WO2024045423A1 - 一种在轨单元的自动回仓控制方法及装置 - Google Patents

一种在轨单元的自动回仓控制方法及装置 Download PDF

Info

Publication number
WO2024045423A1
WO2024045423A1 PCT/CN2022/139801 CN2022139801W WO2024045423A1 WO 2024045423 A1 WO2024045423 A1 WO 2024045423A1 CN 2022139801 W CN2022139801 W CN 2022139801W WO 2024045423 A1 WO2024045423 A1 WO 2024045423A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
unit
orbit
warehouse
return
Prior art date
Application number
PCT/CN2022/139801
Other languages
English (en)
French (fr)
Inventor
翁端文
褚如昶
吕新
Original Assignee
浙江衣拿智能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江衣拿智能科技股份有限公司 filed Critical 浙江衣拿智能科技股份有限公司
Publication of WO2024045423A1 publication Critical patent/WO2024045423A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle

Definitions

  • the present application relates to the technical field of automatic control of on-orbit units, and specifically, to an automatic return control method and device for on-orbit units.
  • inspection tracks are generally set up on the roof, and the inspection units running on the rails are used to monitor and supervise the hanging production lines.
  • the inspection unit When the inspection unit is operating on the production line, a fixed setting program can be installed to run automatically and obtain corresponding monitoring data.
  • the inspection unit stops running directly on the track without centralized recycling management. There is a lack of finishing work of the inspection unit, which is not conducive to the centralized management and control of the inspection car and the shutdown inspection.
  • embodiments of the present application provide a method and device for automatic return to the warehouse of an on-orbit unit.
  • the inspection unit automatically controls the inspection unit to complete the parking and shutdown inspection in the warehouse, rationalizes the management and control of the inspection unit, and forms a logical closed-loop control.
  • inventions of the present application provide an automatic return control method for an on-orbit unit.
  • the method includes:
  • the position information of the current on-orbit unit in the track line is obtained, and the target position is assigned to each on-orbit unit;
  • the inspection data After detecting that the warehousing parameters of the on-orbit unit successfully match the target warehouse, the inspection data will be sent to the server/control center. After the data transmission is completed, it will automatically shut down and wait for a restart response.
  • the position information of the current on-orbit unit in the track line is obtained, and the target warehouse is assigned to each on-orbit unit, specifically including:
  • the trigger information for automatic return to the warehouse is sent.
  • the conditions include: active stop operation instruction, fault stop operation instruction, and time-limited stop operation instruction;
  • each on-track unit is assigned an idle position based on the proximity principle, and is defined as a target position, and the status of the position is changed to a predetermined state.
  • each on-orbit unit can be selected in turn, sorted one by one based on the distance between the on-orbit units and the target positions, and the nearest target positions can be allocated.
  • the inspection route during the return process is formulated based on the track line, specifically including:
  • Mark the inspection node based on the track line, and formulate an inspection route for the inspection execution unit with the location of the inspection execution unit as the starting point and the corresponding target warehouse as the end point. Pass through all the inspection nodes;
  • a return route is formulated for all the on-rail units in the return group, and the on-rail units in the return group directly return to the warehouse;
  • a detour route is developed for the other on-rail units in the inspection group.
  • the starting point of the detour route is the position of the on-rail unit and the end point is the target warehouse; the inspection
  • the inspection nodes along which each of the orbiting routes of other on-orbit units in the group pass include all of the inspection nodes;
  • the on-orbit units belonging to the patrol group all obtain patrol data according to the patrol nodes they pass.
  • At least one inspection execution unit is selected in each area.
  • it also includes:
  • the current shutdown inspection log will be generated and saved;
  • the differentiated data of the corresponding node is sent to the staff for manual identification.
  • the deceleration mark corresponding to each of the target positions is associated with each of the on-orbit units.
  • a multi-level deceleration instruction is executed to gradually decelerate into the warehouse, specifically including: :
  • the on-orbit unit When the on-orbit unit runs to the deceleration mark, it is triggered to generate impending information. When the impending information is detected, the on-orbit unit executes a multi-level deceleration instruction, which specifically includes:
  • the number of triggers is the final trigger condition, specifically including:
  • the temporary position information is generated.
  • the inspection data is sent to the server/control center, and after the data transmission is completed, it automatically shuts down and waits for a restart response, which specifically includes:
  • the target warehouse is arranged at an angle, and a pressure sensor is provided on the rear wall of the target warehouse; a warehouse entry detection point is provided at the door of the target warehouse to detect whether the on-orbit unit enters the target warehouse;
  • the warehousing parameters include: the inclination of the on-rail unit when it is located in the target warehouse, and the parameter value of the pressure sensor;
  • the warehousing detection point detects that the on-rail unit is completely warehousing, the parameter value of the pressure sensor is obtained, and the actual inclination of the on-rail unit is obtained,
  • the parameter value is greater than the target pressure value, then determine whether the difference between the actual inclination and the basic parameter exceeds the inclination error range: if not, the on-orbit unit is completed; otherwise, If the on-orbit unit enters the warehouse incorrectly, an identification error report will be sent;
  • the on-orbit unit has not completed warehousing and a deceleration error report is sent;
  • the inspection data will be sent to the server/control center. After completing the data transmission, it will automatically shut down and wait for a restart response.
  • inventions of the present application provide an automatic return control device for an on-rail unit.
  • the device includes:
  • Position allocation module When the trigger information of automatic return to position is detected, the position information of the current on-orbit unit in the track line is obtained, and the target position is assigned to each on-orbit unit;
  • Inspection execution module based on the track line, formulate the inspection route during the return process and obtain inspection data;
  • Deceleration warehousing module associates the deceleration mark corresponding to each target position with each on-orbit unit. When it is detected that the on-orbit unit triggers the deceleration mark, executes multi-level deceleration instructions and gradually decelerates into warehousing;
  • Warehousing confirmation module After detecting that the warehousing parameters of the on-orbit unit successfully match the target warehouse, the inspection data is sent to the server/control center. After the data transmission is completed, the unit automatically shuts down and waits for a restart response.
  • embodiments of the present application provide an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the computer program, the first Method steps provided by any possible implementation manner of the aspect or the first aspect.
  • embodiments of the present application provide a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a processor, the computer program implements the first aspect or any possible implementation of the first aspect. method provided.
  • the present invention is an automatic back-to-storage control method and device for an on-orbit unit, which automatically executes the return operation and performs effective start/stop control of the on-orbit unit without generating start/stop operations during operation control.
  • the back-to-warehouse inspection and return-to-warehouse parking can be automatically completed to eliminate the phenomenon of scattered stops, effectively improving the intelligence of the production line.
  • the present invention utilizes the return process of the patrol inspection unit running in orbit to synchronously complete the manual inspection operation at the end of the shutdown, saving manpower and making full use of the operation characteristics of the inspection unit.
  • Figure 1 is a schematic flow chart of an automatic return control method of an on-orbit unit provided by an embodiment of the present application
  • Figure 2 is a schematic structural diagram of an automatic return control device for an on-rail unit provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only and shall not be understood as indicating or implying relative importance.
  • the following description provides multiple embodiments of the present application. Different embodiments can be replaced or combined. Therefore, the present application can also be considered to include all possible combinations of the same and/or different embodiments described. Thus, if one embodiment contains features A, B, C, and another embodiment contains features B, D, then the application should also be considered to include all other possible combinations containing one or more of A, B, C, D embodiment, although this embodiment may not be explicitly documented in the following content.
