WO2024042901A1 - X線撮像装置 - Google Patents

X線撮像装置 Download PDF

Info

Publication number
WO2024042901A1
WO2024042901A1 PCT/JP2023/025765 JP2023025765W WO2024042901A1 WO 2024042901 A1 WO2024042901 A1 WO 2024042901A1 JP 2023025765 W JP2023025765 W JP 2023025765W WO 2024042901 A1 WO2024042901 A1 WO 2024042901A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
imaging device
subject
ray imaging
ray tube
Prior art date
Application number
PCT/JP2023/025765
Other languages
English (en)
French (fr)
Inventor
勝弘 市川
Original Assignee
勝弘 市川
品川 修二
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 勝弘 市川, 品川 修二 filed Critical 勝弘 市川
Priority to JP2024542642A priority Critical patent/JPWO2024042901A1/ja
Publication of WO2024042901A1 publication Critical patent/WO2024042901A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]

Definitions

  • the present invention relates to an X-ray imaging device such as an X-ray computed tomography device used in medical treatment.
  • X-ray imaging devices such as X-ray diagnostic devices and X-ray computed tomography (CT) devices
  • CT computed tomography
  • the highest resolution X-ray CT devices used for medical purposes include device A equipped with a detector element with a size of 0.25 mm, and device A with a comb-shaped detector element on the detector element with a size of 0.6 mm.
  • device B There is a device B in which a filter is inserted to make the opening width about 0.3 mm.
  • the development of devices equipped with detector elements having a size of about 0.1 mm has been progressing.
  • the resolution of X-ray detectors has been improved by miniaturizing detector elements, but the resolution of the actually obtained X-ray images is far from 0.1 mm.
  • the measurement error for a 0.5 mm simulated tracheal wall is 20%
  • the measurement error for a lumen size of 0.8 mm. is reported to be about 50%, indicating the limits of resolution characteristics for fine structures in existing X-ray CT devices.
  • the present inventor evaluated the resolution and noise characteristics of the two models, the above-mentioned apparatus A and apparatus B, using the respective indices MTF (modulation transfer function) and NPS (noise power spectrum).
  • MTF modulation transfer function
  • NPS noise power spectrum
  • targets for which sufficient visualization can be obtained are limited to lungs and bones that have a contrast of 1000 HU (Hunsfield unit) to 2000 HU, where a high SNR is likely to be obtained. Therefore, the current resolution is insufficient to adequately visualize trabecular bone (size: 0.15 mm), respiratory bronchioles (size: 0.3 mm), alveolar ducts (size: 0.1 mm), etc. be.
  • a possible cause of insufficient resolution is that there are factors that cause the X-ray image to become blurred during the process of forming the X-ray image, resulting in the X-ray image becoming blurred and unsharp.
  • one of the causes of blur in an X-ray image is that the X-ray detector is shaken due to vibration or deflection due to rotation during imaging by an X-ray CT apparatus.
  • An X-ray rotation imaging device is used to correct the coordinate position of measurement data caused by such blurring of the X-ray detector and obtain high-quality images with high contrast and high resolution of differential images, projection images, and reconstructed images. known (for example, Patent Document 1).
  • the resolution of the obtained X-ray image is still far below 0.1 mm, and the resolution of the obtained X-ray image is far from 0.1 mm. It could not be said that the resolution was sufficient to adequately depict the images.
  • An object of the present invention is to provide an X-ray imaging device that has resolution characteristics capable of sufficiently depicting trabecular bone, respiratory bronchioles, alveolar ducts, etc., and also has excellent SNR.
  • An X-ray irradiation unit including an X-ray tube that irradiates the subject with X-rays; an X-ray detection unit including an X-ray detector that is disposed at a position facing the X-ray tube with the subject in between, and detects the transmitted X-rays of the subject; a rotation mechanism including a rotating body configured to be rotatable around the subject; a control unit that controls rotation of the rotating body and X-ray irradiation from the X-ray tube, The X-ray irradiation unit and the X-ray detection unit are attached to the rotating body, When the distance from the focal point of the X-ray tube to the center of rotation of the rotating body is X (mm), and the distance from the center of rotation to the detection surface of the X-ray detector is Y (mm), the ratio X: An X-ray imaging device characterized in that Y is 9:1 to 7:3.
  • the X-ray imaging device according to (1) above wherein the rotating body is a ring-shaped frame.
  • the X-ray irradiation unit further includes a first mounting member for fixing to the ring-shaped frame, The X-ray imaging device according to (2) above, wherein the X-ray tube is attached to the first attachment member so as to be located on the outside of the ring-shaped frame.
  • the X-ray detection unit further includes a second mounting member for fixing to the ring-shaped frame, The X-ray imaging device according to (2) or (3) above, wherein the X-ray detector is attached to the second attachment member so as to be located inside the ring-shaped frame.
  • the size of the focal point of the X-ray tube is F (mm)
  • the distance from the focal point of the X-ray tube to the center of rotation of the rotating body is X (mm)
  • the X-ray detection from the center of rotation is (1) above, where the penumbra P due to the focal point at the center of rotation, expressed by the following formula (1), is 0.1 to 0.25 mm, when the distance to the detection surface of the device is Y (mm);
  • the subject is a head including the subject's dentition
  • the control unit controls the rotating body to rotate by half a rotation while maintaining the X-ray detector close to the dentition of the subject. X-ray imaging device.
  • an X-ray tube and an X-ray detector are arranged so as to overlap the ring-shaped frame in a plan view of the ring-shaped frame, or arranged inside the ring-shaped frame. Therefore, the distance from the X-ray tube to the rotation center of the ring-shaped frame is approximately equal to the distance from the rotation center of the ring-shaped frame to the X-ray detector. On the other hand, according to the present invention, the distance from the X-ray tube to the rotation center of the ring-shaped frame is reduced from the rotation center to the X-ray detector by disposing the X-ray tube outside the ring-shaped frame. It will be longer than the distance.
  • FIG. 1 is a front view of an X-ray imaging apparatus (excluding a pedestal) according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of the X-ray imaging apparatus according to the first embodiment of the present invention.
  • FIG. 3(a) is a schematic diagram of the configuration of a general X-ray imaging device (X-ray CT device) used for medical purposes, and
  • FIG. 3(b) is a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the configuration of an X-ray imaging device according to the embodiment.
  • FIG. 4 is a graph showing the relationship between spatial frequency (cycles/mm) and MTF in the X-ray imaging apparatus shown in FIGS. 3(a) and 3(b).
  • FIG. 4 is a graph showing the relationship between spatial frequency (cycles/mm) and MTF in the X-ray imaging apparatus shown in FIGS. 3(a) and 3(b).
  • FIG. 5 is a graph showing the relationship between spatial frequency (cycles/mm) and SNR 2 in the X-ray imaging apparatus shown in FIGS. 3(a) and 3(b).
  • FIG. 6 is a graph showing the SNR 2 magnification of the X-ray imaging device shown in FIG. 3(b) with respect to the X-ray imaging device shown in FIG. 3(a), calculated from the graph shown in FIG .
  • FIG. 7 is a schematic diagram of the configuration of an X-ray imaging apparatus according to a second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the configuration of an X-ray imaging apparatus according to a third embodiment of the present invention.
  • FIG. 9 is a diagram for explaining the configuration of a rotation mechanism included in an X-ray imaging apparatus according to a fourth embodiment of the present invention
  • FIG. 9(a) is a schematic diagram of the rotation mechanism viewed from the front
  • 9(b) is a schematic side view of the rotation mechanism shown in FIG. 9(a).
  • FIG. 10 is a schematic diagram for explaining a state in which an X-ray imaging device (dental X-ray imaging device) according to a fifth embodiment of the present invention takes an X-ray image of a subject's dentition. ) shows the state at the start of scanning
  • FIG. 10(b) shows the state during scanning
  • FIG. 10(c) shows the state at the end of scanning.
  • FIG. 11 is an X-ray image photograph obtained by imaging a subject (a human foot phantom) using the X-ray imaging apparatuses of the example and the comparative example.
  • FIG. 12 is an X-ray image photograph obtained by imaging a subject (dental phantom) using the X-ray imaging apparatus of the example and the comparative example.
  • the X-ray imaging apparatus of the present invention includes an X-ray irradiation section, an X-ray detection section, a rotation mechanism including a rotating body configured to be rotatable around a subject, and a control section. DESCRIPTION OF THE PREFERRED EMBODIMENTS The X-ray imaging apparatus of the present invention will be described in detail below based on preferred embodiments shown in the accompanying drawings.
  • FIG. 1 is a front view of an X-ray imaging apparatus (excluding a pedestal) according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of the X-ray imaging apparatus according to the first embodiment of the present invention.
  • an X-ray imaging apparatus 100 includes an X-ray irradiation unit 1 including an X-ray tube 11, and a position facing the X-ray tube 11 with a subject O in between.
  • an X-ray detection unit 2 including an X-ray detector 21, a pedestal 3 disposed between the X-ray tube 11 and the X-ray detector 21, and a rotating body configured to be rotatable around the pedestal 3.
  • the rotating mechanism 4 includes a ring-shaped frame 41 and a control section 5.
  • a subject O is placed on a pedestal 3 (see FIG.
  • the line detector 21 detects it.
  • the subject O includes the extremities (hands, feet), head, chest, and abdomen of the human body.
  • the X-ray imaging apparatus 100 of this embodiment is suitable for imaging fine structures (trabeculae) of extremities (hands, feet).
  • the X-ray irradiation unit 1 includes an X-ray tube 11, a high voltage generator 12, a collimator 13, and a first mounting member 14.
  • the X-ray tube 11 irradiates the subject O with X-rays.
  • the X-ray tube 11 is not particularly limited, but a rotating anode type X-ray tube that rotates the target so as to disperse heat can be used. Further, reducing the size of the focal point of the X-ray tube 11 used is effective in reducing the penumbra due to the focal point of the X-ray tube 11, which will be described later, and increasing the resolution. However, it is preferable not to make the focal spot size of the X-ray tube 11 too small.
  • the size of the focal point of the X-ray tube 11 is preferably about 0.6 to 1.0 mm, more preferably about 0.7 to 0.9 mm. If the size of the focal point is within the above range, the penumbra due to the focal point of the X-ray tube 11 can be made sufficiently small. Furthermore, since sufficient X-ray output can be obtained, a high SNR can be obtained and the scan time can also be shortened.
  • the high voltage generator 12 is wire-connected to the X-ray tube 11 and is supplied with power from an external power source (not shown). Under the control of the control unit 5, the high voltage generator 12 supplies a filament current to the cathode (filament) in the X-ray tube 11, and also supplies (applies) a high voltage between the cathode and the anode (target). )do.
  • the collimator 13 is disposed on the object O side of the X-ray tube 11, and is disposed to narrow down the X-ray flux of the X-rays emitted from the X-ray tube 11 in accordance with the size of the X-ray detector 21.
  • the first attachment member 14 has the function of attaching the X-ray tube 11, high voltage generator 12, and collimator 13 to the ring-shaped frame 41.
  • the first mounting member 14 is fixed to the ring-shaped frame 41 at one end thereof (lower side in the figure).
  • the first mounting member 14 has a substantially rectangular plate shape with two notched corners on the other end side (upper side in the figure). Note that the shape of the first mounting member 14 is not limited to the shape shown in FIG. 1, and may be any shape as long as the X-ray tube 11 is arranged outside the ring-shaped frame 41.
  • the shape of the first mounting member 14 may be various shapes such as a circular shape, an elliptical shape, a polygonal shape, and a trapezoidal shape, for example.
  • the first mounting member 14 has an X-ray tube 11 attached to the center of the other end, a collimator 13 attached to the center of one end, and a high voltage generator 12 attached to the side of the X-ray tube 11 and collimator 13. It will be done. Note that the high voltage generator 12 may be attached to a second attachment member 23, which will be described later.
  • the X-ray tube 11 is attached to the other end side of the first attachment member 14, so that the X-ray tube 11 is disposed outside the ring-shaped frame 41.
  • the distance from the X-ray tube 11 to the rotation center C of the ring-shaped frame 41 is shorter than the distance from the rotation center C to the X-ray detector 21. is also longer.
  • an X-ray imaging device that has resolution characteristics capable of sufficiently depicting fine structures such as trabecular bone, respiratory bronchioles, alveolar ducts, and periodontal tissue, and also has excellent SNR. I can do it.
  • the distance X (mm) from the focal point of the X-ray tube 11 to the rotation center C of the ring-shaped frame 41 is preferably about 300 to 1400 mm, more preferably about 400 to 1000 mm. If the distance X is within the above range, the distance from the focal point of the X-ray tube 11 to the rotation center C will be sufficiently longer than the distance from the rotation center C to the detection surface of the X-ray detector 21. Therefore, the ratio of the distance from the center of the object O to the detection surface of the X-ray detector 21 to the distance from the focal point of the X-ray tube 11 to the detection surface of the X-ray detector 21, that is, the magnification rate of the object O becomes smaller.
  • the penumbra P becomes smaller, blurring that occurs in the X-ray image is suppressed, resulting in a sharp image, and resolution characteristics are improved. As a result, it is possible to provide an X-ray imaging device having resolution characteristics capable of sufficiently depicting fine structures.
  • the distance from the focal point of the X-ray tube 11 to the outer peripheral surface of the ring-shaped frame 41 is preferably about 50 to 600 mm, more preferably about 100 to 400 mm. If the distance from the focal point of the X-ray tube 11 to the outer peripheral surface of the ring-shaped frame 41 is within the above range, the centrifugal force generated by the rotation of the X-ray tube 11 is suppressed, and the load on the first mounting member 14 is reduced. Therefore, the X-ray imaging apparatus 100 can be used more safely. Furthermore, the overall size of the X-ray imaging device 100 can be sufficiently reduced.
  • the X-ray detector 2 includes an X-ray detector 21, a data acquisition system 22, and a second mounting member 23.
  • the X-ray detector 21 is arranged at a position facing the X-ray tube 11 with the subject O in between, and detects the transmitted X-rays of the subject O.
  • Such an X-ray detector 21 is configured by two-dimensionally arranging a plurality of detector elements. More specifically, a plurality of detector elements are arranged in a two-dimensional array to constitute the X-ray detector 21. Examples of the X-ray detector 21 include digital X-ray detectors such as indirect conversion type FPD (Flat Panel Detector) and direct conversion type FPD.
  • An indirect conversion FPD is composed of a detector element formed of a phosphor such as thallium-activated cesium iodide (CsI:Tl), and a two-dimensional optical sensor such as amorphous Si or CMOS.
