WO2024043272A1 - リチウム一次電池 - Google Patents

リチウム一次電池 Download PDF

Info

Publication number
WO2024043272A1
WO2024043272A1 PCT/JP2023/030294 JP2023030294W WO2024043272A1 WO 2024043272 A1 WO2024043272 A1 WO 2024043272A1 JP 2023030294 W JP2023030294 W JP 2023030294W WO 2024043272 A1 WO2024043272 A1 WO 2024043272A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
lithium
primary battery
positive electrode
group
Prior art date
Application number
PCT/JP2023/030294
Other languages
English (en)
French (fr)
Inventor
仁志 西谷
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024043272A1 publication Critical patent/WO2024043272A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Definitions

  • the present disclosure relates to a lithium primary battery.
  • Lithium primary batteries have high energy density and low self-discharge, so they are used as power sources for many electronic devices.
  • Manganese dioxide or the like is used for the positive electrode of a lithium primary battery.
  • sheet-like (foil-like) metallic lithium or lithium alloy is used for the negative electrode of a lithium primary battery.
  • Patent Document 1 in a lithium-organic electrolyte battery in which a lithium salt is dissolved in an electrolyte and a separator is opposed to a negative electrode, a coating layer of an aluminum-magnesium alloy is initially laminated on the surface of the lithium body adjacent to the separator.
  • a lithium negative electrode has been proposed in which aluminum-magnesium-lithium ternary alloy is formed by diffusion, increasing the negative electrode surface area and improving the pulse performance of the battery.
  • WO 03/03002 includes a cathode assembly, the cathode assembly consisting of a metal cathode current collector having two major surfaces and a cathode cladding disposed on at least one of the two major surfaces;
  • An electrochemical cell is proposed, further comprising a metallic lithium anode, the coating comprising iron disulfide and alloyed with aluminum, wherein the anode to cathode input ratio is less than or equal to 1.0.
  • Patent Document 3 discloses a positive electrode using iron disulfide as a positive electrode active material, a negative electrode using a lithium alloy as a negative electrode active material, an electrode group in which the positive electrode and the negative electrode are wound together with a separator interposed therebetween, and non-aqueous electrolysis.
  • a lithium primary battery has been proposed that includes a liquid and a lithium alloy in which the lithium alloy contains 0.02 to 0.2 mol % of at least one of magnesium and tin.
  • battery capacity may decrease due to deterioration of the negative electrode.
  • One aspect of the present disclosure includes a positive electrode, a negative electrode, and a nonaqueous electrolyte, the positive electrode containing at least one selected from the group consisting of manganese dioxide and graphite fluoride, and the negative electrode containing lithium
  • the lithium alloy contains aluminum, magnesium, and at least one selected from the group consisting of sodium and calcium, and the total content of the aluminum and magnesium in the lithium alloy is:
  • the present invention relates to a lithium primary battery in which the total content of the sodium and calcium in the lithium alloy is 0.02% by mass or more and 10% by mass or less, and the total content of the sodium and calcium in the lithium alloy is 0.02% by mass or less.
  • FIG. 1 is a partially cross-sectional front view of a lithium primary battery according to an embodiment of the present disclosure.
  • a lithium primary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the positive electrode contains at least one member selected from the group consisting of manganese dioxide and graphite fluoride.
  • the negative electrode includes a lithium alloy, and the lithium alloy includes at least one selected from the group consisting of aluminum (Al), magnesium (Mg), sodium (Na), and calcium (Ca).
  • Al aluminum
  • Mg magnesium
  • Na sodium
  • Ca calcium
  • the total content of Al and Mg in the lithium alloy is 0.02% by mass or more and 10% by mass or less.
  • the total content of Na and Ca in the lithium alloy is 0.02% by mass or less.
  • Al, Mg, and at least one selected from the group consisting of Na and Ca are mixed.
  • the lithium alloy contains Al
  • side reactions due to contact between the negative electrode and the non-aqueous electrolyte are suppressed, and capacity reduction due to the side reactions is suppressed.
  • Al tends to segregate in lithium alloys, and due to the segregation of Al, the consumption of Li on the negative electrode surface becomes uneven during discharge, causing part of the negative electrode to be chipped or broken at the end of discharge, resulting in a decrease in capacity. There is.
  • the dispersibility of Mg is improved, and the above-mentioned Al segregation due to Mg is improved. A significant suppressing effect is obtained, and a decrease in capacity is significantly suppressed. Therefore, high capacity can be obtained both initially and after long-term storage, and the rate of capacity deterioration after storage can be significantly reduced.
  • the total content of Na and Ca in the lithium alloy is 0.02% by mass or less, trace amounts of Na and/or Ca are easily dissolved in the lithium alloy and uniformly dispersed, improving the dispersibility of Mg. can contribute stably and efficiently to
  • the total content of Al and Mg in the lithium alloy is less than 0.02% by mass, the effects of Al and Mg will be insufficient and the capacity will tend to decrease.
  • the total content of Al and Mg in the lithium alloy is greater than 10% by mass, and/or when the total content of Na and Ca in the lithium alloy is greater than 0.02% by mass, the negative electrode Since the amount of Li occupied decreases and the absolute amount of Li decreases, the capacity may decrease.
  • Na and/or Ca become difficult to dissolve in the lithium alloy, the dispersibility of Mg decreases, and the capacity decreases.
  • the lithium alloy used for the negative electrode is, for example, in the form of a foil (sheet). From the viewpoint of increasing capacity, the content of Li in the lithium alloy may be, for example, 90% by mass or more, or 95% by mass or more.
  • the lithium alloy contains Al, Mg, and at least one selected from the group consisting of Na and Ca.
  • the total content of Al and Mg in the lithium alloy is 0.02 mass% or more and 10 mass% or less, and 0.05 mass% or more (or 0.1 mass% or more) and 8 mass% or less. It may be 0.1% by mass or more (or 0.2% by mass or more) and 5% by mass or less.
  • the Mg content (or Al content) in the lithium alloy may be 0.02% by mass or more, 0.05% by mass or more, or 0.1% by mass or more (or 0.2% by mass). mass% or more). Further, the Mg content (or Al content) in the lithium alloy may be 9.5% by mass or less, 7% by mass or less, 5% by mass or less, 2 It may be less than % by mass.
  • the molar ratio of Mg to Al: Mg/Al may be, for example, 0.01 or more (or 0.02 or more) and 100 or less, or 0.05 or more and 20 or less.
  • the total content of Na and Ca in the lithium alloy is 0.02% by mass or less, and may be 0.0005% by mass or more and 0.019% by mass or less, 0.001% by mass or more, and 0.01% by mass or more. It may be .018% by mass or less.
  • the Na content (or Ca content) in the lithium alloy may be 0.0001% by mass or more, 0.0005% by mass or more, or 0.0025% by mass or more. . Further, the Na content (or Ca content) in the lithium alloy may be 0.015% by mass or less, 0.012% by mass or less, and 0.010% by mass or less. Good too.
  • the lithium alloy may contain metal elements other than Li, Al, Mg, Na, and Ca.
  • metal elements include Sn, Ni, Pb, In, K, Fe, and Si.
  • the total content of metal elements other than lithium in the lithium alloy is 0.05% by mass or more and 15% by mass or less (or 10% by mass or less) from the viewpoint of ensuring discharge capacity and stabilizing internal resistance. It is preferable that there be.
  • the content of each element in the lithium alloy is determined by inductively coupled plasma (ICP) emission spectrometry or atomic absorption spectrometry (AAS).
  • ICP inductively coupled plasma
  • AAS atomic absorption spectrometry
  • the non-aqueous electrolyte preferably contains at least one additive selected from the group consisting of cyclic imide compounds, phthalate compounds, and isocyanate compounds.
  • a composite film containing Al and Mg derived from the lithium alloy and components derived from the additive can be formed on the surface of the lithium alloy (negative electrode) containing Al and Mg. .
  • the coating has excellent chemical stability, and since the coating contains Al and Mg derived from a lithium alloy, the wettability of the negative electrode with respect to the non-aqueous electrolyte is improved, and the resistance of the negative electrode is reduced.
  • the coating facilitates more uniform consumption of Li on the surface of the negative electrode.
  • the lithium alloy further contains at least one of Na and Ca, Mg is more uniformly dispersed, and the uniformity is further improved in the entire negative electrode. Therefore, the above film is easily formed stably. As a result, a decrease in capacity can be further suppressed.
  • the content of the additive in the non-aqueous electrolyte is, for example, 0.01% by mass or more and 5% by mass or less.
  • the content of the additive in the non-aqueous electrolyte is the mass ratio (percentage) of the additive to the entire non-aqueous electrolyte.
  • it is desirable that the content of the additive in the non-aqueous electrolyte is within the above range immediately after manufacturing the battery (or at the time of preparing the non-aqueous electrolyte).
  • some of the additives are consumed in forming a film, and the content of additives in the non-aqueous electrolyte is smaller than the above range.
  • cyclic imide compound examples include cyclic diacylamine compounds.
  • the cyclic imide compound should just have a diacylamine ring (hereinafter also referred to as an imide ring).
  • Another ring hereinafter also referred to as a second ring
  • the cyclic imide compound may be contained in the nonaqueous electrolyte in the form of an imide, an anion, or a salt.
  • the cyclic imide compound When the cyclic imide compound is contained in the non-aqueous electrolyte in the form of an imide, it may be contained in a form having a free NH group, or may be contained in the form of a tertiary amine.
  • Examples of the second ring include aromatic rings, saturated or unsaturated aliphatic rings, and the like.
  • the second ring may include at least one heteroatom.
  • heteroatoms include oxygen atoms, sulfur atoms, and nitrogen atoms.
  • Examples of the cyclic imide compound include an aliphatic dicarboxylic acid imide compound and a cyclic imide compound having a second ring.
  • Examples of the aliphatic dicarboxylic acid imide compound include succinimide.
