WO2024045054A1 - 电池、用电装置和电池的制备方法 - Google Patents

电池、用电装置和电池的制备方法 Download PDF

Info

Publication number
WO2024045054A1
WO2024045054A1 PCT/CN2022/116240 CN2022116240W WO2024045054A1 WO 2024045054 A1 WO2024045054 A1 WO 2024045054A1 CN 2022116240 W CN2022116240 W CN 2022116240W WO 2024045054 A1 WO2024045054 A1 WO 2024045054A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
output part
electrode output
bracket
battery cell
Prior art date
Application number
PCT/CN2022/116240
Other languages
English (en)
French (fr)
Inventor
王红
程启
刘江
李全坤
唐代春
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/116240 priority Critical patent/WO2024045054A1/zh
Publication of WO2024045054A1 publication Critical patent/WO2024045054A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery, an electrical device and a method of preparing a battery.
  • the present application provides a battery, an electrical device and a method for preparing the battery, which can reduce the risk of tearing at the connection between battery cells.
  • a battery including: a battery module, including a first battery cell and a second battery cell arranged in series along a first direction, a first electrode output part of the first battery cell and the first battery cell.
  • the second electrode output part of the second battery cell is electrically connected by welding, and the first direction is the length direction of the battery;
  • the bracket is disposed between the first battery cell and the second battery cell, the The bracket is provided with a first accommodation space for accommodating the first electrode output part and the second electrode output part that are electrically connected to each other; and structural glue for connecting the first electrode output part and the second electrode output part.
  • the electrode output part is fixedly connected to the bracket; the bracket is provided with a glue filling channel for introducing structural glue between the electrically connected first electrode output part and the second electrode output part and the bracket.
  • a bracket is provided between the first battery cell and the second battery cell, so that the connected first electrode output part and the second electrode output part are arranged in the first accommodation space of the bracket, and in A glue filling channel is provided on the bracket, and the structural glue is introduced between the connected first electrode output part and the second electrode output part and the bracket, so that the connected first electrode output part and the second electrode output part can be connected to the bracket.
  • the fixed connection strengthens the stiffness between the series-connected battery modules and the bracket, thereby preventing the connected first electrode output part and the second battery electrode output part from shaking in the first accommodation space of the bracket, reducing the risk of tearing and improving Battery electrical connection stability.
  • the bracket includes: a bracket body; a first fixing member stacked with the bracket body in a third direction, the third direction being the thickness direction of the battery; wherein the bracket body and the The first receiving space is formed between the first fixing parts, the glue filling channel includes a first glue filling hole, and the first glue filling hole is provided on the first fixing part.
  • a first accommodation space that limits the displacement of the first electrode output part and the second electrode output part in the third direction can be formed, and in the third direction, the first accommodation space can be formed.
  • a first glue injection hole is provided on a fixing member so that structural glue can be injected from the first glue injection hole between the first electrode output part and the second electrode output part and the bracket to fix the first electrode output part and the second electrode output part. part and the bracket, thereby reducing the risk of tearing at the connection between the first electrode output part and the second electrode output part.
  • the first fixing member includes a first wall and two first side walls.
  • the first wall is arranged opposite to the bracket body.
  • the two first side walls are respectively connected from the first wall. Both ends in the first direction extend toward the bracket body, and the first injection hole is provided on the first wall.
  • the battery module further includes: a third battery cell and a fourth battery cell arranged in series along the first direction, a third electrode output part of the third battery cell and the The fourth electrode output part of the fourth battery cell is electrically connected, the third battery cell and the first battery cell are stacked along the third direction, and the fourth battery cell and the second battery cell are stacked along the third direction.
  • Third direction stacking settings are provided.
  • multiple battery cells are arranged in multiple rows along the first direction, which can increase the energy density of the battery.
  • the bracket further includes: a second fixing part stacked with the bracket body in a third direction, the bracket body being disposed between the first fixing part and the second fixing part, the The second accommodation space is formed between the stent body and the second fixing member; the structural glue is also used to fixedly connect the third electrode output part and the fourth electrode output part to the stent, and the glue filling channel is also used to fix the third electrode output part and the fourth electrode output part with the bracket. Used to introduce the structural glue between the third electrode output part, the fourth electrode output part and the bracket.
  • a second accommodation space that limits the displacement of the third electrode output part and the fourth electrode output part in the third direction can be formed, and the glue can be filled
  • the channel can also introduce structural glue between the third electrode output part and the fourth electrode output part and the bracket to fix the third electrode output part and the fourth electrode output part and the bracket, so that the third electrode output part and the fourth electrode output part can be lowered. Risk of tearing at electrode output connection.
  • the glue injection channel further includes a second glue injection hole, the second glue injection hole is provided on the bracket body, and the second glue injection hole is used to introduce the structural glue into the first between at least one of the battery cells, the second battery cell, the third battery cell and the fourth battery cell and the bracket body to fix the at least one battery cell to the bracket connect.
  • structural glue is used to fixedly connect the battery cells to the bracket, which can enhance the stiffness between the battery cells and the bracket, prevent relative displacement of the battery cells and the bracket, and reduce damage to the battery cells.
  • the stent body has a cavity.
  • configuring the bracket body to have a cavity structure can reduce the weight of the bracket, thereby reducing the weight of the battery.
  • the cavity includes two connecting arms distributed along the first direction and two support walls distributed along the third direction, and the second glue injection hole is provided on the two connecting arms. on at least one connecting arm and at least one support wall of the two support walls.
  • the second glue injection hole is provided on the two connecting arms and the two supporting walls.
  • the second glue injection holes are provided on the two connecting arms and the two supporting walls of the bracket body, so that the structural glue can be introduced between each battery cell and the bracket, thereby strengthening the battery module. stiffness between the bracket.
  • the second glue injection hole is also used to introduce the structural glue between the first battery cell and the third battery cell, and between the second battery cell and the fourth battery cell. between battery cells.
  • the size of the battery module is H1
  • the size of the coverage area of the structural adhesive is H2
  • the third direction is The thickness direction of the battery.
  • the size H2 of the coverage area of the structural adhesive and the size of the battery module are set to 1/3 ⁇ H2/H1 ⁇ 1, which can avoid insufficient strength caused by too thin the adhesive area. , the problem of being unable to meet the mechanical strength requirements, and it can also avoid the abnormal assembly and appearance problems of the battery module caused by the thick glued area.
  • any battery cell in the battery module includes a main body part, an electrode output part and a step part, and the main body part and the electrode output part are connected through the step part.
  • the size of the step portion is H3, the size of the main body portion is H4, and 1/3 ⁇ H3/H4 ⁇ 1.
  • the size H3 of the step part and the size H4 of the main body part are set to 1/3 ⁇ H3/H4 ⁇ 1, which can avoid the height difference between the step part and the main body being too large. Structural weak points caused by uneven coverage of structural glue.
  • the size of the step portion is L2
  • the size of the step portion covered by the structural glue is L1, and 1/3 ⁇ L1/L2 ⁇ 1.
  • the dimension L2 of the step portion and the dimension L1 of the structural glue covering the step portion are set to 1/3 ⁇ L1/L2 ⁇ 1, which can avoid applying too little glue to achieve stiffness. It can also avoid applying too much glue and overflowing the glue to the main body, causing local stress concentration in the battery cells.
  • the structural adhesive covers part of the upper surface and part of the lower surface of the battery module.
  • the structural adhesive covers part of the upper surface and part of the lower surface of the battery module and forms a riveting structure with the battery module, making the connection between the battery module and the bracket more stable.
  • the size of the bracket in the second direction, is larger than the size of the battery module; and/or in the third direction, the size of the bracket is larger than the size of the battery module.
  • the size of the bracket in the third direction, is set to be larger than the size of the battery module, and in the second direction, the size of the bracket is set to be larger than the size of the battery module, so that when the battery is subjected to vibration impact When the battery is running, the bracket first contacts the case to play a buffering role and reduce damage to the battery cells.
  • a first reinforcing rib extending from the first wall toward the bracket body is provided between the two first side walls.
  • a first reinforcing rib is provided on the first wall to enhance the rigidity of the first wall.
  • a plurality of first reinforcing ribs are spaced apart along the first direction and/or the second direction; or, a plurality of first reinforcing ribs are distributed along the first direction and the second direction. Cross distribution.
  • a plurality of first reinforcing ribs are arranged along the first direction and/or the second direction, which can strengthen the support of the first electrode output part and the second electrode output part.
  • the first wall is provided with two symmetrical first slot structures, and the two first slot structures are used for external assembly equipment to grasp the first fixing member.
  • two symmetrical first slot structures are provided on the first wall of the first fixing member, which facilitates external assembly equipment to grasp the first fixing member and improves assembly efficiency.
  • the bracket body includes a first support wall, the first support wall is provided with a first mounting hole, and at least one end of the first fixing member in the second direction is provided with a first support wall facing the first support wall.
  • the extended first buckle is engaged with the first mounting hole, and the second direction is the width direction of the battery.
  • the bracket body and the first fixing part can be fixedly connected, so that the connection can be
  • the rear first electrode output part and the second battery electrode output part are limited in the first accommodation space between the first support wall and the first fixing part.
  • the first support wall is provided with a first stopper at one end in the second direction, and the first stopper is used to limit the edge of the first electrode output part and the second electrode output part. movement in the second direction.
  • a first stopper is provided on the first supporting wall to limit the position of the first electrode output part and the second electrode output part in the second direction, which can lower the connected first electrode output part and the second electrode output part. Risk of tearing caused by shaking of the two electrode output parts.
  • the first support wall is provided with a first accommodation groove extending along the second direction, the first accommodation groove accommodates a first sampling terminal, and the first sampling terminal is used to collect the first sampling terminal. Parameters of a battery cell and/or the second battery cell.
  • the second fixing part and the first fixing part are arranged symmetrically with respect to the bracket body.
  • the second fixing part and the first fixing part are arranged symmetrically with respect to the stent body, which can reduce the production difficulty of the stent.
  • the battery further includes: a casing used to accommodate the battery module and the bracket.
  • the housing is provided with an opening
  • the battery further includes: an end cover that covers the opening to package the battery module and the bracket in the housing; the end cover A positive electrode terminal and a negative electrode terminal are provided, the positive electrode terminal is electrically connected to the positive output part of the battery module, and the negative electrode terminal is electrically connected to the negative output part of the battery module.
  • an electrical device including: the battery in the first aspect and any possible implementation of the first aspect, the battery being used to provide electrical energy to the electrical device.
  • a method for preparing a battery including: welding a first electrode output part of a first battery cell and a second electrode output part of a second battery cell, the first battery cell and the third battery cell being The two battery cells are arranged side by side along a first direction, which is the length direction of the battery; the welded first electrode output part and the second electrode output part are assembled to the first accommodation of the bracket along the second direction. space, the second direction is the width direction of the battery; structural glue is injected from the glue filling channel on the bracket, so that the structural glue is introduced between the first electrode output part, the second electrode output part and the bracket.
  • Figure 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • Figure 2 is a schematic three-dimensional view of a battery disclosed in the embodiment of the present application.
  • Figure 3 is a schematic three-dimensional view of another battery disclosed in the embodiment of the present application.
  • Figure 4 shows a schematic perspective view of a bracket according to an embodiment of the present application.
  • Figure 5 shows a schematic exploded view of a stent according to an embodiment of the present application.
  • FIG. 6 shows a schematic perspective view of the stent body in FIG. 4 .
  • FIG. 7 shows a schematic perspective view of the first fixing part and the second fixing part in FIG. 4 .
  • FIG. 8 shows another schematic perspective view of the first fixing part and the second fixing part in FIG. 4 .
  • FIG. 9 shows another schematic perspective view of the stent body in FIG. 4 .
  • FIG. 10 shows a partial front view of the battery 100 shown in FIG. 3 .
  • FIG. 11 is a front view of the battery 100 shown in FIG. 3 .
  • FIG. 12 is a top view of the battery 100 shown in FIG. 3 .
  • Figure 13 is a schematic exploded view of a battery disclosed in this application.
  • Figure 14 is a schematic block diagram of a method for manufacturing a battery according to an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • Multiple appearing in this application refers to more than two (including two). Similarly, “multiple groups” refers to two or more groups (including two groups), and “multiple tablets” refers to two or more tablets. (Includes two pieces).
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, rectangular battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode sheet, a negative electrode sheet and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector that is not coated with the positive electrode active material layer protrudes from the current collector that is coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector that is not coated with the negative electrode active material layer protrudes from the current collector that is coated with the negative electrode active material layer.
  • the current collector coated with the negative active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the diaphragm can be PP or PE, etc.
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • a bracket can be set between two battery cells connected in series, and the connection portion of the two battery cells can be arranged in the accommodation space of the bracket, so that the connection point of the battery cells can be better fixed and prevent the connection This reduces the risk of tearing and improves the stability of the battery's electrical connection.
  • bracket can increase the overall stiffness of the battery, the applicant found that there is still a gap between the connection between the bracket and the battery cell, causing the connection to shake, that is, there is still a risk of tearing.
  • this application proposes a battery in which a bracket is provided on two series-connected battery cell brackets so that the connection point of the two battery cells is set in the accommodation space of the bracket, and a glue filling channel is provided on the bracket. Introduce structural glue between the connection and the bracket, so that the connection and the bracket can be fixedly connected, and the rigidity between the series-connected battery modules and the bracket can be strengthened, thereby preventing the connection from shaking in the accommodation space of the bracket and reducing tearing. Reduce the risk of cracking and improve the electrical connection stability of the battery.
  • batteries such as mobile phones, portable devices, laptops, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spacecraft, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a new energy vehicle. Extended range vehicles, etc.
  • a motor 80 , a controller 60 and a battery 100 may be disposed inside the vehicle 1 .
  • the controller 60 is used to control the battery 100 to provide power to the motor 80 .
  • the battery 100 may be provided at the bottom, front or rear of the vehicle 1 .
  • the battery 100 can be used to supply power to the vehicle 1 .
  • the battery 100 can be used as an operating power source for the vehicle 1 and for the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 100 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • FIG. 2 shows a schematic perspective view of the battery 100 according to the embodiment of the present application.
  • the battery 100 includes a battery module 110.
  • the battery module 110 includes a first battery cell 111 and a second battery cell 112 arranged in series along the first direction X.
  • the first battery cell 111 has a first
  • the electrode output part 111a and the second electrode output part 112a of the second battery cell are electrically connected by welding, and the first direction
