WO2024045056A1 - 电池和用电装置 - Google Patents

电池和用电装置 Download PDF

Info

Publication number
WO2024045056A1
WO2024045056A1 PCT/CN2022/116246 CN2022116246W WO2024045056A1 WO 2024045056 A1 WO2024045056 A1 WO 2024045056A1 CN 2022116246 W CN2022116246 W CN 2022116246W WO 2024045056 A1 WO2024045056 A1 WO 2024045056A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
bracket
output part
electrode output
battery cell
Prior art date
Application number
PCT/CN2022/116246
Other languages
English (en)
French (fr)
Inventor
程启
王红
李全坤
刘江
唐代春
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/116246 priority Critical patent/WO2024045056A1/zh
Publication of WO2024045056A1 publication Critical patent/WO2024045056A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery and an electrical device.
  • the present application provides a battery and an electrical device that can reduce the risk of tearing at the connection of battery cells, thereby improving the stability of the electrical connection of the battery.
  • a battery including: a battery module, including a first battery cell and a second battery cell arranged in series along a first direction, a first electrode output part of the first battery cell and the first battery cell.
  • the second electrode output part of the second battery cell is electrically connected by welding, and the first direction is the length direction of the battery;
  • the bracket is disposed between the first battery cell and the second battery cell, the The bracket is provided with a first accommodation space that passes through the bracket in the first direction. The first accommodation space is used to accommodate the first electrode output part and the second electrode output part.
  • a bracket is provided between the first battery cell and the second battery cell connected in series, and the connection portion of the first battery cell and the second battery cell is arranged in the first receiving space of the bracket. , can better fix the connection of the battery cells and prevent the connection from shaking, thereby reducing the risk of tearing of the connection and improving the stability of the battery's electrical connection.
  • the bracket includes: a bracket body; a first fixing part stacked with the bracket body in a third direction, the third direction being the thickness direction of the battery; the first fixing part and the bracket The body is fixedly connected, and the first electrode output part and the second electrode output part are arranged in the first accommodation space formed between the stent body and the first fixing part.
  • a first accommodation space that limits the displacement of the first electrode output part and the second electrode output part in the third direction can be formed, thereby lowering the Risk of tearing at the junction of the first electrode output and the second electrode output.
  • the bracket body includes a first end and a second end in the second direction, the first fixing part is fixedly connected to the first end, and the first fixing part forms a connection with the second end. Open your mouth.
  • the first fixing part is fixedly connected to the first end of the bracket body in the second direction, so that when the battery module and the bracket are assembled, the first fixing part and the bracket body can be aligned in the second direction along the first fixing part and the bracket body.
  • the opening between the second ends is inserted into the first accommodation space, which can reduce the assembly complexity of the battery module and the bracket.
  • fixedly connecting the first fixing member to the first end of the bracket body can also increase the energy density of the battery.
  • the first fixing member includes a first wall and two first side walls, the first wall is arranged opposite to the bracket body, and the two first side walls are respectively connected from the first wall to the first side wall. Two ends in one direction extend toward the bracket body, and the two first side walls and the bracket body form the first accommodation space in the third direction.
  • the first fixing part has a cavity, which can reduce the weight of the bracket, thereby reducing the weight of the battery.
  • a first reinforcing rib extending from the first wall toward the bracket body is provided between the two first side walls.
  • a first reinforcing rib is provided on the first wall to enhance the rigidity of the first wall.
  • the first reinforcing rib is closer to the first electrode output part and the second electrode output part relative to the two first side walls.
  • the first reinforcing rib is disposed closer to the first electrode output part and the second electrode output part relative to the two first side walls to facilitate supporting the first electrode output part and the second electrode output part.
  • the electrode output part prevents the first electrode output part and the second electrode output part from shaking.
  • a plurality of first reinforcing ribs are spaced apart along the first direction or the second direction; or, a plurality of first reinforcing ribs are distributed crosswise along the first direction and the second direction.
  • a plurality of first reinforcing ribs are arranged along the first direction and the second direction, which can strengthen the fixation of the first electrode output part and the second electrode output part.
  • the first wall is provided with a first glue injection flow hole, and the first glue injection flow hole is used to introduce structural glue into the first electrode output part and the second electrode output part and Between the brackets, the first electrode output part and the second electrode output part are fixedly connected to the bracket through structural glue.
  • structural glue is used to fixedly connect the first electrode output part and the second electrode output part to the bracket, which can strengthen the rigidity between the battery module and the bracket, thereby avoiding the first electrode after electrical connection.
  • the output part and the second electrode output part rock in the first receiving space of the stent, reducing the risk of tearing.
  • the battery module further includes: a third battery cell and a fourth battery cell arranged in series along the first direction, a third electrode output part of the third battery cell and the The fourth electrode output part of the fourth battery cell is electrically connected by welding.
  • the third battery cell and the first battery cell are stacked along the third direction.
  • the fourth battery cell and the second battery The monomers are stacked along the third direction;
  • the bracket further includes: a second fixing part stacked with the bracket body in the third direction, the bracket body being disposed between the first fixing part and the second fixing part; Wherein, the second fixing part is fixedly connected to the stent body, and the third electrode output part and the fourth electrode output part are arranged in the second accommodation space between the stent body and the second fixing part.
  • a bracket is used to fix the connecting portions of two pairs of adjacent battery cells arranged along two rows, which can enhance the overall strength of the two adjacent rows of battery cells and improve the energy density of the battery.
  • the second fixing part and the first fixing part are arranged symmetrically with respect to the bracket body.
  • the second fixing part and the first fixing part are arranged symmetrically with respect to the stent body, which can reduce the production difficulty of the stent.
  • the stent body has a cavity.
  • configuring the bracket body to have a cavity structure can reduce the weight of the bracket, thereby reducing the weight of the battery.
  • At least one wall of the cavity is provided with a second glue injection flow hole.
  • the second glue injection flow hole is used to introduce structural glue into the first battery cell and the second battery.
  • the at least one battery cell and the bracket are fixedly connected through structural glue.
  • structural glue is used to fixedly connect each battery cell to the bracket, which can strengthen the stiffness between the battery module and the bracket, prevent the relative displacement of the battery module and the bracket, and reduce damage to the battery cells. .
  • the wall of the bracket body used to support the first electrode output part and the second electrode output part is provided with a first accommodation groove, and the first accommodation groove accommodates the first sampling terminal, The first sampling terminal is used to collect parameters of the first battery cell and/or the second battery cell.
  • the first receiving groove also contains structural glue, and the first sampling terminal and the bracket are fixedly connected through structural glue.
  • the first sampling terminal and the bracket are fixedly connected through structural glue, which can prevent the first sampling terminal from shaking, thereby improving the sampling accuracy of the first sampling terminal.
  • the size of the bracket in the second direction, is larger than the size of the battery module; and/or in the third direction, the size of the bracket is larger than the size of the battery module.
  • the size of the bracket in the third direction, is set to be larger than the size of the battery module, and in the second direction, the size of the bracket is set to be larger than the size of the battery module, so that the battery can be affected by vibration and impact.
  • the bracket first contacts the case to play a buffering role and reduce damage to the battery cells.
  • the battery further includes: a casing used to accommodate the battery module and the bracket.
  • arranging the battery module and the bracket inside the casing can reduce the risk of the battery cells being damaged when the battery is subject to vibration and impact.
  • the housing is provided with an opening along the first direction
  • the battery further includes: an end cover that covers the opening to package the battery module and the bracket in the housing.
  • the end cover is provided with a positive electrode terminal and a negative electrode terminal, the positive electrode terminal is electrically connected to the positive output part of the battery module, and the negative electrode terminal is electrically connected to the negative output part of the battery module.
  • an electrical device including: the battery in the first aspect and any possible implementation of the first aspect, the battery being used to provide electrical energy to the electrical device.
  • Figure 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • Figure 2 is a schematic three-dimensional view of a battery disclosed in the embodiment of the present application.
  • Figure 3 is a schematic three-dimensional view of another battery disclosed in the embodiment of the present application.
  • FIG. 4 is a schematic assembly diagram of the battery module and bracket disclosed in the embodiment of the present application.
  • Figure 5 is a schematic three-dimensional view of the bracket disclosed in the embodiment of the present application.
  • FIG. 6 is a front view of the bracket shown in FIG. 5 .
  • FIG. 7 is an enlarged schematic diagram of part A in FIG. 5 .
  • FIG. 8 is a right side view of the bracket shown in FIG. 5 .
  • FIG. 9 is a partial front view of the battery shown in FIG. 3 .
  • FIG. 10 is a partial top view of the battery shown in FIG. 2 or 3 .
  • Figure 11 is a schematic exploded view of a battery disclosed in this application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • Multiple appearing in this application refers to more than two (including two). Similarly, “multiple groups” refers to two or more groups (including two groups), and “multiple tablets” refers to two or more tablets. (Includes two pieces).
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, rectangular battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode sheet, a negative electrode sheet and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector that is not coated with the positive electrode active material layer protrudes from the current collector that is coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector that is not coated with the negative electrode active material layer protrudes from the current collector that is coated with the negative electrode active material layer.
  • the current collector coated with the negative active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the diaphragm can be PP or PE, etc.
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • embodiments of the present application provide a battery in which a bracket is provided between two battery cells connected in series, and the connection portion of the two battery cells is arranged in the accommodation space of the bracket, so that it can be better fixed
  • the connection between battery cells prevents the connection from shaking, thereby reducing the risk of tearing and improving the stability of the battery's electrical connection.
  • batteries such as mobile phones, portable devices, laptops, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spacecraft, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a new energy vehicle. Extended range vehicles, etc.
  • a motor 80 , a controller 60 and a battery 100 may be disposed inside the vehicle 1 .
  • the controller 60 is used to control the battery 100 to provide power to the motor 80 .
  • the battery 100 may be provided at the bottom, front or rear of the vehicle 1 .
  • the battery 100 can be used to supply power to the vehicle 1 .
  • the battery 100 can be used as an operating power source for the vehicle 1 and for the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 100 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • FIG. 2 shows a schematic perspective view of the battery 100 according to the embodiment of the present application.
  • the battery 100 includes a battery module 110.
  • the battery module 110 includes a first battery cell 111 and a second battery cell 112 arranged in series along the first direction X.
  • the first battery cell 111 has a first
  • the electrode output part 111a and the second electrode output part 112a of the second battery cell are electrically connected by welding, and the first direction
  • the bracket 120 is provided with a first accommodation space 121 between the body 111 and the second battery cell 112.
  • the first accommodation space 121 passes through the bracket 120 in the first direction X.
  • the first accommodation space 121 is used to accommodate the first electrode output part. 111a and the second electrode output part 112a.
  • each direction is first defined here. As shown in FIG. 2 , the first direction X is the length direction of the battery 100 , the second direction Y is the width direction of the battery 100 , and the third direction Z is the thickness direction of the battery 100 .
  • the electrode output part in this application can refer to the part where the tabs penetrate the outer packaging of the battery cell as described above, or it can also be understood as the electrical connection piece that is electrically connected to the tabs on the outside of the outer packaging of the battery cell.
  • the embodiments of the present application do not limit this.
  • the battery module 110 in the embodiment of the present application may include multiple battery cells that are connected in series, that is, the positive output part of one battery cell is connected to the negative output part of another adjacent battery cell.
  • Multiple battery cells may be arranged in a row along the first direction X as shown in FIG. 2 .
  • multiple battery cells may also be arranged in multiple rows along the first direction X.
  • the first electrode output part 111a of the first battery cell 111 and the second electrode output part 112a of the second battery cell 112 are electrically connected by welding, and may include the first electrode output part 111a and the second electrode output part 112a.
