WO2024041329A1 - 消声器和具有该消声器的制冷系统 - Google Patents

消声器和具有该消声器的制冷系统 Download PDF

Info

Publication number
WO2024041329A1
WO2024041329A1 PCT/CN2023/110530 CN2023110530W WO2024041329A1 WO 2024041329 A1 WO2024041329 A1 WO 2024041329A1 CN 2023110530 W CN2023110530 W CN 2023110530W WO 2024041329 A1 WO2024041329 A1 WO 2024041329A1
Authority
WO
WIPO (PCT)
Prior art keywords
muffler
drain pipe
anechoic chamber
housing
drain
Prior art date
Application number
PCT/CN2023/110530
Other languages
English (en)
French (fr)
Inventor
杨胜梅
林坤
Original Assignee
江森自控空调冷冻设备(无锡)有限公司
江森自控泰科知识产权控股有限责任合伙公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江森自控空调冷冻设备(无锡)有限公司, 江森自控泰科知识产权控股有限责任合伙公司 filed Critical 江森自控空调冷冻设备(无锡)有限公司
Publication of WO2024041329A1 publication Critical patent/WO2024041329A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Definitions

  • the present application relates to mufflers, and more particularly to mufflers for refrigeration systems, and refrigeration systems having the mufflers.
  • a muffler is usually used on the compressor exhaust flow path of the refrigeration system to reduce the noise generated by the refrigerant.
  • the muffler forms a section of the exhaust flow path, and the refrigerant flows through the muffler to achieve a noise reduction effect.
  • the refrigerant circulating in the refrigeration system contains lubricating liquid.
  • the circulating volume of lubricating liquid is often dozens of tons per hour, which is much higher than that of ordinary air-conditioning and refrigeration units.
  • the oil circulation volume is two orders of magnitude higher. Lubricating liquid will enter the muffler together with the refrigerant.
  • the amount of lubricating liquid discharged from the muffler per unit time is less than the circulating amount of lubricating liquid when the refrigeration system is running, then the lubricating liquid will accumulate in the muffler, causing changes in the muffler cavity, resulting in Reduction of noise canceling effect.
  • the application provides a muffler, which includes a cylindrical housing defining an anechoic chamber, an anechoic chamber inlet and an anechoic chamber outlet located at two opposite axial ends of the housing. , at least one partition, at least one muffler pipe and at least one drain pipe located in the muffler chamber.
  • the housing has an axis. Each partition is arranged generally perpendicular to the axis of the housing and divides the anechoic chamber into at least two compartments.
  • the at least one muffler tube is respectively disposed on the at least one partition and extends a certain distance along the axis on at least one side of the corresponding partition.
  • Each muffler tube defines a travel channel that passes through the corresponding baffle.
  • the at least one drain pipe is respectively disposed on the at least one partition and extends a certain distance along the axis on at least one side of the corresponding partition.
  • Each drain pipe defines a drain channel, and the drain channel penetrates the corresponding partition plate.
  • Each drain pipe is arranged close to the housing or is partially formed by the housing. The position of the anechoic chamber outlet relative to the at least one drain pipe is such that liquid flowing out of the at least one drain pipe can be discharged via the anechoic chamber outlet.
  • each of the drain pipes extends a certain distance along the axis on a side of the corresponding partition plate located downstream in the drain direction.
  • the axis of the housing is arranged horizontally relative to the horizontal plane, the at least one drain pipe is located at the bottom of the muffler chamber, and the outlet of the muffler chamber is connected to the at least one drain pipe.
  • the tubes are axially aligned at the bottom of the anechoic chamber.
  • the axis of the housing is tilted relative to the horizontal plane.
  • each of the drain pipes extends a certain distance along the axis on a side of the corresponding partition plate located upstream in the drain direction, or each of the drain pipes extends on the corresponding side of the partition plate that is upstream in the drain direction.
  • the opposite sides of the partition located upstream and downstream in the direction of leakage extend a certain distance along the axis.
  • the total cross-section of the drain channel defined by the drain pipe on each partition is determined by the circulating amount of lubricating liquid during unit operation, which is 0.1 of the cross-section of the corresponding partition. %-30% in order to drain the liquid lubricant circulating in the system in real time.
  • each of said drain pipes includes a single pipe.
  • a circumferential part of the single tube is formed by the housing and another part is formed by an additional wall, wherein the cross-sectional shape of the drain tube is non-circular.
  • the single tube is formed from a pipe with a circular cross-section.
  • each of the drain pipes includes a tube bundle formed by several sub-tubes, and each sub-tube in the tube bundle is configured to have the same or different lengths.
  • the drain pipe is radially connected or isolated from the muffler pipe on the corresponding partition plate.
  • the inlet of the anechoic chamber, the outlet of the anechoic chamber and the at least one drain pipe are located in the anechoic chamber. Bottom aligned.
  • the distance that each drain pipe extends on one side of the corresponding partition plate is determined according to the wavelength of the sound wave expected to be eliminated.
  • the application provides a muffler, which includes a cylindrical housing defining a muffler chamber, an upstream end plate and a downstream end plate respectively closing two axial ends of the housing.
  • the housing has an axis.
  • the first axial end of the muffler tube is connected to the inlet of the muffler chamber, the second axial end of the muffler tube is closed by the downstream end plate, and the muffler tube has a pipe wall passing through it.
  • muffler pipe communication holes are provided to connect The muffler chamber is connected with the space in the muffler tube.
  • the first axial end of the drain pipe is closed by the upstream end plate, the second axial end of the muffler pipe is connected to the outlet of the muffler chamber, and the drain pipe has a pipe passing through it.
  • Several drain pipe communication holes are provided on the wall to communicate the muffler chamber with the space in the drain pipe.
  • the drain pipe is arranged close to the housing or is partially formed by the housing.
  • the muffler chamber outlet and the drain pipe are axially aligned.
  • the application provides a muffler, which includes: a cylindrical housing defining an anechoic chamber, an anechoic chamber inlet located at two opposite axial ends of the housing, and an anechoic chamber. An outlet, at least one partition located in the muffler chamber, at least one muffler pipe and a drain pipe.
  • the housing has an axis. Each partition is arranged generally perpendicular to the axis of the housing and divides the anechoic chamber into at least two compartments.
  • the at least one muffler tube is respectively disposed on the at least one partition and extends a certain distance along the axis on at least one side of the corresponding partition plate.
  • Each muffler tube defines a traveling channel, and the traveling channel Penetrating the corresponding partition.
  • the drain pipe connects two adjacent partitions, and the drain pipe defines a drain channel, and the drain channel runs through the two adjacent partitions; or the drain pipe is arranged between The partition adjacent to the outlet of the anechoic chamber is connected to the partition adjacent to the outlet of the anechoic chamber and the outlet of the anechoic chamber, and the drain pipe defines a drain channel, and the drain channel Penetrating the partition adjacent to the anechoic chamber outlet.
  • the drain pipe is arranged close to the housing or is partially formed by the housing, and the anechoic chamber outlet is axially aligned with the drain pipe.
  • the drain pipe is provided with several communication holes to communicate the internal space of the drain pipe with the compartment where the drain pipe is located.
  • the axis of the housing when the muffler is in use, the axis of the housing is arranged horizontally with respect to the horizontal plane, the drain pipe is located at the bottom of the anechoic chamber, and the outlet of the anechoic chamber is connected to the muffler.
  • the drain pipe is axially aligned at the bottom of the muffler chamber; or the muffler is arranged with the axis of the housing inclined relative to the horizontal plane when in use.
  • the total cross-section of the drain channel defined by the drain pipe on each partition is determined by the lubricating liquid circulation amount of the unit operation, which is 0.1% of the cross-section of the corresponding partition. -30% in order to drain the lubricating fluid circulating in the system in real time.
  • a circumferential part of the drain pipe is formed by the housing and another part is formed by an additional wall, wherein the cross-sectional shape of the drain pipe is non-circular;
  • the drain pipe is formed by a pipe with a circular cross-section.
  • Figure 1A is a perspective view of a first embodiment of a first type of embodiment of a muffler according to the present application
  • Figure 1B is a perspective cross-sectional view of the muffler shown in Figure 1A;
  • Figure 1C is a left side view of the muffler shown in Figure 1A;
  • Figure 2A is a front cross-sectional view of a second embodiment of the first type of embodiment of the muffler according to the present application;
  • Figure 2B is a front cross-sectional view of a third embodiment of the first type of embodiment of the muffler according to the present application;
  • Figure 2C is a perspective cross-sectional view of a fourth embodiment of the first type of embodiment of the muffler according to the present application.
  • Figure 3A is a schematic diagram of a first embodiment of the cross-sectional shape of the drainage channel of the muffler according to the present application
  • Figure 3B is a schematic diagram of a second embodiment of the cross-sectional shape of the drainage channel of the muffler according to the present application.