  • a detector element formed of a phosphor such as thallium-activated cesium iodide (CsI:Tl)
  • a two-dimensional optical sensor such as amorphous Si or CMOS.
  • the direct conversion FPD has a structure in which the detector element applies a voltage to amorphous selenium (a-Se), which is a phosphor.
  • Direct conversion type FPDs operate in the same manner as the indirect conversion type FPDs described above, except that the X-ray signal incident on the detector element is directly converted into negative and positive charge signals using a-Se to which a voltage is applied. Form an X-ray image.
  • the voltage or current signal generated by the X-ray detector 21 is digitized by an A/D (Analog Digital) converter (not shown) within the X-ray detector 21 and supplied to the data processing system 22. .
  • the data processing system 22 is wired to the X-ray detector 21 and is supplied with power from an external power source (not shown).
  • the data processing system 22 includes an arithmetic processing unit, a storage device, a transmitter, and a control device (all not shown).
  • the data processing system 22 performs arithmetic processing on the supplied digital signal and transmits it to an image processing device (computer) using a transmitter, thereby forming a two-dimensional image (X-ray image).
  • the second attachment member 23 has the function of attaching the X-ray detector 21 and data processing system 22 to the ring-shaped frame 41.
  • the second mounting member 23 is fixed to the ring-shaped frame 41 at one end (lower side in the figure) from the center thereof.
  • the shape of the second mounting member 23 is a substantially rectangular plate with two notched corners on the other end side (upper side in the figure).
  • the shape of the second mounting member 24 is not limited to the shape shown in FIG. 1, and may be various shapes such as a circular shape, an elliptical shape, a polygonal shape, and a trapezoidal shape.
  • the second attachment member 23 has the X-ray detector 21 attached to the center of the other end thereof, and the data processing system 22 attached to one end thereof.
  • the X-ray detector 21 is attached to the other end side of the second attachment member 23, so that the X-ray detector 21 is disposed inside the ring-shaped frame 41.
  • the distance to the detector 21 becomes shorter.
  • the penumbra P caused by the focal point of the X-ray tube 11 at the rotation center C of the ring-shaped frame 41 can be made smaller. Therefore, it is possible to further suppress blur caused by the penumbra P in the formed X-ray image. As a result, it becomes possible to visualize fine structures such as trabecular bone, respiratory bronchioles, alveolar ducts, and periodontal tissues more fully.
  • the distance Y (mm) from the rotation center C of the ring-shaped frame 41 to the detection surface of the X-ray detector 21 is preferably about 50 to 300 mm, more preferably about 60 to 200 mm, and 70 to 140 mm. It is more preferable that it be about the same extent. If the distance Y is within the above range, the distance from the rotation center C to the detection surface of the X-ray detector 21 will be sufficiently shorter than the distance from the focal point of the X-ray tube 11 to the rotation center C. Therefore, the magnification rate of the object O becomes smaller. As the magnification of the subject O becomes smaller, the penumbra P becomes smaller, blurring that occurs in the X-ray image is suppressed, a sharper image is obtained, and resolution characteristics are improved.
  • the X-ray detector 21 is arranged inside the ring-shaped frame 41 in this embodiment, it may be arranged on the ring-shaped frame 41 or outside the ring-shaped frame 41.
  • the pedestal 3 has the function of placing the subject O thereon, as shown in FIG.
  • the pedestal 3 is made of a long plate.
  • Such a pedestal 3 is arranged between the X-ray tube 11 and the X-ray detector 21.
  • the pedestal 3 is arranged such that the subject O placed on the pedestal 3 is located at the rotation center C of the ring-shaped frame 41.
  • the width of the pedestal 3 can be changed as appropriate depending on the size of the subject to be placed. Specifically, when the subject is a limb (an arm (from the arm to the hand), a leg (from the knee to the toes)), the width of the pedestal 3 is preferably about 100 to 200 mm. , more preferably about 70 to 150 mm. Further, when the subject is the chest or abdomen, it is preferable that the width of the pedestal 3 is about 250 to 300 mm. Further, when the subject is the head, the width of the pedestal 3 is preferably about 100 to 200 mm.
  • the rotation mechanism 4 includes a ring-shaped frame 41 and a drive motor 42.
  • the ring-shaped frame 41 is composed of a ring-shaped frame body and is configured to be rotatable around the pedestal 3.
  • the X-ray irradiation section 1 and the X-ray detection section 2 rotate around the pedestal 3 (subject).
  • a tomographic image of the subject O can be captured.
  • the direction of rotation of the ring-shaped frame 41 is not particularly limited, and may be rotated clockwise or counterclockwise.
  • the inner diameter of such a ring-shaped frame 41 can be changed as appropriate depending on the size of the subject to be placed on the pedestal 3. Specifically, when the subject is a limb (arm, leg), the inner diameter of the ring-shaped frame 41 is preferably about 400 to 800 mm, more preferably about 500 to 600 mm. Furthermore, when the subject is the chest or abdomen, the inner diameter of the ring-shaped frame 41 is preferably about 600 to 700 mm. Further, when the subject is the head, the inner diameter of the ring-shaped frame 41 is preferably about 400 to 700 mm.
  • the drive motor 42 is supplied with power from an external power source (not shown), and rotates the ring-shaped frame 41 around the pedestal 3 under the control of a control device included in the data processing system 22.
  • a drive motor 42 for example, a stepping motor can be used from the viewpoint of accurately controlling the position and speed.
  • the control unit 5 controls X-ray irradiation from the X-ray tube 11 (supply of filament current and high voltage from the high voltage generator 12 to the X-ray tube 11) by receiving instructions input by the user. More specifically, the control unit 5 controls the high voltage generator 12 to determine the interval at which X-rays are irradiated from the X-ray tube 11, the irradiation time per time, and the magnitude of the voltage applied to the X-ray tube. etc. to be changed. The control unit 5 is wired to the high voltage generator 12 . In the X-ray imaging apparatus 100 of this embodiment, the control unit 5 is attached to the first attachment member 14.
  • the X-ray imaging device 100 further includes a frame 70 that houses the X-ray irradiation section 1, the X-ray detection section 2, the pedestal 3, the rotation mechanism 4, and the control section 5 therein.
  • Each side of the frame body 70 is composed of a metallic column or beam.
  • the frame body 70 includes a support portion 71 made of a metal plate that extends inside the frame body 70 from a pair of pillar portions on the front side in FIG.
  • the ring-shaped frame 41 is rotatably supported within the frame body 70 by this support portion 71 .
  • the X-ray tube 11 is arranged outside the ring-shaped frame 41, as described above. Therefore, since the distance from the X-ray tube 11 to the rotation center C of the ring-shaped frame 41 is longer than the distance from the rotation center C to the X-ray detector 21, the X-rays at the rotation center C of the ring-shaped frame 41 are The penumbra P due to the focal point of the tube 11 can be made smaller.
  • FIG. 3(a) is a schematic diagram of the configuration of a general X-ray imaging device (X-ray CT device) used for medical purposes
  • FIG. 3(b) is an X-ray CT device according to the first embodiment of the present invention
  • 1 is a schematic diagram of the configuration of a line imaging device.
  • penumbra refers to the size of the focus of the X-ray tube and the distance from the center of the subject to the detection surface of the X-ray detector relative to the distance from the focus of the X-ray tube to the detection surface of the X-ray detector. In other words, it is a physical property value related to the magnification ratio of the subject, and indicates the size of the blur that occurs in the X-ray image.
  • the penumbra is large, the X-ray image formed will be blurred and unsharp, reducing resolution characteristics.
  • the penumbra is small, blurring that occurs in the formed X-ray image is suppressed, resulting in a sharp image, and resolution characteristics are improved.
  • X-ray imaging device in Figure 3(a) X-ray tube focal size: 0.8mm Detector element aperture size (detector element size): 0.1mm Distance from X-ray tube (focal point) to center of rotation: 500mm Distance from X-ray tube (focal point) to X-ray detector: 900mm
  • X-ray imaging device in Figure 3(b) X-ray tube focal size: 0.8mm Detector element aperture size (detector element size): 0.1mm Distance from X-ray tube (focal point) to center of rotation: 450mm Distance from X-ray tube (focal point) to X-ray detector: 550mm
  • the size of the focal point of the X-ray tube 11 is F (mm)
  • the distance from the X-ray tube 11 to the rotation center C of the ring-shaped frame 41 is X (mm)
  • the distance from the rotation center C to the X-ray detector is
  • the penumbra P due to the focal point of the X-ray tube 11 at the rotation center C is expressed by the following formula (1).
  • [Formula 1] P F ⁇ Y/(X+Y)...(1)
  • the size F of the focal point of the X-ray tube 11 should be approximately 0.6 to 1.0 mm. There are many.
  • the penumbra P is approximately 0.3 to 0.5 mm, and it is approximately 0.3 to 0.5 mm. It is not possible to obtain sharp images of microstructures such as tubes (size: 0.1 mm).
  • the distance (X) from the focal point of the X-ray tube 11 to the rotation center C of the ring-shaped frame 41 is the same as the distance (X) from the rotation center C to the detection surface of the X-ray detector 21.
  • the penumbra P becomes sufficiently smaller than F/2.
  • the distance (Y) from the rotation center C to the detection surface of the X-ray detector 21 is short. Therefore, the ratio between the distance (X) and the distance (Y) becomes larger, and the penumbra P caused by the focal point of the X-ray tube 11 at the rotation center C of the ring-shaped frame 41 can be made more sufficiently small.
  • the X-ray imaging device 100 of this embodiment has an excellent SNR (signal-to-noise ratio) in a high spatial frequency region compared to general X-ray imaging devices used for medical purposes.
  • FIG. 4 is a graph showing the relationship between spatial frequency (cycles/mm) and MTF in the X-ray imaging apparatus shown in FIGS. 3(a) and 3(b).
  • FIG. 5 is a graph showing the relationship between spatial frequency (cycles/mm) and SNR 2 in the X-ray imaging apparatus shown in FIGS. 3(a) and 3(b).
  • FIG. 6 is a graph showing the SNR 2 magnification of the X-ray imaging device shown in FIG. 3(b) with respect to the X-ray imaging device shown in FIG. 3(a), calculated from the graph shown in FIG .
  • the spatial frequency (cycles/mm) on the horizontal axis is related to the resolution, and the SNR 2 when the spatial frequency is 1 cycles/mm is the SNR 2 at a resolution of about 0.5 mm.
  • the SNR 2 when the spatial frequency is 2 cycles/mm is the SNR 2 at a resolution of about 0.25 mm.
  • SNR 2 at a spatial frequency of 3 cycles/mm is SNR 2 at a resolution of about 0.17 mm.
  • SNR 2 at a spatial frequency of 4 cycles/mm is SNR 2 at a resolution of about 0.125 mm.
  • SNR 2 at a spatial frequency of 5 cycles/mm is SNR 2 at a resolution of about 0.1 mm.
  • the X-ray imaging device 100 of this embodiment has a superior SNR at high spatial frequencies (high resolution) compared to general X-ray imaging devices.
  • the SNR 2 magnification of the X-ray imaging device 100 of this embodiment (FIG. 3(b)) with respect to the X-ray imaging device shown in FIG. 3(a) increases as the spatial frequency increases. Therefore, it increases rapidly.
  • the spatial frequency is about 2.6 cycles/mm
  • the SNR 2 magnification of the X-ray imaging device 100 of this embodiment (FIG. 3(b)) with respect to the X-ray imaging device shown in FIG. 3(a) is , about 100 times.
  • the distance from the focal point of the X-ray tube 11 to the rotation center C of the ring-shaped frame 41 is defined as X (mm)
  • the distance from the rotation center C to the detection surface of the X-ray detector 21 is
  • the ratio X:Y is 9:1 to 7:3.
  • the ratio X:Y is preferably 8.8:1.2 to 7.2:2.8, more preferably 8.5:1.5 to 7.5:2.5. .
  • the distance from the focal point of the X-ray tube 11 to the rotation center C is sufficiently longer than the distance from the rotation center C to the detection surface of the X-ray detector 21. Become. Therefore, the ratio of the distance from the center of the object O to the detection surface of the X-ray detector 21 to the distance from the focal point of the X-ray tube 11 to the detection surface of the X-ray detector 21, that is, the magnification rate of the object O becomes smaller (see equation (1) above). By reducing the magnification of the subject O, the penumbra P becomes extremely small, suppressing blurring in the formed X-ray image and providing a sharp image.
  • the penumbra P is very small, even if the spatial frequency becomes large, the MTF(u) can be made high to some extent. Therefore, even at a relatively high spatial frequency (3 cycles/mm or more) with a resolution of 0.17 mm or less, for which a sufficient SNR could not be obtained in the past, it is possible to obtain a sufficiently excellent SNR (the above formula ( 2), see Figures 4 and 5). As a result, the X A line imaging device can be provided.
  • the penumbra P expressed by the above formula (1) is preferably about 0.1 to 0.25 mm, more preferably about 0.12 to 0.20 mm.
  • the penumbra P is a very small value within the above range, blurring that occurs in the formed X-ray image is suppressed, and a sharper image can be obtained.
  • the X-ray detector 21 is arranged inside the ring-shaped frame 41, but it is arranged so that it overlaps with the ring-shaped frame 41 in a plan view of the ring-shaped frame 41. It can also be placed.
  • FIG. 7 is a schematic diagram of the configuration of an X-ray imaging apparatus according to a second embodiment of the present invention.
  • the X-ray imaging device of the second embodiment will be described with a focus on the differences from the X-ray imaging device of the first embodiment, and descriptions of similar matters will be omitted.
  • the X-ray irradiation unit 1 includes a first moving mechanism 15 that moves the X-ray tube 11.
  • the first moving mechanism 15 is attached to the first attachment member 14.
  • the first moving mechanism 15 includes a slide section 16 to which the X-ray tube 11 is attached, a pair of guide sections 17 arranged in parallel to each other, and a fixed section (not shown).
  • the slide section 16 is configured to be movable along a guide section 17.
  • the slide portion 16 has a substantially rectangular plate shape. Further, both side portions of the slide portion 16 are slidably inserted into a pair of guide portions 17.
  • the X-ray tube 11 is attached to the approximate center of the slide section 16, and by sliding the slide section 16 along the guide section 17, the X-ray tube 11 can be moved upward or downward from the first mounting member 14 in FIG. can be moved in the direction.
  • the pair of guide parts 17 each extend in the vertical direction of the first mounting member 14 and have a function of guiding the movement of the slide part 16.
  • the pair of guide parts 17 are attached to the substantially center of the first attachment member 14 in a spaced apart state such that the slide part 16 is inserted between them.
  • the slide portion 16 slides along the guide portion 17 and is fixed to the guide portion 17 at a desired position by a fixing portion.
  • the X-ray tube 11 can be moved closer to or away from the rotation center C of the ring-shaped frame 41 by the operation of the first moving mechanism 15 (sliding of the slide portion 16). That is, in this embodiment, the position of the X-ray tube 11 can be adjusted by sliding the slide part 16 along the guide part 17 and fixing it at a desired position by the fixing part.