  • the bracket 120 is provided with a first accommodation space 121 between the body 111 and the second battery cell 112.
  • the first accommodation space 121 is used to accommodate the first electrode output part 111a and the second electrode output part 112a.
  • the battery 100 also includes a structural glue 170 (see FIG.
  • the bracket 120 is also provided with a glue filling channel 130 for introducing structural glue between the first electrode output part 111a and the second electrode output part 112a and the bracket 120 to connect the first electrode output part 111a and the second electrode output part. 112a is fixedly connected to the bracket 120.
  • each direction is first defined here. As shown in FIG. 2 , the first direction X is the length direction of the battery 100 , the second direction Y is the width direction of the battery 100 , and the third direction Z is the thickness direction of the battery 100 .
  • the electrode output part in this application can refer to the part where the tabs penetrate the outer packaging of the battery cell as described above, or can also be understood as the electrical connection piece that is electrically connected to the tabs outside the outer packaging of the battery cell.
  • the application examples do not limit this.
  • the battery module 110 may include a plurality of battery cells connected in series, that is, the positive output part of one battery cell is connected to the negative output part of another adjacent battery cell.
  • Multiple battery cells may be arranged in a row along the first direction X as shown in FIG. 2 .
  • multiple battery cells may also be arranged in multiple rows along the first direction X.
  • the first electrode output part 111a of the first battery cell 111 and the second electrode output part 112a of the second battery cell 112 are electrically connected by welding, and may include the first electrode output part 111a and the second electrode output part 112a.
  • the two-electrode output part 112a is electrically connected by ultrasonic welding or laser welding.
  • the first electrode output part 111a and the second electrode output part 112a may be welded directly or through a connector. Since the first electrode output part 111a of the first battery cell 111 and the second electrode output part 112a of the second battery cell 112 have been welded before assembling the bracket 120, the connected first electrodes can be connected along the second direction Y.
  • the output part 111 a and the second battery electrode output part 112 a are inserted into the first accommodation space 121 of the bracket 120 .
  • the bracket 120 is provided between the first battery cell 111 and the second battery cell 112 , so that the connected first electrode output part 111 a and the second battery electrode output part 112 a are disposed in the first receiving space 121 of the bracket 120 inside, and a glue filling channel 130 is provided on the bracket 120, and the structural glue 170 is introduced between the connected first electrode output part 111a and the second battery electrode output part 112a and the bracket 120, so that the connected first electrode output part 111a and the second battery electrode output part 112a can be
  • the electrode output part 111a and the second battery electrode output part 112a are fixedly connected to the bracket 120 to enhance the rigidity between the series-connected battery modules 110 and the bracket 120, thereby avoiding the possibility of the first electrode output part 111a and the second battery electrode being connected after being connected.
  • the output part 112a rocks in the first receiving space 121 of the bracket 120, thereby reducing the risk of tearing and improving the electrical connection stability of the battery 100.
  • the battery 100 of the present application may include multiple The structure and function of each bracket can be seen in the bracket 120 between the first battery cell 111 and the second battery cell 112. For the sake of simplicity, this article will not describe too much about the brackets between other battery cells.
  • FIG. 3 shows another schematic perspective view of the battery 100 according to the embodiment of the present application.
  • the battery 100 includes a battery module 110.
  • the battery module 110 includes a first battery cell 111 and a second battery cell 112 arranged in series along the first direction
  • the third battery cell 113 and the fourth battery cell 114 are arranged in series in the direction
  • the four battery cells 114 are stacked along the third direction.
  • the first electrode output part 111a of the first battery cell 111 and the second electrode output part 112a of the second battery cell 112 are electrically connected by welding.
  • the third electrode output part 113a of the third battery cell 113 and the fourth electrode output part 114a of the fourth battery cell 114 are electrically connected by welding.
  • multiple battery cells are arranged in multiple rows along the first direction X, which can increase the energy density of the battery 100 .
  • the third electrode output part 113a of the third battery cell 113 and the fourth electrode output part 114a of the fourth battery cell 114 are electrically connected by welding, and may include a third electrode output part 113a and the fourth electrode output part 114a are electrically connected by ultrasonic welding or laser welding.
  • the third electrode output part 113a and the fourth electrode output part 114a may be welded directly or through a connector.
  • the battery 100 further includes a bracket 120 .
  • the bracket 120 is provided with a first accommodation space 121 and a second accommodation space 122 .
  • the first accommodation space 121 and the second accommodation space 122 are spaced apart along the third direction Z. It is provided that the first accommodation space 121 is used to accommodate the first electrode output part 111a and the second electrode output part 112a, and the second accommodation space 122 is used to accommodate the third electrode output part 113a and the fourth electrode output part 114a.
  • the bracket 120 is also provided with a glue filling channel 130 for introducing the structural glue 170 between the first electrode output part 111a and the second electrode output part 112a and the bracket 120, so as to electrically connect the first electrode output part 111a and the second electrode output part 112a.
  • the second electrode output part 112a is fixedly connected to the bracket 120.
  • the glue filling channel 130 is also used to introduce the structural glue 170 between the third electrode output part 113a and the fourth electrode output part 114a and the bracket 120 to electrically connect the third electrode output part 113a and the fourth electrode output part. 114a is fixedly connected to the bracket 120.
  • a bracket is used to support the connecting portions of two pairs of adjacent battery cells arranged along two rows, which can enhance the overall strength of the two adjacent rows of battery cells, thereby making it easier to assemble the battery module 110 into the case.
  • the glue channel on the bracket 120 can not only fixedly connect the first electrode output part 111a and the second electrode output part 112a with the bracket 120 , but also connect the third electrode output part 113a and the fourth electrode output part 114a with the bracket 120
  • the fixed connection strengthens the rigidity between the series-connected battery module 110 and the bracket 120, and prevents the connected first electrode output part 111a and the second battery electrode output part 112a from shaking in the first receiving space 121 of the bracket 120.
  • the connected third electrode output part 113a and the fourth electrode output part 114a rock in the second accommodation space 122 of the bracket 120, thereby reducing the risk of tearing and improving the electrical connection stability of the battery 100.
  • the bracket 120 can be provided with more than two accommodation spaces at intervals along the third direction Z, each containing Each accommodation space accommodates the connection portions of two corresponding battery cells, which is not limited in the embodiments of the present application.
  • FIG. 4 shows a schematic perspective view of the bracket 120 according to the embodiment of the present application.
  • FIG. 5 is a schematic exploded view of the bracket 120 shown in FIG. 4 .
  • FIG. 6 shows a schematic perspective view of the bracket body 123 in FIG. 4 .
  • FIG. 7 shows a schematic perspective view of the first fixing part 124 and the second fixing part 125 in FIG. 4 .
  • FIG. 8 shows another schematic perspective view of the first fixing part 124 and the second fixing part 125 in FIG. 4 .
  • FIG. 9 shows another schematic perspective view of the bracket body 123 in FIG. 4 .
  • FIG. 5 is a schematic exploded view of the bracket 120 shown in FIG. 4 .
  • FIG. 6 shows a schematic perspective view of the bracket body 123 in FIG. 4 .
  • FIG. 7 shows a schematic perspective view of the first fixing part 124 and the second fixing part 125 in FIG. 4 .
  • FIG. 8 shows another schematic perspective view of the first fixing part 124 and the second fixing part 125 in FIG
  • the bracket 120 may include a bracket body 123 , and the bracket 120 may further include a first fixing part 124 , the first fixing part 124 and the bracket body 123 being stacked in the third direction Z.
  • a first accommodation space 121 is formed between the bracket body 123 and the first fixing part 124.
  • the first electrode output part 111a and the second battery electrode output part 112a are provided in the first accommodation space between the first fixing part 124 and the bracket body 123.
  • the glue injection channel 130 includes a first glue injection hole 131 , and the first glue injection hole 131 is provided on the first fixing member 124 .
  • the bracket body 123 may be a plate-shaped structure, that is, the bracket body 123 may be a hexahedron.
  • the bracket body 123 is a rectangular parallelepiped with six flat surfaces.
  • the bracket body 123 is a hexahedron with some uneven surfaces.
  • the bracket body 123 and the first fixing part 124 by stacking the bracket body 123 and the first fixing part 124 in the third direction Z, a structure that limits the displacement of the first electrode output part 111a and the second electrode output part 112a in the third direction Z can be formed.
  • the first accommodation space 121 and the first glue injection hole 131 are provided on the first fixing member 124 so that the structural glue 170 can be injected from the first glue injection hole 131 into the first electrode output part 111a and the second electrode output part 112a and
  • the bracket 120 is used to fix the first electrode output part 111a and the second electrode output part 112a to the bracket 120, thereby reducing the risk of tearing at the connection between the first electrode output part 111a and the second electrode output part 112a.
  • the bracket body 123 includes a first support wall 1231 , and a first mounting hole 12311 is provided on the first support wall 1231 .
  • At least one end of the first fixing member 124 in the second direction Y is provided with a first buckle 12411 extending toward the first support wall 1231 .
  • the first buckle 12411 is engaged with the first mounting hole 12311 to connect the bracket body 123 and the first mounting hole 12311 .
  • the first fixing member 124 is
  • the bracket body 123 and the first fixing part 124 can be fixed through the engagement between the first buckle 12411 on the first fixing part 124 and the first mounting hole 12311 on the first supporting wall 1231 connection, so that the connected first electrode output part 111a and the second battery electrode output part 112a can be restricted in the first accommodation space 121 between the first support wall 1231 and the first fixing member 124.
  • the bracket 120 may also include a second fixing part 125.
  • the second fixing part 125 and the bracket body 123 are stacked in the third direction Z.
  • the bracket body 123 is arranged in the third direction Z. between a fixing part 124 and a second fixing part 125.
  • the third electrode output part 113a and the fourth electrode output part 114a are provided in the second accommodation space 122 between the second fixing part 125 and the bracket body 123.
  • the structural glue 170 is also used to firmly connect the third electrode output part 113a and the fourth electrode output part 114a to the bracket 120.
  • the glue filling channel 130 is also used to introduce the structural glue 170 into the third electrode output part 113a and the fourth electrode output part 113a. between portion 114a and the bracket.
  • the bracket body 123 and the second fixing member 125 in the third direction Z, a structure that limits the displacement of the third electrode output part 113a and the fourth electrode output part 114a in the third direction Z can be formed.
  • the second accommodation space 122, and the glue filling channel 130 can also introduce the structural glue 170 between the third electrode output part 113a, the fourth electrode output part 114a and the bracket 120 to fix the third electrode output part 113a and the fourth electrode output part. part 114a and the bracket 120, thereby reducing the risk of tearing at the connection between the third electrode output part 113a and the fourth electrode output part 114a.
  • the bracket body 123 includes a second support wall 1232 , which is opposite to the first support wall 1231 .
  • the second support wall 1232 is provided with a second mounting hole 12321 .
  • At least one end of the second fixing member 125 in the second direction Y is provided with a second buckle 12511 extending toward the second support wall 1232 .
  • the second buckle 12511 is engaged with the second mounting hole 12321 to connect the bracket body 123 and the second mounting hole 12321 .
  • the second fixing member 125 is
  • the bracket body 123 and the second fixing part 125 can be connected. connection, so that the connected third electrode output part 113a and the fourth electrode output part 114a can be restricted in the second accommodation space 122 between the second support wall 1232 and the second fixing member 125.
  • first mounting hole 12311 and the second mounting hole 12321 are provided at the same end of the bracket body 123 in the second direction Y.
  • the bracket body 123 when assembling the above-mentioned bracket 120 between two series-connected battery cells of the battery module 110 , the bracket body 123 can first be pushed into the first electrically connected electrically connected position along the second direction Y. below the electrode output part 111a and the second electrode output part 112a, and then move the first fixing member 124 downward along the third direction Z to above the first electrode output part 111a and the second electrode output part 112a and move the first clamp 124 downward.
  • the buckle 12411 is inserted into the first mounting hole 12311.
  • the bracket body 123 can first be pushed into the first electrically connected electrically connected position along the second direction Y. below the electrode output part 111a and the second electrode output part 112a and above the third electrode output part 113a and the fourth electrode output part 114 that are electrically connected to each other, and then move the first fixing member 124 downward along the third direction Z Go above the first electrode output part 111a and the second electrode output part 112a, insert the first buckle 12411 into the first mounting hole 12311, and move the second fixing part 125 upward along the third direction Z to the third electrode output part 113a and the fourth electrode output part 114a and insert the second buckle 12511 into the second mounting hole 12321.
  • the first fixing part 124 and/or the second fixing part 125 may be fixedly connected to the bracket body 123 before the bracket 120 is installed between two battery cells connected in series.
  • the first fixing part 124 and/or the second fixing part 125 may be fixedly connected to the first end of the bracket body 123 in the second direction Y, while the first fixing part 124 and/or the second fixing part 125 are connected to the bracket body 123 .
  • first accommodation space 121 and/or the second accommodation space 122 of the bracket 120 are not penetrated in the direction Y, so that when the battery module 110 is assembled with the bracket 120, the first electrode output part 111a and the second electrode output part 112a are electrically connected to each other. /or the electrically connected third electrode output part 113a and the fourth electrode output part 114a may be formed along the second end of the first fixing part 124 and/or the second fixing part 125 and the bracket body 123 in the second direction Y.
  • the opening is inserted into the first accommodation space 121 and/or the second accommodation space 122 .
  • the first fixing part 124 and/or the second fixing part 125 are fixedly connected to the first end of the bracket body 123 in the second direction Y, which may refer to the first fixing part 124 and/or the second fixing part 125 Integrated with the first end, or it can also mean that the first fixing piece 124 and/or the second fixing piece 125 are fixedly connected to the first end through an external fixing structure, or it can also be that the first fixing piece 124 and/or The second fixing member 125 is engaged with the first end, and then connects the electrically connected first electrode output part 111a and the second electrode output part 112a and/or the electrically connected third electrode output part 113a and the fourth electrode output part 114a along the The opening formed at the second end is inserted into the first accommodating space 121 and/or the second accommodating space 122 .
  • the glue injection channel 130 also includes a second glue injection hole 132 , and the second glue injection hole 132 is provided in the bracket body 123 .
  • the second glue injection flow hole 132 is used to introduce the structural glue 170 into at least one of the first battery cell 111 and the second battery cell 112 and the bracket. 120 to firmly connect at least one battery cell to the bracket 120 .
  • the second glue injection flow hole 132 is used to introduce the structural glue 170 into the first battery cell 111, the second battery cell 112, the third battery cell 113 and the fourth battery cell. between at least one battery cell in the body 114 and the bracket 120 to fixedly connect the at least one battery cell to the bracket 120 .
  • structural glue 170 is used to firmly connect the battery cells to the bracket 120 , which can enhance the stiffness between the battery cells and the bracket 120 , prevent relative displacement of the battery cells and the bracket 120 , and reduce the impact on the battery cells. body damage.
  • the bracket body 123 has a cavity 1233 .
  • configuring the bracket body 123 to have a structure with a cavity 1233 can reduce the weight of the bracket 120 and thus the weight of the battery 100 .
  • the bracket body 123 may also be a solid plate-like structure.
  • the cavity 1233 includes two connecting arms 12331 distributed along the first direction X and two support walls 12332 distributed along the third direction, the two support walls 12332 including the first support Wall 1231 and second support wall 1232, the two connecting arms 12331 include a first connecting arm 1234 and a second connecting arm 1235, the second glue injection hole 132 is provided in at least one connecting arm and two of the two connecting arms 12331. on at least one of the support walls 12332.
  • the second glue injection hole 132 is provided on the two connecting arms 12331 and the two supporting walls 12332.