  • Figure 3C is a schematic diagram of a third embodiment of the cross-sectional shape of the drainage channel of the muffler according to the present application.
  • Figure 4A is a perspective cross-sectional view of a fifth embodiment of the first type of embodiment of the muffler according to the present application.
  • Figure 4B is a left side view of the muffler shown in Figure 4A;
  • Figure 5A is a perspective cross-sectional view of a sixth embodiment of the first type of embodiment of the muffler according to the present application.
  • Figure 5B is a left side view of the muffler shown in Figure 5A;
  • Figure 6A is a perspective view of a first embodiment of a second type of embodiment of a muffler according to the present application
  • Figure 6B is an axial cross-sectional view of the muffler shown in Figure 6A;
  • Figure 7A is a perspective view of a second embodiment of the second type of muffler of the present application.
  • Figure 7B is a perspective view of a third embodiment of the second type of embodiment of the muffler of the present application.
  • Figure 7C is an axial cross-sectional view of a fourth embodiment of the second type of embodiment of the muffler of the present application.
  • Figure 7D is an axial cross-sectional view of the fifth embodiment of the second type of embodiment of the muffler of the present application.
  • Figure 8A is a perspective view of a third type of embodiment of a muffler according to the present application.
  • Figure 8B is an axial cross-sectional view of the muffler shown in Figure 8A;
  • Figure 9 is a schematic diagram of a refrigeration system using a muffler according to the present application.
  • the present application provides an improved muffler suitable for a compressor exhaust passage of a refrigeration system.
  • the mostly gaseous refrigerant is mixed with lubricating liquid, and these lubricating liquids will accumulate due to weight at the bottom of the compressor exhaust passage when in use.
  • the muffler according to the present application constitutes a part of the exhaust passage of the compressor, and is provided with a drain passage in the muffler chamber.
  • the formation of the drain passage can not only meet the demand for timely discharge of lubricating liquid from the muffler, but at the same time will not reduce the exhaust gas.
  • the muffler in this application includes three types. The first type of muffler is an internally inserted tube type muffler, the second type of muffler is an expansion cavity type muffler, and the third type of muffler is a porous resonant cavity type muffler.
  • FIG. 1A-1C show the specific structure of the muffler 100 according to the first embodiment of the first type of embodiment of the present application.
  • This first type of embodiment relates to an internally inserted tube type muffler.
  • the casing is formed, for example, from a portion of an existing exhaust duct of the compressor, the outer diameter of which is substantially the same as the outer diameter of the remaining portion of the compressor exhaust duct.
  • FIG. 1A shows a perspective view of the muffler 100
  • FIG. 1B shows a perspective sectional view of the muffler 100 cut along a plane passing through the axis
  • FIG. 1C shows a left view of the muffler 100 .
  • the muffler 100 includes a cylindrical housing 101 having an axis X1 and defining a muffler chamber 102 .
  • the muffler 100 also includes an anechoic chamber inlet 103 and an anechoic chamber outlet 104 respectively located at two opposite axial ends of the housing 101.
  • the anechoic chamber inlet 103 and the anechoic chamber outlet 104 are connected with the anechoic chamber 102, so that Fluid can enter the anechoic chamber 102 via the anechoic chamber inlet 103 and exit the anechoic chamber 102 via the anechoic chamber outlet 104 after being muffled.
  • the dimensions of the anechoic chamber inlet 103 and the anechoic chamber outlet 104 are the same as the radial dimensions of the anechoic chamber 102 . That is, the fluid travels in the muffler 100 along the direction of the dotted arrow A in FIG. 1A .
  • the muffler 100 also includes two partitions located in the anechoic chamber 102, namely a first partition 113 and a second partition 114. These two partitions are arranged generally perpendicular to the axis X1 and cooperate with the housing 101.
  • the anechoic chamber 102 is divided into three compartments, namely a first compartment 107, a second compartment 108 and a third compartment 109.
  • the muffler 100 includes two muffler tubes, namely a first muffler tube 115 and a second muffler tube 116 .
  • the two muffler tubes are respectively disposed on the first partition plate 113 and the second muffler tube 116 .
  • On the two partitions 114 they penetrate the corresponding partition and extend a certain distance along the axis X1 on both sides of the corresponding partition.
  • the distance that the muffler tube extends on one side of the corresponding partition is determined by the distance to be reduced. Determined by the specific wavelength of the sound wave, the distance extending on both sides of the partition can be used to attenuate the sound wave.
  • the first muffler tube 115 and the second muffler tube 116 both define a traveling channel T for the fluid.
  • the traveling channel T runs through the corresponding partition.
  • the fluid passes through the partition through the traveling channel T and reaches the anechoic chamber inlet 103. Sound chamber exit 104.
  • the muffler tube can also extend only on one side of the corresponding partition, and only the traveling channel T needs to penetrate the partition.
  • the muffler 100 also includes two drain pipes, namely a first drain pipe 117 and a second drain pipe 118.
  • the first drain pipe 117 and the second drain pipe 118 are respectively disposed on the first partition 113 and the second partition. on the plate 114 and extend a certain distance on one side of the corresponding partition (that is, the side close to the anechoic chamber outlet 104 and located downstream in the discharge direction, hereinafter referred to as the "downstream side").
  • the distance that the first drain pipe 117 / the second drain pipe 118 extends on the downstream side of their respective partitions is determined according to the specific wavelength of the sound wave to be attenuated.
  • Both the first drain pipe 117 and the second drain pipe 118 define a drain channel P that penetrates the corresponding partition.
  • the cross-sectional shape and size of the portion of the drain channel P on the first partition 113 are substantially the same as the cross-sectional shape and size of the portion in the first drain pipe 117 , wherein the drain channel P is on the first partition
  • the part on 113 can be formed by opening a hole in the first partition 113 and connecting the opening with the first drain pipe 117 , or it can also be formed by penetrating the first drain pipe 117 through the first partition 113 .
  • the cross-sectional shape and size of the portion of the drain channel P on the second partition 114 are substantially the same as the cross-sectional shape and size of the portion in the second drain pipe 118 , wherein the drain channel P is in the second drain pipe 118 .
  • the portion on the partition plate 114 can be formed by opening a hole in the second partition plate 114 and connecting the opening with the second drain pipe 118 , or by inserting the second drain pipe 118 through the second partition plate 114 . form.
  • first drain pipe 117 and the second drain pipe 118 are tubular structures formed by additional walls formed by arc-shaped sheets 111 and 112 and enclosed by the housing 101 respectively. Formed, its cross-section is generally semicircular.
  • first drain pipe 117 and the second drain pipe 118 can also be formed by a complete pipe (for example, the pipe with a circular cross-section in the embodiment shown in Figure 3A), and There is no need to be formed by the housing 101 , the complete tube being arranged against the housing 101 .
  • the first drain pipe 117 is located in the second compartment 108 , with its upstream end connected to the first partition 113 and in fluid communication with the second compartment 108 through its downstream end. That is to say, the downstream end of the first drain pipe 117 is separated from the second partition 114 and does not extend to the second partition 114 .
  • the second drain pipe 118 is located in the third compartment 109, its upstream end is connected to the second partition 114, and its downstream end is separated from the anechoic chamber outlet 104 by a certain distance. Therefore, the second drain pipe 118 and the third compartment 109 in fluid communication through its downstream end.
  • the anechoic chamber outlet 104 of the first type of embodiment is formed by the opening at the axial end of its housing 101, the size of the anechoic chamber outlet 104 is much larger than the discharge area defined by the first drain pipe 117 and the second drain pipe 118.
  • the outlet 104 of the muffler chamber is located on the axially extending path of the drain channel P defined by the first drain pipe 117 and the second drain pipe 118, whereby the lubricating liquid discharged from the drain channel P can pass through the muffler.
  • the chamber outlet 104 exits the muffler 100 .
  • the muffler 100 shown in FIGS. 1A-1C is not only suitable for the case where the muffler 100 is placed horizontally in the use state (ie, the axis arranged at an angle to the horizontal plane).
  • the first drain pipe 117 and the second drain pipe 118 are located at the bottom of the muffler 100, so the lubricating liquid accumulated at the bottom of the muffler 100 can pass through the first drain pipe 117
  • the drain passage P defined by the second drain pipe 118 discharges the muffler.
  • the lubricating liquid When the muffler is placed tilted in use, the lubricating liquid first collects on the first partition plate 113 and the second partition plate 114, and then is discharged from the muffler 100 through the drain channel P.
  • the cross-section of the drain channel P defined by the drain pipe connected to each partition is determined by the circulating amount of lubricating liquid during the operation of the refrigeration system (or unit), which is 0.1%-30 of the cross-section of the corresponding partition. % in order to drain the lubricating fluid circulating in the system in real time.
  • the first partition plate 113 and the second partition plate 114 can block the fluid from entering the muffler chamber except the traveling channel T and the drain channel.