  • Figure 1 is a schematic flow chart of an automatic return control method for an on-orbit unit provided by an embodiment of the present application.
  • the method includes:
  • the execution subject of this application can be the monitoring/inspection unit in the hanging production line system, which can be implemented in conjunction with the comprehensive control terminal.
  • the comprehensive control terminal can be a server, control center, soft control platform and other terminals or terminal software.
  • the on-orbit unit can be an inspection unit in the daily production process, equipped with a camera, and has basic functions such as driving force and data transmission.
  • the deceleration sign can be an electronic chip, QR code, etc., with identifiable content.
  • the automatic return of the on-orbit unit can be triggered by an external command or by a machine failure alarm of the internal system; specifically, when one of the following conditions is met, the automatic return is sent Trigger information, the conditions include: active stop operation instructions, fault stop operation instructions, and time-limited stop operation instructions.
  • the active stop operation command can be operated and controlled by the staff and is an intervention type control command;
  • the time-limited stop operation command can be set based on daily working hours and will be executed when the time is reached;
  • the fault stop operation command depends on the internal conditions of the system. Depends on fault conditions, self-triggered.
  • step S101 specifically includes:
  • each on-track unit is assigned an idle position based on the proximity principle, and is defined as a target position, and the status of the position is changed to a predetermined state.
  • the operating status of the on-orbit unit in the track route can be obtained in real time.
  • the position information of the on-orbit unit can be calculated based on the stroke or power supply data; preferably, it can be calculated based on the generated stroke to reduce parameters. Operation.
  • the location of the bin is relatively fixed. After determining the location of the on-rail unit, the nearest free bin to the on-rail unit can be directly calculated.
  • the idle positions when the idle positions are allocated based on the proximity principle, the return journeys between the various on-rail units will interfere with each other, and the idle positions with the minimum distance can be determined first. After the allocation, their status will be changed to the predetermined status, without affecting The next on-orbit unit allocates free positions based on the nearest principle.
  • the target bins of each on-orbit unit can be selected in turn, sorted one by one based on the distance between the on-orbit units and the target bins, and the nearest target bin is allocated.
  • the method of obtaining inspection data and the data collection form can be determined according to the actual situation. It should be clear that when the shutdown operation occurs, the status of each node in the system should meet the corresponding shutdown requirements. Therefore, these nodes can be defined as inspection nodes. During the process of returning to the warehouse, the status of the inspection nodes should be checked. Data acquisition, as a third-party data source, can effectively verify the instruction execution results within the system.
  • the distance between each on-orbit unit and the warehouse is quite different.
  • the on-orbit unit that is closer to the free warehouse can be returned to the warehouse directly without any need to Subsequent inspection operations; on-orbit units far away from the idle warehouse can be used to perform inspection operations and complete automatic return to the warehouse.
  • step S102 specifically includes:
  • Mark the inspection node based on the track line, and formulate an inspection route for the inspection execution unit with the location of the inspection execution unit as the starting point and the corresponding target warehouse as the end point. Pass through all the inspection nodes;
  • a return route is formulated for all the on-rail units in the return group, and the on-rail units in the return group directly return to the warehouse;
  • a warehouse-circulating route is formulated for other on-rail units in the inspection group.
  • the starting point of the warehouse-circulating route is the position of the on-rail unit and the end point is the target warehouse.
  • the return threshold can be adjusted according to the length of the actual track line and the density of inspection nodes, so that the inspection unit that directly returns to the warehouse has as few conditions as possible to obtain the status information of the inspection nodes.
  • the inspection route of the inspection unit should pass through all inspection nodes, and its acquisition of status information of the inspection nodes is always behind the timeline.
  • the inspection nodes passed by each warehouse route of other on-orbit units in the inspection group include all inspection nodes, so that each inspection node has at least two status information acquisitions.
  • At least one inspection execution unit is selected in each area and the inspection route is formulated accordingly.
  • at least two reciprocating operations can be performed to obtain at least two status information.
  • each warehouse is equipped with a deceleration mark in the track line to trigger the deceleration of the on-rail unit so that it can enter the warehouse slowly to avoid phenomena such as failure of warehousing control and errors in warehousing due to excessive speed. produce.
  • Two deceleration signs for each warehouse can be designed based on the track line, which are located upstream and downstream adjacent to the warehouse door, and leave a long enough deceleration distance.
  • step S103 includes:
  • the on-orbit unit When the on-orbit unit runs to the deceleration mark, it is triggered to generate impending information. When the impending information is detected, the on-orbit unit executes a multi-level deceleration instruction, which specifically includes:
  • the on-track unit when the on-track unit reads the identification information in the deceleration mark, it can trigger the multi-level deceleration command and enter the slow-down state.
  • the warehousing track and the main track can be synchronously executed with track merging, Track changes, etc., to meet the prerequisites for warehousing.
  • the speed of the on-orbit unit immediately drops to the first entry speed, and enters the entry track at the first entry speed; when the entry detection point at the warehouse door detects When the unit is on the rail, it will decelerate for the second time, decelerate to the second entry speed, and run in the target warehouse at the second entry speed; when the entry detection point at the warehouse door detects that the on-rail unit has completely entered, Then decelerate for the third time until the displacement is limited when it contacts the rear bin wall and stops running.
  • the pressure sensor installed on the rear warehouse wall gradually increases the feedback parameter value during the contact process. At this time, the changing trend of the parameter value can trigger the on-orbit unit to decelerate to zero and stop running.
  • the number of triggers is the final trigger condition, which specifically includes:
  • the temporary position information is generated.
  • the execution inspection unit may pass the corresponding deceleration mark multiple times when running according to the inspection route. Therefore, in the process of route formulation, the effective number of triggers of the deceleration mark can be limited. The last trigger will be used to generate temporary position information.
  • each triggering of the deceleration mark meets the warehouse entry conditions based on the running direction and the warehouse direction. If it does not meet the warehouse entry conditions, it will be discarded; if it does, the number of times will be accumulated.
  • the target warehouse is arranged at an angle, and a pressure sensor is provided on the rear wall of the target warehouse; an entry detection point is provided at the door of the target warehouse to detect whether the on-orbit unit enters the target warehouse.
  • the entry parameters include: the inclination of the on-orbit unit when it is located in the target warehouse, and the parameter value of the pressure sensor.
  • the inclination of the target position can be detected as a basic parameter, and the basic parameter can be associated with the corresponding target position.
  • the on-orbit unit first triggers the deceleration mark, executes the multi-level deceleration command, then completes the entry confirmation with the entry detection point, and finally contacts the pressure sensor on the rear warehouse wall to generate feedback parameters reaching the bottom of the warehouse. Completed warehousing.
  • step S104 specifically includes:
  • the warehousing detection point detects that the on-rail unit is completely warehousing, the parameter value of the pressure sensor is obtained, and the actual inclination of the on-rail unit is obtained,
  • the parameter value is greater than the target pressure value, then determine whether the difference between the actual inclination and the basic parameter exceeds the inclination error range: if not, the on-orbit unit is completed; otherwise, If the on-orbit unit enters the warehouse incorrectly, an identification error report will be sent;
  • the on-orbit unit has not completed warehousing and a deceleration error report is sent;
  • the inspection data will be sent to the server/control center. After completing the data transmission, it will automatically shut down and wait for a restart response.