  • Examples of the cyclic imide compound having a second ring include imide compounds of aromatic or alicyclic dicarboxylic acids. Examples of aromatic dicarboxylic acids and alicyclic dicarboxylic acids include those having carboxy groups on two adjacent atoms constituting a ring.
  • Examples of the cyclic imide compound having a second ring include phthalimide and a hydrogenated product of phthalimide. Examples of hydrogenated products of phthalimide include cyclohex-3-ene-1,2-dicarboximide and cyclohexane-1,2-dicarboximide.
  • the imide ring may be an N-substituted imide ring having a substituent on the nitrogen atom of the imide.
  • substituents include hydroxy groups, alkyl groups, alkoxy groups, and halogen atoms.
  • alkyl group include C1 to C4 alkyl groups, and may also be methyl groups, ethyl groups, and the like.
  • alkoxy group include C1 to C4 alkoxy groups, and may also be methoxy groups, ethoxy groups, and the like.
  • the halogen atom include a chlorine atom and a fluorine atom.
  • the cyclic imide compound is preferably at least one selected from the group consisting of phthalimide and N-substituted phthalimide.
  • the substituent on the nitrogen atom of the N-substituted phthalimide can be selected from the substituents exemplified for the N-substituted imide ring.
  • the N-substituted phthalimide includes, for example, at least one selected from the group consisting of N-hydroxyphthalimide, N-(2-hydroxyethyl)phthalimide, N-(cyclohexylthio)phthalimide, and N-(phenylthio)phthalimide. It is preferable. Phthalimide and/or N-substituted phthalimide may account for 50% by weight or more, even 70% by weight or more, or 90% by weight or more of the cyclic imide compound.
  • the nonaqueous electrolyte may contain one type of cyclic imide compound, or may contain two or more types of cyclic imide compounds.
  • the content of the cyclic imide compound in the non-aqueous electrolyte may be 1% by mass or less, 0.001% by mass or more and 1% by mass or less, 0.001% by mass or more, 0. It may be 8% by mass or less.
  • Phthalate compounds include phthalate esters and derivatives thereof.
  • the derivative may have a substituent attached to the aromatic ring derived from phthalic acid.
  • substituents include hydroxy groups, alkyl groups, alkoxy groups, and halogen atoms.
  • alkyl group include C1 to C4 alkyl groups, and may also be methyl groups, ethyl groups, and the like.
  • alkoxy group include C1 to C4 alkoxy groups, and may also be methoxy groups, ethoxy groups, and the like.
  • the halogen atom include a chlorine atom and a fluorine atom.
  • the phthalate ester compound may be a phthalate monoester compound, but a phthalate diester compound is preferable from the viewpoint that the resulting film can easily protect the Li alloy surface.
  • the alcohol constituting the ester with phthalic acid (or its derivative) is preferably a C1 to C20 (preferably C1 to C6) saturated or unsaturated aliphatic alcohol.
  • phthalate diester compounds include dimethyl phthalate, diethyl phthalate, diallyl phthalate, dibutyl phthalate, diisobutyl phthalate, bis(2-ethylhexyl) phthalate, and the like. These may be used alone or in combination of two or more.
  • the phthalate diester compound may account for 50% by mass or more, further 70% by mass or more, or 90% by mass or more of the phthalate ester compound.
  • the non-aqueous electrolyte may contain one type of phthalate ester compound, or may contain two or more types.
  • the content of the phthalate ester compound in the non-aqueous electrolyte may be 1% by mass or less, or 0.1% by mass or more and 1% by mass or less.
  • the isocyanate compound has, for example, at least one isocyanate group and a C1 to C20 aliphatic hydrocarbon group or a C6 to C20 aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group and aromatic hydrocarbon group constituting the isocyanate compound may have a substituent.
  • the substituent may be any group that can exist stably, such as a halogen atom or a nitrile group.
  • the aliphatic group may be an alicyclic aliphatic group, or a linear or branched aliphatic group.
  • the aromatic hydrocarbon group is a hydrocarbon group having one or more aromatic rings, and may be a group in which an aromatic ring and an aliphatic group are connected.
  • the isocyanate compound may be a monoisocyanate compound having one isocyanate group, but preferably a diisocyanate compound having two isocyanate groups.
  • Diisocyanate compounds are believed to produce composite coatings with greater chemical stability than monoisocyanate compounds, and with lower resistance than triisocyanates. Further, diisocyanate compounds have a high ability to form a composite film even in small amounts, and have excellent stability within a battery.
  • diisocyanate compounds include compounds represented by OCN-C n H 2n -NCO (n is an integer of 1 to 10) (for example, hexamethylene diisocyanate), compounds having an alicyclic diyl group ( For example, 1,3-bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane-4,4'-diisocyanate, bicyclo[2.2.1]heptane-2,5-diylbis(methylisocyanate), bicyclo[2.2.
  • at least one selected from the group consisting of hexamethylene diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, and isophorone diisocyanate is preferred. These may account for 50% by mass or more, further 70% by mass or more, or 90% by mass or more of the isocyanate compound.
  • the diisocyanate compounds When adding a diisocyanate compound to the non-aqueous electrolyte, the diisocyanate compounds may react with each other in the battery (in the non-aqueous electrolyte) to form an isocyanurate, a urea, or a bullet. Therefore, when a battery is disassembled and a non-aqueous electrolyte is analyzed, isocyanurate bodies, urea bodies, and bullet bodies derived from diisocyanate compounds may be detected.
  • the non-aqueous electrolyte may contain one type of isocyanate compound, or may contain two or more types of isocyanate compounds.
  • the content of the isocyanate compound in the non-aqueous electrolyte may be 3% by mass or less, 0.01% by mass or more and 2% by mass or less, 0.01% by mass or more and 1.5% by mass. It may be less than % by mass.
  • liquid chromatography mass spectrometry LC/MS
  • gas chromatography mass spectrometry GC/MS
  • UV Ultraviolet spectroscopy
  • NMR nuclear magnetic resonance spectroscopy
  • IR infrared absorption spectroscopy
  • MS mass spectrometry
  • the positive electrode contains at least one selected from the group consisting of manganese dioxide and graphite fluoride as a positive electrode active material. When this positive electrode is used, it is advantageous in terms of improving capacity both initially and after long-term storage. As manganese dioxide, electrolytic manganese dioxide is preferably used. A positive electrode containing manganese dioxide develops a relatively high voltage and is advantageous in improving discharge characteristics (pulse discharge characteristics). Manganese dioxide may be in a mixed crystal state including multiple types of crystal states. The positive electrode may contain manganese oxides other than manganese dioxide.
  • manganese oxides other than manganese dioxide examples include MnO, Mn 3 O 4 , Mn 2 O 3 , Mn 2 O 7 and the like. It is preferable that the main component of the manganese oxide contained in the positive electrode is manganese dioxide.
  • the main component here means that the proportion of manganese dioxide in the manganese oxide is 50% by mass or more.
  • the proportion of manganese dioxide in the manganese oxide may be 70% by mass or more, or 90% by mass or more.
  • iron disulfide is used as a positive electrode active material for a negative electrode containing the above lithium alloy, the capacity may decrease after long-term storage.
  • Fe and S are eluted from the positive electrode containing iron disulfide and cause a side reaction with Al and Mg in the negative electrode (lithium alloy), and due to this side reaction, a film containing Fe and S is formed on the surface of the negative electrode. It is presumed that this is due to the non-uniformity of the negative electrode reaction due to the coating.
  • the positive electrode may include a positive electrode mixture containing a positive electrode active material, a binder, a conductive agent, and the like.
  • the binder include fluororesins such as polytetrafluoroethylene, rubber particles, and acrylic resins.
  • the conductive agent include conductive carbon materials. Examples of the conductive carbon material include natural graphite, artificial graphite, carbon black, and carbon fiber.
  • the positive electrode may further include a positive electrode current collector that holds a positive electrode mixture.
  • a positive electrode current collector that holds a positive electrode mixture.
  • Examples of the material of the positive electrode current collector include stainless steel, aluminum, and titanium.
  • the positive electrode may be constructed by attaching a ring-shaped positive electrode current collector with an L-shaped cross section to the positive electrode mixture pellet, or the positive electrode may be constructed only from the positive electrode mixture pellet.
  • the positive electrode mixture pellets can be obtained, for example, by compression molding a wet positive electrode mixture prepared by adding an appropriate amount of water to a positive electrode active material, and then drying.
  • a positive electrode including a sheet-like positive electrode current collector and a positive electrode mixture layer held on the positive electrode current collector can be used.
  • a perforated current collector is preferable.
  • the perforated current collector include expanded metal, net, punched metal, and the like.
  • the positive electrode mixture layer can be obtained, for example, by applying the above-mentioned wet positive electrode mixture onto the surface of a sheet-like positive electrode current collector or filling the positive electrode current collector, applying pressure in the thickness direction, and drying.
  • the negative electrode contains the lithium alloy described above.
  • the lithium alloy is molded into any shape and thickness depending on the shape, dimensions, standard performance, etc. of the lithium primary battery. Since the lithium alloy contains Mg and relatively strong Mg remains at the end of discharge, the negative electrode can be constructed using only the lithium alloy sheet (foil) without using a current collector such as copper foil.
  • the Li in the negative electrode can be used effectively, so compared to metallic lithium or a lithium alloy containing only one of Al and Mg, the discharge Capacity can be increased.
  • a hoop-shaped lithium alloy punched out into a disk shape may be used for the negative electrode.
  • a sheet-like lithium alloy may be used for the negative electrode. The sheet is obtained, for example, by extrusion molding. More specifically, in a cylindrical battery, a lithium alloy foil or the like having a shape having a longitudinal direction and a transverse direction is used.
  • the non-aqueous electrolyte includes, for example, a non-aqueous solvent and a lithium salt.