  • the two-electrode output part 112a is electrically connected by ultrasonic welding or laser welding.
  • the first electrode output part 111a and the second electrode output part 112a may be directly welded or indirectly welded through a connector. Since the first electrode output part 111a of the first battery cell 111 and the second electrode output part 112a of the second battery cell 112 have been welded before assembling the bracket 120, the bracket 120 must be provided with a penetrating bracket 120 in the first direction.
  • first electrode output part 111a and the second electrode output part 112a penetrate into the first accommodation space 121 along the second direction Y, and the first accommodation space 121 accommodates the first electrode.
  • the output part 111a and the second electrode output part 112a are only in this way.
  • the bracket 120 is provided between the first battery cell 111 and the second battery cell 112 connected in series, and the connection portion of the first battery cell 111 and the second battery cell 112 is provided on the bracket.
  • the connection of the battery cells can be better fixed to prevent the connection from shaking, thereby reducing the risk of tearing of the connection and improving the electrical connection stability of the battery 100; in addition, the bracket 120 The existence of can increase the overall rigidity of the battery module 110, thereby facilitating the assembly of the battery module 110 into the case.
  • the battery 100 of the present application may include multiple The structure and function of each bracket can be seen in the bracket 120 between the first battery cell 111 and the second battery cell 112. For the sake of simplicity, this article will not describe too much about the brackets between other battery cells.
  • FIG. 3 shows another schematic perspective view of the battery 100 according to the embodiment of the present application.
  • the battery 100 includes a battery module 110.
  • the battery module 110 includes a first battery cell 111 and a second battery cell 112 arranged in series along the first direction
  • the third battery cell 113 and the fourth battery cell 114 are arranged in series in the direction
  • the battery cells 114 are stacked along the third direction.
  • the first electrode output part 111a of the first battery cell 111 and the second electrode output part 112a of the second battery cell 112 are electrically connected by welding, and the third electrode output part 113a and the fourth electrode output part 113a of the third battery cell 113 are electrically connected by welding.
  • the fourth electrode output portion 114a of the battery cell 114 is electrically connected by welding.
  • the battery 100 also includes a bracket 120.
  • the bracket 120 is provided with a first accommodation space 121 and a second accommodation space 122.
  • the first accommodation space 121 and the second accommodation space 122 are spaced apart along the third direction Z.
  • the first accommodation space 121 is used for The first electrode output part 111a and the second electrode output part 112a are accommodated, and the second accommodation space 122 is used to accommodate the third electrode output part 113a and the fourth electrode output part 114a.
  • a bracket 120 is used to fix the connecting portions of two pairs of adjacent battery cells arranged along two rows, which can enhance the overall strength of the two adjacent rows of battery cells and improve the energy density of the battery 100 .
  • the first accommodation space 121 passes through the bracket 120 in the first direction X
  • the second accommodation space 122 also passes through the bracket 120 in the first direction X.
  • the bracket 120 can be provided with more than two accommodation spaces at intervals along the third direction Z, each containing Each accommodation space accommodates the connection portions of two corresponding battery cells, which is not limited in the embodiments of the present application.
  • FIG. 4 shows a schematic assembly diagram of the battery 100 according to the embodiment of the present application.
  • the first electrode output part 111a of the first battery cell 111 and the second electrode output part 112 of the second battery cell 112 need to be welded.
  • the second electrode output part 112a is welded at the welding point 115.
  • one of the first electrode output part 111a and the second electrode output part 112a is a negative electrode output part, and the other is a positive electrode output part.
  • the bracket 120 may be inserted between two adjacent battery cells along the second direction Y.
  • the welding position of the first electrode output part 111a of the first battery cell 111 and the second electrode output part 112a of the second battery cell 112 is inserted into the first receiving space 121 of the bracket 120 until the bracket 120 is in the second direction.
  • Y spans the entire battery cell.
  • FIG. 5 shows a schematic perspective view of the bracket 120 according to the embodiment of the present application.
  • FIG. 6 is a front view of the bracket 120 in FIG. 5 .
  • Figure 7 is a partial enlarged view of part A in Figure 5.
  • FIG. 8 is a right view of the bracket 120 in FIG. 5 .
  • the bracket 120 may include a bracket body 123 and a first fixing part 124 .
  • the first fixing part 124 and the bracket body 123 are stacked in the third direction Z.
  • the first fixing part 124 is fixedly connected to the stent body 123 , and the first electrode output part 111 a and the second electrode output part 112 a are provided in the first accommodation space 121 formed between the stent body 123 and the first fixing part 124 .
  • the bracket body 123 may be a plate-shaped structure, that is, the bracket body 123 may be a hexahedron.
  • the bracket body 123 is a rectangular parallelepiped with six flat surfaces.
  • the bracket body 123 is a hexahedron with some uneven surfaces.
  • the first fixing part 124 is fixedly connected to the bracket body 123, which may mean that the first fixing part 124 is fixedly connected to the bracket body 123 before the bracket 120 is assembled with the battery module 110; it may also refer to the fixed connection between the bracket 120 and the battery module 110. After assembly, the first fixing part 124 is fixedly connected to the bracket body 123 .
  • a third device that limits the displacement of the first electrode output part 111a and the second electrode output part 112a in the third direction Z can be formed.
  • An accommodation space 121 can reduce the risk of tearing at the connection between the first electrode output part 111a and the second electrode output part 112a.
  • the bracket body 123 includes a first end 1201 and a second end 1202 in the second direction Y, the first fixing member 124 is fixedly connected to the first end 1201, and the first fixing member 124 is fixedly connected to the first end 1201.
  • the two ends 1202 form openings.
  • the first fixing part 124 is fixedly connected to the first end 1201 of the bracket body 123, which may mean that the first fixing part 124 and the first end 1201 are integrally formed, or it may also mean that the first fixing part 124 and the first end 1201 are connected through an external
  • the fixed structure can also be used to fix the first fixing member 124 to the first end 1201.
  • the embodiment of the present application does not limit how the first fixing member 124 and the first end 1201 are fixedly connected.
  • an opening is formed between the first fixing member 124 and the second end 1202, so that the first electrode output part 111a and the second electrode output part 112a after electrical connection can be inserted into the first accommodation space 121 along the opening.
  • the first fixing part 124 is fixedly connected to the first end 1201 of the bracket body 123 in the second direction Y, so that when the battery module 110 is assembled with the bracket 120, it can be connected to the bracket along the first fixing part 124.
  • the opening between the second ends 1202 of the body 123 in the second direction Y is inserted into the first accommodation space 121 , which can reduce the assembly complexity of the battery module 110 and the bracket 120 .
  • fixedly connecting the first fixing member 124 to the first end 1201 of the bracket body 123 can also increase the energy density of the battery 100 .
  • the second battery cell 112 may also be glued or glued.
  • a fixing member 124 is fixedly connected to the bracket body 123 .
  • the bracket 120 may also include a second fixing part 125.
  • the second fixing part 125 and the bracket body 123 are stacked in the third direction Z.
  • the bracket body 123 is arranged in the third direction Z. between a fixing part 124 and a second fixing part 125.
  • the second fixing part 125 is fixedly connected to the stent body 123, and the third electrode output part 113a and the fourth electrode output part 114a are provided in the second accommodation space 122 formed between the stent body (123) and the second fixing part 125.
  • the second fixing part 125 is fixedly connected to the bracket body 123, which may mean that the second fixing part 125 is fixedly connected to the bracket body 123 before the bracket 120 is assembled with the battery module 110; it may also refer to the fixed connection between the bracket 120 and the battery module 110. After assembly, the second fixing member 125 is fixedly connected to the bracket body 123 .
  • a third structure that limits the displacement of the third electrode output part 113a and the fourth electrode output part 114a in the third direction Z can be formed.
  • the second accommodation space 122 can reduce the risk of tearing at the connection between the third electrode output part 113a and the fourth electrode output part 114a.
  • the second fixing part 125 is fixedly connected to the first end 1201 of the bracket body 123 in the second direction Y, and the second fixing part 125 is fixedly connected to the first end 1201 of the bracket body 123 in the second direction Y.
  • An opening is formed between the two ends 1202.
  • the second fixing part 125 is fixedly connected to the first end 1201 of the bracket body 123, which may mean that the second fixing part 125 and the first end 1201 are integrally formed, or it may also mean that the second fixing part 125 and the first end 1201 are connected through the outside.
  • the fixed structure can also be used to fasten the second fixing member 125 to the first end 1201.
  • the embodiment of the present application does not limit how the second fixing member 125 and the first end 1201 are fixedly connected.
  • an opening is formed between the second fixing member 125 and the second end 1202, so that the third electrode output part 113a and the fourth electrode output part 114a after electrical connection can be inserted into the second accommodation space 122 along the opening.
  • the second fixing part 125 is fixedly connected to the first end 1201 of the bracket body 123 in the second direction Y, so that when the battery module 110 is assembled with the bracket 120, it can be connected to the bracket along the second fixing part 125.
  • the opening between the second ends 1202 of the body 123 in the second direction Y is inserted into the second accommodation space 122, which can reduce the assembly complexity of the battery module 110 and the bracket 120.
  • fixedly connecting the second fixing member 125 to the first end 1201 of the bracket body 123 can also increase the energy density of the battery 100 .
  • the third battery cell 113 may also be glued or potted.
  • the two fixing members 125 are fixedly connected to the bracket body 123 .
  • the first accommodation space 121 and/or the second accommodation space 122 may penetrate the bracket 120 in the second direction Y.
  • the bracket body 123 and the first fixing member 124 are independent components.
  • the bracket body 123 can first be inserted into the mutual electrical connection along the second direction Y. below the connected first electrode output part 111a and the second electrode output part 112a, and then move the first fixing member 124 downward along the third direction Z to above the first electrode output part 111a and the second electrode output part 112a and
  • the first fixing part 124 is fixedly connected to the bracket body 123 , for example, the first fixing part 124 is clamped to the bracket body 123 .
  • the bracket body 123 , the first fixing part 124 and the second fixing part 125 may be independent components.
  • the bracket body 123 may be first moved along the first fixing part 123 .
  • the two directions Y are inserted below the first electrode output part 111a and the second electrode output part 112a that are electrically connected to each other and above the third electrode output part 113a and the fourth electrode output part 114 that are electrically connected to each other, and then the first electrode output part 111a and the second electrode output part 112a are electrically connected to each other.
  • the fixing part 124 moves downward along the third direction Z to above the first electrode output part 111a and the second electrode output part 112a and fixedly connects the first fixing part 124 to the stent body 123.
  • the first fixing part 124 is connected to the bracket body 123.
  • the bracket body 123 is snap-connected.
  • the piece 125 is snap-connected with the bracket body 123.
  • the first fixing part 124 and/or the second fixing part 125 may be strengthened by applying glue or pouring glue. 125 and the bracket body 123.
  • the first fixing member 124 includes a first wall 1241 and two first side walls 1242 .
  • the first wall 1241 is arranged opposite to the bracket body 123 , and the two first side walls 1242 extend from the first wall 1241 Both ends in the first direction X extend toward the bracket body 123 , and the two first side walls 1242 and the bracket body 123 form a first accommodation space 121 in the third direction Z.
  • the first fixing member 124 includes a first wall 1241 and two first side walls 1242.
  • the first wall 1241 and the two first side walls 1242 enclose a cavity structure.
  • the cross section of the first fixing member 124 perpendicular to the second direction Y may be U-shaped.
  • the first fixing member 124 may further include two side walls extending from both ends of the first wall 1241 distributed in the second direction Y toward the bracket body 123 , and the two side walls are respectively connected with the two first side walls 1242 They are connected end to end and form a cavity structure with an opening facing the bracket body 123 with the first wall 1241 .
  • the first fixing member 124 has a cavity, which can reduce the weight of the bracket 120 and thus the weight of the battery 100 .
  • the second fixing member 125 includes a second wall 1251 and two second side walls 1252 .
  • the second wall 1251 is arranged opposite to the bracket body 123 .
  • the two second side walls 1252 are respectively connected from the second wall 1251 Both ends in the first direction X extend toward the bracket body 123 , and the two second side walls 1252 and the bracket body 123 form a second accommodation space 122 in the third direction Z.
  • the second fixing member 125 includes a second wall 1251 and two second side walls 1252.
  • the second wall 1251 and the two second side walls 1252 form a cavity structure.
  • the cross section of the second fixing member 125 perpendicular to the second direction Y may be U-shaped.
  • the second fixing member 125 may further include two side walls extending from both ends of the second wall 1251 distributed in the second direction Y toward the bracket body 123 , and the two side walls are respectively connected with the two second side walls 1252 They are connected end to end and form a cavity structure with an opening facing the bracket body 123 with the second wall 1251 .