  • the second glue injection hole 132 is provided on the two connecting arms 12331 and the two supporting walls 12332 of the bracket body 123, so that the structural glue 170 can be introduced between each battery cell and the bracket 120. This can enhance the rigidity between the battery module 110 and the bracket 120 .
  • the second glue injection hole 132 is also used to introduce the structural glue 170 between the first battery cell 111 and the third battery cell 113 and between the second battery cell 112 and the fourth battery cell 114 .
  • the first fixing part 124 is arranged above the bracket body 123
  • the second fixing part 125 is arranged below the bracket body 123
  • the second fixing part 125 is arranged at the second annotation of the two supporting walls of the bracket body 123 .
  • the glue flow hole 132 can also be used to introduce the structural glue 170 between the third electrode output part 113a, the fourth electrode output part 114a and the bracket 120, so as to connect the third electrode output part 113a, the fourth electrode output part 114a and the bracket 120. 120 fixed connection.
  • the first fixing member 124 includes a first wall 1241 disposed opposite to the first support wall 1231 and two sides extending from the first wall 1241 in the first direction X.
  • the first support wall 1231 extends from two first side walls 1242, and the first glue injection hole 131 is provided on the first wall 1241.
  • the first fixing member 124 has a cavity inside. This arrangement can reduce the weight of the bracket 120, thereby reducing the weight of the battery 100.
  • the first fixing member 124 may also be solid, so the first glue injection hole 131 needs to penetrate the entire first wall 1241 .
  • a first glue injection flow hole 131 is provided on the first wall 1241 so that the structural glue 170 can be introduced between the connected first electrode output part 111a and the second electrode output part 112a and the bracket 120
  • the structural glue 170 can be introduced between the first fixing member 124 and the bracket body 123 to strengthen the first fixation.
  • the second fixing member 125 includes a second wall 1251 disposed opposite to the second support wall 1232 and two sides distributed from the second wall 1251 in the first direction X toward the second wall 1251 .
  • Two support walls 1232 extend from the two second side walls 1252 .
  • the second fixing member 125 has a cavity inside. This arrangement can reduce the weight of the bracket 120, thereby reducing the weight of the battery 100.
  • the second fixing member 125 may also be solid.
  • a first reinforcing rib 1243 extending from the first wall 1241 toward the first support wall 1231 is provided between the two first side walls 1242.
  • a first reinforcing rib 1243 is provided on the first wall 1241, which can enhance the rigidity of the first wall 1241.
  • the first reinforcing rib 1243 may limit the movement of the first electrode output part 111a and the second electrode output part 112a in the third direction Z.
  • a first reinforcing rib 1243 is provided between the two first side walls 1242, which can limit the activity space of the first electrode output part 111a and the second electrode output part 112a and prevent the battery 100 from being damaged when it is impacted.
  • the connected first electrode output part 111a and the second electrode output part 112a shake and tear.
  • a second reinforcing rib 1253 extending from the second wall 1251 toward the second support wall 1232 is provided between the two second side walls 1252 .
  • a second reinforcing rib 1253 is provided on the second wall 1251, which can enhance the rigidity of the second wall 1251.
  • the second reinforcing rib 1253 is used to limit the movement of the third electrode output part 113a and the fourth electrode output part 114a in the third direction Z.
  • a second reinforcing rib 1253 is provided between the two second side walls 1252, which can limit the activity space of the third electrode output part 113a and the fourth electrode output part 114a, preventing the battery 100 from being damaged when it is impacted.
  • the third electrode output part 113a and the fourth electrode output part 114a shake and cause tearing.
  • the first reinforcing rib 1243 is closer to the first electrode output part 111a and the second electrode output part 112a relative to the two first side walls 1242. This arrangement is convenient for supporting the first electrode output part 111a and the second electrode output part 112a, and prevents the first electrode output part 111a and the second electrode output part 112a from shaking.
  • the second reinforcing rib 1253 is closer to the third electrode output part 113a and the fourth electrode output part 114a relative to the two second side walls 1252. This arrangement is convenient for supporting the third electrode output part 113a and the fourth electrode output part 114a, and prevents the third electrode output part 113a and the fourth electrode output part 114a from shaking.
  • a plurality of first reinforcing ribs 1243 may be provided on the first wall 1241, and optionally, a plurality of first reinforcing ribs 1243 may be spaced apart along the first direction X.
  • a plurality of first reinforcing ribs 1243 may also be arranged at intervals along the second direction Y.
  • a plurality of first reinforcing ribs 1243 may be arranged crosswise along the first direction X and the second direction Y.
  • a plurality of first reinforcing ribs 1243 are arranged along the first direction X and/or the second direction Y, which can strengthen the support of the first electrode output part 111a and the second electrode output part 112a.
  • a plurality of second reinforcing ribs 1253 may be provided on the second wall 1251, and optionally, the plurality of second reinforcing ribs 1253 may be spaced apart along the first direction X.
  • a plurality of second reinforcing ribs may also be arranged at intervals along the second direction Y.
  • a plurality of second reinforcing ribs 1253 may be disposed crosswise along the first direction X and the second direction Y.
  • a plurality of second reinforcing ribs 1253 are provided along the first direction X and/or the second direction Y, which can strengthen the support of the third electrode output part 113a and the fourth electrode output part 114a.
  • the first wall 1241 of the first fixing member 124 is provided with two symmetrical first slot structures 12412, and the two first slot structures 12412 are used for the external assembly equipment to grab the first Fastener 124.
  • the two first slot structures 12412 can be distributed along the first direction X or along the second direction Y. Further, as shown in FIG. 7 , the two first slot structures 12412 are step structures provided at two edge areas of the first wall 1241 in the first direction X.
  • two symmetrical first slot structures 12412 are provided on the first wall 1241 of the first fixing member 124 to facilitate external assembly equipment to grasp the first fixing member 124 and improve assembly efficiency.
  • the second wall 1251 of the second fixing member 125 is provided with two symmetrical second slot structures 12512, and the two second slot structures 12512 are used for external assembly equipment to grab the second fixing. Item 125.
  • the two second slot structures 12512 may be distributed along the first direction X or along the second direction Y. Further, as shown in FIG. 7 , the two second slot structures 12512 are step structures provided at two edge areas of the second wall 1251 in the first direction X.
  • two symmetrical second slot structures 12512 are provided on the second wall 1251 of the second fixing member 125 to facilitate external assembly equipment to grasp the second fixing member 125 and improve assembly efficiency.
  • the first support wall 1231 is provided with a first stopper 12312 at one end of the second direction Y, and the first stopper 12312 is used to define the first electrode output part 111a and the second electrode output part. 112a movement in the second direction Y.
  • a first stopper 12312 is provided on the first support wall 1231 to limit the first electrode output part 111a and the second electrode output part 112a in the second direction Y, which can reduce the first Risk of tearing caused by shaking of the electrode output part 111a and the second electrode output part 112a.
  • the second support wall 1232 is provided with a second stopper 12322 at one end of the second direction Y, and the second stopper 12322 is used to define the third electrode output part 113a and the fourth electrode output part. 114a movement in the second direction Y.
  • the second stopper 12322 is provided on the second support wall 1232 to limit the third electrode output part 113a and the fourth electrode output part 114a in the second direction Y, which can reduce the third electrode output part 113a and the fourth electrode output part 114a after connection. Risk of tearing caused by shaking of the electrode output part 113a and the fourth electrode output part 114a.
  • the second stopper 12322 and the first stopper 12312 are provided at the same end of the bracket body 123 in the second direction Y to facilitate assembly.
  • Figure 10 shows a partial front view of the battery 100 shown in Figure 3.
  • the shaded area is the coverage area of the structural adhesive 170.
  • the size of the battery module 110 is H1
  • the size of the coverage area of the structural adhesive 170 is H2, 1/3 ⁇ H2/H1 ⁇ 1.
  • H1 may be the maximum size of the battery module 110 in the third direction Z.
  • H2 may be the maximum size of the coverage area of the structural adhesive 170 in the third direction Z.
  • the size H2 of the coverage area of the structural adhesive 170 and the size of the battery module 110 are set to 1/3 ⁇ H2/H1 ⁇ 1.
  • the second battery cell 112 includes a main body part 1112 , an electrode output part 112 a and a step part 1122 .
  • the main body part 1121 and the electrode output part 112 a are connected through the step part 1122 .
  • the structure of any battery cell in the battery module 110 can refer to the structure of the second battery cell 112 shown in FIG. 10 .
  • the size of the step portion 1122 is H3, the size of the main body portion 1121 is H4, and 1/3 ⁇ H3/H4 ⁇ 1.
  • the size H3 of the step portion 1122 and the size H4 of the main body portion 1121 are set to 1/3 ⁇ H3/H4 ⁇ 1.
  • L1 here may be the maximum size of the step portion 1122 covered by the structural glue 170 in the first direction X.
  • the structural adhesive 170 may cover part of the upper surface and part of the lower surface of the battery module 110 .
  • the structural adhesive 170 covers parts of the upper surface 1103 and the lower surface 1104 of the battery module 110 respectively.
  • the structural adhesive 170 covers part of the upper surface and part of the lower surface of the battery module 110 and forms a riveting structure with the battery module 110 to make the connection between the battery module 110 and the bracket 120 more stable.
  • FIG. 11 is a front view of the battery 100 shown in FIG. 3 .
  • FIG. 12 is a top view of the battery 100 shown in FIG. 3 .
  • the size of the bracket 120 is H5 and the size of the battery module 110 is H1, where H5 is larger than H1.
  • H1 may be the maximum size of the battery module 110 in the third direction Z.
  • the size of the bracket 120 is W1 and the size of the battery module 110 is W2, where W1 is larger than W2.
  • W2 may be the maximum size of the battery module 110 in the second direction Y.
  • the size H5 of the bracket 120 is set to be larger than the size H1 of the battery module 110 in the third direction Z
  • the size W1 of the bracket 120 is set to be larger than the battery module 110 in the second direction Y.
  • the size W2 of 110 allows the bracket 120 to first contact the case when the battery 100 is subjected to vibration and impact, which plays a buffering role and reduces damage to the battery cells.
  • the first support wall 1231 is provided with a first receiving groove 12313 extending along the second direction Y.
  • the first receiving groove 12313 accommodates a first sampling terminal, and the first sampling terminal is used for collecting Parameters of the first battery cell 111 and/or the second battery cell 112 .
  • the first sampling terminal may be a temperature sensor, for example, a negative temperature coefficient (Negative Temperature Coefficient, NTC) temperature sensor.
  • the first sampling terminal may also be a voltage sensor, a current detector, etc.
  • the embodiment of the present application does not limit the type of the first sampling terminal.
  • the first receiving groove 12313 on the first supporting wall 1231 to accommodate the first sampling terminal, real-time monitoring of the first battery cell 111 and/or the second battery cell 112 can be achieved, thereby The safety of the battery 100 can be improved.
  • first receiving groove 12313 can also be used to receive structural glue 170 to fix the first sampling terminal and the bracket 120 .
  • the first sampling terminal and the bracket 120 are fixedly connected through the structural glue 170 to avoid shaking of the first sampling terminal, thereby improving the sampling accuracy of the first sampling terminal.
  • the second supporting wall 1232 is provided with a second receiving groove extending along the second direction Y.
  • the second receiving groove is used to support the second sampling terminal, and the second sampling terminal is used to collect the third battery cell 113 and/or Or the parameters of the fourth battery cell 114 .
  • the second sampling terminal may be a temperature sensor, for example, an NTC temperature sensor.
  • the second sampling terminal may also be a voltage sensor, a current detector, etc.
  • the embodiment of the present application does not limit the type of the second sampling terminal.
  • the second receiving groove can also be used to receive structural glue 170 to fix the second sampling terminal and the bracket 120 .
  • the second sampling terminal and the bracket 120 are fixedly connected through the structural glue 170, which can prevent the second sampling terminal from shaking, thereby improving the sampling accuracy of the second sampling terminal.
  • the second fixing part 125 and the first fixing part 124 are arranged symmetrically with respect to the bracket body 123 .
  • the symmetrical arrangement may mean that the structures of the second fixing part 125 and the first fixing part 124 are completely consistent and the positions are symmetrical, or it may only mean that the positions of the second fixing part 125 and the first fixing part 124 are symmetrical but the structures are not completely consistent.
  • the second fixing part 125 and the first fixing part 124 are arranged symmetrically with respect to the bracket body 123 , which can reduce the production difficulty of the bracket 120 .
  • the material of the structural glue 170 in the embodiment of the present application includes one or more of epoxy resin, polyurethane, acrylate, silicone, polyester resin and its derivatives or their modifications.
  • the structural glue is cured. It should be non-sticky or some fiber or particle reinforcement phases can be added inside the structural adhesive, such as inorganic particles, carbon fibers or carbon nanotubes.
  • FIG. 13 shows a schematic exploded view of the battery 100 according to the embodiment of the present application.
  • the battery 100 further includes a housing 140 , which is used to accommodate the battery module 110 and the bracket 120 .
  • the housing 140 may be a metal housing, for example, the housing 140 may be an aluminum housing.
  • the bracket 120 is an insulating bracket to prevent the electrode output parts between the battery cells in the battery module 110 from contacting the case 140, thereby improving the safety of the battery 100.
  • the bracket 120 is a plastic bracket.
  • the housing may be an insulating housing.
  • the housing 140 may be a plastic housing.
  • the bracket 120 can be made of any material.
  • arranging the battery module 110 and the bracket 120 in the housing 140 can reduce the risk of the battery cells being damaged when the battery 100 is subject to vibration and impact.
  • the housing 140 is provided with an opening, and the battery 100 further includes an end cover that covers the opening to package the battery module 110 and the bracket 120 in the housing 140 .
  • the housing 140 can be provided with an opening, and the opening can be provided in any direction.
  • the battery 100 includes an end cap.
  • the housing 140 may be provided with two openings, and the two openings may be oppositely arranged in any direction.
  • the battery 100 includes two end caps.
  • the end cover is also provided with a positive electrode terminal and a negative electrode terminal.
  • the positive electrode terminal is electrically connected to the positive output part of the battery module 110
  • the negative electrode terminal is electrically connected to the negative output part of the battery module 110 . connect.
  • the housing 140 includes a first opening 141 and a second opening 142 provided along the first direction X.
  • the battery 100 further includes: a first end cover 151 and a second end cover 152 .
  • the first end cover 151 The first opening 141 is closed, and the second end cap 152 covers the second opening 142 .
  • the positive output part 1101 of the battery module 110 is electrically connected to the positive electrode terminal 161
  • the negative output part 1102 is electrically connected to the negative electrode terminal 162
  • the positive electrode terminal 161 and the negative electrode terminal 162 are arranged in the same end cover of the two end covers. , for example, both the positive electrode terminal 161 and the negative electrode terminal 162 are provided on the first end cap 151 .
  • the positive output part 1101 and the negative output part 1102 of the battery module 110 are disposed at the same end of the battery module 110 along the first direction X.
  • the electrical device may include the battery 100 in the various embodiments described above to provide electrical energy to the electrical device.
  • the electrical device may be a vehicle, ship or spacecraft.
  • the bracket 120 is provided between the first battery cell 111 and the second battery cell 112, the connected first electrode output part 111a and the second battery electrode
  • the output part 112a is arranged in the first accommodation space 121 of the bracket 120, and a glue filling channel 130 is provided on the bracket 120 to introduce the structural glue 170 into the connected first electrode output part 111a and the second battery electrode output part 112a.
  • brackets 120 so that the connected first electrode output part 111a and the second battery electrode output part 112a can be fixedly connected to the bracket 120, thereby strengthening the rigidity between the series-connected battery modules 110 and the bracket 120, thereby avoiding The connected first electrode output part 111a and the second battery electrode output part 112a rock in the first accommodation space 121 of the bracket 120, thereby reducing the risk of tearing and improving the electrical connection stability of the battery 100.
  • the embodiments of the present application also provide a method for preparing a battery.
  • the battery may be the battery 100 described in any of the above embodiments.
  • the preparation method 300 may include part or all of the following content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池、用电装置和电池的制备方法。该电池包括:电池模组,包括沿第一方向串联设置的第一电池单体和第二电池单体,该第一电池单体的第一电极输出部和该第二电池单体的第二电极输出部通过焊接的方式电连接,该第一方向为该电池的长度方向;支架,设置在该第一电池单体和该第二电池单体之间,该支架设置有第一容纳空间,该第一容纳空间用于容纳相互电连接的该第一电极输出部和该第二电极输出部;结构胶,用于将该第一电极输出部和该第二电极输出部与该支架固定连接;该支架设置有灌胶通道,用于将该结构胶导入至该第一电极输出部和该第二电极输出部与该支架之间。本申请实施例的电池和用电装置,能够降低电池单体连接处的撕裂风险。