  • concentration of lithium ions (total concentration of lithium salts) contained in the non-aqueous electrolyte is, for example, 0.2 mol/L or more and 2.0 mol/L or less, and 0.3 mol/L or more and 1.5 mol/L. It may be the following.
  • non-aqueous solvent examples include organic solvents that can generally be used in non-aqueous electrolytes of lithium primary batteries.
  • examples of the nonaqueous solvent include ether, ester, carbonate ester, and the like.
  • examples of non-aqueous solvents include dimethyl ether, ⁇ -butyl lactone, propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane (DME), and 1,2-dimethoxyethane (DME). Ethoxyethane, methyl acetate, ethyl acetate, propyl acetate, etc. can be used.
  • the non-aqueous electrolyte may contain one type of non-aqueous solvent, or may contain two or more types of non-aqueous solvents.
  • the nonaqueous solvent preferably contains a cyclic carbonate ester with a high boiling point and a chain ether that has a low viscosity even at low temperatures.
  • the cyclic carbonate preferably contains at least one selected from the group consisting of PC and EC, with PC being particularly preferred. It is preferable that the chain ether contains DME.
  • lithium salts examples include lithium salts used as solutes in lithium primary batteries.
  • lithium salts include LiCF 3 SO 3 , LiClO 4 , LiBF 4 , LiPF 6 , LiRaSO 3 (Ra is a fluorinated alkyl group having 1 to 4 carbon atoms), LiFSO 3 , LiN (SO 2 Rb).
  • Rb and Rc are each independently a fluorinated alkyl group having 1 to 4 carbon atoms
  • LiN(FSO 2 ) 2 LiN(SO 2 CF 3 ) 2
  • LiN(SO 2 F) (POF 2 ) LiPO 2 F 2
  • LiB(C 2 O 4 ) 2 LiBF 2 (C 2 O 4 ).
  • at least one selected from the group consisting of LiCF 3 SO 3 , LiBF 4 , and LiN(FSO 2 ) 2 is preferable.
  • the non-aqueous electrolyte may contain one or more of these lithium salts.
  • the non-aqueous electrolyte may further contain other components such as the above-mentioned additives.
  • Ingredients other than the above additives include propane sultone, propene sultone, ethylene sulfite, 3,2-dioxathiolane-2,2-dioxide, vinylene carbonate, vinyl ethylene carbonate, fluoroethylene carbonate, adiponitrile, succino Examples include nitrile and succinic anhydride.
  • the other components may be lithium salts or may be capable of generating lithium ions.
  • a lithium primary battery usually includes a separator interposed between a positive electrode and a negative electrode.
  • a porous sheet made of an insulating material that is resistant to the internal environment of the lithium primary battery may be used.
  • nonwoven fabrics made of synthetic resin, microporous membranes made of synthetic resin, or laminates thereof may be used.
  • Examples of the synthetic resin used for the nonwoven fabric include polypropylene, polyphenylene sulfide, and polybutylene terephthalate.
  • Examples of the synthetic resin used in the microporous membrane include polyolefin resins such as polyethylene, polypropylene, and ethylene-propylene copolymers.
  • the microporous membrane may contain inorganic particles if necessary.
  • the thickness of the separator is, for example, 5 ⁇ m or more and 100 ⁇ m or less.
  • the structure of the lithium primary battery is not particularly limited.
  • the lithium primary battery may be a coin-shaped battery including a stacked electrode group configured by stacking a disc-shaped positive electrode and a disc-shaped negative electrode with a separator in between. It may be a cylindrical battery including a wound electrode group configured by spirally winding a band-shaped positive electrode and a band-shaped negative electrode with a separator in between.
  • FIG. 1 shows a partially sectional front view of a lithium primary battery according to an embodiment of the present disclosure.
  • an electrode group including a positive electrode 1 and a negative electrode 2 wound together with a separator 3 in between is housed in a battery case 9 together with a non-aqueous electrolyte (not shown).
  • a sealing plate 8 is attached to the opening of the battery case 9.
  • a positive electrode lead 4 connected to the current collector 1a of the positive electrode 1 is connected to the sealing plate 8.
  • a negative electrode lead 5 connected to the negative electrode 2 is connected to a battery case 9.
  • an upper insulating plate 6 and a lower insulating plate 7 are arranged at the upper and lower parts of the electrode group, respectively, to prevent internal short circuits.
  • the following techniques are disclosed by the description of the above embodiments.
  • the positive electrode includes at least one selected from the group consisting of manganese dioxide and graphite fluoride
  • the negative electrode includes a lithium alloy
  • the lithium alloy contains aluminum, magnesium, at least one member selected from the group consisting of sodium and calcium,
  • the total content of the aluminum and magnesium in the lithium alloy is 0.02% by mass or more and 10% by mass or less
  • a lithium primary battery wherein the total content of the sodium and calcium in the lithium alloy is 0.02% by mass or less.
  • (Technology 2) The lithium primary battery according to technique 1, wherein the total content of the aluminum and the magnesium in the lithium alloy is 0.05% by mass or more and 8% by mass or less.
  • (Technology 3) The lithium primary battery according to technology 1 or 2, wherein the total content of the sodium and calcium in the lithium alloy is 0.001% by mass or more and 0.018% by mass or less.
  • (Technology 4) The lithium primary battery according to any one of Techniques 1 to 3, wherein the nonaqueous electrolyte contains at least one additive selected from the group consisting of a cyclic imide compound, a phthalate compound, and an isocyanate compound. .
  • a positive electrode current collector made of expanded metal made of stainless steel (SUS444) with a thickness of 0.1 mm was filled with the positive electrode mixture to prepare a positive electrode precursor. Thereafter, the positive electrode precursor was dried, rolled using a roll press, and cut into a size of 3.5 cm in length and 20 cm in width to obtain a positive electrode. Subsequently, a portion of the filled positive electrode mixture was peeled off, and one end of a positive electrode lead made of SUS444 was resistance welded to the exposed portion of the positive electrode current collector.
  • a negative electrode was obtained by cutting lithium alloy foil (thickness: 250 ⁇ m) into a size of 3.7 cm in length and 22 cm in width. One end of a nickel negative electrode lead was connected to a predetermined location of the negative electrode by pressure welding.
  • the lithium alloy foil used had a content of Al, Mg, Na, and Ca each having the values shown in Table 1.
  • the content of Al, etc. in the lithium alloy is determined by ICP emission spectrometry or atomic absorption spectrometry, and "-" in the column for the content of Al, etc. in the lithium alloy indicates that Al, etc. was detected by ICP emission spectrometry or atomic absorption spectrometry. indicates that it was not done.
  • An electrode group was produced by winding a positive electrode and a negative electrode with a separator in between.
  • a microporous polypropylene membrane having a thickness of 25 ⁇ m was used as the separator.
  • LiCF 3 SO 3 was dissolved in a mixed solvent of PC, EC, and DME (volume ratio 3:2:5) at a concentration of 0.5 mol/L to prepare a non-aqueous electrolyte.
  • the electrode group was housed in a cylindrical battery case that also served as a negative electrode terminal.
  • An iron case (outer diameter 17 mm, height 45.5 mm) was used as the battery case.
  • the opening of the battery case was closed using a metal sealing plate that also served as a positive terminal.
  • the other end of the positive electrode lead was connected to the sealing plate, and the other end of the negative electrode lead was connected to the inner bottom surface of the battery case. In this way, a lithium primary battery was produced.
  • A1 to A8 in Table 1 are the batteries of Examples 1 to 8.
  • B1 to B13 are batteries of Comparative Examples 1 to 13.
  • Capacity after storage The aged battery was stored in an environment of 85° C. for 3 months. After storage, the battery was subjected to constant current discharge at 2.5 mA in an environment of 20°C until the battery voltage reached 0.9V. The discharge time at this time was measured, and the capacity after storage was determined.
  • batteries A1 to A7 had larger initial and storage capacities, lower capacity deterioration rates, and suppressed capacity decline after high-temperature storage.
  • battery B13 using iron disulfide as the positive electrode active material the capacity after storage decreased significantly and the rate of capacity deterioration increased significantly.
  • batteries A1 to A7 containing a small amount of at least one of Na and Ca in the Li-Al-Mg alloy have larger initial and storage capacities than battery B3. , the capacity deterioration rate was small.
  • the capacity deterioration rate of batteries A1 to A7 is 5.5% to 5.6%
  • the capacity deterioration rate of battery B3 is 7.5%
  • the improvement range of the capacity deterioration rate of batteries A1 to A7 relative to battery B3 is , about 25% to about 27% (B3 ⁇ A1 to A7).
  • the improvement in the capacity deterioration rate of battery A1 relative to battery B3 is calculated from ⁇ (7.5-5.6)/7.5 ⁇ 100.
  • the positive electrode active material is manganese dioxide
  • the Li alloy contains Al and Mg in a total of 0.02 to 10% by mass.
  • a lithium alloy contains Al and Mg in a total amount of 0.02% by mass or more and 10% by mass or less, by including a small amount of at least one of Na and Ca in the lithium alloy, initial and storage It can be seen that a battery with a large capacity and a low rate of capacity deterioration can be obtained.
  • Examples 9 to 17 ⁇ In the production of the negative electrode, lithium alloy foils were used in which the contents of Al, Mg, Na, and Ca were as shown in Table 2. In preparing the non-aqueous electrolyte, additives were further included in the non-aqueous electrolyte as necessary. The compounds shown in Table 2 were used as additives. The content (mass%) of the additive in the non-aqueous electrolyte was set to the values shown in Table 2. Batteries A9 to A17 of Examples 9 to 17 were produced and evaluated in the same manner as Battery A1 of Example 1 except for the above.
  • All of the batteries A9 to A17 had large initial capacities and capacities after storage, and had small capacity deterioration rates. In batteries A10 to A17 in which the non-aqueous electrolyte contained additives, the capacity deterioration rate was further reduced.
  • the lithium primary battery of the present disclosure is suitably used, for example, as a main power source or memory backup power source for various meters (for example, smart meters for electricity, water, gas, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

