WO2024041476A1 - 拒水纺织品 - Google Patents

拒水纺织品 Download PDF

Info

Publication number
WO2024041476A1
WO2024041476A1 PCT/CN2023/113969 CN2023113969W WO2024041476A1 WO 2024041476 A1 WO2024041476 A1 WO 2024041476A1 CN 2023113969 W CN2023113969 W CN 2023113969W WO 2024041476 A1 WO2024041476 A1 WO 2024041476A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
repellent
compound
textile
resin film
Prior art date
Application number
PCT/CN2023/113969
Other languages
English (en)
French (fr)
Inventor
张天池
黄芸芸
罗周荣
Original Assignee
东丽纤维研究所(中国)有限公司
东丽株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东丽纤维研究所(中国)有限公司, 东丽株式会社 filed Critical 东丽纤维研究所(中国)有限公司
Publication of WO2024041476A1 publication Critical patent/WO2024041476A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain

Definitions

  • the invention relates to a water-repellent textile treated with water-repellent treatment.
  • water-repellent agents used for water-repellent finishing are mainly divided into two categories: fluorine-based and non-fluorine-based.
  • fluorine-based water repellent agents used for water-repellent finishing.
  • textiles treated with fluorine-based water repellent agents have the advantages of high water repellency and high washing resistance
  • the perfluorooctanoic acid ammonium compound (hereinafter referred to as PFOA) and perfluorooctane sulfonate compound (hereinafter referred to as PFOA) contained in the fluorine-based water repellent agent PFOS (referred to as PFOS) is genetically and reproductively toxic, difficult to biodegrade, and is not conducive to environmental protection.
  • Chinese patent document CN106758252A discloses an easy-to-maintain waterproof and oil-repellent agent, a preparation method thereof, and textiles, and specifically discloses the use of a waterproof and oil-repellent agent containing polyurethane to obtain textiles.
  • the polyurethane is composed of polyisocyanate, fluorosilicone, Polyols, silicon-containing polyols, other polyols and sealants are obtained through the reaction of polyols, silicon-containing polyols, other polyols and sealants.
  • Textiles finished with this waterproof and oil-proof agent have better waterproof and oil-proof effects and washing resistance.
  • the waterproof and oil-proof agent contains fluorine-based compounds and do not meet environmental requirements.
  • the water-repellent fabric obtained by using environmentally friendly non-fluorine-based water-repellent agents has excellent initial water repellency and durability after 10 (or 30) washings. However, the water repellency drops significantly after more washing times, such as 100 times.
  • Chinese patent document CN105734970A discloses a water-repellent treated textile and its production method, and specifically discloses that the single fiber surface of the textile is covered with a resin film.
  • the main component of the resin film is a non-fluorine compound.
  • the water repellency of this textile after 10 cycles of washing was measured according to the L 1092 spray method standard. Level 3 or above does not solve the problem of water repellency decreasing after more washing cycles.
  • the water-repellent agent composition includes component (A), silicone resin (B), and water, wherein, Component (A) is at least one of a urethane compound (A1), an acrylic resin (A2) and a reactive silicone (A3), and the water repellency of the fiber product obtained after being processed with the water repellent agent is washed 5 times. It is only level 3, which also does not solve the problem of water repellency decreasing after more washing cycles.
  • the object of the present invention is to provide a textile that is environmentally friendly and has more excellent water repellency and washing durability.
  • the surface of the single fibers constituting the textile is covered with a resin film, the thickness of the resin film is 60 to 100 nm, and the main components of the resin film are non-fluorine-based water-repellent compounds and isocyanate compounds. .
  • the water-repellent textile of the present invention has a single fiber surface covered with a resin film of a specific thickness.
  • the main components of the resin film are non-fluorine-based water-repellent compounds and isocyanate compounds.
  • such a resin film can make water molecules smaller It is difficult to penetrate and achieve excellent initial water repellency;
  • the isocyanate compound in the resin film can not only react with the non-fluorine water-repellent compound, but also react with the fiber to make the non-fluorine water-repellent compound firmly adhere to the On single fibers, improves wash durability.
  • non-fluorine-based compounds are safe and environmentally friendly.
  • the thickness of the resin film is 60 to 100 nm. This is because if the thickness of the resin film is less than 60nm, the resin film will be seriously damaged after multiple washings, especially after 100 times of washing, and the textiles will not have ultra-high washing durability; and if the thickness of the resin film is greater than 100nm, the resin film will be seriously damaged, especially after 100 times of washing. , the active ingredients are already saturated, and the water repellency cannot be further improved. Instead, it will affect the feel and increase the cost.
  • the thickness of the resin film is 70 to 90 nm. This is because within this range, the textile has particularly excellent washing durability and a good feel.
  • the main components of the resin film are non-fluorine-based water-repellent compounds and isocyanate compounds.
  • non-fluorine-based water-repellent compounds can form films on single fibers and can impart good water-repellency to textiles.
  • the isocyanate groups in isocyanate compounds can not only react with non-fluorine-based water-repellent compounds, but also with fibers. The reaction causes the non-fluorine-based water-repellent compound to firmly adhere to the single fibers, significantly improving wash durability.
  • the isocyanate compound in the resin film of the present invention is a polymer formed of aromatic polyfunctional isocyanate and polyol.
  • the aforementioned polymer has a network structure, which can lock the non-fluorine-based water-repellent compound more firmly and prevent it from falling off, further improving the washing durability.
  • the polyol here is not particularly limited and may be a dihydric alcohol and/or a trihydric alcohol.
  • the polyhydric alcohol preferably has the structure shown in Formula 1:
  • M is a H atom, alkyl group, alkoxy group, hydroxyl group, hydroxyalkyl group or carbonyl group;
  • the non-fluorine-based water-repellent compound is a hydrocarbon compound, polysiloxane compound A, or a copolymer thereof.
  • the hydrocarbon compound is not particularly limited, and may be an acrylate compound, a stearate compound, an N-hydroxymethyl compound, or the like.
  • acrylate compounds include butyl acrylate, acrylonitrile, acrylamide, etc.
  • examples of stearate compounds include sodium stearate, calcium stearate, aluminum stearate, etc.
  • N-hydroxymethyl examples of the compounds include etherified hexamethylol melamine, N-methylol stearamide, and the like.
  • Hydrocarbons can enhance the interaction between emulsion particles and water molecules, which is beneficial to the formation of a dense cross-linked structure. While the surface of single fibers self-polymerizes to form a film, it can also improve the film-forming strength.
  • the hydrocarbon compound is an acrylate compound
  • the water-repellent film formed by this compound has better uniformity, is more difficult for water molecules to penetrate, and has a certain stiffness, and can better withstand the impact of external forces (washing or friction, etc.). Easy to fall off.
  • the hydrocarbon compound is an acrylate compound and has a structural unit represented by Formula 2,
  • R 1 and R 2 are alkyl or unsaturated hydrocarbon groups respectively;
  • polysiloxane compound A Due to its low molecular weight, polysiloxane compound A can easily penetrate into the fiber, and the film formed on the surface can reduce the friction coefficient between yarns and improve the hand feel.
  • the polysiloxane compound A is a compound containing a structure represented by Formula 3,
  • R 3 , R 4 and R 5 are respectively an alkyl group or an unsaturated hydrocarbon group.
  • the resin film of the present invention includes a flexible compound
