WO2024045723A1 - 一种纳米尺寸硫化物固体电解质材料及其制备方法 - Google Patents

一种纳米尺寸硫化物固体电解质材料及其制备方法 Download PDF

Info

Publication number
WO2024045723A1
WO2024045723A1 PCT/CN2023/097289 CN2023097289W WO2024045723A1 WO 2024045723 A1 WO2024045723 A1 WO 2024045723A1 CN 2023097289 W CN2023097289 W CN 2023097289W WO 2024045723 A1 WO2024045723 A1 WO 2024045723A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide solid
preparation
electrolyte
sized
Prior art date
Application number
PCT/CN2023/097289
Other languages
English (en)
French (fr)
Inventor
姚霞银
刘高瞻
杨菁
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to KR1020237034455A priority Critical patent/KR20240032709A/ko
Publication of WO2024045723A1 publication Critical patent/WO2024045723A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of battery technology and relates to a nano-sized sulfide solid electrolyte material and a preparation method thereof.
  • Lithium-ion batteries have been widely used in many fields, including portable electronics, electric vehicles, grid storage, etc. However, for future high-mileage electric vehicles, higher energy density is required, and the energy density of commercial lithium-ion batteries has reached its limit. Additionally, leakage and thermal instability of highly flammable liquid electrolytes pose serious safety concerns for commercial lithium-ion batteries. To solve these problems, all-solid-state lithium battery technology has been widely regarded as one of the most promising candidate technologies.
  • Inorganic solid electrolytes do not leak and are non-volatile, and have a wide potential window and higher thermal stability, thus greatly improving the safety of lithium-ion batteries. Secondly, by successfully selecting lithium anode, the energy density of the battery can be greatly improved. At the same time, inorganic solid electrolytes are more suitable for high-voltage cathode materials than liquid electrolytes. In inorganic solid-state electrolysis, sulfide solid electrolyte has high electrical conductivity and good mechanical properties.
  • the size of sulfide electrolyte particles is large (5-10 ⁇ m) and the specific surface area of the electrolyte particles is small. Therefore, more than 30% by mass of electrolyte powder needs to be added to the composite cathode material of all-solid-state lithium batteries to ensure that the active material in the cathode layer is Full contact with the electrolyte enables normal ion transmission, thus reducing the content of active material components in the cathode material.
  • the present invention provides a nano-sized sulfide solid electrolyte material and a preparation method thereof.
  • the method achieves the purpose of refining the grain structure and reducing the particle size by adding a variety of solvents and dispersants.
  • nano-sized sulfide solid electrolyte material Material the nano-sized sulfide solid electrolyte material has one or more of the chemical formulas represented by Formula I, Formula II, and Formula III: (100-xy)Li 2 S ⁇ xP 2 S 5 ⁇ yM m N nFormula I,
  • M is one or more of Li, Ge, Si, Sn, and Sb species
  • N is one or more of Se, O, Cl, Br, and I
  • E is one or more of Ge, Si, Sn, Sb, R is O and/or Se, X is Cl, Br , one or more of I;
  • the size of the nano-sized sulfide solid electrolyte material is 10 to 500 nm.
  • the sulfide solid electrolyte material provided by the invention has nanometer size, with a size of 10 to 500 nm. As a battery electrolyte, it can effectively increase the contact area and ion transport capacity with the positive electrode active material, thereby increasing the proportion of active materials in the composite positive electrode. Conducive to improving battery performance.
  • the size of the nano-sized sulfide solid electrolyte material is 10 to 100 nm.
  • the room temperature ionic conductivity of the nano-sized sulfide solid electrolyte material is 1 ⁇ 10 -4 to 1 ⁇ 10 -1 S/cm.
  • Room temperature in this article refers to 15 to 35°C.
  • the room temperature ion conductivity of the nano-sized sulfide solid electrolyte material is 1 ⁇ 10 -3 to 5 ⁇ 10 -2 S/cm.
  • Another aspect of the present invention provides a method for preparing nano-sized sulfide solid electrolyte materials, including the following steps:
  • the electrolyte precursor powder obtained in step 2) is heat-treated, pulverized and ground to obtain a nanometer-sized sulfide solid electrolyte material.
  • the present invention increases the nucleation rate of electrolyte crystals by adding a variety of solvents or simultaneously adding a variety of solvents and dispersants. On the other hand, it relies on mechanical dispersion to break the growing dendrites and increase the number of crystal nuclei, thereby achieving crystal refinement. The purpose of granular organization and reducing particle size.
  • the preparation method of lithium sulfide material includes one or more of ball milling method, carbothermal reduction method, lithiation of sulfur-containing chemical substances, lithium metal sulfide nanoparticles, and mutual reaction of lithium-containing and sulfur-containing substances.
  • the solvent in step 2) is toluene, chlorobenzene, xylene, dimethyl carbonate, N-methylformamide, n-hexane, glyme, dibutyl ether, ethanol, 1,2-ethyl One or a mixture of diamine, 1,2-ethanedithiol, acetonitrile, tetrahydrofuran, methanol, isopropyl ether, acetone, hexene, and ethyl acetate.
  • the dispersant in step 2) is Triton X-100, sodium hexametaphosphate, sodium pyrophosphate, sodium tripolyphosphate, sodium lauryl sulfate, ammonium lauryl sulfate, sodium laureth sulfate, One or a mixture of polyvinylpyrrolidone, Pluronic F-127, Tween 80, cetyltrimethylammonium bromide.
  • the mass part of the dispersant is: 0 ⁇ the mass part of the dispersant ⁇ 1.
  • the present invention adds a variety of solvents and dispersants at the same time, which is beneficial to reducing particle size.
  • the mixing method in step 2) includes one or more of mechanical stirring, mechanical oscillation, ultrasonic dispersion, ball milling, and roller milling.
  • the mixing time is 1 to 48 hours.
  • the drying method is one or a combination of vacuum filtration, vacuum drying, and blast drying.
  • the drying temperature in step 2) is 10-100°C, and the drying time is 1-48 hours.
  • the heat treatment temperature in step 3 is 100-600°C, and the heat treatment time is 0.5-24 hours.
  • Another aspect of the present invention provides an all-solid-state lithium battery, including a positive electrode, a negative electrode and the nano-sized sulfide solid electrolyte material.
  • the mass percentage of active material in the positive electrode is 70 to 99.9%.
  • the active material is not limited to specific types, and any electrode active material well known to those skilled in the art can be used in the present invention.
  • the present invention has the following beneficial effects:
  • the sulfide solid electrolyte material of the present invention is nanosized, with a size of 10 to 500nm;
  • the nano-sized sulfide solid electrolyte material of the present invention has high ionic conductivity
  • a solvent and a dispersant are added at the same time. Through the combined use of the solvent and the dispersant, the size of the material can be greatly reduced;
  • nano-sized sulfide solid electrolyte material of the present invention as the electrolyte of all-solid-state lithium batteries can effectively increase the contact area and ion transport capacity with the positive electrode active material, thereby increasing the proportion of active materials in the composite positive electrode to 70-99.9 %, which is beneficial to improving battery performance.
  • Figure 1 is a scanning electron microscope image of Li 6 PS 5 Cl in Example 1.