  • the inclination of the on-orbit unit does not match the basic parameters of the target bin, it means that the on-orbit unit has entered the wrong target bin, and there may be an error in the recognition of the deceleration mark, and a mark error report should be sent; if the on-orbit unit If the parameter value of the back-end pressure sensor triggered after the unit enters the warehouse does not reach the target pressure value, it means that the deceleration operation of the on-orbit unit is not in place. The result of the multi-level deceleration command is defective in the warehouse, and a deceleration error report should be sent. . Staff can review the reasons based on the attributes of the reports and make optimization improvements.
  • the warehousing After the warehousing is completed, it can self-check whether there is inspection data in the current on-orbit unit. After completing the transmission of the inspection data, it will automatically shut down and wait for the restart response.
  • the inspection data can be transmitted, and it is not limited to whether the warehousing is completed.
  • the server/control platform can also perform secondary verification, identification, analysis, etc. on the received inspection data.
  • the specific steps include:
  • the current shutdown inspection log is generated and saved;
  • the differentiated data of the corresponding node is sent to the staff for manual identification.
  • the patrol execution unit and other on-orbit units in the patrol group all obtain the status data of the patrol node during the process of executing the automatic return to the warehouse, because the status of the patrol node changes. , Therefore, based on the actual situation, there may be differences in the status data obtained by other on-orbit units and the unit performing inspections.
  • the status information obtained by the executing inspection unit is later than that of other on-orbit units.
  • the status information obtained by the executing inspection unit is different from that obtained by other on-orbit units. If the received status information is inconsistent, it means that the status information of the patrol node has changed during this period of time.
  • the status of the inspection nodes should all be in the shutdown state when automatic return to the warehouse is started, so that the status information obtained by the on-orbit units belonging to the inspection group should always be consistent. If there is a difference, explain If the status of a certain node has changed, you should be alert and can be manually confirmed by staff.
  • the automatic return control device of the on-orbit unit provided by the embodiment of the present application will be introduced in detail below with reference to FIG. 2 . It should be noted that the automatic return control device of the on-rail unit shown in Figure 2 is used to execute the method shown in the embodiment of Figure 1 of the present application. For convenience of explanation, only the parts related to the embodiment of the present application are shown. If the specific technical details are not disclosed, please refer to the embodiment shown in Figure 1 of this application.
  • Figure 2 is a schematic structural diagram of an automatic return control device for an on-rail unit provided by an embodiment of the present application. As shown in Figure 2, the device includes:
  • Bin allocation module 201 When the trigger information of automatic return to bin is detected, the position information of the current on-rail unit in the track line is obtained, and the target bin is assigned to each on-rail unit;
  • Inspection execution module 202 Develop an inspection route during the return process based on the track line and obtain inspection data;
  • the deceleration warehousing module 203 associates the deceleration mark corresponding to each target warehouse with each on-orbit unit. When it is detected that the on-orbit unit triggers the deceleration mark, a multi-level deceleration instruction is executed to gradually decelerate the warehousing;
  • Warehousing confirmation module 204 After detecting that the warehousing parameters of the on-orbit unit successfully match the target warehouse, the inspection data will be sent to the server/control center. After completing the data transmission, it will automatically shut down and wait for a restart response.
  • the “units” and “modules” in this specification refer to software and/or hardware that can independently complete or cooperate with other components to complete specific functions.
  • the hardware can be, for example, a field-programmable gate array (Field-Programmable Gate Array, FPGA), integrated circuit (Integrated Circuit, IC) etc.
  • Each processing unit and/or module in the embodiments of this application can be implemented by an analog circuit that implements the functions described in the embodiments of this application, or by software that performs the functions described in the embodiments of this application.
  • the electronic device 300 may include: at least one central processing unit 301 , at least one network interface 304 , a user interface 303 , a memory 305 , and at least one communication bus 302 .
  • the communication bus 302 is used to realize connection communication between these components.
  • the user interface 303 may include a display screen (Display) and a camera (Camera), and the optional user interface 303 may also include a standard wired interface and a wireless interface.
  • Display display screen
  • Camera Camera
  • the optional user interface 303 may also include a standard wired interface and a wireless interface.
  • the network interface 304 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the central processing unit 301 may include one or more processing cores.
  • the central processing unit 301 uses various interfaces and lines to connect various parts of the entire electronic device 300, and by running or executing instructions, programs, code sets or instruction sets stored in the memory 305, and calling data stored in the memory 305, Execute various functions of the terminal 300 and process data.
  • the central processor 301 can use digital signal processing (Digital Signal Processing (DSP), Field-Programmable Gate Array (FPGA), Programmable Logic Array (Programmable Logic Array (PLA) in at least one form of hardware.
  • DSP Digital Signal Processing
  • FPGA Field-Programmable Gate Array
  • PDA Programmable Logic Array
  • the central processing unit 301 can integrate a central processing unit (CPU), a graphics central processing unit (Graphics Processing Unit (GPU) and modem, etc. One or a combination of several.
  • the CPU mainly handles the operating system, user interface, and applications; the GPU is responsible for rendering and drawing the content that needs to be displayed on the display; and the modem is used to handle wireless communications. It can be understood that the above-mentioned modem may not be integrated into the central processor 301 and may be implemented by a separate chip.
  • the memory 305 may include random access memory (Random Access Memory (RAM), which can also include read-only memory (Read-Only Memory).
  • the memory 305 includes non-transitory computer-readable media (non-transitory computer-readable storage medium).
  • Memory 305 may be used to store instructions, programs, codes, sets of codes, or sets of instructions.
  • the memory 305 may include a program storage area and a data storage area, where the program storage area may store instructions for implementing the operating system, instructions for at least one function (such as touch function, sound playback function, image playback function, etc.), Instructions, etc., used to implement each of the above method embodiments; the storage data area can store data, etc. involved in each of the above method embodiments.
  • the memory 305 may optionally be at least one storage device located away from the aforementioned central processor 301 .
  • memory 305 which is a computer storage medium, may include an operating system, a network communication module, a user interface module and program instructions.
  • the user interface 303 is mainly used to provide an input interface for the user and obtain the data input by the user; and the central processor 301 can be used to call the automatic return of the on-orbit unit stored in the memory 305.
  • Warehouse control application and specifically perform the following operations:
  • the position information of the current on-orbit unit in the track line is obtained, and the target position is assigned to each on-orbit unit;
  • the inspection data After detecting that the warehousing parameters of the on-orbit unit successfully match the target warehouse, the inspection data will be sent to the server/control center. After the data transmission is completed, it will automatically shut down and wait for a restart response.
  • This application also provides a computer-readable storage medium on which a computer program is stored, which implements the steps of the above method when executed by a processor.
  • the computer-readable storage medium may include, but is not limited to, any type of disk, including floppy disks, optical disks, DVDs, CD-ROMs, microdrives and magneto-optical disks, ROM, RAM, EPROM, EEPROM, DRAM, VRAM, flash memory devices , magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data.
  • the disclosed device can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or may be Integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some service interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable memory.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory, It includes several instructions to cause a computer device (which can be a personal computer, a server or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned memory includes: U disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), mobile hard disk, magnetic disk or optical disk and other media that can store program code.
  • the program can be stored in a computer-readable memory.
  • the memory can include: flash memory. disk, read-only memory (Read-Only Memory, ROM), random access device (Random Access Memory (RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)