  • the part other than P flows through the first partition 113 and the second partition 114.
  • the gaseous refrigerant mainly flows through the first partition 113 and the second partition 114 through the traveling channel T. A small amount of gaseous refrigerant will be mixed with the gaseous refrigerant.
  • the lubricating liquid flows together from the drain channel P through the first partition plate 113 and the second partition plate 114.
  • the incident sound wave of the fluid (along the X1 axis direction) is reflected after hitting the partition plate to form a reflected sound wave.
  • the direction of the reflected sound wave is also along the X1 axis direction, but is opposite to the direction of the incident sound wave.
  • there is a phase difference between the reflected sound wave and the incident sound wave which allows the reflected sound wave to interfere with and cancel the incident sound wave that subsequently enters the traveling channel T, thereby producing a silencing effect, and the first silencing tube 115 and the second silencing tube 116
  • the length determines the wavelength of sound waves that can be attenuated.
  • first muffler tube 115 and the second muffler tube 116 by setting the lengths of the first muffler tube 115 and the second muffler tube 116 , sound waves of specific wavelengths can be attenuated, and the first muffler tube 115 and the second muffler tube 116 can be used to attenuate different wavelengths. Even the different lengths of each muffler tube extending on both sides of the corresponding baffle can be used to attenuate sound waves of different wavelengths. Similarly, the first drain pipe 117 and the second drain pipe 118 can also be used to attenuate sound waves of specific wavelengths.
  • the muffler 100 of the present application is provided with a drain pipe with a certain extension length, and the cross-sectional size of the drain channel P on the partition can be set larger, thereby meeting the need for the refrigeration system to discharge lubricating liquid in a timely manner.
  • the tube has a sound-absorbing effect, so even if the cross-sectional size of the drainage channel P on the partition plate is set larger (compared to the area of the partition plate), the overall sound-absorbing effect of the muffler will not be weakened.
  • a comparative example if there is no drain pipe on the partition, only one (or several) holes are opened on the partition as the drain hole.
  • this (or these) drain holes can only play a role in draining liquid, and It cannot play a silencing role.
  • the size of the drain hole can only be opened as small as It is relatively small, and in this case the lubricating fluid circulating in the system cannot be released in real time.
  • the muffler 100 of the present application can not only drain the lubricating liquid circulating in the system in real time, but also does not affect the overall muffler effect.
  • FIGS. 1A to 1C show the specific formation manner of the drain pipe, the arrangement manner relative to the partition plate, and the specific cross-sectional shape of the drain channel
  • the muffler of the similar embodiment is not limited to the embodiment shown in FIGS. 1A-1C.
  • the drain pipe may have other formation methods and arrangements relative to the partition, and the cross-sectional shape of the drain channel may also be other. shape.
  • the drain pipe in addition to being partially formed by the shell, can also be formed by a complete pipe (as shown in Figure 3A) without the participation of the shell; the drain pipe can only be formed upstream of the corresponding partition.
  • a certain distance may be extended on both sides of the corresponding partition (as shown in the embodiment shown in Figure 2B), or a certain distance may be extended on both sides of the corresponding partition (the embodiment shown in Figure 2A); in addition to being arranged isolated from the muffler pipe, the drain pipe In addition, it can also be connected with the muffler tube in the radial direction (the embodiment shown in Figure 5A and Figure 5B); the cross-sectional shape of the drainage channel can be any shape (for example, as shown in Figures 3A-3C shapes listed in the examples).
  • Figures 2A-2C show some other embodiments of the first type of embodiment of the muffler according to the present application. These embodiments are mainly used to illustrate arrangements that are different from the first embodiment shown in Figures 1A-1C. The arrangement of liquid pipes (relative to the bulkhead).
  • Figure 2A shows a muffler 120 according to a second embodiment of the first type of embodiment, wherein Figure 2A is a front sectional view of the muffler 120 taken along a plane passing through the axis.
  • the muffler 120 also includes a housing 101 , a first partition 123 and a second partition 124 provided in the housing, and includes a first partition 123 and a second partition 124 respectively provided on the housing 101 .
  • the first muffler pipe 125 and the second muffler pipe 126, and the first liquid drain pipe 127 and the second liquid drain pipe 128 respectively provided on the first partition plate 123 and the second partition plate 124.
  • first drain pipe 127 and the second drain pipe 128 of the muffler 120 shown in FIG. 2A are in Both sides of the corresponding partition (i.e., the upstream side and the downstream side) extend for a certain distance, while the first drain pipe 117 and the second drain pipe 118 of the muffler 100 shown in FIGS. 1A to 1C are only located on the corresponding partition.
  • the downstream side of the plate extends some distance. Therefore, for the muffler 120 shown in FIG.
  • the first drain pipe 127 and the second drain pipe 128 can not only be muffled by their portions extending on the downstream side of the corresponding partition, but also can be muffled by their portions extending on the downstream side of the corresponding partition.
  • the part extending upstream of the baffle is muffled.
  • the muffler 120 shown in FIG. 2A is suitable for being placed horizontally in use.
  • Figure 2B shows a muffler 130 according to a third embodiment of the first type of embodiment, wherein Figure 2B is a front cross-sectional view of the muffler 130 taken along a plane passing through the axis.
  • the muffler 130 also includes a housing 101 , a first partition 133 and a second partition 134 disposed in the housing, and includes a first partition 133 and a second partition 134 respectively disposed on the first partition 133 and the second partition 134 .
  • the first muffler tube 135 and the second muffler tube 136, as well as the first muffler tube 135 and the second muffler tube 134 respectively provided on the first partition plate 133 and the second partition plate 134.
  • the first drain pipe 137 and the second drain pipe 138 The main difference between the muffler 130 shown in FIG. 2B and the muffler 100 shown in FIGS. 1A-1C lies in that the first drain pipe 127 and the second drain pipe 128 of the muffler 130 shown in FIG. 2B are in the corresponding positions.
  • the upstream side of the baffle extends for a distance, while the first drain pipe 117 and the second drain pipe 118 of the muffler 100 shown in FIGS. 1A-1C extend for a distance on the downstream side of the corresponding baffle.
  • the muffler 130 shown in FIG. 2B is suitable for being placed horizontally in use.
  • Figure 2C shows a muffler 140 according to a fourth embodiment of the first type of embodiment, wherein Figure 2C is a perspective sectional view of the muffler 140 taken along a plane passing through the axis.
  • the muffler 140 also includes a housing 101 , a first partition 143 and a second partition 144 disposed in the housing, and includes a first partition 143 and a second partition 144 respectively disposed on the first partition 143 and the second partition 144 .
  • Muffler 140 also includes a drain pipe 147 .
  • 1A-1C is that although the muffler 140 shown in FIG. 2C has two partitions, it only has one drain pipe 147.
  • the pipe 147 connects the first partition plate 143 and the second partition plate 144, and the drainage channel P defined by the drain pipe 147 penetrates the first partition plate 143 and the second partition plate 144, and the muffler 100 shown in FIGS. 1A-1C
  • the first partition 113 and the second partition 114 are each provided with a drain pipe, and the drain pipe does not connect the two partitions.
  • the drain pipe 147 is located in the second compartment 208 and does not extend into the first compartment 207 and the third compartment 209.
  • the lubricating liquid in the first compartment 207 passes through The drain channel P on the first partition 143 enters the drain pipe.
  • the drain pipe 147 is also provided with several communication holes 210. These communication holes 210 are used to connect the internal space of the drain pipe 147 with the second compartment 208, so that the lubricating liquid in the second compartment 208 can enter the drain. In tube 147.
  • the lubricating liquid in the drain pipe 147 is finally discharged through the drain channel P on the second partition 144 .
  • the communication hole 210 is provided at a downstream position of the drain pipe 147 and close to the second partition 144, so that the muffler 140 shown in FIG. 2C is not only suitable for situations where it is placed horizontally in use, but also Applicable to situations where the device is tilted during use.
  • the drain pipe in the muffler has only one pipe, and this pipe is provided separately from the muffler pipe.
  • the shape of the cross-section of the drainage channel may be configured in different shapes, such as the shape shown in FIG. 1C .
  • the cross-section of the drainage channel may also be in other shapes, such as the shapes shown in FIGS. 3A-3C.
  • Figures 3A-3C illustrate other embodiments of cross-sectional shapes of drainage channels.
  • 3A is a schematic diagram of the cross-sectional shape of the drainage channel in a first embodiment, FIG.
  • FIG. 3B is a schematic diagram of the cross-sectional shape of the drainage channel in a second embodiment
  • FIG. 3C is a cross-sectional shape of the drainage channel.
  • Schematic diagrams of the third embodiment, Figures 3A-3C show a left side view of the muffler.
  • the drain pipe 317 is formed of a single circular tube, so the cross section of the drain channel P is circular.
  • the drain pipe 327 is formed by an additional wall formed of a flat sheet and the housing 321, so that the cross section of the drain channel P is arcuate.