  • Figure 2 is an AC impedance spectrum of Li 6 PS 5 Cl in Example 1.
  • Figure 3 is a cycle performance diagram of the battery of Example 1.
  • Figure 4 is a charge-discharge curve diagram of the battery of Example 1.
  • Figure 5 is a scanning electron microscope image of Li 5.4 PS 4.4 Cl 1.6 in Example 2.
  • Figure 6 is the AC impedance spectrum of Li 5.4 PS 4.4 Cl 1.6 in Example 2.
  • Figure 7 is a cycle performance diagram of the battery of Example 2.
  • Figure 8 is a charge-discharge curve diagram of the battery of Example 2.
  • the chemical formula of the sulfide solid electrolyte material in this embodiment is Li 6 PS 5 Cl, which is obtained by the following preparation method:
  • Lithium sulfide is prepared by reacting lithium-containing and sulfur-containing substances. Metal lithium and elemental sulfur are dissolved in diethyl ether respectively. The ratio of the substances is 2.1:1. After mixing, they are distilled under reduced pressure and the reaction produces lithium sulfide;
  • the particle size of the prepared nano-sized Li 6 PS 5 Cl sulfide solid electrolyte material is 100 to 200 nm, and its scanning electron microscope picture is shown in Figure 1.
  • the AC impedance spectrum of the prepared nano-sized Li 6 PS 5 Cl sulfide solid electrolyte material is shown in Figure 2.
  • the room temperature ionic conductivity of the electrolyte is 2.3 ⁇ 10 -3 S/cm.
  • LiCoO 2 accounts for 85% of the mass of the composite cathode material, the above-mentioned electrolyte is the electrolyte layer, and metallic lithium is the negative electrode, and an all-solid-state battery is assembled. pool.
  • the battery can cycle stably for 100 cycles at 1C, with a capacity retention rate of 90%.
  • the battery cycle performance diagram is shown in Figure 3, and the charge and discharge curve is shown in Figure 4.
  • the chemical formula of the sulfide solid electrolyte material in this embodiment is Li 5.4 PS 4.4 Cl 1.6 , which is obtained by the following preparation method:
  • Lithium sulfide is prepared by sulfating metal lithium nanoparticles.
  • the metal lithium nanoparticles are dispersed in a tetrahydrofuran-n-hexane medium.
  • Hydrogen sulfide gas and argon gas mixture are passed inward, and lithium sulfide is produced after 24 hours of reaction;
  • the particle size of the prepared nano-sized sulfide solid electrolyte is about 50 to 100 nm, and its scanning electron microscope picture is shown in Figure 5.
  • the AC impedance spectrum of the prepared nano-sized sulfide solid electrolyte material is shown in Figure 6.
  • the room temperature ion conductivity of the electrolyte is 3.2 ⁇ 10 -3 S/cm.
  • LiNi 0.8 Co 0.1 Mn 0.1 O 2 accounts for 95% of the mass of the composite cathode material.
  • the above electrolyte is the electrolyte layer, and metallic lithium is the negative electrode to assemble an all-solid-state battery.
  • the battery can cycle stably for 170 cycles at 1C, with a capacity retention rate of 83%.
  • the battery cycle performance diagram is shown in Figure 7, and the charge and discharge curve is shown in Figure 8.
  • the chemical formula of the sulfide solid electrolyte material in this embodiment is Li 3 PS 4 , which is obtained by the following preparation method:
  • Li 2 S is prepared by lithiating sulfur-containing chemicals, and lithium sulfide is prepared by heating elemental sulfur and anhydrous lithium hydroxide in a hydrogen atmosphere;
  • the particle size of the prepared nano-sized sulfide solid electrolyte is about 50 nm, and the room temperature ionic conductivity of the electrolyte is 2.1 ⁇ 10 -4 S/cm.
  • LiCoO 2 is used as the cathode active material, LiCoO 2 accounts for 85% of the mass of the composite cathode material, the above-mentioned electrolyte is the electrolyte layer, and metallic lithium is the negative electrode to assemble an all-solid-state battery.
  • the battery can be cycled stably for 100 cycles at 0.1C, with a capacity retention rate of 86.1%.
  • the chemical formula of the sulfide solid electrolyte material in this embodiment is Li 7 P 3 S 11 , which is obtained by the following preparation method:
  • Li 2 S is prepared by carbothermal reduction method. Anhydrous lithium sulfate, glucose and hard carbon are mixed in a mass ratio of 1:2:5, and heated to 900°C in a hydrogen atmosphere to react to prepare lithium sulfide;
  • the particle size of the prepared nano-sized sulfide solid electrolyte is about 60 nm, and the room temperature ionic conductivity of the electrolyte is 1.2 ⁇ 10 -3 S/cm.
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 accounts for 88% of the mass of the composite cathode material.
  • the above electrolyte is the electrolyte layer, and metallic lithium is the negative electrode to assemble an all-solid-state battery.
  • the battery can cycle stably for 500 cycles at 1C, with a capacity retention rate of 90.3%.
  • the chemical formula of the sulfide solid electrolyte material in this embodiment is Li 6 PS 5 Cl, which is obtained by the following preparation method:
  • Li 2 S is prepared by ball milling. Mix dry sulfur powder and lithium hydride powder in a material ratio of 1:3, add it to a ball mill tank, and ball mill at room temperature at 400r/min for 24 hours to obtain lithium sulfide;
  • the particle size of the prepared nano-sized sulfide solid electrolyte is about 80 nm, and the room temperature ion conductivity of the electrolyte is 3.1 ⁇ 10 -3 S/cm.
  • LiCoO 2 is used as the cathode active material, LiCoO 2 accounts for 85% of the mass of the composite cathode material, the above-mentioned electrolyte is the electrolyte layer, and metallic lithium is the negative electrode to assemble an all-solid-state battery.
  • the battery can be cycled stably for 100 cycles at 2C, with a capacity retention rate of 90.1%.
  • Li 2 S is prepared by ball milling. Mix dry sulfur powder and lithium hydride powder in a material ratio of 1:2, add it to a ball mill tank, and ball mill at room temperature at 500r/min for 12 hours to obtain lithium sulfide;
  • the particle size of the prepared nano-sized sulfide solid electrolyte is about 20 nm, and the room temperature ion conductivity of the electrolyte is 1.1 ⁇ 10 -2 S/cm.
  • LiNi 0.8 Co 0.15 Al 0.05 O 2 is used as the cathode active material.
  • the mass proportion of LiNi 0.8 Co 0.15 Al 0.05 O 2 in the composite cathode material is 99%.
  • the above electrolyte is the electrolyte layer and metallic lithium is the negative electrode to assemble an all-solid-state battery.
  • the battery can be cycled stably for 500 cycles at 2C, with a capacity retention rate of 94.1%.
  • Li 2 S is prepared by ball milling. Mix dry sulfur powder and lithium hydride powder in a material ratio of 1:2.5, add it to a ball mill tank, and ball mill at room temperature at 300r/min for 24 hours to obtain lithium sulfide;
  • the particle size of the prepared nano-size sulfide solid electrolyte is about 70 nm, and the room temperature ionic conductivity of the electrolyte is 1.2 ⁇ 10 -2 S/cm.
  • LiNi 0.5 Mn 1.5 O 4 is used as the cathode active material. LiNi 0.5 Mn 1.5 O 4 accounts for 85% of the mass of the composite cathode material.
  • the above electrolyte is the electrolyte layer and metallic lithium is the negative electrode to assemble an all-solid-state battery. The battery can be cycled stably for 300 cycles at 3C, with a capacity retention rate of 91.2%.
  • the chemical formula of the sulfide solid electrolyte material in this embodiment is Li 6 PS 5 Br, which is obtained by the following preparation method:
  • Li 2 S is prepared by the ball milling method and the mutual reaction of lithium-containing and sulfur-containing substances. Metal lithium and elemental sulfur are dissolved in tetrahydrofuran respectively. The ratio of the substances is 2.2:1. The ball milling method is mixed at 200r/min for 24 hours and then the pressure is reduced. Distillation, reaction to obtain lithium sulfide;
  • the particle size of the prepared nano-sized sulfide solid electrolyte is about 40 nm, and the room temperature ionic conductivity of the electrolyte is 7.2 ⁇ 10 -4 S/cm.
  • LiCoO 2 accounts for 83% of the mass of the composite cathode material, the above-mentioned electrolyte is the electrolyte layer, and metallic lithium is the negative electrode to assemble an all-solid-state battery.
  • the battery can be cycled stably for 100 cycles at 0.1C, with a capacity retention rate of 92.6%.
  • the chemical formula of the sulfide solid electrolyte material in this embodiment is Li 5.4 PS 4.4 Cl 1.2 Br 0.4 , which is obtained by the following preparation method:
  • Li 2 S is prepared by ball milling. Mix dry sulfur powder and lithium hydride powder in a material ratio of 1:1, add it to a ball mill tank, and ball mill at room temperature at 100 r/min for 24 hours to obtain lithium sulfide;
  • the particle size of the prepared nano-sized sulfide solid electrolyte is about 30 nm, and the room temperature ionic conductivity of the electrolyte is 6.8 ⁇ 10 -3 S/cm.
  • Co 9 S 8 accounts for 90% of the mass of the composite cathode material, the above-mentioned electrolyte is the electrolyte layer, and metallic lithium is the negative electrode to assemble an all-solid-state battery.
  • the battery can be cycled stably for 100 cycles at 1C, with a capacity retention rate of 90.4%.
  • the chemical formula of the sulfide solid electrolyte material in this embodiment is Li 5.4 PS 4.4 Cl 1.6 , which is obtained by the following preparation method:
  • Li 2 S is prepared by the method of lithium metal sulfide nanoparticles.
  • the metal lithium nanoparticles are dispersed in a tetrahydrofuran-n-hexane medium, a mixture of hydrogen sulfide gas and argon gas is passed inward, and lithium sulfide is obtained after 24 hours of reaction;
  • the particle size of the prepared nano-sized sulfide solid electrolyte is about 150 nm, and the room temperature ionic conductivity of the electrolyte is 6.2 ⁇ 10 -3 S/cm.
  • LiCoO 2 is used as the cathode active material, LiCoO 2 accounts for 80% of the mass of the composite cathode material, the above-mentioned electrolyte is the electrolyte layer, and metallic lithium is the negative electrode to assemble an all-solid-state battery.
  • the battery can cycle stably for 500 cycles at 0.5C, with a capacity retention rate of 90.3%.
  • the chemical formula of the sulfide solid electrolyte material in this embodiment is Li 7 P 2 S 8 I, which is obtained by the following preparation method:
  • Li 2 S is prepared by reacting lithium-containing and sulfur-containing substances. Metal lithium and elemental sulfur are dissolved in toluene respectively. The ratio of the substances is 2.1:1. After mixing, they are distilled under reduced pressure to obtain lithium sulfide;
  • the particle size of the prepared nano-sized sulfide solid electrolyte is about 100 nm, and the room temperature ionic conductivity of the electrolyte is 1.4 ⁇ 10 -4 S/cm.
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 is used as the cathode active material. LiNi 0.6 Co 0.2 Mn 0.2 O 2 accounts for 75% of the mass of the composite cathode material.
  • the above electrolyte is the electrolyte layer, and metallic lithium is the negative electrode to assemble an all-solid-state battery. The battery can cycle stably for 500 cycles at 0.1C. The capacity retention rate is 90.3%.
  • Li 2 S is prepared by ball milling. Mix dry sulfur powder and lithium hydride powder in a material ratio of 1:2, add it to a ball mill tank, and ball mill at room temperature at 500r/min for 12 hours to obtain lithium sulfide;
  • the particle size of the prepared nano-sized sulfide solid electrolyte is about 90 nm, and the room temperature ionic conductivity of the electrolyte is 9.38 ⁇ 10 -3 S/cm.
  • LiCoO 2 is used as the cathode active material, LiCoO 2 accounts for 83% of the mass of the composite cathode material, the above-mentioned electrolyte is the electrolyte layer, and metallic lithium is the negative electrode to assemble an all-solid-state battery.
  • the battery can cycle stably for 500 cycles at 1C, with a capacity retention rate of 91.5%.
  • Li 2 S is prepared by ball milling. Mix dry sulfur powder and lithium hydride powder in a material ratio of 1:2, add it to a ball mill tank, and ball mill at room temperature at 500r/min for 12 hours to obtain lithium sulfide;
  • the particle size of the prepared nano-sized sulfide solid electrolyte is about 60 nm, and the room temperature ionic conductivity of the electrolyte is 9.62 ⁇ 10 -3 S/cm.
  • LiCoO 2 is used as the cathode active material, LiCoO 2 accounts for 90% of the mass of the composite cathode material, the above-mentioned electrolyte is the electrolyte layer, and metallic lithium is the negative electrode to assemble an all-solid-state battery.
  • the battery can cycle stably for 1500 cycles at 1C, with a capacity retention rate of 90.5%.
  • the chemical formula of the sulfide solid electrolyte material in this comparative example is Li 6 PS 5 Cl.
  • the difference between its preparation method and Example 1 is that in Comparative Example 1, 2 parts by weight of absolute ethanol and 1 part by weight of the raw materials (Li 2 S, P The molar mass ratio of 2 S 5 and LiCl is 5:1:2), and the others are the same as in Example 1.
  • the particle size of the prepared sulfide solid electrolyte is 5 ⁇ m, and the ionic conductivity of the electrolyte at room temperature is 2 ⁇ 10 -3 S/cm.
  • LiCoO 2 is used as the cathode active material, LiCoO 2 accounts for 70% of the mass of the composite cathode material, the above-mentioned electrolyte is the electrolyte layer, and metallic lithium is the negative electrode to assemble an all-solid-state battery.
  • the battery can be cycled stably for 100 cycles at 0.1C, with a capacity retention rate of 82%.
  • the chemical formula of the sulfide solid electrolyte material in this comparative example is Li 6 PS 5 Cl.
  • Comparative Example 2 does not have a solubilizing agent mixed with the raw materials, and is otherwise the same as Example 1.
  • the particle size of the prepared sulfide solid electrolyte is 10-50 ⁇ m, and the room temperature ion conductivity of the electrolyte is 2.2 ⁇ 10 -3 S/cm.
  • LiCoO 2 is used as the cathode active material, LiCoO 2 accounts for 70% of the mass of the composite cathode material, the above-mentioned electrolyte is the electrolyte layer, and metallic lithium is the negative electrode to assemble an all-solid-state battery.
  • the battery can cycle stably for 100 cycles at 0.1C, with a capacity retention rate of 80%.
  • the sulfide solid electrolyte material in this comparative example is Li 10 GeP 2 S 12 and Li 7 P 2 S 8 I composite sulfide solid electrolyte.
  • the difference between its preparation method and Example 13 is that: Comparative Example 3 does not add a dispersant (Q (Through pull), other aspects are the same as in Example 13.
  • the particle size of the prepared sulfide solid electrolyte is about 10 ⁇ m, and the ionic conductivity of the electrolyte at room temperature is 7 ⁇ 10 -3 S/cm.
  • LiCoO 2 is used as the cathode active material, LiCoO 2 accounts for 70% of the mass of the composite cathode material, the above-mentioned electrolyte is the electrolyte layer, and metallic lithium is the negative electrode to assemble an all-solid-state battery.
  • the battery can be cycled stably for 100 cycles at 0.1C, with a capacity retention rate of 83%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Conductive Materials (AREA)