Abstract

本发明公开了一种在轨单元的自动回仓控制方法及装置,该方法包括:检测到自动回仓的触发信息时,获取当前在轨单元在轨道线路中的位置信息,为每个在轨单元分配目标仓位;基于所述轨道线路制定回仓过程中的巡检路线,获取巡检数据;关联各所述目标仓位所对应的减速标识与各所述在轨单元,当检测到所述在轨单元触发所述减速标识时,执行多级减速指令,逐步减速入仓;检测所述在轨单元的入仓参数与所述目标仓位匹配成功之后将所述巡检数据发送至服务器/控制中心,完成数据传输之后自动关机,等待重启响应。本发明实现了自动化控制巡检单元完成仓内停靠以及停工巡检,合理化管控巡检单元,形成逻辑闭环控制。

Description

一种在轨单元的自动回仓控制方法及装置 技术领域
本申请涉及在轨单元自动控制技术领域,具体而言,涉及一种在轨单元的自动回仓控制方法及装置。
背景技术
在吊挂生产系统中,为了对架设于室内的吊挂生产线实现全局理想化的监控,一般会在房顶设置巡检轨道,配合在轨运行的巡检单元对吊挂生产线进行监控、监管。
技术问题
巡检单元在生产线作业时,可安装固定的设定程序自动运行,获取相应的监控数据。当生产线停工时,巡检单元则直接在轨道上停止运行,并未进行集中回收管理,对巡检单元的收尾工作存在缺失,不利于巡检小车的集中管控、停工收尾检查。
技术解决方案
为了解决上述问题,本申请实施例提供了一种在轨单元的自动回仓控制方法及装置,自动化控制巡检单元完成仓内停靠以及停工巡检,合理化管控巡检单元,形成逻辑闭环控制。
第一方面,本申请实施例提供了一种在轨单元的自动回仓控制方法,所述方法包括:
当检测到自动回仓的触发信息时,获取当前在轨单元在轨道线路中的位置信息,为每个在轨单元分配目标仓位;
基于所述轨道线路制定回仓过程中的巡检路线,获取巡检数据;
关联各所述目标仓位所对应的减速标识与各所述在轨单元,当检测到所述在轨单元触发所述减速标识时,执行多级减速指令,逐步减速入仓;
检测所述在轨单元的入仓参数与所述目标仓位匹配成功之后将所述巡检数据发送至服务器/控制中心,完成数据传输之后自动关机,等待重启响应。
优选的,当检测到自动回仓的触发信息时,获取当前在轨单元在轨道线路中的位置信息,为每个在轨单元分配目标仓位,具体包括:
当满足以下条件其中之一时,即发送自动回仓的触发信息,所述条件包括:主动停止作业指令、故障停止作业指令、限时停止作业指令;
发送所述自动回仓的触发信息之后,检测当前轨道线路中的运行状态中的在轨单元;
获取当前在轨单元的位置信息,检测当前轨道线路中的空闲仓位及位置信息;
基于所述轨道线路的运行线路以就近原则为每个在轨单元分配一个空闲仓位,并将之定义为目标仓位,变更该仓位的状态为预定状态。
进一步的,每个在轨单元的目标仓位可依次选定,以在轨单元与目标仓位之间的距离逐个进行排序,就近分配目标仓位。
优选的,基于所述轨道线路制定回仓过程中的巡检路线,具体包括:
预定义回仓阈值,预定义巡检节点;
计算各在轨单元的回仓距离,将所述回仓距离小于所述回仓阈值的在轨单元归入回仓群组,将所述回仓距离大于所述回仓阈值的在轨单元归入巡检群组;
将所述巡检群组内所述回仓距离最长的在轨单元定义为巡检执行单元;
基于所述轨道线路标记所述巡检节点,以所述巡检执行单元所在的位置为起点、对应的所述目标仓位为终点为所述巡检执行单元制定巡检路线,所述巡检路线途径所有的所述巡检节点;
基于所述轨道线路为所述回仓群组内的全部所述在轨单元制定回仓路线,所述回仓群组内的所述在轨单元直接回仓;
基于所述轨道线路为所述巡检群组内的其他所述在轨单元制定绕仓路线,所述绕仓路线的起点为所述在轨单元的位置、终点为目标仓位;所述巡检群组内的其他在轨单元的各所述绕仓路线所途径的巡检节点包括全部的所述巡检节点;
归属于所述巡检群组内的在轨单元均根据所途径的巡检节点获取巡检数据。
进一步的,若所述轨道线路存在不直接连通的区域,则每个区域内至少选择一个巡检执行单元。
优选的,还包括:
获取所述执行巡检单元所发送的巡检数据,识别所述巡检数据中的巡检节点的状态信息;
获取所述巡检群组内其他所述在轨单元所发送的巡检数据,识别所述巡检数据中的巡检节点的状态信息;
若所述巡检节点的状态信息始终保持一致,则以所述巡检单元所发送的巡检数据为准,生成本次停工巡检日志并保存;
若所述巡检节点的状态信息存在变化,则发送对应节点的差异化数据至工作人员进行人工识别。
优选的,关联各所述目标仓位所对应的减速标识与各所述在轨单元,当检测到所述在轨单元触发所述减速标识时,执行多级减速指令,逐步减速入仓,具体包括:
获取每个所述目标仓位的减速标识,并将之与对应的所述在轨单元关联;
当所述在轨单元运行至所述减速标识时,触发生成临仓信息,当检测到所述临仓信息时,所述在轨单元执行多级减速指令,具体包括:
减速至第一入仓速度,以所述第一入仓速度进入入仓轨道;
减速至第二入仓速度,以所述第二入仓速度进入所述目标仓位;
减速至所述在轨单元与所述目标仓位的后仓壁抵接时停止。
优选的,所述巡检路线与所述减速标识之间存在多次触发可能时,以触发次数为最终触发条件,具体包括:
获取所述巡检路线与所述减速标识的重叠次数,记录执行所述巡检路线的所述在轨单元与所述减速标识的触发次数
当所述触发次数累计到达所述重叠次数时,生成所述临仓信息。
优选的,检测所述在轨单元的入仓参数与所述目标仓位匹配成功之后将所述巡检数据发送至服务器/控制中心,完成数据传输之后自动关机,等待重启响应,具体包括:
所述目标仓位倾斜设置,所述目标仓位的后仓壁设置有压力传感器;所述目标仓位的仓门处设置有入仓检测点,用以检测在轨单元是否进入目标仓位;
所述入仓参数包括:在轨单元位于所述目标仓位内时的倾斜度、所述压力传感器的参数值;
检测所述目标仓位的倾斜度作为基础参数,并将该基础参数与对应的所述目标仓位关联;
预定义倾斜误差范围、目标压力值;
当所述入仓检测点检测到所述在轨单元完全入仓之后,获取所述压力传感器的参数值,获取所述在轨单元的实际倾斜度,
若所述参数值大于所述目标压力值,则判断所述实际倾斜度与所述基础参数的差值是否超出所述倾斜误差范围:若否,则所述在轨单元入仓完成;反之,则所述在轨单元入仓错误,发送标识错误报告;
若所述参数值小于所述目标压力值,则所述在轨单元未完成入仓,发送减速错误报告;
当所述在轨单元入仓完成之后,检测当前在轨单元是否存在所述巡检数据:
若不存在,则直接自动关机,等待重启响应;
若存在,则将所述巡检数据发送至服务器/控制中心,完成数据传输之后,再自动关机,等待重启响应。
第二方面,本申请实施例提供了一种在轨单元的自动回仓控制装置,所述装置包括:
仓位分配模块:当检测到自动回仓的触发信息时,获取当前在轨单元在轨道线路中的位置信息,为每个在轨单元分配目标仓位;
巡检执行模块:基于所述轨道线路制定回仓过程中的巡检路线,获取巡检数据;
减速入仓模块:关联各所述目标仓位所对应的减速标识与各所述在轨单元,当检测到所述在轨单元触发所述减速标识时,执行多级减速指令,逐步减速入仓;
入仓确认模块:检测所述在轨单元的入仓参数与所述目标仓位匹配成功之后将所述巡检数据发送至服务器/控制中心,完成数据传输之后自动关机,等待重启响应。
第三方面,本申请实施例提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面或第一方面的任意一种可能的实现方式提供的方法的步骤。
第四方面,本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面或第一方面的任意一种可能的实现方式提供的方法。
有益效果
本发明的有益效果为:本发明为一种在轨单元的自动回仓控制方法及装置,自动执行回仓作业,对在轨单元进行有效化的启/停管控,不产生运行控制时启/停散乱现象,无需工作人员进行额外引导控制、遥控等,即可自动完成回仓巡检、回仓停靠,有效提升生产线的智能化。
本发明利用在轨运行的巡检单元的回仓过程同步完成停工收尾的人工巡检作业,节省了人力,充分利用了巡检单元的作业特性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种在轨单元的自动回仓控制方法的流程示意图;
图2为本申请实施例提供的一种在轨单元的自动回仓控制装置的结构示意图;
图3为本申请实施例提供的一种电子设备的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在下述介绍中,术语“第一”、“第二”仅为用于描述的目的,而不能理解为指示或暗示相对重要性。下述介绍提供了本申请的多个实施例,不同实施例之间可以替换或者合并组合,因此本申请也可认为包含所记载的相同和/或不同实施例的所有可能组合。因而,如果一个实施例包含特征A、B、C,另一个实施例包含特征B、D,那么本申请也应视为包括含有A、B、C、D的一个或多个所有其他可能的组合的实施例,尽管该实施例可能并未在以下内容中有明确的文字记载。