  • the drain pipe 337 An additional wall formed by a sheet material with a cross-sectional shape similar to channel steel is formed together with the housing 331, so that the cross-section of the drain channel P is generally rectangular.
  • Figures 4A and 4B show a muffler 400 according to a fifth embodiment of the first category of embodiments, wherein Figure 4A is a perspective sectional view of the muffler 400 taken along a plane passing through the axis, and Figure 4B is a left side view of the muffler 400 .
  • the muffler 400 shown in Figures 4A and 4B is generally similar to the muffler 100 shown in Figures 1A-1C.
  • the main difference is that the drain pipe of the fifth embodiment includes a tube bundle formed by several sub-pipes 420, while the drain pipe of the first embodiment
  • the muffler 100 includes a single tube.
  • the sub-pipes in the tube bundle of the drain pipe each define a drain branch, and the drain branch passes through the corresponding partition.
  • These drain branches jointly define the drain channel P.
  • these sub-tubes 420 can be configured to have the same or different extension lengths to meet the need to attenuate sound waves of different wavelengths.
  • Figures 5A and 5B show a muffler 500 according to a sixth embodiment of the first category of embodiments, wherein Figure 5A is a perspective sectional view of the muffler 500 taken along a plane passing through the axis, and Figure 5B is a left side view of the muffler 500 .
  • the main difference between the muffler 500 shown in FIGS. 5A and 5B and the muffler 100 shown in FIGS. 1A-1C is that the muffler pipe and the drain pipe of the muffler 100 of the first embodiment shown in FIGS. 1A-1C are independent of each other. (or separated) pipes, while the muffler pipe and the drain pipe of the muffler 500 of the sixth embodiment shown in FIGS.
  • the muffler 500 includes a housing 501, a first partition 513 and a second partition 514 provided in the housing 501, and respectively provided on the first partition 513 and the second partition 514.
  • the muffler 500 also includes a first liquid drain pipe 517 and a second liquid drain pipe 518.
  • the first liquid drain pipe 517 and the second liquid drain pipe 518 are radially connected with the first muffler pipe 515 and the second muffler pipe 516 respectively. .
  • the traveling channel T defined by the muffler tube is connected with the drain path P defined by the drain pipe, and the fluid in the muffler pipe can directly flow into the drain pipe in the radial direction, and Drain the muffler 500 along the drain pipe.
  • the embodiment shown in Figures 5A and 5B is particularly suitable for application scenarios where the space between the muffler pipe and the housing 501 is narrow. This is because by using the method of arranging the drain pipe as shown in Figures 5A and 5B, the drain pipe can be placed first. The drain pipe and the muffler pipe are made into an integrated special-shaped pipe, and then the special-shaped pipe is inserted and welded into the partition.
  • the assembled integral piece of the drain pipe, the muffler pipe and the partition is inserted into the housing 501 middle. If the embodiment shown in FIGS. 1A to 1C is used, the drain pipe needs to be welded to the partition plate separately, and this will cause difficulty in welding because the drain pipe and the muffler pipe are too close to each other.
  • the bottom of the first muffler tube 515 is provided with an opening 525 extending along its axial direction, and the first drain tube 517 is connected by two generally flat sheets 522 and 524.
  • An additional wall is formed connecting the opening 525 at the bottom of the first muffler tube 515 to the housing 501, thereby forming a joint between a portion of the housing 501 and the two sheets 522 and 524.
  • the first drain pipe 517 (shown as a dotted box in Figure 5B).
  • the second drain pipe 518 is formed in a manner similar to the first drain pipe 517 and will not be described again here.
  • the muffler tube may also have only Has a partition.
  • 6A to 7D illustrate a second type of embodiment of a muffler according to the present application.
  • the muffler of the second type of embodiment is different from the muffler of the first type of embodiment in terms of the formation of the drain pipe and the arrangement of the partition plate. , and the cross-sectional shape of the discharge channel may be similar arrangements, the difference is that the inner diameter of the muffler chamber of the first type of embodiment is substantially the same as the inner diameter of the compressor exhaust channel, while the second type of embodiment
  • the new muffler involves an expansion cavity muffler, the inner diameter of the muffler chamber is increased relative to the inner diameter of the compressor exhaust channel.
  • FIG. 6A and 6B illustrate a muffler 600 according to a first embodiment of the second category of embodiments of the present application, wherein FIG. 6A is a perspective view of the muffler 600 and FIG. 6B is a perspective view of the muffler 600 cut along a plane passing through the axis. Cutaway view.
  • the muffler 600 includes a cylindrical housing 601 defining a muffler chamber 602 and having an axis X2.
  • An upstream end plate 651 and a downstream end plate 653 are respectively provided at two opposite axial ends of the housing 601 for sealing the anechoic chamber 602. However, an opening is provided on the upstream end plate 651 and the downstream end plate 653 respectively.
  • the anechoic chamber inlet 603 and the anechoic chamber outlet 604 are therefore in communication with the anechoic chamber 602 and located at two opposite axial ends of the housing 601 .
  • An inlet pipe 661 and an outlet pipe 663 are respectively connected to the anechoic chamber inlet 603 and the anechoic chamber outlet 604.
  • the inlet pipe 661 and the outlet pipe 663 are used to connect the muffler 600 to the exhaust passage of the compressor, and the inlet pipe 661
  • the radial size of the outlet pipe 663 is substantially the same as the radial size of the exhaust passage of the compressor.
  • the muffler 600 further includes a first baffle 613 , a second baffle 614 , a first muffler pipe 615 , a second muffler pipe 616 , and a first drain pipe 617 disposed therein. and second drain pipe 618, these components are arranged in a manner substantially the same as the same components in the muffler 100 shown in FIGS. 1A-1C.
  • the position of the anechoic chamber outlet 604 relative to the first liquid drain pipe 617 and the second liquid drain pipe 618 is set such that the liquid flowing out of the drain pipe can be discharged through the anechoic chamber outlet 604 .
  • the anechoic chamber outlet 604 is positioned on the downstream end plate 653 close to the housing 601 and along the axis with the first drain pipe 617 and the second drain pipe 618 .
  • the anechoic chamber inlet 603 is also arranged in the same manner as the anechoic chamber outlet 604.
  • the inlet 603 of the anechoic chamber, the outlet 604 of the anechoic chamber, the first drain pipe 617 and the second drain pipe 618 are axially aligned at the bottom of the anechoic chamber 602, and the muffler 600 is arranged horizontally.
  • the sound chamber outlet 604 is located on the axially extending path of the drain channel P defined by the first drain pipe 617 and the second drain pipe 618, thereby ensuring that the lubricating liquid flowing out of the drain channel P can pass through the anechoic chamber. Exit 604 flows out.
  • the cross-sectional size and shape of the two liquid discharge pipes 618 are the same.
  • the cross-sectional dimensions of the anechoic chamber inlet 603 and the anechoic chamber outlet 604 may be designed to be larger than the cross-sectional dimensions of the drain channels P of the first drain pipe 617 and the second drain pipe 618 .
  • the inlet 603 of the anechoic chamber does not need to be arranged in the same manner as the outlet 604 of the anechoic chamber. It is only necessary to arrange the outlet 604 of the anechoic chamber in the above manner to meet the liquid drainage requirements.
  • the muffler 600 of this embodiment is not only suitable for being placed horizontally in the use state, but also suitable for being placed at an angle in the use state.
  • FIG. 7A shows a muffler 710 according to a second embodiment of the second type of embodiment of the present application.
  • the muffler 710 of this embodiment is similar to the muffler 600 of the first embodiment.
  • the main difference lies in that the muffler 710 of the second embodiment is similar to the muffler 600 of the first embodiment.
  • the muffler 710 is provided with only one partition plate 713, one muffler pipe 715 and one drain pipe 717, while the muffler 600 of the first embodiment is provided with two partition plates, two muffler pipes and two drain pipes. Tube.
  • the arrangement of the drain pipe 717, the anechoic chamber inlet 711 and the anechoic chamber outlet 712 in the muffler 710 of the second embodiment is the same as that of the drain pipe, the anechoic chamber inlet and the muffler chamber outlet 712 in the muffler 600 of the first embodiment.
  • the chamber outlets are set up the same way.
  • FIG. 7B shows a muffler 720 according to a third embodiment of the second type of embodiment of the present application.
  • the muffler 720 of this embodiment is similar to the muffler 710 of the second embodiment.
  • the main difference lies in that the muffler 720 of the second embodiment is similar to the muffler 710 of the second embodiment.
  • the anechoic chamber inlet 711 in the muffler 710 is axially aligned with the anechoic chamber outlet 712 and the drain pipe 717, while the muffler 720 of the third embodiment has the muffler chamber inlet 721 different from the muffler outlet 722 and the drain pipe 727.
  • the shaft arrangement is instead staggered, with only the muffler outlet 722 and drain pipe 727 aligned axially.
