duration Timer,上行重传定时器DRX-UL Retransmission Timer中的任意一个定时器。第一定时器还可以是重新引入的新的非连续接收DRX的定时器,或MAC层定时器,或RRC层定时器,对此不作限定。
在本发明实施例中,终端设备在第一定时器运行期间,必然不会休眠,除非终端设备到接收到第二指示;或者,还可以理解为,终端设备在第一定时器运行期间会持续监听PDCCH,直到接收到第二指示为止;或者,还可以理解为,终端设备在第一定时器运行期间保持DRX激活状态,以便于接收第二指示。
可选地,该第一定时器的结束时间可以设置为,不晚于第一上行授权所指示的有效子帧区域的失效时间。还可理解,第一定时器的时长可以设置为大于或等于有效子帧区域的时长。
可选地,第一定时器的时长,可以由网络设备通过第一上行授权指示,或者,也可以通过高层信令指示,比如,无线资源控制(Radio Resource Control,RRC)信令;或者,也可以是在协议里规定好,对此不作限定。其中,若第一上行授权指示了第一定时器的时长,则终端设备的PHY层在获取后,需要向终端设备的MAC层提供该第一定时器的时长信息。
在一些可能的实现方式中,该方法还包括:
在获取到该第二指示时或之后,若该第一定时器未超时和/或未停止,则停止该第一定时器。
其中,“第一定时器超时”是指定时器到达设置时间后自动停止;“第一定时器停止”是指终端设备或基站强制停止定时器,而不考虑其是否到达设置时间。
这里,终端设备在获取到该第二指示或第二上行授权之后,若该第一定时器未超时和/或未停止,则停止该第一定时器。这样,终端设备在接收到第二指示或第二上行授权后不用再去监听PDCCH,从而节省了电能。
在一些可能的实现方式中,该终端设备启动或重启第一定时器,包括:
该终端设备在获取该第一指示时或之后,启动或重启第一定时器。
第一定时器的启动时机或契机可以根据第一指示来确定(当然也可以也其他合理形式,对此不作限定)。这里“时或之后”是指终端设备可以在获取到第一上行授权的子帧上启动第一定时器,也可在获取到第一上行授权后的子帧上启动第一定时器,对此不作限定。因此,在本发明实施中,“获取第一指示”和“启动第一定时器”的子帧是比较灵活的,并不一定要固定在某一个子帧上启动或重启第一定时器。
在一些可能的实现方式中,该方法还包括:
在该第一定时器运行期间,若该终端设备未获取到该第二指示,则启动第二定时器,该第二定时器用于等待重传的上行资源。
可选地,第二定时器可以是上行重传定时器(DRX-UL Retransmission Timer)。
在一些可能的实现方式中,该方法还包括:
该终端设备在获取到该第一指示时,启动第三定时器;
该终端设备在该第三定时器运行期间,不监听该物理信道;
其中,该启动或重启第一定时器,包括:
在该第三定时器超时时,启动或重启该第一定时器。
因此,终端设备在接收到第一上行授权的子帧时或之后,可以启动第三定时器,在该第三定时器运行期间,终端设备可以不监听PDCCH。或者,若终端设备不满足DRX激活条件,终端设备在第三定时器内不监听PDCCH。这样,终端设备可以节省电能。
在本发明实施例中,第三定时器的时长,可以是网络设备根据终端设备上报的能力信息配置的,也可以是协议直接规定的,对此不作限制。
可选地,在引入第三定时器后,终端设备的第一定时器的时长可以根据第三定时器的时长以及有效子帧区域的时长共同确定。
在一些可能的实现方式中,该第三定时器的时长可以是该网络设备通过该第一指示或无线资源控制RRC信令指示的。
在一些可能的实现方式中,在该终端设备该获取该第一指示时,若第四定时器处于运行期间,
该终端设备在预定的第一时间区域内,监听物理信道以获取第二指示,包括:
该终端设备在该预定的第一时间区域与该第四定时器的运行时间所确定的交集时间段内,监听该物理信道以获取该第二指示。
终端设备可以在该预定的第一时间区域与该第四定时器(比如上行重传定时器)的运行时间所确定的交集时间段内,对物理信道进行监听,从而获取第二指示。
换言之,在一些可能的实现方式中,例如,该方法还包括:
在该获取该第二指示之前,若第四定时器处于运行期间,则不停止该第四定时器,该第四定时器在该预定的第一时间区域内;
其中,该在预定的第一时间区域内,监听物理信道以获取第二指示,包括:
在该第四定时器的运行期间,监听该物理信道以获取该第二指示。
可选地,第四定时器可以活动定时器DRX In activity Timer,持续定时器On Duration Timer,上行重传定时器DRX-UL Retransmission Timer,新引入的定时器中的任意一个定时器。
在本发明实施例中,终端设备可以不拘泥或强制引入定时器,若当前有正在运行的定时器(比如DRX-UL Retransmission Timer),则可以直接利用正在运行的定时器对PDCCH进行监听。这样,从某种程度上讲,终端设备使用正在运行的定时器,而不必重新定义定时器,为终端设备节省了资源。
在一些可能的实现方式中,该方法还包括:
若该终端设备获取到该第二指示,该终端设备停止该第四定时器。
类似地,终端设备在获取到第二指示后,如果第四定时器未停止,则可以停止该第四定时器,从而节省终端设备的电能。
第二方面,提供了一种用于传输数据的方法,包括:
获取第一指示;
生成和/或获取第一时间的第一信息,该第一信息是网络设备调度终端设备的参考信息;
获取第二指示;
根据第一指示和第二指示,以及该第一信息进行数据传输;
其中,该第一指示和该第二指示用于该终端设备确定进行数据传输的资源。
在本发明实施例中,终端设备通过获取第一指示,然后生成第一时间的 第一信息,或者直接获取第一时间的第一信息,其中,该第一信息是网络设备调度终端设备的参考信息,然后获取第二指示,并根据第一指示,第二指示和第一信息进行数据传输,能够生成两级调度模式下的传输块,从而进行数据传输。
在本发明实施例中,第一时间可以指某时刻,或者,也可以是某一个时间段,比如子帧等时长,对此不作限定。
在本发明实施例中,第一信息可以是缓冲区状态(Buffer Status,BS)和/或功率余量(Power Headroom,PH)的控制信息,还可以是一个或多个MAC控制元素(Control Elements,CE),或者也可以是包括MAC CE的传输块,或者第一信息可以是针对缓冲区状态报告(Buffer Status Report,BSR)/功率余量报告(Power Headroom Report,PHR)的控制元素,对此不作限定。
其中,BSR用于终端设备告诉网络设备其上行缓存(Buffer)里有多少数据待发送,以便于网络设备决定需要给终端设备分配多少上行传输资源。PHR用于终端设备向网络设备报告每个小区的功率余量信息(即UL_SCH信道估算功率和UE最大发射功率之间的差值),以便于网络设备调整终端设备的发送功率。
在本发明实施例中,第一信息的作用在于:网络设备可以参考第一信息,为终端设备调度合适的资源,或调整终端设备的相关参数。比如,网络设备可以根据第一信息中的BSR确定为终端设备分配合适的传输资源,再比如,网络设备可以根据第一信息中的PHR获知每个小区的功率余量信息,从而调整终端设备的发送功率。
应理解,第一信息可以辅助网络设备为终端设备的调度作出适当的参考,但可以不限于是第一信息。
需要说明的是,在本发明实施例中,“第一信息”的生成或获取,与“第二指示”的获取,并没有严格的时间先后顺序。比如,“第一信息”的生成或获取在前,“第二指示”的获取在后;或者,“第一信息”的生成或获取在后,“第二指示”的获取在前,对此不作限定。
在一些可能的实现方式中,该第一指示包括第二时间指示信息,该第二指示包括第三时间指示信息;
其中,根据该第一指示和该第二指示进行数据传输,以及该第一信息进行数据传输,包括:
根据该第二时间指示信息和该第三时间指示信息,确定用于传输数据的时域位置,并基于该第一信息进行数据传输。
在本发明实施例中,引入“第二时间指示信息”与“第三时间指示信息”只是为了描述方便,与前文的“第一时间进行”区分,并且编号也无特殊含义,并不构成对本发明的限制。
在本发明实施例中,第二时间指示信息可以具体指:第一上行授权的第一子帧偏置信息,第三时间指示信息可以具体指:第二上行授权的第一子帧的位置。
终端设备可以根据第二时间指示信息(比如,第一上行授权的第一子帧偏置信息)和第三时间指示信息(第二上行授权的第一子帧的位置),确定出用于传输数据的时域位置(即确定出在哪一个子帧上面进行一次上行传输)。终端设备基于该第一信息(比如数据包,MAC CE等)以及时域位置,进行数据传输。
在一些可能的实现方式中,生成和/或获取第一时间的第一信息,包括:
该终端设备的媒体接入控制层MAC根据该第一时间,确定该终端设备的缓冲区状态BS,该第一信息包括该终端设备的BS。
在一些可能的实现方式中,生成和/或获取第一时间的第一信息,包括:
该终端设备的物理PHY层根据该第一时间,确定每一个激活的服务小区的功率余量PH,并将该终端设备的PH通知给该终端设备的MAC层,该第一信息包括该终端设备的PH。
可选地,若终端设备的前一次传输块还没成功发送,在生成后一次传输块时,可以考虑或者不考虑前一次生成的传输块的数据量,对此不作限定。
比如,终端设备的媒体接入控制MAC层获取该终端设备的物理PHY层发送的第一上行授权和第二上行授权;该终端设备的MAC层根据该第一上行授权和第二上行授权的指示子帧,确定缓存状态参数和/或功率余量至少一个参数。
比如,可选地,作为一个实施例,终端设备的物理PHY层向该终端设备的媒体接入控制层MAC层通知获取的第一上行授权;该终端设备的MAC层根据该第一上行授权,确定参考子帧,该参考子帧可与终端设备进行数据传输的子帧相同或不同;该数据传输的子帧可由第一上行授权和第二上行授权,或第二上行授权确定。该终端设备的MAC层根据该参考子帧,确定BSR 和/或PHR。
这里,对于PHR,终端的物理层根据参考子帧计算每一个激活的服务小区的功率余量,并通知终端设备的MAC层,以便生成PHR MAC CE;对于PHR,终端的MAC根据参考子帧计算缓冲区状态,以便生成BSR MAC CE。其中,参考子帧与终端设备进行数据传输的子帧不同。比如,参考子帧的位置可以距离接收到第一上行授权的子帧的时长为至少4个子帧。
可选地,参考子帧的位置可以是协议规定好的,或者也可以基站指示,对此不作限定。
在一些可能的实现方式中,该方法还包括:
该终端设备的媒体接入控制层MAC根据该第一时间,关联混合自动重传请求HARQ模块,并将该第一信息存入该HARQ模块,以便该终端设备的PHY层传输该第一信息。
比如,终端设备的PHY层在收到第一指示后,就通知终端设备的MAC层进行组包过程。终端设备的MAC链路控制协议(Link Control Protocol,LCP)模块层生成第一时间(子帧或时刻)的第一信息,比如数据包,并将数据包发送至HARQ模块,并通知该终端设备的PHY层进行数据传输。终端设备的PHY层根据数据包完成两级调度模式下的数据传输。
在本发明实例中,终端设备的MAC层在接收到第二上行授权时,可以将将生成的数据包递交给HARQ模块;或者,也可以不考虑是否接收到第二上行授权,直接将数据包递交给HARQ模块。其中,在不考虑是否接收到第二上行授权的情况中,终端设备在处理HARQ进程时可以以一个参考的传输时间间隔(Transmission Time Interval,TTI)进行处理。或者,可选地,终端设备的MAC层在未接收到第二上行授权时,可以将生成好的数据包回退至无线链路控制(Radio Link Control,RLC)层,以便于等待下一次任意一个服务小区的上行资源,对此不作限定。
在一些可能的实现方式中,在该获取第一指示之前,该方法还包括:
该终端设备触发该第一信息的上报。
在一些可能的实现方式中,该方法还包括:
若该终端设备的MAC层未接收到该第二指示,则取消所有触发的该第一信息的上报。
