WO2024046129A1 - 一种仿荷叶结构的自清洁陶瓷涂料及其制备和施用方法 - Google Patents

一种仿荷叶结构的自清洁陶瓷涂料及其制备和施用方法 Download PDF

Info

Publication number
WO2024046129A1
WO2024046129A1 PCT/CN2023/113331 CN2023113331W WO2024046129A1 WO 2024046129 A1 WO2024046129 A1 WO 2024046129A1 CN 2023113331 W CN2023113331 W CN 2023113331W WO 2024046129 A1 WO2024046129 A1 WO 2024046129A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone oil
ceramic coating
self
silane
lotus leaf
Prior art date
Application number
PCT/CN2023/113331
Other languages
English (en)
French (fr)
Inventor
张亚莉
李力锋
赵杰
刘扬
于秦阳
Original Assignee
上海宜瓷龙新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海宜瓷龙新材料股份有限公司 filed Critical 上海宜瓷龙新材料股份有限公司
Publication of WO2024046129A1 publication Critical patent/WO2024046129A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/002Pretreatement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0218Pretreatment, e.g. heating the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres

Definitions

  • the invention belongs to the technical field of coatings and relates to a self-cleaning ceramic coating with a lotus leaf structure and a preparation and application method thereof.
  • Ceramic coating is a coating with Si-O-Si inorganic structure. It is a safe and environmentally friendly material with good high temperature resistance and good wear resistance. It is hydrophobic because it contains a small amount of -CH 3 groups on the surface. However, the water contact angle on the surface of the ceramic coating can only reach about 100°, and it cannot be used as a superhydrophobic self-cleaning coating.
  • the technical means to form the micron-nano secondary structure on the surface of the imitation lotus leaf include template method, laser etching method, chemical vapor deposition method, phase separation and self-assembly method, etc.
  • template method laser etching method
  • chemical vapor deposition method phase separation and self-assembly method
  • the Chinese invention patent 202010751086.7 discloses a technical solution for forming a superhydrophobic surface imitating a lotus leaf.
  • a superhydrophobic surface imitating a lotus leaf structure is formed through a template method. This technical method is far different from the traditional construction process of coatings and is not suitable for large-scale industrialization.
  • the Chinese patent application number 202210049774.8 discloses a preparation method and application of a super hydrophobic coating imitating a lotus leaf structure.
  • the imitation lotus leaf structure is formed using high-voltage electrostatic spraying.
  • the electric field force experienced by the paint particles is constant, and the electric field force acting on each paint particle is the same, so the particles cannot move in a direction and form an imitation lotus leaf structure.
  • How to use technical means that are close to the coating construction process and can be realized is the key to preparing a super-hydrophobic self-cleaning coating with a lotus leaf structure.
  • the present invention provides a self-cleaning ceramic coating with a lotus leaf structure and a preparation and construction method thereof.
  • the present invention relates to a self-cleaning ceramic coating composition used to form a lotus leaf-like structure, which includes the following components in weight percentage based on 100%:
  • Silica sol 25-27%, 1% NaOH solution: 4-5%, pigment: 10-12%, filler: 8-10%, dispersant: 1-1.2%, silane: 25-27%, isopropyl alcohol : 3-3.5%, silicone oil microcapsules: 6-8%, 25% formic acid: 0.7-1%, deionized water: balance.
  • silica sol is the main film-forming substance of the ceramic coating, and common commercially available products, such as AkzoNobel's Bindzil 2034DI, Nissan Chemical's ST-O-40, Grace HS-40 etc.
  • 1% NaOH solution is used as a color paste pH regulator to adjust the pH value of the color paste to 9-10.5.
  • the pH value will decrease during storage. When the pH value drops below 8.5 When it is close to neutral, the silica sol will gel and cause the color paste to deteriorate. Therefore, it is necessary to use an alkaline solution to adjust the pH value of the color paste to between 9 and 10 to ensure that the color paste does not deteriorate during storage.
  • Pigments give different colors to coatings. Common inorganic pigments should be used. Inorganic pigments have good temperature resistance and safety. Inorganic pigments should be used in high temperature resistant areas.
  • Fillers can reduce the cost of coatings and increase the solid content of coatings. Commonly used fillers are selected, such as mica powder, silica powder, kaolin, alumina powder, fumed silica, etc.
  • Dispersants can reduce the dispersion time of pigments and fillers, stabilize pigment dispersions, and improve pigment tinting and hiding power, such as BYK180, BYK190, BYK2010, BYK2001, etc.
  • Silane is an auxiliary film-forming substance, and methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, etc. can be used.
  • Silicone oil microcapsules are components that provide hydrophobicity to ceramic coatings. They are microcapsules with a shell-core structure. When the coating is heated, the silicone oil can gradually diffuse out of the shell structure and release slowly, extending the hydrophobicity and durability of the coating. sex.
  • 25% formic acid solution is used as a catalyst for the sol-gel reaction of ceramic coatings. After silane is hydrolyzed under acidic conditions, it undergoes a polycondensation reaction with silica sol to generate ceramic coatings.
  • silicone oil microcapsules Taking the total weight of silicone oil microcapsules as 100%, the formula of silicone oil microcapsules is as follows:
  • silicone oil is used to provide hydrophobicity to ceramic coatings.
  • Silicone oils are commonly used, such as methyl silicone oil, hydroxyl silicone oil, etc.
  • Silane consists of trifunctional silanes and difunctional silanes in a ratio of 1:1-2:1.
  • the trifunctional silane is a short-chain trifunctional silane, including methyltrimethoxysilane and methyltriethoxysilane;
  • the difunctional silane is a short-chain difunctional silane, including dimethyldimethyl Oxysilane, dimethyldiethoxysilane, etc.
  • trifunctional silane and difunctional silane need to be used in combination, which can form a porous structure with a regular three-dimensional cross-linked structure, and the diameter of the pores is larger, which is conducive to the diffusion of silicone oil molecules.
  • the cross-linked structure formed is denser and the pore size is smaller, which is not conducive to the outward diffusion of silicone oil molecules.
  • Choosing short-chain alkyl silanes can avoid premature steric hindrance in polymerization, making the shell structure more complete and regular. Long-chain alkyl silane is prone to steric hindrance, making it difficult to form a complete shell structure during polymerization. .
  • the surfactant is a cationic surfactant, which can exist stably under weakly acidic conditions.
  • surfactants with organic quaternary ammonium salt structures such as cetyl trimethyl quaternary ammonium bromide, octadecyl dimethyl benzyl quaternary ammonium chloride, benzalkonium chloride, and benzalkonium bromide. If an anionic surfactant is added to the system of the present invention, gelation will occur; if a nonionic surfactant is added, the stabilizing effect will be poor.
  • Silane can form a colorless and transparent solution when hydrolyzed under acidic conditions.