  • the flexible compound is a polyethylene compound and/or a polysiloxane compound B.
  • This type of compound can make the film formed on the fiber surface have lower surface tension and smoothness, reduce the friction coefficient between fibers and improve the feel.
  • the polysiloxane compound B is not particularly limited, but preferably has a structural unit represented by Formula 4,
  • R 6 and R 7 are H atoms, alkyl groups or unsaturated hydrocarbon groups respectively; 2 ⁇ n ⁇ 200.
  • the thickness of the resin film of the water-repellent textile of the present invention is 40 to 100 nm.
  • the water-repellent textile of the present invention has an initial water repellency of level 4 or above according to the spray method test in the JIS L 1092:2009 standard.
  • the water-repellent textile of the present invention is based on the JIS L 0217:1995 standard. After washing for 100 times according to the 103 method or the C4M method in the JIS L 1930:2014 standard, and then tested according to the spray method in the JIS L 1092:2009 standard, the water repellency is level 3 or above.
  • the fiber raw material of the water-repellent textile of the present invention is not particularly limited and may be composed of cellulose fibers and/or synthetic fibers.
  • Cellulose fibers here include natural cellulose fibers and regenerated cellulose fibers. Among them, natural fibers include cotton fiber, hemp fiber, etc., regenerated cellulose fibers include viscose fiber, modal fiber, etc., and synthetic fibers include polyester fiber (PET), polyamide fiber, and polypropylene. Nitrile fiber etc.
  • the water-repellent textile of the present invention may be a woven fabric or a knitted fabric.
  • the weave of woven fabrics is not particularly limited, such as plain weave, twill weave, satin weave, etc.
  • the organization of knitted fabrics is not particularly limited, such as weft plain, rib, double-sided, warp plain, warp satin, etc.
  • the manufacturing method of the water-repellent textile of the present invention is not particularly limited, and can be produced by the following method: pre-processing (removing sizing and oiling), intermediate shaping, dyeing (optional), and post-finishing processing on the gray fabric to obtain the product of the present invention. .
  • the post-finishing process is preferably carried out by padding using a processing liquid with the following composition, followed by drying at a temperature of 80 to 150°C, and finally shaping and finishing at a temperature of 130 to 200°C.
  • Padding processing fluid consists of the following ingredients:
  • the basis weight of the gray fabric here is preferably 50 to 300 g/m 2 . If the weight is less than 50g/ m2 , The weaving process requirements are relatively high, yarn breakage and other phenomena may occur, which is not conducive to production, so it is not preferred; and if the weight is greater than 300g/ m2 , it may affect the wearing comfort, so it is not preferred.
  • the water-repellent agent here is a non-fluorine-based water-repellent agent, and its type is not particularly limited. It is preferably one or more of a hydrocarbon compound, a paraffin compound, and a polysiloxane compound A.
  • the dosage is preferably 40 to 100g/L. When the dosage is less than 40g/L, it is difficult to form a uniform water-repellent film on the fiber surface, and the water repellency is poor, so it is not preferred; when the dosage is more than 100g/L, the active ingredients covering the fiber surface have been saturated, and the water repellency cannot be further improved. Improving will affect the feel and increase the cost, so it is not preferred.
  • the type of the bridging agent here is not particularly limited, but it is preferably a blocked isocyanate, and more preferably a polymer formed of an aromatic polyfunctional isocyanate and a polyol.
  • the dosage is preferably 10 to 40g/L. When the dosage is less than 10g/L, there are fewer reactive groups that can react with the water-repellent agent at the same time and are attached to the fiber surface. After multiple washings, especially after 100 washes, more isocyanate attached to the water-repellent agent will fall off. Textiles cannot have ultra-high washing durability, so they are not preferred; if the dosage is higher than 40g/L, the active ingredients that can react with the water-repellent agent have been saturated, and the washing durability cannot be further improved. Instead, it will affect the feel and increase the cost. , therefore not preferred.
  • the type of softener here is not particularly limited, but it is preferably a polyvinyl compound and/or a polysiloxane compound B.
  • the dosage is preferably 10 to 30g/L. When the dosage is less than 10g/L, it is difficult to form a uniform soft film on the fiber surface and it is difficult to improve the hand feel, so it is not preferred; when the dosage is higher than 30g/L, the effect of improving the hand feel is not obvious, and it may lead to a decrease in the water repellency of the fabric. Therefore, it is not preferred.
  • the type of penetrant here is not particularly limited, but isopropyl alcohol and/or aliphatic ethyl alcohol is preferred. Oxylated alcohols.
  • the dosage is preferably 10 to 20g/L. When the dosage is less than 10g/L, it is difficult for the agent to penetrate into the fibers, and it is difficult to form a uniform water-repellent film between the fibers, which makes it possible for water molecules to enter and affect the water repellency, so it is not preferred; when the dosage is higher than 20g/L, it is effective The ingredients are saturated and the cost is increased, so it is not preferred.
  • the above-mentioned pharmaceutical agents may be commercially available or may be synthesized according to known techniques in the field.
  • the water-repellent agent can form a film at a drying temperature of ⁇ 80°C and produce a water-repellent effect; the bridging agent undergoes a chemical reaction at a setting temperature of ⁇ 130°C and firmly adheres to the textile, making the fabric Offers wash durability while being water repellent.
  • the method of preparing the machining fluid is not particularly limited. It can be carried out as follows: add a water-repellent agent and a bridging agent in sequence. If you need to improve the hand feel, you can further add a softener, mix it with water, and stir continuously, but the stirring speed is not suitable. Too fast to avoid emulsification.
  • the processing agent and dosage used in actual processing need to be adjusted according to the different textiles to be processed. At the same time, local adjustments to the processing method must be made in a timely manner to ensure that the processing fluid can fully exert its effect and improve the performance of the textile.
  • each physical property parameter involved in the present invention is tested according to the following method.
  • the operation method refers to JY/T 010-1996 "General Methods of Analytical Scanning Electron Microscopy".
  • the operating method refers to KS D 8544-2006 "Metal Coating. Coating Thickness Measurement. Transmission Electron Microscopy Method”.
  • a Fourier transform attenuated total reflection infrared spectrometer was used for qualitative analysis. The operation method was based on GB/T 6040-2002 "General Principles of Infrared Spectroscopy Analysis Methods". Among them, the parameters in the test conditions are selected as follows: ATR crystal: Ge, incident angle: 45°, measurement range: 4000 ⁇ 680cm -1 . Take one of the sample cloths and place it directly on the reflective surface of the Ge crystal of the Fourier transform attenuated total reflection infrared spectrometer for testing, and obtain a spectrum X with absorption peaks in the wavelength range of 4000 to 680 cm -1 . Take the remaining sample cloth, wipe the surface of the sample cloth with a cotton ball dipped in carbon tetrachloride reagent, and then apply it on the potassium bromide wafer for testing to obtain spectrum Y.
  • spectrum Y there is a weak absorption peak near 1458cm -1 , and sharp strong absorption peaks near 827cm -1 , 1091cm -1 , 1193cm -1 , 2840cm -1 , and 2941cm -1 , indicating the presence of polysiloxane compounds.
  • A. There is a weak absorption peak in the 1200-700cm -1 region, a strong absorption peak in the 2960-2850cm -1 region, and an absorption peak in the 1275-1020cm -1 region, indicating the presence of polyol.