具体而言,如果终端设备的MAC层没有接收到第二指示(比如第二上 行授权)则可以选择取消所有触发的第一信息的上报。
可选地,比如,终端设备的物理PHY层通知该终端设备的媒体接入控制MAC层该终端设备的第一上行授权(包括于第一指示中);若该终端设备的MAC层获取到第一上行授权(或获知上行授权为两级调度模式时),在生成包含BSR和/或PHR的传输块后,也可以不取消该终端设备的MAC层根据该第一上行授权触发的BSR和/或PHR。
可选地,在本发明实施例中,在引入两级调度模式后,终端设备的PHY层可以计算信道状态信息(Channel State Information,CSI)。具体而言,终端设备在接收到第二上行授权后,可以根据第二上行授权指示的子帧作为计算CSI的子帧,或者,也可以选择距离第二上行授权指示的子帧最近的一个可用的下行子帧,作为计算CSI的子帧,或者,也可以选择其他合理的参考子帧,对此不作限定。
可选地,在本发明实施例中,终端设备在接收到第二上行授权后进行数据传输时,如果出现功率受限,则终端设备可以进行功率回退,或者,终端设备也可以放弃传输两级调度的上行传输,对此不作限定。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种终端设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种终端设备。该终端设备包括处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法;
第六方面,提供了一种终端设备。该终端设备包括处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序使得终端设备执行上述第一方面,及其各种实现方式中的任一种用于传输数据的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有程序,该程序使得终端设备执行上述第二方面,及其各种实现方式中的任一种用于传输数据的方法。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1A是一个应用场景的示意图。
图1B是根据本发明实施例的两级调度的示意图。
图2是根据本发明实施例的用于数据传输的方法的示意性流程图。
图3是根据本发明实施例的用于数据传输的方法的一个例子的示意图。
图4是根据本发明另一实施例的用于数据传输的方法的示意性流程图。
图5是根据本发明实施例提供的终端设备的示意性框图。
图6是根据本发明实施例提供的终端设备的结构框图。
图7是根据本发明实施例的系统芯片的示意性结构图。
图8是根据本发明另一实施例的终端设备的示意性框图。
图9是根据本发明另一实施例的终端设备的结构框图。
图10是根据本发明另一实施例的系统芯片的示意性结构图。
具体实施方式
应理解,本发明实施例的技术方案可以应用于采用LAA机制的各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用 移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及未来的5G通信系统等。
还应理解,在本发明实施例中,终端设备可以经无线接入网(Radio Access Network,简称为“RAN”)与一个或多个核心网进行通信,该终端设备可称为接入终端、终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。用户设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。
还应理解,在本发明实施例中,网络设备可用于与用户设备进行通信,该网络设备可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的基站设备等。
还应理解,在本发明实施例可以应用于授权载波辅助的接入系统,即UE在授权载波的协助下进行非授权载波的接入,该系统不支持非授权载波的单独接入。在该系统中,非授权载波的接入可以采用LBT机制,并且非授权载波的每次接入时长也都会受到限制。在本发明实施例中,将该系统称为授权辅助接入(Licensed-Assisted Access,LAA)系统,但该系统也可以具有其它名称,本发明实施例对此不做限定。
蜂窝网中的网络设备(例如基站或基站控制器,等等)和终端设备可以采用授权载波或非授权载波进行通信。网络设备或终端设备在使用非授权载波进行数据传输之前,可以与无线局域网(Wireless Local Area Network,WLAN)中的节点以及与采用LAA机制的蜂窝网中的其他LAA节点竞争该非授权载波上的资源,并且在竞争到资源后采用竞争到的资源进行数据传输,其中,该用户设备或网络设备可以基于LBE方式或FBE方式竞争信道,本发明实施例对此不做限定。
图1A是一个场景示意图。应理解,为了便于理解,这里引入图1A中 的场景为例进行说明,但并不对本发明构成限制。图1A中示出了终端设备11、终端设备12、终端设备13和基站21。
如图1A所示,终端设备11可以与基站21进行通信,终端设备12可以与基站21进行通信,终端设备13与基站21进行通信。或者,终端设备12也可以与终端设备11进行通信。或者,作为另一种情形,终端设备13与基站12进行通信。图1A中的终端设备和基站可以应用于LAA系统中。
下面将结合图1B对本发明实施例的一些相关概念或术语进介绍。针对LAA系统,3GPP中引入了两级调度模式,图1B示出了LAA系统中的两级调度模式的子帧结构示意图。
如图1B所示,终端设备(比如图1A中的任一个终端设备)进行上行传输时,需要获取两级上行授权(UL grant),即图1B中的第一上行授权(比如,初始上行授权initial UL grant)和第二上行授权(比如,触发上行授权triggered UL grant)。终端设备在接收到两级调度的上行授权后,才能进行数据传输。其中,该虚线框内的子帧表示该第一上行授权指示的有效子帧区域。
具体而言,第一级上行授权(简称为第一上行授权)主要用于指示终端设备上行传输时的频域资源、调制编码方案(Modulation and Coding Scheme,MCS)信息、第一子帧的子帧偏置信息、以及上行传输时的有效子帧区域。可选地,第一上行授权也可以包括HARQ进程(process)标识(ID)等信息。其中,第一上行授权可以调度至少一个子帧,在每个子帧上进行一次上行传输,每次传输使用不同的HARQ process。第一上行授权可以是基站通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)告知给终端设备的,可采用小区无线网络临时标识(Cell Radio Network Temporary Identity,C-RNTI)进行加扰。其中,引入“第一子帧”是为了描述方便,该第一子帧可以是任意一个子帧,比如起始上行子帧等,对此不作限定。
另外,第二级上行授权(简称为第二上行授权)主要用于指示终端设备在有效子帧区域(第一上行授权指示的)中的第一子帧的位置。终端设备可以根据第二级上行授权的第一子帧的位置,以及第一级上行授权的第一子帧偏置信息,确定在哪一个或那些子帧上面进行一次或多次上行传输,即确定终端设备发送数据的时域资源。第二上行授权可以是基站通过专用PDCCH或公共PDCCH告知给终端设备的。其中,专用PDCCH采用C-RNTI进行 加扰,公共PDCCH采用公共小区无线网络临时标识(Common Cell Radio Network Temporary Identity,CC-RNTI)进行加扰。
示例性的,若第一上行授权指示第一子帧的子帧偏置信息为2,以及第二上行授权指示第一子帧为子帧k(k为子帧编号),那么,终端设备用于进行数据传输的子帧的编号是:k+2。
为了获取第一上行授权和第二上行授权,终端设备需要对PDCCH进行监听。在现有技术中,终端设备会存在监听不到第二上行授权的情况。现有技术并没有讨论是否在两级调度中引入DRX机制的问题,即使终端设备配置了DRX机制,由于DRX机制存在激活期和休眠期,那么终端设备也只能是断断续续得监听PDCCH,无法保证一定能监听到第二上行授权,从而导致不能完成两级调度模式下的数据传输。并且,如果终端设备根据DRX机制的激活期和休眠期多次进行工作,将会耗费终端设备大量的电能。基于此,本发明试图通过引入时间区域或设置定时器的形式,对两级调度模式下的PDCCH进行监听,保证终端设备在两级调度模式下完成数据传输。进一步地,能够节省终端设备的电能,减少一些不必要的监听。
图2示出了根据本发明实施例的用于传输数据的方法的示意性流程图。该方法可以由终端设备执行,比如图1A中的任一终端设备来执行。该方法200包括:
S210,终端设备获取第一指示;
在本发明实施例中,第一指示可以理解为上行传输资源,具体可以理解为第一上行授权。或者,可选地,该第一指示可以包括第一上行授权以及上行资源。
可选地,第一指示还可以指示终端设备的每一次上行传输是新传或重传。
可选地,该第一上行授权包括第一子帧的子帧偏置信息。比如在两级调度模式下,第一上行授权可以指示终端设备用于数据传输的有效子帧区域的时长。第一上行授权指示上行传输资源(比如频域资源)。
可选地,第一上行授权还可以包括用于指示终端设备的一次或多次上行传输的相关信息,比如,每次上行传输所使用的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)进程(process)标识(ID)信息,以及MCS信息等。可选地,第一上行授权还可以指示每一次上行传输是新传或 重传。
可选地,终端设备的物理层可以将第一上行授权的信息通知给终端设备的MAC层。
可选地,该第一指示或该第一上行授权可以是终端设备接收网络设备发送的。可选地,该第一指示或第一上行授权可以是网络设备通过PDCCH发送给终端设备的。
S220,该终端设备在预定的第一时间区域内,监听物理信道以获取第二指示;
其中,该第一指示和第二指示用于终端设备确定进行数据传输的资源。
这里,资源可以为终端设备进行数据传输的时域位置。
类似地,可选地,第二指示可理解为第二上行授权,还可以理解为上行传输资源。可选地,该第二指示可以包括第二上行授权以及上行资源。
可选地,该第一指示中还可以包括该预定的第一时间区域的范围的信息。比如,该第一时间区域的范围的信息可以是有效子帧区域的时长。
可选地,在本发明实施例中,物理信道可以为PDCCH。
可选地,在本发明实施例中,终端可以不用在所有的预定的第一时间区域都在监听该物理信道,还可以理解为,可以不用监听完所有的预定的第一时间区域,还可以理解为,终端可以选择性地在预定的第一时间区域内的任意一个时间点或时段之后停止监听该物理信道。换言之,该预定的第一时间区域并非强制终端设备在该预定的第一时间区域内一直监听物理信道,如果监听到第二指示,则可以停止监听。或者说,设定第一时间区域的目的在于能够监听到第二指示,而非强调在预定的第一时间区域的时间必须严格地持续监听。示例性地,终端设备接收到第二指示时,可以停止监听该物理信道。
可选地,该第二指示或该第一上行授权可以是终端设备接收网络设备发送的。
可选地,该第一指示或第一上行授权可以是网络设备通过PDCCH发送给终端设备的。可选地,该预定的第一时间区域可以是预设或预配置的时长,比如可以是基站配置的,或者是协议里规定的,对此不作限定。
具体而言,终端设备可以在预定的第一时间区域内,监听物理下行控制信道PDCCH,以便于获取第二指示,从而根据该第一指示和第二指示进行数据传输。其中,预定的第一时间区域可以是由终端设备的DRX机制中配 置的定时器(比如,DRX In activity Timer,或DRX UL Retransmission Timer,或On Duration Timer等)来实现,或者也可以是由第一指示中携带的有效子帧区域的时长来实现,或者,也可以是由新定义或新设置的定时器来实现,对此不作限定。