下面的描述提供了示例,并且不对权利要求书中阐述的范围、适用性或示例进行限制。可以在不脱离本申请内容的范围的情况下,对描述的元素的功能和布置做出改变。各个示例可以适当省略、替代或添加各种过程或组件。例如所描述的方法可以以所描述的顺序不同的顺序来执行,并且可以添加、省略或组合各种步骤。此外,可以将关于一些示例描述的特征组合到其他示例中。
参见图1,图1是本申请实施例提供的一种在轨单元的自动回仓控制方法的流程示意图。在本申请实施例中,所述方法包括:
S101、当检测到自动回仓的触发信息时,获取当前在轨单元在轨道线路中的位置信息,为每个在轨单元分配目标仓位。
本申请的执行主体可以是吊挂生产线系统中的监控/巡检单元,配合综控终端实施,综控终端可以是服务器、控制中心、软控平台等终端或终端软件。
在本申请实施例中,在轨单元可为日常生产过程中的巡检单元,搭载摄像头,具备驱动力、数据传输等基本功能。减速标识可以为电子芯片、二维码等,具备可识别内容。
应对明确的是,本申请的实施例中,在轨单元的自动回仓可由外部指令触发,也可由内部系统的机器故障报警触发;具体的,当满足一下条件其中之一时,即发送自动回仓的触发信息,所述条件包括:主动停止作业指令、故障停止作业指令、限时停止作业指令。
可以理解的是,主动停止作业指令可由工作人员进行操作控制,属于干预型的控制指令;限时停止作业指令可基于每天的上班时间进行设置,到点即执行;故障停止作业指令则视系统内部的故障情况而定,自我触发。
在一种可实施方式中,步骤S101具体包括:
发送所述自动回仓的触发信息之后,检测当前轨道线路中的运行状态中的在轨单元;
获取当前在轨单元的位置信息,检测当前轨道线路中的空闲仓位及位置信息;
基于所述轨道线路的运行线路以就近原则为每个在轨单元分配一个空闲仓位,并将之定义为目标仓位,变更该仓位的状态为预定状态。
在轨单元在轨道路线中的运行状态可实时获取,在轨单元的位置信息可根据行程进行计算,亦可通过电力供应数据进行计算得出;优选的可通过已产生的行程进行计算,减少参数运算。
基于实际情况,仓位的位置相对固定,在确定了在轨单元的位置之后,可直接计算得出距离该在轨单元最近的空闲仓位。
本申请的实施例中,以就近原则分配空闲仓位时,各个在轨单元之间的回仓行程会相互干预,可率先确定最小间距的空闲仓位,分配之后即变更其状态为预定状态,不影响下一个在轨单元以就近原则分配空闲仓位。
示例性的,每个在轨单元的目标仓位可依次选定,以在轨单元与目标仓位之间的距离逐个进行排序,就近分配目标仓位。
S102、基于所述轨道线路制定回仓过程中的巡检路线,获取巡检数据。
在本申请实施例中,获取巡检数据的方法、数据采集形式可根据实际情况确定。应对明确的是,在停工作业时,系统内的各处节点的状态应符合相应的停工要求,因此,可将这些节点定义为巡检节点,在回仓的过程中,针对巡检节点进行状态数据获取,作为第三方数据来源,可有效验证系统内的指令执行结果。
在轨单元的运行与触发自动回仓存在一定的不确定性,因此,每个在轨单元与仓位之间的距离差异较大,距离空闲仓位较近的在轨单元可直接回仓,无需进行后续的巡检作业;距离空闲仓位较远的在轨单元则可用于执行巡检作业,同时完成自动回仓。
在本申请实施例中,步骤S102具体包括:
预定义回仓阈值,预定义巡检节点;
计算各在轨单元的回仓距离,将所述回仓距离小于所述回仓阈值的在轨单元归入回仓群组,将所述回仓距离大于所述回仓阈值的在轨单元归入巡检群组;
将所述巡检群组内所述回仓距离最长的在轨单元定义为巡检执行单元;
基于所述轨道线路标记所述巡检节点,以所述巡检执行单元所在的位置为起点、对应的所述目标仓位为终点为所述巡检执行单元制定巡检路线,所述巡检路线途径所有的所述巡检节点;
基于所述轨道线路为所述回仓群组内的全部所述在轨单元制定回仓路线,所述回仓群组内的所述在轨单元直接回仓;
基于所述轨道线路为所述巡检群组内的其他所述在轨单元制定绕仓路线,所述绕仓路线的起点为所述在轨单元的位置、终点为目标仓位。
本申请的实施例中,回仓阈值可根据实际轨道线路的长度、巡检节点的密度进行调整,使得直接回仓的巡检单元与尽量不具备获取巡检节点状态信息的条件。
应当明确的是,归属于巡检群组内的在轨单元均根据所途径的巡检节点获取巡检数据。
在一种可实施方式中,执行巡检单元的巡检路线应途径所有的巡检节点,其对巡检节点的状态信息获取始终处于落后的时间线。巡检群组内的其他在轨单元的各绕仓路线所途径的巡检节点包含所有的巡检节点,使得每个巡检节点均存在至少两次状态信息获取。
在一种可实施的方式中,若轨道线路存在不直接连通的区域,则每个区域内至少选择一个巡检执行单元,对应制定巡检路线即可。部分区域内仅存在一个可用的在轨单元时,则可进行至少两次往复运行,以获取至少两次状态信息。
S103、关联各所述目标仓位所对应的减速标识与各所述在轨单元,当检测到所述在轨单元触发所述减速标识时,执行多级减速指令,逐步减速入仓。
在本申请实施例中,每个仓位在轨道线路中均设置有减速标识,以触发在轨单元的减速,使之缓速进入仓位,避免速度过快导致入仓控制失败、入仓错误等现象产生。
每个仓位的减速标识可基于轨道线路设计两个,分布位于上游和下游邻近仓门的位置,并留有足够长的减速距离。
在一种可实施方式中,步骤S103包括:
获取每个所述目标仓位的减速标识,并将之与对应的所述在轨单元关联;
当所述在轨单元运行至所述减速标识时,触发生成临仓信息,当检测到所述临仓信息时,所述在轨单元执行多级减速指令,具体包括:
减速至第一入仓速度,以所述第一入仓速度进入入仓轨道;
减速至第二入仓速度,以所述第二入仓速度进入所述目标仓位;
减速至所述在轨单元与所述目标仓位的后仓壁抵接时停止。
可以理解的是,当在轨单元读取到减速标识内的识别信息之后,即可触发多级减速指令,进入缓速入仓的状态,入仓轨道与主轨道之间可同步执行轨道合并、变轨等,以满足入仓的前置条件。
本申请的实施例中,执行多减速指令时,在轨单元的速度则立即降至第一入仓速度,以第一入仓速度进入入仓轨道;当仓门处的入仓检测点检测到在轨单元时,则进行第二次减速,减速至第二入仓速度,以第二入仓速度在目标仓位内运行;当仓门处的入仓检测点检测到在轨单元完全进入时,则进行第三次减速,直至与后仓壁抵接位移受限时,停止运行。
后仓壁处所设的压力传感器,在抵接的过程中反馈的参数值逐步增大,此时,可以参数值的变化趋势触发在轨单元减速至零,停止运行。
在本申请实施例中,巡检路线与减速标识之间存在多次触发可能时,以触发次数为最终触发条件,具体包括:
获取所述巡检路线与所述减速标识的重叠次数,记录执行所述巡检路线的所述在轨单元与所述减速标识的触发次数
当所述触发次数累计到达所述重叠次数时,生成所述临仓信息。
在一个具体的实施例中,执行巡检单元在按照巡检路线运行时,可能会经过对应的减速标识多次,因此在路线制定的过程中,即可对减速标识的有效触发次数进行限定,以最后一次为准触发生成临仓信息。
进一步的,还可根据运行方向与仓位方向进行辅助判定每次的减速标识的触发是否具备入仓条件,若不具备,则舍弃;若具备,则累积次数。
S104、检测所述在轨单元的入仓参数与所述目标仓位匹配成功之后将所述巡检数据发送至服务器/控制中心,完成数据传输之后自动关机,等待重启响应。
本申请的实施例中,目标仓位倾斜设置,目标仓位的后仓壁设置有压力传感器;目标仓位的仓门处设置有入仓检测点,用以检测在轨单元是否进入目标仓位。
基于上述的仓位设计,入仓参数包括:在轨单元位于目标仓位内时的倾斜度、压力传感器的参数值。可检测目标仓位的倾斜度作为基础参数,并将该基础参数与对应的目标仓位关联。
在轨单元在入仓的过程,率先触发减速标识,执行多级减速指令,再与入仓检测点完成入仓确认,最后与后仓壁的压力传感器抵接产生到达仓底的反馈参数,至此完成入仓。
在一个具体的实施例中,步骤S104具体包括:
预定义倾斜误差范围、目标压力值;
当所述入仓检测点检测到所述在轨单元完全入仓之后,获取所述压力传感器的参数值,获取所述在轨单元的实际倾斜度,
若所述参数值大于所述目标压力值,则判断所述实际倾斜度与所述基础参数的差值是否超出所述倾斜误差范围:若否,则所述在轨单元入仓完成;反之,则所述在轨单元入仓错误,发送标识错误报告;
若所述参数值小于所述目标压力值,则所述在轨单元未完成入仓,发送减速错误报告;
当所述在轨单元入仓完成之后,检测当前在轨单元是否存在所述巡检数据:
若不存在,则直接自动关机,等待重启响应;
若存在,则将所述巡检数据发送至服务器/控制中心,完成数据传输之后,再自动关机,等待重启响应。