  • the second fixing member 125 has a cavity, which can further reduce the weight of the bracket 120 and thus the weight of the battery 100 .
  • the first fixing part 124 and/or the second fixing part 125 may also be a hexahedron with a solid interior.
  • the first electrode output part 111a and the second electrode output part are electrically connected to each other.
  • 112a may be disposed between the two opposite walls of the first fixing part 124 and the bracket body 123; the third electrode output part 113a and the fourth electrode output part 114a, which are electrically connected to each other, may be disposed between the second fixing part 125 and the bracket. between two opposite walls of the body 123.
  • a first reinforcing rib 1243 extending from the first wall 1241 toward the bracket body 123 is provided between the two first side walls 1242 .
  • a first reinforcing rib 1243 is provided on the first wall 1241, which can enhance the rigidity of the first wall 1241.
  • the first reinforcing rib 1243 may limit the movement of the first electrode output part 111a and the second electrode output part 112a in the third direction Z.
  • a first reinforcing rib 1243 is provided between the two first side walls 1242, which can limit the activity space of the first electrode output part 111a and the second electrode output part 112a, and prevent the battery 100 from being damaged when it is impacted.
  • the first electrode output part 111a and the second electrode output part 112a shake and cause tearing.
  • the first reinforcing rib 1243 is closer to the first electrode output part 111a and the second electrode output part 112a relative to the two first side walls 1242.
  • the first reinforcing rib 1243 is disposed closer to the first electrode output part 111a and the second electrode output part 112a relative to the two first side walls 1242 to facilitate supporting the first electrode.
  • the output part 111a and the second electrode output part 112a prevent the first electrode output part 111a and the second electrode output part 112a from shaking.
  • the size of the first reinforcing rib 1243 is S1 and the size of the first side wall 1242 is S2, where S1 is larger than S2.
  • a second reinforcing rib 1253 extending from the second wall 1251 toward the bracket body 123 is provided between the two second side walls 1252 .
  • a second reinforcing rib 1253 is provided on the second wall 1251, which can enhance the rigidity of the second wall 1251.
  • the second reinforcing rib 1253 is used to limit the movement of the third electrode output part 113a and the fourth electrode output part 114a in the third direction Z.
  • a second reinforcing rib 1253 is provided between the two second side walls 1252, which can limit the activity space of the third electrode output part 113a and the fourth electrode output part 114a, and prevent the battery 100 from being damaged when it is impacted.
  • the three-electrode output part 113a and the fourth electrode output part 114a shake and cause tearing.
  • the second reinforcing rib 1253 is closer to the third electrode output part 113a and the fourth electrode output part 114a relative to the two second side walls 1252.
  • the second reinforcing rib 1253 is disposed closer to the third electrode output part 113a and the fourth electrode output part 114a relative to the two second side walls 1252 to facilitate supporting the third electrode.
  • the output part 113a and the fourth electrode output part 114a prevent the third electrode output part 113a and the fourth electrode output part 114a from shaking.
  • the size of the second reinforcing rib 1253 is S3 and the size of the second side wall 1252 is S4, where S3 is larger than S4.
  • a plurality of first reinforcing ribs 1243 may be provided on the first wall 1241 , and optionally, a plurality of first reinforcing ribs 1243 may be spaced apart along the first direction X.
  • a plurality of first reinforcing ribs 1243 may also be arranged at intervals along the second direction Y.
  • a plurality of first reinforcing ribs 1243 may be arranged crosswise along the first direction X and the second direction Y.
  • a plurality of first reinforcing ribs 1243 are provided along the first direction X and/or the second direction Y, which can strengthen the support of the first electrode output part 111a and the second electrode output part 112a.
  • a plurality of second reinforcing ribs 1253 may be provided on the second wall 1251, and optionally, a plurality of second reinforcing ribs 1253 may be spaced apart along the first direction X.
  • a plurality of second reinforcing ribs may also be arranged at intervals along the second direction Y.
  • a plurality of second reinforcing ribs 1253 may be disposed crosswise along the first direction X and the second direction Y.
  • a plurality of second reinforcing ribs 1253 are provided along the first direction X and the second direction Y, which can strengthen the support of the third electrode output part 113a and the fourth electrode output part 114a.
  • a first glue injection flow hole 1244 is provided on the first wall 1241 .
  • the first glue injection flow hole 1244 is used to introduce structural glue to the first electrode output part 111 a and the second electrode output part. Between 112a and the bracket 120, the first electrode output part 111a and the second electrode output part 112a are fixedly connected to the bracket 120 through structural glue.
  • the first electrode output part 111a and the bracket 120 can be fixedly connected through the structural glue injected from the first glue injection flow hole 1244, and the second electrode output part 112a and the bracket 120 can be connected through the first injection glue through hole 1244.
  • the structural glue injected into the glue flow hole 1244 fixes the connection.
  • structural glue is used to fixedly connect the first electrode output part 111a and the second electrode output part 112a to the bracket 120, which can strengthen the rigidity between the battery module 110 and the bracket 120, thereby avoiding the need for electrical connection.
  • the first electrode output part 111a and the second electrode output part 112a rock in the first receiving space 121 of the bracket 120, thereby reducing the risk of tearing.
  • the bracket body 123 has a cavity 1231 .
  • configuring the bracket body 123 to have a structure with a cavity 1231 can reduce the weight of the bracket 120 and thus the weight of the battery 100 .
  • the bracket body 123 may also be a solid structure.
  • At least one wall of the cavity 1231 is provided with a second glue injection flow hole 1232 .
  • the second glue injection flow hole 1232 is used to introduce structural glue to at least one of the first battery cell 111 and the second battery cell 112 and the bracket 120 Between them, at least one battery cell is fixedly connected to the bracket 120 through structural glue.
  • the second glue injection flow hole 1232 is used to introduce structural glue into the first battery cell 111, the second battery cell 112, the third battery cell 113 and the fourth battery cell. Between at least one battery cell in 114 and the bracket 120, at least one battery cell and the bracket 120 are fixedly connected through structural glue.
  • the first fixing part 124 is arranged above the bracket body 123
  • the second fixing part 125 is arranged below the bracket body 123, and is arranged on at least one wall of the cavity 1231 of the bracket body 123.
  • the second glue injection flow hole 1232 can also introduce structural glue between the third electrode output part 113a, the fourth electrode output part 114a and the bracket 120, and the third electrode output part 113a, the fourth electrode output part 114a and the bracket 120. 120 fixed connection through structural glue.
  • structural glue is used to fixedly connect each battery cell to the bracket 120, which can strengthen the rigidity between the battery module 110 and the bracket 120, prevent the relative displacement of the battery module 110 and the bracket 120, and reduce the impact on the battery. Single body damage.
  • a first receiving groove 1233 extending along the second direction Y is provided on the wall of the bracket body 123 for supporting the first electrode output part 111 a and the second electrode output part 112 a.
  • the slot 1233 accommodates a first sampling terminal, which is used to collect parameters of the first battery cell 111 and/or the second battery cell 112 .
  • the first sampling terminal may be a temperature sensor, for example, a negative temperature coefficient (Negative Temperature Coefficient, NTC) temperature sensor.
  • the first sampling terminal may also be a voltage sensor, a current detector, etc.
  • the embodiment of the present application does not limit the type of the first sampling terminal.
  • the first battery cell can be The battery 111 and/or the second battery cell 112 are monitored in real time, thereby improving the safety of the battery 100 .
  • first receiving groove 1233 also contains structural glue, and the first sampling terminal and the bracket 120 are fixedly connected through the structural glue.
  • the first sampling terminal and the bracket 120 are fixedly connected through structural glue, which can prevent the first sampling terminal from shaking, thereby improving the sampling accuracy of the first sampling terminal.
  • the wall of the bracket body 123 for supporting the third electrode output part 113 a and the fourth electrode output part 114 a is provided with a second receiving groove 1234 extending in the second direction.
  • the second receiving groove 1234 A second sampling terminal is accommodated, and the second sampling terminal is used to collect parameters of the third battery cell 113 and/or the fourth battery cell 114 .
  • the second sampling terminal may be a temperature sensor, for example, an NTC temperature sensor.
  • the second sampling terminal may also be a voltage sensor, a current detector, etc.
  • the embodiment of the present application does not limit the type of the second sampling terminal.
  • the third battery cell can be implemented.
  • the battery 113 and/or the fourth battery cell 114 are monitored in real time, thereby improving the safety of the battery 100 .
  • the second receiving groove 1234 also contains structural glue, and the second sampling terminal and the bracket 120 are fixedly connected through the structural glue.
  • the second sampling terminal and the bracket 120 are fixedly connected through structural glue, which can prevent the second sampling terminal from shaking, thereby improving the sampling accuracy of the second sampling terminal.
  • the second fixing part 125 and the first fixing part 124 are arranged symmetrically with respect to the bracket body 123 .
  • the symmetrical arrangement may mean that the structures of the second fixing part 125 and the first fixing part 124 are completely consistent and the positions are symmetrical, or it may only mean that the positions of the second fixing part 125 and the first fixing part 124 are symmetrical but the structures are not completely consistent.
  • the second fixing part 125 and the first fixing part 124 are arranged symmetrically with respect to the bracket body 123 , which can reduce the production difficulty of the bracket 120 .
  • FIG. 9 is a front view of the battery 100 shown in FIG. 3 .
  • FIG. 10 is a top view of the battery 100 shown in FIG. 3 .
  • the size of the bracket 120 is H1
  • the size of the battery module 110 is H2, where H1 is larger than H2.
  • H2 may be the maximum size of the battery module 110 in the third direction Z.
  • the size of the bracket 120 is W1 and the size of the battery module 110 is W2, where W1 is larger than W2.
  • the size H1 of the bracket 120 is set to be larger than the size H2 of the battery module 110
  • the size W1 of the bracket 120 is set to be larger than the battery module 110
  • the size W2 allows the bracket 120 to first contact the case when the battery 100 is subject to vibration and impact, thereby playing a buffering role and reducing damage to the battery cells.
  • FIG. 11 shows a schematic exploded view of the battery 100 according to the embodiment of the present application.
  • the battery 100 further includes a housing 130 , which is used to accommodate the battery module 110 and the bracket 120 .
  • the housing 130 may be a metal housing, for example, the housing 130 may be an aluminum housing.
  • the bracket 120 is an insulating bracket to prevent the electrode output parts between the battery cells in the battery module 110 from contacting the case 130, thereby improving the safety of the battery 100.
  • the bracket 120 is a plastic bracket.
  • the housing may be an insulating housing.
  • the housing 130 may be a plastic housing.
  • the bracket 120 can be made of any material.
  • arranging the battery module 110 and the bracket 120 in the casing 130 can reduce the risk of the battery cells being damaged when the battery 100 is subject to vibration and impact.
  • the housing 130 is provided with an opening
  • the battery 100 further includes an end cover that covers the opening to package the battery module 110 and the bracket 120 in the housing 130 .
  • the housing 130 can be provided with an opening, and the opening can be provided in any direction.
  • the battery 100 includes an end cover.
  • the housing 130 may be provided with two openings, and the two openings may be oppositely arranged in any direction.
  • the battery 100 includes two end caps.
  • the end cover is also provided with a positive electrode terminal and a negative electrode terminal.
  • the positive electrode terminal is electrically connected to the positive output part of the battery module 110
  • the negative electrode terminal is electrically connected to the negative output part of the battery module 110 . connect.
  • the housing 130 is provided with a first opening 131 and a second opening 132 along the first direction X.
  • the battery 100 further includes: a first end cover 141 and a second end cover 142 .
  • the two end caps 142 can respectively cover the first opening 131 and the second opening 132 of the housing 130 to package the battery module 110 and the bracket 120 in the housing 130 .
  • the first end cap 141 covers the first opening 131
  • the second end cap 142 covers the second opening 132 .
  • the positive output part 1101 of the battery module 110 is electrically connected to the positive electrode terminal 151, and the negative output part 1102 is electrically connected to the negative electrode terminal 152.
  • the positive electrode terminal 151 and the negative electrode terminal 152 are arranged in the same end cover of the two end covers. , for example, the positive electrode terminal 151 and the negative electrode terminal 152 are both provided on the first end cap 141 .
  • the positive output part 1101 and the negative output part 1102 of the battery module 110 are disposed at the same end of the battery module 110 along the first direction X.
  • the electrical device may include the battery 100 in the various embodiments described above to provide electrical energy to the electrical device.
  • the electrical device may be a vehicle, ship or spacecraft.
  • the bracket 120 is arranged between the first battery cell 111 and the second battery cell 112 connected in series, and the connection portion of the two battery cells is arranged on the bracket.
  • the connection of the battery cells can be better fixed to prevent the connection from shaking, thereby reducing the risk of tearing of the connection; in addition, the existence of the bracket 120 can increase the overall stiffness of the battery module 110, thereby facilitating The battery module 110 is assembled into the case.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池和用电装置,该电池包括:电池模组,包括沿第一方向串联设置的第一电池单体和第二电池单体,该第一电池单体的第一电极输出部和该第二电池单体的第二电极输出部通过焊接的方式电连接,该第一方向为该电池的长度方向;支架,设置在该第一电池单体和该第二电池单体之间,该支架设置有第一容纳空间,该第一容纳空间在该第一方向上贯通该支架,该第一容纳空间用于容纳该第一电极输出部和该第二电极输出部。本申请实施例的电池和用电装置,能够降低电池单体连接处的撕裂风险。