Abstract

本发明提供一种纳米尺寸硫化物固体电解质材料的制备方法,该制备方法包括以下步骤:1)、制备硫化锂材料;2)、将10~100重量份溶剂、0~1质量份分散剂、1重量份包含硫化锂材料的原料,在密闭容器内混合,干燥得到电解质前驱体粉末;3)、将步骤2)得到的电解质前驱体粉末进行热处理,粉碎研磨,得到纳米尺寸硫化物固体电解质材料。本发明制备工艺简单,制备出的电解质尺寸可达纳米级。

Description

一种纳米尺寸硫化物固体电解质材料及其制备方法 技术领域
本发明属于电池技术领域,涉及一种纳米尺寸硫化物固体电解质材料及其制备方法。
背景技术
锂离子电池已广泛应用于众多领域,包括便携式电子产品、电动汽车、电网存储等。然而,对于未来高续航里程的电动汽车,则需要更高的能量密度,而商业锂离子电池的能量密度已达到极限。此外,高度易燃的液体电解质的泄漏和热不稳定性对商业锂离子电池造成了严重的安全问题。为了解决这些问题,全固态锂电池技术已被广泛认为是最有前途的候选技术之一。
无机固体电解质不泄漏和不挥发,并具有宽的电位窗口和更高的热稳定性,从而大大提高了锂离子电池的安全性。其次,其通过成功选用锂负极,可以大大提高电池能量密度,同时,无机固体电解质相较于液体电解质更适用于高压正极材料。无机固态电解中,硫化物固体电解质具有较高的电导率,机械性能好。
目前,硫化物电解质颗粒尺寸较大(5~10μm),电解质颗粒比表面积小,因此,全固态锂电池的复合正极材料中需添加质量比30%以上的电解质粉末,以保证正极层中活性物质与电解质充分接触,实现正常离子传输,从而降低了正极材料中活性物质成分含量。
发明内容
本发明针对现有技术中的不足,提供一种纳米尺寸的硫化物固体电解质材料及其制备方法,该方法通过加入多种溶剂和分散剂以达到细化晶粒组织、减少颗粒尺寸的目的。
本发明一个方面提供了一种纳米尺寸硫化物固体电解质材 料,所述纳米尺寸硫化物固体电解质材料具有式Ⅰ、式Ⅱ、式Ⅲ所示的化学式中的一种或多种:
(100-x-y)Li2S·xP2S5·yMmNn    式Ⅰ,
其中0≤x<100,0≤y<100,0≤x+y<100,0≤m<4,0≤n<6,M为Li、Ge、Si、Sn、Sb中的一种或多种,N为Se、O、Cl、Br、I中的一种或多种;
Li10±lGe1-gGgP2-qQqS12-wWw    式Ⅱ,
其中,0≤l<1,0≤g≤1,0≤q≤2,0≤w<1,G为Si和/或Sn,Q为Sb,W为O、Se、Cl、Br、I中的一种或多种;
Li6±lP1-eEeS5±l-rRrX1±l    式Ⅲ,
其中,0≤l<1,0≤e<1,0≤r<1,E为Ge、Si、Sn、Sb中的一种或多种,R为O和/或Se,X为Cl、Br、I中的一种或多种;
所述纳米尺寸硫化物固体电解质材料的尺寸为10~500nm。
本发明提供的硫化物固体电解质材料具有纳米尺寸,尺寸为10~500nm,其作为电池电解质,可有效提高与正极活性物质的接触面积和离子输运能力,进而提高复合正极中活性物质占比,有利于电池性能的提升。
作为优选,所述纳米尺寸硫化物固体电解质材料的尺寸为10~100nm。
作为优选,所述纳米尺寸硫化物固体电解质材料的室温离子电导率为1×10-4~1×10-1S/cm。本文中的室温指的是15~35℃。
作为优选,所述纳米尺寸硫化物固体电解质材料的室温离子电导率1×10-3~5×10-2S/cm。
本发明另一个方面提供了纳米尺寸硫化物固体电解质材料的制备方法,包括以下步骤:
1)、制备硫化锂材料;
2)、将10~100重量份溶剂、0~1质量份分散剂、1重量份包含硫化锂材料的原料,在密闭容器内混合,干燥得到电解质前驱 体粉末;
3)、将步骤2)得到的电解质前驱体粉末进行热处理,粉碎研磨,得到纳米尺寸硫化物固体电解质材料。
本发明通过加入多种溶剂或同时加入多种溶剂和分散剂以提高电解质晶体成核率,另一方面,依靠机械分散,使成长中的枝晶破碎,增加晶核数量,从而达到细化晶粒组织、减小颗粒尺寸的目的。
作为优选,硫化锂材料的制备方法包括球磨法、碳热还原法、锂化含硫化学物质、硫化金属锂纳米颗粒、含锂和含硫物质互相反应中的一种或几种。
作为优选,步骤2)中的溶剂为甲苯、氯苯、二甲苯、碳酸二甲酯、N-甲基甲酰胺、正己烷、甘醇二甲醚、二丁醚、乙醇、1,2-乙二胺、1,2-乙二硫醇、乙腈、四氢呋喃、甲醇、异丙醚、丙酮、己烯、乙酸乙酯中的一种或几种的混合。
作为优选,步骤2)中的分散剂为曲拉通X-100、六偏磷酸钠、焦磷酸钠、三聚磷酸钠、十二烷基硫酸钠、月桂基硫酸铵、月桂基醚硫酸钠、聚乙烯吡咯烷酮、Pluronic F-127、吐温80、十六烷基三甲基溴化铵中的一种或几种的混合。
作为优选,步骤2)中,分散剂的质量份为:0<分散剂的质量份≤1。本发明同时加入多种溶剂和分散剂,有利于降低颗粒尺寸。
作为优选,步骤2)中的混合方式包括机械搅拌、机械振荡、超声分散、球磨、辊磨中的一种或几种的混合。
作为优选,混合时间为1~48小时。
作为优选,所述干燥方法为减压抽滤、真空干燥、鼓风干燥的一种或几种的混合。
作为优选,步骤2)中的干燥温度为10~100℃,干燥时间为1~48小时。
作为优选,步骤3)的热处理温度为100~600℃,热处理时长为0.5~24小时。
本发明另一个方面提供了一种全固态锂电池,包括正极、负极和所述纳米尺寸硫化物固体电解质材料。
作为优选,正极中活性物质质量百分比为70~99.9%。所述的活性物质没有限制,不限具体种类,只要本领域技术人员熟知的电极活性材料都可以用于本发明。
与现有技术相比,本发明具有以下有益效果:
1、本发明的硫化物固体电解质材料为纳米尺寸,尺寸为10~500nm;
2、本发明的纳米尺寸硫化物固体电解质材料具有较高的离子电导率;
3、本发明提供的制备方法中,通过加入原料质量10~100倍的溶剂,并结合机械分散,达到细化晶粒组织、减小颗粒尺寸的目的,从而获得纳米尺寸电解质材料;
4、本发明提供的制备方法中同时加入溶剂和分散剂,通过溶剂和分散剂的配合使用,大大降低材料尺寸;
5、以本发明的纳米尺寸硫化物固体电解质材料作为全固态锂电池的电解质,可有效提高与正极活性物质的接触面积和离子输运能力,进而提高复合正极中活性物质占比至70~99.9%,有利于电池性能的提升。
附图说明
图1为实施例1的Li6PS5Cl的扫描电镜图。
图2为实施例1的Li6PS5Cl的交流阻抗谱图。
图3为实施例1的电池的循环性能图。
图4为实施例1的电池的充放电曲线图。
图5为实施例2的Li5.4PS4.4Cl1.6的扫描电镜图。
图6为实施例2的Li5.4PS4.4Cl1.6的交流阻抗谱图。
图7为实施例2的电池的循环性能图。
图8为实施例2的电池的充放电曲线图。
具体实施方式
下面通过具体实施例和附图,对本发明的技术方案作进一步描述说明,应当理解的是,此处所描述的具体实施例仅用于帮助理解本发明,不用于本发明的具体限制。如果无特殊说明,本发明的实施例中所采用的原料均为本领域常用的原料,实施例中所采用的方法,均为本领域的常规方法。
实施例1
本实施例的硫化物固体电解质材料化学式为Li6PS5Cl,其通过以下制备方法获得:
1)、硫化锂通过含锂和含硫物质互相反应制备,金属锂和单质硫分别溶解于乙醚,物质的量比例为2.1:1,混合后减压蒸馏,反应得到硫化锂;
2)、在手套箱中,将20重量份无水乙腈与1重量份原料(Li2S、P2S5和LiCl的摩尔质量比为5:1:2)混合,在容器内300r/min搅拌混合24小时后,80℃下进行减压抽滤至没有明显的溶剂,转移到真空烘箱中80℃下真空干燥12小时,自然冷却到室温,得到电解质前驱体粉末;
3)、将得到的电解质前驱体粉末,在惰性气氛(氩气)保护下520℃热处理4小时,自然冷却到室温,粉碎研磨,得到纳米尺寸Li6PS5Cl硫化物固体电解质材料。
所制得的纳米尺寸Li6PS5Cl硫化物固体电解质材料,颗粒尺寸为100~200nm,其扫描电镜图见图1。所制得的纳米尺寸Li6PS5Cl硫化物固体电解质材料的交流阻抗谱图见图2,电解质室温离子电导率为2.3×10-3S/cm。
以LiCoO2为正极活性物质,复合正极材料中LiCoO2质量占比85%,上述电解质为电解质层,金属锂为负极,组装全固态电 池。电池在1C下可稳定循环100圈,容量保持率为90%,电池循环性能图见图3,充放电曲线图见图4。