可以理解的是,若在轨单元的倾斜度与目标仓位的基础参数不匹配,则说明该在轨单元进错了目标仓位,减速标识的识别可能存在错误,应发送标识错误报告;若在轨单元入仓后所触发的后端压力传感器的参数值达不到目标压力值,则说明在轨单元的减速运行不到位,多级减速指令的结果在该仓位内存在缺陷,应发送减速错误报告。工作人员可根据所属报告属性,针对性的复查原因,做出优化改进。
应对明确的是,若进错仓位,且两个仓位共属于同一区域的仓位,则还可进行目标仓位的调整、对换。
当完成入仓之后,则可自检当前在轨单元内是否存在巡检数据,完成巡检数据的传输之后,再进行自动关机,比等待重启响应。
由于部分在轨单元是直接回仓的,不存在巡检数据;而部分在轨单元则执行回仓巡检,存在巡检数据,应当进行数据传输。
在一种可实施方式中,当在轨单元完成巡检节点的状态信息获取之后,即可对巡检数据进行数据传输,不在局限于是否完成入仓。
基于上述方法步骤,在完成数据传输之后,在服务器/控制平台还可以对所接收到的巡检数据进行二次校验、识别、分析等,具体步骤包括:
获取所述执行巡检单元所发送的巡检数据,识别所述巡检数据中的巡检节点的状态信息;
获取所述巡检群组内其他所述在轨单元所发送的巡检数据,识别所述巡检数据中的巡检节点的状态信息;
若所述巡检节点的状态信息始终保持一致,则以所述执行巡检单元所发送的巡检数据为准,生成本次停工巡检日志并保存;
若所述巡检节点的状态信息存在变化,则发送对应节点的差异化数据至工作人员进行人工识别。
在一个具体的实施例中,巡检群组内的执行巡检单元与其他在轨单元均在执行自动回仓的过程中获取了巡检节点的状态数据,由于巡检节点的状态是变化的,因此,基于实际情况,其他在轨单元与执行巡检单元所获取的状态数据可能存在差异。
应对明确的是,执行巡检单元所获取得到的状态信息的时间线晚于其他在轨单元,对于同一巡检节点而言,执行巡检单元所获取到的状态信息与其他在轨单元所获取到的状态信息不一致时,则说明在该段时间内该处巡检节点的状态信息产生了变化。
正常情况下,巡检节点的状态在启动自动回仓时应全部处于停工作业状态,使得归属于巡检群组内的在轨单元所获取的状态信息应始终保持一致,若存在差异,则说明某处节点的状态产生了变化,应引起警惕,可由工作人员进行人工确认。
下面将结合附图2,对本申请实施例提供的在轨单元的自动回仓控制装置进行详细介绍。需要说明的是,附图2所示的在轨单元的自动回仓控制装置,用于执行本申请图1所示实施例的方法,为了便于说明,仅示出了与本申请实施例相关的部分,具体技术细节未揭示的,请参照本申请图1所示的实施例。
请参见图2,图2是本申请实施例提供的一种在轨单元的自动回仓控制装置的结构示意图。如图2所示,所述装置包括:
仓位分配模块201:当检测到自动回仓的触发信息时,获取当前在轨单元在轨道线路中的位置信息,为每个在轨单元分配目标仓位;
巡检执行模块202:基于轨道线路制定回仓过程中的巡检路线,获取巡检数据;
减速入仓模块203:关联各目标仓位所对应的减速标识与各在轨单元,当检测到在轨单元触发减速标识时,执行多级减速指令,逐步减速入仓;
入仓确认模块204:检测在轨单元的入仓参数与目标仓位匹配成功之后将巡检数据发送至服务器/控制中心,完成数据传输之后自动关机,等待重启响应。
本领域的技术人员可以清楚地了解到本申请实施例的技术方案可借助软件和/或硬件来实现。本说明书中的“单元”和“模块”是指能够独立完成或与其他部件配合完成特定功能的软件和/或硬件,其中硬件例如可以是现场可编程门阵列(Field-Programmable Gate Array,FPGA)、集成电路(Integrated Circuit,IC)等。
本申请实施例的各处理单元和/或模块,可通过实现本申请实施例所述的功能的模拟电路而实现,也可以通过执行本申请实施例所述的功能的软件而实现。
参见图3,其示出了本申请实施例所涉及的一种电子设备的结构示意图,该电子设备可以用于实施图1所示实施例中的方法。如图3所示,电子设备300可以包括:至少一个中央处理器301,至少一个网络接口304,用户接口303,存储器305,至少一个通信总线302。
其中,通信总线302用于实现这些组件之间的连接通信。
其中,用户接口303可以包括显示屏(Display)、摄像头(Camera),可选用户接口303还可以包括标准的有线接口、无线接口。
其中,网络接口304可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。
其中,中央处理器301可以包括一个或者多个处理核心。中央处理器301利用各种接口和线路连接整个电子设备300内的各个部分,通过运行或执行存储在存储器305内的指令、程序、代码集或指令集,以及调用存储在存储器305内的数据,执行终端300的各种功能和处理数据。可选的,中央处理器301可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。中央处理器301可集成中央中央处理器(Central Processing Unit,CPU)、图像中央处理器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示屏所需要显示的内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到中央处理器301中,单独通过一块芯片进行实现。
其中,存储器305可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory)。可选的,该存储器305包括非瞬时性计算机可读介质(non-transitory computer-readable storage medium)。存储器305可用于存储指令、程序、代码、代码集或指令集。存储器305可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现上述各个方法实施例的指令等;存储数据区可存储上面各个方法实施例中涉及到的数据等。存储器305可选的还可以是至少一个位于远离前述中央处理器301的存储装置。如图3所示,作为一种计算机存储介质的存储器305中可以包括操作系统、网络通信模块、用户接口模块以及程序指令。
在图3所示的电子设备300中,用户接口303主要用于为用户提供输入的接口,获取用户输入的数据;而中央处理器301可以用于调用存储器305中存储的在轨单元的自动回仓控制应用程序,并具体执行以下操作:
当检测到自动回仓的触发信息时,获取当前在轨单元在轨道线路中的位置信息,为每个在轨单元分配目标仓位;
基于所述轨道线路制定回仓过程中的巡检路线,获取巡检数据;
关联各所述目标仓位所对应的减速标识与各所述在轨单元,当检测到所述在轨单元触发所述减速标识时,执行多级减速指令,逐步减速入仓;
检测所述在轨单元的入仓参数与所述目标仓位匹配成功之后将所述巡检数据发送至服务器/控制中心,完成数据传输之后自动关机,等待重启响应。
本申请还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述方法的步骤。其中,计算机可读存储介质可以包括但不限于任何类型的盘,包括软盘、光盘、DVD、CD-ROM、微型驱动器以及磁光盘、ROM、RAM、EPROM、EEPROM、DRAM、VRAM、闪速存储器设备、磁卡或光卡、纳米系统(包括分子存储器IC),或适合于存储指令和/或数据的任何类型的媒介或设备。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些服务接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(Read-Only Memory, ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通进程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(Read-Only Memory, ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上所述者,仅为本公开的示例性实施例,不能以此限定本公开的范围。即但凡依本公开教导所作的等效变化与修饰,皆仍属本公开涵盖的范围内。本领域技术人员在考虑说明书及实践这里的公开后,将容易想到本公开的其实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未记载的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的范围和精神由权利要求限定。