リチウム一次電池は、正極と、負極と、非水電解液と、を備える。正極は、二酸化マンガンおよびフッ化黒鉛からなる群より選択される少なくとも1種を含む。負極はリチウム合金を含み、リチウム合金は、アルミニウムと、マグネシウムと、ナトリウムおよびカルシウムからなる群より選択される少なくとも1種と、を含む。リチウム合金中のアルミニウムおよびマグネシウムを合計した含有量は、0.02質量%以上、10質量%以下であり、リチウム合金中のナトリウムおよびカルシウムを合計した含有量は、0.02質量%以下である。

Description

リチウム一次電池
 本開示は、リチウム一次電池に関する。
 リチウム一次電池は、高エネルギー密度であり、自己放電が少ないことから、多くの電子機器の電源として使用されている。リチウム一次電池の正極には、二酸化マンガンなどが用いられる。リチウム一次電池の負極には、例えば、シート状(箔状)の金属リチウムもしくはリチウム合金が用いられる。
 特許文献1では、電解質中にリチウム塩を溶解し、セパレータを負極に対向させたリチウム-有機電解質電池において、セパレータに隣接するリチウム体の面に対して当初アルミニウム-マグネシウム合金の被覆層を積層したものを負極として使用し、拡散によってアルミニウム-マグネシウム-リチウム三元合金が形成され、負極表面積が増大し、電池のパルス性能が増進されるようにしたリチウム負極が提案されている。
 特許文献2では、カソード組立体を含み、前記カソード組立体が、2つの主面を有する金属カソード電流コレクタと、前記2つの主面の少なくとも一方の上に配置された、カソード被覆とからなり、該被覆が二硫化鉄を含み、アルミニウムと合金化された金属リチウム・アノードをさらに備え、前記アノード対カソードのインプット比が、1.0以下であることを特徴とする電気化学電池が提案されている。
 特許文献3では、二硫化鉄を正極活物質とする正極と、リチウム合金を負極活物質とする負極と、前記正極と前記負極とがセパレータを介して捲回された電極群と、非水電解液とを備えたリチウム一次電池であって、前記リチウム合金は、マグネシウム及びスズの少なくとも一方を0.02~0.2モル%含む、リチウム一次電池が提案されている。
特開昭58-209862号公報 特表2005-529467号公報 国際公開第2012/066709号パンフレット
 リチウム一次電池において、負極の劣化により電池容量が低下することがある。
 本開示の一側面は、正極と、負極と、非水電解液と、を備え、前記正極は、二酸化マンガンおよびフッ化黒鉛からなる群より選択される少なくとも1種を含み、前記負極は、リチウム合金を含み、前記リチウム合金は、アルミニウムと、マグネシウムと、ナトリウムおよびカルシウムからなる群より選択される少なくとも1種と、を含み、前記リチウム合金中の前記アルミニウムおよび前記マグネシウムを合計した含有量は、0.02質量%以上、10質量%以下であり、前記リチウム合金中の前記ナトリウムおよび前記カルシウムを合計した含有量は、0.02質量%以下である、リチウム一次電池に関する。
 本開示によれば、リチウム一次電池の容量低下を抑制することができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本開示の実施形態に係るリチウム一次電池の一部を断面にした正面図である。
 以下では、本開示の実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などの数値に関して下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかとを任意に組み合わせることができる。複数の材料が例示される場合、その中から1種を選択して単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、本開示は、添付の特許請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項の組み合わせを包含する。つまり、技術的な矛盾が生じない限り、添付の特許請求の範囲に記載の複数の請求項から任意に選択される2つ以上の請求項に記載の事項を組み合わせることができる。
 本開示の一実施形態に係るリチウム一次電池は、正極と、負極と、非水電解液と、を備える。正極は、二酸化マンガンおよびフッ化黒鉛からなる群より選択される少なくとも1種を含む。負極はリチウム合金を含み、リチウム合金は、アルミニウム(Al)と、マグネシウム(Mg)と、ナトリウム(Na)およびカルシウム(Ca)からなる群より選択される少なくとも1種と、を含む。リチウム合金中のAlおよびMgを合計した含有量は、0.02質量%以上、10質量%以下である。リチウム合金中のNaおよびCaを合計した含有量は、0.02質量%以下である。リチウム合金中において、Alと、Mgと、NaおよびCaからなる群より選択される少なくとも1種とが、混在している。
 リチウム合金がAlを含む場合、負極と非水電解液との接触による副反応が抑制され、当該副反応に起因する容量低下が抑制される。その反面、リチウム合金中でAlは偏析し易く、Alの偏析により放電時の負極表面でのLiの消費が不均一化し、放電末期に負極の一部が欠損もしくは破断し、容量が低下することがある。
 これに対して、リチウム合金中においてMgをAlとともに含ませることにより、リチウム合金中でのAlの偏析が抑制され、Alによる上記の副反応の抑制効果が負極全体において安定して得られるとともに負極表面でLiが均一に消費される。負極でのAlの偏析に起因する負極の劣化が抑制され、放電末期においても放電反応に寄与し得るLiの割合が大きくなり、容量の低下が抑制される。
 さらに、AlおよびMgを含むリチウム合金中にNaおよびCaからなる群より選択される少なくとも1種を0.02質量%以下含ませることにより、Mgの分散性が向上し、Mgによる上記のAl偏析の抑制効果が顕著に得られ、容量の低下が顕著に抑制される。よって、初期および長期保存後のいずれの場合においても高容量が得られ、保存後の容量劣化率を大幅に低減できる。リチウム合金中のNaおよびCaの合計含有量が0.02質量%以下である場合、微量のNaおよび/またはCaは、リチウム合金中に固溶して均一に分散し易く、Mgの分散性向上に安定的かつ効率的に寄与することができる。
 ただし、リチウム合金中のAlおよびMgの合計含有量が0.02質量%よりも小さい場合、AlおよびMgによる効果が不十分となり、容量が低下し易い。また、リチウム合金中のAlおよびMgの合計含有量が10質量%よりも大きい場合、および/または、リチウム合金中のNaおよびCaの合計含有量が0.02質量%よりも大きい場合、負極に占めるLi量が減少し、Li絶対量が減少することから、容量が低下することがある。リチウム合金中のNaおよびCaの合計含有量が0.02質量%よりも大きい場合、リチウム合金中にNaおよび/またはCaが固溶しにくくなり、Mgの分散性が低下し、容量が低下することがある。
(負極)
 負極に用いられるリチウム合金は、例えば、箔状(シート状)である。高容量化の観点から、リチウム合金中のLiの含有量は、例えば、90質量%以上であってもよく、95質量%以上であってもよい。当該リチウム合金は、Alと、Mgと、NaおよびCaからなる群より選択される少なくとも一方と、を含む。
 リチウム合金中のAlおよびMgを合計した含有量は、0.02質量%以上、10質量%以下であり、0.05質量%以上(もしくは0.1質量%以上)、8質量%以下であってもよく、0.1質量%以上(もしくは0.2質量%以上)、5質量%以下であってもよい。
 リチウム合金中のMg含有量(もしくはAl含有量)は、0.02質量%以上であってもよく、0.05質量%以上であってもよく、0.1質量%以上(もしくは0.2質量%以上)であってもよい。また、リチウム合金中のMg含有量(もしくはAl含有量)は、9.5質量%以下であってもよく、7質量%以下であってもよく、5質量%以下であってもよく、2質量%以下であってもよい。Alに対するMgのモル比:Mg/Alは、例えば、0.01以上(もしくは0.02以上)、100以下であってもよく、0.05以上、20以下であってもよい。
 リチウム合金中のNaおよびCaを合計した含有量は、0.02質量%以下であり、0.0005質量%以上、0.019質量%以下であってもよく、0.001質量%以上、0.018質量%以下であってもよい。
 リチウム合金中のNa含有量(もしくはCa含有量)は、0.0001質量%以上であってもよく、0.0005質量%以上であってもよく、0.0025質量%以上であってもよい。また、リチウム合金中のNa含有量(もしくはCa含有量)は、0.015質量%以下であってもよく、0.012質量%以下であってもよく、0.010質量%以下であってもよい。
 リチウム合金は、Li、Al、Mg、Na、およびCa以外の他の金属元素を含んでもよい。他の金属元素としては、Sn、Ni、Pb、In、K、Fe、Siなどが挙げられる。リチウム合金に含まれるリチウム以外の金属元素の全体の含有量は、放電容量の確保や内部抵抗の安定化の観点から、0.05質量%以上、15質量%以下(もしくは10質量%以下)であることが好ましい。
 リチウム合金の各元素の含有量は、誘導結合プラズマ(ICP)発光分光分析法または原子吸光分析法(AAS)により求められる。
(非水電解液の添加剤)
 非水電解液は、環状イミド化合物、フタル酸エステル化合物、およびイソシアネート化合物からなる群より選択される少なくとも1種の添加剤を含むことが好ましい。非水電解液が上記の添加剤を含む場合、AlおよびMgを含むリチウム合金(負極)の表面に、リチウム合金由来のAlおよびMgと、添加剤由来の成分とを含む複合被膜を形成し得る。当該被膜は化学的安定性に優れているとともに、当該被膜がリチウム合金由来のAlおよびMgを含むことから負極の非水電解液に対する濡れ性が向上し、負極の抵抗が低減される。当該被膜により、負極表面でのLiの消費がより均一に行われ易い。また、リチウム合金がNaおよびCaの少なくとも一方を更に含むことにより、Mgがより均一に分散し、負極全体においてより均一性が向上している。よって、上記の被膜が安定して形成され易い。その結果、容量の低下が更に抑制され易い。
 非水電解液中の添加剤の含有量は、例えば、0.01質量%以上、5質量%以下である。なお、非水電解液中の添加剤の含有量は、非水電解液全体に対する添加剤の質量比(百分率)である。例えば、電池の製造直後(もしくは非水電解液の調製時)において、非水電解液中の添加剤の含有量が上記範囲内であることが望ましい。これに対して、製造直後から一定期間経過した電池では、添加剤の一部は被膜の形成に消費されており、非水電解液中の添加剤の含有量は、上記範囲よりも小さい値であってもよい。この場合、非水電解液中の添加剤の含有量が少量(例えば検出限界に近い値)であっても、添加剤による上記効果は認められる。後述する環状イミド化合物などの各種化合物の含有量についても、同様のことが言える。
(環状イミド化合物)