  • EDS energy spectrometer model: OXFORD INSTRUMENTS Xplore
  • OXFORD INSTRUMENTS Xplore Use an EDS energy spectrometer (model: OXFORD INSTRUMENTS Xplore) to analyze the polyol crystals extracted above through elemental analysis; use Fourier transform attenuation
  • the total reflection infrared spectrometer obtains the infrared spectrum
  • the nuclear magnetic resonance spectrometer model: Bruker AVANCE 600
  • Bruker AVANCE 600 is used to obtain the carbon spectrum ( 13 C NMR) and hydrogen spectrum ( 1 H NMR), which can determine whether there is a multi-component containing the structure of formula 1. alcohol.
  • Water repellent agent A a copolymer of hydrocarbon compounds and polysiloxane compounds, the trade name is RUCO-DRY DHT, and the manufacturer is Rudolf Chemical.
  • Water repellent agent B Polysiloxane, the trade name is NEOSEED NR-8800, the manufacturer is Nihua Chemical (China) Co., Ltd.
  • Water repellent agent C pyridinium quaternary ammonium salt, trade name is PF, manufacturer is Changsha Jianglong Chemical Technology Co., Ltd.
  • Bridging agent A self-made, a polymer formed from aromatic isocyanate compounds and polyols, where,
  • Bridging agent B aliphatic isocyanate, trade name is FB-12, manufacturer is Shanghai Sisheng Polymer Materials Co., Ltd.
  • Bridging agent C aromatic isocyanates (excluding polyols), the trade name is XDI, and the manufacturer is Mitsui Chemicals Co., Ltd.
  • Bridging agent D melamine type, trade name is M-3, manufacturer is DIC Co., Ltd.
  • Bridging agent E self-made, a polymer formed from aromatic isocyanate compounds and polyols, where,
  • Softener A Polysiloxane, trade name is S-1723, manufacturer is Nantong Dongrou Industry and Trade Co., Ltd.
  • Softener B Polyethylene, trade name RUCO-LUB KSA, manufacturer: Rudolf Chemical ENGINEERING LIMITED.
  • Penetrating agent isopropyl alcohol, the trade name is TEXPORT BG-2, the manufacturer is Zhejiang Rihua Chemical Co., Ltd.
  • the polyester fiber 100% plain woven gray fabric with a density of 200 ⁇ 170 threads/inch is selected, and undergoes conventional pre-treatment (removal of sizing and oil), dyeing (disperse dye 130°C ⁇ 45min), intermediate setting (170°C ⁇ 1min), After post-finishing processing, the water-repellent textile of the present invention is obtained.
  • the performance test results are shown in Table 1.
  • the rolling fluid consists of the following components:
  • the padding processing liquid consists of the following components, and the rest is the same as in Example 1 to obtain the water-repellent textile of the present invention.
  • the performance test results are shown in Table 1.
  • the padding processing liquid consists of the following components, and the rest is the same as in Example 1 to obtain the water-repellent textile of the present invention.
  • the performance test results are shown in Table 1.
  • the padding processing liquid consists of the following components, and the rest is the same as in Example 1 to obtain the water-repellent textile of the present invention.
  • the performance test results are shown in Table 1.
  • the padding processing liquid consists of the following components, and the rest is the same as in Example 1 to obtain the water-repellent textile of the present invention.
  • the performance test results are shown in Table 1.
  • the padding processing liquid consists of the following components, and the rest is the same as in Example 1 to obtain the water-repellent textile of the present invention.
  • the performance test results are shown in Table 1.
  • the padding processing liquid consists of the following components, and the rest is the same as in Example 1 to obtain the water-repellent textile of the present invention.
  • the performance test results are shown in Table 1.
  • the padding processing liquid consists of the following components, and the rest is the same as in Example 1 to obtain the water-repellent textile of the present invention.
  • the performance test results are shown in Table 1.
  • the padding processing liquid consists of the following components, and the rest is the same as in Example 1 to obtain the water-repellent textile of the present invention.
  • the performance test results are shown in Table 2.
  • the padding processing liquid consists of the following components, and the rest is the same as in Example 1 to obtain the water-repellent textile of the present invention.
  • the performance test results are shown in Table 2.
  • the padding processing liquid consists of the following components, and the rest is the same as in Example 1 to obtain the water-repellent textile of the present invention.
  • the performance test results are shown in Table 2.
  • the padding processing liquid consists of the following components, and the rest is the same as in Example 1 to obtain the water-repellent textile of the present invention.
  • the performance test results are shown in Table 2.
  • the padding processing liquid consists of the following ingredients, and the rest is the same as in Example 1 to obtain the water-repellent textile of the present invention.
  • the performance test results are shown in Table 2.
  • the padding processing liquid consists of the following components, and the rest is the same as in Example 1 to obtain the water-repellent textile of the present invention.
  • the performance test results are shown in Table 2.
  • the padding processing liquid consists of the following ingredients, and the rest is the same as in Example 1 to obtain water-repellent textiles.
  • the performance test results are shown in Table 2.
  • the padding processing liquid consists of the following ingredients, and the rest is the same as in Example 1 to obtain water-repellent textiles.
  • the performance test results are shown in Table 2.
  • Example 1 It can be seen from Example 1 and Example 3 that under the same conditions, the water-repellent textiles obtained by using the bridging agent generated by the reaction of polyol and aromatic isocyanate and the water-repellent textiles processed by using the aliphatic isocyanate-based bridging agent In comparison, the water repellency and hand feel of the two before washing are equivalent, but the water repellency of the former after 100 times of washing is better than that of the latter.
  • Example 1 and Example 4 It can be seen from Example 1 and Example 4 that under the same conditions, compared with the water-repellent textiles processed without using softeners, the water repellency of the two before and after washing is equivalent, but the former The feel is better than the latter.
  • Example 1 and Example 5 It can be seen from Example 1 and Example 5 that under the same conditions, the water-repellent textiles obtained by using the water-repellent agent of the copolymer of hydrocarbons and polysiloxane compounds are the same as those obtained by using the polysiloxane-based water repellent agent. Compared with the water-repellent textiles obtained by processing with chemical agents, the water-repellent properties of the two before washing are equivalent. Although the hand feel of the former is slightly inferior to that of the latter, the water-repellency after 100 times of washing is better than that of the latter.
  • Example 1 and Example 6 It can be seen from Example 1 and Example 6 that under the same conditions, the water-repellent textiles obtained by using the water-repellent agent of the copolymer of hydrocarbons and polysiloxane compounds are the same as those obtained by using pyridinium quaternary ammonium salts. Compared with the water-repellent textiles obtained by processing with chemical agents, the water-repellency and hand feel of the two before washing are equivalent, but the water-repellency of the former after 100 times of washing is better than that of the latter.
  • Example 1 and Example 14 It can be seen from Example 1 and Example 14 that under the same conditions, the water-repellent textiles obtained by using bridging agent A (polyol containing formula 1 structure) are the same as those obtained by using bridging agent E (polyol not containing formula 1 structure). Compared with the water-repellent textiles processed by alcohol), the water-repellency and hand feel of the two before washing are equivalent, but the water-repellency of the former after 100 times of washing is much better than that of the latter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