  • the preparation of silicone oil microcapsules includes the following steps: mix silicone oil, silane, and surfactant evenly, adjust the pH value to 4.0-5.0 with 25% formic acid under stirring, react for 4-6 hours, and then ultrasonic 2-3hr, silicone oil microcapsules are obtained.
  • the prepared microcapsules have a shell-core structure, in which the shell is a three-dimensional cross-linked network structure of Si-O-Si formed after the hydrolysis and polymerization of silane under acidic conditions, and the core is silicone oil emulsified by surfactant.
  • the network shell structure allows the silicone oil molecules inside to slowly diffuse outward.
  • silicone oil microcapsules can be evenly dispersed in the coating, and can also be evenly distributed in the coating after curing. During use, they act as the upper layer of silicone oil (the microcapsules are evenly distributed in the coating, and there are also silicone oil microcapsules on the upper layer) After losing its function, the silicone oil inside the coating can slowly diffuse out and continue to exert hydrophobicity, ensuring the long-term hydrophobicity of the coating. If silicone oil is directly added to ceramic coatings, because the silicone oil has low density and poor compatibility with water-based coatings, it will only float on the surface of the coating. After curing to form a film, the silicone oil will also be located on the surface of the coating. Once it loses its effect, the hydrophobicity will decrease, so it is directly The hydrophobic durability of the added silicone oil coating is not good.
  • This step adopts the method of first stirring for 4-6 hours and then ultrasonic for 2 hours.
  • the reaction under stirring is mainly to generate a shell structure.
  • the silicone oil and surfactant are initially combined. Under ultrasound, the silicone oil and surfactant are further emulsified to form a uniform and stable structure. Silicone oil microcapsule dispersion.
  • the coating of the present invention is applied to a substrate with a micron-nano secondary roughness structure on the surface.
  • a micron-scale convex rough surface with Ra of 2-5 ⁇ m is first formed on the surface of the substrate, and then a nano-scale rough structure with Ra of 200-400 nm is formed thereon.
  • the present invention relates to a method for preparing a self-cleaning ceramic coating composition for forming a lotus leaf-like structure.
  • the method includes the following steps:
  • step S2 after grinding to a fineness of 20 ⁇ m or less, test the pH value of the color paste. If it is less than 9.0, use 1% NaOH solution to adjust it to between 9.0 and 10.0.
  • the invention relates to a construction method for forming a self-cleaning ceramic coating composition with a lotus leaf-like structure; it includes the following steps:
  • Pre-treatment The metal substrate is shot blasted with 60-mesh steel shot.
  • the surface of the substrate forms a roughness of Ra of 3-8 ⁇ m, which is structured into a micron-level convex rough surface, and then is sandblasted with 400-mesh corundum.
  • a nano-scale rough structure with Ra of 200-400nm is formed;
  • Substrate preheating Clean the pre-treated substrate and preheat it to 50-60°C;
  • Spraying Carry out spraying when the substrate temperature is 50-60°C;
  • the metal base material is aluminum alloy, galvanized steel plate, nickel plated steel plate and other metal plates.
  • a micron-nano secondary structure similar to the surface of a lotus leaf can be formed on the surface of the substrate.
  • the control of substrate preheating temperature in the above steps A2 and A3 is crucial. That is to say, the substrate needs to be preheated to 50-60°C when applying the coating of the present invention.
  • the fluidity slows down and is initially cured before leveling, which is conducive to maintaining the micron-nano secondary rough structure formed on the substrate surface; if the substrate is not preheated, it will When sprayed, the paint will tend to level and fill the recessed parts of the rough surface, creating nano-scale rough structures. The structure will disappear and micron-nano secondary structures cannot be formed; if the preheating temperature of the substrate is too high, the coating will suffer from defects such as drying out and loss of gloss.
  • step A4 direct curing at high temperature is used after spraying in order to quickly complete the curing of the coating and form a coating with a micron-nano secondary structure.
  • the thickness of the coating should not be too thick, otherwise the curing speed will be slow and the nanoscale structure on the surface will disappear; if the coating is too thin, defects such as drying out and loss of gloss will also occur.
  • the coating thickness after curing is 20-30 ⁇ m.
  • the present invention has the following beneficial effects:
  • silicone oil microcapsules with a shell-core structure were produced, in which the shell is a three-dimensional cross-linked porous shape of Si-O-Si formed by the hydrolysis polymerization of silane.
  • the core is silicone oil emulsified by surfactant. This structure makes silicone oil have good compatibility with water-based ceramic coatings, can be evenly dispersed in the entire ceramic coating, and can also be evenly distributed in the entire coating after curing.
  • the silicone oil can slowly diffuse out of the shell structure, continuously exerting the hydrophobicity of the coating, and playing a self-cleaning role; the silicone oil microcapsules with a shell-core structure can also increase the amount of silicone oil added, improving the self-cleaning properties of the coating. Clean durability.
  • the water contact angle of the ceramic coating is greater than 150°, and it has excellent superhydrophobicity and Self-cleaning and durable.
  • Figure 1 is a schematic diagram of the network structure of silicone oil microcapsules
  • Figure 2 is a schematic diagram of the micron-nano structure of the coating.
  • Examples 1 to 3 provide a self-cleaning ceramic coating composition for forming a lotus leaf-like structure; the composition of the composition is shown in Table 1.
  • Preparation of color paste Mix the silica sol, pigment, filler, dispersant and deionized water evenly, adjust the pH value to 10 with 1% NaOH solution, grind it to a fineness of less than 20 ⁇ m, and then test the pH value of the color paste. If it is less than 9.0, use 1% NaOH solution to adjust to 10.0 and set aside.
  • Ceramic coating preparation Mix silane, isopropyl alcohol, silicone oil microcapsules, and 25% formic acid evenly, measure the pH value of the solution and record it, then add the color paste prepared in step (1), mix evenly, and place on the roller stand After 4-8 hours of reaction, the ceramic coating is obtained, and its pH value is measured and recorded.
  • the base material is galvanized steel plate, which is first shot blasted with 60-mesh steel shot.
  • the surface of the base material has a roughness of Ra of 3-8 ⁇ m, and is constructed into a micron-level convex rough surface, and then shot with 400 mesh.
  • the purpose corundum is sandblasted to form a nanoscale rough structure with Ra of 300nm on the micron-scale convex rough surface.
  • Substrate preheating Wash the pre-treated substrate with tap water, put it into the oven, and preheat the substrate to 55°C;