实施例2
本实施例的硫化物固体电解质材料化学式为Li5.4PS4.4Cl1.6,其通过以下制备方法获得:
1)、硫化锂通过硫化金属锂纳米颗粒制备,金属锂纳米颗粒分散在四氢呋喃-正己烷介质中,向内通硫化氢气体和氩气混合气,反应24小时后制得硫化锂;
2)、将10重量份乙醇和乙酸乙酯混合溶剂(乙醇和乙酸乙酯的体积比为4:6)以及1重量份原料(Li2S、P2S5和LiCl的摩尔质量比为3.8:1:3.2),在容器内400r/min搅拌混合24小时后,在80℃下进行减压抽滤,随后80℃下真空干燥12小时,自然冷却到室温,得到电解质前驱体粉末;
3)、将处理好的电解质前驱体粉末,在惰性气氛(氩气)保护下500℃热处理4小时,自然冷却到室温,粉碎研磨,得到纳米尺寸Li5.4PS4.4Cl1.6硫化物固体电解质。
所制得的纳米尺寸硫化物固体电解质,颗粒尺寸约为50~100nm,其扫描电镜图见图5。所制得的纳米尺寸硫化物固体电解质材料的交流阻抗谱图见图6,电解质室温离子电导率为3.2×10-3S/cm。
以LiNi0.8Co0.1Mn0.1O2为正极活性物质,复合正极材料中LiNi0.8Co0.1Mn0.1O2质量占比95%,上述电解质为电解质层,金属锂为负极,组装全固态电池。电池在1C下可稳定循环170圈,容量保持率为83%,电池循环性能图见图7,充放电曲线图见图8。
实施例3
本实施例的硫化物固体电解质材料化学式为Li3PS4,其通过以下制备方法获得:
1)、Li2S通过锂化含硫化学物质制备,氢气气氛下加热硫单质和无水氢氧化锂制备得到硫化锂;
2)、将25重量份四氢呋喃与0.01质量份曲拉通X-100混合,然后加入1重量份原料(Li2S、P2S5摩尔比为3:1),在混合容器内300回/min振荡混合24小时后,在70℃下进行减压抽滤,随后70℃下真空干燥12小时,自然冷却到室温,得到电解质前驱体粉末;
3)、将处理好的电解质前驱体粉末,在惰性气氛(氩气)保护下250℃热处理4小时,自然冷却到室温,粉碎研磨,得到Li3PS4纳米尺寸硫化物固体电解质。
所制得的纳米尺寸硫化物固体电解质,颗粒尺寸约为50nm,电解质室温离子电导率为2.1×10-4S/cm。
以LiCoO2为正极活性物质,复合正极材料中LiCoO2质量占比85%,上述电解质为电解质层,金属锂为负极,组装全固态电池。电池在0.1C下可稳定循环100圈,容量保持率为86.1%。
实施例4
本实施例的硫化物固体电解质材料化学式为Li7P3S11,其通过以下制备方法获得:
1)、Li2S通过碳热还原法制备,无水硫酸锂、葡萄糖和硬碳按照1:2:5的质量比混合,在氢气气氛下加热至900℃反应制备硫化锂;
2)、将50重量份甲苯与0.1质量份六偏磷酸钠混合,然后加入1重量份原料(Li2S和P2S5的摩尔质量比为7:3),在容器内500回/min振荡混合24小时后,100℃下进行减压抽滤至没有明显的溶剂,转移到真空烘箱中100℃下真空干燥12小时,自然冷却到室温,得到电解质前驱体粉末;
3)、将处理好的电解质前驱体粉末,在惰性气氛(氩气)保护下260℃热处理4小时,自然冷却到室温,粉碎研磨,得到纳 米尺寸Li7P3S11硫化物固体电解质。
所制得的纳米尺寸硫化物固体电解质,颗粒尺寸约为60nm,电解质室温离子电导率为1.2×10-3S/cm。
以LiNi0.6Co0.2Mn0.2O2为正极活性物质,复合正极材料中LiNi0.6Co0.2Mn0.2O2质量占比88%,上述电解质为电解质层,金属锂为负极,组装全固态电池。电池在1C下可稳定循环500圈,容量保持率为90.3%。
实施例5
本实施例的硫化物固体电解质材料化学式为Li6PS5Cl,其通过以下制备方法获得:
1)、Li2S通过球磨法制备,将干燥的硫粉与氢化锂粉按物质的量比1:3混合,加入球磨罐中,室温下400r/min条件下球磨24小时,得到硫化锂;
2)、将30重量份四氢呋喃和乙醇混合溶剂(四氢呋喃和乙醇的体积比为2:1)与0.01质量份聚乙烯吡络烷酮混合,加入1重量份原料(Li2S、P2S5和LiCl的摩尔质量比为5:1:2),在球磨罐内500r/min球磨混合24小时后,70℃下真空干燥24小时,自然冷却到室温,得到电解质前驱体粉末;
3)、将处理好的电解质前驱体粉末,在惰性气氛(氩气)保护下550℃热处理4小时,自然冷却到室温,粉碎研磨,得到纳米尺寸Li6PS5Cl硫化物固体电解质。
所制得的纳米尺寸硫化物固体电解质,颗粒尺寸约为80nm,电解质室温离子电导率为3.1×10-3S/cm。
以LiCoO2为正极活性物质,复合正极材料中LiCoO2质量占比85%,上述电解质为电解质层,金属锂为负极,组装全固态电池。电池在2C下可稳定循环100圈,容量保持率为90.1%。
实施例6
本实施例的硫化物固体电解质材料通过以下制备方法获得:
1)、Li2S通过球磨法制备,将干燥的硫粉与氢化锂粉按物质的量比1:2混合,加入球磨罐中,室温下500r/min条件下球磨12小时,得到硫化锂;
2)、将42重量份氯苯和乙酸乙酯混合溶剂(氯苯和乙酸乙酯的体积比为4:6)与0.01质量份吐温80混合,然后加入1重量份原料(Li2S、P2S5和GeS2的摩尔质量比为5:1:1),在球磨罐内300r/min球磨混合24小时后,80℃下真空干燥24小时,自然冷却到室温,得到电解质前驱体粉末;
3)、将处理好的电解质前驱体粉末,在惰性气氛(氩气)保护下600℃热处理4小时,自然冷却到室温,粉碎研磨,得到纳米尺寸Li10GeP2S12和Li3PS4复合硫化物固体电解质。
所制得的纳米尺寸硫化物固体电解质,颗粒尺寸约为20nm,电解质室温离子电导率为1.1×10-2S/cm。
以LiNi0.8Co0.15Al0.05O2为正极活性物质,复合正极材料中LiNi0.8Co0.15Al0.05O2质量占比99%,上述电解质为电解质层,金属锂为负极,组装全固态电池。电池在2C下可稳定循环500圈,容量保持率为94.1%。
实施例7
本实施例的硫化物固体电解质材料通过以下制备方法获得:
1)、Li2S通过球磨法制备,将干燥的硫粉与氢化锂粉按物质的量比1:2.5混合,加入球磨罐中,室温下300r/min条件下球磨24小时,得到硫化锂;
2)、将15重量份无水乙腈与0.01质量份曲拉通X-100混合,然后加入1重量份原料(Li2S、P2S5和GeS2的摩尔质量比为5:1:1),在容器内600r/min搅拌混合24小时后,在80℃下进行减压抽滤,随后80℃下真空干燥12小时,自然冷却到室温,得到电解质前驱体粉末;
3)、将处理好的电解质前驱体粉末,在惰性气氛(氩气)保 护下600℃热处理4小时,自然冷却到室温,粉碎研磨,得到纳米尺寸Li10GeP2S12和Li3PS4复合硫化物固体电解质。
所制得的纳米尺寸硫化物固体电解质,颗粒尺寸约为70nm,电解质室温离子电导率为1.2×10-2S/cm。
以LiNi0.5Mn1.5O4为正极活性物质,复合正极材料中LiNi0.5Mn1.5O4质量占比85%,上述电解质为电解质层,金属锂为负极,组装全固态电池。电池在3C下可稳定循环300圈,容量保持率为91.2%。
实施例8
本实施例的硫化物固体电解质材料化学式为Li6PS5Br,其通过以下制备方法获得:
1)、Li2S通过球磨法及含锂和含硫物质互相反应制备,金属锂和单质硫分别溶解于四氢呋喃,物质的量比例为2.2:1,球磨法200r/min混合24小时后减压蒸馏,反应得到硫化锂;
2)、在手套箱中,将25重量份碳酸二甲酯与0.01质量份三聚磷酸钠混合,然后加入1重量份原料(Li2S、P2S5和LiBr的摩尔质量比为5:1:2),在容器内超声分散混合24小时后,在80℃下进行减压抽滤,随后90℃下真空干燥12小时,自然冷却到室温,得到电解质前驱体粉末;
3)、将处理好的电解质前驱体粉末,在惰性气氛(氩气)保护下550℃热处理4小时,自然冷却到室温,粉碎研磨,得到纳米尺寸Li6PS5Br硫化物固体电解质。
所制得的纳米尺寸硫化物固体电解质,颗粒尺寸约为40nm,电解质室温离子电导率为7.2×10-4S/cm。