一种拒水纺织品,构成拒水纺织品的单纤维表面上覆盖有树脂膜,其厚度为60~100nm,且树脂膜的主要成分为非氟系拒水性化合物和异氰酸酯类化合物。拒水纺织品不但具有更加优异的拒水性和洗涤耐久性,而且手感好,安全环保。

Description

拒水纺织品 技术领域
本发明涉及一种经过拒水处理的拒水纺织品。
背景技术
为追求健康、时尚和自然的生活,越来越多的人走向户外。对于户外运动的服装面料,人们期待其具有优异的拒水性。
目前,用于拒水整理的拒水剂主要分为氟系和非氟系两大类。虽然氟系拒水剂处理后的纺织品具有高拒水性和高耐洗涤性等优势,但氟系拒水剂所含有的全氟辛酸铵化合物(以下简称PFOA)及全氟辛烷磺酸盐化合物(以下简称PFOS)具有遗传毒性和生殖毒性,且难以生物降解,不利于环保。如中国专利文献CN106758252A中公开了一种易维护型防水防油剂及其制备方法、纺织品,并具体公开了利用含有聚氨酯的防水防油剂进行加工得到纺织品,其中,聚氨酯由多异氰酸酯、氟硅多元醇、含硅多元醇、其他多元醇和封闭剂等反应得到,使用该防水防油剂整理后的纺织品具有更好的防水防油效果、耐洗涤性能,但由于防水防油剂中含有氟系化合物,不符合环保要求。
使用环保型的非氟系拒水剂加工后得到的拒水面料具备优异的初期拒水性以及洗涤10回(或30回)的耐久性,但是更多洗涤回数如洗涤100回后拒水性下降明显。如,中国专利文献CN105734970A中公开了一种经过拒水处理的纺织品及其生产方法,并具体公开了纺织品的单纤维表面上覆盖有树脂膜,树脂膜的主要成分为非氟素化合物,根据JIS L 1092喷雾法标准测得该纺织品,洗涤10回后的拒水性为 3级以上,并没有解决更多洗涤回数后拒水性下降的问题。另外,日本专利文献特开2019-173185中公开了一种纤维用拒水剂组成物以及拒水性纤维制品,拒水剂组成物包括成分(A)、硅酮树脂(B)以及水,其中,成分(A)为氨基甲酸酯化合物(A1)、丙烯酸树脂(A2)以及反应性有机硅(A3)中的至少一种,利用该拒水剂加工后所得纤维制品洗涤5回后的拒水性只有3级,同样没有解决更多洗涤回数后拒水性下降的问题。
发明内容
本发明的目的在于提供一种对环境友好,具有更加优异的拒水性和洗涤耐久性的纺织品。
为了实现上述目的,本发明的技术解决方案如下:
本发明的拒水纺织品,构成该纺织品的单纤维表面上覆盖有树脂膜,所述树脂膜的厚度为60~100nm,且所述树脂膜的主要成分为非氟系拒水性化合物和异氰酸酯类化合物。
本发明的拒水纺织品,其单纤维表面上覆盖有特定厚度的树脂膜,该树脂膜的主要成分为非氟系拒水性化合物和异氰酸酯类化合物,一方面,这样的树脂膜可以使得水分子较难渗入,获得优异的初期拒水性;另一方面,树脂膜中的异氰酸酯类化合物除了可以与非氟系拒水性化合物进行反应外,还可以与纤维反应使得非氟系拒水性化合物牢固地附着在单纤维上,提高洗涤耐久性。另外,与氟系化合物相比,非氟系化合物具有安全环保的特点。
具体实施方式
本发明的拒水纺织品,构成该拒水纺织品的单纤维表面上覆盖有 树脂膜,该树脂膜的厚度为60~100nm。这是考虑到树脂膜的厚度如果低于60nm的话,经过多次洗涤,特别是100回洗涤后,树脂膜破损严重,纺织品无法具有超高的洗涤耐久性;而树脂膜的厚度如果大于100nm的话,有效成分已经饱和,拒水性无法进一步提升,反而会影响手感,同时还会增加成本。作为优选,树脂膜的厚度为70~90nm,这是考虑到,在该范围内,纺织品的洗涤耐久性特别优异,而且手感很好。
本发明中,树脂膜的主要成分为非氟系拒水性化合物和异氰酸酯类化合物。其中,非氟系拒水性化合物能够在单纤维上成膜,可以赋予纺织品良好的拒水性,而异氰酸酯类化合物中的异氰酸酯基团,不仅可以与非氟系拒水性化合物发生反应,还可以与纤维反应使得非氟系拒水性化合物牢固地附着在单纤维上,显著提高洗涤耐久性。
作为优选,本发明树脂膜中的异氰酸酯类化合物为芳香族多官能异氰酸酯和多元醇形成的聚合物。前述聚合物具有网状结构,能将非氟系拒水性化合物更加牢固地锁定,不易脱落,进一步提高洗涤耐久性。
这里的多元醇没有特别限定,可以是二元醇和/或三元醇,多元醇优选具有式1所示的结构:
其中,M为H原子、烷基、烷氧基、羟基、羟烷基或羰基;
2≤n≤16。
这是考虑到,含有式1结构的多元醇,由于其端基-OH、-M容易与芳香族多官能异氰酸酯发生反应,进行化学结合,使得形成的网状结构更加紧密,从而将非氟系拒水性化合物更加牢固地锁定在网状结构内,不易脱落,进一步提高洗涤耐久性。
作为优选,非氟系拒水性化合物为碳氢类化合物、聚硅氧烷类化合物A或它们的共聚物。
碳氢类化合物没有特别限定,可以是丙烯酸酯类化合物、硬脂酸盐类化合物、N-羟甲基类化合物等。丙烯酸酯类化合物可以列举的有丙烯酸丁酯、丙烯腈、丙烯酰胺等;硬脂酸盐类化合物可以列举的有硬脂酸钠、硬脂酸钙、硬脂酸铝等;N-羟甲基化合物可以列举的有醚化六羟甲基三聚氰胺、N-羟甲基十八酰胺等。碳氢类化合物可以增强乳液粒子和水分子之间的作用力,有利于形成密集的交联结构,在单纤维的表面自聚成膜的同时,还能提高成膜强度。
当碳氢类化合物为丙烯酸酯类化合物时,该类化合物形成的拒水膜均一性更好,水分子较难渗入,且具有一定刚度,更能承受外力(洗涤或者摩擦揉搓等)冲击,不容易发生脱落。作为优选,碳氢类化合物为丙烯酸酯类化合物,具有式2所示的结构单元,
其中,R1、R2分别为烷基或不饱和烃基;
2≤n≤200。
聚硅氧烷类化合物A由于分子量低,易进入到纤维内部,而且其在表面形成的膜,能够降低纱线间的摩擦系数,使得手感得到改善。作为优选,聚硅氧烷类化合物A为含有式3所示结构的化合物,
其中,R3、R4、R5分别为烷基或不饱和烃基。
作为优选,本发明的树脂膜中包括柔软性化合物,柔软性化合物为聚乙烯类化合物和/或聚硅氧烷类化合物B。这类化合物可以使在纤维表面形成的薄膜具有较低的表面张力和平滑性,降低纤维之间的摩擦系数,改善手感。