  • Figure 7C shows a muffler 730 according to a fourth embodiment of the second type of embodiment of the present application.
  • the muffler 730 of this embodiment is similar to the muffler 710 of the first embodiment.
  • the main difference is that the muffler of the first embodiment In 600, a first drain pipe 617 and a second drain pipe 618 are respectively provided on the two partitions 613 and 614, while the muffler 730 of the fourth embodiment is provided with only one drain pipe 737.
  • the liquid pipe 737 is arranged in a manner similar to the liquid drain pipe 147 in the fourth embodiment of the first type of embodiment shown in FIG. 2C .
  • the communication hole 760 on the drain pipe 737 is arranged around the axial direction of the drain pipe 737 .
  • Figure 7D shows a muffler 740 according to a fifth embodiment of the second type of embodiment of the present application.
  • the muffler 740 of this embodiment is similar to the muffler 600 of the first embodiment and is also provided with two baffles (the first partition plate 743 and second partition plate 744) and two drain pipes (first drain pipe 747 and second drain pipe 748), the difference is that the two drain pipes of the muffler 740 of the fifth embodiment
  • the tubes are arranged differently from each other, whereas the two drain tubes of the muffler 600 of the first embodiment are arranged in the same way.
  • the first drain pipe 747 in the muffler 740 of the fifth embodiment only extends a certain distance on the upstream side of the corresponding first partition 743, while the second drain pipe 748 not only extends on the upstream side of the corresponding second partition.
  • the plate 744 extends a distance on both the upstream and downstream sides and on the downstream side of the second baffle 744 until reaching the anechoic chamber outlet 742 . That is to say, the first The second liquid discharge pipe 748 connects the second partition plate 744 and the downstream end plate 753 at the outlet 742 of the anechoic chamber.
  • the portion of the second drain pipe 748 extending between the second partition plate 744 and the downstream end plate 753 is arranged in a manner similar to that of the drain pipe 737 in the fourth embodiment shown in FIG. 7C .
  • FIG. 8A and 8B illustrate a muffler 800 according to a third type of embodiment of the present application (porous resonant cavity muffler), wherein FIG. 8A is a perspective view of the muffler 800 and FIG. 8B is a perspective cross-sectional view of the muffler 800.
  • the muffler 800 includes a cylindrical housing 801 defining a muffler chamber 802 and having an axis X3.
  • the muffler 800 also includes an upstream end plate 851 and a downstream end plate 853 that close the two axial ends of the housing 801, and an anechoic chamber inlet 803 and an anechoic chamber outlet 804 respectively provided on the upstream end plate 851 and the downstream end plate 853. .
  • An inlet pipe 861 and an outlet pipe 863 are respectively connected to the anechoic chamber inlet 803 and the anechoic chamber outlet 804.
  • the inlet pipe 861 and the outlet pipe 863 are used to connect the muffler 800 to the exhaust passage of the compressor, and the inlet pipe 861 and
  • the radial dimension of the outlet pipe 863 is substantially the same as the radial dimension of the exhaust passage of the compressor.
  • a muffler pipe 815 and a drain pipe 817 are provided in the muffler chamber 802, and both the muffler pipe 815 and the drain pipe 817 extend along the axis X3.
  • the first axial end of the muffler tube 815 is connected to the inlet 803 of the muffler chamber, the second axial end of the muffler tube 815 is closed by the downstream end plate 853, and the muffler tube 815 is provided with several muffler tube communication holes 825 , used to connect the space in the muffler tube 815 with the muffler chamber 802 .
  • Several muffler tube communication holes 825 are arranged along the axial and circumferential directions of the muffler tube 815 .
  • the first axial end of the drain pipe 817 is closed by the upstream end plate 851, the second axial end of the drain pipe 817 is connected to the anechoic chamber outlet 804, and the drain pipe 817 is provided with several drain pipe communication holes 827 , used to connect the space in the drain pipe 817 with the anechoic chamber 802.
  • Several drain pipe communication holes 827 are arranged along the circumferential and axial directions of the drain pipe 817 .
  • the drain pipe of the muffler of the third type of embodiment is also arranged close to the casing or is partially formed by the casing.
  • the drain pipe 817 is formed by a complete tube (similar to the drain pipe in the embodiment shown in FIG. 3A ) without the help of the housing 801 .
  • the drain pipe 817 is arranged close to the housing 801.
  • the drain pipe 817 may also be formed by an additional wall together with the housing 801, for example, similar to the embodiments shown in FIG. 1, FIG. 3B, and FIG. 3C.
  • the drain pipe 817 When the muffler 800 is placed horizontally in use, the drain pipe 817 is located at the bottom of the housing 801, and the muffler chamber outlet 804 is axially aligned with the drain pipe 817, so it is located in the area defined by the drain pipe.
  • the drainage channel P extends along the axial direction.
  • the fluid to be silenced enters from the inlet pipe 861 and directly enters the silencer tube 815 through the silencer chamber inlet 803, and then enters the silencer chamber 802 through the silencer tube communication hole 825, and then passes through the silencer chamber 802. It enters the drain pipe 817 from the drain pipe communication hole 827 and is discharged from the muffler 800 through the muffler chamber outlet 804 and the outlet pipe 863 .
  • the inventor of the present application found that for the mufflers of the second type of embodiment (expansion cavity type) and the third type of embodiment (porous resonant cavity type), the muffler of the prior art, in order to discharge the lubricant from the anechoic chamber, For liquids, a drainage hole is usually provided at the bottom of the muffler (whether it is placed horizontally or tilted) and an external drainage pipe is connected. This not only increases the risk of leaking refrigerant, but also reduces the muffler effect.
  • the mufflers of the second and third embodiments of the present application are provided with a drain pipe arranged close to the shell or formed by the shell part, and the position of the outlet of the anechoic chamber is changed, so that the outlet of the anechoic chamber is in line with the
  • the drain pipe is aligned along the axial direction, which not only meets the needs of the refrigeration system to discharge lubricating liquid in time, but also does not reduce the noise reduction effect and does not bring the risk of refrigerant leakage.
  • FIG 9 is a schematic diagram of a refrigeration system 900 using a muffler according to the present application.
  • the refrigeration system 900 includes an evaporator 910, a compressor 920, a condenser 930 and a throttle valve 940, which are connected to form a refrigeration cycle in which the refrigerant circulates.
  • the refrigerant is compressed into a high-pressure and high-temperature state in the compressor 920 and then discharged to the condenser 930 .
  • the refrigerant then performs heat exchange with other media (such as ambient air) in the condenser 930 to release heat and is condensed into a high-pressure, liquid state, and then is discharged into the throttle valve 940 .
  • other media such as ambient air
  • the refrigerant is expanded and throttled to a low-pressure two-phase state, and then flows into the evaporator 910 . It then performs heat exchange with other media (such as water) in the evaporator 910 to absorb heat and evaporate into a low-pressure, gaseous state, and then returns to the compressor 920 from the suction port of the compressor 920 to complete the refrigerant cycle.
  • the muffler 950 according to the present application is disposed in the exhaust passage of the compressor 920, that is, on the connecting pipeline between the compressor 920 and the condenser 930, to eliminate the substantially gaseous refrigerant in the compressor exhaust passage. Sound operation.