可选地,该第一指示中包括该预定的第一时间区域的范围的信息。具体而言,该第一时间区域的范围的信息可以是协议规定好的,或者,也可以是网络侧设备配置后通过第一指示告知给终端设备的,对此不作限定。
在本发明实施例中,可选地,例如,第一指示可以指示终端设备的相对时间信息(比如第一子帧的偏置信息),第二指示可以指示终端设备的绝对时间信息(第一子帧位置),终端设备根据第一指示和第二指示可以确定出在哪一个或那些子帧上进行一次或多次传输,即确定发送数据的时域位置。其中,引入“第一子帧”是为了描述方便,该第一子帧可以是任意一个子帧,比如起始上行子帧等,对此不作限定。
在本发明实施例中,终端设备在预定的第一时间区域内,必然不会休眠,除非终端设备到接收到第二指示和/或第一指示的失效为止;或者,还可以理解为,终端设备在预定的第一时间区域内会持续监听PDCCH,直到接收到第二指示为止和/或第一指示的失效为止;或者,还可以理解为,终端设备在预定的第一时间区域内保持DRX激活状态,直到接收到第二指示为止和/或第一指示的失效为止。其中,“第一指示的失效”可以具体理解为当前子帧已经超出了第一指示中所指示的有效时间或子帧区域,未落在该有效时间或子帧区域内。
因此,本发明实施例的用于传输数据的方法,终端设备获取第一指示,在预定的第一时间区域内监听物理信道以获取第二指示,其中,该第一指示和该第二指示用于终端设备确定进行数据传输的资源,能够保证终端设备获取到第二指示,从而在两级调度模式下完成数据传输。
可选地,本发明实施例的用于传输数据的方法,终端设备获取第一指示,在预定的第一时间区域内监听物理信道以获取第二指示,其中,该第二指示用于生成MAC服务数据单元或(Service Data Unit,SDU)MAC协议数据单元(Protocol Data Unit,PDU),该第二指示用于终端设备确定进行数据传输的时域位置,能够保证终端设备获取到第二指示,从而在两级调度模式下完成相关的数据传输。
可选地,S220包括:
若在该预定的第一时间区域内中获取到该第二指示,终端设备停止监听该物理信道。
具体而言,如果终端设备在该预定的第一时间区域中获得该第二指示,那么终端设备可以停止监听物理信道,比如PDCCH。因此,终端设备在监听到第二指示后,就停止监听物理信道,从而能够节省终端设备的电能。
比如,可选地,作为一个实施例,S220可以包括:
启动或重启第一定时器,其中,该第一定时器的时长是由网络设备指示的;
其中,该在预定的第一时间区域内,监听物理信道以获取第二指示,包括:
在该第一定时器的运行期间,监听物理信道以获取该第二指示。
具体而言,终端设备可以引入第一定时器,通过启动或者重启第一定时器,在第一定时器的运行期间,监听PDCCH以获取该第二指示。因此,在本发明实施例中,通过引入第一定时器,终端设备能够在该第一定时器内接收到第二指示。相比于“预定的第一时间区域”所指的时间区域,第一定时器的体现形式更为具体些,使得终端设备能有针对性地在第一定时器内接收第二指示,从而根据第一指示和第二指示进行数据传输。
可选地,启动或重启第一定时器,可以包括:
在获取该第一指示时或之后,启动或重启第一定时器。
具体而言,终端设备在获取到第一指示或第一上行授权时或之后,可以启动或重启第一定时器。换言之,第一定时器的启动时机或契机可以根据第一指示来确定(当然也可以也其他合理形式,对此不作限定)。这里“时或之后”是指终端设备可以在获取到第一上行授权的子帧上启动第一定时器,也可在获取到第一上行授权后的子帧后启动第一定时器,对此不作限定。因此,在本发明实施中,“获取第一指示”和“启动第一定时器”的子帧是比较灵活的,并不一定要固定在某一个子帧上启动或重启第一定时器。
可选地,该第一定时器的结束时间可以设置为,不晚于第一上行授权所指示的有效子帧区域的失效时间。还可理解,第一定时器的时长可以设置为大于或等于有效子帧区域的时长。
在本发明实施例中,终端设备在第一定时器运行期间,必然不会休眠, 除非终端设备到接收到第二指示和/或第一指示的失效为止;或者,还可以理解为,终端设备在第一定时器运行期间会持续监听PDCCH,直到接收到第二指示为止和/或第一指示的失效为止;或者,还可以理解为,终端设备在第一定时器运行期间保持DRX激活状态,直到接收第二指示为止和/或第一指示的失效为止。
可选地,第一定时器的时长,可以由网络设备通过第一上行授权指示,或者,也可以通过高层信令指示,比如,无线资源控制(Radio Resource Control,RRC)信令;或者,也可以是在协议里规定好,对此不作限定。其中,若第一上行授权指示了第一定时器的时长,则终端设备的PHY层在获取后,需要向终端设备的MAC层提供该第一定时器的时长信息。
可选地,第一定时器可以是DRX In activity Timer,On Duration Timer,DRX-UL Retransmission Timer中的任意一个定时器。第一定时器还可以是重新引入的新的非连续接收DRX的定时器,或MAC层定时器,或RRC层定时器,对此不作限定。
比如,第一定时器可以按照异步(asynchronous)上行(UL)HARQ进程(process)配置,即第一定时器可以理解为针对一个异步UL HARQ维护的一个第一定时器;或者,第一定时器按照第一上行授权配置,可以理解为针对一个第一上行授权维护一个第一定时器;或者,第一定时器按照MAC配置,可以理解为针对一个MAC维护一个第一定时器,对此不作限定。
可选地,该第一定时器可以是终端设备设置的某一段时间。或者,可选地,该第一定时器也可以是DRX激活期。比如,若终端设备配置了DRX机制,则终端设备可以保持DRX激活状态,直接利用DRX激活期对PDCCH进行监听。
比如,终端设备可以根据DRX机制中的On Duration Timer(持续定时器)和/或DRX In activity Timer(非连续活动定时器)对PDCCH进行监听。其中,On Duration Timer是指在每个DRX周期内,终端设备需要监听的PDCCH的子帧数目。终端设备在每个新的DRX周期开始时,都要启动On Duration Timer。DRX In activity Timer指示一个时间段,在该时间段内终端设备要持续监听PDCCH,在该时间段内终端设备解调出新传数据(即不包含重传数据),当再次收到首传数据的指示后还可以重启DRX In activity Timer。另外,DRX机制中的上行重传定时器(即非连续接收的上行重传定 时器DRX-UL Retransmission Timer)也可以用来监听PDCCH。
可选地,第一上行授权可以指示新传或重传。
作为一个实施例,例如,当第一定时器为DRX机制中的参数DRX In activity Timer时,若终端设备在监听或获取到的第一上行授权指示新传或重传时或之后,则可以启动或重启DRX In activity Timer,停止DRX-UL Retransmission Timer,在DRX In activity Timer内监听PDCCH以获取第二上行授权,根据第一上行授权和第二上行授权进行数据传输;可选地,终端设备在发送完数据后,可以启动上行混合自动重传请求往返时延定时器(Uplink Hybrid Automatic Repeat Request Round Trip Time Timer,UL HARQ RTT Timer),若UL HARQ RTT Timer超时,可以再次启动DRX-UL Retransmission Timer。
作为一个实施例,例如,当第一定时器为DRX机制中的参数DRX-UL Retransmission Timer时,若终端设备在监听或获取到的第一上行授权指示新传或重传时或之后,则可以启动或重启DRX-UL Retransmission Timer,在DRX-UL Retransmission Timer内监听PDCCH以获取第二上行授权,根据第一上行授权和第二上行授权进行数据传输;可选地,终端设备在发送完数据后,可以启动UL HARQ RTT Timer,若UL HARQ RTT Timer超时,可以再次启动DRX-UL Retransmission Timer。
作为一个实施例,例如,当第一定时器为DRX机制中的参数DRX On Duration Timer时,若终端设备在监听或获取到的第一上行授权指示新传或重传时或之后,则可以启动或重启DRX On Duration Timer,以及停止DRX-UL Retransmission Timer,在DRX On Duration Timer内监听PDCCH以获取第二上行授权,根据第一上行授权和第二上行授权进行数据传输;可选地,终端设备在发送完数据后,可以启动UL HARQ RTT Timer,若UL HARQ RTT Timer超时,可以再次启动DRX-UL Retransmission Timer。
作为一个实施例,例如,当第一定时器为DRX机制中的参数触发定时器DRX Trigger Timer时,若终端设备在监听或获取到的第一上行授权指示新传或重传时或之后,则可以启动或重启DRX Trigger Timer,以及停止DRX-UL Retransmission Timer,在DRX Trigger Timer内监听PDCCH以获取第二上行授权,根据第一上行授权和第二上行授权进行数据传输;可选地,终端设备在发送完数据后,可以启动UL HARQ RTT Timer,若UL HARQ RTT  Timer超时,可以再次启动DRX-UL Retransmission Timer。其中,DRX Trigger Time为新配置或新引入的DRX定时器。
在本发明实施例中,对于每一次上行传输,终端设备会启动相应的UL HARQ RTT Timer。其中,每一次上行传输对应一个HARQ process,每一个HARQ process有一组DRX-UL Retransmission Timer和UL HARQ RTT Timer。
因此,本发明实施例的用于传输数据的方法,终端设备获取第一指示,在预定的第一时间区域内监听物理信道以获取第二指示,其中,该第一指示和该第二指示用于终端设备确定进行数据传输的资源,能够保证终端设备获取到第二指示,从而在两级调度模式下完成数据传输。进一步地,能够节省终端设备的电能。
可选地,在本发明实施例中,该方法200还包括:
若获取到该第二指示,则根据该第一指示和该第二指示进行数据传输。
具体而言,终端设备可以在预定的第一时间区域(比如第一定时器)内,监听PDCCH以获取网络设备发送的第二指示,该第二指示包括第二上行授权。其中,第二上行授权主要用于指示终端设备在有效子帧区域(第一上行授权指示的)中的第一子帧的位置。终端设备可以根据第二上行授权的第一子帧的位置,以及和第一上行授权的第一子帧偏置信息,确定出在哪一个子帧上面进行一次上行传输,即确定终端设备发送数据的时域资源,从而进行数据传输。
换言之,终端设备获取第一上行授权,第一上行授权包括用于指示数据传输的有效子帧区域的信息,以及第一子帧的偏置信息。然后,终端设备启动第一定时器,在第一定时器内监听PDCCH以获取第二上行授权,其中,第二上行授权用于指示该有效子帧区域中的第一子帧的位置。最后,终端设备在获取到第二上行授权后,根据该第一上行授权和该第二上行授权,确定发送数据的子帧位置,进行一次或多次数据传输,从而完成了两级调度模式的数据传输。
可选地,该方法200还包括:
在获取到该第二指示时或之后,若该第一定时器未超时和/或未停止,则停止该第一定时器。
这里,“第一定时器超时”是指定时器到达设置时间后自动停止;“第 一定时器停止”是指终端设备或基站强制停止定时器,而不考虑其是否到达设置时间。
具体即,终端设备在获取到该第二指示或第二上行授权之后,若该第一定时器未超时和/或未停止,则停止该第一定时器。这样,终端设备在接收到第二指示或第二上行授权后不用再去监听PDCCH,从而节省了电能。