聚硅氧烷类化合物B没有特别限定,优选具有式4所示的结构单元,
其中,R6、R7分别为H原子、烷基或不饱和烃基;2≤n≤200。
作为优选,根据JIS L 0217:1995标准中的103法或JIS L1930:2014标准中的C4M法洗涤100回后,本发明拒水纺织品的树脂膜的厚度为40~100nm。
作为优选,本发明的拒水纺织品根据JIS L 1092:2009标准中的喷淋法的测试,其初期拒水性为4级以上。
作为优选,本发明的拒水纺织品根据JIS L 0217:1995标准中的 103法或JIS L 1930:2014标准中的C4M法洗涤100回后,再根据JIS L 1092:2009标准中的喷淋法的测试,其拒水性为3级以上。
本发明的拒水纺织品,其纤维原料没有特别限定,可以是由纤维素纤维和/或合成纤维组成。这里的纤维素纤维包括天然纤维素纤维、再生纤维素纤维。其中,天然纤维可以列举的是棉纤维、麻纤维等,再生纤维素纤维可以列举的是粘胶纤维、莫代尔纤维等,合成纤维可以列举的是聚酯纤维(PET)、聚酰胺纤维、聚丙烯腈纤维等。
本发明的拒水纺织品,可以是机织物,也可以是针织物。机织物的组织没有特别限定,如平纹、斜纹、缎纹等。针织物的组织也没有特别限定,如纬平针、罗纹、双反面、经平、经缎等。
本发明的拒水纺织品的制造方法没有特别限定,可通过如下方法制得:对坯布进行前处理(去浆去油)、中间定型、染色(可选)、后整理加工,得到本发明的产品。
其中,后整理加工优选采用如下组成的加工液进行浸轧加工,然后在温度80~150℃的条件下干燥,最后在130~200℃的条件下进行定型整理。
浸轧加工液由下列成分组成:
这里的坯布的克重优选为50~300g/m2。克重小于50g/m2的话, 对织造工艺要求比较高,有可能出现断纱等现象,不利于生产,因而不优选;而克重大于300g/m2的话,有可能会影响穿着舒适性,因而不优选。
这里的拒水剂为非氟系拒水剂,其种类没有特别限定,优选为碳氢类化合物、石蜡类化合物和聚硅氧烷类化合物A中的一种或多种。用量优选为40~100g/L。用量低于40g/L时,在纤维表面形成均一的拒水膜较为困难,拒水性较差,因而不优选;用量高于100g/L,覆盖在纤维表面的有效成分已经饱和,拒水性无法进一步提升,反而会影响手感,同时还会增加成本,因而不优选。
这里的架桥剂的种类没有特别限定,优选为封端型异氰酸酯,更优选为芳香族多官能异氰酸酯和多元醇形成的聚合物。用量优选为10~40g/L。用量低于10g/L时,能够同时与拒水剂反应且附着在纤维表面的反应基团较少,经过多次洗涤,特别是100回洗涤后,附着有拒水剂的异氰酸酯脱落较多,纺织品无法具有超高的洗涤耐久性,因而不优选;用量高于40g/L,能够与拒水剂反应的有效成分已经饱和,洗涤耐久性无法进一步提升,反而会影响手感,同时还会增加成本,因而不优选。
这里的柔软剂的种类没有特别限定,优选为聚乙烯类化合物和/或聚硅氧烷类化合物B。用量优选为10~30g/L。用量低于10g/L时,在纤维表面形成均一的柔软膜较为困难,难以改善手感,因而不优选;用量高于30g/L,手感改善的效果不明显,而且可能导致织物的拒水性下降,因而不优选。
这里的渗透剂的种类没有特别限定,优选为异丙醇和/或脂肪族乙 氧基化醇。用量优选为10~20g/L。用量低于10g/L时,药剂难以渗入到纤维间,在纤维间形成均一的拒水膜较为困难,使得水分子有可能进入,影响拒水性,因而不优选;用量高于20g/L,有效成分已经饱和,还会增加成本,因而不优选。
上述药剂可以是市售品,也可按照本领域的公知技术合成。
这是考虑到,拒水剂在≥80℃的烘干温度下可以成膜,产生拒水效果;架桥剂在130℃以上的定型温度条件下发生化学反应,牢固附着在纺织品上,使织物在具有拒水性的同时具有洗涤耐久性。
配制加工液的方法没有特别限定,可以按如下方式进行:依次添加拒水剂和架桥剂,需要改善手感时可以进一步添加柔软剂,和水进行调配,并不断地进行搅拌,但搅拌速度不宜过快,以免破乳。实际加工时所用的加工剂及使用量需要根据待加工纺织品的不同进行调整,同时也要及时对加工方法做出局部调整,以保证加工液能够充分发挥作用,提高纺织品性能。
下面结合实施例及比较例对本发明作进一步说明。
其中,本发明所涉及的各物性参数按下面的方法测试。
(1)纺织品的拒水性以及树脂膜中氟元素含量的确认
①取5cm×2cm大小的样布1块,根据DB44/T 1872-2016纺织品表面润湿性能的测试标准(接触角法),将样布固定在样布夹持架上,并将样布夹持架放置在接触角测量仪的实验台上,调整样布表面至注射针的针头10mm的高度。将5μL的液滴滴落在样布表面,接触时间60秒后对样布及其上面的液滴进行拍照,接触角θ>0°可初步判断该样布为含有拒水性化合物的纺织品;
②再取1cm×1cm大小的样布1块,使用元素分析仪扫描样布表面,测定氟元素含量。若测得的氟元素含量为0,则可判定树脂膜中含有非氟系化合物。
(2)树脂膜厚度
A.取样及测量
剪取1cm×1cm大小的样布1块,沿着与纺织品的经纱方向或纬纱方向垂直的位置切开得到断面后,再使用下述设备对待测断面观察树脂膜沉积在纺织品表面上的厚度。根据需要选择其中一种设备进行测量。
设备一:
设备型号:日立Regulus-8100场发射扫描电镜
测试条件:不喷金,1kV电压减速模式
操作方法参照JY/T 010-1996《分析型扫描电子显微镜方法通则》。
设备二:
设备型号:JEOL JEM-2200FS 200kV能量过滤场发射透射电镜
测试条件:RuO4染色超薄切片,加速电压:200kV
操作方法参照KS D 8544-2006《金属涂层.涂层厚度测量.透射电子显微镜法》。
B.计算
①通过如下公式计算出被测单纤维直径d,