Description

电池、用电装置和电池的制备方法 技术领域
本申请涉及电池技术领域,特别是涉及一种电池、用电装置和电池的制备方法。
背景技术
为了提高电池的容量,通常是将串联的多个电池单体装入具有一定强度的外壳内形成电池。由于电池的工作可靠与否涉及到整个电池乃至用电装置的安全,为此,在电池设计中,对于电池的电连接稳定性具有较高的要求。
发明内容
本申请一种电池、用电装置和电池的制备方法,能够降低电池单体连接处的撕裂风险。
第一方面,提供了一种电池,包括:电池模组,包括沿第一方向串联设置的第一电池单体和第二电池单体,该第一电池单体的第一电极输出部和该第二电池单体的第二电极输出部通过焊接的方式电连接,该第一方向为该电池的长度方向;支架,设置在该第一电池单体和该第二电池单体之间,该支架设置有第一容纳空间,该第一容纳空间用于容纳相互电连接的该第一电极输出部和该第二电极输出部;结构胶,用于将该第一电极输出部和该第二电极输出部与该支架固定连接;该支架设置有灌胶通道,用于将结构胶导入至电连接后的该第一电极输出部和该第二电极输出部与该支架之间。
在该实施例中,在第一电池单体和第二电池单体之间设置支架,使得连接后的第一电极输出部和第二电极输出部设置在支架的第一容纳空间内,并且在支架上设置灌胶通道,将结构胶导入至连接后的第一电极输出部和第二电极输出部与支架之间,从而可以将连接后的第一电极输出部和第二电极输出部与支架固定连接,加强串联的电池模组与支架之间的刚度,从而可以避免连接后的第一电极输出部和第二电池电极输出部在支架的第一容纳空间内晃动,降低撕裂风险,提高电池的电连接稳定性。
在一种可能的实现方式中,该支架包括:支架本体;第一固定件,与该支架本体在第三方向上堆叠设置,该第三方向为该电池的厚度方向;其中,该支架本体和该第一固定件之间形成该第一容纳空间,该灌胶通道包括第一注胶孔,该第一注胶孔设置在该第一固定件上。
在该实施例中,通过在第三方向上堆叠设置的支架本体和第一固定件,可以形成在第三方向上限制第一电极输出部和第二电极输出部位移的第一容纳空间,并且在第一固定件上设置第一注胶孔,可以使得结构胶从第一注胶孔注入至第一电极输出部和第二电极输出部与支架之间以固定第一电极输出部和第二电极输出部与支架,从而可以降低第一电极输出部和第二电极输出部连接处的撕裂风险。
在一种可能的实现方式中,该第一固定件包括第一壁和两个第一侧壁,该第一壁与该支架本体相对设置,该两个第一侧壁分别从该第一壁在该第一方向上的两端朝向该支架本体延伸,该第一注胶孔设置在该第一壁上。
在一种可能的实现方式中,该电池模组还包括:沿该第一方向串联设置的第三电池单体和第四电池单体,该第三电池单体的第三电极输出部和该第四电池单体的第四电极输出部电连接,该第三电池单体与该第一电池单体沿该第三方向堆叠设置,该第四电池单体与该第二电池单体沿该第 三方向堆叠设置。
在该实施例中,将多个电池单体沿第一方向呈多排设置,可以提高电池的能量密度。
在一种可能的实现方式中,该支架还包括:第二固定件,与该支架本体在第三方向上堆叠设置,该支架本体设置在该第一固定件和该第二固定件之间,该支架本体和该第二固定件之间形成该第二容纳空间;其中,该结构胶还用于将该第三电极输出部和该第四电极输出部与该支架固定连接,该灌胶通道还用于将该结构胶导入至该第三电极输出部和该第四电极输出部与该支架之间。
在该实施例中,通过在第三方向上堆叠设置的支架本体和第二固定件,可以形成在第三方向上限制第三电极输出部和第四电极输出部位移的第二容纳空间,并且灌胶通道还可以将结构胶导入至第三电极输出部和第四电极输出部与支架之间以固定第三电极输出部和第四电极输出部与支架,从而可以降低第三电极输出部和第四电极输出部连接处的撕裂风险。
在一种可能的实现方式中,该灌胶通道还包括第二注胶孔,该第二注胶孔设置于该支架本体,该第二注胶孔用于将该结构胶导入至该第一电池单体、该第二电池单体、该第三电池单体和该第四电池单体中的至少一个电池单体与该支架本体之间,以将该至少一个电池单体与该支架固定连接。
在该实施例中,采用结构胶将电池单体与所述支架固定连接,可以加强电池单体与支架之间的刚度,防止电池单体与支架的相对位移,降低对电池单体的损伤。
在一种可能的实现方式中,该支架本体具有空腔。
在该实施例中,将支架本体设置成具有空腔的结构,可以减轻支架的重量,进而可以减轻电池的重量。
在一种可能的实现方式中,该空腔包括沿该第一方向分布的两个连接臂和沿该第三方向分布的两个支撑壁,该第二注胶孔设置在该两个连接臂中的至少一个连接臂和该两个支撑壁中的至少一个支撑壁上。
在一种可能的实现方式中,该第二注胶孔设置在该两个连接臂和该两个支撑壁上。
在该实施例中,将第二注胶孔设置在支架本体的两个连接臂和两个支撑壁上,可以实现将结构胶导入至各个电池单体与支架之间,从而可以加强电池模组与支架之间的刚度。
在一种可能的实现方式中,该第二注胶孔还用于将该结构胶导入至该第一电池单体和该三电池单体之间、以及该第二电池单体和该第四电池单体之间。
在一种可能的实现方式中,在第三方向上,该电池模组的尺寸为H1,该结构胶的覆盖区的尺寸为H2,1/3≤H2/H1≤1,该第三方向为该电池的厚度方向。
在该实施例中,在第三方向上,将结构胶的覆盖区的尺寸H2和电池模组的尺寸设置为1/3≤H2/H1≤1,既可以避免涂胶区域太薄导致的强力不足,无法满足机械强度需求的问题,又可以避免涂胶区域太厚导致的电池模组装配及外观异常问题。
在一种可能的实现方式中,该电池模组中的任一电池单体包括主体部、电极输出部和台阶部,该主体部与该电极输出部通过该台阶部连接。
在一种可能的实现方式中,在第三方向上,该台阶部的尺寸为H3,该主体部的尺寸为H4,1/3≤H3/H4≤1。
在该实施例中,在第三方向上,将台阶部的尺寸H3和主体部的尺寸H4设置为1/3≤H3/H4≤1,可以避免因台阶部与主体部之间的高度差太大导致的结构胶覆盖不均匀所形成的结构薄弱点。
在一种可能的实现方式中,在该第一方向上,该台阶部的尺寸为L2,该结构胶覆盖在该台阶部的尺寸为L1,1/3≤L1/L2≤1。
在该实施例中,在第一方向上,将台阶部的尺寸L2和结构胶覆盖在台阶部的尺寸L1设置为1/3≤L1/L2≤1,既可以避免涂胶太少无法达成刚度要求的问题,又可以避免涂胶太多,溢胶至主体部,导致电池单体局部应力集中的问题。
在一种可能的实现方式中,该结构胶覆盖该电池模组的部分上表面和部分下表面。
在该实施例中,结构胶覆盖电池模组的部分上表面和部分下表面,与电池模组之间形成铆接结构,使得电池模组与支架之间的连接更加稳固。
在一种可能的实现方式中,在该第二方向上,该支架的尺寸大于该电池模组的尺寸;和/或,在该第三方向上,该支架的尺寸大于该电池模组的尺寸。
在该实施例中,在第三方向上,将支架的尺寸设置成大于电池模组的尺寸,以及在第二方向上,将支架的尺寸设置成大于电池模组的尺寸,可以在电池受到震动冲击时,支架先与壳体接触,起到缓冲作用,降低电池单体的损坏。
在一种可能的实现方式中,在该两个第一侧壁之间设置有从该第一壁朝向该支架本体延伸的第一加强肋。
在该实施例中,在第一壁上设置有第一加强肋,能够加强第一壁的刚度。
在一种可能的实现方式中,多个该第一加强肋沿该第一方向和/或该第二方向间隔分布;或者,多个该第一加强肋沿该第一方向和该第二方向交叉分布。
在该实施例中,多个第一加强肋沿第一方向和/或第二方向设置, 可以加强对第一电极输出部和第二电极输出部的支撑。
在一种可能的实现方式中,该第一壁设置有对称的两个第一卡槽结构,该两个第一卡槽结构用于外部装配设备抓取该第一固定件。
在该实施例中,在第一固定件的第一壁设置对称的两个第一卡槽结构,便于外部装配设备抓取第一固定件,提高装配效率。
在一种可能的实现方式中,该支架本体包括第一支撑壁,该第一支撑壁设置有第一安装孔,该第一固定件在第二方向的至少一端设置有朝该第一支撑壁延伸的第一卡扣,该第一卡扣与该第一安装孔卡接,该第二方向为该电池的宽度方向。
在实施例中,通过第一固定件上的第一卡扣与第一支撑壁上的第一安装孔之间的卡接,可以实现支架本体与第一固定件的固定连接,从而能够将连接后的第一电极输出部和第二电池电极输出部限制在第一支撑壁与第一固定件之间的第一容纳空间内。
在一种可能的实现方式中,该第一支撑壁在该第二方向的一端设置有第一挡块,该第一挡块用于限定该第一电极输出部和该第二电极输出部沿该第二方向上的移动。
在该实施例中,在第一支撑壁设置第一挡块以实现第一电极输出部和第二电极输出部在第二方向上的限位,可以降低连接后的第一电极输出部和第二电极输出部晃动所导致的撕裂风险。
在一种可能的实现方式中,该第一支撑壁设置有沿该第二方向延伸的第一容纳槽,该第一容纳槽容纳有第一采样端子,该第一采样端子用于采集该第一电池单体和/或该第二电池单体的参数。
在该实施例中,通过在第一支撑壁上设置第一容纳槽以容纳第一采样端子,可以实现对第一电池单体和/或第二电池单体的实时监测,从而可以提高电池的安全性。
在一种可能的实现方式中,在该第三方向上,该第二固定件与该第一固定件相对于该支架本体对称设置。
在实施例中,第二固定件和第一固定件相对于支架本体对称设置,可以降低支架的生产难度。
在一种可能的实现方式中,该电池还包括:壳体,该壳体用于容纳该电池模组和该支架。
在一种可能的实现方式中,该壳体设置有开口,该电池还包括:端盖,该端盖盖合该开口,以将该电池模组和该支架封装在该壳体内;该端盖设置有正电极端子和负电极端子,该正电极端子与该电池模组的正极输出部电连接,该负电极端子与该电池模组的负极输出部电连接。
第二方面,提供了一种用电装置,包括:第一方面以及第一方面中任一种可能的实现方式中的电池,该电池用于为用电装置提供电能。
第三方面,提供了一种电池的制备方法,包括:将第一电池单体的第一电极输出部和第二电池单体的第二电极输出部焊接,该第一电池单体和该第二电池单体沿第一方向并排设置,该第一方向为该电池的长度方向;将焊接后的该第一电极输出部和该第二电极输出部沿第二方向装配至支架的第一容纳空间,该第二方向为该电池的宽度方向;从该支架上的灌胶通道注入结构胶,以使得该结构胶导入至该第一电极输出部和第二电极输出部与支架之间。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例公开的一种车辆的结构示意图。
图2是本申请实施例公开的一种电池的立体示意图。
图3是本申请实施例公开的另一种电池的立体示意图。
图4示出了本申请实施例的支架的示意性立体图。
图5示出了本申请实施例的支架的示意性爆炸图。
图6示出了图4中的支架本体的一种示意性立体图。
图7示出了图4中的第一固定件和第二固定件的一种示意性立体图。
图8示出了图4中的第一固定件和第二固定件的另一种示意性立体图。
图9示出了图4中的支架本体的另一种示意性立体图。
图10示出了图3所示的电池100的局部主视图。
图11为图3所示的电池100的主视图。
图12为图3所示的电池100的俯视图。
图13是本申请公开的一种电池的示意性爆炸图。
图14是本申请实施例的电池的制备方法的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;在本申请的说明书中所使 用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对 此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为PP或PE等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
为了提高电池的容量,通常是将串联的多个电池单体装入具有一定强度的外壳内形成电池。在电池使用过程中,电池单体之间的连接处会晃动,存在撕裂风险。
申请人提出,可以在两个串联的电池单体之间设置支架,并使两个电池单体的连接部设置在支架的容纳空间内,可以较好地固定电池单体的连接处,防止连接处的晃动,从而可以降低撕裂风险,提高电池的电连接稳定性。
虽然支架能够增加电池的整体刚度,但是申请人发现支架和电池单 体的连接处之间仍然存在间隙,导致连接处晃动,即仍然存在撕裂风险。
有鉴于此,本申请提出了一种电池,在两个串联的电池单体支架设置支架,使得两个电池单体的连接处设置在支架的容纳空间内,并且在支架上设置灌胶通道,将结构胶导入至连接处与支架之间,从而可以将连接处与支架固定连接,加强串联的电池模组与支架之间的刚度,从而可以避免连接处在支架的容纳空间内晃动,降低撕裂风险,提高电池的电连接稳定性。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的用电装置,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达80,控制器60以及电池100,控制器60用来控制电池100为马达80的供电。例如,在车辆1的底部或车头或车尾可以设置电池100。电池100可以用于车辆1的供电,例如,电池100可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池100不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
图2示出了本申请实施例的电池100的一种示意立体图。如图2所 示,电池100包括电池模组110,电池模组110包括沿第一方向X串联设置的第一电池单体111和第二电池单体112,第一电池单体111的第一电极输出部111a和第二电池单体的第二电极输出部112a通过焊接的方式电连接,第一方向X为电池100的长度方向;电池100还包括支架120,支架120设置在第一电池单体111和第二电池单体112之间,支架120设置有第一容纳空间121,第一容纳空间121用于容纳第一电极输出部111a和第二电极输出部112a。电池100还包括结构胶170(可参见图10),用于将第一电极输出部111a和第二电极输出部112a与支架120固定连接。支架120还设置有灌胶通道130,用于将结构胶导入至第一电极输出部111a和第二电极输出部112a与支架120之间,以将第一电极输出部111a和第二电极输出部112a与支架120固定连接。
为了便于描述,此处先对各个方向进行定义。如图2所示,第一方向X为电池100的长度方向,第二方向Y为电池100的宽度方向,第三方向Z为电池100的厚度方向。
本申请中的电极输出部可以是指上文中所描述的极耳穿出电池单体外包装的部分,也可以理解成在电池单体的外包装外部与极耳电连接的电连接片,本申请实施例对此不作限定。
可选地,电池模组110可以包括多个电池单体,多个电池单体串联连接,即一个电池单体的正极输出部与相邻的另一个电池单体的负极输出部连接。多个电池单体可以如图2所示,沿第一方向X呈一排设置。可选地,多个电池单体也可以沿第一方向X呈多排设置。