  • the ratio X:Y of the distance X from the X-ray tube 11 to the rotation center C of the ring-shaped frame 41 and the distance Y from the rotation center C to the X-ray detector 21 is It can be freely adjusted according to the size of the object and desired resolution.
  • the slide section 16 can also be automatically slid by the control section 5.
  • the control section 5 controls the vertical movement of the slide section 16 based on the size of the subject O detected by a detection section (not shown) and the distance (X) stored in the storage section.
  • the X-ray tube 11 can be easily positioned at an appropriate position so as to obtain a high-resolution X-ray image.
  • the X-ray detection unit 2 includes a second moving mechanism 24 that moves the X-ray detector 21, and the moving mechanism 24 is attached to a second mounting member. It is attached to 23.
  • the second moving mechanism 24 includes a slide section 25 to which the X-ray detector 21 is attached, a pair of guide sections 26 arranged in parallel to each other, and a fixed section (not shown).
  • the slide portion 25 is configured to be movable along a guide portion 26.
  • the slide portion 25 has a substantially rectangular plate shape. Further, both sides of the slide portion 25 are slidably inserted into a pair of guide portions 26 .
  • the X-ray detector 21 is attached to the upper end side of the slide part 25, and by sliding the slide part 25 along the guide part 26, the X-ray detector 21 is attached to the second mounting member 23. 7, it can be moved up and down.
  • the pair of guide parts 26 each extend in the vertical direction of the second mounting member 23 and have a function of guiding the movement of the slide part 25.
  • the pair of guide parts 26 are attached to the approximate center of the second attachment member 23 in a spaced apart state such that the slide part 25 is inserted between them.
  • the slide portion 25 slides along the guide portion 26 and is fixed to the guide portion 26 at a desired position by a fixing portion.
  • the operation of the second moving mechanism 24 brings the X-ray detector 21 close to the rotation center C of the ring-shaped frame 41, and It can be moved away from the center C. That is, in this embodiment, the position of the X-ray detector 21 can be adjusted by sliding the slide part 25 along the guide part 26 and fixing it at a desired position by the fixing part. In the X-ray imaging apparatus 100 having such a configuration, the ratio X:Y can be adjusted more freely according to the size of the subject and desired resolution. In addition, the slide part 25 can also be automatically slid by the control part 5.
  • control section 5 controls the vertical movement of the slide section 25 based on the size of the subject O detected by a detection section (not shown) and the distance (Y) stored in the storage section.
  • the position of the X-ray detector 21 can be easily arranged at an appropriate position so that a high-resolution X-ray image can be obtained.
  • the width of the pedestal 3 needs to be larger than when the subject O is the extremities. At that time, it is necessary to ensure a sufficient distance between the pedestal 3 and the X-ray detector so that the rotating X-ray detector 21 does not interfere with the pedestal 3 and the subject O. In such a case, the position of the X-ray detector 21 is adjusted to move away from the center of rotation C of the ring-shaped frame 41, and the position of the X-ray tube 11 is adjusted to move away from the center of rotation C of the ring-shaped frame 41. By doing so, the desired ratio X:Y can be satisfied.
  • the position of the X-ray detector 21 is adjusted to be closer to the rotation center C of the ring-shaped frame 41, and the X-ray tube 11 is moved around the ring-shaped frame 41.
  • the desired ratio X:Y can be satisfied.
  • the configuration in which the first moving mechanism 15 and the second moving mechanism 24 are provided and the positions of both the X-ray tube 11 and the X-ray detector 21 can be adjusted has been described. It is also possible to provide a configuration in which only one of the moving mechanism 15 and the second moving mechanism 24 is provided so that the position of the X-ray tube 11 or the X-ray detector 21 can be adjusted.
  • the X-ray imaging device of the second embodiment also produces the same functions and effects as the X-ray imaging device of the first embodiment.
  • FIG. 8 is a schematic diagram of the configuration of an X-ray imaging apparatus according to a third embodiment of the present invention.
  • the X-ray imaging apparatus of the third embodiment will be described with a focus on the differences from the X-ray imaging apparatuses of the first and second embodiments, and descriptions of similar matters will be omitted.
  • This embodiment is the same as the X-ray imaging device of the first embodiment described above, except that the X-ray tube 11 of the X-ray irradiation unit 1 is arranged inside the ring-shaped frame 41.
  • the X-ray tube 11 is fixed inside the ring-shaped frame 41 via the first attachment part 41.
  • the X-ray irradiation unit 1 is similar to the first and second embodiments described above, except that the position where the first mounting member 14 is fixed to the ring-shaped frame 41 is different.
  • the ring-shaped frame 41 having a larger inner diameter than the ring-shaped frame 41 used in the first embodiment described above is used. It is preferable.
  • the inner diameter of the ring-shaped frame 41 is preferably about 800 to 1500 mm, more preferably about 800 to 1200 mm.
  • the ratio X:Y is within the above range, the distance from the focal point of the X-ray tube 11 to the rotation center C is It is sufficiently longer than the distance to the detection surface. Therefore, even if the X-ray tube 11 is arranged inside the ring-shaped frame 41 as in this embodiment, the same effects as in the X-ray imaging apparatus 100 of the first embodiment described above can be obtained.
  • FIG. 9 is a diagram for explaining the configuration of a rotation mechanism included in an X-ray imaging apparatus according to a fourth embodiment of the present invention
  • FIG. 9(a) is a schematic diagram of the rotation mechanism viewed from the front
  • 9(b) is a schematic side view of the rotation mechanism shown in FIG. 9(a).
  • the X-ray imaging apparatus of the fourth embodiment will be described with a focus on the differences from the X-ray imaging apparatuses of the first to third embodiments, and descriptions of similar matters will be omitted.
  • This embodiment is the same as the first embodiment described above except for the rotation mechanism. Duplicate parts will be omitted.
  • An arm 43 is used instead of the ring-shaped frame 41 as a rotating body included in the rotation mechanism 4 described above.
  • FIG. 9 shows a configuration in which the arm 43 rotates clockwise, the present invention is not limited to this, and a configuration in which the arm 43 rotates counterclockwise may be used.
  • the rotation mechanism 4 of this embodiment includes an arm 43 and a drive motor 44 that drives (rotates) the arm 43.
  • the arm 43 is made of a long plate and is configured to be able to rotate above the base 3.
  • the arm 43 has an X-ray irradiation section 1 and an X-ray detection section 2 attached to both ends thereof.
  • the X-ray irradiation section 1 and the X-ray detection section 2 rotate around the pedestal 3 (subject).
  • a tomographic image of the subject O can be captured.
  • the length of such arm 43 can be changed as appropriate depending on the size of the subject placed on pedestal 3. Specifically, when the subject is a limb (arm, leg), the length of the arm 43 is preferably about 400 to 800 mm, more preferably about 500 to 700 mm. Furthermore, when the subject is the chest or abdomen, the length of the arm 43 is preferably about 700 to 1000 mm. Further, when the subject is the head, the length of the arm 43 is preferably about 400 to 700 mm.
  • the X-ray irradiation section 1 has a rod-shaped first mounting member 14, and the X-ray detection section 2 has a rod-shaped second mounting member 23.
  • the first attachment member 14 has a base end fixed to one end of the arm 43 and a distal end to which the X-ray tube 11 is attached.
  • the second attachment member 23 has a base end fixed to the other end of the arm 43 and a tip end to which the X-ray detector 21 is attached.
  • the high voltage generator 12 and collimator 13 of the X-ray irradiation section 1 are provided at one end of the arm 43.
  • the data collection system 22 of the X-ray detection section 2 is provided at the other end of the arm 43.
  • the drive motor 44 is supplied with power from an external power source (not shown), and rotates the arm 43 above the pedestal 3 under the control of a control device included in the data processing system 22 .
  • a drive motor 44 a motor similar to the drive motor 42 described above can be used, and for example, a stepping motor can be used.
  • the drive motor 44 is fixed to a frame (not shown). As the drive motor 44 rotates, the arm 43 rotates above the base 3 with respect to the frame.
  • the distance from the focal point of the X-ray tube 11 to the rotation center C is It is sufficiently longer than the distance to the detection surface. Therefore, the same effects as the X-ray imaging apparatus 100 of the first embodiment described above can be obtained.
  • the weight of the rotation mechanism 4 can be reduced.
  • the X-ray imaging device 100 of this embodiment has a smaller installation area than the X-ray imaging device 100 using the ring-shaped frame 41 when not in operation. Therefore, the storage space of the X-ray imaging device 100 can be saved.
  • first mounting member 14 and the second mounting member 23 may each be configured to be movable in the longitudinal direction of the arm 43. If the first mounting member 14 and the second mounting member 23 are movable in the longitudinal direction of the arm 43, the distance X from the component X-ray tube 11 to the rotation center C of the ring-shaped frame 41 and the distance The ratio X:Y with respect to the distance Y to the X-ray detector 21 can be freely adjusted according to the size of the subject and desired resolution.
  • FIG. 10 is a schematic diagram for explaining a state in which an X-ray imaging device (dental X-ray imaging device) according to a fifth embodiment of the present invention takes an X-ray image of a subject's dentition. ) shows the state at the start of scanning, FIG. 10(b) shows the state during scanning, and FIG. 10(c) shows the state at the end of scanning.
  • the X-ray imaging apparatus of the fifth embodiment will be described with a focus on the differences from the X-ray imaging apparatuses of the first to fourth embodiments, and descriptions of similar matters will be omitted.
  • the X-ray imaging apparatus 100 of the first embodiment described above is used as a dental X-ray imaging apparatus that images the head of a subject O including a row of teeth O1 as a subject.
  • the X-ray irradiation unit 1 and the X-ray detection unit 2 are configured to rotate once around the pedestal 3 as the ring-shaped frame 41 rotates. There is.
  • the rotation of the ring-shaped frame 41 is restricted, so that the X-ray irradiation section 1 and the X-ray detection section 2 rotate about half a rotation around the pedestal 3. It is preferable that the configuration is as follows.
  • X-ray imaging of the subject's head including the dentition using the X-ray imaging apparatus 100 of this embodiment will be described.
  • FIG. 10(a) shows the state when the X-ray imaging device 100 starts scanning.
  • the subject's head is arranged such that the center of the subject's dentition O1 is located at the rotation center C of the ring-shaped frame 41.
  • the pedestal 3 may support the back of the subject's head O2 so that the subject's head does not move during scanning.
  • the initial position of the X-ray irradiation unit 1 is set in consideration of the fan angle (opening degree): ⁇ degree, which depends on the size of the focal point of the X-ray tube 11. Specifically, first, in FIG. 10(b), a straight line passing through the rotation center C and parallel to the detection surface of the X-ray detector 21 is defined as a straight line L.
  • the X-ray irradiation unit 1 is located in the counterclockwise direction of the straight line L so that the angle between the straight line connecting the focal point of the X-ray tube 11 and the center of rotation C and the straight line L is ⁇ /2 degrees. .
  • the initial positions of the X-ray irradiation unit 1 and the X-ray detection unit 2 are set at positions rotated 5 degrees counterclockwise from the straight line L.
  • the X-ray irradiation unit 1 and the X-ray detection unit 2 image a tomographic image of the dentition O1 while rotating clockwise. .
  • FIG. 10(c) when the X-ray irradiation unit 1 reaches a position rotated by ⁇ /2 degrees clockwise from the straight line L, the scanning by the X-ray imaging device 100 ends.
  • the fan angle is 10 degrees
  • the scan ends at a position where the X-ray irradiation unit 1 is rotated 5 degrees clockwise from the straight line L.
  • X-ray imaging by the X-ray imaging device 100 is performed with the X-ray detector 21 always in close proximity to the row of teeth O1 of the subject O. Further, since the control unit 5 restricts the rotation of the X-ray detector 21 toward the occiput O2 side of the subject O, the X-ray detector 21 can be disposed near the rotation center C.
  • the X-ray tube and X-ray detector are configured to rotate once around the patient's head.
  • the X-ray detector is configured to rotate near the patient's dentition in order to reduce the penumbra caused by the focal point of the X-ray tube, the During rotation, the X-ray detector collides with the back of the patient's head. Therefore, it is necessary to set a large rotation radius of the X-ray detector so that the rotating X-ray detector does not collide with the back of the patient's head.
  • the X-ray detector detects X-rays at a position far from the patient's dentition, so it is not possible to reduce the penumbra due to the focal point of the X-ray tube, and the X-rays formed The image becomes blurred and resolution characteristics are lowered. Further, with such a configuration, the SNR in a high spatial frequency region cannot be made sufficiently high.
  • the X-ray detector 21 is placed near the rotation center C of the ring-shaped frame 41, that is, the dentition of the subject O. It can be placed close to O1. Therefore, as described above, the distance from the focal point of the X-ray tube 11 to the rotation center C is sufficiently longer than the distance from the rotation center C to the detection surface of the X-ray detector 21. As a result, the same effects as the X-ray imaging apparatus 100 of the first embodiment described above can be obtained.
  • FIG. 10 shows a configuration in which the ring-shaped frame 41 rotates clockwise, the position of the X-ray irradiation unit 1 and the position of the X-ray detector 2 are swapped, and the ring-shaped frame 41 rotates counterclockwise. It may also be configured to rotate around.
  • the present invention is not limited thereto, and each configuration can be replaced with any member that can perform the same function. Alternatively, members of any configuration can be added.
  • FIG. 11 is an X-ray image photograph obtained by imaging a subject (a human foot phantom) using the X-ray imaging devices of the example and the comparative example.
  • FIG. 12 is an X-ray image photograph obtained by imaging a subject (dental phantom) using the X-ray imaging apparatus of the example and the comparative example.
  • the distance from the X-ray tube to the rotation center of the ring-shaped frame is longer than the distance from the rotation center to the X-ray detector. become longer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本発明のX線撮像装置は、被検体にX線を照射するX線管を含むX線照射部と、被検体を挟んでX線管と対向する位置に配置され、被検体の透過X線を検出するX線検出器を含むX線検出部と、被検体の周りを回転可能に構成された回転体を備えた回転機構と、回転体の回転と、X線管からのX線照射とを制御する制御部とを有し、X線照射部と、X線検出部とは、回転体に取り付けられ、X線管の焦点から回転体の回転中心までの距離をX(mm)とし、回転中心からX線検出器の検出面までの距離をY(mm)としたとき、比率X:Yが9:1~7:3である。