d:单纤维直径(cm)
γ:纤维的密度(g/cm3)
Ndt:纤维线密度(dtex)
②在单纤维截面上任意位置取点A;
③以A为圆心,单纤维直径d的0.1倍为半径作圆,与单纤维截面相交于点B;
④以A、B为切点,沿截面表面作切线相交于点O,测得相交的内角为θ;
⑤90°≤θ<178°时,以O为端点,在内角∠AOB以θ°/2的角度作射线,与截面相交于点E,测得该点的膜厚度;
⑥重复步骤①~⑤,一共测五次,即在同块样布上的不同位置测5次,得到5组数据取平均值作为本发明的树脂膜的厚度。
(3)树脂膜中化合物的定性分析
①取样、测试
剪取10cm×10cm的样布2块。利用傅里叶变换衰减全反射红外光谱仪进行定性分析,操作方法参照GB/T 6040-2002《红外光谱分析方法通则》。其中,测试条件中的参数选择如下:ATR晶体:Ge、入射角:45°、测定范围:4000~680cm-1。取其中1块样布将其直接置于傅里叶变换衰减全反射红外光谱仪的Ge晶体的反射面上进行测试,得到波长4000~680cm-1范围内带有吸收峰的谱图X。取余下的1块样布,用沾有四氯化碳试剂的棉花球擦拭样布表面,然后涂在溴化钾晶片上进行测试得到谱图Y。
②分析数据
根据谱图X,在1725cm-1、1250cm-1、1200~1150cm-1和1125~1100cm-1处有特征吸收峰,并且在1725cm-1和1200~1150cm-1之间有强吸收峰,说明存在丙烯酸类化合物;在2953.1cm-1、2921.0cm-1、2853.3cm-1、1456.9cm-1、1376.9cm-1、722.7cm-1附近有特征吸收峰,其中2953.1cm-1以及2921.0cm-1附近有强吸收峰,说明存在石蜡类化合物;在1420cm-1附近有弱吸收带,1265~1270cm-1附近有尖锐的强吸收峰,同时在1087cm-1和1020cm-1附近有强宽吸收带,说明存在聚硅氧烷类化合物B;在1563cm-1、816cm-1附近有特征吸收峰,说明存在异氰酸酯类化合物。
根据谱图Y,在1458cm-1附近有弱吸收峰,827cm-1、1091cm-1、1193cm-1、2840cm-1、2941cm-1附近有尖锐的强吸收峰,说明存在聚硅氧烷类化合物A。在1200~700cm-1区域有一个弱吸收峰,2960~2850cm-1处有强吸收峰,1275~1020cm-1区域有一个吸收峰,说明存在多元醇。
(4)多元醇式1结构的定性分析
①取样
剪取10g的样布1块,剪碎后投入反应釜,处理条件为温度250~340℃,压力50~150KPa,在碱金属氢氧化物(如氢氧化钠)的催化下,得到含有多元醇的混合物。将含有多元醇的混合物用有机溶剂N,N-二甲基甲酰胺进行萃取分离并干燥,得到多元醇晶体。
②测试
使用EDS能谱仪(型号:OXFORD INSTRUMENTS Xplore),通过元素分析对前述分离提取的多元醇晶体进行分析;使用傅里叶变换衰减 全反射红外光谱仪得到红外光谱图,使用核磁共振波谱仪(型号:Bruker AVANCE 600)得到碳谱(13C NMR)图和氢谱(1H NMR)图,可判断是否存在含有式1结构的多元醇。
(5)拒水性
根据JIS L 1092:2009标准中的喷淋法。
(6)洗涤
根据JIS L 0217:1995标准中的103法或JIS L 1930:2014标准中的C4M法洗涤100回。
(7)手感
根据JIS L 1096 2010:A法(悬臂法)测试纺织品的硬挺度。硬挺度数值越低,说明纺织品越柔软。
以下实施例及比较例中所使用的树脂如下:
(1)拒水剂A:碳氢类化合物和聚硅氧烷类化合物的共聚物,商品名为RUCO-DRY DHT,厂家为鲁道夫化工。
(2)拒水剂B:聚硅氧烷类,商品名为NEOSEED NR-8800,厂家为日华化学(中国)有限公司。
(3)拒水剂C:吡啶季铵盐类,商品名为PF,厂家为长沙江龙化工科技有限公司。
(4)架桥剂A:自制,由芳香族异氰酸酯类化合物和多元醇形成的聚合物,其中,
芳香族异氰酸酯类化合物的结构式为:
多元醇的结构式为:
(5)架桥剂B:脂肪族异氰酸酯类,商品名为FB-12,厂家为上海思盛聚合物材料有限公司。
(6)架桥剂C:芳香族异氰酸酯类(不含多元醇),商品名为XDI,厂家为三井化学株式会社。
(7)架桥剂D:三聚氰胺类,商品名为M-3,厂家为DIC株式会社。
(8)架桥剂E:自制,由芳香族异氰酸酯类化合物和多元醇形成的聚合物,其中,
芳香族异氰酸酯类化合物的结构式为:
多元醇的结构式为:
(9)柔软剂A:聚硅氧烷类,商品名为S-1723,厂家为南通东柔工贸有限公司。
(10)柔软剂B:聚乙烯类,商品名RUCO-LUB KSA,厂家为鲁道夫化 工有限公司。
(11)渗透剂:异丙醇类,商品名为TEXPORT BG-2,厂家为浙江日华化学有限公司。
实施例1
选用密度200×170根/英寸的聚酯纤维100%平纹机织坯布,经过常规的前处理(去浆去油)、染色(分散染料130℃×45min)、中间定型(170℃×1min)、后整理加工,得到本发明的拒水纺织品,各项性能测试结果见表1。
其中,后整理加工的具体条件如下:采用一浸一轧加工,带液率约为80%,然后在温度130℃的条件下热处理2分钟,最后在170℃的条件下定型整理1分钟,浸轧加工液由下列成分组成:
实施例2
浸轧加工液由下列成分组成,其余同实施例1,得到本发明的拒水纺织品,各项性能测试结果见表1。