  • the muffler 950 may be the muffler shown in any of the embodiments shown in FIGS. 1A-8B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

本申请提供了一种消声器,其包括限定消声室的筒状壳体、位于所述壳体的两个相对的轴向端的消声室入口和消声室出口、位于所述消声室内的至少一个隔板、至少一个消声管以及至少一个排液管。至少一个排液管分别设置在至少一个隔板上并在相应的隔板的至少一侧沿壳体的轴线延伸一定距离。每个排液管限定贯穿相应的隔板的排液通道。每个排液管紧贴壳体布置或者部分地由壳体形成。消声室出口相对于至少一个排液管的位置设置为使得从至少一个排液管流出的液体能够经由消声室出口排出。本申请的消声器构成压缩机排气通道的一部分,其在消声室内设置的排液通道既能够满足及时从消声器中排出润滑液体的需求,又同时不会消减消声室的消声效果。

Description

消声器和具有该消声器的制冷系统 技术领域
本申请涉及消声器,更具体地涉及用于制冷系统的消声器、以及具有该消声器的制冷系统。
背景技术
制冷系统的压缩机排气流道上通常使用消声器来减小冷媒产生的噪声,消声器构成排气流道的其中一段,冷媒流经消声器,达到消声效果。在制冷系统中循环的冷媒中含有润滑液体,对于螺杆式制冷系统,特别是工业冷冻用得螺杆机组而言,其润滑液体的循环量往往是每小时几十吨,比一般的空调制冷机组的油循环量高两个数量级。润滑液体会随冷媒一起进入消声器,如果单位时间内润滑液体从消声器中排出的量小于制冷系统运行时的润滑液体循环量,那么润滑液体会在消声器中积存,造成消声器容腔的改变,从而导致消声效果的消减。
发明内容
根据本申请的第一方面,本申请提供了一种消声器,其包括限定消声室的筒状壳体、位于所述壳体的两个相对的轴向端的消声室入口和消声室出口、位于所述消声室内的至少一个隔板、至少一个消声管以及至少一个排液管。所述壳体具有轴线。每个隔板大体上垂直于所述壳体的轴线布置,并将所述消声室分成至少两个隔间。所述至少一个消声管分别设置在所述至少一个隔板上并在相应的所述隔板的至少一侧沿所述轴线延伸一定距离。每个消声管限定行进通道,所述行进通道贯穿相应的所述隔板。所述至少一个排液管分别设置在所述至少一个隔板上并在相应的所述隔板的至少一侧沿所述轴线延伸一定距离。每个所述排液管限定排液通道,所述排液通道贯穿相应的所述隔板。每个所述排液管紧贴所述壳体布置或者部分地由所述壳体形成。所述消声室出口相对于所述至少一个排液管的位置设置为使得从所述至少一个排液管流出的液体能够经由所述消声室出口排出。
根据上述第一方面的消声器,每个所述排液管在相应的所述隔板的位于泄液方向下游的一侧沿所述轴线延伸一定距离。所述消声器在使用时使所述壳体的轴线相对于水平面水平布置,所述至少一个排液管位于所述消声室的底部,并且所述消声室出口与所述至少一个排液 管在所述消声室的底部沿轴向对齐。或者,所述消声器在使用时使所述壳体的轴线相对于水平面倾斜布置。
根据上述第一方面的消声器,每个所述排液管在相应的所述隔板的位于泄液方向上游的一侧沿所述轴线延伸一定距离,或者每个所述排液管在相应的所述隔板的位于泄液方向上游和下游的相对两侧均沿所述轴线延伸一定距离。所述消声器在使用时使所述壳体的轴线相对于水平面水平布置,所述至少一个排液管位于所述消声室的底部,并且所述消声室出口与所述至少一个排液管在所述消声室的底部沿轴向对齐。
根据上述第一方面的消声器,每个隔板上的所述排液管限定的排液通道的总横截面由机组运行中的润滑液体循环量决定,其为相应的隔板的横截面的0.1%-30%,以便实时泄除系统循环的液体润滑液。
根据上述第一方面的消声器,每个所述排液管包括单个管。
根据上述第一方面的消声器,所述单个管沿周向的一部分由所述壳体形成,另一部分由附加的壁形成,其中所述排液管的横截面形状为非圆形。或者,所述单个管由横截面为圆形的管道形成。
根据上述第一方面的消声器,每个所述排液管包括由数个子管形成的管束,所述管束中的每个子管被配置为具有相同或不同的长度。
根据上述第一方面的消声器,所述排液管与相应的隔板上的所述消声管沿径向连通或隔离开。
根据上述第一方面的消声器,当所述消声器在使用时相对于水平面水平布置时,所述消声室入口、所述消声室出口与所述至少一个排液管在所述消声室的底部对齐。
根据上述第一方面的消声器,每个所述排液管在相应的所述隔板的一侧延伸的距离根据预期消除的声波的波长确定。
根据本申请的第二方面,本申请提供了一种消声器,其包括限定消声室的筒状壳体、分别封闭所述壳体的两个轴向端的上游端板和下游端板、分别设置在所述上游端板和下游端板上的消声室入口和消声室出口、位于所述消声室内的消声管、以及位于所述消声室内的排液管。所述壳体具有轴线。所述消声管的第一轴向端与所述消声室入口连接,所述消声管的第二轴向端被所述下游端板封闭,所述消声管具有穿过其管壁设置的数个消声管连通孔,以将 所述消声室与所述消声管内的空间连通。所述排液管的第一轴向端被所述上游端板封闭,所述消声管的第二轴向端与所述消声室出口连接,所述排液管路具有穿过其管壁设置的数个排液管连通孔,以将所述消声室与所述排液管内的空间连通。所述排液管紧贴所述壳体布置或部分地由所述壳体形成。
根据上述第二方面的消声器,所述消声室出口与所述排液管沿轴向对齐。
根据本申请的第三方面,本申请提供了一种消声器,其包括:限定消声室的筒状壳体、位于所述壳体的两个相对的轴向端的消声室入口和消声室出口、位于所述消声室内的至少一个隔板、至少一个消声管和排液管。所述壳体具有轴线。每个隔板大体上垂直于所述壳体的轴线布置,并将所述消声室分成至少两个隔间。所述至少一个消声管分别设置在所述至少一个隔板上并在相应的所述隔板的至少一侧沿所述轴线延伸一定距离,每个消声管限定行进通道,所述行进通道贯穿相应的所述隔板。所述排液管连接相邻的两个隔板,并且所述排液管限定排液通道,所述排液通道贯穿所述相邻的两个隔板;或者所述排液管设置在与所述消声室出口相邻的隔板上并连接所述与消声室出口相邻的隔板和所述消声室出口,并且所述排液管限定排液通道,所述排液通道贯穿所述与消声室出口相邻的隔板。所述排液管紧贴所述壳体布置或者部分地由所述壳体形成,并且所述消声室出口与所述排液管沿着轴向对齐。所述排液管上设有数个连通孔,以将所述排液管的内部空间与所述排液管所在的所述隔间连通。
根据上述第三方面的消声器,所述消声器在使用时使所述壳体的轴线相对于水平面水平布置,所述排液管位于所述消声室的底部,并且所述消声室出口与所述排液管在所述消声室的底部沿轴向对齐;或者所述消声器在使用时使所述壳体的轴线相对于水平面倾斜布置。
根据上述第三方面的消声器,每个隔板上的所述排液管限定的排液通道的总横截面由机组运行的润滑液体循环量决定,其为相应的隔板的横截面的0.1%-30%,以便实时泄除系统循环的润滑液体。
根据上述第三方面的消声器,所述排液管沿周向的一部分由所述壳体形成,另一部分由附加的壁形成,其中所述排液管的横截面形状为非圆形;所述排液管由横截面为圆形的管道形成。
附图说明
图1A是根据本申请的消声器的第一类实施例的第一个实施例的立体图;
图1B是图1A所示的消声器的立体剖视图;
图1C是图1A所示的消声器的左视图;
图2A是根据本申请的消声器的第一类实施例的第二个实施例的主视剖视图;
图2B是根据本申请的消声器的第一类实施例的第三个实施例的主视剖视图;
图2C是根据本申请的消声器的第一类实施例的第四个实施例的立体剖视图;
图3A是根据本申请的消声器的排液通道截面形状的第一个实施例的示意图;
图3B是根据本申请的消声器的排液通道截面形状的第二个实施例的示意图;
图3C是根据本申请的消声器的排液通道截面形状的第三个实施例的示意图;
图4A是根据本申请的消声器的第一类实施例的第五个实施例的立体剖视图;
图4B是图4A所示的消声器的左视图;
图5A是根据本申请的消声器的第一类实施例的第六个实施例的立体剖视图;
图5B是图5A所示的消声器的左视图;
图6A是根据本申请的消声器的第二类实施例的第一个实施例的立体图;
图6B是图6A所示的消声器的轴向剖视图;
图7A是本申请的消声器的第二类实施例的第二个实施例的立体图;
图7B是本申请的消声器的第二类实施例的第三个实施例的立体图;
图7C是本申请的消声器的第二类实施例的第四个实施例的轴向剖视图;
图7D是本申请的消声器的第二类实施例的第五个实施例的轴向剖视图;
图8A是根据本申请的消声器的第三类实施例的立体图;
图8B是图8A所示的消声器的轴向剖视图;
图9是使用根据本申请的消声器的制冷系统的示意图。
具体实施方式
下面将参考构成本说明书一部分的附图对本申请的各种具体实施方式进行描述。应该理解的是,虽然在本申请中使用表示方向的术语,诸如“前”、“后”、“上”、“下”、“左”、“右”等描述本申请的各种示例结构部分和元件,但是在此使用这些术语只是为了方便说明的目的,基于附图中显示的示例方位而确定的。由于本申请所公开的实施例可以按照不同的方向设置,所以这些表示方向的术语只是作为说明而不应视作为限制。