Description

X線撮像装置
 本発明は、医療に用いられるX線コンピュータ断層撮影装置等のX線撮像装置に関する。
 X線診断装置、X線コンピュータ断層撮影(computed tomography:CT)装置等のX線撮像装置が、医用撮像および医用診断において幅広く使用されている。
 現在、医療用に用いられる最も高解像なX線CT装置としては、0.25mmのサイズを有する検出器素子を装備する装置Aと、0.6mmのサイズを有する検出器素子の上に櫛形フィルタを入れて開口幅を0.3mm程度にする装置Bとが存在する。また、近年、X線検出器のさらなる高解像度化を達成するため、0.1mm程度のサイズを有する検出器素子を装備する装置の開発も進められている。
 このように、検出器素子の微細化により、X線検出器の高解像度化は進められているが、実際に得られるX線画像の解像度は、0.1mmに遠く及ばない。例えば、サイズが0.25mmのX線検出素子を装備したCT装置についての研究報告では、0.5mmの模擬気管壁の測定誤差が20%であり、0.8mmの管腔サイズの測定誤差が50%程度であることが報告されており、既存のX線CT装置では、微細構造に対する解像特性の限界が示されている。
 本発明者は、上記装置Aおよび装置Bの2機種の解像度およびノイズ特性を、それぞれの指標であるMTF(modulation transfer function)およびNPS(noise power spectrum)を用いて評価した。その結果、CTアンギオなどのコントラストレベルにおいて、通常考えうる線量範囲では信号体雑音比(signal-to-noise ratio:SNR)が十分でなく、従来の約1/2サイズの解像を従来と同等レベルで描出するためには約9倍の線量が必要であることが分かった。すなわち、放射線被ばくとX線管の性能限界の観点からは、超高解像度CTの実現は困難であることを意味する。そのため、十分な描出が得られる対象としては、高いSNRが得られやすい1000HU(Hunsfield unit)から2000HUのコントラストを持つ肺や骨のみに限られてしまう。したがって、骨梁(サイズ:0.15mm)、呼吸細気管支(サイズ:0.3mm)、肺胞管(サイズ:0.1mm)等を十分に描出するためには、現状の解像度では不十分である。
 解像度が不十分な原因としては、X線画像の形成過程において、X線画像がボケる要因が存在するため、X線画像がボケて非鮮鋭となることが考えられる。例えば、X線CT装置による撮影中に、X線検出器が回転に伴う振動やたわみなどによりぶれることがX線画像にボケを生じさせる原因の1つとして挙げられる。このようなX線検出器のぶれによる計測データの座標位置を補正して、差分画像や投影像及び再構成像のコントラストや高解像度の高い高画質の画像を得るためのX線回転撮影装置が知られている(例えば、特許文献1)。
 しかしながら、このようにX線検出器のぶれを考慮した座標位置の補正を行っても、得られるX線画像の解像度は、0.1mmに遠く及ばず、骨梁、呼吸細気管支、肺胞管等を十分に描出するためには、十分な解像度とは言えなかった。
特開2002-291726号公報
 本発明の目的は、骨梁、呼吸細気管支、肺胞管等を十分に描出することが可能な解像特性を有するとともに、優れたSNRを有するX線撮像装置を提供することにある。
 このような目的は、下記(1)~(12)の本発明により達成される。
 (1) 被検体にX線を照射するX線管を含むX線照射部と、
 前記被検体を挟んで前記X線管と対向する位置に配置され、前記被検体の透過X線を検出するX線検出器を含むX線検出部と、
 前記被検体の周りを回転可能に構成された回転体を備えた回転機構と、
 前記回転体の回転と、前記X線管からのX線照射とを制御する制御部とを有し、
 前記X線照射部と、前記X線検出部とは、前記回転体に取り付けられ、
 前記X線管の焦点から前記回転体の回転中心までの距離をX(mm)とし、前記回転中心から前記X線検出器の検出面までの距離をY(mm)としたとき、比率X:Yが9:1~7:3であることを特徴とするX線撮像装置。
 (2) 前記回転体は、リング状フレームである上記(1)に記載のX線撮像装置。
 (3) 前記X線照射部は、前記リング状フレームに固定するための第1の取付部材をさらに有し、
 前記X線管は、前記リング状フレームの前記外側に位置するように前記第1の取付部材に取り付けられている上記(2)に記載のX線撮像装置。
 (4) 前記X線検出部は、前記リング状フレームに固定するための第2の取付部材をさらに有し、
 前記X線検出器は、前記リング状フレームの内側に位置するように前記第2の取付部材に取り付けられている上記(2)または(3)に記載のX線撮像装置。
 (5) 前記X線管は、前記第1の取付部材に移動可能に取り付けられている上記(3)に記載のX線撮像装置。
 (6) 前記X線検出器は、前記第2の取付部材に移動可能に取り付けられている上記(4)に記載のX線撮像装置。
 (7) 前記X線管の焦点の大きさをF(mm)とし、前記X線管の焦点から前記回転体の回転中心までの距離をX(mm)とし、前記回転中心から前記X線検出器の検出面までの距離をY(mm)としたとき、下記式(1)で表される前記回転中心における前記焦点による半影Pが、0.1~0.25mmである上記(1)ないし(3)のいずれかに記載のX線撮像装置。
[式1]
     P=F×Y/(X+Y)   …(1)
 (8) 前記X線管の焦点の大きさが、0.6~1.0mmである上記(7)に記載のX線撮像装置。
 (9) 前記回転体の回転中心から前記X線検出器の検出面までの距離Y(mm)は、70~140mmである上記(1)ないし(3)のいずれかに記載のX線撮像装置。
 (10) 前記X線管と前記X線検出器との間に配置され、前記被検体が載置される台座をさらに有する上記(1)ないし(3)のいずれかに記載のX線撮像装置。
 (11) 前記被検体は、被験者の歯列を含む頭部であり、
 前記制御部は、前記X線検出器が前記被験者の前記歯列に近接した状態を維持したまま、前記回転体を半回転させるように制御する上記(1)ないし(3)のいずれかに記載のX線撮像装置。
 (12) 前記X線管のファン角をα(度)としたときに、前記制御部は、前記回転体が(180+α)度回転するように制御する上記(11)に記載のX線撮像装置。
 一般的なX線撮像装置では、X線管およびX線検出器が、リング状フレームの平面視でリング状フレームと重なるように、またはリング状フレームの内側に配置される。そのため、X線管からリング状フレームの回転中心までの距離と、リング状フレームの回転中心からX線検出器までの距離とが略等しい。これに対して、本発明によれば、X線管がリング状フレームの外側に配置されることにより、X線管からリング状フレームの回転中心までの距離が、その回転中心からX線検出器までの距離よりも長くなる。かかる構成では、リング状フレームの回転中心におけるX線管の焦点による半影を小さくすることができるため、形成されるX線画像に半影に伴うボケが生じることを抑制することができる。その結果、骨梁、呼吸細気管支、肺胞管、歯周組織等を十分に描出することが可能な解像特性を有するとともに、優れたSNRを有するX線撮像装置を提供することができる。
図1は、本発明の第1実施形態にかかるX線撮像装置(ただし、台座は除く)の正面図である。 図2は、本発明の第1実施形態にかかるX線撮像装置の斜視図である。 図3は、図3(a)は、医療用に用いられる一般的なX線撮像装置(X線CT装置)の構成の概略図であり、図3(b)は、本発明の第1実施形態にかかるX線撮像装置の構成の概略図である。 図4は、図3(a)および(b)に示すX線撮像装置における空間周波数(cycles/mm)とMTFとの関係を示すグラフである。 図5は、図3(a)および(b)に示すX線撮像装置における空間周波数(cycles/mm)とSNRとの関係を示すグラフである。 図6は、図5に示すグラフから算出した、図3(a)に示すX線撮像装置に対する図3(b)に示すX線撮像装置のSNRの倍率を示すグラフである。 図7は、本発明の第2実施形態にかかるX線撮像装置の構成の概略図である。 図8は、本発明の第3実施形態にかかるX線撮像装置の構成の概略図である。 図9は、本発明の第4実施形態にかかるX線撮像装置が備える回転機構の構成を説明するための図であり、図9(a)は、係る回転機構を正面から見た概略図であり、図9(b)は、図9(a)に示す回転機構を側面から見た概略図である。 図10は、本発明の第5実施形態にかかるX線撮像装置(歯科用X線撮像装置)により被験者の歯列をX線撮像する状態を説明するための概略図であり、図10(a)は、スキャン開始時の状態を示し、図10(b)は、スキャン中の状態を示し、図10(c)は、スキャン終了時の状態を示す。 図11は、実施例および比較例のX線撮像装置を用いて、被検体(人体の足部ファントム)を撮像して得られるX線画像写真である。 図12は、実施例および比較例のX線撮像装置を用いて、被検体(歯科用ファントム)を撮像して得られるX線画像写真である。
 本発明のX線撮像装置は、X線照射部と、X線検出部と、被検体の周りを回転可能に構成された回転体を備えた回転機構と、制御部とを有する。
 以下、本発明のX線撮像装置を添付図面に示す好適な実施形態に基づいて詳細に説明する。
<第1実施形態>
 図1は、本発明の第1実施形態にかかるX線撮像装置(ただし、台座は除く)の正面図である。図2は、本発明の第1実施形態にかかるX線撮像装置の斜視図である。
 図1および図2に示すように、本実施形態のX線撮像装置100は、X線管11を含むX線照射部1と、被検体Oを挟んでX線管11と対向する位置に配置されたX線検出器21を含むX線検出部2と、X線管11とX線検出器21との間に配置された台座3と、台座3の周りを回転可能に構成された回転体としてのリング状フレーム41を備えた回転機構4と、制御部5とを有する。かかるX線撮像装置100では、台座3上に被検体Oが載置され(図2参照)、X線管11から被検体OにX線を照射して、被検体Oの透過X線をX線検出器21が検出する。被検体Oとしては、人体の四肢(手、足)、頭部、胸部、腹部が挙げられる。特に、本実施形態のX線撮像装置100は、四肢(手、足)の微細構造(骨梁)の撮像に適している。
(X線照射部)
 X線照射部1は、X線管11と、高電圧発生器12と、コリメータ13と、第1の取付部材14とを有している。
 X線管11は、被検体OにX線を照射する。X線管11としては、特に限定されないが、熱を分散できるようにターゲットを回転させる回転陽極型X線管を用いることができる。
 また、使用するX線管11の焦点の大きさを小さくすることは、後述するX線管11の焦点による半影を小さくし、高解像度化に有効である。しかしながら、X線管11の焦点の大きさを小さくし過ぎないことが好ましい。以上の観点から、X線管11の焦点の大きさは、0.6~1.0mm程度であることが好ましく、0.7~0.9mm程度であることがより好ましい。焦点の大きさが上記範囲内であれば、X線管11の焦点による半影を十分に小さくすることができる。また、十分なX線出力が得られるため、高いSNRが得られるとともに、スキャン時間も短縮することができる。
 高電圧発生器12は、X線管11に配線接続され、図示しない外部電源からの電力が供給されている。高電圧発生器12は、制御部5の制御の下で、X線管11内の陰極(フィラメント)にフィラメント電流を供給するとともに、陰極と陽極(ターゲット)との間に高電圧を供給(印加)する。
 コリメータ13は、X線管11の被写体O側に配置され、X線管11から照射されたX線のX線束をX線検出器21のサイズに合わせて絞るために配置される。
 第1の取付部材14は、上記X線管11、高電圧発生器12およびコリメータ13をリング状フレーム41に取り付ける機能を有する。第1の取付部材14は、その一端側(図中下側)でリング状フレーム41に固定される。
 第1の取付部材14の形状は、他端側(図中上側)の2隅が切欠かれた略四角形をなす板状である。なお、第1の取付部材14の形状は、図1に示す形状に限定されず、X線管11がリング状フレーム41の外側に配置される形状であればよい。第1の取付部材14の形状は、例えば、円形状、楕円形上、多角形状、台形状等の各種形状であってもよい。第1の取付部材14には、他端側中央にX線管11が取り付けられ、一端側中央にコリメータ13が取り付けられ、X線管11およびコリメータ13の側方に高電圧発生器12が取り付けられる。なお、高電圧発生器12は、後述する第2の取付部材23に取り付けられていてもよい。
 本実施形態では、X線管11が第1の取付部材14の他端側に取り付けられることにより、X線管11がリング状フレーム41の外側に配置される。X線管11がリング状フレーム41の外側に配置されることにより、X線管11からリング状フレーム41の回転中心Cまでの距離が、その回転中心CからX線検出器21までの距離よりも長くなる。かかる構成では、リング状フレーム41の回転中心CにおけるX線管11の焦点による半影Pを小さくすることができる(なお、半影Pについては、後述する)。そのため、形成されるX線画像に半影Pに伴うボケが生じることを抑制することができる。その結果、骨梁、呼吸細気管支、肺胞管、歯周組織等の微細構造を十分に描出することが可能な解像特性を有するとともに、優れたSNRを有するX線撮像装置を提供することができる。