Description

电池和用电装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池和用电装置。
背景技术
为了提高电池的容量,通常是将串联的多个电池单体装入具有一定强度的外壳内形成电池。由于电池的工作可靠与否涉及到整个电池乃至用电装置的安全,为此,在电池设计中,对于电池的电连接稳定性具有较高的要求。
发明内容
本申请提供了一种电池和用电装置,能够降低电池单体连接处的撕裂风险,从而可以提高电池的电连接稳定性。
第一方面,提供了一种电池,包括:电池模组,包括沿第一方向串联设置的第一电池单体和第二电池单体,该第一电池单体的第一电极输出部和该第二电池单体的第二电极输出部通过焊接的方式电连接,该第一方向为该电池的长度方向;支架,设置在该第一电池单体和该第二电池单体之间,该支架设置有第一容纳空间,该第一容纳空间在该第一方向上贯通该支架,该第一容纳空间用于容纳该第一电极输出部和该第二电极输出部。
在该实施例中,在串联的第一电池单体和第二电池单体之间设置支架,并使第一电池单体和第二电池单体的连接部设置在支架的第一容纳空间内,可以较好地固定电池单体的连接处,防止连接处的晃动,从而可以降低连接处撕裂的风险,提高电池的电连接稳定性。
在一种可能的实现方式中,该支架包括:支架本体;第一固定件,与该支架本体在第三方向上堆叠设置,该第三方向为该电池的厚度方向;该第一固定件与支架本体固定连接,第一电极输出部和第二电极输出部设置在支架本体与第一固定件之间形成的第一容纳空间。
在该实施例中,通过在第三方向上堆叠设置的支架本体和第一固定件,可以形成在第三方向上限制第一电极输出部和第二电极输出部位移的第一容纳空间,从而可以降低第一电极输出部和第二电极输出部连接处的撕裂风险。
在一种可能的实现方式中,该支架本体包括在第二方向的第一端和第二端,该第一固定件与该第一端固定连接并且该第一固定件与该第二端形成开口。
在该实施例中,将第一固定件与支架本体在第二方向上的第一端固定连接,使得电池模组与支架装配时,可以沿着第一固定件与支架本体在第二方向上的第二端之间的开口插入第一容纳空间内,可以降低电池模组与支架的装配复杂性。另外,将第一固定件与支架本体的第一端固定连接,还可以提高电池的能量密度。
在一种可能的实现方式中,该第一固定件包括第一壁和两个第一侧壁,该第一壁与支架本体相对设置,该两个第一侧壁分别从第一壁在第一方向上的两端朝向支架本体延伸,该两个第一侧壁与该支架本体在该第三方向上形成该第一容纳空间。
在该实施例中,第一固定件具有空腔,可以减轻支架的重量,从而可以减轻电池的重量。
在一种可能的实现方式中,在该两个第一侧壁之间设置有从该第一壁朝向该支架本体延伸的第一加强肋。
在该实施例中,在第一壁上设置有第一加强肋,能够加强第一壁的 刚度。
在该第三方向上,该第一加强肋相对于两个第一侧壁更靠近第一电极输出部和第二电极输出部。
在该实施例中,在第三方向上,将第一加强肋设置成相对于两个第一侧壁更靠近第一电极输出部和第二电极输出部,便于支撑第一电极输出部和第二电极输出部,避免第一电极输出部和第二电极输出部晃动。
在一种可能的实现方式中,多个该第一加强肋沿该第一方向或该第二方向间隔分布;或者,多个该第一加强肋沿该第一方向和该第二方向交叉分布。
在该实施例中,多个第一加强肋沿第一方向和第二方向设置,可以加强对第一电极输出部和第二电极输出部的固定。
在一种可能的实现方式中,该第一壁设置有第一注胶流通孔,该第一注胶流通孔用于将结构胶导入至该第一电极输出部和该第二电极输出部与该支架之间,该第一电极输出部和该第二电极输出部与该支架通过结构胶固定连接。
在该实施例中,采用结构胶将第一电极输出部和第二电极输出部与所述支架固定连接,可以加强电池模组与支架之间的刚度,从而可以避免电连接之后的第一电极输出部和第二电极输出部在支架的第一容纳空间内晃动,降低撕裂风险。
在一种可能的实现方式中,该电池模组还包括:沿该第一方向串联设置的第三电池单体和第四电池单体,该第三电池单体的第三电极输出部和该第四电池单体的第四电极输出部通过焊接的方式电连接,该第三电池单体与该第一电池单体沿该第三方向堆叠设置,该第四电池单体与该第二电池单体沿该第三方向堆叠设置;该支架还包括:第二固定件,与该支架本体在第三方向上堆叠设置,该支架本体设置在该第一固定件和该第二固 定件之间;其中,该第二固定件与该支架本体固定连接,该第三电极输出部和该第四电极输出部设置在该支架本体与该第二固定件之间的第二容纳空间内。
在该实施例中,采用一个支架固定沿两排设置的两对相邻电池单体的连接部,能够加强相邻两排电池单体的整体强度,并且能够提高电池的能量密度。
在一种可能的实现方式中,在该第三方向上,该第二固定件与该第一固定件相对于该支架本体对称设置。
在该实施例中,第二固定件和第一固定件相对于支架本体对称设置,可以降低支架的生产难度。
在一种可能的实现方式中,该支架本体具有空腔。
在该实施例中,将支架本体设置成具有空腔的结构,可以减轻支架的重量,进而可以减轻电池的重量。
在一种可能的实现方式中,该空腔的至少一个壁设置有第二注胶流通孔,该第二注胶流通孔用于将结构胶导入至该第一电池单体、该第二电池单体、该第三电池单体和该第四电池单体中的至少一个电池单体与该支架之间,该至少一个电池单体与该支架通过结构胶固定连接。
在该实施例中,采用结构胶将各个电池单体与所述支架固定连接,可以加强电池模组与支架之间的刚度,防止电池模组与支架的相对位移,降低对电池单体的损伤。
在一种可能的实现方式中,该支架本体的用于支撑该第一电极输出部和该第二电极输出部的壁设置有第一容纳槽,该第一容纳槽容纳有第一采样端子,该第一采样端子用于采集该第一电池单体和/或该第二电池单体的参数。
在该实施例中,通过在支架本体的用于支撑第一电极输出部和第二 电极输出部的壁上设置第一容纳槽以容纳第一采样端子,可以实现对第一电池单体和/或第二电池单体的实时监测,从而可以提高电池的安全性。
在一种可能的实现方式中,该第一容纳槽还容纳有结构胶,该第一采样端子与该支架通过结构胶固定连接。
在该实施例中,将第一采样端子和支架通过结构胶固定连接,可以避免第一采样端子的晃动,从而可以提高第一采样端子的采样准确性。
在一种可能的实现方式中,在该第二方向上,该支架的尺寸大于该电池模组的尺寸;和/或在该第三方向上,该支架的尺寸大于该电池模组的尺寸。
在该实施例中,在第三方向上,将支架的尺寸设置成大于电池模组的尺寸,以及在第二方向上,将支架的尺寸设置成大于电池模组的尺寸,可以在电池受到震动冲击时,支架先与壳体接触,起到缓冲作用,降低电池单体的损坏。
在一种可能的实现方式中,该电池还包括:壳体,该壳体用于容纳该电池模组和该支架。
在该实施例中,将电池模组和支架设置在壳体内,可以降低在电池受到震动冲击时电池单体被损坏的风险。
在一种可能的实现方式中,该壳体沿该第一方向设置有开口,该电池还包括:端盖,该端盖盖合该开口,以将该电池模组和该支架封装在该壳体内;该端盖设置有正电极端子和负电极端子,该正电极端子与该电池模组的正极输出部电连接,该负电极端子与该电池模组的负极输出部电连接。
第二方面,提供了一种用电装置,包括:第一方面以及第一方面中任一种可能的实现方式中的电池,该电池用于为用电装置提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例公开的一种车辆的结构示意图。
图2是本申请实施例公开的一种电池的立体示意图。
图3是本申请实施例公开的另一种电池的立体示意图。
图4是本申请实施例公开的电池模组与支架的示意性装配图。
图5是本申请实施例公开的支架的立体示意图。
图6是图5所示的支架的主视图。
图7是图5中A部分的放大示意图。
图8是图5所示的支架的右视图。
图9是图3所示的电池的局部主视图。
图10是图2或图3所示的电池的局部俯视图。
图11是本申请公开的一种电池的示意性爆炸图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申 请的技术领域的技术人员通常理解的含义相同;在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、 锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为PP或PE等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
为了提高电池的容量,通常是将串联的多个电池单体装入具有一定强度的外壳内形成电池。在电池使用过程中,电池单体之间的连接处会晃动,存在撕裂风险。
有鉴于此,本申请实施例提供了一种电池,在两个串联的电池单体之间设置支架,并使两个电池单体的连接部设置在支架的容纳空间内,可以较好地固定电池单体的连接处,防止连接处的晃动,从而可以降低撕裂风险,提高电池的电连接稳定性。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的用电装置,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达80,控制器60以及电池100,控制器60用来控制电池100为马达80的供电。例如,在车辆1的底部或车头或车尾可以设置电池100。电池100可以用于车辆1的供电,例如,电池100可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池100不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
图2示出了本申请实施例的电池100的一种示意立体图。如图2所示,电池100包括电池模组110,电池模组110包括沿第一方向X串联设置的第一电池单体111和第二电池单体112,第一电池单体111的第一电极输出部111a和第二电池单体的第二电极输出部112a通过焊接的方式电连接,第一方向X为电池100的长度方向;电池100还包括支架120,支架120设置在第一电池单体111和第二电池单体112之间,支架120设置有第一容纳空间121,第一容纳空间121在第一方向X上贯通支架120,第一容纳空间121用于容纳第一电极输出部111a和第二电极输出部112a。
为了便于描述,此处先对各个方向进行定义。如图2所示,第一方向X为电池100的长度方向,第二方向Y为电池100的宽度方向,第三方向Z为电池100的厚度方向。
本申请中的电极输出部可以是指上文中所描述的极耳穿出电池单体外包装的部分,也可以理解成在电池单体的外包装的外部与极耳电连接的电连接片,本申请实施例对此不作限定。