本申请实施例中的第一电池单体111的第一电极输出部111a和第二电池单体112的第二电极输出部112a通过焊接的方式电连接,可以包括第一电极输出部111a和第二电极输出部112a采用超声波焊接电连接或者激光焊接电连接。可选地,第一电极输出部111a和第二电极输出部112a可 以直接焊接或者通过一个连接件焊接。由于第一电池单体111的第一电极输出部111a和第二电池单体112的第二电极输出部112a在装配支架120之前已经焊接,故可以沿第二方向Y将连接后的第一电极输出部111a和第二电池电极输出部112a插入至支架120的第一容纳空间121。
因此,在第一电池单体111和第二电池单体112之间设置支架120,使得连接后的第一电极输出部111a和第二电池电极输出部112a设置在支架120的第一容纳空间121内,并且在支架120上设置灌胶通道130,将结构胶170导入至连接后的第一电极输出部111a和第二电池电极输出部112a与支架120之间,从而可以将连接后的第一电极输出部111a和第二电池电极输出部112a与支架120固定连接,加强串联的电池模组110与支架120之间的刚度,从而可以避免连接后的第一电极输出部111a和第二电池电极输出部112a在支架120的第一容纳空间121内晃动,降低撕裂风险,提高电池100的电连接稳定性。
虽然本申请实施例是以第一电池单体111和第二电池单体112的连接为例描述的,但当一排设置有两个以上电池单体时,本申请的电池100可以包括多个支架,每个支架的结构和功能均可参见第一电池单体111和第二电池单体112之间的支架120,为了简洁,本文不过多描述其他电池单体之间的支架。
图3示出了本申请实施例的电池100的另一种示意立体图。如图3所示,电池100包括电池模组110,电池模组110包括沿第一方向X串联设置的第一电池单体111和第二电池单体112,电池模组110还包括沿第一方向X串联设置的第三电池单体113和第四电池单体114,其中,第一电池单体111和第三电池单体113沿第三方向Z堆叠设置,第二电池单体112和第四电池单体114沿第三方向堆叠设置。第一电池单体111的第一电极输出部111a和第二电池单体112的第二电极输出部112a通过焊接的 方式电连接。第三电池单体113的第三电极输出部113a和第四电池单体114的第四电极输出部114a通过焊接的方式电连接。
在该实施例中,将多个电池单体沿第一方向X呈多排设置,可以提高电池100的能量密度。
类似地,本申请实施例中的第三电池单体113的第三电极输出部113a和第四电池单体114的第四电极输出部114a通过焊接的方式电连接,可以包括第三电极输出部113a和第四电极输出部114a采用超声波焊接电连接或者激光焊接电连接。可选地,第三电极输出部113a和第四电极输出部114a可以直接焊接或者通过一个连接件焊接。
可选地,如图3所示,电池100还包括支架120,支架120设置有第一容纳空间121和第二容纳空间122,第一容纳空间121和第二容纳空间122沿第三方向Z间隔设置,第一容纳空间121用于容纳第一电极输出部111a和第二电极输出部112a,第二容纳空间122用于容纳第三电极输出部113a和第四电极输出部114a。支架120还设置有灌胶通道130,用于将结构胶170导入至第一电极输出部111a和第二电极输出部112a与支架120之间,以将电连接后的第一电极输出部111a和第二电极输出部112a与支架120固定连接。灌胶通道130还用于将结构胶170导入至第三电极输出部113a和第四电极输出部114a与支架120之间,以将电连接后的第三电极输出部113a和第四电极输出部114a与支架120固定连接。
在该实施例中,采用一个支架支撑沿两排设置的两对相邻电池单体的连接部,能够加强相邻两排电池单体的整体强度,从而更方便电池模组110入壳装配。另外,支架120上的灌胶通道不仅可以将第一电极输出部111a和第二电极输出部112a与支架120固定连接,还可以将第三电极输出部113a和第四电极输出部114a与支架120固定连接,加强了串联后的电池模组110与支架120之间的刚度,避免连接后的第一电极输出部111a和 第二电池电极输出部112a在支架120的第一容纳空间121内晃动以及连接后的第三电极输出部113a和第四电极输出部114a在支架120的第二容纳空间122内晃动,降低撕裂风险,提高电池100的电连接稳定性。
需要说明的是,当本申请中的电池模组110包括的多个电池单体沿第一方向X呈两排以上设置时,支架120可以沿第三方向Z间隔设置两个以上容纳空间,每个容纳空间容纳对应的两个电池单体的连接部,本申请实施例对此不作限定。
图4示出了本申请实施例的支架120的示意性立体图。图5为图4所示的支架120的示意性爆炸图。图6示出了图4中的支架本体123的一种示意性立体图。图7示出了图4中的第一固定件124和第二固定件125的一种示意性立体图。图8示出了图4中的第一固定件124和第二固定件125的另一种示意性立体图。图9示出了图4中的支架本体123的另一种示意性立体图。可选地,如图4所示,该支架120可以包括支架本体123,该支架120还可以包括第一固定件124,该第一固定件124与支架本体123在第三方向Z上堆叠设置。支架本体123与第一固定件124之间形成第一容纳空间121,第一电极输出部111a和第二电池电极输出部112a设置在第一固定件124与支架本体123之间的第一容纳空间121内。灌胶通道130包括第一注胶孔131,第一注胶孔131设置在第一固定件124上。
可选地,支架本体123可以为板状结构,即支架本体123为六面体。例如,支架本体123为六面均为平面的长方体。再例如,支架本体123为部分面不平整的六面体。
在该实施例中,通过在第三方向Z上堆叠设置的支架本体123和第一固定件124,可以形成在第三方向Z上限制第一电极输出部111a和第二电极输出部112a位移的第一容纳空间121,并且在第一固定件124上设置第一注胶孔131,可以使得结构胶170从第一注胶孔131注入至第一电极 输出部111a和第二电极输出部112a与支架120之间以固定第一电极输出部111a和第二电极输出部112a与支架120,从而可以降低第一电极输出部111a和第二电极输出部112a连接处的撕裂风险。
可选地,如图5所示,支架本体123包括第一支撑壁1231,第一支撑壁1231上设置有第一安装孔12311。第一固定件124在第二方向Y上的至少一端设置有朝第一支撑壁1231延伸的第一卡扣12411,第一卡扣12411与第一安装孔12311卡接,以连接支架本体123与第一固定件124。
在实施例中,通过第一固定件124上的第一卡扣12411与第一支撑壁1231上的第一安装孔12311之间的卡接,可以实现支架本体123与第一固定件124的固定连接,从而能够将连接后的第一电极输出部111a和第二电池电极输出部112a限制在第一支撑壁1231与第一固定件124之间的第一容纳空间121内。
对于图3所示的电池100,如图4所示,支架120还可以包括第二固定件125,第二固定件125与支架本体123在第三方向Z上堆叠设置,支架本体123设置在第一固定件124和第二固定件125之间。第三电极输出部113a和第四电极输出部114a设置在第二固定件125与支架本体123之间的第二容纳空间122内。结构胶170还用于将第三电极输出部113a和第四电极输出部114a与支架120固定连接,灌胶通道130还用于将结构胶170导入至第三电极输出部113a和第四电极输出部114a与支架之间。
在该实施例中,通过在第三方向Z上堆叠设置的支架本体123和第二固定件125,可以形成在第三方向Z上限制第三电极输出部113a和第四电极输出部114a位移的第二容纳空间122,并且灌胶通道130还可以将结构胶170导入至第三电极输出部113a和第四电极输出部114a与支架120之间以固定第三电极输出部113a和第四电极输出部114a与支架120,从而可以降低第三电极输出部113a和第四电极输出部114a连接处的撕裂 风险。
类似地,如图5所示,支架本体123包括第二支撑壁1232,第二支撑壁1232与第一支撑壁1231相对设置,第二支撑壁1232上设置有第二安装孔12321。第二固定件125在第二方向Y上的至少一端设置有朝第二支撑壁1232延伸的第二卡扣12511,第二卡扣12511与第二安装孔12321卡接,以连接支架本体123与第二固定件125。
在该实施例中,通过第二固定件125上的第二卡扣12511与第二支撑壁1232上的第二安装孔12321之间的卡接,可以实现支架本体123与第二固定件125的连接,从而能够将连接后的第三电极输出部113a和第四电极输出部114a限制在第二支撑壁1232与第二固定件125之间的第二容纳空间122内。
可选地,第一安装孔12311和第二安装孔12321设置在支架本体123在第二方向Y的同一端。
对于图2所示的电池100,在电池模组110的两个串联的电池单体之间装配上述支架120时,可以先将支架本体123沿第二方向Y推入至相互电连接的第一电极输出部111a和第二电极输出部112a的下方,然后将第一固定件124沿第三方向Z向下移动至第一电极输出部111a与第二电极输出部112a的上方并且将第一卡扣12411插入第一安装孔12311。对于图3所示的电池100,在电池模组110的两个串联的电池单体之间装配上述支架120时,可以先将支架本体123沿第二方向Y推入至相互电连接的第一电极输出部111a和第二电极输出部112a的下方且位于相互电连接的第三电极输出部113a和第四电极输出部114的上方,然后将第一固定件124沿第三方向Z向下移动至第一电极输出部111a与第二电极输出部112a的上方并且将第一卡扣12411插入第一安装孔12311,以及将第二固定件125沿第三方向Z向上移动至第三电极输出部113a与第四电极输出部114a 的下方并且将第二卡扣12511插入第二安装孔12321。
在另一实施例中,在将支架120安装至串联的两个电池单体之间之前,第一固定件124和/或第二固定件125可以与支架本体123固定连接。例如,第一固定件124和/或第二固定件125可以与支架本体123在第二方向Y上的第一端固定连接,而第一固定件124和/或第二固定件125与支架本体123在第二方向Y上的第二端之间形成开口,使得第一固定件124和/或第二固定件125与支架本体123之间形成在第一方向X上贯通支架120并且在第二方向Y上未贯通支架120的第一容纳空间121和/或第二容纳空间122,使得电池模组110与支架120装配时,电连接的第一电极输出部111a和第二电极输出部112a和/或电连接的第三电极输出部113a与第四电极输出部114a可以沿着第一固定件124和/或第二固定件125与支架本体123在第二方向Y上的第二端形成的开口插入第一容纳空间121和/或第二容纳空间122内。
可选地,第一固定件124和/或第二固定件125与支架本体123在第二方向Y上的第一端固定连接,可以是指第一固定件124和/或第二固定件125与第一端一体成型,或者也可以是指第一固定件124和/或第二固定件125与第一端通过外部的固定结构固定连接,还可以是先将第一固定件124和/或第二固定件125与第一端卡接,再将电连接的第一电极输出部111a和第二电极输出部112a和/或电连接的第三电极输出部113a与第四电极输出部114a沿着第二端形成的开口插入第一容纳空间121和/或第二容纳空间122内。
可选地,如图4所示,该灌胶通道130还包括第二注胶孔132,该第二注胶孔132设置于支架本体123。可选地,对于图2所示的电池100,第二注胶流通孔132用于将结构胶170导入至第一电池单体111和第二电池单体112中的至少一个电池单体与支架120之间,以将至少一个电 池单体与支架120固定连接。而对于图3所示的电池100,第二注胶流通孔132用于将结构胶170导入至第一电池单体111、第二电池单体112、第三电池单体113和第四电池单体114中的至少一个电池单体与支架120之间,以将至少一个电池单体与支架120固定连接。
在该实施例中,采用结构胶170将电池单体与所述支架120固定连接,可以加强电池单体与支架120之间的刚度,防止电池单体与支架120的相对位移,降低对电池单体的损伤。
可选地,如图4至图6所示,支架本体123具有空腔1233。
在该实施例中,将支架本体123设置成具有空腔1233的结构,可以减轻支架120的重量,进而可以减轻电池100的重量。
在其他实施例中,支架本体123也可以为实心的板状结构。
可选地,如图6所示,该空腔1233包括沿第一方向X分布的两个连接臂12331和沿第三方向分布的两个支撑壁12332,该两个支撑壁12332包括第一支撑壁1231和第二支撑壁1232,该两个连接臂12331包括第一连接臂1234和第二连接臂1235,第二注胶孔132设置在两个连接臂12331中的至少一个连接臂和两个支撑壁12332中的至少一个支撑壁上。
进一步可选地,该第二注胶孔132设置在两个连接臂12331和两个支撑壁12332上。
在该实施例中,将第二注胶孔132设置在支架本体123的两个连接臂12331和两个支撑壁12332上,可以实现将结构胶170导入至各个电池单体与支架120之间,从而可以加强电池模组110与支架120之间的刚度。
可选地,第二注胶孔132还用于将结构胶170导入至第一电池单体111与第三电池单体113之间以及第二电池单体112与第四电池单体114之间。
对于图4所示的支架120,即第一固定件124设置在支架本体123的上方,第二固定件125设置在支架本体123的下方,设置在支架本体123的两个支撑壁的第二注胶流通孔132还可以用于将结构胶170导入至第三电极输出部113a和第四电极输出部114a与支架120之间,以将第三电极输出部113a和第四电极输出部114a与支架120固定连接。
可选地,如图7和图8所示,第一固定件124包括与第一支撑壁1231相对设置设置的第一壁1241以及从第一壁1241在第一方向X上分布的两侧朝向第一支撑壁1231延伸的两个第一侧壁1242,第一注胶孔131设置在第一壁1241上。
可选地,如图8所示,第一固定件124内部具有空腔。这种设置可以减轻支架120的重量,进而减轻电池100的重量。
在其他实施例中,第一固定件124也可以是实心的,那么第一注胶孔131则需要贯穿整个第一壁1241。
在该实施例中,在第一壁1241上设置第一注胶流通孔131,既可以将结构胶170导入至连接后的第一电极输出部111a和第二电极输出部112a与支架120之间以加强连接后的第一电极输出部111a和第二电极输出部112a与支架120之间的连接,又可以将结构胶170导入至第一固定件124与支架本体123之间以加强第一固定件124与支架本体123的连接。
可选地,如图7和图8所示,第二固定件125包括与第二支撑壁1232相对设置的第二壁1251以及从第二壁1251在第一方向X上分布的两侧朝向第二支撑壁1232延伸的两个第二侧壁1252。