实施例3
浸轧加工液由下列成分组成,其余同实施例1,得到本发明的拒水纺织品,各项性能测试结果见表1。
实施例4
浸轧加工液由下列成分组成,其余同实施例1,得到本发明的拒水纺织品,各项性能测试结果见表1。
实施例5
浸轧加工液由下列成分组成,其余同实施例1,得到本发明的拒水纺织品,各项性能测试结果见表1。

实施例6
浸轧加工液由下列成分组成,其余同实施例1,得到本发明的拒水纺织品,各项性能测试结果见表1。
实施例7
浸轧加工液由下列成分组成,其余同实施例1,得到本发明的拒水纺织品,各项性能测试结果见表1。
实施例8
浸轧加工液由下列成分组成,其余同实施例1,得到本发明的拒水纺织品,各项性能测试结果见表1。

实施例9
浸轧加工液由下列成分组成,其余同实施例1,得到本发明的拒水纺织品,各项性能测试结果见表2。
实施例10
浸轧加工液由下列成分组成,其余同实施例1,得到本发明的拒水纺织品,各项性能测试结果见表2。
实施例11
浸轧加工液由下列成分组成,其余同实施例1,得到本发明的拒水纺织品,各项性能测试结果见表2。

实施例12
浸轧加工液由下列成分组成,其余同实施例1,得到本发明的拒水纺织品,各项性能测试结果见表2。
实施例13
浸轧加工液由下列成分组成,其余同实施例1,得到本发明的拒水纺织品,各项性能测试结果见表2。
实施例14
浸轧加工液由下列成分组成,其余同实施例1,得到本发明的拒水纺织品,各项性能测试结果见表2。

比较例1
浸轧加工液由下列成分组成,其余同实施例1,得到拒水纺织品,各项性能测试结果见表2。
比较例2
浸轧加工液由下列成分组成,其余同实施例1,得到拒水纺织品,各项性能测试结果见表2。


根据表1和表2,
(1)由实施例1和实施例3可知,同等条件下,使用由多元醇以及芳香族异氰酸酯反应生成的架桥剂加工所得拒水性纺织品与使用脂肪族异氰酸酯类架桥剂加工所得拒水性纺织品相比,两者洗涤前的拒水性以及手感均相当,但前者洗涤100回后的拒水性优于后者。
(2)由实施例1和实施例4可知,同等条件下,使用柔软剂加工所得拒水性纺织品与未使用柔软剂加工所得拒水性纺织品相比,两者洗涤前后的拒水性均相当,但前者的手感优于后者。
(3)由实施例1和实施例5可知,同等条件下,使用碳氢类化合物和聚硅氧烷类化合物的共聚物的拒水剂加工所得拒水性纺织品与使用聚硅氧烷类拒水剂加工所得拒水性纺织品相比,两者洗涤前的拒水性相当,虽然前者的手感略不及后者,但洗涤100回后的拒水性优于后者。
(4)由实施例1和实施例6可知,同等条件下,使用碳氢类化合物和聚硅氧烷类化合物的共聚物的拒水剂加工所得拒水性纺织品与使用吡啶季铵盐类拒水剂加工所得拒水性纺织品相比,两者洗涤前的拒水性以及手感均相当,但前者洗涤100回后的拒水性优于后者。
(5)由实施例1和实施例14可知,同等条件下,使用架桥剂A(含式1结构的多元醇)加工所得拒水性纺织品与使用架桥剂E(不含式1结构的多元醇)加工所得拒水性纺织品相比,两者洗涤前的拒水性、手感相当,但前者洗涤100回后的拒水性远优于后者。
(6)由比较例1和实施例13可知,同等条件下,未使用架桥剂加工所得纺织品与使用芳香族异氰酸酯类架桥剂(不含多元醇)加工所得纺织 品相比,前者虽然洗涤前的拒水性以及手感都比较好,但洗涤100回后的拒水性只有2级。
(7)由比较例2和实施例13可知,同等条件下,使用三聚氰胺类架桥剂加工所得纺织品与使用芳香族异氰酸酯类架桥剂(不含多元醇)加工所得纺织品相比,前者虽然洗涤前的拒水性比较好,但洗涤100回后的拒水性只有2级。

Claims (10)