本申请实施例中的电池模组110可以包括多个电池单体,多个电池单体串联连接,即一个电池单体的正极输出部与相邻的另一个电池单体的负极输出部连接。多个电池单体可以如图2所示,沿第一方向X呈一排设置。可选地,多个电池单体也可以沿第一方向X呈多排设置。
本申请实施例中的第一电池单体111的第一电极输出部111a和第二电池单体112的第二电极输出部112a通过焊接的方式电连接,可以包括第一电极输出部111a和第二电极输出部112a采用超声波焊接电连接或者激光焊接电连接。可选地,第一电极输出部111a和第二电极输出部112a可以直接焊接或者通过一个连接件间接焊接。由于第一电池单体111的第一电极输出部111a和第二电池单体112的第二电极输出部112a在装配支架120之前已经焊接,故支架120必须设置有在第一方向上贯穿支架120的第一容纳空间121,才能使得连接后的第一电极输出部111a和第二电极输出部112a沿第二方向Y穿入第一容纳空间内121,并由第一容纳空间121容纳第一电极输出部111a和第二电极输出部112a。
因此,在实施例中,在串联的第一电池单体111和第二电池单体112之间设置支架120,并使第一电池单体111和第二电池单体112的连接部设置在支架120的第一容纳空间121内,可以较好地固定电池单体的连接处,防止连接处的晃动,从而可以降低连接处撕裂的风险,提高电池100的电连接稳定性;另外,支架120的存在能够增加电池模组110的整 体刚度,从而方便电池模组110入壳装配。
虽然本申请实施例是以第一电池单体111和第二电池单体112的连接为例描述的,但当一排设置有两个以上电池单体时,本申请的电池100可以包括多个支架,每个支架的结构和功能均可参见第一电池单体111和第二电池单体112之间的支架120,为了简洁,本文不过多描述其他电池单体之间的支架。
图3示出了本申请实施例的电池100的另一种示意立体图。如图3所示,电池100包括电池模组110,电池模组110包括沿第一方向X串联设置的第一电池单体111和第二电池单体112,电池模组110还包括沿第一方向X串联设置的第三电池单体113和第四电池单体114,其中,第一电池单体111和第三电池单体113沿第三方向堆叠设置,第二电池单体112和第四电池单体114沿第三方向堆叠设置。第一电池单体111的第一电极输出部111a和第二电池单体112的第二电极输出部112a通过焊接的方式电连接,第三电池单体113的第三电极输出部113a和第四电池单体114的第四电极输出部114a通过焊接的方式电连接。电池100还包括支架120,支架120设置有第一容纳空间121和第二容纳空间122,且第一容纳空间121和第二容纳空间122沿第三方向Z间隔设置,第一容纳空间121用于容纳第一电极输出部111a和第二电极输出部112a,第二容纳空间122用于容纳第三电极输出部113a和第四电极输出部114a。
在实施例中,采用一个支架120固定沿两排设置的两对相邻电池单体的连接部,能够加强相邻两排电池单体的整体强度,并且能够提高电池100的能量密度。
可选地,第一容纳空间121在第一方向X上贯通支架120,第二容纳空间122也在第一方向X上贯通支架120。
需要说明的是,当本申请中的电池模组110包括的多个电池单体沿 第一方向X呈两排以上设置时,支架120可以沿第三方向Z间隔设置两个以上容纳空间,每个容纳空间容纳对应的两个电池单体的连接部,本申请实施例对此不作限定。
图4示出了本申请实施例的电池100的装配示意图。如图4所示,需要先将位于同一排的相邻两个电池单体的电极输出部焊接,例如,将第一电池单体111的第一电极输出部111a和第二电池单体112的第二电极输出部112a在焊接点115处焊接。其中,第一电极输出部111a和第二电极输出部112a中的一个为负极输出部,另一个为正极输出部。进一步地,可以在两个相邻电池单体之间沿第二方向Y插入支架120。例如,将第一电池单体111的第一电极输出部111a和第二电池单体112的第二电极输出部112a的焊接位置插入支架120的第一容纳空间121,直至支架120在第二方向Y上横跨整个电池单体为止。
图5示出了本申请实施例的支架120的示意性立体图。图6为图5中支架120的主视图。图7为图5中A部分的局部放大图。图8为图5中支架120的右视图。可选地,如图5所示,支架120可以包括支架本体123和第一固定件124,第一固定件124与支架本体123在第三方向Z上堆叠设置。第一固定件124与支架本体123固定连接,第一电极输出部111a和第二电极输出部112a设置在支架本体123与第一固定件124之间形成的第一容纳空间121。
可选地,支架本体123可以为板状结构,即支架本体123为六面体。例如,支架本体123为六面均为平面的长方体。再例如,支架本体123为部分面不平整的六面体。
第一固定件124与支架本体123固定连接,可以是指在支架120与电池模组110装配之前,第一固定件124与支架本体123固定连接;也可以是指在支架120与电池模组110装配之后,第一固定件124与支架本体 123固定连接。
在实施例中,通过在第三方向Z上堆叠设置的支架本体123和第一固定件124,可以形成在第三方向Z上限制第一电极输出部111a和第二电极输出部112a位移的第一容纳空间121,从而可以降低第一电极输出部111a和第二电极输出部112a连接处的撕裂风险。
可选地,如图6所示,支架本体123包括在第二方向Y的第一端1201和第二端1202,第一固定件124与第一端1201固定连接并且第一固定件124与第二端1202形成开口。
第一固定件124与支架本体123的第一端1201固定连接,可以是指第一固定件124与第一端1201一体成型,或者也可以是指第一固定件124与第一端1201通过外部的固定结构固定连接,还可以是将第一固定件124与第一端1201卡接,本申请实施例对第一固定件124与第一端1201如何固定连接不作限定。另外,第一固定件124与第二端1202之间形成开口,可以使得电连接之后的第一电极输出部111a和第二电极输出部112a沿着开口插入第一容纳空间121内。
在实施例中,将第一固定件124与支架本体123在第二方向Y上的第一端1201固定连接,使得电池模组110与支架120装配时,可以沿着第一固定件124与支架本体123在第二方向Y上的第二端1202之间的开口插入第一容纳空间121内,可以降低电池模组110与支架120的装配复杂性。另外,将第一固定件124与支架本体123的第一端1201固定连接,还可以提高电池100的能量密度。
可选地,在其他实施例中,在第一固定件124与支架本体123在装配至第一电池单体111与第二电池单体112之间时,也可以通过涂胶或灌胶将第一固定件124与支架本体123固定连接。
对于图3所示的电池100,如图5所示,支架120还可以包括第二 固定件125,第二固定件125与支架本体123在第三方向Z上堆叠设置,支架本体123设置在第一固定件124和第二固定件125之间。第二固定件125与支架本体123固定连接,第三电极输出部113a和第四电极输出部114a设置在支架本体(123)与第二固定件125之间形成的第二容纳空间122。
第二固定件125与支架本体123固定连接,可以是指在支架120与电池模组110装配之前,第二固定件125与支架本体123固定连接;也可以是指在支架120与电池模组110装配之后,第二固定件125与支架本体123固定连接。
在实施例中,通过在第三方向Z上堆叠设置的支架本体123和第二固定件125,可以形成在第三方向Z上限制第三电极输出部113a和第四电极输出部114a位移的第二容纳空间122,从而可以降低第三电极输出部113a和第四电极输出部114a连接处的撕裂风险。
可选地,如图6所示,第二固定件125与支架本体123在第二方向Y上的第一端1201固定连接并且第二固定件125与支架本体123在第二方向Y上的第二端1202之间形成开口。
第二固定件125与支架本体123的第一端1201固定连接,可以是指第二固定件125与第一端1201一体成型,或者也可以是指第二固定件125与第一端1201通过外部的固定结构固定连接,还可以是将第二固定件125与第一端1201卡接,本申请实施例对第二固定件125与第一端1201如何固定连接不作限定。另外,第二固定件125与第二端1202之间形成开口,可以使得电连接之后的第三电极输出部113a和第四电极输出部114a沿着开口插入第二容纳空间122内。
在实施例中,将第二固定件125与支架本体123在第二方向Y上的第一端1201固定连接,使得电池模组110与支架120装配时,可以沿着第 二固定件125与支架本体123在第二方向Y上的第二端1202之间的开口插入第二容纳空间122内,可以降低电池模组110与支架120的装配复杂性。另外,将第二固定件125与支架本体123的第一端1201固定连接,还可以提高电池100的能量密度。
可选地,在其他实施例中,在第二固定件125与支架本体123在装配至第三电池单体113与第四电池单体114之间时,也可以通过涂胶或灌胶将第二固定件125与支架本体123固定连接。
在其他实施例中,第一容纳空间121和/或第二容纳空间122可以在第二方向Y上贯通支架120。对于图2所示的电池100,支架本体123和第一固定件124为相互独立的部件,在装配电池模组110和支架120时,可以先将支架本体123沿第二方向Y插入至相互电连接的第一电极输出部111a和第二电极输出部112a的下方,然后将第一固定件124沿第三方向Z向下移动至第一电极输出部111a与第二电极输出部112a的上方并且将第一固定件124与支架本体123固定连接,例如,将第一固定件124与支架本体123卡接。对于图3所示的电池100,支架本体123、第一固定件124以及第二固定件125可以为相互独立的部件,在装配电池模组110和支架120时,可以先将支架本体123沿第二方向Y插入至相互电连接的第一电极输出部111a和第二电极输出部112a的下方且位于相互电连接的第三电极输出部113a和第四电极输出部114的上方,然后将第一固定件124沿第三方向Z向下移动至第一电极输出部111a与第二电极输出部112a的上方并且将第一固定件124与支架本体123固定连接,例如,将第一固定件124与支架本体123卡接。以及将第二固定件125沿第三方向Z向上移动至第三电极输出部113a与第四电极输出部114a的下方并且将第二固定件125与支架本体123固定连接,例如,将第二固定件125与支架本体123卡接。
进一步地,也可以在将第一固定件124和/或第二固定件125与支架本体123卡接的基础上,通过涂胶或者灌胶以加强第一固定件124和/或第二固定件125和支架本体123之间的强度。
可选地,参见图7,第一固定件124包括第一壁1241和两个第一侧壁1242,第一壁1241与支架本体123相对设置,两个第一侧壁1242从第一壁1241在第一方向X上的两端朝向支架本体123延伸,两个第一侧壁1242与支架本体123在第三方向Z上形成第一容纳空间121。