  • Figure 2 is a schematic diagram of the micro-nano structure of the coating after curing. It can be seen from Figure 2 that the coating formed a primary rough structure of 2-5 ⁇ m, and a secondary rough structure of 100-150nm was formed on the surface of the micron structure. It is a micron-nano secondary roughness structure similar to a lotus leaf.
  • Example 1 The coating prepared in Example 1 was subjected to the above construction, and adjustments were made: the spraying was carried out at normal temperature. As a result, it was found that the coating appeared to sag.
  • Example 1 The coating prepared in Example 1 was subjected to the above construction, and adjustments were made: the spraying was carried out at 70°C. As a result, it was found that the coating had film defects such as dryness, rough surface, and loss of gloss.
  • Example 1 The coating prepared in Example 1 was subjected to the above construction, and the thickness of the sprayed coating was adjusted to 50 ⁇ m. It was found that the surface nanoscale roughness disappeared, and the contact angle and rolling angle became smaller.
  • Example 1 The coating prepared in Example 1 was subjected to the above construction and the curing temperature was adjusted to 150°C. It was found that it needed to be baked for 40 minutes to achieve the same hardness.
  • Example 1 The coating prepared in Example 1 is subjected to the above-mentioned construction, and adjustments are made: during pretreatment, the surface of the base material forms a roughness of Ra of 3 ⁇ m, and it is sufficient to construct a micron-scale convex rough surface. The performance test results found that the contact angle and rolling angle became smaller.
  • Example 1 The coating prepared in Example 1 was subjected to the above construction, and adjustments were made: during pretreatment, the surface of the substrate was directly sandblasted with 400-mesh corundum to form a nanoscale rough structure with Ra of 300 nm. The performance test results found that the contact angle and rolling angle became smaller.
  • Comparative Examples 1 to 6 provide ceramic coating compositions; the composition of the compositions is shown in Table 1.
  • Comparative Example 7 provides a ceramic coating composition; the composition of the composition is shown in Table 1.
  • the construction method of the ceramic coating is the same as in Example 1.
  • the preparation steps of the ceramic coating are as follows:
  • Preparation of color paste Mix the silica sol, pigment, filler, dispersant and deionized water evenly, adjust the pH value to 10 with 1% NaOH solution, grind it to a fineness of less than 20 ⁇ m, and then test the pH value of the color paste. If it is less than 9.0, use 1% NaOH solution to adjust to 10.0 and set aside.
  • Ceramic coating preparation Mix silane 1, hydroxyl silicone oil, surfactant cetyltrimethylammonium bromide, isopropyl alcohol, and 25% formic acid evenly, measure the pH value of the solution and record it, and then add step ( 1) Mix the prepared color paste evenly and react on the roller frame for 4-8 hours to obtain the ceramic coating. Measure and record its pH value.
  • the base material is a galvanized steel plate.
  • shot blasting is performed with 60-mesh steel shot.
  • the surface of the base material is formed with a roughness of Ra of 3 ⁇ m and is constructed into a micron-level convex rough surface.
  • 400-mesh corundum is used.
  • Sandblasting is performed to form a nanoscale rough structure with Ra of 300nm on the micron-scale convex rough surface.
  • Substrate preheating Wash the pre-treated substrate with tap water, put it into the oven, and preheat the substrate to 55°C;
  • Silica sol 1 is AkzoNobel’s Bindzil 2034DI;
  • the pigment is titanium dioxide
  • Silane 1 is methyltrimethoxysilane and dimethyldiethoxysilane with a mass ratio of 1:1;
  • Silicone oil microcapsule 1 Mix hydroxyl silicone oil, silane 1, and cetyltrimethylammonium bromide evenly, adjust the pH value to 4.5 with 25% formic acid under stirring, react for 5 hours, and then ultrasonic for 3 hours to obtain silicone oil Microcapsule 1; including 45% silicone oil, 48% silane 1, 4% surfactant, and the balance of 25% formic acid solution;
  • Figure 1 is a schematic diagram of the network structure of silicone oil microcapsules 1. It can be seen from Figure 1 that silicone oil microcapsules have a shell-core structure. The shell has a relatively uniform and regular network structure, and the mesh diameter is approximately 100-300nm. , during the heating process, the internal silicone oil molecules can be gradually released from the gaps, continuously providing non-stickiness to the coating.
  • Silicone oil microcapsule 2 Mix hydroxyl silicone oil, silane 2 (dimethyldimethoxysilane and dimethyldiethoxysilane with a mass ratio of 1:1), and cetyltrimethylammonium bromide evenly. , adjust the pH value to 4.5 with 25% formic acid under stirring, react for 5 hours, and then ultrasonic for 3 hours to obtain silicone oil microcapsules 2; including 45% silicone oil, 248% silane, 4% surfactant, and 25% formic acid solution. margin;
  • Silicone oil microcapsule 3 Mix hydroxyl silicone oil, silane 3 (methyltrimethoxysilane and methyltriethoxysilane with a mass ratio of 1:1), and cetyltrimethylammonium bromide until evenly stirred. The pH value was adjusted to 4.5 with 25% formic acid, and after 5 hours of reaction, it was ultrasonicated for 3 hours to obtain silicone oil microcapsules 3; among them, silicone oil 45%, silane 3 48%, Surfactant 4%, balance of 25% formic acid solution;
  • Silicone oil microcapsule 4 Mix hydroxyl silicone oil, silane 4 (cetyltrimethoxysilane and dimethyldiethoxysilane with a mass ratio of 1:1), and cetyltrimethylammonium bromide evenly. , adjust the pH value to 4.5 with 25% formic acid under stirring, react for 5 hours, and then ultrasonic for 3 hours to obtain silicone oil microcapsules 4; including 45% silicone oil, 148% silane, 4% surfactant, and 25% formic acid solution margin.
  • Silicone oil microcapsule 5 Dissolve 0.25 grams of sodium dodecyl sulfonate and 0.75 grams of alkylphenol polyoxyethylene ether in 100 grams of deionized water, then add 10 grams of dimethyl silicone oil, 10 grams of TEOS, 1.5 grams of ten The oil phase mixture composed of octalkyltrimethoxysilane was pre-emulsified and stirred in an ice-water bath environment for 15 minutes, and then ultrasonically finely emulsified using a cell crusher for 20 minutes to obtain a fine emulsion. Adjust the pH value of the mini-emulsion to 7.5 and stir at high speed for 24 hours at room temperature to obtain milky white silicone oil microcapsules 5;
  • Silicone oil microcapsules 6 Mix hydroxyl silicone oil, silane 1, and cetyltrimethylammonium bromide evenly, adjust the pH value to 4.5 with 25% formic acid under stirring, stir and react for 8 hours, and obtain silicone oil microcapsules 6; Among them, 45% silicone oil, 1 48% silane, 4% surfactant, and the balance of 25% formic acid solution;
  • Silicone oil microcapsule 7 Mix hydroxyl silicone oil, silane 1, and cetyltrimethylammonium bromide evenly, adjust the pH value to 4.5 with 25% formic acid under stirring, and ultrasonic for 8 hours to obtain silicone oil microcapsule 7; wherein , silicone oil 45%, silane 1 48%, surfactant 4%, 25% formic acid solution balance.
  • the coatings prepared in the above examples and comparative examples were subjected to main performance tests.
  • the test items and methods are shown in Table 2.
  • the test results are shown in Table 3-5:

Abstract

一种仿荷叶结构的自清洁陶瓷涂料及其制备和施用方法;以总重100%计,包括:硅溶胶:25-27%,1%NaOH溶液:4-5%,颜料:10-12%,填料:8-10%,分散剂:1-1.2%,硅烷:25-27%,异丙醇:3-3.5%,硅油微胶囊:6-8%,25%甲酸:0.7-1%,去离子水:余量。通过在陶瓷涂层表面形成微米-纳米二级粗糙度结构和制备出具有壳-芯结构的硅油微胶囊,使得陶瓷涂层的水接触角大于150°,滚动角大于140°,具有优异的超疏水性和自清洁性,且持久性好。

Description

一种仿荷叶结构的自清洁陶瓷涂料及其制备和施用方法 技术领域
本发明属于涂料技术领域,涉及一种仿荷叶结构的自清洁陶瓷涂料及其制备和施用方法。
背景技术
当水滴落在荷叶上的时候,会荷叶上形成近似圆球形的水珠滚来滚去而不浸润荷叶,用电子显微镜观察的话,就会发现荷叶表面有一些微米级的微小的突起,这种微米级的突起上面,又形成一种纳米级的突起,是一种微米-纳米二级突起结构。这种结构使得水珠在滚动中吸附叶片表面的灰尘,并滚出叶面,从而达到清洁叶面的效果。这种仿荷叶的技术已经渗透到了纺织、化工等诸多行业和领域。通过仿造荷叶结构制造出各种超疏水自清洁表面,可以减少人工维护成本。
目前常用来构建超疏水表面的材料有聚四氟乙烯、氟硅烷、硬脂酸这类低表面能有机物,但是这类有机物往往面临着不少问题,如VOC排放量较高、不耐摩擦、在高温下超疏水性变弱、甚至丧失等问题,因而限制了使用场景。陶瓷涂层是一种具有Si-O-Si无机结构的涂层,是一种安全环保、耐高温性好、耐磨性好的材料,由于表面含有少量-CH3基团而具有疏水性,但是陶瓷涂层表面水接触角只能达到100°左右,无法用来作为超疏水自清洁涂层。
形成仿荷叶表面微米-纳米二级结构的技术手段有模板法、激光刻蚀法、化学气相沉积法、相分离与自组装法等等,通过对现有专利文献的检索发现,申请号为202010751086.7的中国发明专利公开了形成仿荷叶超疏水表面的技术方案,通过模板法形成仿荷叶结构的超疏水表面,这种技术手段与涂料的传统施工工艺差距较大,不适合大面积工业化生产;申请号为202210049774.8的中国专利公开了一种仿荷叶结构的超疏水涂层的制备方法及应用,采用高压静电喷涂的方法形成仿荷叶结构,但是静电喷涂中在电压固定的情况下,涂料微粒所受到的电场力是恒定的,电场力作用在每个涂料微粒上的力都是一样的,所以颗粒无法定向移动而形成仿荷叶结构。如何采用与涂料施工工艺接近的、且可以实现的技术手段是制备仿荷叶结构超疏水自清洁涂层的关键所在。
发明内容
采用与涂料施工工艺接近的方法,在陶瓷涂层表面形成仿荷叶的微米-纳米二级结构,制备自清洁超疏水涂层,且涂层自清洁性能的持久性好是需要解决的关键技术问题。本发明基于此,提供了一种仿荷叶结构的自清洁陶瓷涂料及其制备和施工方法。
本发明的目的是通过以下技术方案实现的:
<第一方面>
本发明涉及一种用于形成仿荷叶结构的自清洁陶瓷涂料组合物,以100%计,包括如下重量百分比含量的各组分:
硅溶胶:25-27%,1%NaOH溶液:4-5%,颜料:10-12%,填料:8-10%,分散剂:1-1.2%,硅烷:25-27%,异丙醇:3-3.5%,硅油微胶囊:6-8%,25%甲酸:0.7-1%,去离子水:余量。
本发明体系中,硅溶胶为陶瓷涂料主要成膜物质,普通市售产品,例如:阿克苏诺贝尔的Bindzil 2034DI、日产化学的ST-O-40,格雷斯HS-40等。
1%NaOH溶液用作色浆pH值调节剂,将色浆部分pH值调整至9-10.5,硅溶胶研磨色浆后在储存过程中会出现pH值下降的情况,当pH值下降至8.5以下接近中性时,硅溶胶会出现凝胶化而导致色浆变质,所以需要用碱性溶液将色浆pH值调整至9-10之间,以保证色浆在保存时不会发生变质。
颜料赋予涂料不同颜色,选用普通无机颜料,无机颜料耐温性好、安全性好,耐高温领域宜选用无机颜料。
填料起到降低涂料成本,增加涂料固含量等作用,选用普通常用填料,例如:云母粉、硅微粉、高岭土、氧化铝粉、气相二氧化硅等。
分散剂起到减少颜填料分散的时间,稳定颜料分散体,提高颜料着色力和遮盖力等作用,例如:BYK180、BYK190、BYK2010、BYK2001等。
硅烷为辅助成膜物质,可选用甲基三甲氧基硅烷、甲基三乙氧基硅烷、二甲基二甲氧基硅烷等。
硅油微胶囊是提供陶瓷涂层疏水性的组分,是一种壳-芯结构的微胶囊,涂层在受热过程中硅油可逐渐从壳结构中扩散出来,缓慢释放,延长涂层的疏水持久性。
25%甲酸溶液作为陶瓷涂料溶胶-凝胶反应的催化剂,硅烷在酸性条件下水解后与硅溶胶发生缩聚反应生成陶瓷涂料。
以硅油微胶囊总重为100%挤,硅油微胶囊配方如下:
硅油:43-45%,
硅烷:48-50%,
表面活性剂:4-4.5%,
25%甲酸溶液:余量。
硅油微胶囊中,硅油用于提供陶瓷涂料的疏水性,常用硅油,例如:甲基硅油、羟基硅油等。
硅烷由1:1-2:1的三官能度硅烷和二官能度硅烷组成。所述三官能度硅烷为短链三官能度硅烷,包括甲基三甲氧基硅烷、甲基三乙氧基硅烷;所述二官能度硅烷为短链二官能度硅烷,包括二甲基二甲氧基硅烷、二甲基二乙氧基硅烷等。本发明体系中,三官能度硅烷与二官能度硅烷需搭配使用,可以形成规整的三维交联结构的多孔状结构,且孔的直径较大,利于硅油分子的扩散,如果全部选用三官能度硅烷,则形成的交联结构较致密,孔径较小,不利于硅油分子向外扩散。选用短链烷基的硅烷可以避免聚合过早的出现空间位阻效应,使得壳结构更加完整也更加规整,长链烷基的硅烷由于容易产生空间位阻效应,聚合时难以形成完整的壳结构。
表面活性剂选用阳离子型表面活性剂,可以在弱酸性条件下稳定存在。例如:十六烷基三甲基季铵溴化物、十八烷基二甲基苄基季铵氯化物、苯扎氯铵、苯扎溴铵等有机季铵盐结构的表面活性剂。本发明体系中如添加阴离子表活剂会产生凝胶现象;如添加非离子表面活性剂,其稳定效果欠佳。
25%甲酸溶液为硅烷水解的催化剂,硅烷在酸性条件下水解可形成无色透明溶液。
作为一个实施方案,硅油微胶囊的制备包括如下步骤:将硅油、硅烷、表面活性剂混合均匀,在搅拌状态下用25%甲酸将pH值调整至4.0-5.0,反应4-6hr后,再超声2-3hr,得到硅油微胶囊。
制得的微胶囊是一种壳-芯结构,其中壳为硅烷在酸性条件下水解聚合后形成的Si-O-Si的三维交联网状结构,芯为表面活性剂乳化下的硅油。网状的壳结构可以使内部的硅油分子缓慢向外扩散。
由于表面活性剂的作用,使得硅油微胶囊可均匀分散在涂料中,固化后也可均匀分布在涂层中,使用过程中当上层硅油(微胶囊均匀分布在涂料中,上层也有硅油微胶囊)失去作用后,涂层内部的硅油可缓慢扩散出来继续发挥疏水性,保证了涂层长效的疏水性。陶瓷涂料中如果直接加入硅油,由于硅油密度小、与水性涂料相容性不好,仅浮在涂料表面,固化成膜后,硅油也位于涂层表层,一旦失去作用,疏水性下降,所以直接添加硅油涂层的疏水持久性不好。
该步骤采用先搅拌反应4-6小时,再超声2hr的方式,搅拌下反应以生成壳结构为主,硅油与表面活性剂进行初步结合,超声下硅油与表面活性剂进一步乳化,形成均一稳定的硅油微胶囊分散液。
作为一个实施方案,本发明的涂料是施用于表面具有微米-纳米二级粗糙度结构的基材上。该基材表面先形成Ra为2-5μm的微米级凸起粗糙表面,再在其上形成Ra为200-400nm的纳米级粗糙结构。