 X線管11の焦点からリング状フレーム41の回転中心Cまでの距離X(mm)は、300~1400mm程度であることが好ましく、400~1000mm程度であることがより好ましい。距離Xが上記範囲内であれば、X線管11の焦点から回転中心Cまでの距離が、その回転中心CからX線検出器21の検出面までの距離よりも十分に長くなる。そのため、X線管11の焦点からX線検出器21の検出面までの距離に対する被検体Oの中心からX線検出器21の検出面までの距離との比率、すなわち、被検体Oの拡大率が小さくなる。被検体Oの拡大率が小さくなることにより、半影Pが小さくなり、X線画像に生じるボケが抑制されて鮮鋭な画像となり、解像特性が向上する。その結果、微細構造を十分に描出することが可能な解像特性を有するX線撮像装置を提供することができる。
 また、X線管11の焦点からリング状フレーム41の外周面までの距離は、50~600mm程度であることが好ましく、100~400mm程度であることがより好ましい。X線管11の焦点からリング状フレーム41の外周面までの距離が上記範囲内であれば、X線管11の回転によって生じる遠心力を抑え、第1の取付部材14への負荷を低減することができ、X線撮像装置100をより安全に使用することができる。また、X線撮像装置100全体としての大きさを十分に抑えることができる。
(X線検出部)
 X線検出部2は、X線検出器21と、データ収集システム22と、第2の取付部材23とを有している。
 X線検出器21は、被検体Oを挟んでX線管11と対向する位置に配置され、被検体Oの透過X線を検出する。このようなX線検出器21は、複数の検出器素子が2次元的に配列されて構成されている。より具体的には、複数の検出器素子が、2次元アレイ状に配列されてX線検出器21を構成している。
 X線検出器21としては、例えば、間接変換型FPD(Flat Panel Detector)、直接変換型FPD等のデジタルX線検出器が挙げられる。
 間接変換型FPDは、タリウム活性化ヨウ化セシウム(CsI:Tl)等の蛍光体、アモルファスSiまたはCMOSなどの2次元光センサで形成される検出器素子で構成される。具体的な構成は図示しないが、間接変換型FPDでは、検出器素子に入射したX線の強弱(X線信号)を、蛍光体で光の強弱(光信号)に変換する。この光信号はフォトダイオードにより電荷信号に変換され、さらに、それを電圧値または電流値として検出する。
 また、直接変換型FPDは、検出器素子が、蛍光体であるアモルファスセレン(a-Se)に電圧が印加される構造を有する。直接変換型FPDでは、検出器素子に入射したX線信号を、電圧が印加されたa-Seで、負および正の電荷信号に直接変換する以外は、上述した間接変換型FPDと同様にしてX線画像を形成する。
 X線検出器21を構成する検出器素子のサイズは、小さいほど高解像度化に有利であり、0.3mm以下であることが好ましく、0.2mm以下であることがより好ましく、0.1mm以下であることがさらに好ましい。
 X線検出器21で生成された電圧または電流信号は、X線検出器21内で、A/D(Analogue Digital)変換器(図示せず)でデジタル化され、データ処理システム22に供給される。
 データ処理システム22は、X線検出器21に配線接続され、図示しない外部電源からの電力が供給されている。データ処理システム22は、演算処理装置、記憶装置、送信器および制御装置(いずれも図示せず)を備えている。データ処理システム22は、供給されたデジタル信号に演算処理を施し、送信器により画像処理装置(コンピュータ)に送信し、2次元画像(X線画像)が形成される。
 第2の取付部材23は、上記X線検出器21およびデータ処理システム22をリング状フレーム41に取り付ける機能を有する。第2の取付部材23は、その中央より一端側(図中下側)でリング状フレーム41に固定される。
 第2の取付部材23の形状は、他端側(図中上側)の2隅が切欠かれた略四角形をなす板状である。なお、第2の取付部材24の形状は、図1に示す形状に限定されず、円形状、楕円形上、多角形状、台形状等の各種形状であってもよい。第2の取付部材23には、他端側中央にX線検出器21が取り付けられ、一端側にデータ処理システム22が取り付けられる。
 本実施形態では、X線検出器21が第2の取付部材23の他端側に取り付けられることにより、X線検出器21がリング状フレーム41の内側に配置される。X線検出器21がリング状フレーム41の内側に配置されることにより、X線検出器21がリング状フレーム41上に配置される場合に比べて、リング状フレーム41の回転中心CからX線検出器21までの距離が短くなる。かかる構成では、リング状フレーム41の回転中心CにおけるX線管11の焦点による半影Pをより小さくすることができる。そのため、形成されるX線画像に半影Pに伴うボケが生じることをより抑制することができる。その結果、骨梁、呼吸細気管支、肺胞管、歯周組織等の微細構造をより十分に描出することが可能となる。
 リング状フレーム41の回転中心CからX線検出器21の検出面までの距離Y(mm)は、50~300mm程度であることが好ましく、60~200mm程度であることがより好ましく、70~140mm程度であることがさらに好ましい。距離Yが上記範囲内であれば、回転中心CからX線検出器21の検出面までの距離が、X線管11の焦点から回転中心Cまでの距離よりも十分に短くなる。そのため、被検体Oの拡大率がより小さくなる。被検体Oの拡大率がより小さくなることにより、半影Pがより小さくなり、X線画像に生じるボケが抑制されてより鮮鋭な画像となり、解像特性が向上する。その結果、微細構造をより十分に描出することが可能な解像特性を有するX線撮像装置を提供することができる。また、距離が上記範囲内であれば、X線検出器21が回転する際に、X線検出器21と被検体Oとの離間状態が確実に担保され、X線撮像装置100をより安全に使用することができる。
 なお、本実施形態では、X線検出器21が、リング状フレーム41の内側に配置されているが、リング状フレーム41上、またはリング状フレーム41の外側に配置されてもよい。
(台座)
 台座3は、図2に示すように、被検体Oをその上に載置する機能を有する。台座3は、長尺状の板材で構成される。このような台座3は、X線管11とX線検出器21との間に配置される。なお、台座3は、台座3上に載置された被検体Oがリング状フレーム41の回転中心Cに位置するように配置されている。
 台座3の幅は、載置する被検体の大きさにより適宜変更することが可能である。具体的には、四肢(腕(腕から手までの部分)、脚(膝から爪先までの部分))を被検体とする場合には、台座3の幅が100~200mm程度であることが好ましく、70~150mm程度であることがより好ましい。また、胸部や腹部を被検体とする場合には、台座3の幅が250~300mm程度であることが好ましい。また、頭部を被検体とする場合には、台座3の幅が100~200mm程度であることが好ましい。
(回転機構)
 回転機構4は、リング状フレーム41と、駆動モータ42とを有している。
 リング状フレーム41は、リング状の枠体で構成され、台座3の周りを回転可能に構成されている。リング状フレーム41の回転に伴い、X線照射部1およびX線検出部2が台座3(被検体)の周りを回転する。その際に、X線管21からX線を照射して、X線検出器21が被検体Oを透過したX線を検出することにより、被検体Oの断層画像を撮像することができる。なお、リング状フレーム41の回転方向は特に限定されず、時計回り、または反時計回りのいずれの方向に回転してもよい。
 このようなリング状フレーム41の内径は、台座3に載置する被検体の大きさにより適宜変更することが可能である。具体的には、四肢(腕、脚)を被検体とする場合には、リング状フレーム41の内径が400~800mm程度であることが好ましく、500~600mm程度であることがより好ましい。また、胸部や腹部を被検体とする場合には、リング状フレーム41の内径が600~700mm程度であることが好ましい。また、頭部を被検体とする場合には、リング状フレーム41の内径が400~700mm程度であることが好ましい。
 駆動モータ42は、図示しない外部電源からの電力が供給されており、データ処理システム22が備える制御装置の制御の下で、リング状フレーム41を台座3の周りに回転させる。このような駆動モータ42としては、例えば、正確に位置と速度とを制御できる観点から、ステッピングモータを用いることができる。
(制御部)
 制御部5は、使用者による指示入力を受けることにより、X線管11からのX線照射(高電圧発生器12からX線管11へのフィラメント電流および高電圧の供給)を制御する。より具体的には、制御部5は、高電圧発生器12を制御して、X線管11からX線を照射する間隔、1回当たりの照射時間、X線管に印加する電圧の大きさ等を変更させる。制御部5は、高電圧発生器12に配線接続される。
 本実施形態のX線撮像装置100では、制御部5が第1の取付部材14に取り付けられている。
(枠体)
 また、X線撮像装置100は、さらに、X線照射部1、X線検出部2、台座3、回転機構4および制御部5を内部に収容する枠体70を有している。
 枠体70は、各辺が金属性の柱部または梁部で構成されている。また、枠体70は、図1中の正面側の一対の柱部から、枠体70の内側に張り出した金属製の板材で構成された支持部71を備えている。リング状フレーム41は、この支持部71により、枠体70内で回転可能に支持されている。
 本実施形態のX線撮像装置100では、上述したように、X線管11がリング状フレーム41の外側に配置される。そのため、X線管11からリング状フレーム41の回転中心Cまでの距離が、回転中心CからX線検出器21までの距離よりも長くなることにより、リング状フレーム41の回転中心CにおけるX線管11の焦点による半影Pを小さくすることができる。
 ここで、医療用に用いられる一般的なX線撮像装置(X線CT装置)および本発明の第1実施形態にかかるX線撮像装置のそれぞれの構成におけるリング状フレーム41の回転中心CにおけるX線管11の焦点による半影Pについて説明する。
 図3(a)は、医療用に用いられる一般的なX線撮像装置(X線CT装置)の構成の概略図であり、図3(b)は、本発明の第1実施形態にかかるX線撮像装置の構成の概略図である。
 なお、「半影」とは、X線管の焦点のサイズと、X線管の焦点からX線検出器の検出面までの距離に対する被検体の中心からX線検出器の検出面までの距離との比率、すなわち、被検体の拡大率とに関係する物性値であり、X線画像に生じるボケの大きさを示す。半影が大きいと、形成されるX線画像がボケて非鮮鋭となり、解像特性を下げる。一方、半影が小さいと、形成されるX線画像に生じるボケが抑制されて鮮鋭な画像となり、解像特性が向上する。
 また、図3(a)および図3(b)に示すX線撮像装置としては、以下の条件のX線撮像装置を用いた。
(図3(a)のX線撮像装置)
 X線管の焦点サイズ:0.8mm
 検出器素子開口サイズ(検出器素子サイズ):0.1mm
 X線管(焦点)から回転中心までの距離:500mm
 X線管(焦点)からX線検出器までの距離:900mm
(図3(b)のX線撮像装置)
 X線管の焦点サイズ:0.8mm
 検出器素子開口サイズ(検出器素子サイズ):0.1mm
 X線管(焦点)から回転中心までの距離:450mm
 X線管(焦点)からX線検出器までの距離:550mm
 ここで、X線管11の焦点の大きさをF(mm)とし、X線管11からリング状フレーム41の回転中心Cまでの距離をX(mm)とし、回転中心CからX線検出器21までの距離をY(mm)としたとき、回転中心CにおけるX線管11の焦点による半影Pは、下記式(1)で表される。
[式1]
     P=F×Y/(X+Y)   …(1)
 医療用に用いられる一般的なX線撮像装置では、X線管11およびX線検出器21が、図3(a)に示すように、リング状フレーム41の平面視でリング状フレーム41と重なるように、またはリング状フレーム41の内側に配置されている。そのため、X線管11からリング状フレーム41の回転中心Cまでの距離(X)と、リング状フレーム41の回転中心CからX線検出器21までの距離(Y)とが略等しい。そのため、上記式(1)で表される半影P(ボケの大きさ)は、F/2(=F×Y/(Y+Y))に近い値となる。
 X線管11の焦点の大きさFを小さくすることは、半影を小さくし、高解像度化に有効である。しかしながら、X線管に余裕を持って電流を流すことができ、十分なX線出力を得る観点から、X線管11の焦点の大きさFは、0.6~1.0mm程度である事が多い。その結果、一般的なX線撮像装置では、半影Pは、0.3~0.5mm程度となり、骨梁(サイズ:0.15mm)、呼吸細気管支(サイズ:0.3mm)、肺胞管(サイズ:0.1mm)等の微細構造の鮮鋭な画像を得ることは不可能である。