 環状イミド化合物としては、例えば、環状のジアシルアミン化合物が挙げられる。環状イミド化合物は、ジアシルアミン環(以下、イミド環とも称する。)を有していればよい。イミド環には、他の環(以下、第2の環とも称する。)が縮合していてもよい。環状イミド化合物は、非水電解液に、イミドの状態で含まれていてもよく、アニオンまたは塩の形態で含まれていてもよい。非水電解液に環状イミド化合物がイミドの状態で含まれる場合、フリーのNH基を有する形態で含まれていてもよく、三級アミンの形態で含まれていてもよい。
 第2の環としては、芳香環、飽和または不飽和脂肪族環などが挙げられる。第2の環には、少なくとも1つのヘテロ原子が含まれていてもよい。ヘテロ原子としては、酸素原子、イオウ原子、および窒素原子などが挙げられる。
 環状イミド化合物としては、例えば、脂肪族ジカルボン酸イミド化合物、第2の環を有する環状イミド化合物などが挙げられる。脂肪族ジカルボン酸イミド化合物としては、例えば、コハク酸イミドなどが挙げられる。第2の環を有する環状イミド化合物としては、芳香族または脂環族ジカルボン酸のイミド化合物などが挙げられる。芳香族ジカルボン酸または脂環族ジカルボン酸は、例えば、環を構成する隣接する2つの原子にそれぞれカルボキシ基を有するものが挙げられる。第2の環を有する環状イミド化合物としては、例えば、フタルイミド、フタルイミドの水素添加体が挙げられる。フタルイミドの水素添加体としては、シクロヘキサ-3-エン-1,2-ジカルボキシミド、シクロヘキサン-1,2-ジカルボキシミドなどが挙げられる。
 イミド環は、イミドの窒素原子に置換基を有するN-置換イミド環であってもよい。このような置換基としては、ヒドロキシ基、アルキル基、アルコキシ基、ハロゲン原子などが挙げられる。アルキル基としては、例えば、C1~C4のアルキル基が挙げられ、メチル基、エチル基などであってもよい。アルコキシ基としては、例えば、C1~C4のアルコキシ基が挙げられ、メトキシ基、エトキシ基などであってもよい。ハロゲン原子としては、塩素原子、フッ素原子などが挙げられる。
 環状イミド化合物は、フタルイミドおよびN-置換フタルイミドからなる群より選択される少なくとも1種が好ましい。N-置換フタルイミドの窒素原子上の置換基としては、N-置換イミド環について例示した置換基から選択できる。N-置換フタルイミドは、例えば、N-ヒドロキシフタルイミド、N-(2-ヒドロキシエチル)フタルイミド、N-(シクロヘキシルチオ)フタルイミド、およびN-(フェニルチオ)フタルイミドからなる群より選択される少なくとも1種を含むことが好ましい。フタルイミドおよび/またはN-置換フタルイミドが、環状イミド化合物の50質量%以上、更には70質量%以上もしくは90質量%以上を占めてもよい。
 非水電解液は、環状イミド化合物を1種含んでいてもよく、2種以上含んでいてもよい。非水電解液中の環状イミド化合物の含有量は、1質量%以下であってもよく、0.001質量%以上、1質量%以下であってもよく、0.001質量%以上、0.8質量%以下であってもよい。
(フタル酸エステル化合物)
 フタル酸エステル化合物は、フタル酸エステルおよびその誘導体を含む。誘導体は、フタル酸に由来する芳香環に結合する置換基を有してもよい。このような置換基としては、ヒドロキシ基、アルキル基、アルコキシ基、ハロゲン原子などが挙げられる。アルキル基としては、例えば、C1~C4のアルキル基が挙げられ、メチル基、エチル基などであってもよい。アルコキシ基としては、例えば、C1~C4のアルコキシ基が挙げられ、メトキシ基、エトキシ基などであってもよい。ハロゲン原子としては、塩素原子、フッ素原子などが挙げられる。
 フタル酸エステル化合物は、フタル酸モノエステル化合物でもよいが、生成する被膜がLi合金表面を保護し易いという観点から、フタル酸ジエステル化合物が望ましい。フタル酸(もしくはその誘導体)とエステルを構成するアルコールとしては、C1~C20(好ましくはC1~C6)の飽和または不飽和の脂肪族アルコールが望ましい。
 フタル酸ジエステル化合物の具体例としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジアリル、フタル酸ジブチル、フタル酸ジイソブチル、フタル酸ビス(2-エチルヘキシル)などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。フタル酸ジエステル化合物は、フタル酸エステル化合物の50質量%以上、更には70質量%以上もしくは90質量%以上を占めてもよい。
 非水電解液は、フタル酸エステル化合物を1種含んでいてもよく、2種以上含んでいてもよい。非水電解液中のフタル酸エステル化合物の含有量は、1質量%以下であってもよく、0.1質量%以上、1質量%以下であってもよい。
(イソシアネート化合物)
 イソシアネート化合物は、例えば、少なくとも1つのイソシアネート基と、C1~C20の脂肪族炭化水素基またはC6~C20の芳香族炭化水素基を有する。イソシアネート化合物を構成する脂肪族炭化水素基および芳香族炭化水素基は置換基を有してもよい。置換基は、安定に存在し得る基であればよく、例えば、ハロゲン原子でもよく、ニトリル基でもよい。脂肪族基は、脂環式脂肪族基でもよく、直鎖状または分岐鎖状の脂肪族基でもよい。芳香族炭化水素基は、芳香環を1つ以上有する炭化水素基であり、芳香環と脂肪族基とが連結した基でもよい。
 イソシアネート化合物は、イソシアネート基を1つ有するモノイソシアネート化合物でもよいが、イソシアネート基を2つ有するジイソシアネート化合物が望ましい。ジイソシアネート化合物は、モノイソシアネート化合物よりも化学的安定性の高い複合被膜を生成し、トリイソシアネートよりも低抵抗な複合被膜を生成すると考えられる。また、ジイソシアネート化合物は、少量でも複合被膜を形成する能力が高く、電池内での安定性に優れる。
 ジイソシアネート化合物の具体例としては、OCN-C2n-NCO(nは1~10の整数である。)で表される化合物(例えば、ヘキサメチレンジイソシアネート)、脂環式ジイル基を有する化合物(例えば、1,3-ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ビシクロ[2.2.1]ヘプタン-2,5-ジイルビス(メチルイソシアネート)、ビシクロ[2.2.1]ヘプタン-2,6-ジイルビス(メチルイソシアネート)、イソホロンジイソシアネート)、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、ヘキシルイソシアネートなどが挙げられる。これらの中でも、ヘキサメチレンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、およびイソホロンジイソシアネートからなる群より選択される少なくとも1種が好ましい。これらがイソシアネート化合物の50質量%以上、更には70質量%以上もしくは90質量%以上を占めてもよい。
 非水電解液にジイソシアネート化合物を添加する場合、電池内(非水電解液中)においてジイソシアネート化合物同士が反応して、イソシアヌレート体、ウレア体、ビュレット体を形成し得る。よって、電池を分解して非水電解液の分析を行う場合、ジイソシアネート化合物由来のイソシアヌレート体、ウレア体、ビュレット体が検出される場合がある。
 非水電解液は、イソシアネート化合物を1種含んでいてもよく、2種以上含んでいてもよい。非水電解液中のイソシアネート化合物の含有量は、3質量%以下であってもよく、0.01質量%以上、2質量%以下であってもよく、0.01質量%以上、1.5質量%以下であってもよい。
 非水電解液(添加剤)の分析には、例えば、液体クロマトグラフィー質量分析法(LC/MS)やガスクロマトグラフィー質量分析法(GC/MS)を用いることができる。核磁気共鳴分析(NMR)、赤外吸収分光分析(IR)、質量分析(MS)とともに紫外分光分析(UV)を行ってもよい。
 以下、本開示のリチウム一次電池について、より具体的に説明する。
[リチウム一次電池]
(正極)
 正極は、正極活物質として、二酸化マンガンおよびフッ化黒鉛からなる群より選択される少なくとも1種を含む。この正極を用いる場合、初期および長期保存後の容量の向上の面で有利である。二酸化マンガンとしては、電解二酸化マンガンが好適に用いられる。二酸化マンガンを含む正極は、比較的高電圧を発現し、放電特性(パルス放電特性)の向上の面で有利である。二酸化マンガンは、複数種の結晶状態を含む混晶状態であってもよい。正極には、二酸化マンガン以外のマンガン酸化物が含まれていてもよい。二酸化マンガン以外のマンガン酸化物としては、MnO、Mn、Mn、Mnなどが挙げられる。正極に含まれるマンガン酸化物の主成分が二酸化マンガンであることが好ましい。ここでいう主成分とは、マンガン酸化物中に占める二酸化マンガンの割合が50質量%以上であることを意味する。マンガン酸化物中に占める二酸化マンガンの割合は、70質量%以上であってもよく、90質量%以上であってもよい。
 仮に上記のリチウム合金を含む負極に対して正極活物質として二硫化鉄を用いる場合、長期保存後に容量が低下することがある。二硫化鉄を含む正極からFeおよびSが溶出し、負極(リチウム合金)中のAlおよびMgと副反応を生じること、ならびに、当該副反応に伴い負極表面でFeおよびSを含む被膜が形成され、当該被膜により負極反応が不均一化していることが影響しているものと推測される。
 正極は、正極活物質、結着剤、導電剤などを含む正極合剤を含んでもよい。結着剤としては、例えば、ポリテトラフルオロエチレンなどのフッ素樹脂、ゴム粒子、アクリル樹脂が挙げられる。導電剤としては、例えば、導電性炭素材料が挙げられる。導電性炭素材料としては、例えば、天然黒鉛、人造黒鉛、カーボンブラック、炭素繊維が挙げられる。
 正極は、さらに正極合剤を保持する正極集電体を含み得る。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、チタンなどが挙げられる。
 コイン形電池の場合、断面がL字型のリング状の正極集電体を正極合剤ペレットに装着して正極を構成してもよく、正極合剤ペレットのみで正極を構成してもよい。正極合剤ペレットは、例えば、正極活物質などに適量の水を加えて調製した湿潤状態の正極合剤を圧縮成形し、乾燥することにより得られる。
 円筒形電池の場合、シート状の正極集電体と、正極集電体に保持された正極合剤層と、を備える正極を用いることができる。シート状の正極集電体としては、有孔の集電体が好ましい。有孔の集電体としては、エキスパンドメタル、ネット、パンチングメタルなどが挙げられる。正極合剤層は、例えば、上記の湿潤状態の正極合剤をシート状の正極集電体の表面に塗布または正極集電体に充填し、厚み方向に加圧し、乾燥することにより得られる。
(負極)
 負極は、上記のリチウム合金を含む。リチウム合金は、リチウム一次電池の形状、寸法、規格性能などに応じて、任意の形状および厚さに成形される。リチウム合金がMgを含み、放電末期に比較的強度が高いMgが残ることから、負極に銅箔のような集電体を用いずにリチウム合金シート(箔)のみを用いて負極を構成できる。また、AlおよびMgの両方を含むリチウム合金では、負極中のLiを余すことなく有効に用いることができるため、金属リチウムや、AlおよびMgの一方しか含まないリチウム合金の場合に比べて、放電容量を高めることができる。