<第二方面>
本发明涉及一种用于形成仿荷叶结构的自清洁陶瓷涂料组合物的制备方法,所述方法包括如下步骤:
S1、色浆制备:将硅溶胶、颜料、填料、分散剂、去离子水混合均匀,用1%NaOH溶液调节pH值至9.5-10.5,研磨至细度20μm以下;
S2、陶瓷涂料制备:将硅烷、异丙醇、硅油微胶囊、25%甲酸混合均匀;然后加入步骤S1制备好的色浆混合均匀,反应4-8小时后得到陶瓷涂料。
作为一个实施方案,步骤S2中,研磨至细度20μm以下后,再测试色浆的pH值,若小于9.0则用1%NaOH溶液调节至9.0-10.0之间。
<第三方面>
本发明涉及一种用于形成仿荷叶结构的自清洁陶瓷涂料组合物的施工方法;包括如下步骤:
A1、前处理:金属基材用60目钢丸进行抛丸处理,基材表面形成Ra为3-8μm的粗糙度,构造成微米级凸起粗糙表面,再用400目刚玉进行喷砂处理,在微米级凸起粗糙表面上,形成Ra为200-400nm的纳米级粗糙结构;
A2、基材预热:前处理后的基材清洗干净,预热至50-60℃;
A3、喷涂:基材温度在50-60℃情况下,进行喷涂施工;
A4、固化:180-230℃下烘烤15-20分钟,完成固化。
步骤A1中,金属基材选用铝合金、镀锌钢板、镀镍钢板等金属板材。经过步骤A1的两道前处理工艺,基材表面可形成类似荷叶表面的微米-纳米二级结构。
上述步骤A2、A3基材预热温度的控制至关重要。也就是说,本发明的涂料施用时需将基材预热至50-60℃。当涂料接触预热的基材表面时,流动性变慢,来不及流平就被初步固化,有利于保持基材表面形成的微米-纳米二级粗糙结构;如果基材不预热,在常温下喷涂,涂料会倾向于发生流平,填充到粗糙表面凹陷的部分,纳米级的粗糙结 构会消失,无法形成微米-纳米二级结构;如果基材预热温度太高,则涂层会出现发干、失光等缺陷。
步骤A4中喷涂后采用高温下直接固化,是为了让涂料迅速完成固化,形成微米-纳米二级结构的涂层。涂层的厚度不可太厚,否则固化速度慢,表面的纳米级结构会消失;涂层太薄也会出现发干、失光等缺陷。
作为一个实施方案,步骤A4中,固化后涂层厚度为20-30μm。
与现有技术相比,本发明具有以下有益效果:
(1)采用不同粒径的钢丸和刚玉砂,通过抛丸和喷砂两次前处理过程,在基材表面构造出类似荷叶的微米-纳米二级粗糙度结构,通过控制基材预热温度、固化温度和陶瓷涂层的厚度形成了仿荷叶结构的陶瓷涂层;本发明提供的施工工艺与方法简单易行,所需时间较短,适合大面积工业生产。
(2)通过硅烷的水解聚合技术与表面活性剂对硅油的乳化技术,制得了具有壳-芯结构的硅油微胶囊,其中壳为硅烷水解聚合形成的Si-O-Si的三维交联多孔状结构,芯为表面活性剂乳化的硅油,该结构使得硅油与水性陶瓷涂料相容性好,可以均匀分散在整个陶瓷涂料中,固化后也可均匀分布在整个涂层中。使用过程中硅油可以缓慢从壳结构中扩散出来,持续发挥涂层的疏水性,起到自清洁的作用;壳-芯结构的硅油微胶囊,还可以增加硅油的添加量,提高了涂层自清洁的持久性。
(3)通过在陶瓷涂层表面形成微米-纳米二级粗糙度结构和制备出具有壳-芯结构的硅油微胶囊,使得陶瓷涂层的水接触角大于150°,具有优异的超疏水性和自清洁性,且持久性好。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为硅油微胶囊的网状结构示意图;
图2为涂层微米-纳米结构示意图。
具体实施方式
下面结合实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干调整和改进。这些都属于本发明的保护范围。
实施例1~3
本实施例1~3提供一种用于形成仿荷叶结构的自清洁陶瓷涂料组合物;组合物的组成见表1。
本实施例的自清洁陶瓷涂料的制备步骤如下:
(1)色浆制备:将硅溶胶、颜料、填料、分散剂、去离子水混合均匀,用1%NaOH溶液调节pH值至10,研磨至细度20μm以下,再测试色浆的pH值,若小于9.0则用1%NaOH溶液调节至10.0,待用。
(2)陶瓷涂料制备:将硅烷、异丙醇、硅油微胶囊、25%甲酸混合均匀,测量溶液的pH值并记录,然后加入步骤(1)制备好的色浆混合均匀,在辊架上反应4-8小时后得到陶瓷涂料,测量并记录其pH值。
本实施例的自清洁陶瓷涂料的施工步骤如下:
(1)前处理工艺:基材选用镀锌钢板,先用60目的钢丸进行抛丸处理,基材表面形成Ra为3-8μm的粗糙度,构造成微米级凸起粗糙表面,然后用400目的刚玉进行喷砂处理,在微米级凸起粗糙表面上,形成Ra为300nm的纳米级粗糙结构。
(2)基材预热:前处理后的基材自来水清洗干净,放入烘箱,并将基材预热至55℃;
(3)喷涂:基材温度在55℃情况下,进行喷涂施工;
(4)固化:210℃下烘烤20分钟,完成固化,固化后涂层厚度为20-30μm。
图2为固化后涂层的微米-纳米结构示意图,由图2可以看出,涂层形成了2-5μm的一级粗糙结构,在微米结构表面又形成了100-150nm的二级粗糙结构,是一种类似荷叶的微米-纳米二级粗糙度结构。
将实施例1制得的涂料进行上述施工,调整:喷涂是在常温下进行的,结果发现:涂料出现流挂现象。
将实施例1制得的涂料进行上述施工,调整:喷涂是在70℃下进行的,结果发现:涂层出现发干、表面粗糙、失光等漆膜缺陷。
将实施例1制得的涂料进行上述施工,调整:喷涂的涂层厚度为50μm,结果发现:表面纳米级粗糙度消失,表现为接触角、滚动角变小。
将实施例1制得的涂料进行上述施工,调整:固化温度为150℃,结果发现:需要烘烤40分钟才能达到相同的硬度。
将实施例1制得的涂料进行上述施工,调整:前处理时基材表面形成Ra为3μm的粗糙度,构造成微米级凸起粗糙表面即可。性能测试结果发现:接触角、滚动角变小。
将实施例1制得的涂料进行上述施工,调整:前处理时基材表面直接用400目的刚玉进行喷砂处理,形成Ra为300nm的纳米级粗糙结构即可。性能测试结果发现:接触角、滚动角变小。
对比例1~6
对比例1~6提供陶瓷涂料组合物;组合物的组成见表1。
该陶瓷涂料的制备和施工方法同实施例1。
对比例7
对比例7提供一种陶瓷涂料组合物;组合物的组成见表1。
该陶瓷涂料的施工方法同实施例1。
该陶瓷涂料的制备步骤如下:
(1)色浆制备:将硅溶胶、颜料、填料、分散剂、去离子水混合均匀,用1%NaOH溶液调节pH值至10,研磨至细度20μm以下,再测试色浆的pH值,若小于9.0则用1%NaOH溶液调节至10.0,待用。
(2)陶瓷涂料制备:将硅烷1、羟基硅油、表面活性剂十六烷基三甲基溴化铵、异丙醇、25%甲酸混合均匀,测量溶液的pH值并记录,然后加入步骤(1)制备好的色浆混合均匀,在辊架上反应4-8小时后得到陶瓷涂料,测量并记录其pH值。
本实施例的自清洁陶瓷涂料的施工步骤如下:
(1)前处理工艺:基材选用镀锌钢板,先用60目的钢丸进行抛丸处理,基材表面形成Ra为3μm的粗糙度,构造成微米级凸起粗糙表面,然后用400目的刚玉进行喷砂处理,在微米级凸起粗糙表面上,形成Ra为300nm的纳米级粗糙结构。
(2)基材预热:前处理后的基材自来水清洗干净,放入烘箱,并将基材预热至55℃;
(3)喷涂:基材温度在55℃情况下,进行喷涂施工;
(4)固化:210℃下烘烤20分钟,完成固化,涂层厚度为25μm。
表1实施例与对比例的涂料组成以及用量(wt.%)