 一方、本実施形態のX線撮像装置100では、X線管11の焦点からリング状フレーム41の回転中心Cまでの距離(X)が、回転中心CからX線検出器21の検出面までの距離(Y)よりも長くなることにより、半影Pが、F/2よりも十分に小さくなる。その結果、形成されるX線画像にボケが生じることを抑制することができ、骨梁、呼吸細気管支、肺胞管、歯周組織等の微細構造を十分に描出することが可能な解像特性を有するX線撮像装置を提供することができる。
 また、本実施形態のX線撮像装置100では、X線検出器21がリング状フレーム41の内側に配置されるため、回転中心CからX線検出器21の検出面までの距離(Y)が短い。そのため、距離(X)と距離(Y)との比率がより大きくなり、リング状フレーム41の回転中心CにおけるX線管11の焦点による半影Pをより十分に小さくすることができる。
 さらに、本実施形態のX線撮像装置100では、医療用に用いられる一般的なX線撮像装置に比べて、高い空間周波数領域におけるSNR(信号対雑音比)が優れている。
 図4は、図3(a)および(b)に示すX線撮像装置における空間周波数(cycles/mm)とMTFとの関係を示すグラフである。図5は、図3(a)および(b)に示すX線撮像装置における空間周波数(cycles/mm)とSNRとの関係を示すグラフである。図6は、図5に示すグラフから算出した、図3(a)に示すX線撮像装置に対する図3(b)に示すX線撮像装置のSNRの倍率を示すグラフである。
 X線撮像装置のSNR(SNR(u))は、解像度を示す指標であるMTF(u)(modulation transfer function)と、ノイズを示す指標であるNPS(u)(noise power spectrum)とを用いて、下記式(2)で表される。なお、SNR(u)、MTF(u)およびNPS(u)は、いずれも、空間周波数(u)の関数である。
[式2]
     SNR(u)=MTF(u)/NPS(u)   …(2)
 また、図4ないし図6において、横軸の空間周波数(cycles/mm)は、解像度と関連しており、空間周波数が1cycles/mmのSNRは、解像度0.5mm程度におけるSNRである。また、同様に、空間周波数が2cycles/mmのSNRは、解像度0.25mm程度におけるSNRである。空間周波数が3cycles/mmのSNRは、解像度0.17mm程度におけるSNRである。空間周波数が4cycles/mmのSNRは、解像度0.125mm程度におけるSNRである。空間周波数が5cycles/mmのSNRは、解像度0.1mm程度におけるSNRである。
 図4に示すように、図3(a)に示すX線撮像装置では、半影Pを小さくすることができないため、空間周波数が大きくなるにしたがって、MTF(u)が急激に減少する。そのため、比較的低い空間周波数(2.3cycles/mm程度)でMTF(u)がゼロに近づき、その結果、図5に示すように、SNRもゼロに近づく。一方、本実施形態(図3(b))のX線撮像装置100では、半影Pが非常に小さいため、空間周波数が大きくなっても、MTF(u)がなだらかに減少する。また、NPSの値はX線焦点-検出器間距離の逆2乗で変化するが、拡大率によって決まる係数で相殺され、図3(a)のX線撮像装置とX線撮像装置100とでNPSの値は同一となる。そのため、比較的高い空間周波数であってもMTF(u)が顕著に高いことによりSNRがそれに応じて高くなる(図4および図5参照)。
 したがって、本実施形態のX線撮像装置100は、高い空間周波数(高解像度)におけるSNRが、一般的なX線撮像装置に比べて、優れている。また、図6に示すように、図3(a)に示すX線撮像装置に対する本実施形態(図3(b))のX線撮像装置100のSNRの倍率は、空間周波数が大きくなるにしたがって、急激に大きくなる。具体的には、空間周波数が2.6cycles/mm程度で、図3(a)に示すX線撮像装置に対する本実施形態(図3(b))のX線撮像装置100のSNRの倍率は、100倍程度となる。
 なお、本実施形態のX線撮像装置100では、X線管11の焦点からリング状フレーム41の回転中心Cまでの距離をX(mm)とし、回転中心CからX線検出器21の検出面までの距離をY(mm)としたとき、比率X:Yが、9:1~7:3である。また、比率X:Yは、8.8:1.2~7.2:2.8であることが好ましく、8.5:1.5~7.5:2.5であることがより好ましい。
 比率X:Yが上記範囲内である場合には、X線管11の焦点から回転中心Cまでの距離が、その回転中心CからX線検出器21の検出面までの距離よりも十分に長くなる。そのため、X線管11の焦点からX線検出器21の検出面までの距離に対する被検体Oの中心からX線検出器21の検出面までの距離との比率、すなわち、被検体Oの拡大率が小さくなる(上記式(1)参照)。被検体Oの拡大率が小さくなることにより、半影Pが非常に小さくなり、形成されるX線画像に生じるボケが抑制されて鮮鋭な画像となる。また、半影Pが非常に小さいため、空間周波数が大きくなっても、MTF(u)をある程度高くすることができる。そのため、従来は十分なSNRが得られなかったような、解像度0.17mm以下の比較的高い空間周波数(3cycles/mm以上)であっても十分に優れたSNRを得ることができる(上記式(2)、図4および図5参照)。その結果、骨梁、呼吸細気管支、肺胞管、歯周組織等の微細構造をより十分に描出することが可能な解像特性を有しながら、高い空間周波数領域におけるSNRが特に優れたX線撮像装置を提供することができる。
 また、上記式(1)で表される半影Pは、0.1~0.25mm程度であることが好ましく、0.12~0.20mm程度であることがより好ましい。半影Pが上記範囲内の非常に小さい値である場合には、形成されるX線画像に生じるボケが抑制されてより鮮鋭な画像を得ることができる。
 なお、上述した本実施形態のX線撮像装置100では、X線検出器21がリング状フレーム41の内側に配置されているが、リング状フレーム41の平面視でリング状フレーム41と重なるように配置することもできる。
<第2実施形態>
 図7は、本発明の第2実施形態にかかるX線撮像装置の構成の概略図である。
 以下、第2実施形態のX線撮像装置について、前記第1実施形態のX線撮像装置との相違点を中心に説明し、同様の事項については、その説明を省略する。
 本実施形態では、X線照射部1およびX線検出部2の構成が異なる以外は、前述した第1実施形態のX線撮像装置と同様である。
 図7に示すように、X線照射部1が、X線管11を移動させる第1の移動機構15を備えている。かかる第1の移動機構15は、第1の取付部材14に取り付けられている。第1の移動機構15は、X線管11が取り付けられるスライド部16と、互いに並行に配置された一対のガイド部17と、固定部(図示せず)とを備えている。
 スライド部16は、ガイド部17に沿って移動可能に構成されている。スライド部16の形状は、略四角形の板状をなす。また、スライド部16の両側部が、一対のガイド部17に摺動可能に挿入されている。X線管11は、スライド部16の略中央に取り付けられており、スライド部16をガイド部17に沿って摺動させることにより、X線管11を第1の取付部材14の図7中上下方向に移動させることができる。
 一対のガイド部17は、それぞれ、第1の取付部材14の上下方向に延在しており、スライド部16の動きをガイドする機能を有している。一対のガイド部17は、その間にスライド部16が挿入されるように離間した状態で、第1の取付部材14の略中央に取り付けられる。
 スライド部16は、ガイド部17に沿って摺動し、所望の位置で固定部によりガイド部17に固定される。
 本実施形態では、第1の移動機構15の動作(スライド部16の摺動)により、X線管11を、リング状フレーム41の回転中心Cに近づけたり、回転中心Cから遠ざけることができる。すなわち、本実施形態では、スライド部16をガイド部17に沿って摺動させて、所望の位置で固定部により固定することにより、X線管11の位置を調整することができる。かかる構成のX線撮像装置100では、X線管11からリング状フレーム41の回転中心Cまでの距離Xと、回転中心CからX線検出器21までの距離Yとの比率X:Yを、被検体のサイズや、所望の解像度に合わせて自由に調整することができる。
 なお、スライド部16は、制御部5によって自動で摺動することもできる。この場合、制御部5は、図示しない検知部による被検体Oの大きさや記憶部に記憶された距離(X)に基づいて、スライド部16の上下方向の移動を制御する。これにより、高解像度のX線画像が得られるように、X線管11の位置を適切な位置に簡単に配置することができる。
 さらに、本実施形態では、図7に示すように、X線検出部2が、X線検出器21を移動させる第2の移動機構24を備えており、かかる移動機構24は第2の取付部材23に取り付けられている。第2の移動機構24は、X線検出器21が取り付けられるスライド部25と、互いに並行に配置された一対のガイド部26と、固定部(図示せず)とを備えている。
 スライド部25は、ガイド部26に沿って移動可能に構成されている。スライド部25の形状は、略四角形の板状をなす。また、スライド部25の両側部が、一対のガイド部26に摺動可能に挿入されている。X線検出器21は、スライド部25の上端部側に取り付けられており、スライド部25をガイド部26に沿って摺動させることにより、X線検出器21を第2の取付部材23の図7中上下方向に移動させることができる。
 一対のガイド部26は、それぞれ、第2の取付部材23の上下方向に延在しており、スライド部25の動きをガイドする機能を有している。一対のガイド部26は、その間にスライド部25が挿入されるように離間した状態で、第2の取付部材23の略中央に取り付けられる。
 スライド部25は、ガイド部26に沿って摺動し、所望の位置で固定部によりガイド部26に固定される。
 上述した第1の移動機構15と同様に、第2の移動機構24の動作(スライド部25の摺動)により、X線検出器21を、リング状フレーム41の回転中心Cに近づけたり、回転中心Cから遠ざけることができる。すなわち、本実施形態では、スライド部25をガイド部26に沿って摺動させて、所望の位置で固定部により固定することにより、X線検出器21の位置を調整することができる。かかる構成のX線撮像装置100では、比率X:Yを、被検体のサイズや、所望の解像度に合わせてより自由に調整することができる。
 なお、スライド部25は、制御部5によって自動で摺動することもできる。この場合、制御部5は、図示しない検知部による被検体Oの大きさや記憶部に記憶された距離(Y)に基づいて、スライド部25の上下方向の移動を制御する。これにより、高解像度のX線画像が得られるように、X線検出器21の位置を適切な位置に簡単に配置することができる。
 特に、胸部や腹部を被検体Oとする場合には、四肢を被検体Oとする場合に比べて、台座3の幅を大きくする必要がある。その際に、回転するX線検出器21と台座3および被検体Oとが干渉しないように、台座3とX線検出器との距離を十分に確保する必要がある。このようなケースでは、X線検出器21を、リング状フレーム41の回転中心Cから遠ざけるように位置調整するとともに、X線管11をリング状フレーム41の回転中心Cから遠ざけるように位置調整することにより、所望の比率X:Yを満足させることができる。
 また、四肢の中でも、例えば、指先のように被検体が小さい場合には、X線検出器21を、リング状フレーム41の回転中心Cに近づけるように位置調整するとともに、X線管11をリング状フレーム41の回転中心Cに近づけるように位置調整することにより、所望の比率X:Yを満足させることができる。
 なお、上記の説明では、第1の移動機構15および第2の移動機構24を設けて、X線管11およびX線検出器21のいずれもが位置調整できる構成について説明したが、第1の移動機構15および第2の移動機構24のうちの一方のみを設けて、X線管11またはX線検出器21が位置調整できる構成とすることもできる。
 かかる第2実施形態のX線撮像装置によっても、前記第1実施形態のX線撮像装置と同様の作用・効果を生じる。
<第3実施形態>
 図8は、本発明の第3実施形態にかかるX線撮像装置の構成の概略図である。
 以下、第3実施形態のX線撮像装置について、前記第1および第2実施形態のX線撮像装置との相違点を中心に説明し、同様の事項については、その説明を省略する。
 本実施形態では、X線照射部1のX線管11がリング状フレーム41の内側に配置されている以外は、前述した第1実施形態のX線撮像装置と同様である。
 本実施形態では、図8に示すように、X線管11は、第1の取付け部41を介して、リング状フレーム41の内側に固定される。なお、X線照射部1は、第1の取付部材14がリング状フレーム41に固定される位置が異なる以外は、前述した第1および第2実施形態と同様である。
 また、本実施形態では、X線管11がリング状フレーム41の内側に配置されているため、前述した第1実施形態で使用するリング状フレーム41よりも大きい内径を有するリング状フレーム41を用いることが好ましい。例えば、四肢(腕、脚)を被検体とする場合には、リング状フレーム41の内径が800~1500mm程度であることが好ましく、800~1200mm程度であることがより好ましい。