应理解,在本发明实施例中,引入编号“第一,第二…”只是为了描述方便,区分不同的对象,比如为了区分不同的“上行授权”,或者为了区分不同的“定时器”,或者为了区分不同的“指示”,并不对本发明构成限定。
还应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
因此,本发明实施例的用于传输数据的方法,终端设备获取第一指示,在预定的第一时间区域内监听物理信道以获取第二指示,其中,该第一指示和该第二指示用于终端设备确定进行数据传输的资源,能够保证终端设备获取到第二指示,从而在两级调度模式下完成数据传输。
可选地,作为一个实施例,在该第一定时器运行期间,若该终端设备未获取到该第二指示,该方法200还包括:
该终端设备启动第二定时器,该第二定时器用于该终端设备等待重传的上行资源。
或者,在该第一定时器超时和/或停止之后,若未获取到该第二指示,则启动第二定时器,该第二定时器用于该终端等待重传的上行资源。
具体而言,如果第一定时器超时或者停止后,终端设备还没有接收到第二指示(比如第二上行授权),则启动第二定时器,其中该第二定时器可以等待可能的上行授权资源。可选地,第二定时器可以是上行重传定时器(DRX-UL Retransmission Timer)。
可选地,作为一个实施例,该方法200还包括:
在接收到该第一指示时或之后,启动第三定时器;
在该第三定时器未超时和/或未停止之前,不监听该物理信道;
其中,S220包括:
在该第三定时器超时和/或停止后,启动或重启该第一定时器。
具体而言,终端设备在接收到第一上行授权的子帧时或之后,可以启动 第三定时器,在该第三定时器运行期间,终端设备可以不监听PDCCH。或者,若终端设备不满足DRX激活条件,终端设备在第三定时器内不监听PDCCH。这样,终端设备可以节省电能。
在本发明实施例中,第三定时器的时长,可以是网络设备根据终端设备上报的能力信息配置的,也可以是协议直接规定的,对此不作限制。
可选地,在引入第三定时器后,终端设备的第一定时器的时长可以根据第三定时器的时长以及有效子帧区域的时长共同确定。
因此,本发明实施例的用于传输数据的方法,终端设备获取第一指示,在预定的第一时间区域内监听物理信道以获取第二指示,其中,该第一指示和该第二指示用于终端设备确定进行数据传输的资源,能够保证终端设备获取到第二指示,从而在两级调度模式下完成数据传输。进一步地,能够节省终端设备的电能。
可选地,作为一个实施例,该方法200还可以包括:
在该终端设备该获取该第一指示时,若第四定时器处于运行期间,该终端设备在该预定的第一时间区域与该第四定时器的运行时间所确定的交集时间段内,监听该物理信道以获取该第二指示。
或者,在该获取该第二指示之前,若第四定时器处于运行期间,则不停止该第四定时器;
其中,该在预定的第一时间区域内,监听物理信道以获取第二指示,包括:
在该第四定时器的运行期间,监听该物理信道以获取该第二指示。
具体而言,终端设备在获取第二指示之前,如果已经有定时器(比如第四定时器)处于运行期间,那么终端设备可以选择不停止该第四定时器。终端设备可以在该第四定时器的运行期间,监听PDCCH以获取第二指示。换言之,在本发明实施例中,终端设备可以不拘泥或强制引入定时器,若当前有正在运行的定时器,则可以直接利用正在运行的定时器对PDCCH进行监听。这样,从某种程度上讲,终端设备使用正在运行的定时器,而不必重新定义定时器,为终端设备节省了资源。
在本实施例中,该预定的第一时间区域的信息是由第一指示指示,比如有效子帧区域信息;该第四定时器运行期间,可能只包括部分的预定的第一时间区域,也可能包括完整的预定的第一时间区域;终端根据该第四定时器 运行时间和预定的第一时间区域确定的交集时间区域(比如,称作“第二时间区域”)监听物理信道。
可选地,在本发明实施例中,终端可以不用在第二时间区域内都在监听该物理信道,还可以理解为,可以不用监听完所有的第二时间区域,还可以理解为,终端可以选择性的在第二时间区域内的任意一个时间点或时段之后停止监听该物理信道。换言之,该第二时间区域并非强制终端设备在该第二时间区域内一直监听物理信道,如果监听到第二指示,则可以停止监听。或者说,引入第二时间区域的目的在于能够监听到第二指示,而非强调在第二时间区域的时间必须严格地持续监听。示例性地,终端设备接收到第二指示时,可以停止监听该物理信道。另外,在第二时间区域外,终端设备可以进行监听物理信道,也可以不监听物理信道,对此不作要求。
可选地,该方法还包括:
若该终端设备获取到该第二指示,该终端设备停止该第四定时器。
或者,在获取到该第二指示时或之后,若该第四定时器未超时和/或未停止,则停止该第四定时器。
类似地,终端设备在获取到第二指示后,如果第四定时器未停止,则可以停止该第四定时器,从而节省终端设备的电能。
可选地,该方法还可以包括:
在第一指示失效时,若该第四定时器未超时和/或未停止,则停止该第四定时器。
具体而言,当第一指示中所指示的有效子帧区域已经失效时,或者说已经超出了有效子帧区域,如果第四定时器还在运行,则此时可以选择停止第四定时器(可以理解,如果有效子帧区域已经失效,那么继续监听PDCCH的意义也不大,则可以停止第四定时器)。其中,第一指示的失效时间是由第一指示的有效子帧区域确定的。
可选地,第四定时器可以DRX In activity Timer,On Duration Timer,DRX-UL Retransmission Timer中的任意一个定时器。第四定时器还可以是重新引入的新的非连续接收DRX的定时器,或MAC层定时器,或RRC层定时器。
作为一个实施例,例如,若第四定时器为上行重传定时器,比如DRX-UL Retransmission Timer,则终端设备的数据传输过程具体为:终端设备通过监 听PDCCH,获取到第一上行授权。当第一上行授权指示终端设备为重传或新传时,终端设备不停止DRX-UL Retransmission Timer,在DRX-UL Retransmission Timer运行期间,终端设备可以监听PDCCH以获取第二上行授权。在接收到第二上行授权后,终端设备停止该DRX-UL Retransmission Timer。可选地,如果终端设备在第一上行授权失效前,或者在DRX-UL Retransmission Timer超时后,还没有接收到第二上行授权,则终端设备可以启动或重启DRX-UL Retransmission Timer和/或DRX-inactive Timer。可选地,终端设备根据第一上行授权和第二上行授权进行数据传输后,可以启动UL HARQ RTT Timer,在UL HARQ RTT Timer超时后可以再次启动DRX-UL Retransmission Timer,对此不作限制。
因此,本发明实施例的用于传输数据的方法,终端设备获取第一指示,在预定的第一时间区域内监听物理信道以获取第二指示,其中,该第一指示和该第二指示用于终端设备确定进行数据传输的资源,能够保证终端设备获取到第二指示,从而在两级调度模式下完成数据传输。
为了便于本领域的技术人员理解本发明的技术方案,下面将结合图3描述本发明的实施例。应理解,这里只是举例说明,这并不对本发明构成限制。
例如,图3示出了根据本发明实施例的用于传输数据的方法的一个例子的示意图。如图3所示,终端设备在接收到第一上行授权(指示了有效子帧区域)时,可以在第一上行授权的子帧(图3中未示出子帧)启动第三定时器(比如自定义的一个Timer)。在第三定时器内,终端设备可以不用监听PDCCH。在第三定时器结束后,终端设备可以启动第一定时器(比如DXR-Trigger Timer和/或DRX In activity Timer,或者新定义的定时器)。在第一定时器运行期间,终端设备监听到第二上行授权,然后根据第一上行授权和第二上行授权进行数据传输。其中,终端设备在进行数据传输时,启动上行HARQ RTT定时器,每一次上行传输的混合自动重传请求进程HARQ process对应一个HARQ process ID(比如图3中的ID1、ID2、ID3和ID4)。可选地,当上行HARQ RTT定时器(Timer)超时后,终端设备启动上行重传定时器,以等待可能的上行重传定时器。
可选地,在图3中,第一定时器的时长可以根据有效子帧区域的时长和第三定时器来确定。可选地,网络设备可以将第一定时器的时长通过第一上行授权指示给终端设备。
应理解,图3中第一定时器的结束时间并不一定要与有效子帧区域的结束时间重叠,若终端设备接收到第二上行授权后,可以停止第一定时器,图3只是举例说明,对此不作限定。
可选地,在图3中,如果有效子帧区域失效之前,还没接收到第二上行授权(这种情况图中未示出),或者第二定时器超时后,还没接收到第二上行授权(这种情况图中未示出),则终端设备可以启动上行重传定时器和/或DRX-In activity Timer,对此不作限定。
因此,本发明实施例的用于传输数据的方法,终端设备获取第一指示,在预定的第一时间区域内监听物理信道以获取第二指示,其中,该第一指示和该第二指示用于终端设备确定进行数据传输的资源,能够保证终端设备获取到第二指示,从而在两级调度模式下完成数据传输。
可选地,在本发明实施例中,在引入两级调度模式后,如何终端设备的MAC层组包也是一个需要考虑的问题。在两级调度模式下,终端设备在收到第二上行授权之前,要求终端设备的MAC层提前生成好传输块,且递交给终端设备的物理层。但是现在的问题是,终端设备如果没有接收到第二上行授权,则不能确定被调度的上行子帧,就无法获知该根据哪一个子帧生成传输块,其中,传输块中包括一个或多个MAC控制元素(Control Elements,CE),该MAC CE针对缓冲区状态报告(Buffer Status Report,BSR)/功率余量报告(Power Headroom Report,PHR)的控制元素。比如,终端设备无法确定根据哪一个子帧计算缓冲区状态(Buffer Status,BS)和/或功率余量(Power headroom,PH),也可以理解为,BSR和/或PHR。
其中,BSR用于终端设备告诉网络设备其上行缓存(Buffer)里有多少数据待发送,以便于网络设备决定需要给终端设备分配多少上行传输资源。PHR用于终端设备向网络设备报告每个小区的功率余量信息(即UL_SCH信道估算功率和UE最大发射功率之间的差值),以便于网络设备调整终端设备的发送功率。下面将对两级调度模式下如何生成传输块的多个方案分别进行描述。应理解,为了简洁,对于一些前文出现的概念将不作赘述。
可选地,作为一个实施例,图4示出了根据本发明另一实施例提供的一种用于传输数据的方法,该方法可以由终端设备执行。如图4所示,该方法400包括:
S410,获取第一指示;
S420,生成和/或获取第一时间的第一信息,该第一信息是网络设备调度该终端设备的参考信息;
S430,获取第二指示;
S440,根据第一指示和第二指示,以及该第一信息进行数据传输;
其中,该第一指示和该第二指示用于该终端设备确定进行数据传输的资源。
具体而言,终端设备通过获取第一指示,然后可以生成第一时间的第一信息,或者直接获取第一时间的第一信息,其中,该第一信息是网络设备调度终端设备的参考信息,继而获取第二指示,并根据第一指示,第二指示和第一信息进行数据传输,能够生成两级调度模式下的传输块,从而进行数据传输。在本发明实施例中,第一时间可以指某时刻,或者,也可以是某一个时间段,比如子帧或传输时间间隔TTI等时长,对此不作限定。
在本发明实施例中,第一信息可以是缓冲区状态和/或功率余量的控制信息,还可以是一个或多个MAC CE,或者也可以是包括MAC CE的传输块,或者第一信息可以是针对BSR/PHR的MAC CE,还可以是MAC服务数据单元SDU或MAC协议数据单元PDU,对此不作限定。