以LiCoO2为正极活性物质,复合正极材料中LiCoO2质量占比83%,上述电解质为电解质层,金属锂为负极,组装全固态电池。电池在0.1C下可稳定循环100圈,容量保持率为92.6%。
实施例9
本实施例的硫化物固体电解质材料化学式为Li5.4PS4.4Cl1.2Br0.4,其通过以下制备方法获得:
1)、Li2S通过球磨法制备,将干燥的硫粉与氢化锂粉按物质的量比1:1混合,加入球磨罐中,室温下100r/min条件下球磨24小时,得到硫化锂;
2)、将64重量份四氢呋喃和乙醇混合溶剂(四氢呋喃和乙醇的体积比为2:1)与0.01质量份月桂基醚硫酸钠混合,然后加入1重量份原料(Li2S、P2S5、LiCl和LiBr的摩尔质量比为3.8:1:2.4:0.8),在容器内300r/min辊磨混合24小时后,在120℃下进行减压抽滤,随后120℃下真空干燥12小时,自然冷却到室温,得到电解质前驱体粉末;
3)、将处理好的电解质前驱体粉末,在惰性气氛(氩气)保护下550℃热处理4小时,自然冷却到室温,粉碎研磨,得到纳米尺寸Li5.4PS4.4Cl1.2Br0.4硫化物固体电解质。
所制得的纳米尺寸硫化物固体电解质,颗粒尺寸约为30nm,电解质室温离子电导率为6.8×10-3S/cm。
以Co9S8为正极活性物质,复合正极材料中Co9S8质量占比90%,上述电解质为电解质层,金属锂为负极,组装全固态电池。电池在1C下可稳定循环100圈,容量保持率为90.4%。
实施例10
本实施例的硫化物固体电解质材料化学式为Li5.4PS4.4Cl1.6,其通过以下制备方法获得:
1)、Li2S通过硫化金属锂纳米颗粒法制备,金属锂纳米颗粒分散在四氢呋喃-正己烷介质中,向内通硫化氢气体和氩气混合气,反应24小时后制得硫化锂;
2)、在75重量份乙腈中加入1重量份原料(Li2S、P2S5和LiCl的摩尔质量比为3.8:1:3.2),在容器内400r/min辊磨混合24小时后,在70℃下进行减压抽滤,随后70℃下真空干燥12小 时,自然冷却到室温,得到电解质前驱体粉末;
3)、将处理好的电解质前驱体粉末,在惰性气氛(氩气)保护下500℃热处理4小时,自然冷却到室温,粉碎研磨,得到纳米尺寸Li5.4PS4.4Cl1.6硫化物固体电解质。
所制得的纳米尺寸硫化物固体电解质,颗粒尺寸约为150nm,电解质室温离子电导率为6.2×10-3S/cm。
以LiCoO2为正极活性物质,复合正极材料中LiCoO2质量占比80%,上述电解质为电解质层,金属锂为负极,组装全固态电池。电池在0.5C下可稳定循环500圈,容量保持率为90.3%。
实施例11
本实施例的硫化物固体电解质材料化学式为Li7P2S8I,其通过以下制备方法获得:
1)、Li2S通过含锂和含硫物质互相反应制备,金属锂和单质硫分别溶解于甲苯,物质的量比例为2.1:1,混合后减压蒸馏,反应得到硫化锂;
2)、在手套箱中,将90重量份丙酮与0.01质量份曲拉通X-100混合,然后加入1重量份原料(Li2S、P2S5和LiI的摩尔质量比为3:1:1),在容器内搅拌混合24小时后,在60℃下进行减压抽滤,随后60℃下真空干燥12小时,自然冷却到室温,得到电解质前驱体粉末;
3)、将处理好的电解质前驱体粉末,在惰性气氛(氩气)保护下200℃热处理4小时,自然冷却到室温,粉碎研磨,得到纳米尺寸Li7P2S8I硫化物固体电解质。
所制得的纳米尺寸硫化物固体电解质,颗粒尺寸约为100nm,电解质室温离子电导率为1.4×10-4S/cm。
以LiNi0.6Co0.2Mn0.2O2为正极活性物质,复合正极材料中LiNi0.6Co0.2Mn0.2O2质量占比75%,上述电解质为电解质层,金属锂为负极,组装全固态电池。电池在0.1C下可稳定循环500圈, 容量保持率为90.3%。
实施例12
本实施例的硫化物固体电解质材料通过以下制备方法获得:
1)、Li2S通过球磨法制备,将干燥的硫粉与氢化锂粉按物质的量比1:2混合,加入球磨罐中,室温下500r/min条件下球磨12小时,得到硫化锂;
2)、将55重量份己烯与0.01质量份十六烷基三甲基溴化铵混合,然后加入1重量份原料(Li2S、P2S5和GeS2的摩尔质量比为5:1:1),在容器内500回/min振荡混合24小时后,在70℃下进行减压抽滤,随后70℃下真空干燥12小时,自然冷却到室温,得到电解质前驱体粉末;
3)、将处理好的电解质前驱体粉末,在惰性气氛(氩气)保护下600℃热处理4小时,自然冷却到室温,粉碎研磨,得到纳米尺寸Li10GeP2S12和Li7P2S8I复合硫化物固体电解质。
所制得的纳米尺寸硫化物固体电解质,颗粒尺寸约为90nm,电解质室温离子电导率为9.38×10-3S/cm。
以LiCoO2为正极活性物质,复合正极材料中LiCoO2质量占比83%,上述电解质为电解质层,金属锂为负极,组装全固态电池。电池在1C下可稳定循环500圈,容量保持率为91.5%。
实施例13
本实施例的硫化物固体电解质材料通过以下制备方法获得:
1)、Li2S通过球磨法制备,将干燥的硫粉与氢化锂粉按物质的量比1:2混合,加入球磨罐中,室温下500r/min条件下球磨12小时,得到硫化锂;
2)、将55重量份己烯和乙醇混合溶液(己烯和乙醇体积比为3:2)与0.01质量曲通拉混合,然后加入1重量份原料(Li2S、P2S5和GeS2的摩尔质量比为5:1:1),在容器内500回/min振荡混合24小时后,在70℃下进行减压抽滤,随后70℃下真空干燥12 小时,自然冷却到室温,得到电解质前驱体粉末;
3)、将处理好的电解质前驱体粉末,在惰性气氛(氩气)保护下600℃热处理4小时,自然冷却到室温,粉碎研磨,得到纳米尺寸Li10GeP2S12和Li7P2S8I复合硫化物固体电解质。
所制得的纳米尺寸硫化物固体电解质,颗粒尺寸约为60nm,电解质室温离子电导率为9.62×10-3S/cm。
以LiCoO2为正极活性物质,复合正极材料中LiCoO2质量占比90%,上述电解质为电解质层,金属锂为负极,组装全固态电池。电池在1C下可稳定循环1500圈,容量保持率为90.5%。
对比例1
本对比例的硫化物固体电解质材料化学式为Li6PS5Cl,其制备方法与实施例1的区别在于:对比例1将2重量份无水乙醇中与1重量份原料(Li2S、P2S5和LiCl的摩尔质量比为5:1:2)混合,其它与实施例1相同。
所制得的硫化物固体电解质,颗粒尺寸为5μm,电解质室温离子电导率为2×10-3S/cm。
以LiCoO2为正极活性物质,复合正极材料中LiCoO2质量占比70%,上述电解质为电解质层,金属锂为负极,组装全固态电池。电池在0.1C下可稳定循环100圈,容量保持率为82%。
对比例2
本对比例的硫化物固体电解质材料化学式为Li6PS5Cl,其制备方法与实施例1的区别在于:对比例2没有加溶剂与原料混合,其它与实施例1相同。
所制得的硫化物固体电解质,颗粒尺寸为10~50μm,电解质室温离子电导率为2.2×10-3S/cm。
以LiCoO2为正极活性物质,复合正极材料中LiCoO2质量占比70%,上述电解质为电解质层,金属锂为负极,组装全固态电池。电池在0.1C下可稳定循环100圈,容量保持率为80%。
对比例3
本对比例的硫化物固体电解质材料为Li10GeP2S12和Li7P2S8I复合硫化物固体电解质,其制备方法与实施例13的区别在于:对比例3没有添加分散剂(曲通拉),其它与实施例13相同。
所制得的硫化物固体电解质,颗粒尺寸为10μm左右,电解质室温离子电导率为7×10-3S/cm。
以LiCoO2为正极活性物质,复合正极材料中LiCoO2质量占比70%,上述电解质为电解质层,金属锂为负极,组装全固态电池。电池在0.1C下可稳定循环100圈,容量保持率为83%。
最后应说明的是,本文中所描述的具体实施例仅仅是对本发明精神作举例说明,而并非对本发明的实施方式的限定。本发明所属技术领域的技术人员可以对所描述的具有实施例做各种各样的修改或补充或采用类似的方式替代,这里无需也无法对所有的实施方式予以全例。而这些属于本发明的实质精神所引申出的显而易见的变化或变动仍属于本发明的保护范围,把它们解释成任何一种附加的限制都是与本发明精神相违背的。