 コイン形電池の場合、フープ状のリチウム合金を、円板状に打ち抜いたものを負極に用いてもよい。円筒形電池の場合、シート状のリチウム合金を負極に用いてもよい。シートは、例えば、押し出し成形により得られる。より具体的には、円筒形電池では、長手方向と短手方向とを有する形状を備える、リチウム合金箔などが用いられる。
(非水電解液)
 非水電解液は、例えば、非水溶媒と、リチウム塩と、を含む。非水電解液に含まれるリチウムイオンの濃度(リチウム塩の合計濃度)は、例えば、0.2mol/L以上、2.0mol/L以下であり、0.3mol/L以上、1.5mol/L以下であってもよい。
 非水溶媒としては、リチウム一次電池の非水電解液に一般的に用いられ得る有機溶媒が挙げられる。非水溶媒としては、エーテル、エステル、炭酸エステルなどが挙げられる。非水溶媒としては、ジメチルエーテル、γ-ブチルラクトン、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,2-ジメトキシエタン(DME)、1,2-ジエトキシエタン、酢酸メチル、酢酸エチル、酢酸プロピルなどを用いることができる。非水電解液は、一種の非水溶媒を含んでいてもよく、二種以上の非水溶媒を含んでいてもよい。
 リチウム一次電池の放電特性を向上させる観点から、非水溶媒は、沸点が高い環状炭酸エステルと、低温下でも低粘度である鎖状エーテルとを含んでいることが好ましい。環状炭酸エステルは、PCおよびECよりなる群から選択される少なくとも一種を含むことが好ましく、PCが特に好ましい。鎖状エーテルは、DMEを含むことが好ましい。
 リチウム塩としては、例えば、リチウム一次電池で溶質として用いられるリチウム塩が挙げられる。このようなリチウム塩としては、例えば、LiCFSO、LiClO、LiBF、LiPF、LiRaSO(Raは炭素数1~4のフッ化アルキル基)、LiFSO、LiN(SORb)(SORc)(RbおよびRcはそれぞれ独立に炭素数1~4のフッ化アルキル基)、LiN(FSO、LiN(SOCF、LiN(SOF)(POF)、LiPO、LiB(C、LiBF(C)が挙げられる。中でも、AlおよびMgを含むリチウム合金に対する安定性の観点から、LiCFSO、LiBF、およびLiN(FSOからなる群より選択される少なくとも1種が好ましい。非水電解液は、これらのリチウム塩を一種含んでいてもよく、二種以上含んでいてもよい。
 非水電解液は、上記の添加剤などの他の成分を更に含んでもよい。上記の添加剤以外の他の成分としては、プロパンスルトン、プロペンスルトン、エチレンサルファイト、3,2-ジオキサチオラン-2,2-ジオキサイド、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、アジポニトリル、スクシノニトリル、無水コハク酸などが挙げられる。他の成分は、リチウム塩であってもよく、リチウムイオンを生成可能であってもよい。
(セパレータ)
 リチウム一次電池は、通常、正極と負極との間に介在するセパレータを備えている。セパレータとしては、リチウム一次電池の内部環境に対して耐性を有する絶縁性材料で形成された多孔質シートを使用すればよい。具体的には、合成樹脂製の不織布、合成樹脂製の微多孔膜、またはこれらの積層体などが挙げられる。
 不織布に用いられる合成樹脂としては、例えば、ポリプロピレン、ポリフェニレンサルファイド、ポリブチレンテレフタレートなどが挙げられる。微多孔膜に用いられる合成樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体などのポリオレフィン樹脂などが挙げられる。微多孔膜は、必要により、無機粒子を含有してもよい。
 セパレータの厚みは、例えば、5μm以上、100μm以下である。
 リチウム一次電池の構造は特に限定されない。リチウム一次電池は、円板状の正極と円板状の負極とをセパレータを介して積層して構成された積層型電極群を備えるコイン形電池でもよい。帯状の正極と帯状の負極とをセパレータを介して渦巻き状に捲回して構成された捲回型電極群を備える円筒形電池でもよい。
 図1に、本開示の一実施形態に係るリチウム一次電池の一部を断面にした正面図を示す。リチウム一次電池10は、正極1と、負極2とが、セパレータ3を介して捲回された電極群が、非水電解液(図示せず)とともに電池ケース9に収容されている。電池ケース9の開口部には封口板8が装着されている。封口板8には、正極1の集電体1aに接続された正極リード4が接続されている。負極2に接続された負極リード5は、電池ケース9に接続されている。また、電極群の上部と下部には、内部短絡防止のためにそれぞれ上部絶縁板6、下部絶縁板7が配置されている。
《付記》
 以上の実施形態の記載により、以下の技術が開示される。
(技術1)
 正極と、負極と、非水電解液と、を備え、
 前記正極は、二酸化マンガンおよびフッ化黒鉛からなる群より選択される少なくとも1種を含み、
 前記負極は、リチウム合金を含み、
 前記リチウム合金は、アルミニウムと、マグネシウムと、ナトリウムおよびカルシウムからなる群より選択される少なくとも1種と、を含み、
 前記リチウム合金中の前記アルミニウムおよび前記マグネシウムを合計した含有量は、0.02質量%以上、10質量%以下であり、
 前記リチウム合金中の前記ナトリウムおよび前記カルシウムを合計した含有量は、0.02質量%以下である、リチウム一次電池。
(技術2)
 前記リチウム合金中の前記アルミニウムおよび前記マグネシウムを合計した含有量は、0.05質量%以上、8質量%以下である、技術1に記載のリチウム一次電池。
(技術3)
 前記リチウム合金中の前記ナトリウムおよび前記カルシウムを合計した含有量は、0.001質量%以上、0.018質量%以下である、技術1または2に記載のリチウム一次電池。
(技術4)
 前記非水電解液は、環状イミド化合物、フタル酸エステル化合物、およびイソシアネート化合物からなる群より選択される少なくとも1種の添加剤を含む、技術1~3のいずれか1つに記載のリチウム一次電池。
(技術5)
 前記環状イミド化合物は、フタルイミドおよびN-置換フタルイミドからなる群より選択される少なくとも1種を含む、技術4に記載のリチウム一次電池。
(技術6)
 前記N-置換フタルイミドは、N-ヒドロキシフタルイミド、N-(2-ヒドロキシエチル)フタルイミド、N-(シクロヘキシルチオ)フタルイミド、およびN-(フェニルチオ)フタルイミドからなる群より選択される少なくとも1種を含む、技術5に記載のリチウム一次電池。
(技術7)
 前記非水電解液中の前記環状イミド化合物の含有量は、1質量%以下である、技術4~6のいずれか1つに記載のリチウム一次電池。
(技術8)
 前記フタル酸エステル化合物は、フタル酸ジエステル化合物を含む、技術4~7のいずれか1つに記載のリチウム一次電池。
(技術9)
 前記フタル酸ジエステル化合物は、フタル酸ジメチルを含む、技術8に記載のリチウム一次電池。
(技術10)
 前記非水電解液中の前記フタル酸エステル化合物の含有量は、1質量%以下である、技術4~9のいずれか1つに記載のリチウム一次電池。
(技術11)
 前記イソシアネート化合物は、ジイソシアネート化合物を含む、技術4~10のいずれか1つに記載のリチウム一次電池。
(技術12)
 前記ジイソシアネート化合物は、ヘキサメチレンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、およびイソホロンジイソシアネートからなる群より選択される少なくとも1種を含む、技術11に記載のリチウム一次電池。
(技術13)
 前記非水電解液中の前記イソシアネート化合物の含有量は、3質量%以下である、技術4~12のいずれか1つに記載のリチウム一次電池。
[実施例]
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本開示は以下の実施例に限定されるものではない。
《実施例1~8、比較例1~13》
(正極の作製)
 正極活物質100質量部に、導電剤であるケッチェンブラック5質量部と、結着剤であるポリテトラフルオロエチレン5質量部と、適量の純水と、を加えて混錬し、湿潤状態の正極合剤を調製した。正極活物質には、電解二酸化マンガン(MnO)、フッ化黒鉛((CF))、または二硫化鉄(FeS)を用いた。
 次に、正極合剤を、ステンレス鋼(SUS444)製の厚み0.1mmのエキスパンドメタルからなる正極集電体に充填して、正極前駆体を作製した。その後、正極前駆体を、乾燥させ、ロールプレスにより圧延し、縦3.5cmおよび横20cmのサイズに裁断することにより、正極を得た。続いて、充填された正極合剤の一部を剥離し、正極集電体を露出させた部分にSUS444製の正極リードの一端部を抵抗溶接した。
(負極の作製)
 リチウム合金箔(厚み250μm)を縦3.7cmおよび横22cmのサイズに裁断することにより、負極を得た。負極の所定箇所にニッケル製の負極リードの一端部を圧接により接続した。リチウム合金箔には、Al、Mg、Na、およびCaの含有量が、それぞれ表1に示す値であるリチウム合金箔を用いた。リチウム合金のAl等の含有量はICP発光分光分析または原子吸光分析により求められ、リチウム合金のAl等の含有量の欄における「-」は、ICP発光分光分析または原子吸光分析によりAl等が検出されなかったことを示す。
(電極群の作製)
 正極と負極とをセパレータを介して捲回することで、電極群を作製した。セパレータには厚み25μmのポリプロピレン製の微多孔膜を用いた。
(非水電解液の調製)
 PCとECとDMEとの混合溶媒(体積比3:2:5)にLiCFSOを0.5mol/Lの濃度で溶解させ、非水電解液を調製した。
(リチウム一次電池の組み立て)
 負極端子を兼ねる円筒形状の電池ケースに電極群を収容した。電池ケースには、鉄製ケース(外径17mm、高さ45.5mm)を用いた。次いで、電池ケース内に非水電解液を注入した後、正極端子を兼ねる金属製の封口板を用いて電池ケースの開口部を閉じた。正極リードの他端部を封口板に接続し、負極リードの他端部を電池ケースの内底面に接続した。このようにして、リチウム一次電池を作製した。なお、表1中のA1~A8は、実施例1~8の電池である。B1~B13は、比較例1~13の電池である。
 得られた実施例および比較例の各電池について、組み立て後に45℃の雰囲気下で3日間のエージングを行い、以下の評価を行った。
[評価]
(初期容量)
 エージング後の電池について、20℃の環境下、電池電圧が0.9Vに達するまで2.5mAで定電流放電を行った。このときの放電時間を測定し、初期容量を求めた。
(保存後容量)
 エージング後の電池を85℃の環境下で3か月保存した。保存後の電池について、20℃の環境下、電池電圧が0.9Vに達するまで2.5mAで定電流放電を行った。このときの放電時間を測定し、保存後容量を求めた。
(保存後の容量劣化率)
 上記で求められた初期容量および保存後容量を用いて、下記式により保存後の容量劣化率を求めた。
 保存後の容量劣化率(%)={1-(保存後容量/初期容量)}×100
 評価結果を表1に示す。なお、表1中の初期容量および保存後の容量は、比較例1の電池B1の初期容量を100とするときの相対値(指数)として表す。
Figure JPOXMLDOC01-appb-T000001
 