本申请提供了一种适用于制冷系统的压缩机排气通道的改进的消声器。在压缩机的排气通道中,大部分为气态的冷媒中混合有润滑液体,这些润滑液体会由于重量而聚集在压缩机排气通道在使用时位于底部的位置。根据本申请的消声器构成压缩机排气通道的一部分,其在消声室内设置了排液通道,该排液通道的形成既能够满足及时从消声器中排出润滑液体的需求,又同时不会消减消声室的消声效果。本申请的消声器包括三种类型,第一类消声器为内插管型消声器,第二类消声器为膨胀腔型消声器,第三类消声器为多孔共振腔型消声器。
图1A-图1C示出了根据本申请的第一类实施例的第一个实施例的消声器100的具体结构,这第一类实施例涉及到内插管型消声器,内插管型消声器的壳体例如由压缩机的现有的排气通道的一部分形成,其外径与压缩机排气通道的其余部分的外径大体相同。其中,图1A示出了消声器100的立体图,图1B示出了消声器100的沿穿过轴线的平面剖切的立体剖视图,图1C示出了消声器100的左视图。
如图1A-图1C所示,消声器100包括筒状壳体101,壳体101具有轴线X1,并限定消声室102。消声器100还包括分别位于壳体101的两个相对的轴向端的消声室入口103和消声室出口104,消声室入口103和消声室出口104与消声室102是连通的,以便流体能够经由消声室入口103进入消声室102,并在消声之后经由消声室出口104排出消声室102。并且消声室入口103和消声室出口104的尺寸与消声室102的径向尺寸相同。也就是说,流体在消声器100中沿着图1A中虚线箭头A的方向行进。消声器100还包括位于消声室102内的两个隔板,即第一隔板113和第二隔板114,这两个隔板大体上垂直于轴线X1布置,并与壳体101相配合将消声室102分成三个隔间,即第一隔间107、第二隔间108和第三隔间109。
仍然如图1A-图1C所示,消声器100包括两个消声管,即第一消声管115和第二消声管116,这两个消声管分别设置在第一隔板113和第二隔板114上,其贯穿相应的隔板,并在相应的隔板的两侧沿轴线X1延伸一定距离。消声管在相应隔板的一侧延伸的距离根据待消减 的声波的特定波长而确定,在隔板两侧延伸的距离均能够用于消减声波。第一消声管115和第二消声管116均限定了流体的行进通道T,该行进通道T贯穿相应的隔板,流体经由行进通道T穿过隔板,从消声室入口103到达消声室出口104。在其他一些实施例中,消声管也可以只在相应的隔板的一侧延伸,只需要行进通道T贯穿隔板即可。
消声器100还包括两个排液管,即第一排液管117和第二排液管118,第一排液管117和第二排液管118分别设置在第一隔板113和第二隔板114上,并在相应的隔板的一侧(即靠近消声室出口104的、位于排液方向下游的一侧,下称“下游侧”)延伸一定距离。第一排液管117/第二排液管118在其相应隔板的下游侧延伸的距离根据待消减的声波的特定波长而确定。第一排液管117和第二排液管118均限定了排液通道P,该排液通道P贯穿相应的隔板。排液通道P在第一隔板113上的部分的横截面形状和尺寸与在第一排液管117中的部分的横截面形状和尺寸大致相同,其中,排液通道P在第一隔板113上的部分可以通过在第一隔板113上开孔、并将开孔与第一排液管117连通而形成,也可以通过将第一排液管117贯穿第一隔板113而形成。同样,排液通道P在第二隔板114上的部分的横截面形状和尺寸与在第二排液管118中的部分的横截面形状和尺寸大致相同,其中,排液通道P在第二隔板114上的部分可以通过在第二隔板114上开孔、并将开孔与第二排液管118连通而形成,也可以通过将第二排液管118贯穿第二隔板114而形成。
在图示的实施例中,第一排液管117和第二排液管118分别通过圆弧形的片材111和112所形成的附加的壁与壳体101共同围合而成的管状结构所形成,其横截面大体上呈半圆形。在其他一些实施例中,第一排液管117和第二排液管118还可以通过一个完整的管状物形成(例如图3A所示的实施例中的横截面为圆形的管道),而不需要通过壳体101形成,该完整的管状物紧贴壳体101布置。
如图1B所示,第一排液管117位于第二隔间108中,其上游端连接至第一隔板113,并通过其下游端与第二隔间108流体连通。也就是说,第一排液管117的下游端与第二隔板114相隔开,而并不延伸到第二隔板114。第二排液管118位于第三隔间109中,其上游端连接第二隔板114,其下游端与消声室出口104相隔一定距离,因此第二排液管118与第三隔间109通过其下游端流体连通。由于第一类实施例的消声室出口104由其壳体101的轴向端的开口形成,消声室出口104的尺寸远大于第一排液管117和第二排液管118所限定的排液通道P的横截面的尺寸,因此消声室出口104与第一排液管117和第二排液管118沿轴向对齐, 消声室出口104位于第一排液管117和第二排液管118所限定的排液通道P沿轴向延伸的路径上,由此,从排液通道P排出的润滑液体能够经由消声室出口104排出消声器100。
图1A-图1C所示的消声器100不仅适用于消声器100在使用状态下是水平放置(即轴线X1相对于水平面水平布置)的情形,而且适用于消声器在使用状态下是倾斜放置(即轴线X1与水平面成角度布置)的情形。当消声器100在使用状态下是水平放置的时候,第一排液管117和第二排液管118位于消声器100的最底部,因此在消声器100底部聚集的润滑液体能够经由第一排液管117和第二排液管118所限定的排液通道P排出消声器。而当消声器在使用状态下是倾斜放置的时候,润滑液体先聚集在第一隔板113和第二隔板114上,然后经由排液通道P排出消声器100。每个隔板上连接的排液管所限定的排液通道P的横截面由制冷系统(或机组)运行中的润滑液体循环量决定,其为相应的隔板的横截面的0.1%-30%,以便实时泄除系统循环的润滑液体。
待消声的流体(大体上为气态的冷媒)在从消声室入口103进入消声室102之后,第一隔板113和第二隔板114能够阻挡流体从除了行进通道T和排液通道P以外的部分流过第一隔板113和第二隔板114,气态冷媒主要通过行进通道T流过第一隔板113和第二隔板114,少量的气态冷媒会随着夹杂在气态冷媒中的润滑液体一起从排液通道P流过第一隔板113和第二隔板114。由于隔板的阻挡,流体的入射声波(沿X1轴方向)在撞到隔板后发生反射形成反射声波,反射声波的方向也沿X1轴方向,但与入射声波的方向相反,在这个过程中,反射声波与入射声波存在相位差,这使得反射声波能够与之后进入行进通道T的入射声波产生干涉抵消,从而产生消声的效果,而第一消声管115和第二消声管116的长度决定了能够消减的声波的波长。也就是说,通过设定第一消声管115和第二消声管116的长度,可以消减特定波长的声波,并且第一消声管115和第二消声管116能够用于消减不同波长的声波,甚至每个消声管在相应隔板两侧延伸的不同长度也可以用于消减不同波长的声波。同样,第一排液管117和第二排液管118也能用于消减特定波长的声波。
本申请的消声器100通过设置具有一定延伸长度的排液管,隔板上的排液通道P的横截面尺寸可以设置得较大,从而能够满足制冷系统及时排出润滑液体的需求,同时由于排液管具有消声的效果,因此即使隔板上的排液通道P的横截面尺寸设置得较大(相比较隔板的面积而言),消声器整体的消声效果也不会减弱。作为比较例,如果隔板上不设置排液管,仅仅在隔板上开设一个(或几个)孔作为排液孔,由于这个(或者这些)排液孔只能起到排液作用,而不能起到消声作用,为了不影响消声器整体的消声效果,只能将排液孔的尺寸开设得 比较小,而这样的话又不能实时泄除系统循环的润滑液体。与之相比,本申请的消声器100则不仅能实时泄除系统循环的润滑液体,而且不会影响消声器整体的消声效果。
需要说明的是,虽然在图1A-图1C的实施例中示出了排液管的特定形成方式、相对于隔板的布置方式,以及排液通道特定的横截面形状,本申请的第一类实施例的消声器并不限于图1A-图1C所示的实施例,其排液管可以有其他的形成方式和相对于隔板的布置方式,且排液通道的横截面形状也可以为其他形状。例如,排液管除了由壳体部分地形成以外,还可以由一个完整的管形成(如图3A所示),而不需要由壳体参与形成;排液管可以仅在相应隔板的上游侧延伸一定距离(如2B所示的实施例),也可以在相应隔板的两侧延伸一定距离(如图2A所示的实施例);排液管除了与消声管相互隔离开地设置以外,还可以与消声管沿径向相连通(如图5A和图5B所示的实施例);排液通道的横截面的形状可以为任意的形状(例如图3A-图3C所示的实施例所列举的形状)。以下将以举例的方式列出本申请的第一类实施例的消声器的其他一些实施例。
图2A-图2C示出了根据本申请的消声器的第一类实施例的其他一些实施例,这些实施例主要用于示出与图1A-图1C所示的第一实施例所不同的排液管(相对于隔板的)布置方式。