具体地,第一固定件124包括第一壁1241和两个第一侧壁1242,第一壁1241和两个第一侧壁1242围合形成空腔结构。例如,第一固定件124的垂直于第二方向Y的横截面可以呈U型。再例如,第一固定件124还可以包括从第一壁1241在第二方向Y上分布的两端向支架本体123延伸的两个侧壁,两个侧壁分别与两个第一侧壁1242首尾依次连接,与第一壁1241形成具有面向支架本体123开口的空腔结构。
在实施例中,第一固定件124具有空腔,可以减轻支架120的重量,从而可以减轻电池100的重量。
类似地,参见图7,第二固定件125包括第二壁1251和两个第二侧壁1252,第二壁1251与支架本体123相对设置,两个第二侧壁1252分别从第二壁1251在第一方向X上的两端朝向支架本体123延伸,两个第二侧壁1252与支架本体123在第三方向Z上形成第二容纳空间122。
具体地,第二固定件125包括第二壁1251和两个第二侧壁1252。第二壁1251和两个第二侧壁1252围合形成空腔结构。例如,第二固定件125的垂直于第二方向Y的横截面可以呈U型。再例如,第二固定件125还可以包括从第二壁1251在第二方向Y上分布的两端向支架本体123延伸的两个侧壁,两个侧壁分别与两个第二侧壁1252首尾依次连接,与第二壁1251形成具有面向支架本体123开口的空腔结构。
在实施例中,第二固定件125具有空腔,可以进一步减轻支架120的重量,从而可以减轻电池100的重量。
可选地,在其他实施例中,第一固定件124和/或第二固定件125也可以是内部为实心的六面体,这样,相互电连接的第一电极输出部111a和第二电极输出部112a可以设置在第一固定件124的和支架本体123的两个相对的壁之间;相互电连接的第三电极输出部113a和第四电极输出部114a可以设置在第二固定件125和支架本体123的两个相对的壁之间。
可选地,继续参见图7和图8,在两个第一侧壁1242之间设置有从第一壁1241朝向支架本体123延伸的第一加强肋1243。
在实施例中,在第一壁1241上设置有第一加强肋1243,能够加强第一壁1241的刚度。
可选地,第一加强肋1243可以在第三方向Z上限制第一电极输出部111a和第二电极输出部112a的移动。
在实施例中,在两个第一侧壁1242之间设置有第一加强肋1243,可以限制第一电极输出部111a和第二电极输出部112a的活动空间,防止电池100在受到冲击时第一电极输出部111a和第二电极输出部112a晃动造成撕裂。
进一步可选地,在第三方向Z上,第一加强肋1243相对于两个第一侧壁1242更靠近第一电极输出部111a和第二电极输出部112a。
在实施例中,在第三方向Z上,将第一加强肋1243设置成相对于两个第一侧壁1242更靠近第一电极输出部111a和第二电极输出部112a,便于支撑第一电极输出部111a和第二电极输出部112a,避免第一电极输出部111a和第二电极输出部112a晃动。
若第一壁1241为平面时,如图8所示,第一加强肋1243的尺寸为S1,第一侧壁1242的尺寸为S2,其中,S1大于S2。
类似地,参见图7和图8,在两个第二侧壁1252之间设置有从第二壁1251朝向支架本体123延伸的第二加强肋1253。
在实施例中,在第二壁1251上设置有第二加强肋1253,能够加强第二壁1251的刚度。
可选地,第二加强肋1253用于在第三方向Z上限制第三电极输出部113a和第四电极输出部114a的移动。
在实施例中,在两个第二侧壁1252之间设置有第二加强肋1253,可以限制第三电极输出部113a和第四电极输出部114a的活动空间,防止电池100在受到冲击时第三电极输出部113a和第四电极输出部114a晃动造成撕裂。
进一步可选地,在第三方向Z上,第二加强肋1253相对于两个第二侧壁1252更靠近第三电极输出部113a和第四电极输出部114a。
在实施例中,在第三方向Z上,将第二加强肋1253设置成相对于两个第二侧壁1252更靠近第三电极输出部113a和第四电极输出部114a,便于支撑第三电极输出部113a和第四电极输出部114a,避免第三电极输出部113a和第四电极输出部114a晃动。
若第二壁1251为平面时,如图8所示,在第三方向Z上,第二加强肋1253的尺寸为S3,第二侧壁1252的尺寸为S4,其中,S3大于S4。
可选地,如图7和图8所示,第一壁1241上可以设置多个第一加强肋1243,并且可选地,多个第一加强肋1243可以沿第一方向X间隔设置。可选地,多个第一加强肋1243也可以沿第二方向Y间隔设置。进一步地,多个第一加强肋1243可以沿第一方向X和第二方向Y交叉设置。
在实施例中,多个第一加强肋1243沿第一方向X和/或第二方向Y设置,可以加强对第一电极输出部111a和第二电极输出部112a的支撑。
类似地,如图7和图8所示,第二壁1251上可以设置多个第二 加强肋1253,并且可选地,多个第二加强肋1253可以沿第一方向X间隔设置。可选地,多个第二加强肋也可以沿第二方向Y间隔设置。进一步地,多个第二加强肋1253可以沿第一方向X和第二方向Y交叉设置。
在实施例中,多个第二加强肋1253沿第一方向X和第二方向Y设置,可以加强对第三电极输出部113a和第四电极输出部114a的支撑。
可选地,继续参见图7,第一壁1241上设置有第一注胶流通孔1244,第一注胶流通孔1244用于将结构胶导入至第一电极输出部111a和第二电极输出部112a与支架120之间,第一电极输出部111a和第二电极输出部112a与支架120通过结构胶固定连接。
也就是说,第一电极输出部111a与支架120之间可以通过由第一注胶流通孔1244内注入的结构胶固定连接,第二电极输出部112a与支架120之间可以通过由第一注胶流通孔1244内注入的结构胶固定连接。
在实施例中,采用结构胶将第一电极输出部111a和第二电极输出部112a与所述支架120固定连接,可以加强电池模组110与支架120之间的刚度,从而可以避免电连接之后的第一电极输出部111a和第二电极输出部112a在支架120的第一容纳空间121内晃动,降低撕裂风险。
可选地,如图7所示,支架本体123具有空腔1231。
在实施例中,将支架本体123设置成具有空腔1231的结构,可以减轻支架120的重量,进而可以减轻电池100的重量。
在其他实施例中,支架本体123也可以为实心结构。
继续参见图7,空腔1231的至少一个壁设置有第二注胶流通孔1232。可选地,对于图2所示的电池100,第二注胶流通孔1232用于将结构胶导入至第一电池单体111和第二电池单体112中的至少一个电池单体与支架120之间,至少一个电池单体与支架120通过结构胶固定连接。而对于图3所示的电池100,第二注胶流通孔1232用于将结构胶导入至第一 电池单体111、第二电池单体112、第三电池单体113和第四电池单体114中的至少一个电池单体与支架120之间,至少一个电池单体与支架120通过结构胶固定连接。
对于图7所示的支架120,即第一固定件124设置在支架本体123的上方,第二固定件125设置在支架本体123的下方,设置在支架本体123的空腔1231的至少一个壁上的第二注胶流通孔1232还可以可以将结构胶导入至第三电极输出部113a和第四电极输出部114a与支架120之间,第三电极输出部113a和第四电极输出部114a与支架120通过结构胶固定连接。
在实施例中,采用结构胶将各个电池单体与所述支架120固定连接,可以加强电池模组110与支架120之间的刚度,防止电池模组110与支架120的相对位移,降低对电池单体的损伤。
可选地,继续参见图7,支架本体123的用于支撑第一电极输出部111a和第二电极输出部112a的壁上设置有沿第二方向Y延伸的第一容纳槽1233,第一容纳槽1233容纳有第一采样端子,第一采样端子用于采集第一电池单体111和/或第二电池单体112的参数。
第一采样端子可以是温度传感器,例如,负温度系数(Negative Temperature Coefficient,NTC)温度传感器。第一采样端子还可以是电压传感器、电流检测器等,本申请实施例对第一采样端子的类型不作限定。
在实施例中,通过在支架本体123的用于支撑第一电极输出部111a和第二电极输出部112a的壁上设置第一容纳槽1233以容纳第一采样端子,可以实现对第一电池单体111和/或第二电池单体112的实时监测,从而可以提高电池100的安全性。
进一步地,第一容纳槽1233还容纳有结构胶,第一采样端子和所述支架120通过结构胶固定连接。
在实施例中,将第一采样端子和支架120通过结构胶固定连接,可以避免第一采样端子的晃动,从而可以提高第一采样端子的采样准确性。
类似地,继续参见图7,支架本体123的用于支撑第三电极输出部113a和第四电极输出部114a的壁上设置有沿第二方向延伸的第二容纳槽1234,第二容纳槽1234容纳有第二采样端子,第二采样端子用于采集第三电池单体113和/或第四电池单体114的参数。
第二采样端子可以是温度传感器,例如,NTC温度传感器。第二采样端子还可以是电压传感器、电流检测器等,本申请实施例对第二采样端子的类型不作限定。
在实施例中,通过在支架本体123的用于支撑第三电极输出部113a和第四电极输出部114a的壁上设置第二容纳槽1234以容纳第二采样端子,可以实现对第三电池单体113和/或第四电池单体114的实时监测,从而可以提高电池100的安全性。
进一步地,第二容纳槽1234还容纳有结构胶,第二采样端子和所述支架120通过结构胶固定连接。
在实施例中,将第二采样端子和支架120通过结构胶固定连接,可以避免第二采样端子的晃动,从而可以提高第二采样端子的采样准确性。
可选地,在本申请实施例中,在第三方向Z上,第二固定件125和第一固定件124相对于支架本体123对称设置。对称设置可以是指第二固定件125和第一固定件124的结构完全一致且位置对称,也可以仅仅指第二固定件125和第一固定件124的位置对称而结构不完全一致。
在实施例中,第二固定件125和第一固定件124相对于支架本体123对称设置,可以降低支架120的生产难度。
图9为图3所示的电池100的主视图。图10为图3所示的电池100的俯视图。可选地,如图9所示,在第三方向Z上,支架120的尺寸 为H1,电池模组110的尺寸为H2,其中,H1大于H2。应理解,H2可以是电池模组110在第三方向Z上的最大尺寸。可选地,如图10所示,在第二方向Y上,支架120的尺寸为W1,电池模组110的尺寸为W2,其中,W1大于W2。
在实施例中,在第三方向Z上,将支架120的尺寸H1设置成大于电池模组110的尺寸H2,以及在第二方向Y上,将支架120的尺寸W1设置成大于电池模组110的尺寸W2,可以在电池100受到震动冲击时,支架120先与壳体接触,起到缓冲作用,降低电池单体的损坏。