可选地,如图8所示,第二固定件125内部具有空腔。这种设置可以减轻支架120的重量,进而减轻电池100的重量。
在其他实施例中,第二固定件125也可以是实心的。
可选地,继续参见图8,在两个第一侧壁1242之间设置有从第 一壁1241朝向第一支撑壁1231延伸的第一加强肋1243。
在该实施例中,在第一壁1241上设置有第一加强肋1243,能够加强第一壁1241的刚度。
可选地,第一加强肋1243可以在第三方向Z上限制第一电极输出部111a和第二电极输出部112a的移动。
在该实施例中,在两个第一侧壁1242之间设置有第一加强肋1243,可以限制第一电极输出部111a和第二电极输出部112a的活动空间,防止电池100在受到冲击时连接后的第一电极输出部111a和第二电极输出部112a晃动造成撕裂。
类似地,如图8所示,在两个第二侧壁1252之间设置有从第二壁1251朝向第二支撑壁1232延伸的第二加强肋1253。
在该实施例中,在第二壁1251上设置有第二加强肋1253,能够加强第二壁1251的刚度。
可选地,第二加强肋1253用于在第三方向Z上限制第三电极输出部113a和第四电极输出部114a的移动。
在该实施例中,在两个第二侧壁1252之间设置有第二加强肋1253,可以限制第三电极输出部113a和第四电极输出部114a的活动空间,防止电池100在受到冲击时连接后第三电极输出部113a和第四电极输出部114a晃动造成撕裂。
进一步地,在第三方向Z上,第一加强肋1243相对于两个第一侧壁1242更靠近第一电极输出部111a和第二电极输出部112a。这种设置便于支撑第一电极输出部111a和第二电极输出部112a,避免第一电极输出部111a和第二电极输出部112a晃动。在第三方向Z上,第二加强肋1253相对于两个第二侧壁1252更靠近第三电极输出部113a和第四电极输出部114a。这种设置便于支撑第三电极输出部113a和第四电极输出部 114a,避免第三电极输出部113a和第四电极输出部114a晃动。
可选地,如图8所示,第一壁1241上可以设置多个第一加强肋1243,并且可选地,多个第一加强肋1243可以沿第一方向X间隔设置。可选地,多个第一加强肋1243也可以沿第二方向Y间隔设置。进一步地,多个第一加强肋1243可以沿第一方向X和第二方向Y交叉设置。
在该实施例中,多个第一加强肋1243沿第一方向X和/或第二方向Y设置,可以加强对第一电极输出部111a和第二电极输出部112a的支撑。
类似地,如图8所示,第二壁1251上可以设置多个第二加强肋1253,并且可选地,多个第二加强肋1253可以沿第一方向X间隔设置。可选地,多个第二加强肋也可以沿第二方向Y间隔设置。进一步地,多个第二加强肋1253可以沿第一方向X和第二方向Y交叉设置。
在该实施例中,多个第二加强肋1253沿第一方向X和/或第二方向Y设置,可以加强对第三电极输出部113a和第四电极输出部114a的支撑。
可选地,如图7所示,第一固定件124的第一壁1241设置有对称的两个第一卡槽结构12412,两个第一卡槽结构12412用于外部装配设备抓取第一固定件124。
可选地,两个第一卡槽结构12412可以沿第一方向X分布,也可以沿第二方向Y分布。进一步地,如图7所示,两个第一卡槽结构12412为设置在第一壁1241在第一方向X的两个边缘区域的台阶结构。
在该实施例中,在第一固定件124的第一壁1241设置对称的两个第一卡槽结构12412,便于外部装配设备抓取第一固定件124,提高装配效率。
类似地,如图7所示,第二固定件125的第二壁1251设置有对 称的两个第二卡槽结构12512,两个第二卡槽结构12512用于外部装配设备抓取第二固定件125。
可选地,两个第二卡槽结构12512可以沿第一方向X分布,也可以沿第二方向Y分布。进一步地,如图7所示,两个第二卡槽结构12512为设置在第二壁1251在第一方向X的两个边缘区域的台阶结构。
在该实施例中,在第二固定件125的第二壁1251设置对称的两个第二卡槽结构12512,便于外部装配设备抓取第二固定件125,提高装配效率。
可选地,如图9所示,第一支撑壁1231在第二方向Y的一端设置有第一挡块12312,第一挡块12312用于限定第一电极输出部111a和第二电极输出部112a沿第二方向Y上的移动。
在该实施例中,在第一支撑壁1231设置第一挡块12312以实现第一电极输出部111a和第二电极输出部112a在第二方向Y上的限位,可以降低连接后的第一电极输出部111a和第二电极输出部112a晃动所导致的撕裂风险。
可选地,如图9所示,第二支撑壁1232在第二方向Y的一端设置有第二挡块12322,第二挡块12322用于限定第三电极输出部113a和第四电极输出部114a沿第二方向Y上的移动。
在该实施例中,在第二支撑壁1232设置第二挡块12322以实现第三电极输出部113a和第四电极输出部114a在第二方向Y上的限位,可以降低连接后的第三电极输出部113a和第四电极输出部114a晃动所导致的撕裂风险。
可选地,第二挡块12322与第一挡块12312设置在支架本体123在第二方向Y的同一端,以便于装配。
图10示出了图3所示的电池100的局部主视图,图中,阴影部 分为结构胶170的覆盖区域。可选地,如图10所示,在第三方向Z上,电池模组110的尺寸为H1,结构胶170的覆盖区的尺寸为H2,1/3≤H2/H1≤1。
可选地,H1可以是电池模组110在第三方向Z上的最大尺寸。而H2可以是结构胶170的覆盖区在第三方向Z上的最大尺寸。
在该实施例中,在第三方向Z上,将结构胶170的覆盖区的尺寸H2和电池模组110的尺寸设置为1/3≤H2/H1≤1,经过申请人的大量实验验证,当H2/H1的比值在上述范围内,既可以避免涂胶区域太薄导致的强力不足,无法满足机械强度需求的问题,又可以避免涂胶区域太厚导致的电池模组110装配及外观异常问题。
可选地,如图10所示,第二电池单体112包括主体部1112、电极输出部112a以及台阶部1122,主体部1121和电极输出部112a通过台阶部1122连接。需要说明的是,此处虽然描述的是第二电池单体112,电池模组110中任一电池单体的结构均可以参考图10所示的第二电池单体112的结构。
进一步可选地,如图10所示,在第三方向Z上,台阶部1122的尺寸为H3,主体部1121的尺寸为H4,1/3≤H3/H4≤1。
在该实施例中,在第三方向Z上,将台阶部1122的尺寸H3和主体部1121的尺寸H4设置为1/3≤H3/H4≤1,经过申请人的大量实验验证,当H3/H4的比值在上述范围内,可以避免因台阶部1122与主体部1121之间的高度差太大导致的结构胶170覆盖不均匀所形成的结构薄弱点。
可选地,如图10所示,在第一方向X上,台阶部1122的尺寸为L2,结构胶170覆盖在台阶部1122的尺寸为L1,1/3≤L1/L2≤1。
可选地,此处L1可以是在第一方向X上,结构胶170覆盖在台阶部1122的最大尺寸。
在该实施例中,在第一方向X上,将台阶部1122的尺寸L2和结构胶170覆盖在台阶部1122的尺寸L1设置为1/3≤L1/L2≤1,经过申请人的大量实验验证,当L1/L2的比值在上述范围内,既可以避免涂胶太少无法达成刚度要求的问题,又可以避免涂胶太多,溢胶至主体部1121,导致电池单体局部应力集中的问题。
可选地,结构胶170可以覆盖电池模组110的部分上表面和部分下表面。例如,如图10所示,结构胶170分别覆盖电池模组110的上表面1103和下表面1104的部分。
在该实施例中,结构胶170覆盖电池模组110的部分上表面和部分下表面,与电池模组110之间形成铆接结构,使得电池模组110与支架120之间的连接更加稳固。
图11为图3所示的电池100的主视图。图12为图3所示的电池100的俯视图。可选地,如图11所示,在第三方向Z上,支架120的尺寸为H5,电池模组110的尺寸为H1,其中,H5大于H1。可选地,H1可以是电池模组110在第三方向Z上的最大尺寸。可选地,如图12所示,在第二方向Y上,支架120的尺寸为W1,电池模组110的尺寸为W2,其中,W1大于W2。可选地,W2可以是电池模组110在第二方向Y上的最大尺寸。
在该实施例中,在第三方向Z上,将支架120的尺寸H5设置成大于电池模组110的尺寸H1,以及在第二方向Y上,将支架120的尺寸W1设置成大于电池模组110的尺寸W2,可以在电池100受到震动冲击时,支架120先与壳体接触,起到缓冲作用,降低电池单体的损坏。
可选地,如图6所示,第一支撑壁1231上设置有沿第二方向Y延伸的第一容纳槽12313,第一容纳槽12313容纳有第一采样端子,第一采样端子用于采集第一电池单体111和/或第二电池单体112的参数。
可选地,第一采样端子可以是温度传感器,例如,负温度系数(Negative Temperature Coefficient,NTC)温度传感器。第一采样端子还可以是电压传感器、电流检测器等,本申请实施例对第一采样端子的类型不作限定。
在该实施例中,通过在第一支撑壁1231上设置第一容纳槽12313以容纳第一采样端子,可以实现对第一电池单体111和/或第二电池单体112的实时监测,从而可以提高电池100的安全性。
进一步地,第一容纳槽12313还可以用于容纳结构胶170,以固定第一采样端子和所述支架120。
在该实施例中,将第一采样端子和支架120通过结构胶170固定连接,可以避免第一采样端子的晃动,从而可以提高第一采样端子的采样准确性。
类似地,第二支撑壁1232上设置有沿第二方向Y延伸的第二容纳槽,第二容纳槽用于支撑第二采样端子,第二采样端子用于采集第三电池单体113和/或第四电池单体114的参数。
可选地,第二采样端子可以是温度传感器,例如,NTC温度传感器。第二采样端子还可以是电压传感器、电流检测器等,本申请实施例对第二采样端子的类型不作限定。
在实施例中,通过在第二支撑壁1232上设置第二容纳槽以容纳第二采样端子,可以实现对第三电池单体113和/或第四电池单体114的实时监测,从而可以提高电池100的安全性。
进一步地,第二容纳槽还可以用于容纳结构胶170,以固定第二采样端子和所述支架120。
在实施例中,将第二采样端子和支架120通过结构胶170固定连接,可以避免第二采样端子的晃动,从而可以提高第二采样端子的采样准 确性。
可选地,在本申请实施例中,在第三方向Z上,第二固定件125和第一固定件124相对于支架本体123对称设置。对称设置可以是指第二固定件125和第一固定件124的结构完全一致且位置对称,也可以仅仅指第二固定件125和第一固定件124的位置对称而结构不完全一致。
在实施例中,第二固定件125和第一固定件124相对于支架本体123对称设置,可以降低支架120的生产难度。
可选地,本申请实施例中结构胶170的材质包括环氧树脂、聚氨酯、丙烯酸酯、硅酮以及聚酯树脂及其衍生物或其改性后中的一种或多种,结构胶固化后应无粘性或者可以在结构胶内部可增加一些纤维或者颗粒增强相,例如无机物颗粒、碳纤维或者碳纳米管等。
图13示出了本申请实施例的电池100的示意性爆炸图。如图13所示,电池100还包括壳体140,壳体140用于容纳电池模组110和支架120。
在一种实施例中,壳体140可以是金属壳,例如,壳体140可以是铝壳。在此情况下,支架120为绝缘支架,以避免电池模组110中电池单体之间的电极输出部与壳体140接触,提高电池100的安全性。
可选地,支架120为塑胶支架。
在另一种实施例中,壳体可以是绝缘壳,例如,壳体140为塑胶壳体。此时,支架120可以是任意材质的支架。
在实施例中,将电池模组110和支架120设置在壳体140内,可以降低在电池100受到震动冲击时电池单体被损坏的风险。
继续参见图13,壳体140设置有开口,电池100还包括:端盖,端盖盖合开口,以将电池模组110和支架120封装在壳体140内。需要说明的是,本申请实施例对开口的数量和位置不作限定。例如,壳体140可 以设置一个开口,开口可以设置在任何一个方向上,对应地,电池100包括一个端盖。再例如,壳体140可以设置两个开口,两个开口可以沿任何一个方向相对设置,对应地,电池100包括两个端盖。
进一步地,端盖还设置有正电极端子和负电极端子,正电极端子与所述电池模组110的正极输出部电连接,所述负电极端子与所述电池模组110的负极输出部电连接。
如图13所示,壳体140包括沿第一方向X设置有第一开口141和第二开口142,电池100还包括:第一端盖151和第二端盖152,第一端盖151盖合第一开口141,第二端盖152盖合第二开口142。电池模组110的正极输出部1101与正电极端子161电连接,负极输出部1102与负电极端子162电连接,正电极端子161和负电极端子162设置在两个端盖中的同一端盖中,例如,正电极端子161和负电极端子162均设置在第一端盖151上。
换句话说,电池模组110的正极输出部1101和负极输出部1102设置在电池模组110沿第一方向X的同一端。
本申请一个实施例还提供了一种用电装置,用电装置可以包括前述各种实施例中的电池100,以用于为用电装置提供电能。可选地,用电装置可以为车辆、船舶或航天器。
通过在用电装置中设置前述实施例的电池100,由于在第一电池单体111和第二电池单体112之间设置支架120,使得连接后的第一电极输出部111a和第二电池电极输出部112a设置在支架120的第一容纳空间121内,并且在支架120上设置灌胶通道130,将结构胶170导入至连接后的第一电极输出部111a和第二电池电极输出部112a与支架120之间,从而可以将连接后的第一电极输出部111a和第二电池电极输出部112a与支架120固定连接,加强了串联的电池模组110与支架120之间的刚度,从 而可以避免连接后的第一电极输出部111a和第二电池电极输出部112a在支架120的第一容纳空间121内晃动,降低撕裂风险,提高电池100的电连接稳定性。
本申请实施例还提供了一种电池的制备方法。可选地,该电池可以是上述任一种实施例所描述的电池100。如图14所示,该制备方法300可以包括以下部分或全部内容。
S310,将第一电池单体111的第一电极输出部111a和第二电池电池单体112的第二电极输出部焊接112a,第一电池单体111和第二电池单体112沿第一方向X并排设置,第一方向X为电池100的长度方向。
S320,将焊接后的第一电极输出部111a和第二电极输出部112a沿第二方向Y装配至支架120的第一容纳空间121,第二方向Y为电池100的宽度方向。
S330,从支架120上的灌胶通道130注入结构胶170,以使得结构胶170导入至第一电极输出部111a和第二电极输出部112a与支架120之间。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (27)