 前述した第1実施形態と同様に、比率X:Yが上記範囲内である場合には、X線管11の焦点から回転中心Cまでの距離が、その回転中心CからX線検出器21の検出面までの距離よりも十分に長くなる。そのため、本実施形態のように、X線管11がリング状フレーム41の内側に配置されていても、前述した第1実施形態のX線撮像装置100と同様の作用効果が得られる。
<第4実施形態>
 図9は、本発明の第4実施形態にかかるX線撮像装置が備える回転機構の構成を説明するための図であり、図9(a)は、係る回転機構を正面から見た概略図であり、図9(b)は、図9(a)に示す回転機構を側面から見た概略図である。
 以下、第4実施形態のX線撮像装置について、前記第1ないし第3実施形態のX線撮像装置との相違点を中心に説明し、同様の事項については、その説明を省略する。
 本実施形態では、回転機構が異なる以外は、前述した第1実施形態と同様である。重複部分については省略する。前述した回転機構4が備える回転体として、リング状フレーム41の代わりに、アーム43を用いる。なお、図9では、アーム43が時計回りに回転する構成が示されているが、これに限定されず、アーム43が反時計回りに回転する構成であってもよい。
 本実施形態の回転機構4は、アーム43と、アーム43を駆動(回転)させる駆動モータ44とを有している。
 アーム43は、長尺状の板材で構成され、台座3の上部を回転可能に構成されている。アーム43は、その両端部にX線照射部1およびX線検出部2が取り付けられている。アーム43の回転に伴い、X線照射部1およびX線検出部2が台座3(被検体)の周りを回転する。その際に、X線管21からX線を照射して、X線検出器21が被検体Oを透過したX線を検出することにより、被検体Oの断層画像を撮像することができる。
 このようなアーム43の長さは、台座3に載置する被検体の大きさにより適宜変更することが可能である。具体的には、四肢(腕、脚)を被検体とする場合には、アーム43の長さが400~800mm程度であることが好ましく、500~700mm程度であることがより好ましい。また、胸部や腹部を被検体とする場合には、アーム43の長さが700~1000mm程度であることが好ましい。また、頭部を被検体とする場合には、アーム43の長さが400~700mm程度であることが好ましい。
 本実施形態において、X線照射部1は、棒状の第1の取付部材14を有し、X線検出部2は、棒状の第2の取付部材23を有する。
 第1の取付部材14は、アーム43の一方の端部に固定される基端と、X線管11が取り付けられる先端とを有する。また、第2の取付部材23は、アーム43の他方の端部に固定される基端と、X線検出器21が取り付けられる先端とを有する。
 なお、図示しないが、X線照射部1の高電圧発生器12およびコリメータ13は、アーム43の一方の端部側に設けられている。また、図示しないが、X線検出部2のデータ収集システム22は、アーム43の他方の端部側に設けられている。
 駆動モータ44は、図示しない外部電源からの電力が供給されており、データ処理システム22が備える制御装置の制御の下で、アーム43を台座3の上部で回転させる。このような駆動モータ44としては、前述した駆動モータ42と同様のモータを用いることができ、例えば、ステッピングモータを用いることができる。
 なお、駆動モータ44は、図示しない枠体に固定されている。駆動モータ44が回転することにより、この枠体に対してアーム43が台座3の上部を回転する。
 前述した第1実施形態と同様に、比率X:Yが上記範囲内である場合には、X線管11の焦点から回転中心Cまでの距離が、その回転中心CからX線検出器21の検出面までの距離よりも十分に長くなる。そのため、前述した第1実施形態のX線撮像装置100と同様の作用効果が得られる。
 また、リング状フレーム41の代わりにアーム43を用いることにより、回転機構4の軽量化が図られる。また、本実施形態のX線撮像装置100は、作動させない状態では、リング状フレーム41を用いるX線撮像装置100に比べて設置面積が小さい。そのため、X線撮像装置100の保管場所の省スペース化を図ることができる。
 また、第1の取付部材14および第2の取付部材23は、それぞれ、アーム43の長手方向に移動可能に構成されていてもよい。第1の取付部材14および第2の取付部材23がアーム43の長手方向に移動可能であれば、構成X線管11からリング状フレーム41の回転中心Cまでの距離Xと、回転中心CからX線検出器21までの距離Yとの比率X:Yを、被検体のサイズや、所望の解像度に合わせて自由に調整することができる。
<第5実施形態>
 図10は、本発明の第5実施形態にかかるX線撮像装置(歯科用X線撮像装置)により被験者の歯列をX線撮像する状態を説明するための概略図であり、図10(a)は、スキャン開始時の状態を示し、図10(b)は、スキャン中の状態を示し、図10(c)は、スキャン終了時の状態を示す。
 以下、第5実施形態のX線撮像装置について、前記第1ないし第4実施形態のX線撮像装置との相違点を中心に説明し、同様の事項については、その説明を省略する。
 本実施形態では、前述した第1実施形態のX線撮像装置100を、被検体として被験者Oの歯列O1を含む頭部を撮像する歯科用X線撮像装置として用いる場合について説明する。
 前述した各実施形態のX線撮像装置100では、リング状フレーム41の回転に伴い、X線照射部1およびX線検出部2が台座3の周りを1回転することが可能な構成となっている。これに対して、本実施形態のX線撮像装置100では、リング状フレーム41の回転が制限されることにより、X線照射部1およびX線検出部2が台座3の周りを約半回転するように構成されていることが好ましい。
 以下、本実施形態のX線撮像装置100による被験者の歯列を含む頭部のX線撮像について説明する。
 図10(a)は、X線撮像装置100によるスキャン開始時の状態を示す。本実施形態では、被験者の歯列O1の中心がリング状フレーム41の回転中心Cに位置するように被験者の頭部が配置される。なお、図10の構成では、台座3を使用していないが、スキャン中に被験者の頭部が動かないように、台座3で被験者の後頭部O2を支えるようにすることもできる。
 X線照射部1は、X線管11の焦点の大きさに依存するファン角(開度):α度を考慮して初期位置が設定される。具体的には、まず、図10(b)において、回転中心Cを通り、X線検出器21の検出面に平行な直線を、直線Lと定義する。X線照射部1は、X線管11の焦点と回転中心Cとを結ぶ直線と、直線Lとのなす角度がα/2度となるように直線Lの反時計回り方向に位置している。ファン角が10度である場合には、X線照射部1およびX線検出部2は、直線Lよりも反時計回りに5度回転した位置に初期位置が設定される。
 X線撮像装置100によるスキャン中は、図10(b)に示すように、X線照射部1とX線検出部2とが、時計回りに回転しながら、歯列O1の断層画像を撮像する。
 その後、図10(c)に示すように、X線照射部1が、直線Lよりも時計回りにα/2度回転した位置に到達した時点で、X線撮像装置100によるスキャンが終了する。ファン角が10度である場合には、X線照射部1が、直線Lよりも時計回りに5度回転した位置でスキャンが終了する。
 したがって、本実施形態では、制御部5は、X線照射部1およびX線検出部2が時計回りに(180+α)(=α/2+180+α/2)度回転させるように、リング状フレーム41の回転を制御する。このように、約半回転(α=10度のとき、190度)でのスキャン法はハーフスキャン法と呼ばれる。
 図10(a)~図10(c)に示すように、X線撮像装置100によるX線撮像は、X線検出器21が常に被験者Oの歯列O1に近接した状態で行われる。また、X線検出器21が被験者Oの後頭部O2側に回転することが制御部5により制限されているため、X線検出器21を回転中心Cの近くに配設することができる。
 従来の歯科用X線撮像装置では、X線管およびX線検出器が患者の頭部の周りを1回転するように構成されている。このような歯科用X線撮像装置では、X線管の焦点による半影を小さくするために、X線検出器が患者の歯列に近い位置を回転するように構成すると、X線検出器の回転時にX線検出器が患者の後頭部に衝突する。そのため、回転中のX線検出器が患者の後頭部と衝突しないように、X線検出器の回転半径を大きく設定する必要がある。しかしながら、このような構成では、患者の歯列から離れた位置でX線検出器がX線を検出するため、X線管の焦点による半影を小さくすることができず、形成されるX線画像がボケてしまい、解像特性を下げる。また、かかる構成では、高い空間周波数領域におけるSNRを十分に高くすることができない。
 一方、本実施形態のX線撮像装置100では、ハーフスキャン法を用いたX線撮像を行うため、X線検出器21をリング状フレーム41の回転中心Cの近く、すなわち、被験者Oの歯列O1に近接した位置に配設することができる。そのため、前述したように、X線管11の焦点から回転中心Cまでの距離が、その回転中心CからX線検出器21の検出面までの距離よりも十分に長くなる。その結果、前述した第1実施形態のX線撮像装置100と同様の作用効果が得られる。
 なお、第1実施形態のX線撮像装置100の代わりに、前述した第2ないし第4実施形態のX線撮像装置100を用いた場合でも、ハーフスキャン法を用いたX線撮像を行うことにより上述した作用効果が得られる。
 なお、図10では、リング状フレーム41が時計回りに回転する構成が示されているが、X線照射部1の位置とX線検出器2の位置を入れ替えて、リング状フレーム41が反時計回りに回転する構成であってもよい。
 以上、本発明のX線撮像装置を図示の実施形態に基づいて説明したが、本発明は、これに限定されず、各構成は、同様の機能を発揮し得る任意の部材と置換することができ、あるいは、任意の構成の部材を付加することができる。
 次に、本発明のX線撮像装置を用いて撮像されるX線画像について、以下に示す具体的な実施例に基づいて説明する。
 (実施例)
 前述した条件を満足する図3(b)に示すX線撮像装置を準備した。
 (比較例)
 前述した条件を満足する図3(a)に示すX線撮像装置を準備した。
 [X線画像評価(足部ファントム)]
 実施例(図3(b))および比較例(図3(a))のX線撮像装置により、人体の足部ファントム(人体の踵から爪先部分に相当)のX線撮影を行い、得られたX線画像を評価した。なお、X線管球のX線照射条件は、管電圧:80kv、管電流(フィラメント電流):7mA、照射時間:5000msecであった。その結果を、図11に示す。
 [X線画像評価(歯科用ファントム)]
 実施例(図3(b))および比較例(図3(a))のX線撮像装置により、図10(a)に示すスキャン開始位置から図10(c)に示すスキャン終了位置までハーフスキャン法を用いた歯科用ファントムのX線撮影を行い、得られたX線画像を評価した。なお、X線管球のX線照射条件は、管電圧:80kv、管電流(フィラメント電流):7mA、照射時間:5000msecであった。その結果を、図12に示す。
 図11は、実施例および比較例のX線撮像装置を用いて、被検体(人体の足部ファントム)を撮像して得られるX線画像写真である。図12は、実施例および比較例のX線撮像装置を用いて、被検体(歯科用ファントム)を撮像して得られるX線画像写真である。
 図11に示すように、人体の足部ファントムについては、実施例のX線撮像装置を用いることにより、ボケがほとんど確認されず、骨梁(サイズ:0.15mm)を明瞭に描出したX線画像を得ることができた。一方、比較例のX線撮像装置を用いた場合には、ボケが生じた不鮮鋭なX線画像が形成されてしまい、骨梁が明瞭に描出されなかった。
 また、図12に示すように、歯科用ファントムにおいても、実施例のX線撮像装置を用いることにより、ボケがほとんど確認されず、歯槽骨等の歯周組織、歯髄等を明瞭に描出したX線画像を得ることができた。一方、比較例のX線撮像装置を用いた場合には、ボケが生じた不鮮鋭なX線画像が形成されてしまい、歯槽骨等の歯周組織、歯髄等が明瞭に描出されなかった。
 本発明によれば、X線管がリング状フレームの外側に配置されることにより、X線管からリング状フレームの回転中心までの距離が、その回転中心からX線検出器までの距離よりも長くなる。かかる構成では、リング状フレームの回転中心におけるX線管の焦点による半影を小さくすることができるため、形成されるX線画像に半影に伴うボケが生じることを抑制することができる。その結果、骨梁、呼吸細気管支、肺胞管、歯周組織等を十分に描出することが可能な解像特性を有するとともに、優れたSNRを有するX線撮像装置を提供することができる。したがって、本発明は、産業上の利用可能性を有する。
 1…X線照射部
 11…X線管
 12…高電圧発生器
 13…コリメータ
 14…第1の取付部材
 15…第1の移動機構
 16…スライド部
 17…ガイド部
 2…X線検出部
 21…X線検出器
 22…データ処理システム
 23…第2の取付部材
 24…第2の移動機構
 25…スライド部
 26…ガイド部
 3…台座
 4…回転機構
 41…リング状フレーム
 42…駆動モータ
 43…アーム
 44…駆動モータ
 5…駆動部
 70…枠体
 71…支持部
 100…X線撮像装置
 O…被検体(被験者)
 O1…歯列
 O2…後頭部
 C…リング状フレームの回転中心
 L…直線