在本发明实施例中,第一信息的作用在于:网络设备可以参考第一信息,为终端设备调度合适的资源,或调整终端设备的相关参数。比如,网络设备可以根据第一信息中的BSR确定为终端设备分配合适的传输资源,再比如,网络设备可以根据第一信息中的PHR获知每个小区的功率余量信息,从而调整终端设备的发送功率。
应理解,第一信息可以辅助网络设备为终端设备的调度作出适当的参考,但可以不限于是第一信息。
需要说明的是,在本发明实施例中,“第一信息”的生成或获取,与“第二指示”的获取,并没有严格的时间先后顺序。比如,“第一信息”的生成或获取在前,“第二指示”的获取在后;或者,“第一信息”的生成或获取在后,“第二指示”的获取在前,对此不作限定。
可选地,在本发明实施例中,该第一指示包括第二时间指示信息,该第二指示包括第三时间指示信息;
其中,该根据该第一指示和该第二指示进行数据传输,以及该第一信息进行数据传输,包括:
根据该第二时间指示信息和该第三时间指示信息,确定用于传输数据的时域位置,并基于该第一信息进行数据传输。
具体而言,终端设备可以根据第二时间指示信息(比如,第一上行授权的第一子帧的偏置信息)和第三时间指示信息(第二上行授权的第一子帧的位置),确定出用于传输数据的时域位置(即确定出在哪一个或哪些子帧上面进行一次或多次上行传输)。终端设备基于该第一信息(比如数据包,MAC CE等)以及时域位置,进行数据传输。
在本发明实施例中,引入“第二时间指示信息”与“第三时间指示信息”只是为了描述方便,与前文的“第一时间进行”区分,并且编号也无特殊含义,并不构成对本发明的限制。
可选的,生成和/或获取第一时间的第一信息,还可以理解为,终端根据第一时间生成和/或获取第一信息,还可以理解为,第一信息与第一时间相关的终端设备的状态信息,但是具体在何时生成第一信息不作限定。
可选地,作为一个实施例,该生成和/或获取第一时间的第一信息,包括:
该终端设备的媒体接入控制层MAC根据该第一时间,生成该终端设备的缓冲区状态BS,该第一信息包括该终端设备的BS,该第一信息是网络设备调度该终端设备的参考信息。
具体而言,终端设备的MCE层可以根据第一时间,计算BS,其中该第一信息中包括该BS。
可选地,作为一个实施例,该生成和/或获取第一时间的第一信息,包括:
该终端设备的物理PHY层根据该第一时间,生成每一个激活的服务小区的功率余量PH,并将该终端设备的PH通知给该终端设备的MAC层,该第一信息包括该终端设备的PH。
具体而言,终端设备的MCE层可以根据第一时间,计算PH,其中该第一信息中包括该PH,并将该终端设备的PH通知给该终端设备的MAC层。
比如,可选地,作为一个实施例,终端设备的物理PHY层向该终端设备的媒体接入控制层MAC层通知获取的第一上行授权;该终端设备的MAC层根据该第一上行授权,确定参考子帧,该参考子帧可与终端设备进行数据传输的子帧相同或不同;该数据传输的子帧可由第一上行授权和第二上行授权,或第二上行授权确定。该终端设备的MAC层根据该参考子帧,生成BSR和/或PHR。
具体实现时,终端设备的PHY层向MAC层通知上行授权的类型,终端设备的MAC层在生成传输块时,可以以某一个子帧作为参考子帧,然后根据参考子帧生成BSR和/或PHR。比如,终端设备可以根据参考子帧计算缓存状态BS参数和/或功率余量PH参数。对于PHR,终端的物理层根据参考子帧计算每一个激活的服务小区的功率余量,并通知终端设备的MAC层,以便生成PHR MAC CE。对于BSR,终端的MAC根据参考子帧计算缓冲区状态,以便生成BSR MAC CE。
在本发明实施例中,参考子帧与终端设备进行数据传输的子帧不同。比如,参考子帧的位置可以距离接收到第一上行授权的子帧的时长为至少4子帧。
可选地,参考子帧的位置可以是协议规定好的,或者也可以基站指示,对此不作限定。
因此,在本发明实施例中,终端设备可以根据第一时间计算出终端设备的缓冲区状态BS,以及获取每一个激活的服务小区的功率余量PH,从而生成传输块,以便于进行数据传输。
可选地,在获取第一指示之前,该方法还包括:
终端设备触发第一信息的上报。
可选地,该方法还包括:
若该终端设备的MAC层未接收到该第二指示,则取消所有触发的该第一信息的上报。
具体而言,如果终端设备的MAC层没有接收到第二指示(比如第二上行授权)则可以选择取消所有触发的第一信息的上报。
可选地,比如,终端设备的物理PHY层通知该终端设备的媒体接入控制MAC层该终端设备的第一上行授权(包括于第一指示中);若该终端设备的MAC层获取到第一上行授权(或获知上行授权为两级调度模式时),该终端设备始终在两级调度模式下始终不上报BSR和/或PHR MAC CE。该终端设备在生成不包含BSR和/或PHR的传输块后,也可以不取消该终端设备的MAC层触发的BSR和/或PHR,以便终端设备在之后接收到一级调度的上行授权的时候,生成BSR/PHR MAC CE,及时上报通知网络设备,以便更好的下发调度策略。
可选地,若终端设备的前一次传输块还没成功发送,在生成任意一个传 输块或MAC PDU时,可以考虑或者不考虑前一次生成的传输块的数据量,对此不作限定。
比如,终端设备的媒体接入控制MAC层获取该终端设备的物理PHY层发送的第一上行授权和第二上行授权;该终端设备的PHY层根据该第一上行授权和第二上行授权的指示子帧,生成MAC SDU或MAC PDU;该终端设备的MAC层根据该第一上行授权和第二上行授权的指示子帧,生成缓存状态参数;该终端设备的PHY层根据该第一上行授权和第二上行授权的指示子帧,生成功率余量参数,并通知MAC层。
具体而言,终端设备的MAC层在组包时,可以先获取PHY层发送的第一上行授权和第二上行授权,然后根据第一上行授权和第二上行授权确定传输子帧。终端的MAC层根据该传输子帧计算缓存状态BS参数,可选地,终端设备的MAC层并生成一个BSR MAC CE;终端的PHY层根据该传输子帧,计算功率余量PH参数,并通知MAC层,可选地,终端设备的MAC层并生成一个PHR MAC CE。
因此,在本发明实施例中,终端设备的MAC层通过上述方案,可以生成两级调度模式中的传输块,进一步地,可以计算出两级调度模式中的BSR和/或PHR的参数。
可选地,作为一个实施例,该方法包括:
该终端设备的媒体接入控制层MAC根据该第一时间,关联混合自动重传请求HARQ模块,并将该第一信息存入该HARQ模块,以便该终端设备的PHY层传输该第一信息。
比如,终端设备的PHY层在收到第一指示后,就通知终端设备的MAC层进行组包过程。终端设备的MAC链层的复用和组装(Multiplexing and assembly)模块层生成第一时间(子帧或时刻)的第一信息,比如包含PH和/或BS的数据包,并将数据包发送至HARQ模块,并通知该终端设备的PHY层进行数据传输。终端设备的PHY层根据数据包完成两级调度模式下的数据传输。
在本发明实例中,终端设备的MAC层在接收到第二上行授权时,可以将将生成的数据包递交给HARQ模块;或者,也可以不考虑是否接收到第二上行授权,直接将数据包递交给HARQ模块。其中,在不考虑是否接收到第二上行授权的情况中,终端设备在处理HARQ进程时可以以一个参考 的传输时间间隔(Transmission Time Interval,TTI)进行处理。或者,可选地,终端设备的MAC层在未接收到第二上行授权时,可以将生成好的数据包回退至无线链路控制(Radio Link Control,RLC)层,以便于等待下一次任意一个服务小区的上行资源,对此不作限定。
可选地,在本发明实施例中,在引入两级调度模式后,终端设备的PHY层可以计算信道状态信息(Channel State Information,CSI)。
具体而言,终端设备在接收到第二上行授权后,可以根据第二上行授权指示的子帧作为计算CSI的子帧,或者,也可以选择距离第二上行授权指示的子帧最近的一个可用的下行子帧,作为计算CSI的子帧,或者,也可以选择其他合理的参考子帧,对此不作限定。
因此,本发明实施例的用于传输数据的方法,终端设备的PHY层可以在两级调度模式下计算出CSI。进一步地,终端设备可以选择子帧计算出出CSI。
可选地,在本发明实施例中,终端设备在接收到第二上行授权后进行数据传输时,如果出现功率受限,则终端设备可以进行功率回退,或者,终端设备也可以放弃传输两级调度的上行传输,对此不作限定。
因此,本发明实施例的用于传输数据的方法,终端设备的MAC层可以在两级调度模式下完成组包过程,从而实现数据传输。
在本发明所有实施例中,终端设备可以根据第一指示和第二指示共同确定发送数据的子帧位置,或者,可选地,终端设备也可以只根据第二指示指示发送数据的子帧位置确定发送数据的子帧位置。具体地,第一指示可以指示新数据辨识(New Data Indication,NDI),HARQ process ID,冗余版本(Redundancy Version,RV),时频资源块的大小/上行资源的大小等,用于终端设备进行与时间无关的处理。比如,终端设备可以生成一个或多个MAC SDU或MAC PDU,其中,第二指示用于指示终端发送数据的子帧位置,则终端设备根据第一指示和第二指示进行该MAC PDU的数据传输。
上文详细描述了根据本发明实施例的用于数据传输的方法,下面将描述根据本发明实施例的终端设备。
图5示出了根据本发明实施例的终端设备500的示意性框图。如图5所示,该终端设备500包括:
获取模块510,用于获取第一指示;
处理模块520,用于在预定的第一时间区域内,监听物理信道以获取第二指示;
其中,该获取模块510获取的该第一指示和该处理模块520获取的该第二指示用于终端设备确定进行数据传输的资源。
在本发明实施例中,终端设备500通过获取第一指示,并在预定的第一时间区域内监听物理信道以获取第二指示,其中,该第一指示和该第二指示用于终端设备确定进行数据传输的资源,能够保证终端设备获取到第二指示,从而在两级调度模式下完成数据传输。
可选地,作为一个实施例,该处理模块520用于:
若在该预定的第一时间区域内中获取到该第二指示,停止监听该物理信道。
可选地,该第一指示中包括该预定的第一时间区域的范围的信息。
可选地,作为一个实施例,该终端设备500还包括:
传输模块,用于若获取到该第二指示,则根据该第一指示和该第二指示在该资源上进行该数据传输。
可选地,作为一个实施例,该处理模块520具体用于:
启动或重启第一定时器,其中,该第一定时器的时长为该预定的第一时间区域的时长;
在该第一定时器的运行期间,监听该物理信道以获取该第二指示。
可选地,作为一个实施例,该处理模块520还用于:
在获取到该第二指示时或之后,若该第一定时器未超时和/或未停止,则停止该第一定时器。
可选地,作为一个实施例,该处理模块520具体用于:
在获取该第一指示时或之后,启动或重启第一定时器。
可选地,作为一个实施例,该处理模块520具体用于:
在该第一定时器运行期间,若未获取到该第二指示,则启动第二定时器,该第二定时器用于等待重传上行资源。
可选地,作为一个实施例,该处理模块520还用于:
在接收到该第一指示时,启动第三定时器;
在该第三定时器运行期间,停止监听该物理信道;
在该第三定时器超时和/或停止后,启动或重启该第一定时器。
可选地,在一些可能的实现方式中,该第一定时器的时长是该网络设备通过该第一指示或无线资源控制RRC信令指示的。
可选地,在一些可能的实现方式中,该第一定时器包括重传定时器,活动定时器,持续定时器,新引入的定时器中的任一种。
可选地,作为一个实施例,该处理模块520还用于:
在该获取该第一指示时,若第四定时器处于运行期间,在该预定的第一时间区域与该第四定时器的运行时间所确定的交集时间段内,监听该物理信道以获取该第二指示。
或者,在该获取该第二指示之前,若第四定时器处于运行期间,则不停止该第四定时器,该第四定时器在该预定的第一时间区域内;
在该第四定时器的运行期间,监听该物理信道以获取该第二指示。
可选地,作为一个实施例,该处理模块520具体用于:
在获取到该第二指示时或之后,若该第四定时器未超时和/或未停止,则停止该第四定时器。
可选地,在一些可能的实现方式中,该第四定时器包括重传定时器,活动定时器,持续定时器,新引入的定时器中的任一种。