 電池A1~A7では、電池B1~B12と比べて、初期および保存後の容量が大きく、容量劣化率が小さく、高温保存後の容量低下が抑制された。正極活物質にフッ化黒鉛を用いた電池A8においても、初期および保存後の容量が大きく、容量劣化率が小さかった。正極活物質に二硫化鉄を用いた電池B13では、保存後の容量が大幅に低下し、容量劣化率が大幅に増大した。
 電池A1~A7と電池B3を対比すると、Li-Al-Mg合金中にNaおよびCaの少なくとも一方を微量含ませた電池A1~A7では、電池B3と比べて、初期および保存後の容量が大きく、容量劣化率が小さかった。
 電池A1~A7の容量劣化率は5.5%~5.6%であり、電池B3の容量劣化率は7.5%であり、電池B3に対する電池A1~A7の容量劣化率の改善幅は、約25%~約27%であった(B3→A1~A7)。例えば、電池B3に対する電池A1の容量劣化率の改善幅は、{(7.5-5.6)/7.5}×100より算出される。なお、電池A1~A7および電池B3では、正極活物質が二酸化マンガンであり、Li合金がAlおよびMgを合計で0.02~10質量%含む。
 Li合金がAlを含み、Mgを含まない場合、Li合金にNaおよびCaを微量含ませると、初期および保存後の容量が小さくなり、電池B1に対して電池B9の容量劣化率は改善しなかった(B1:容量劣化率10.0%→B9:容量劣化率10.1%)。
 Li合金がAlを含み、Mgを含まない場合、Li合金にNaおよびCaを微量含ませると、初期容量が低下し、電池B2に対する電池B10の容量劣化率の改善幅は約8%と小さかった(B2:容量劣化率11.1%→B10:容量劣化率10.2%)。
 Li合金がAlおよびMgを含まない場合、Li合金にNaおよびCaを微量含ませると、初期および保存後の容量が小さくなり、電池B7に対する電池B8の容量劣化率の改善幅は約12%と小さかった(B7:容量劣化率24.7%→B8:容量劣化率21.8%)。
 Li合金中のAlおよびMgを合計した含有量が10質量%よりも大きい場合、および/または、Li合金中のNaおよびCaを合計した含有量が0.02質量%よりも大きい場合、初期および保存後の容量が小さくなり、容量劣化率が増大した(B4、B11、B12)。
 以上のことから、リチウム合金がAlおよびMgを合計で0.02質量%以上、10質量%以下の範囲で含む場合、リチウム合金にNaおよびCaの少なくとも一方を微量含ませることにより、初期および保存後の容量が大きく、容量劣化率が小さい電池が得られることがわかる。
《実施例9~17》
 負極の作製において、リチウム合金箔には、Al、Mg、Na、およびCaの含有量が、それぞれ表2に示す値であるリチウム合金箔を用いた。非水電解液の調製において、必要に応じて、非水電解液に添加剤を更に含ませた。添加剤には、表2に示す化合物を用いた。非水電解液中の添加剤の含有量(質量%)は、表2に示す値とした。
 上記以外、実施例1の電池A1と同様にして、実施例9~17の電池A9~A17を作製し、評価した。
 評価結果を表2に示す。なお、表2中の初期容量および保存後の容量は、比較例1の電池B1の初期容量を100とするときの相対値(指数)として表す。
Figure JPOXMLDOC01-appb-T000002
 