Claims (10)

  1. 一种在轨单元的自动回仓控制方法,其特征在于,所述方法包括:
    当检测到自动回仓的触发信息时,获取当前在轨单元在轨道线路中的位置信息,为每个在轨单元分配目标仓位;
    基于所述轨道线路制定回仓过程中的巡检路线,获取巡检数据;
    关联各所述目标仓位所对应的减速标识与各所述在轨单元,当检测到所述在轨单元触发所述减速标识时,执行多级减速指令,逐步减速入仓;
    检测所述在轨单元的入仓参数与所述目标仓位匹配成功之后将所述巡检数据发送至服务器/控制中心,完成数据传输之后自动关机,等待重启响应。
  2. 根据权利要求1所述的一种在轨单元的自动回仓控制方法,其特征在于,当检测到自动回仓的触发信息时,获取当前在轨单元在轨道线路中的位置信息,为每个在轨单元分配目标仓位,具体包括:
    当满足以下条件其中之一时,即发送自动回仓的触发信息,所述条件包括:主动停止作业指令、故障停止作业指令、限时停止作业指令;
    发送所述自动回仓的触发信息之后,检测当前轨道线路中的运行状态中的在轨单元;
    获取当前在轨单元的位置信息,检测当前轨道线路中的空闲仓位及位置信息;
    基于所述轨道线路的运行线路以就近原则为每个在轨单元分配一个空闲仓位,并将之定义为目标仓位,变更该仓位的状态为预定状态。
  3. 根据权利要求2所述的一种在轨单元的自动回仓控制方法,其特征在于,基于所述轨道线路制定回仓过程中的巡检路线,具体包括:
    预定义回仓阈值,预定义巡检节点;
    计算各在轨单元的回仓距离,将所述回仓距离小于所述回仓阈值的在轨单元归入回仓群组,将所述回仓距离大于所述回仓阈值的在轨单元归入巡检群组;
    将所述巡检群组内所述回仓距离最长的在轨单元定义为巡检执行单元;
    基于所述轨道线路标记所述巡检节点,以所述巡检执行单元所在的位置为起点、对应的所述目标仓位为终点为所述巡检执行单元制定巡检路线,所述巡检路线途径所有的所述巡检节点;
    基于所述轨道线路为所述回仓群组内的全部所述在轨单元制定回仓路线,所述回仓群组内的所述在轨单元直接回仓;
    基于所述轨道线路为所述巡检群组内的其他所述在轨单元制定绕仓路线,所述绕仓路线的起点为所述在轨单元的位置、终点为目标仓位;
    归属于所述巡检群组内的在轨单元均根据所途径的巡检节点获取巡检数据。
  4. 根据权利要求3所述的一种在轨单元的自动回仓控制方法,其特征在于,还包括:
    获取所述执行巡检单元所发送的巡检数据,识别所述巡检数据中的巡检节点的状态信息;
    获取所述巡检群组内其他所述在轨单元所发送的巡检数据,识别所述巡检数据中的巡检节点的状态信息;
    若所述巡检节点的状态信息始终保持一致,则以所述执行巡检单元所发送的巡检数据为准,生成本次停工巡检日志并保存;
    若所述巡检节点的状态信息存在变化,则发送对应节点的差异化数据至工作人员进行人工识别。
  5. 根据权利要求1所述的一种在轨单元的自动回仓控制方法,其特征在于,关联各所述目标仓位所对应的减速标识与各所述在轨单元,当检测到所述在轨单元触发所述减速标识时,执行多级减速指令,逐步减速入仓,具体包括:
    获取每个所述目标仓位的减速标识,并将之与对应的所述在轨单元关联;
    当所述在轨单元运行至所述减速标识时,触发生成临仓信息,当检测到所述临仓信息时,所述在轨单元执行多级减速指令,具体包括:
    减速至第一入仓速度,以所述第一入仓速度进入入仓轨道;
    减速至第二入仓速度,以所述第二入仓速度进入所述目标仓位;
    减速至所述在轨单元与所述目标仓位的后仓壁抵接时停止。
  6. 根据权利要求5所述的一种在轨单元的自动回仓控制方法,其特征在于,所述巡检路线与所述减速标识之间存在多次触发可能时,以触发次数为最终触发条件,具体包括:
    获取所述巡检路线与所述减速标识的重叠次数,记录执行所述巡检路线的所述在轨单元与所述减速标识的触发次数
    当所述触发次数累计到达所述重叠次数时,生成所述临仓信息。
  7. 根据权利要求1所述的一种在轨单元的自动回仓控制方法,其特征在于,检测所述在轨单元的入仓参数与所述目标仓位匹配成功之后将所述巡检数据发送至服务器/控制中心,完成数据传输之后自动关机,等待重启响应,具体包括:
    所述目标仓位倾斜设置,所述目标仓位的后仓壁设置有压力传感器;所述目标仓位的仓门处设置有入仓检测点,用以检测在轨单元是否进入目标仓位;
    所述入仓参数包括:在轨单元位于所述目标仓位内时的倾斜度、所述压力传感器的参数值;
    检测所述目标仓位的倾斜度作为基础参数,并将该基础参数与对应的所述目标仓位关联;
    预定义倾斜误差范围、目标压力值;
    当所述入仓检测点检测到所述在轨单元完全入仓之后,获取所述压力传感器的参数值,获取所述在轨单元的实际倾斜度,
    若所述参数值大于所述目标压力值,则判断所述实际倾斜度与所述基础参数的差值是否超出所述倾斜误差范围:若否,则所述在轨单元入仓完成;反之,则所述在轨单元入仓错误,发送标识错误报告;
    若所述参数值小于所述目标压力值,则所述在轨单元未完成入仓,发送减速错误报告;
    当所述在轨单元入仓完成之后,检测当前在轨单元是否存在所述巡检数据:
    若不存在,则直接自动关机,等待重启响应;
    若存在,则将所述巡检数据发送至服务器/控制中心,完成数据传输之后,再自动关机,等待重启响应。
  8. 一种在轨单元的自动回仓控制装置,其特征在于,包括:
    仓位分配模块:当检测到自动回仓的触发信息时,获取当前在轨单元在轨道线路中的位置信息,为每个在轨单元分配目标仓位;
    巡检执行模块:基于所述轨道线路制定回仓过程中的巡检路线,获取巡检数据;
    减速入仓模块:关联各所述目标仓位所对应的减速标识与各所述在轨单元,当检测到所述在轨单元触发所述减速标识时,执行多级减速指令,逐步减速入仓;
    入仓确认模块:检测所述在轨单元的入仓参数与所述目标仓位匹配成功之后将所述巡检数据发送至服务器/控制中心,完成数据传输之后自动关机,等待重启响应。
  9. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1-7任一项所述方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-7任一项所述方法的步骤。
PCT/CN2022/139801 2022-09-01 2022-12-17 一种在轨单元的自动回仓控制方法及装置 WO2024045423A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211064307.9 2022-09-01
CN202211064307.9A CN115421487A (zh) 2022-09-01 2022-09-01 一种在轨单元的自动回仓控制方法及装置