根据本发明实施例的终端设备500可执行根据本发明实施例的用于传输数据的方法200,并且该终端设备,500中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的终端设备500,通过获取第一指示,并在预定的第一时间区域内监听物理信道以获取第二指示,其中,该第一指示和该第二指示用于终端设备确定进行数据传输的资源,能够保证终端设备获取到第二指示,从而在两级调度模式下完成数据传输。
应注意,本发明实施例中,获取模块510可以由收发信机实现,处理模块520可以由处理器实现。如图6所示,终端设备600可以包括处理器610、收发信机620和存储器630。其中,收发信机620可以包括接收器621和发送器622,存储器630可以用于存储处理器610执行的代码等。终端设备600中的各个组件通过总线系统640耦合在一起,其中总线系统640除包括数据总线之外,还包括电源总线、控制总线和状态信号总线等。其中,收发信机620用于:
获取第一指示;
其中,处理器610具体用于:
在预定的第一时间区域内,监听物理信道以获取第二指示;
其中,该第一指示和该第二指示用于终端设备确定进行数据传输的资源。
可选地,作为一个实施例,该处理器610具体用于:
若在该预定的第一时间区域内获取到该第二指示,停止监听该物理信道。
可选地,作为一个实施例,该处理器610具体用于:
若获取到该第二指示,则根据该第一指示和该第二指示在该资源上进行该数据传输。
可选地,该第一指示中包括该预定的第一时间区域的范围的信息。
可选地,作为一个实施例,该处理器610具体用于:
启动或重启第一定时器,其中,该第一定时器的时长为该预定的第一时间区域的时长;
可选地,作为一个实施例,该处理器610具体用于:
在该第一定时器的运行期间,监听该物理信道以获取该第二指示。
可选地,作为一个实施例,该处理器610具体用于:
在获取到该第二指示时或之后,若该第一定时器未超时和/或未停止,则停止该第一定时器。
可选地,作为一个实施例,该处理器610具体用于:
在获取该第一指示时或之后,启动或重启第一定时器。
可选地,作为一个实施例,该处理器610具体用于:
在该第一定时器超时和/或停止之后,若未获取到该第二指示,则启动第二定时器,该第二定时器用于等待重传的上行资源。
可选地,作为一个实施例,该处理器610具体用于:
在接收到该第一指示时,启动第三定时器;
在该第三定时器运行期间,不监听该物理信道;
在该第三定时器超时时,启动或重启该第一定时器。
可选地,该第一定时器的时长是该网络设备通过该第一指示或无线资源控制RRC信令指示的。
可选地,该第一定时器包括重传定时器,活动定时器,持续定时器,新 引入的定时器中的任一种。
可选地,作为一个实施例,该处理器610具体用于:
该终端设备在预定的第一时间区域内,监听物理信道以获取第二指示,包括:
该终端设备在该预定的第一时间区域与该第四定时器的运行时间所确定的交集时间段内,监听该物理信道以获取该第二指示。
或,在该获取该第二指示之前,若第四定时器处于运行期间,则不停止该第四定时器,该第四定时器在该预定的第一时间区域内;
在该第四定时器的运行期间,监听该物理信道以获取该第二指示。
可选地,作为一个实施例,该处理器610具体用于:
在获取到该第二指示时或之后,若该第四定时器未超时和/或未停止,则停止该第四定时器。
可选地,该第四定时器包括重传定时器,活动定时器,持续定时器,新引入的定时器中的任一种。
在本发明实施例中,本发明实施例的终端设备600,通过获取第一指示,并在预定的第一时间区域内监听物理信道以获取第二指示,其中,该第一指示和该第二指示用于终端设备确定进行数据传输的资源,能够保证终端设备获取到第二指示,从而在两级调度模式下完成数据传输。
图7是本发明实施例的系统芯片的一个示意性结构图。图7的系统芯片700包括输入接口701、输出接口702、至少一个处理器703、存储器704,该输入接口701、输出接口702、该处理器703以及存储器704之间通过总线705相连,该处理器703用于执行该存储器704中的代码,当该代码被执行时,该处理器703实现图2至图3中由终端设备执行的方法。
图5所示的终端设备500或图6所示的终端设备600或图7所示的系统芯片700能够实现前述图2至图3方法实施例中由终端设备所实现的各个过程,为避免重复,这里不再赘述。
可以理解,本发明实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,简称“DSP”)、专用集成电路(Application Specific Integrated Circuit,简称“ASIC”)、现成可 编程门阵列(Field Programmable Gate Array,简称“FPGA”)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称“ROM”)、可编程只读存储器(Programmable ROM,简称“PROM”)、可擦除可编程只读存储器(Erasable PROM,简称“EPROM”)、电可擦除可编程只读存储器(Electrically EPROM,简称“EEPROM”)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称“RAM”),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称“SRAM”)、动态随机存取存储器(Dynamic RAM,简称“DRAM”)、同步动态随机存取存储器(Synchronous DRAM,简称“SDRAM”)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称“DDR SDRAM”)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称“ESDRAM”)、同步连接动态随机存取存储器(Synchlink DRAM,简称“SLDRAM”)和直接内存总线随机存取存储器(Direct Rambus RAM,简称“DR RAM”)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面描述根据本发明另一实施例提供的终端设备。图8示出了根据本发 明另一实施例的终端设备800的示意性框图。如图8所示,该终端设备800包括:
获取模块810,用于获取第一指示;
处理模块820,用于生成和/或获取第一时间的第一信息,该第一信息是网络设备调度该终端的参考信息;
该获取模块810,还用于获取第二指示;
传输模块830,用于根据获取模块810获取的该第一指示和该第二指示,以及该处理模块820得到的该第一信息进行数据传输;
其中,该第一指示和该第二指示用于该终端确定进行数据传输的资源。
在本发明实施例中,终端设备800通过获取第一指示,然后生成第一时间的第一信息,或者直接获取第一时间的第一信息,其中,该第一信息是网络设备调度终端设备的参考信息,然后获取第二指示,并根据第一指示,第二指示和第一信息进行数据传输,能够生成两级调度模式下的传输块,从而进行数据传输。
在一些可能的实现方式中,该第一指示包括第二时间指示信息,该第二指示包括第三时间指示信息;
其中,该处理模块820具体用于:
根据该第二时间指示信息和该第三时间指示信息,确定用于传输数据的时域位置,并基于该第一信息进行数据传输。
可选地,作为一个实施例,该处理模块820具体用于:
该终端设备的媒体接入控制层MAC根据该第一时间,确定该终端设备的缓冲区状态BS,该第一信息包括该终端设备的BS。
可选地,作为一个实施例,该处理模块820具体用于:
该终端设备的物理PHY层根据该第一时间,确定每一个激活的服务小区的功率余量PH,并将该终端设备的PH通知给该终端设备的MAC层,该第一信息包括该终端设备的PH。
可选地,作为一个实施例,该处理模块820具体用于:
该终端设备的媒体接入控制层MAC根据该第一时间,关联混合自动重传请求HARQ模块,并将该第一信息存入该HARQ模块,以便该终端设备的PHY层传输该第一信息。
可选地,作为一个实施例,该处理模块820具体用于:
该终端设备触发该第一信息的上报。
可选地,作为一个实施例,该处理模块820具体用于:
若该终端设备的MAC层未接收到该第二指示,则取消所有触发的该第一信息的上报。
根据本发明实施例的终端设备800可执行根据本发明实施例的用于传输数据的方法400,并且该终端设备,800中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的终端设备800,通过获取第一指示,然后生成第一时间的第一信息,或者直接获取第一时间的第一信息,其中,该第一信息是网络设备调度终端设备的参考信息,然后获取第二指示,并根据第一指示,第二指示和第一信息进行数据传输,能够生成两级调度模式下的传输块,从而进行数据传输。
应注意,本发明实施例中,获取模块810和传输模块830可以由收发信机实现,处理模块820可以由处理器实现。如图9所示,终端设备900可以包括处理器910、收发信机920和存储器930。其中,收发信机920可以包括接收器921和发送器922,存储器930可以用于存储处理器910执行的代码等。终端设备900中的各个组件通过总线系统940耦合在一起,其中总线系统940除包括数据总线之外,还包括电源总线、控制总线和状态信号总线等。其中,收发信机920用于:
获取第一指示;
处理器910,用于生成和/或获取第一时间的第一信息,该第一信息是网络设备调度该终端的参考信息;
收发信机920,还用于获取第二指示;
该收发信机920,还用于根据该第一指示和该第二指示,以及该第一信息进行数据传输。
在本发明实施例中,终端设备900通过获取第一指示,然后生成第一时间的第一信息,或者直接获取第一时间的第一信息,其中,该第一信息是网络设备调度终端设备的参考信息,然后获取第二指示,并根据第一指示,第二指示和第一信息进行数据传输,能够生成两级调度模式下的传输块,从而进行数据传输。
在一些可能的实现方式中,该第一指示包括第二时间指示信息,该第二 指示包括第三时间指示信息;
其中,该处理器910具体用于:
根据该第二时间指示信息和该第三时间指示信息,确定用于传输数据的时域位置,并基于该第一信息进行数据传输。
可选地,作为一个实施例,该处理器910具体用于:
该终端设备的媒体接入控制层MAC根据该第一时间,确定该终端设备的缓冲区状态BS,该第一信息包括该终端设备的BS。
可选地,作为一个实施例,该处理器910具体用于:
该终端设备的物理PHY层根据该第一时间,确定每一个激活的服务小区的功率余量PH,并将该终端设备的PH通知给该终端设备的MAC层,该第一信息包括该终端设备的PH。
可选地,作为一个实施例,该处理器910具体用于:
该终端设备的媒体接入控制层MAC根据该第一时间,关联混合自动重传请求HARQ模块,并将该第一信息存入该HARQ模块,以便该终端设备的PHY层传输该第一信息。
可选地,作为一个实施例,该处理器910具体用于:
该终端设备触发该第一信息的上报。
可选地,作为一个实施例,该处理器910具体用于:
若该终端设备的MAC层未接收到该第二指示,则取消所有触发的该第一信息的上报。
在本发明实施例中,终端设备900通过获取第一指示,然后生成第一时间的第一信息,或者直接获取第一时间的第一信息,其中,该第一信息是网络设备调度终端设备的参考信息,然后获取第二指示,并根据第一指示,第二指示和第一信息进行数据传输,能够生成两级调度模式下的传输块,从而进行数据传输。
图10是本发明另一实施例的系统芯片的一个示意性结构图。图10的系统芯片1000包括输入接口1001、输出接口1002、至少一个处理器1003、存储器1004,该输入接口1001、输出接口1002、该处理器1003以及存储器1004之间通过总线1005相连,该处理器1003用于执行该存储器1004中的代码,当该代码被执行时,该处理器1003实现图4中由终端设备执行的方法。