  1. 一种电池(100),其中,包括:
    电池模组(110),包括沿第一方向(X)串联设置的第一电池单体(111)和第二电池单体(112),所述第一电池单体(111)的第一电极输出部(111a)和所述第二电池单体(112)的第二电极输出部(112a)通过焊接的方式电连接,所述第一方向(X)为所述电池(100)的长度方向;
    支架(120),设置在所述第一电池单体(111)和所述第二电池单体(112)之间,所述支架(120)设置有第一容纳空间(121),所述第一容纳空间(121)用于容纳所述第一电极输出部(111a)和所述第二电极输出部(112a);
    结构胶(170),用于将所述第一电极输出部(111a)和所述第二电极输出部(112a)与所述支架(120)固定连接;
    所述支架(120)设置有灌胶通道(130),用于将所述结构胶(170)导入至所述第一电极输出部(111a)和所述第二电极输出部(112a)与所述支架(120)之间。
  2. 根据权利要求1所述的电池(100),其特征在于,所述支架(120)包括:
    支架本体(123);
    第一固定件(124),与所述支架本体(123)在第三方向(Z)上堆叠设置,所述第三方向(Z)为所述电池(100)的厚度方向;
    其中,所述支架本体(123)和所述第一固定件(124)之间形成所述第一容纳空间(121),所述灌胶通道(130)包括第一注胶孔(131),所述第一注胶孔(131)设置在所述第一固定件(124)上。
  3. 根据权利要求2所述的电池(100),其中,所述第一固定件(124)包括第一壁(1241)和两个第一侧壁(1242),所述第一壁(1241)与所述支架本体(123)相对设置,所述两个第一侧壁(1242)分别从所述第一壁(1241)在所述第一方向(X)上的两端朝向所述支架本体(123)延伸,所述第一注胶孔(131)设置在所述第一壁(1241)上。
  4. 根据权利要求2或3所述的电池(100),其中,所述电池模组(110)还包括:
    沿所述第一方向(X)串联设置的第三电池单体(113)和第四电池单体(114),所述第三电池单体(113)的第三电极输出部(113a)和所述第四电池单体(114)的第四电极输出部(114a)电连接,所述第三电池单体(113)与所述第一电池单体(111)沿所述第三方向(Z)堆叠设置,所述第四电池单体(114)与所述第二电池单体(112)沿所述第三方向(Z)堆叠设置。
  5. 根据权利要求4所述的电池(100),其中,所述支架(120)还包括:
    第二固定件(125),与所述支架本体(123)在第三方向(Z)上堆叠设置,所述支架本体(123)设置在所述第一固定件(124)和所述第二固定件(125)之间,所述支架本体(123)和所述第二固定件(125)之间形成所述第二容纳空间(122);
    其中,所述结构胶(170)还用于将所述第三电极输出部(113a)和所述第四电极输出部(114a)与所述支架(120)固定连接,所述灌胶通道(130)还用于将所述结构胶(170)导入至所述第三电极输出部(113a)和所述第四电极输出部(114a)与所述支架(120)之间。
  6. 根据权利要求5所述的电池(100),其中,所述灌胶通道(130)还包括第二注胶孔(132),所述第二注胶孔(132)设置于所述支架本体 (123),所述第二注胶孔(132)用于将所述结构胶(170)导入至所述第一电池单体(111)、所述第二电池单体(112)、所述第三电池单体(113)和所述第四电池单体(114)中的至少一个电池单体与所述支架本体(123)之间,以将所述至少一个电池单体与所述支架(120)固定连接。
  7. 根据权利要求6所述的电池(100),其中,所述支架本体(123)具有空腔(1233)。
  8. 根据权利要求7所述的电池(100),其中,所述空腔(1233)包括沿所述第一方向(X)分布的两个连接臂(12331)和沿所述第三方向(Z)分布的两个支撑壁(12332),所述第二注胶孔(132)设置在所述两个连接臂(12331)中的至少一个连接臂和所述两个支撑壁(12332)中的至少一个支撑壁上。
  9. 根据权利要求8所述的电池(100),其中,所述第二注胶孔(132)设置在所述两个连接臂(12331)和所述两个支撑壁(12332)上。
  10. 根据权利要求9所述的电池(100),其中,所述第二注胶孔(132)还用于将所述结构胶(170)导入至所述第一电池单体(111)和所述三电池单体(113)之间、以及所述第二电池单体(112)和所述第四电池单体(114)之间。
  11. 根据权利要求1至10中任一项所述的电池(100),其中,在第三方向(Z)上,所述电池模组(110)的尺寸为H1,所述结构胶(170)的覆盖区的尺寸为H2,1/3≤H2/H1≤1,所述第三方向(Z)为所述电池的厚度方向。
  12. 根据权利要求1至11中任一项所述的电池(100),其中,所述电池模组(110)中的任一电池单体包括主体部(1121)、电极输出部和台阶部(1122),所述主体部(1121)与所述电极输出部通过所述台阶部(1122)连接。
  13. 根据权利要求12所述的电池(100),其中,在第三方向(Z)上,所述台阶部(1122)的尺寸为H3,所述主体部(1121)的尺寸为H4,1/3≤H3/H4≤1。
  14. 根据权利要求12或13所述的电池(100),其中,在所述第一方向(X)上,所述台阶部(1122)的尺寸为L2,所述结构胶(170)覆盖在所述台阶部(1122)的尺寸为L1,1/3≤L1/L2≤1。
  15. 根据权利要求1至14中任一项所述的电池(100),其中,所述结构胶(170)覆盖所述电池模组(110)的部分上表面和部分下表面。
  16. 根据权利要求1至15中任一项所述的电池(100),其中,在所述第二方向(Y)上,所述支架(120)的尺寸大于所述电池模组(110)的尺寸;和/或,在所述第三方向(Z)上,所述支架(120)的尺寸大于所述电池模组(110)的尺寸。
  17. 根据权利要求3所述的电池(100),其中,在所述两个第一侧壁(1242)之间设置有从所述第一壁(1241)朝向所述支架本体(123)延伸的第一加强肋(1243)。
  18. 根据权利要求17所述的电池(100),其中,多个所述第一加强肋(1243)沿所述第一方向(X)和/或所述第二方向(Y)间隔分布;或者,多个所述第一加强肋(1243)沿所述第一方向(X)和所述第二方向(Y)交叉分布。
  19. 根据权利要求3、17和18中任一项所述的电池(100),其中,所述第一壁(1241)设置有对称的两个第一卡槽结构(1242),所述两个第一卡槽结构(1242)用于外部装配设备抓取所述第一固定件(124)。
  20. 根据权利要求2至10中任一项所述的电池(100),其中,所述支架本体(123)包括第一支撑壁(1231),所述第一支撑壁(1231)设置有第一安装孔(12311),所述第一固定件(123)在第二方向(Y)的 至少一端设置有朝所述第一支撑壁(1231)延伸的第一卡扣(12411),所述第一卡扣(12411)与所述第一安装孔(12311)卡接,所述第二方向(Y)为所述电池(100)的宽度方向。
  21. 根据权利要求20所述的电池(100),其中,所述第一支撑壁(1231)在所述第二方向(Y)的一端设置有第一挡块(12312),所述第一挡块(12312)用于限定所述第一电极输出部(111a)和所述第二电极输出部(112a)沿所述第二方向(Y)上的移动。
  22. 根据权利要求20或21所述的电池(100),其中,所述第一支撑壁(1231)设置有沿所述第二方向(Y)延伸的第一容纳槽(12313),所述第一容纳槽(12313)容纳有第一采样端子,所述第一采样端子用于采集所述第一电池单体(111)和/或所述第二电池单体(112)的参数。
  23. 根据权利要求5至10中任一项所述的电池(100),其中,在所述第三方向(Z)上,所述第二固定件(125)与所述第一固定件(124)相对于所述支架本体(123)对称设置。
  24. 根据权利要求1至23中任一项所述的电池(100),其中,所述电池(100)还包括:
    壳体(140),所述壳体(140)用于容纳所述电池模组(110)和所述支架(120)。
  25. 根据权利要求24所述的电池(100),其中,所述壳体(140)设置有开口,所述电池(100)还包括:
    端盖,所述端盖盖合所述开口,以将所述电池模组(110)和所述支架(120)封装在所述壳体(140)内;
    所述端盖设置有正电极端子(161)和负电极端子(162),所述正电极端子(161)与所述电池模组(110)的正极输出部(1101)电连接,所 述负电极端子(162)与所述电池模组(110)的负极输出部(1102)电连接。
  26. 一种用电装置,其中,包括如权利要求1至25中任一项所述的电池(100),所述电池用于为所述用电装置提供电能。
  27. 一种电池(100)的制备方法,其中,包括:
    将第一电池单体(111)的第一电极输出部(111a)和第二电池电池单体(112)的第二电极输出部(112a)焊接,所述第一电池单体(111)和所述第二电池单体(112)沿第一方向(X)并排设置,所述第一方向(X)为所述电池(100)的长度方向;
    将焊接后的所述第一电极输出部(111a)和所述第二电极输出部(112a)沿第二方向(Y)装配至支架(120)的第一容纳空间,所述第二方向(Y)为所述电池(100)的宽度方向;
    从所述支架(120)上的灌胶通道(130)注入结构胶(170),以使得所述结构胶(170)导入至所述第一电极输出部(111a)和第二电极输出部(112a)与支架(120)之间。
PCT/CN2022/116240 2022-08-31 2022-08-31 电池、用电装置和电池的制备方法 WO2024045054A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116240 WO2024045054A1 (zh) 2022-08-31 2022-08-31 电池、用电装置和电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116240 WO2024045054A1 (zh) 2022-08-31 2022-08-31 电池、用电装置和电池的制备方法