图11示出了本申请实施例的电池100的示意性爆炸图。如图11所示,电池100还包括壳体130,壳体130用于容纳电池模组110和支架120。
在一种实施例中,壳体130可以是金属壳,例如,壳体130可以是铝壳。在此情况下,支架120为绝缘支架,以避免电池模组110中电池单体之间的电极输出部与壳体130接触,提高电池100的安全性。例如,支架120为塑胶支架。
在另一种实施例中,壳体可以是绝缘壳,例如,壳体130为塑胶壳体。此时,支架120可以是任意材质的支架。
在实施例中,将电池模组110和支架120设置在壳体130内,可以降低在电池100受到震动冲击时电池单体被损坏的风险。
可选地,壳体130设置有开口,电池100还包括:端盖,端盖盖合开口,以将电池模组110和支架120封装在壳体130内。需要说明的是,本申请实施例对开口的数量和位置不作限定。例如,壳体130可以设置一个开口,开口可以设置在任何一个方向上,对应地,电池100包括一个端盖。再例如,壳体130可以设置两个开口,两个开口可以沿任何一个方向相对设置,对应地,电池100包括两个端盖。
进一步地,端盖还设置有正电极端子和负电极端子,正电极端子与所述电池模组110的正极输出部电连接,所述负电极端子与所述电池模组110的负极输出部电连接。
如图11所示,壳体130沿第一方向X设置有第一开口131和第二开口132,电池100还包括:第一端盖141和第二端盖142,第一端盖141和第二端盖142可以分别盖合壳体130的第一开口131和第二开口132,以将电池模组110和支架120封装在壳体130内。例如,第一端盖141盖合第一开口131,第二端盖142盖合第二开口132。
电池模组110的正极输出部1101与正电极端子151电连接,负极输出部1102与负电极端子152电连接,正电极端子151和负电极端子152设置在两个端盖中的同一端盖中,例如,正电极端子151和负电极端子152均设置在第一端盖141上。
换句话说,电池模组110的正极输出部1101和负极输出部1102设置在电池模组110沿第一方向X的同一端。
本申请一个实施例还提供了一种用电装置,用电装置可以包括前述各种实施例中的电池100,以用于为用电装置提供电能。可选地,用电装置可以为车辆、船舶或航天器。
通过在用电装置中设置前述实施例的电池100,由于在串联的第一电池单体111和第二电池单体112之间设置支架120,并使两个电池单体的连接部设置在支架的容纳空间内,可以较好地固定电池单体的连接处,防止连接处的晃动,从而降低连接处撕裂的风险;另外,支架120的存在能够增加电池模组110的整体刚度,从而方便电池模组110入壳装配。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特 征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种电池(100),其特征在于,包括:
    电池模组(110),包括沿第一方向(X)串联设置的第一电池单体(111)和第二电池单体(112),所述第一电池单体(111)的第一电极输出部(111a)和所述第二电池单体(112)的第二电极输出部(112a)通过焊接的方式电连接,所述第一方向(X)为所述电池(100)的长度方向;
    支架(120),设置在所述第一电池单体(111)和所述第二电池单体(112)之间,所述支架(120)设置有第一容纳空间(121),所述第一容纳空间(121)在所述第一方向(X)上贯通所述支架(120),所述第一容纳空间(121)用于容纳所述第一电极输出部(111a)和所述第二电极输出部(112a)。
  2. 根据权利要求1所述的电池(100),其特征在于,所述支架(120)包括:
    支架本体(123);
    第一固定件(124),与所述支架本体(123)在第三方向(Z)上堆叠设置,所述第三方向(Z)为所述电池(100)的厚度方向;
    其中,所述第一固定件(124)与所述支架本体(123)固定连接,所述第一电极输出部(111a)和所述第二电极输出部(112a)设置在所述支架本体(123)与所述第一固定件(124)之间形成的所述第一容纳空间(121)内。
  3. 根据权利要求2所述的电池(100),其特征在于,所述支架本体(123)包括在第二方向(Y)上的第一端(1201)和第二端(1202),所述第二方向(Y)为所述电池(100)的宽度方向;所述第一固定件(124) 与所述第一端(1201)固定连接并且所述第一固定件(124)与所述第二端(1202)形成开口。
  4. 根据权利要求3所述的电池(100),其特征在于,所述第一固定件(124)包括第一壁(1241)和两个第一侧壁(1242),所述第一壁(1241)与所述支架本体(123)相对设置,所述两个第一侧壁(1242)分别从所述第一壁(1241)在所述第一方向(X)上的两端朝向所述支架本体(123)延伸,所述两个第一侧壁(1242)与所述支架本体(123)在所述第三方向(Z)上形成所述第一容纳空间(121)。
  5. 根据权利要求4所述的电池(100),其特征在于,在所述两个第一侧壁(1242)之间设置有从所述第一壁(1241)朝向所述支架本体(123)延伸的第一加强肋(1243)。
  6. 根据权利要求5所述的电池(100),其特征在于,在所述第三方向(Z)上,所述第一加强肋(1243)相对于所述两个第一侧壁(1242)更靠近所述第一电极输出部(111a)和所述第二电极输出部(112a)。
  7. 根据权利要求5或6所述的电池(100),其特征在于,多个所述第一加强肋(1243)沿所述第一方向(X)或所述第二方向(Y)间隔分布;或者,多个所述第一加强肋(1243)沿所述第一方向(X)和所述第二方向(Y)交叉分布。
  8. 根据权利要求4至7中任一项所述的电池(100),其特征在于,所述第一壁(1241)设置有第一注胶流通孔(1244),所述第一注胶流通孔(1244)用于将结构胶导入至所述第一电极输出部(111a)和所述第二电极输出部(112a)与所述支架(120)之间,所述第一电极输出部(111a)和所述第二电极输出部(112a)与所述支架(120)通过所述结构胶固定连接。
  9. 根据权利要求2至8中任一项所述的电池(100),其特征在于,所述电池模组(110)还包括:
    沿所述第一方向(X)串联设置的第三电池单体(113)和第四电池单体(114),所述第三电池单体(113)的第三电极输出部(113a)和所述第四电池单体(114)的第四电极输出部(114a)通过焊接的方式电连接,所述第三电池单体(113)与所述第一电池单体(111)沿所述第三方向(Z)堆叠设置,所述第四电池单体(114)与所述第二电池单体(112)沿所述第三方向(Z)堆叠设置;
    所述支架(120)还包括:
    第二固定件(125),与所述支架本体(123)在第三方向(Z)上堆叠设置,所述支架本体(123)设置在所述第一固定件(124)和所述第二固定件(125)之间;
    其中,所述第二固定件(125)与所述支架本体(123)固定连接,所述第三电极输出部(113a)和所述第四电极输出部(114a)设置在所述支架本体(123)与所述第二固定件(125)之间的第二容纳空间(122)内。
  10. 根据权利要求9所述的电池(100),其特征在于,在所述第三方向(Z)上,所述第二固定件(125)与所述第一固定件(124)相对于所述支架本体(123)对称设置。
  11. 根据权利要求9或10所述的电池(100),其特征在于,所述支架本体(123)具有空腔(1231)。
  12. 根据权利要求11所述的电池(100),其特征在于,所述空腔(1231)的至少一个壁设置有第二注胶流通孔(1232),所述第二注胶流通孔(1232)用于将结构胶导入至所述第一电池单体(111)、所述第二电池单体(112)、所述第三电池单体(113)和所述第四电池单体(114) 中的至少一个电池单体与所述支架(120)之间,所述至少一个电池单体与所述支架(120)通过所述结构胶固定连接。
  13. 根据权利要求9至12中任一项所述的电池(100),其特征在于,所述支架本体(123)的用于支撑所述第一电极输出部(111a)和所述第二电极输出部(112a)的壁设置有沿所述第二方向延伸的第一容纳槽(1233),所述第一容纳槽(1233)容纳有第一采样端子,所述第一采样端子用于采集所述第一电池单体(111)和/或所述第二电池单体(112)的参数。
  14. 根据权利要求13所述的电池(100),其特征在于,所述第一容纳槽(1233)还容纳有结构胶,所述第一采样端子与所述支架(120)通过所述结构胶固定连接。
  15. 根据权利要求1至14中任一项所述的电池(100),其特征在于,在所述第二方向(Y)上,所述支架(120)的尺寸大于所述电池模组(110)的尺寸;和/或
    在所述第三方向(Z)上,所述支架(120)的尺寸大于所述电池模组(110)的尺寸。
  16. 根据权利要求1至15中任一项所述的电池(100),其特征在于,所述电池(100)还包括:
    壳体(130),所述壳体(130)用于容纳所述电池模组(110)和所述支架(120)。
  17. 根据权利要求16所述的电池(100),其特征在于,所述壳体(130)设置有开口,所述电池(100)还包括:
    端盖,所述端盖盖合所述开口,以将所述电池模组(110)和所述支架(120)封装在所述壳体(130)内;
    所述端盖设置有正电极端子(151)和负电极端子(152),所述正电极端子(151)与所述电池模组(110)的正极输出部(1101)电连接,所述负电极端子(152)与所述电池模组(110)的负极输出部(1102)电连接。
  18. 一种用电装置,其特征在于,包括如权利要求1至17中任一项所述的电池(100),所述电池(100)用于为所述用电装置提供电能。
PCT/CN2022/116246 2022-08-31 2022-08-31 电池和用电装置 WO2024045056A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116246 WO2024045056A1 (zh) 2022-08-31 2022-08-31 电池和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116246 WO2024045056A1 (zh) 2022-08-31 2022-08-31 电池和用电装置