图8所示的终端设备800或图9所示的终端设备900或图10所示的系统芯片1000能够实现前述图4方法实施例中由终端设备所实现的各个过程,为避免重复,这里不再赘述。
可以理解,本发明实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,简称“DSP”)、专用集成电路(Application Specific Integrated Circuit,简称“ASIC”)、现成可编程门阵列(Field Programmable Gate Array,简称“FPGA”)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称“ROM”)、可编程只读存储器(Programmable ROM,简称“PROM”)、可擦除可编程只读存储器(Erasable PROM,简称“EPROM”)、电可擦除可编程只读存储器(Electrically EPROM,简称“EEPROM”)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称“RAM”),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称“SRAM”)、动态随机存取存储器(Dynamic RAM,简称“DRAM”)、同步动态随机存取存储器(Synchronous DRAM,简称“SDRAM”)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称“DDR SDRAM”)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称“ESDRAM”)、同步连接动态随机存取存储器(Synchlink DRAM,简称“SLDRAM”)和直接内存总线随机存取存储器(Direct Rambus  RAM,简称“DR RAM”)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者 全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上该,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (26)

  1. 一种用于传输数据的方法,其特征在于,包括:
    终端设备获取第一指示;
    所述终端设备在预定的第一时间区域内,监听物理信道以获取第二指示;
    其中,所述第一指示和所述第二指示用于所述终端设备确定进行数据传输的资源。
  2. 根据权利要求1所述的方法,其特征在于,所述监听物理信道以获取第二指示,包括:
    若在所述预定的第一时间区域内所述终端设备获取到所述第二指示,所述终端设备停止监听所述物理信道。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    若所述终端设备获取到所述第二指示,所述终端设备根据所述第一指示和所述第二指示在所述资源上进行所述数据传输。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一指示中包括所述预定的第一时间区域的范围的信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述终端设备在预定的第一时间区域内,监听物理信道以获取第二指示,包括:
    所述终端设备启动或重启第一定时器,其中,所述第一定时器的时长为所述预定的第一时间区域的时长;
    所述终端设备在所述第一定时器的运行期间,监听所述物理信道以获取所述第二指示。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    若所述终端设备获取到所述第二指示,所述终端设备停止所述第一定时器。
  7. 根据权利要求5或6所述的方法,其特征在于,所述终端设备启动或重启第一定时器,包括:
    所述终端设备在获取所述第一指示时,启动或重启第一定时器。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,在所述第一定时器运行期间,若所述终端设备未获取到所述第二指示,所述方法还包括:
    所述终端设备启动第二定时器,所述第二定时器用于所述终端设备等待重传的上行资源。
  9. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    所述终端设备在获取到所述第一指示时,启动第三定时器;
    所述终端设备在所述第三定时器运行期间,停止监听所述物理信道;
    其中,所述启动或重启第一定时器,包括:
    在所述第三定时器超时时,启动或重启所述第一定时器。
  10. 根据权利要求5至9中任一项所述的方法,其特征在于,所述第一定时器包括重传定时器,活动定时器,持续定时器中的任一种。
  11. 根据权利要求1至3中任一项所述的方法,其特征在于,在所述终端设备所述获取所述第一指示时,若第四定时器处于运行期间,
    所述终端设备在预定的第一时间区域内,监听物理信道以获取第二指示,包括:
    所述终端设备在所述预定的第一时间区域与所述第四定时器的运行时间所确定的交集时间段内,监听所述物理信道以获取所述第二指示。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    若所述终端设备获取到所述第二指示,所述终端设备停止所述第四定时器。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第四定时器包括重传定时器,活动定时器,持续定时器中的任一种。
  14. 一种终端设备,其特征在于,包括:
    获取模块,用于获取第一指示;
    处理模块,用于在预定的第一时间区域内,监听物理信道以获取第二指示;
    其中,所述获取模块获取的所述第一指示和所述处理模块获取的所述第二指示用于终端设备确定进行数据传输的资源。
  15. 根据权利要求14所述的终端设备,其特征在于,所述处理模块用于:
    若在所述预定的第一时间区域内中获取到所述第二指示,停止监听所述物理信道。
  16. 根据权利要求14或15所述的终端设备,其特征在于,所述终端设 备还包括:
    传输模块,用于若获取到所述第二指示,根据所述第一指示和所述第二指示在所述资源上进行所述数据传输。
  17. 根据权利要求14至16中任一项所述的终端设备,其特征在于,所述第一指示中包括所述预定的第一时间区域的范围的信息。
  18. 根据权利要求14至17中任一项所述的终端设备,所述处理模块具体用于:
    启动或重启第一定时器,其中,所述第一定时器的时长为所述预定的第一时间区域的时长;
    在所述第一定时器的运行期间,监听所述物理信道以获取所述第二指示。
  19. 根据权利要求18所述的终端设备,其特征在于,所述处理模块还用于:
    若获取到所述第二指示,停止所述第一定时器。
  20. 根据权利要求18或19所述的终端设备,其特征在于,所述处理模块具体用于:
    在获取所述第一指示时,启动或重启第一定时器。
  21. 根据权利要求18至20中任一项所述的终端设备,其特征在于,所述处理模块具体用于:
    在所述第一定时器运行期间,若所述终端设备未获取到所述第二指示,启动第二定时器,所述第二定时器用于等待重传的上行资源。
  22. 根据权利要求18或19所述的终端设备,其特征在于,所述处理模块还用于:
    在获取到所述第一指示时,启动第三定时器;
    在所述第三定时器运行期间,停止监听所述物理信道;
    在所述第三定时器超时时,启动或重启所述第一定时器。
  23. 根据权利要求18至22中任一项所述的终端设备,其特征在于,所述第一定时器包括重传定时器,活动定时器,持续定时器中的任一种。
  24. 根据权利要求14至16中任一项所述的终端设备,其特征在于,所述处理模块用于:
    在所述获取所述第一指示时,若第四定时器处于运行期间,在所述预定 的第一时间区域与所述第四定时器的运行时间所确定的交集时间段内,监听所述物理信道以获取所述第二指示。
  25. 根据权利要求24所述的终端设备,其特征在于,所述处理模块具体用于:
    若获取到所述第二指示,停止所述第四定时器。
  26. 根据权利要求24或25所述的终端设备,其特征在于,所述第四定时器包括重传定时器,活动定时器,持续定时器中的任一种。
PCT/CN2016/100666 2016-09-28 2016-09-28 用于传输数据的方法和终端设备 WO2018058387A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/100666 WO2018058387A1 (zh) 2016-09-28 2016-09-28 用于传输数据的方法和终端设备
CN201680089586.0A CN109792680B (zh) 2016-09-28 2016-09-28 用于传输数据的方法和终端设备
EP16917141.0A EP3509357B1 (en) 2016-09-28 2016-09-28 Method for data transmission and terminal device
US16/366,478 US11026107B2 (en) 2016-09-28 2019-03-27 Data transmission method and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100666 WO2018058387A1 (zh) 2016-09-28 2016-09-28 用于传输数据的方法和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/366,478 Continuation US11026107B2 (en) 2016-09-28 2019-03-27 Data transmission method and terminal device

Publications (1)

Publication Number Publication Date
WO2018058387A1 true WO2018058387A1 (zh) 2018-04-05

Family

ID=61763602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100666 WO2018058387A1 (zh) 2016-09-28 2016-09-28 用于传输数据的方法和终端设备

Country Status (4)

Country Link
US (1) US11026107B2 (zh)
EP (1) EP3509357B1 (zh)
CN (1) CN109792680B (zh)
WO (1) WO2018058387A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2804063C2 (ru) * 2019-04-30 2023-09-26 Идак Холдингз, Инк. Способы, устройства и системы для усовершенствованной передачи данных по восходящей линии связи по сконфигурированным предоставлениям