Publications (1)

Publication Number Publication Date
WO2024045423A1 true WO2024045423A1 (zh) 2024-03-07

Family

ID=84200072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139801 WO2024045423A1 (zh) 2022-09-01 2022-12-17 一种在轨单元的自动回仓控制方法及装置

Country Status (2)

Country Link
CN (1) CN115421487A (zh)
WO (1) WO2024045423A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421487A (zh) * 2022-09-01 2022-12-02 浙江衣拿智能科技股份有限公司 一种在轨单元的自动回仓控制方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679813A (zh) * 2016-11-21 2017-05-17 深圳供电局有限公司 隧道电力设备智能检测系统
CN107036618A (zh) * 2017-05-24 2017-08-11 合肥工业大学(马鞍山)高新技术研究院 一种基于最短路径深度优化算法的agv路径规划方法
CN108508902A (zh) * 2018-06-11 2018-09-07 山西大学 用于密闭电磁柜体的智能轨道巡检机器人系统及控制方法
CN108537913A (zh) * 2018-06-15 2018-09-14 浙江国自机器人技术有限公司 一种巡检系统
CN115421487A (zh) * 2022-09-01 2022-12-02 浙江衣拿智能科技股份有限公司 一种在轨单元的自动回仓控制方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761158B (zh) * 2012-07-11 2015-01-07 华北电力大学 隧道电缆巡检机器人充电管理系统及方法
CN103051873B (zh) * 2012-12-19 2015-07-08 山东康威通信技术股份有限公司 电力隧道轨道式无线移动视频监控系统
CN212500734U (zh) * 2020-06-06 2021-02-09 北京优品直通信息技术有限公司 一种智能巡检机器人
CN112748734A (zh) * 2020-12-18 2021-05-04 河北润忆安全技术服务有限公司 一种自适应式巡检方法及巡检系统
CN113485429B (zh) * 2021-07-23 2022-01-18 安徽有云智能科技有限公司 空地协同交通巡检的路径优化方法和装置
CN114120227A (zh) * 2021-11-18 2022-03-01 江苏科技大学苏州理工学院 一种基于消防管网自助巡检系统的巡检方法
CN114132190A (zh) * 2021-11-30 2022-03-04 河南牧原智能科技有限公司 用于对巡检车进行充电的系统、方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679813A (zh) * 2016-11-21 2017-05-17 深圳供电局有限公司 隧道电力设备智能检测系统
CN107036618A (zh) * 2017-05-24 2017-08-11 合肥工业大学(马鞍山)高新技术研究院 一种基于最短路径深度优化算法的agv路径规划方法
CN108508902A (zh) * 2018-06-11 2018-09-07 山西大学 用于密闭电磁柜体的智能轨道巡检机器人系统及控制方法
CN108537913A (zh) * 2018-06-15 2018-09-14 浙江国自机器人技术有限公司 一种巡检系统
CN115421487A (zh) * 2022-09-01 2022-12-02 浙江衣拿智能科技股份有限公司 一种在轨单元的自动回仓控制方法及装置

Also Published As

Publication number Publication date
CN115421487A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024045423A1 (zh) 一种在轨单元的自动回仓控制方法及装置
CN111654453B (zh) 表单数据离线缓存方法、装置、终端及存储介质
WO2023098375A1 (zh) 操作票处理方法、装置、存储介质及电子装置
CN111661062A (zh) 自动驾驶控制方法、装置及系统
WO2019140799A1 (zh) 一种电梯运行状态监测系统及方法
WO2024094180A1 (zh) 塔吊手持终端控制方法、装置、手持终端和存储介质
CN108454640B (zh) 车辆控制方法及系统
CN110673559A (zh) 一种机器人调度管理系统
CN113635946B (zh) 一种防止列车运行目的地出错的方法、设备及存储介质
CN113759835A (zh) 车辆调度方法、装置、设备及存储介质
CN113733086B (zh) 一种机器人的出行方法、装置、设备及存储介质
CN112455500B (zh) 跨线情况下的首站跳停查询方法和本线管理系统
CN110765113A (zh) 大数据处理优化方法、装置、终端及存储介质
CN103945422A (zh) 一种对工单进行控制的方法和设备
CN114148381B (zh) 基于运行图的工况模式自动切换方法、装置、设备及介质
CN114104045A (zh) 移动授权的方法、装置及电子设备
CN113572817A (zh) 云平台下的车载接口平台系统及通信系统
CN107705553B (zh) 进出车数据处理方法及停车场控制器
CN116468254B (zh) 用于轨道交通的站内应急任务数据处理方法及系统
CN107705387B (zh) 进出车数据处理方法及停车场控制器
CN110874896A (zh) 一种用于智慧停车设备采集与计费系统的容错方法
CN113401749A (zh) 电梯系统与机器乘客交互的故障诊断方法、可读存储介质、电子设备及故障诊断系统
CN103770810A (zh) 一种基于ats系统的列车进路封锁控制方法及控制系统
CN113963568B (zh) 停车信息的处理方法、前端设备、电子设备及存储介质
CN113673832B (zh) 一种运营指标数据的生成方法、装置、设备及介质