Claims (14)

  1. 一种纳米尺寸硫化物固体电解质材料,其特征在于,所述纳米尺寸硫化物固体电解质材料具有式Ⅰ、式Ⅱ、式Ⅲ所示的化学式中的一种或多种:
    (100-x-y)Li2S·xP2S5·yMmNn      式Ⅰ,
    其中0≤x<100,0≤y<100,0≤x+y<100,0≤m<4,0≤n<6,M为Li、Ge、Si、Sn、Sb中的一种或多种,N为Se、O、Cl、Br、I中的一种或多种;
    Li10±lGe1-gGgP2-qQqS12-wWw     式Ⅱ,
    其中,0≤l<1,0≤g≤1,0≤q≤2,0≤w<1,G为Si和/或Sn,Q为Sb,W为O、Se、Cl、Br、I中的一种或多种;
    Li6±lP1-eEeS5±l-rRrX1±l     式Ⅲ,
    其中,0≤l<1,0≤e<1,0≤r<1,E为Ge、Si、Sn、Sb中的一种或多种,R为O和/或Se,X为Cl、Br、I中的一种或多种;
    所述纳米尺寸硫化物固体电解质材料的尺寸为10~500nm。
  2. 根据权利要求1所述的纳米尺寸硫化物固体电解质材料,其特征在于,所述纳米尺寸硫化物固体电解质材料的尺寸为10~100nm。
  3. 根据权利要求1所述的纳米尺寸硫化物固体电解质材料,其特征在于,所述纳米尺寸硫化物固体电解质材料的室温离子电导率为1×10-4~1×10-1S/cm。
  4. 一种如权利要求1所述的一种纳米尺寸硫化物固体电解质材料的制备方法,其特征在于,包括以下步骤:
    1)、制备硫化锂材料;
    2)、将10~100重量份溶剂、0~1质量份分散剂、1重量份包含硫化锂材料的原料,在密闭容器内混合,干燥得到电解质前驱体粉末;
    3)、将步骤2)得到的电解质前驱体粉末进行热处理,粉碎研磨,得到纳米尺寸硫化物固体电解质材料。
  5. 根据权利要求4所述的制备方法,其特征在于,硫化锂材料的制备方法包括球磨法、碳热还原法、锂化含硫化学物质、硫化金属锂纳米颗粒、含锂和含硫物质互相反应中的一种或几种。
  6. 根据权利要求4所述的制备方法,其特征在于,步骤2)中的溶剂为甲苯、氯苯、二甲苯、碳酸二甲酯、N-甲基甲酰胺、正己烷、甘醇二甲醚、二丁醚、乙醇、1,2-乙二胺、1,2-乙二硫醇、乙腈、四氢呋喃、甲醇、异丙醚、丙酮、己烯、乙酸乙酯中的一种或几种的混合。
  7. 根据权利要求4所述的制备方法,其特征在于,步骤2)中的分散剂为曲拉通X-100、六偏磷酸钠、焦磷酸钠、三聚磷酸钠、十二烷基硫酸钠、月桂基硫酸铵、月桂基醚硫酸钠、聚乙烯吡咯烷酮、Pluronic F-127、吐温80、十六烷基三甲基溴化铵中的一种或几种的混合。
  8. 根据权利要求4所述的制备方法,其特征在于,步骤2)中,分散剂的质量份为:0<分散剂的质量份≤1。
  9. 根据权利要求4所述的制备方法,其特征在于,步骤2)中的混合方式包括机械搅拌、机械震荡、超声分散、球磨、辊磨中的一种或几种的混合。
  10. 根据权利要求4所述的制备方法,其特征在于,步骤2)中的混合时间为1~48小时。
  11. 根据权利要求4所述的制备方法,其特征在于,步骤2)中的干燥温度为10~100℃,干燥时间为1~48小时。
  12. 根据权利要求4所述的制备方法,其特征在于,步骤3)的热处理温度为100~600℃,热处理时长为0.5~24小时。
  13. 一种全固态锂电池,其特征在于,包括正极、负极和权利要求1所述的纳米尺寸硫化物固体电解质材料。
  14. 根据权利要求13所述的全固态锂电池,其特征在于,正极中活性物质质量百分比为70~99.9%。
PCT/CN2023/097289 2022-09-02 2023-05-31 一种纳米尺寸硫化物固体电解质材料及其制备方法 WO2024045723A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237034455A KR20240032709A (ko) 2022-09-02 2023-05-31 나노 사이즈 황화물 고체 전해질 소재 및 이의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211068813.5A CN115133117B (zh) 2022-09-02 2022-09-02 一种纳米尺寸硫化物固体电解质材料及其制备方法
CN202211068813.5 2022-09-02