表1中,
硅溶胶1为阿克苏诺贝尔的Bindzil 2034DI;
硅溶胶2为格雷斯HS-40;
颜料为钛白粉;
硅烷1为质量比为1:1的甲基三甲氧基硅烷和二甲基二乙氧基硅烷;
硅油微胶囊1:将羟基硅油、硅烷1、十六烷基三甲基溴化铵混合均匀,在搅拌状态下用25%甲酸将pH值调整至4.5,反应5hr后,再超声3hr,得到硅油微胶囊1;其中,硅油45%,硅烷1 48%,表面活性剂4%,25%甲酸溶液余量;
图1为硅油微胶囊1的网状结构示意图,由图1可以看出,硅油微胶囊是一种壳-芯结构,外壳为较均匀且规整的网状结构,网孔直径约为100-300nm,在加热过程中,内部的硅油分子可以从空隙中逐渐释放出来,持续为涂层提供不粘性。
硅油微胶囊2:将羟基硅油、硅烷2(质量比为1:1的二甲基二甲氧基硅烷和二甲基二乙氧基硅烷)、十六烷基三甲基溴化铵混合均匀,在搅拌状态下用25%甲酸将pH值调整至4.5,反应5hr后,再超声3hr,得到硅油微胶囊2;其中,硅油45%,硅烷248%,表面活性剂4%,25%甲酸溶液余量;
硅油微胶囊3:将羟基硅油、硅烷3(质量比为1:1的甲基三甲氧基硅烷和甲基三乙氧基硅烷)、十六烷基三甲基溴化铵混合均匀,在搅拌状态下用25%甲酸将pH值调整至4.5,反应5hr后,再超声3hr,得到硅油微胶囊3;其中,硅油45%,硅烷3 48%, 表面活性剂4%,25%甲酸溶液余量;
硅油微胶囊4:将羟基硅油、硅烷4(质量比为1:1的十六烷基三甲氧基硅烷和二甲基二乙氧基硅烷)、十六烷基三甲基溴化铵混合均匀,在搅拌状态下用25%甲酸将pH值调整至4.5,反应5hr后,再超声3hr,得到硅油微胶囊4;其中,硅油45%,硅烷148%,表面活性剂4%,25%甲酸溶液余量。
硅油微胶囊5:将0.25克十二烷基磺酸钠和0.75克烷基酚聚氧乙烯醚溶解于100克去离子水中,再加入由10克二甲基硅油、10克TEOS、1.5克十八烷基三甲氧基硅烷组成的油相混合物,在冰水浴环境下预乳化搅拌15分钟,然后使用细胞粉碎机进行超声细乳化20分钟,获得细乳液。将细乳液的pH值调整至7.5,常温下高速搅拌24小时,得乳白色硅油微胶囊5;
硅油微胶囊6:将羟基硅油、硅烷1、十六烷基三甲基溴化铵混合均匀,在搅拌状态下用25%甲酸将pH值调整至4.5,搅拌反应8hr,得到硅油微胶囊6;其中,硅油45%,硅烷1 48%,表面活性剂4%,25%甲酸溶液余量;
硅油微胶囊7:将羟基硅油、硅烷1、十六烷基三甲基溴化铵混合均匀,在搅拌状态下用25%甲酸将pH值调整至4.5,超声8hr,得到硅油微胶囊7;其中,硅油45%,硅烷1 48%,表面活性剂4%,25%甲酸溶液余量。
主要性能测试
对以上实施例和对比例制得的涂料进行主要性能测试,检测项目以及方法见表2,检测结果如表3-5所示:
表2