 電池A9~A17のいずれも、初期容量および保存後容量が大きく、容量劣化率が小さくなった。非水電解液に添加剤を含ませた電池A10~A17では、容量劣化率が更に低減された。
 本開示のリチウム一次電池は、例えば、各種メータ(例えば、電気、水道、ガスなどのスマートメータ)の主電源、メモリーバックアップ電源として好適に用いられる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 1:正極、1a:正極集電体、2:負極、3:セパレータ、4:正極リード、5:負極リード、6:上部絶縁板、7:下部絶縁板、8:封口板、9:電池ケース、10:リチウム一次電池
 
 
 

Claims (13)

  1.  正極と、負極と、非水電解液と、を備え、
     前記正極は、二酸化マンガンおよびフッ化黒鉛からなる群より選択される少なくとも1種を含み、
     前記負極は、リチウム合金を含み、
     前記リチウム合金は、アルミニウムと、マグネシウムと、ナトリウムおよびカルシウムからなる群より選択される少なくとも1種と、を含み、
     前記リチウム合金中の前記アルミニウムおよび前記マグネシウムを合計した含有量は、0.02質量%以上、10質量%以下であり、
     前記リチウム合金中の前記ナトリウムおよび前記カルシウムを合計した含有量は、0.02質量%以下である、リチウム一次電池。
  2.  前記リチウム合金中の前記アルミニウムおよび前記マグネシウムを合計した含有量は、0.05質量%以上、8質量%以下である、請求項1に記載のリチウム一次電池。
  3.  前記リチウム合金中の前記ナトリウムおよび前記カルシウムを合計した含有量は、0.001質量%以上、0.018質量%以下である、請求項1に記載のリチウム一次電池。
  4.  前記非水電解液は、環状イミド化合物、フタル酸エステル化合物、およびイソシアネート化合物からなる群より選択される少なくとも1種の添加剤を含む、請求項1に記載のリチウム一次電池。
  5.  前記環状イミド化合物は、フタルイミドおよびN-置換フタルイミドからなる群より選択される少なくとも1種を含む、請求項4に記載のリチウム一次電池。
  6.  前記N-置換フタルイミドは、N-ヒドロキシフタルイミド、N-(2-ヒドロキシエチル)フタルイミド、N-(シクロヘキシルチオ)フタルイミド、およびN-(フェニルチオ)フタルイミドからなる群より選択される少なくとも1種を含む、請求項5に記載のリチウム一次電池。
  7.  前記非水電解液中の前記環状イミド化合物の含有量は、1質量%以下である、請求項4に記載のリチウム一次電池。
  8.  前記フタル酸エステル化合物は、フタル酸ジエステル化合物を含む、請求項4に記載のリチウム一次電池。
  9.  前記フタル酸ジエステル化合物は、フタル酸ジメチルを含む、請求項8に記載のリチウム一次電池。
  10.  前記非水電解液中の前記フタル酸エステル化合物の含有量は、1質量%以下である、請求項4に記載のリチウム一次電池。
  11.  前記イソシアネート化合物は、ジイソシアネート化合物を含む、請求項4に記載のリチウム一次電池。
  12.  前記ジイソシアネート化合物は、ヘキサメチレンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、およびイソホロンジイソシアネートからなる群より選択される少なくとも1種を含む、請求項11に記載のリチウム一次電池。
  13.  前記非水電解液中の前記イソシアネート化合物の含有量は、3質量%以下である、請求項4に記載のリチウム一次電池。
     
     
     
PCT/JP2023/030294 2022-08-24 2023-08-23 リチウム一次電池 WO2024043272A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-133281 2022-08-24
JP2022133281 2022-08-24

Publications (1)

Publication Number Publication Date
WO2024043272A1 true WO2024043272A1 (ja) 2024-02-29

Family

ID=90013412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030294 WO2024043272A1 (ja) 2022-08-24 2023-08-23 リチウム一次電池

Country Status (1)

Country Link
WO (1) WO2024043272A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209862A (ja) * 1982-05-13 1983-12-06 レイオバツク・コ−ポレ−シヨン 改良されたリチウム負極
JPH0337964A (ja) * 1989-06-30 1991-02-19 Sanyo Electric Co Ltd 非水電解液電池
JP2010232039A (ja) * 2009-03-27 2010-10-14 Sanyo Electric Co Ltd 非水電解質一次電池
JP2011192627A (ja) * 2010-02-22 2011-09-29 Enax Inc 高温用リチウム電池
JP2013513207A (ja) * 2009-12-04 2013-04-18 イーグルピッチャー テクノロジーズ,エルエルシー フッ化炭素カソード物質の混合物を有する非水セル
WO2013058224A1 (ja) * 2011-10-17 2013-04-25 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JP2020530937A (ja) * 2017-08-15 2020-10-29 ハイドロ−ケベック リチウムベースの合金の形態における電極材料およびそれを製造するための方法
WO2022138490A1 (ja) * 2020-12-25 2022-06-30 パナソニックIpマネジメント株式会社 リチウム二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209862A (ja) * 1982-05-13 1983-12-06 レイオバツク・コ−ポレ−シヨン 改良されたリチウム負極
JPH0337964A (ja) * 1989-06-30 1991-02-19 Sanyo Electric Co Ltd 非水電解液電池
JP2010232039A (ja) * 2009-03-27 2010-10-14 Sanyo Electric Co Ltd 非水電解質一次電池
JP2013513207A (ja) * 2009-12-04 2013-04-18 イーグルピッチャー テクノロジーズ,エルエルシー フッ化炭素カソード物質の混合物を有する非水セル
JP2011192627A (ja) * 2010-02-22 2011-09-29 Enax Inc 高温用リチウム電池
WO2013058224A1 (ja) * 2011-10-17 2013-04-25 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
JP2020530937A (ja) * 2017-08-15 2020-10-29 ハイドロ−ケベック リチウムベースの合金の形態における電極材料およびそれを製造するための方法
WO2022138490A1 (ja) * 2020-12-25 2022-06-30 パナソニックIpマネジメント株式会社 リチウム二次電池

Similar Documents

Publication Publication Date Title
KR101702406B1 (ko) 리튬 이차 전지
AU708221B2 (en) Organic carbonate additives for nonaqueous electrolyte in alkali metal electrochemical cells
KR100886547B1 (ko) 비수전해질 2차전지
KR101430615B1 (ko) 캐소드 및 이를 채용한 리튬 전지
JP4012174B2 (ja) 効率的な性能を有するリチウム電池
US5650244A (en) Nonaqueous electrolyte battery comprising a non-aqueous electrolyte with at least one calcium salt
EP3001496A1 (en) Method for manufacturing non-aqueous electrolyte secondary battery
WO2005057713A1 (ja) 二次電池
JP2006066341A (ja) 非水電解質二次電池
KR101297173B1 (ko) 리튬 이차 전지
US20160204432A1 (en) Non-aqueous electrolyte secondary battery and method for manufacturing the same
JP2007258067A (ja) 非水電解質電池
JP2000067914A (ja) 再充電可能な電気化学電池の低温度での放電のための非水性有機電解液
US20210194058A1 (en) Nonaqueous electrolyte liquid battery
EP0548449B1 (en) Nonaqueous electrolyte secondary batteries
JP2009277650A (ja) リチウム一次電池用負極およびリチウム一次電池
KR100379979B1 (ko) 무수 전해질 2차 전지
WO2023162917A1 (ja) リチウム一次電池
EP2916374A1 (en) Lithium secondary cell
KR100408085B1 (ko) 비수전해질 이차전지 및 그 제조방법
JP3396990B2 (ja) 有機電解液二次電池
WO2024043272A1 (ja) リチウム一次電池
EP3540841B1 (en) Non-aqueous electrolyte battery and battery pack
JP6948600B2 (ja) 非水電解質二次電池
WO2024043271A1 (ja) リチウム一次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857380

Country of ref document: EP

Kind code of ref document: A1