  1. 拒水纺织品,其特征是:构成所述拒水纺织品的单纤维表面上覆盖有树脂膜,所述树脂膜的厚度为60~100nm,且所述树脂膜的主要成分为非氟系拒水性化合物和异氰酸酯类化合物。
  2. 根据权利要求1所述拒水纺织品,其特征是:所述异氰酸酯类化合物为芳香族多官能异氰酸酯和多元醇形成的聚合物。
  3. 根据权利要求2所述拒水纺织品,其特征是:所述多元醇具有式1所示的结构,
    其中,M为H原子、烷基、烷氧基、羟基、羟烷基或羰基;
    2≤n≤16。
  4. 根据权利要求1所述拒水纺织品,其特征是:所述非氟系拒水性化合物为碳氢类化合物、聚硅氧烷类化合物A或它们的共聚物。
  5. 根据权利要求4所述拒水纺织品,其特征是:所述碳氢类化合物为丙烯酸酯类化合物,具有式2所示的结构单元,
    其中,R1、R2分别为烷基或不饱和烃基;
    2≤n≤200。
  6. 根据权利要求4所述拒水纺织品,其特征是:所述聚硅氧烷类化合物A为含有式3所示结构的化合物,
    其中,R3、R4、R5分别为烷基或不饱和烃基。
  7. 根据权利要求1所述拒水纺织品,其特征是:所述树脂膜包括柔软性化合物,所述柔软性化合物为聚乙烯类化合物和/或聚硅氧烷类化合物B。
  8. 根据权利要求1~7中任一项所述拒水纺织品,其特征是:根据JIS L 0217:1995标准中的103法或JIS L 1930:2014标准中的C4M法洗涤100回后,所述树脂膜的厚度为40~100nm。
  9. 根据权利要求1~7中任一项所述拒水纺织品,其特征是:根据JIS L 1092:2009标准中喷淋法的测试,所述纺织品的初期拒水性为4级以上。
  10. 根据权利要求1~7中任一项所述拒水纺织品,其特征是:根据JIS L 0217:1995标准中的103法或JIS L 1930:2014标准中的C4M法洗涤100回后,再根据JIS L 1092:2009标准中喷淋法的测试,所述纺织品的拒水性为3级以上。
PCT/CN2023/113969 2022-08-22 2023-08-21 拒水纺织品 WO2024041476A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211002878 2022-08-22
CN202211002878.X 2022-08-22

Publications (1)

Publication Number Publication Date
WO2024041476A1 true WO2024041476A1 (zh) 2024-02-29

Family

ID=90012482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113969 WO2024041476A1 (zh) 2022-08-22 2023-08-21 拒水纺织品

Country Status (1)

Country Link
WO (1) WO2024041476A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328624A (ja) * 2005-04-28 2006-12-07 Nicca Chemical Co Ltd 撥水剤、撥水加工方法及び撥水性繊維製品
CN103174025A (zh) * 2011-12-23 2013-06-26 东丽纤维研究所(中国)有限公司 一种抗静电尼龙纺织品
JP2015165056A (ja) * 2014-03-03 2015-09-17 帝人フロンティア株式会社 撥水性布帛およびその製造方法
CN107447523A (zh) * 2016-06-01 2017-12-08 东丽纤维研究所(中国)有限公司 一种经过拒水处理的纺织品
JP2019065443A (ja) * 2017-10-02 2019-04-25 ダイワボウホールディングス株式会社 撥水性再生セルロース繊維、その製造方法及びそれを含む繊維構造物
JP2020200456A (ja) * 2019-06-10 2020-12-17 日華化学株式会社 非フッ素系ポリマー、表面処理剤、撥水性繊維製品及び撥水性繊維製品の製造方法
JP2022011640A (ja) * 2020-06-30 2022-01-17 昭和電工マテリアルズ株式会社 撥水処理剤、撥水構造体及び撥水構造体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328624A (ja) * 2005-04-28 2006-12-07 Nicca Chemical Co Ltd 撥水剤、撥水加工方法及び撥水性繊維製品
CN103174025A (zh) * 2011-12-23 2013-06-26 东丽纤维研究所(中国)有限公司 一种抗静电尼龙纺织品
JP2015165056A (ja) * 2014-03-03 2015-09-17 帝人フロンティア株式会社 撥水性布帛およびその製造方法
CN107447523A (zh) * 2016-06-01 2017-12-08 东丽纤维研究所(中国)有限公司 一种经过拒水处理的纺织品
JP2019065443A (ja) * 2017-10-02 2019-04-25 ダイワボウホールディングス株式会社 撥水性再生セルロース繊維、その製造方法及びそれを含む繊維構造物
JP2020200456A (ja) * 2019-06-10 2020-12-17 日華化学株式会社 非フッ素系ポリマー、表面処理剤、撥水性繊維製品及び撥水性繊維製品の製造方法
JP2022011640A (ja) * 2020-06-30 2022-01-17 昭和電工マテリアルズ株式会社 撥水処理剤、撥水構造体及び撥水構造体の製造方法

Similar Documents

Publication Publication Date Title
Natarajan et al. Surface modification of polyester fabric using polyvinyl alcohol in alkaline medium
Yuen et al. Influence of surface treatment on the electroless nickel plating of textile fabric
EP2729610B1 (en) Fluid-resistant textile fabrics and methods
Iriyama et al. Plasma treatment of silk fabrics for better dyeability
WO2020158530A1 (ja) 撥水性織編物、その製造方法および衣料
Ou et al. Unexpected superhydrophobic polydopamine on cotton fabric
Xu et al. Fabrication of fluorine-free, comfortable and wearable superhydrophobic fabrics via capacitance coupled plasma with methyl side-chain lauryl methacrylate coatings
Rahmatinejad et al. Polyester hydrophobicity enhancement via UV-Ozone irradiation, chemical pre-treatment and fluorocarbon finishing combination
CN101725033B (zh) 用于制作高吸附性无尘擦拭布的织物及其制造方法
Kwon et al. Breathable, antistatic and superhydrophobic PET/lyocell fabric
WO2017126358A1 (ja) 繊維構造物
JP5958016B2 (ja) 繊維構造物
WO2024041476A1 (zh) 拒水纺织品
Haji et al. Comparative study of exhaustion and pad-steam methods for improvement of handle, dye uptake and water absorption of polyester/cotton fabric
JP5865648B2 (ja) 防汚性布帛の製造方法
Borisova et al. Hydrophobic treatment of blended fabric’s surface
JP6632798B2 (ja) 防汚性ポリエステル布帛
TW202411496A (zh) 拒水紡織品
Khoddami et al. Effect of different poly (ethylene terephethalate) hydrolysis to manipulate proper nano-surface structures for fabricating ultra hydrophobic substrate
CN110373893A (zh) 一种石墨烯导电织物及其制备方法
CN101370976A (zh) 纤维结构物
KR102178195B1 (ko) Pfpe 방오제를 적용한 친환경 카시트 원단 개발
Hossain Plasma technology for deposition and surface modification
JP4391379B2 (ja) 撥水性高強度合成繊維構造物および撥水加工方法
Zhang et al. Study of oleophobic modification of fiber material surface and its performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856566

Country of ref document: EP

Kind code of ref document: A1