Publications (1)

Publication Number Publication Date
WO2024045054A1 true WO2024045054A1 (zh) 2024-03-07

Family

ID=90099913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116240 WO2024045054A1 (zh) 2022-08-31 2022-08-31 电池、用电装置和电池的制备方法

Country Status (1)

Country Link
WO (1) WO2024045054A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394874A1 (en) * 2002-05-08 2004-03-03 Nissan Motor Co., Ltd. Secondary cell module and method of its production
CN111293253A (zh) * 2020-04-24 2020-06-16 比亚迪股份有限公司 电池包及电动车
CN211980824U (zh) * 2020-04-30 2020-11-20 昆山宝创新能源科技有限公司 电池模组和汽车
CN215771333U (zh) * 2021-08-26 2022-02-08 比亚迪股份有限公司 单体电池、电池模组及动力电池包

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394874A1 (en) * 2002-05-08 2004-03-03 Nissan Motor Co., Ltd. Secondary cell module and method of its production
CN111293253A (zh) * 2020-04-24 2020-06-16 比亚迪股份有限公司 电池包及电动车
CN211980824U (zh) * 2020-04-30 2020-11-20 昆山宝创新能源科技有限公司 电池模组和汽车
CN215771333U (zh) * 2021-08-26 2022-02-08 比亚迪股份有限公司 单体电池、电池模组及动力电池包

Similar Documents

Publication Publication Date Title
KR100905393B1 (ko) 이차전지 모듈
WO2012176704A1 (ja) 二次電池
EP4044329B1 (en) Battery box body, battery, electric device, and method and device for manufacturing box body
JP6793841B2 (ja) バッテリーモジュール、それを含むバッテリーパック及び自動車
US11289762B2 (en) Battery pack
JP2012009319A (ja) 二次電池および組電池
CN214254488U (zh) 电池单体、电池以及用电装置
KR100599803B1 (ko) 이차 전지와 이에 사용되는 전극 조립체 및 집전판
KR101412323B1 (ko) 전지
JP5633032B2 (ja) 二次電池
KR20060028063A (ko) 집전판용 플레이트와 이의 이차 전지 및 전지 모듈
CN209515783U (zh) 一种电池模组及电池箱
JP5768002B2 (ja) 二次電池
WO2024045054A1 (zh) 电池、用电装置和电池的制备方法
US20230021075A1 (en) Battery cell, method and system for manufacturing same, battery, and electrical device
WO2024045056A1 (zh) 电池和用电装置
CN218414825U (zh) 电池和用电装置
CN218414898U (zh) 电池和用电装置
CN115966816A (zh) 电池单体、电池和用电装置
WO2024055236A1 (zh) 电池、用电装置和电池的制备方法
JP2011034730A (ja) 電池パック
WO2024055304A1 (zh) 电池和用电装置
CN218827695U (zh) 电池和用电装置
CN217114627U (zh) 电池和用电装置
KR101966352B1 (ko) 셀 고정 부재가 구비되는 배터리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956883

Country of ref document: EP

Kind code of ref document: A1