表3
表4
表5

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (10)

  1. 一种用于形成仿荷叶结构的自清洁陶瓷涂料组合物,其特征在于,以100%计,所述组合物包括如下重量百分比含量的各组分:
    硅溶胶:25-27%,1%NaOH溶液:4-5%,颜料:10-12%,填料:8-10%,分散剂:1-1.2%,硅烷:25-27%,异丙醇:3-3.5%,硅油微胶囊:6-8%,25%甲酸:0.7-1%,去离子水:余量。
  2. 根据权利要求1所述的用于形成仿荷叶结构的自清洁陶瓷涂料组合物,其特征在于,所述填料选自云母粉、硅微粉、高岭土、氧化铝粉、气相二氧化硅中的一种或几种;所述颜料为无机颜料;所述分散剂选自BYK180、BYK190、BYK2010、BYK2001中的一种或几种。
  3. 根据权利要求1所述的用于形成仿荷叶结构的自清洁陶瓷涂料组合物,其特征在于,所述硅烷选自甲基三甲氧基硅烷、甲基三乙氧基硅烷、二甲基二甲氧基硅烷中的一种或几种。
  4. 根据权利要求1所述的用于形成仿荷叶结构的自清洁陶瓷涂料组合物,其特征在于,以硅油微胶囊总重为100%计,所述硅油微胶囊配方如下:
    硅油:43-45%,
    硅烷:48-50%,
    表面活性剂:4-4.5%,
    25%甲酸溶液:余量。
  5. 根据权利要求4所述的用于形成仿荷叶结构的自清洁陶瓷涂料组合物,其特征在于,硅油微胶囊中,所述硅油选自甲基硅油、羟基硅油中的一种或几种;所述硅烷由1:1-2:1的三官能度硅烷和二官能度硅烷组成。
  6. 根据权利要求4所述的用于形成仿荷叶结构的自清洁陶瓷涂料组合物,其特征在于,硅油微胶囊中,所述表面活性剂选用阳离子型表面活性剂,包括十六烷基三甲基季铵溴化物、十八烷基二甲基苄基季铵氯化物、苯扎氯铵、苯扎溴铵中的一种或几种。
  7. 根据权利要求4所述的用于形成仿荷叶结构的自清洁陶瓷涂料组合物,其特征在于,所述硅油微胶囊的制备包括如下步骤:将硅油、硅烷、表面活性剂混合均匀,在搅拌状态下用25%甲酸将pH值调整至4.0-5.0,反应4-6hr后,再超声2-3hr,得到硅油微胶囊。
  8. 一种根据权利要求1所述的用于形成仿荷叶结构的自清洁陶瓷涂料组合物的制备方法,其特征在于,所述方法包括如下步骤:
    S1、色浆制备:将硅溶胶、颜料、填料、分散剂、去离子水混合均匀,用1%NaOH溶液调节pH值至9.5-10.5,研磨至细度20μm以下;
    S2、陶瓷涂料制备:将硅烷、异丙醇、硅油微胶囊、25%甲酸混合均匀;然后加入步骤S1制备好的色浆混合均匀,反应4-8小时后得到陶瓷涂料。
  9. 根据权利要求8所述的用于形成仿荷叶结构的自清洁陶瓷涂料组合物的制备方法,其特征在于,步骤S2中,研磨至细度20μm以下后,再测试色浆的pH值,若小于9.0则用1%NaOH溶液调节至9.0-10.0之间。
  10. 一种根据权利要求1所述的用于形成仿荷叶结构的自清洁陶瓷涂料组合物的施工方法;其特征在于,所述方法包括如下步骤:
    A1、前处理:金属基材用60目钢丸进行抛丸处理,基材表面形成Ra为2-5μm的粗糙度,构造成微米级凸起粗糙表面,再用400目刚玉进行喷砂处理,在微米级凸起粗糙表面上,形成Ra为200-400nm的纳米级粗糙结构;
    A2、基材预热:前处理后的基材清洗干净,预热至50-60℃;
    A3、喷涂:基材温度在50-60℃条件下进行喷涂施工;
    A4、固化:180-230℃下烘烤15-20分钟,完成固化,固化后涂层厚度为20-30μm。
PCT/CN2023/113331 2022-08-30 2023-08-16 一种仿荷叶结构的自清洁陶瓷涂料及其制备和施用方法 WO2024046129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211048052.7A CN115322597B (zh) 2022-08-30 2022-08-30 一种仿荷叶结构的自清洁陶瓷涂料及其制备和施用方法
CN202211048052.7 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024046129A1 true WO2024046129A1 (zh) 2024-03-07

Family

ID=83927935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113331 WO2024046129A1 (zh) 2022-08-30 2023-08-16 一种仿荷叶结构的自清洁陶瓷涂料及其制备和施用方法

Country Status (2)