WO2024046236A1 (zh) * 2022-08-27 2024-03-07 华为技术有限公司 一种数据传输方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015009779B4 (de) * 2015-07-27 2021-08-12 Apple Inc. Leistungsoptimierung für Kanalzustandsmeldungen in einem drahtlosen Kommunikationsnetz
CA3038895A1 (en) 2016-09-29 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Active time handling with 2-step granting
EP3319385A1 (en) 2016-11-04 2018-05-09 Panasonic Intellectual Property Corporation of America Improved two-stage trigger procedure
EP3665817A1 (en) * 2017-08-11 2020-06-17 Telefonaktiebolaget LM Ericsson (publ) Methods for autonomous uplink transmissions and retransmissions
CN111315002B (zh) * 2020-02-14 2023-02-28 北京紫光展锐通信技术有限公司 节能指示及节能的方法及基站、设备和存储介质
US11622414B2 (en) * 2020-07-17 2023-04-04 Qualcomm Incorporated Enhanced connection release techniques for wireless communications systems
US11765734B2 (en) * 2020-08-06 2023-09-19 Qualcomm Incorporated Two-stage uplink grant scheduling with discontinuous reception (DRX)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101489251A (zh) * 2008-01-16 2009-07-22 大唐移动通信设备有限公司 一种接收方法及装置
CN103986566A (zh) * 2014-05-29 2014-08-13 上海华为技术有限公司 一种上行数据的发送方法、基站、用户设备及通信网络
WO2016037386A1 (zh) * 2014-09-22 2016-03-17 华为技术有限公司 通信方法、基站和终端
WO2016138632A1 (zh) * 2015-03-03 2016-09-09 华为技术有限公司 用于上行数据传输的方法和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103875298B (zh) * 2011-10-04 2018-04-20 瑞典爱立信有限公司 通信基站的调度
CN103298130B (zh) * 2012-02-27 2016-06-08 鼎桥通信技术有限公司 上行数据传输方法、终端及通信系统
KR102127320B1 (ko) * 2013-09-27 2020-06-26 주식회사 아이티엘 상향링크 스케줄링 및 harq 타이밍 방법 및 장치
WO2016120829A1 (en) * 2015-01-29 2016-08-04 Telefonaktiebolaget Lm Ericsson (Publ) System and method for handling uplink transmissions
CN105611641B (zh) * 2015-12-29 2019-04-23 北京邮电大学 一种基于非授权频谱的多用户上行调度方法
US10320531B2 (en) * 2016-08-05 2019-06-11 Htc Corporation Device and method of handling a hybrid automatic repeat request round-trip time timer in a discontinuous reception
CA3033386A1 (en) * 2016-08-07 2018-02-15 Comcast Cable Communications, Llc Grant validation in a wireless device and wireless network
US10218406B2 (en) 2016-09-02 2019-02-26 Qualcomm Incorporated Narrowband communication for different device capabilities in unlicensed spectrum
US10321398B2 (en) * 2016-09-10 2019-06-11 Ofinno, Llc Deactivation timer management and cross carrier scheduling in a wireless device and wireless network
JP2019204983A (ja) * 2016-09-21 2019-11-28 シャープ株式会社 端末装置、通信方法、および、集積回路
EP3565359A1 (en) * 2016-09-24 2019-11-06 Ofinno, LLC Power headroom reporting with two-stage uplink dci grants
US10455570B2 (en) * 2016-09-26 2019-10-22 Ofinno, Llc Selection of DCI based upon TTI

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101489251A (zh) * 2008-01-16 2009-07-22 大唐移动通信设备有限公司 一种接收方法及装置
CN103986566A (zh) * 2014-05-29 2014-08-13 上海华为技术有限公司 一种上行数据的发送方法、基站、用户设备及通信网络
WO2016037386A1 (zh) * 2014-09-22 2016-03-17 华为技术有限公司 通信方法、基站和终端
WO2016138632A1 (zh) * 2015-03-03 2016-09-09 华为技术有限公司 用于上行数据传输的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3509357A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2804063C2 (ru) * 2019-04-30 2023-09-26 Идак Холдингз, Инк. Способы, устройства и системы для усовершенствованной передачи данных по восходящей линии связи по сконфигурированным предоставлениям
WO2024046236A1 (zh) * 2022-08-27 2024-03-07 华为技术有限公司 一种数据传输方法及装置

Also Published As

Publication number Publication date
EP3509357A1 (en) 2019-07-10
EP3509357B1 (en) 2020-07-29
CN109792680A (zh) 2019-05-21
EP3509357A4 (en) 2019-07-24
CN109792680B (zh) 2021-07-09
US11026107B2 (en) 2021-06-01
US20190223035A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
WO2018058387A1 (zh) 用于传输数据的方法和终端设备
US10485052B2 (en) DRX implementation method, DRX configuration method, and related device
CN108377177B (zh) 无线通信系统中处置不连续接收操作的方法和设备
WO2019137378A1 (zh) 通信方法、通信设备和网络设备
US10904873B2 (en) Terminal apparatus, communication method, and integrated circuit
CN109981237B (zh) 基站、移动台及其方法
US10594447B2 (en) Data transmission method, terminal, and ran device
WO2018137539A1 (zh) 传输数据的方法、终端设备和网络设备
CN109792792B (zh) 在drx配置或者重新配置之后的pdcch监测
JP6096775B2 (ja) 不連続受信(drx)と共に構成されるユーザ機器のアクティブ時間ステータスに基づくアップリンク制御シグナリングを送信すべきかの決定
US20190260518A1 (en) Information transmission method, network device, and terminal device
WO2019140663A1 (zh) 基于定时器切换带宽部分的方法、终端设备和网络设备
WO2021217351A1 (zh) 一种信道监听方法、电子设备及存储介质
EP3214790B1 (en) Device and method of handling a hybrid automatic repeat request process in a licensed assisted access secondary cell
WO2019127138A1 (zh) 管理定时器的方法和终端设备
WO2019191954A1 (zh) 传输信息的方法和终端设备
WO2018157295A1 (zh) 混合自动重传请求反馈方法和设备
CN114642046A (zh) 用于媒体接入控制(mac)控制元素(ce)时延控制的通信方法和装置
CN113574952A (zh) 无线通信的方法、终端设备和网络设备
EP3149875A1 (en) Drx sleep period determination
JP2020504947A (ja) 通信方法、端末装置及びネットワーク装置
WO2020227944A1 (zh) 侧行链路监测的方法和设备
WO2019127465A1 (zh) 管理定时器、传输信息的方法、终端设备和网络设备
WO2023065303A1 (zh) 一种控制方法、设备及存储介质
WO2022011588A1 (en) Methods and apparatuses for a sidelink transmission in a drx mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016917141

Country of ref document: EP

Effective date: 20190403