Publications (1)

Publication Number Publication Date
WO2024045723A1 true WO2024045723A1 (zh) 2024-03-07

Family

ID=83387425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097289 WO2024045723A1 (zh) 2022-09-02 2023-05-31 一种纳米尺寸硫化物固体电解质材料及其制备方法

Country Status (3)

Country Link
KR (1) KR20240032709A (zh)
CN (1) CN115133117B (zh)
WO (1) WO2024045723A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133117B (zh) * 2022-09-02 2022-12-23 中国科学院宁波材料技术与工程研究所 一种纳米尺寸硫化物固体电解质材料及其制备方法
CN116093420B (zh) * 2022-10-17 2023-11-17 中国科学院精密测量科学与技术创新研究院 一种硒代硫化物固体电解质材料及其制备方法
CN115425286A (zh) * 2022-11-04 2022-12-02 中国科学院宁波材料技术与工程研究所 一种基于纳米硫化物固体电解质的薄膜、制备方法和应用
CN115838287B (zh) * 2023-02-10 2023-06-27 中国科学院宁波材料技术与工程研究所 多步烧结制备硫化物电解质的方法及制备的硫化物电解质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244445A (zh) * 2018-09-20 2019-01-18 邹帅 一种高性能、超细钛酸锂纳米颗粒制备工艺
CN110534801A (zh) * 2019-09-05 2019-12-03 中国科学院宁波材料技术与工程研究所 全固态电解质材料及其制备方法及全固态二次电池
CN111129579A (zh) * 2019-12-12 2020-05-08 桑德新能源技术开发有限公司 一种硫化物固态电解质材料及其制备方法与固态电池
CN114245945A (zh) * 2019-09-20 2022-03-25 出光兴产株式会社 固体电解质的制造方法
US20220231330A1 (en) * 2021-01-20 2022-07-21 Battelle Memorial Institute Method for preparing lithium phosphate sulfide solid electrolytes
CN115133117A (zh) * 2022-09-02 2022-09-30 中国科学院宁波材料技术与工程研究所 一种纳米尺寸硫化物固体电解质材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109244445A (zh) * 2018-09-20 2019-01-18 邹帅 一种高性能、超细钛酸锂纳米颗粒制备工艺
CN110534801A (zh) * 2019-09-05 2019-12-03 中国科学院宁波材料技术与工程研究所 全固态电解质材料及其制备方法及全固态二次电池
CN114245945A (zh) * 2019-09-20 2022-03-25 出光兴产株式会社 固体电解质的制造方法
CN111129579A (zh) * 2019-12-12 2020-05-08 桑德新能源技术开发有限公司 一种硫化物固态电解质材料及其制备方法与固态电池
US20220231330A1 (en) * 2021-01-20 2022-07-21 Battelle Memorial Institute Method for preparing lithium phosphate sulfide solid electrolytes
CN115133117A (zh) * 2022-09-02 2022-09-30 中国科学院宁波材料技术与工程研究所 一种纳米尺寸硫化物固体电解质材料及其制备方法

Also Published As

Publication number Publication date
CN115133117A (zh) 2022-09-30
CN115133117B (zh) 2022-12-23
KR20240032709A (ko) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2024045723A1 (zh) 一种纳米尺寸硫化物固体电解质材料及其制备方法
Chen et al. Chen et al.
WO2022007021A1 (zh) 一种碳包覆富锂氧化物复合材料及其制备方法
WO2021056981A1 (zh) 一种锂电池硅基复合负极材料的制备方法
WO2015188726A1 (zh) 氮掺杂石墨烯包覆纳米硫正极复合材料、其制备方法及应用
CN108899517B (zh) 一种具有铌酸锂/铌基氧化物/硅复合负极材料及其制备和应用
WO2022206910A1 (zh) 无钴高镍正极材料、其制备方法及应用
Wang et al. Safety-reinforced rechargeable Li-CO 2 battery based on a composite solid state electrolyte
Zhao et al. Li4Ti5O12 epitaxial coating on LiNi0. 5Mn1. 5O4 surface for improving the electrochemical performance through solvothermal-assisted processing
WO2023142666A1 (zh) 锂离子电池预锂化剂及其制备方法和应用
WO2021136376A1 (zh) 硅基负极材料及其制备方法、电池和终端
Chen et al. Practical evaluation of prelithiation strategies for next‐generation lithium‐ion batteries
Xu et al. Hydrothermal synthesis of manganese oxides/carbon nanotubes composites as anode materials for lithium ion batteries
WO2023124025A1 (zh) 一种石墨复合负极材料及其制备方法和应用
US11374221B2 (en) Lithium-ion secondary battery
Shi et al. Submicron‐sized Sb2O3 with hierarchical structure as high‐performance anodes for Na‐ion storage
Hu et al. Dispersing SnO2 nanocrystals in amorphous carbon as a cyclic durable anode material for lithium ion batteries
CN114520320B (zh) 一种基于碱金属还原法的氧化锂复合正极材料
CN114335681A (zh) 无机卤化物固态电解质、其制备方法、锂离子电池及应用
Umesh et al. High-Li+-fraction ether-side-chain pyrrolidinium–asymmetric imide ionic liquid electrolyte for high-energy-density Si//Ni-rich layered oxide Li-ion batteries
WO2022237230A1 (zh) 硼氧化物包覆的四元正极材料及其制备方法和应用
Xu et al. In-situ preparation of LixSn-Li2O–LiF/reduced graphene oxide composite anode material with large capacity and high initial Coulombic efficiency
Cheng et al. Preparation of carbon encapsulated Li 4 Ti 5 O 12 anode material for lithium ion battery through pre-coating method
Qiao et al. Solvothermal preparation and lithium storage properties of Fe2O3/C hybrid microspheres
WO2022121280A1 (zh) 一种类石榴结构硅基复合材料、其制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858762

Country of ref document: EP

Kind code of ref document: A1