Country Link
CN (1) CN115322597B (zh)
WO (1) WO2024046129A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115322597B (zh) * 2022-08-30 2023-04-25 上海宜瓷龙新材料股份有限公司 一种仿荷叶结构的自清洁陶瓷涂料及其制备和施用方法
CN115770716B (zh) * 2022-11-30 2023-11-14 江门市东鹏智能家居有限公司 一种抑菌自洁的便器感应器面板及其制备方法
CN116589878B (zh) * 2023-07-19 2023-10-24 北京碧海云智新材料技术有限公司 一种长效自清洁的石墨烯陶瓷水漆及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030990A (zh) * 2009-09-28 2011-04-27 复旦大学 一种具有缓释特性的硅油微胶囊及其制备方法
CN105694711A (zh) * 2015-11-27 2016-06-22 浙江大学 一种超光滑自洁涂层及其制备方法
CN105949831A (zh) * 2016-06-28 2016-09-21 佛山市珀力玛高新材料有限公司 一种热环境下高硬度的陶瓷涂料
CN108659586A (zh) * 2018-05-26 2018-10-16 湖南凯斯利新材料有限公司 一种长效自清洁水性无机纳米陶瓷涂料及其制备方法
CN109021823A (zh) * 2018-08-23 2018-12-18 上海金力泰化工股份有限公司 一种具有真石效果的陶瓷涂料及其应用方法
CN109294293A (zh) * 2018-09-14 2019-02-01 湖南凯斯利新材料有限公司 一种轨道交通车厢内饰水性无机纳米陶瓷涂料及其制备方法
US20200010690A1 (en) * 2017-04-01 2020-01-09 Shanghai Excilon New Materials Co., Ltd. Waterborne inorganic anti-doodling ceramic paint for indoor walls and preparation method therefor
CN115322597A (zh) * 2022-08-30 2022-11-11 上海宜瓷龙新材料股份有限公司 一种仿荷叶结构的自清洁陶瓷涂料及其制备和施用方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032703A1 (en) * 2006-09-11 2008-03-20 Shiseido Company Ltd. Silica composite capsules obtained with water-soluble silane derivative, composition containing the same, and transparent gel-form composition
CN109321007A (zh) * 2018-09-30 2019-02-12 浙江宇达新材料有限公司 一种无机陶瓷不粘锅复合涂层及其制造方法
CN111154300B (zh) * 2020-01-16 2021-09-17 上海宜瓷龙新材料股份有限公司 一种不锈钢保温杯内胆用水性陶瓷料及其制备方法
CN114479528B (zh) * 2022-02-25 2023-03-14 上海虹涂新材料科技有限公司 一种可常温施工且单耗低的陶瓷涂料及其制备和施用方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102030990A (zh) * 2009-09-28 2011-04-27 复旦大学 一种具有缓释特性的硅油微胶囊及其制备方法
CN105694711A (zh) * 2015-11-27 2016-06-22 浙江大学 一种超光滑自洁涂层及其制备方法
CN105949831A (zh) * 2016-06-28 2016-09-21 佛山市珀力玛高新材料有限公司 一种热环境下高硬度的陶瓷涂料
US20200010690A1 (en) * 2017-04-01 2020-01-09 Shanghai Excilon New Materials Co., Ltd. Waterborne inorganic anti-doodling ceramic paint for indoor walls and preparation method therefor
CN108659586A (zh) * 2018-05-26 2018-10-16 湖南凯斯利新材料有限公司 一种长效自清洁水性无机纳米陶瓷涂料及其制备方法
CN109021823A (zh) * 2018-08-23 2018-12-18 上海金力泰化工股份有限公司 一种具有真石效果的陶瓷涂料及其应用方法
CN109294293A (zh) * 2018-09-14 2019-02-01 湖南凯斯利新材料有限公司 一种轨道交通车厢内饰水性无机纳米陶瓷涂料及其制备方法
CN115322597A (zh) * 2022-08-30 2022-11-11 上海宜瓷龙新材料股份有限公司 一种仿荷叶结构的自清洁陶瓷涂料及其制备和施用方法

Also Published As

Publication number Publication date
CN115322597A (zh) 2022-11-11
CN115322597B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2024046129A1 (zh) 一种仿荷叶结构的自清洁陶瓷涂料及其制备和施用方法
CN107954429B (zh) 二氧化硅中空微球及其制备方法与在隔热涂料中的应用
JP4245637B2 (ja) 有機無機複合塗膜、その製造方法及び水性塗料組成物
Zhang et al. High-adhesive superhydrophobic litchi-like coatings fabricated by in-situ growth of nano-silica on polyethersulfone surface
Wen et al. Organic–inorganic hybrid superhydrophobic surfaces using methyltriethoxysilane and tetraethoxysilane sol–gel derived materials in emulsion
CN107266996A (zh) 一种含氧化硅气凝胶的透明隔热保温涂料及其制备方法
CN111068997B (zh) 一种实现冷凝换热管超疏水的涂层的制备方法及冷凝换热管
CN115304940B (zh) 一种长效不粘涂料及其制备和施工方法
CN108929576B (zh) 一种耐腐蚀抗紫外线老化的包覆改性铝颜料的制备方法
CN109401488B (zh) 一种高硬耐磨抗污无机纳米陶瓷改性木器涂料及其制备方法
WO2023010997A1 (zh) 低voc无有机溶剂耐热水性涂料及其制得的耐高温耐腐涂层
CN115322598A (zh) 一种耐高温长效不粘陶瓷涂料及其制备方法
CN113122081B (zh) 一种透明、高硬、可多功能集成的自修复涂料及其制备方法与应用
CN106833043A (zh) 一种透明耐用超疏水新型材料涂层及其制备方法
Liu et al. Preparation and characterization of SiO2@ n-octadecane capsules with controllable size and structure
WO2021139215A1 (zh) 一种自修复或可重复使用的制品及其制备方法与应用
CN111992470A (zh) 一种无氟超疏水表面及其制备方法
CN104974559A (zh) 一种易于清洁且使用寿命长的涂层及其使用方法和产品
CN111171643B (zh) 一种耐铝液腐蚀的纳米涂料及其制备方法和应用
CN115611288A (zh) 一种封闭二氧化硅气凝胶微球及包含其的一种隔热涂料
CN114989722A (zh) 疏水疏油、不粘性和耐油污易清洁的涂料及涂层制备方法
CN107088512A (zh) 一种纳米硅无机涂层的喷涂工艺
Doimoto et al. Sustainable Approach to Superhydrophobic Surfaces Based on Water‐Born Electrospinning
Liu et al. Robust surface with thermally stable hydrophobicity enabled by electrosprayed fluorinated SiO 2 particles
CN112920707A (zh) 一种超亲水硅质纳米涂料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859163

Country of ref document: EP

Kind code of ref document: A1