Publications (1)

Publication Number Publication Date
WO2024045056A1 true WO2024045056A1 (zh) 2024-03-07

Family

ID=90099884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116246 WO2024045056A1 (zh) 2022-08-31 2022-08-31 电池和用电装置

Country Status (1)

Country Link
WO (1) WO2024045056A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011850A (ja) * 2013-06-28 2015-01-19 三洋電機株式会社 車載用の電源装置及び電源装置を備える車両
CN111293253A (zh) * 2020-04-24 2020-06-16 比亚迪股份有限公司 电池包及电动车
CN113644350A (zh) * 2020-04-24 2021-11-12 比亚迪股份有限公司 电池包及电动车
CN215771333U (zh) * 2021-08-26 2022-02-08 比亚迪股份有限公司 单体电池、电池模组及动力电池包

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011850A (ja) * 2013-06-28 2015-01-19 三洋電機株式会社 車載用の電源装置及び電源装置を備える車両
CN111293253A (zh) * 2020-04-24 2020-06-16 比亚迪股份有限公司 电池包及电动车
CN113644350A (zh) * 2020-04-24 2021-11-12 比亚迪股份有限公司 电池包及电动车
CN215771333U (zh) * 2021-08-26 2022-02-08 比亚迪股份有限公司 单体电池、电池模组及动力电池包

Similar Documents

Publication Publication Date Title
KR100905393B1 (ko) 이차전지 모듈
WO2022134055A1 (zh) 电池的箱体、电池、用电装置、制备箱体的方法和装置
KR101412323B1 (ko) 전지
WO2024000906A1 (zh) 电池单体、电池及用电装置
JP2024509223A (ja) 電池セル、電池および電気設備
CN116438709A (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2024045056A1 (zh) 电池和用电装置
WO2023025104A1 (zh) 电池单体、电池以及用电装置
CN216903213U (zh) 电池单体、电池及用电设备
CN216120662U (zh) 隔离板组件、电池以及用电装置
US20220352604A1 (en) Connection component, battery cell, battery and electrical device
WO2024045054A1 (zh) 电池、用电装置和电池的制备方法
CN218414898U (zh) 电池和用电装置
WO2024055236A1 (zh) 电池、用电装置和电池的制备方法
CN218414825U (zh) 电池和用电装置
CN218827695U (zh) 电池和用电装置
CN218939866U (zh) 电池和用电装置
WO2024055304A1 (zh) 电池和用电装置
CN217114627U (zh) 电池和用电装置
KR20160054268A (ko) 이차전지셀 및 이를 포함하는 배터리 모듈
CN218677359U (zh) 电池单体、电池及用电设备
WO2024055166A1 (zh) 电池单体、电池、用电装置及制备方法
CN220456568U (zh) 电池箱、电池和用电装置
CN218997020U (zh) 电池单体、电池及用电装置
CN218586037U (zh) 电池单体、电池以及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956885

Country of ref document: EP

Kind code of ref document: A1