Claims (12)

  1.  被検体にX線を照射するX線管を含むX線照射部と、
     前記被検体を挟んで前記X線管と対向する位置に配置され、前記被検体の透過X線を検出するX線検出器を含むX線検出部と、
     前記被検体の周りを回転可能に構成された回転体を備えた回転機構と、
     前記回転体の回転と、前記X線管からのX線照射とを制御する制御部とを有し、
     前記X線照射部と、前記X線検出部とは、前記回転体に取り付けられ、
     前記X線管の焦点から前記回転体の回転中心までの距離をX(mm)とし、前記回転中心から前記X線検出器の検出面までの距離をY(mm)としたとき、比率X:Yが9:1~7:3であることを特徴とするX線撮像装置。
  2.  前記回転体は、リング状フレームである請求項1に記載のX線撮像装置。
  3.  前記X線照射部は、前記リング状フレームに固定するための第1の取付部材をさらに有し、
     前記X線管は、前記リング状フレームの前記外側に位置するように前記第1の取付部材に取り付けられている請求項2に記載のX線撮像装置。
  4.  前記X線検出部は、前記リング状フレームに固定するための第2の取付部材をさらに有し、
     前記X線検出器は、前記リング状フレームの内側に位置するように前記第2の取付部材に取り付けられている請求項2または3に記載のX線撮像装置。
  5.  前記X線管は、前記第1の取付部材に移動可能に取り付けられている請求項3に記載のX線撮像装置。
  6.  前記X線検出器は、前記第2の取付部材に移動可能に取り付けられている請求項4に記載のX線撮像装置。
  7.  前記X線管の焦点の大きさをF(mm)とし、前記X線管の焦点から前記回転体の回転中心までの距離をX(mm)とし、前記回転中心から前記X線検出器の検出面までの距離をY(mm)としたとき、下記式(1)で表される前記回転中心における前記焦点による半影Pが、0.1~0.25mmである請求項1ないし3のいずれか1項に記載のX線撮像装置。
    [式1]
         P=F×Y/(X+Y)   …(1)
  8.  前記X線管の焦点の大きさが、0.6~1.0mmである請求項7に記載のX線撮像装置。
  9.  前記回転体の回転中心から前記X線検出器の検出面までの距離Y(mm)は、70~140mmである請求項1ないし3のいずれか1項に記載のX線撮像装置。
  10.  前記X線管と前記X線検出器との間に配置され、前記被検体が載置される台座をさらに有する請求項1ないし3のいずれか1項に記載のX線撮像装置。
  11.  前記被検体は、被験者の歯列を含む頭部であり、
     前記制御部は、前記X線検出器が前記被験者の前記歯列に近接した状態を維持したまま、前記回転体を半回転させるように制御する請求項1ないし3のいずれか1項に記載のX線撮像装置。
  12.  前記X線管のファン角をα(度)としたときに、前記制御部は、前記回転体が(180+α)度回転するように制御する請求項11に記載のX線撮像装置。
PCT/JP2023/025765 2022-08-26 2023-07-12 X線撮像装置 WO2024042901A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024542642A JPWO2024042901A1 (ja) 2022-08-26 2023-07-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-135371 2022-08-26
JP2022135371 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024042901A1 true WO2024042901A1 (ja) 2024-02-29

Family

ID=90013071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025765 WO2024042901A1 (ja) 2022-08-26 2023-07-12 X線撮像装置

Country Status (2)

Country Link
JP (1) JPWO2024042901A1 (ja)
WO (1) WO2024042901A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139492Y1 (ja) * 1970-12-29 1976-09-27
JPS5413786A (en) * 1977-07-04 1979-02-01 Toshiba Corp Computer tomograph
CN105167796A (zh) * 2015-09-30 2015-12-23 浙江大学 多功能锥束ct成像系统
JP2019209046A (ja) * 2018-06-08 2019-12-12 株式会社モリタ製作所 X線ct撮影装置
JP2021159233A (ja) * 2020-03-31 2021-10-11 住友重機械工業株式会社 X線ct装置
JP2022509859A (ja) * 2018-11-30 2022-01-24 アキュレイ インコーポレイテッド 偏心検出器を用いたヘリカルコーンビームコンピュータ断層撮影による撮像
JP2022082215A (ja) * 2020-11-20 2022-06-01 キヤノンメディカルシステムズ株式会社 X線コンピュータ断層撮影装置及び制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5139492Y1 (ja) * 1970-12-29 1976-09-27
JPS5413786A (en) * 1977-07-04 1979-02-01 Toshiba Corp Computer tomograph
CN105167796A (zh) * 2015-09-30 2015-12-23 浙江大学 多功能锥束ct成像系统
JP2019209046A (ja) * 2018-06-08 2019-12-12 株式会社モリタ製作所 X線ct撮影装置
JP2022509859A (ja) * 2018-11-30 2022-01-24 アキュレイ インコーポレイテッド 偏心検出器を用いたヘリカルコーンビームコンピュータ断層撮影による撮像
JP2021159233A (ja) * 2020-03-31 2021-10-11 住友重機械工業株式会社 X線ct装置
JP2022082215A (ja) * 2020-11-20 2022-06-01 キヤノンメディカルシステムズ株式会社 X線コンピュータ断層撮影装置及び制御方法

Also Published As

Publication number Publication date
JPWO2024042901A1 (ja) 2024-02-29

Similar Documents

Publication Publication Date Title
US9907520B2 (en) Digital tomosynthesis systems, methods, and computer readable media for intraoral dental tomosynthesis imaging
US11998379B2 (en) Three dimensional X-ray imaging system
JP6066923B2 (ja) デジタル検出器
JP5056842B2 (ja) 放射線画像撮影装置及び放射線画像撮影システム
JP6034189B2 (ja) Ctにおける放射線量低減のための自動管電圧選択装置及び方法
JP5343065B2 (ja) 放射線撮影システム
KR20070104924A (ko) 가변 재구성 기하적 구조를 포함하는 단층촬영기기
JP2012120653A (ja) 放射線撮影装置、及び放射線撮影システム
JP7065611B2 (ja) フォトンカウンティング検出器のためのx線フラックスレデューサ
JP4559312B2 (ja) 放射線撮影装置
WO2024042901A1 (ja) X線撮像装置
JP2019030410A (ja) X線ct装置及びx線ctシステム
JP6035474B2 (ja) X線撮影装置
JP7250532B2 (ja) X線ct装置及び撮影計画装置
JP2007159598A (ja) X線ct装置
US12059282B2 (en) Medical imaging system with contoured detector
JP2023035485A (ja) X線ct装置
Kumar et al. Basics of CBCT imaging
JP5924128B2 (ja) ビームハードニング補正装置、ビームハードニング補正方法、及びx線撮影装置
JP2007268033A (ja) X線撮影システム及びx線撮影方法
JP7199958B2 (ja) アンギオct装置
JP7118744B2 (ja) X線ct装置および撮影条件算出方法
JP2019180609A (ja) X線ct装置
JP2023160535A (ja) 滅菌システム
JP2024048207A (ja) X線ct装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024542642

Country of ref document: JP

Kind code of ref document: A