图2A示出了根据第一类实施例的第二个实施例的消声器120,其中,图2A是消声器120的沿穿过轴线的平面剖切的主视剖视图。如图2A所示,消声器120也包括壳体101、设置在壳体中的第一隔板123和第二隔板124,并且包括分别设置在第一隔板123和第二隔板124上的第一消声管125和第二消声管126,以及分别设置在第一隔板123和第二隔板124上的第一排液管127和第二排液管128。如图2A所示的消声器120与如图1A-1C所示的消声器100大体相似,不同之处主要在于,图2A所示的消声器120的第一排液管127和第二排液管128在相应的隔板的两侧(即上游侧和下游侧)均延伸一段距离,而图1A-图1C所示的消声器100的第一排液管117和第二排液管118仅在相应的隔板的下游侧延伸一段距离。因此,对于图2A所示的消声器120而言,第一排液管127和第二排液管128不仅能通过其在相应的隔板的下游侧延伸的部分消声,而且能够通过其在相应的隔板的上游侧延伸的部分消声。图2A所示的消声器120适用于在使用状态下是水平放置的情形。
图2B示出了根据第一类实施例的第三个实施例的消声器130,其中,图2B是消声器130的沿穿过轴线的平面剖切的主视剖视图。如图2B所示,消声器130也包括壳体101、设置在壳体中的第一隔板133和第二隔板134,并且包括分别设置在第一隔板133和第二隔板134上的第一消声管135和第二消声管136,以及分别设置在第一隔板133和第二隔板134上的 第一排液管137和第二排液管138。如图2B所示的消声器130与如图1A-1C所示的消声器100的不同之处主要在于,图2B所示的消声器130的第一排液管127和第二排液管128在相应的隔板的上游侧延伸一段距离,而图1A-1C所示的消声器100的第一排液管117和第二排液管118在相应的隔板的下游侧延伸一段距离。图2B所示的消声器130适用于在使用状态下是水平放置的情形。
图2C示出了根据第一类实施例的第四个实施例的消声器140,其中,图2C是消声器140的沿穿过轴线的平面剖切的立体剖视图。如图2C所示,消声器140也包括壳体101、设置在壳体中的第一隔板143和第二隔板144,并且包括分别设置在第一隔板143和第二隔板144上的第一消声管145和第二消声管146。消声器140还包括排液管147。如图2C所示的消声器140与如图1A-1C所示的消声器100的不同主要在于,图2C所示的消声器140虽然具有两个隔板,但是只具有一个排液管147,该排液管147连接第一隔板143和第二隔板144,并且排液管147限定的排液通道P贯穿第一隔板143和第二隔板144,而图1A-1C所示的消声器100的第一隔板113和第二隔板114上分别设有一个排液管,排液管并不将两个隔板相连接。在图2C所示的实施例中,排液管147位于第二隔间208中,而并不伸入第一隔间207和第三隔间209中,第一隔间207中的润滑液体经由第一隔板143上的排液通道P进入排液管。排液管147上还设有数个连通孔210,这些连通孔210用于将排液管147的内部空间与第二隔间208相连通,使得第二隔间208中的润滑液体能够进入排液管147中。排液管147中的润滑液体最后经由第二隔板144上的排液通道P排出。在一些实施例中,连通孔210设置在排液管147的下游位置处,并靠近第二隔板144,从而图2C所示的消声器140不仅适用于在使用状态下是水平放置的情形,而且适用于在使用状态下是倾斜放置的情形。
可以看到,在图1A-图2C所示的第一类实施例的第一至第四实施例中,消声器中的排液管都只有一个管,并且该管与消声管是分开独立设置的。在这些实施例中,排液通道的横截面的形状可以设置成不同的形状,例如图1C所示的形状。排液通道的横截面也可以是其他形状,例如图3A-图3C所示的形状。图3A-图3C示出了排液通道的横截面形状的其他实施例。其中,图3A是排液通道的横截面形状的第一个实施例的示意图,图3B是排液通道的横截面形状的第二个实施例的示意图,图3C是排液通道的横截面形状的第三个实施例的示意图,图3A-图3C示出了消声器的左视图的视角。如图3A所示,排液管317由单独的圆管形成,因此排液通道P的横截面呈圆形。如图3B所示,排液管327由一个平板片材所形成的附加的壁和壳体321共同形成,因此排液通道P的横截面呈弓形。如图3C所示,排液管337 由一个横截面形状类似于槽钢的片材所形成的附加的壁与壳体331共同形成,因此排液通道P的横截面大体呈长方形。
图4A和4B示出了根据第一类实施例的第五个实施例的消声器400,其中图4A是消声器400的沿穿过轴线的平面剖切的立体剖视图,图4B是消声器400的左视图。图4A和4B所示的消声器400与图1A-1C所示的消声器100大体相似,区别主要在于第五个实施例的排液管包括由数个子管420形成的管束,而第一个实施例的消声器100则包括单个管。排液管的管束中的子管各自限定一个排液支路,该排液支路贯穿相应的隔板,这些排液支路共同限定排液通道P。此外,这些子管420可以设置为具有相同或不同的延伸长度,从而满足需要消减不同波长声波的需求。
图5A和5B示出了根据第一类实施例的第六个实施例的消声器500,其中图5A是消声器500的沿穿过轴线的平面剖切的立体剖视图,图5B是消声器500的左视图。图5A和5B所示的消声器500与图1A-图1C所示的消声器100的主要区别在于,图1A-1C所示的第一实施例的消声器100的消声管和排液管是相互独立(或隔开)的管路,而图5A和5B所示的第六个实施例的消声器500的消声管和排液管是沿径向连通的管路。如图5A和5B所示,消声器500包括壳体501、设置在壳体501中的第一隔板513和第二隔板514,以及分别设置在第一隔板513和第二隔板514上的第一消声管515和第二消声管516。消声器500还包括第一排液管517和第二排液管518,第一排液管517和第二排液管518分别与第一消声管515和第二消声管516沿径向连通。因此,在消声器500的横截面上,消声管限定的行进通道T与排液管限定的排液路径P是连通的,消声管中的流体能够直接沿径向流入排液管中,并沿着排液管排出消声器500。图5A和5B所示的实施例特别适用于消声管与壳体501之间的空间狭小的应用场景,这是因为,采用图5A和5B所示的设置排液管的方式,可以先将排液管与消声管做成一个一体的异形管道,然后将这个异形管道插入并焊接在隔板中,最后将排液管、消声管和隔板的装配好的整体件插入壳体501中。而如果采用例如图1A-图1C所示的实施例,则需要单独将排液管焊接在隔板上,而这样会因为排液管与消声管靠得太近而导致不好焊接。
在图5A和图5B所述的实施例中,第一消声管515的底部设有沿其轴向延伸的开口525,第一排液管517通过两个大致平坦的片材522和524所形成的附加的壁将第一消声管515底部的开口525连接至壳体501,从而由壳体501的一部分和两个片材522和524共同形成了 第一排液管517(如图5B中的虚线框所示)。第二排液管518的形成方式与第一排液管517类似,在此不赘述。
需要说明的是,尽管在上面所列举的消声管的第一类实施例中,消声管中均设有两个隔板,在其他未示出的实施例中,消声管也可以只具有一个隔板。
图6A-图7D示出了根据本申请的消声器的第二类实施例,第二类实施例的消声器与第一类实施例的消声器在排液管的形成方式、相对于隔板的布置方式,以及排液通道横截面形状方面可以是类似的设置,不同之处在于,第一类实施例的消声器的消声室的内径与压缩机排气通道的内径大体相同,而第二类实施例的消声器则涉及膨胀腔型消声器,其消声室的内径相对于压缩机排气通道的内径增大。
图6A和6B示出了根据本申请第二类实施例的第一个实施例的消声器600,其中,图6A是消声器600的立体图,图6B是消声器600沿穿过轴线的平面剖切的立体剖视图。如图6A和6B所示,消声器600包括筒状壳体601,壳体601限定消声室602,并具有轴线X2。在壳体601的两个相对的轴向端分别设有上游端板651和下游端板653,用于封住消声室602,但是上游端板651和下游端板653上分别开设有一个开口,用于分别形成消声室入口603和消声室出口604。消声室入口603和消声室出口604因此与消声室602连通,并位于壳体601的两个相对的轴向端。在消声室入口603和消声室出口604处分别连接有入口管661和出口管663,入口管661和出口管663用于将消声器600连接至压缩机的排气通道中,且入口管661和出口管663的径向尺寸与压缩机的排气通道的径向尺寸大体相同。
仍然如图6A和图6B所示,消声器600还包括设置在其中的第一隔板613、第二隔板614、第一消声管615、第二消声管616、第一排液管617和第二排液管618,这些部件的设置方式与图1A-图1C所示的消声器100中相同部件的设置方式大体相同。
消声室出口604相对于第一排液管617和第二排液管618的位置设置为使得从排液管流出的液体能够经由消声室出口604排出。在图6A和6B所示的实施例中,消声室出口604在下游端板653上的位置设置为紧贴壳体601,并且与第一排液管617和第二排液管618沿轴向对齐,消声室入口603也与消声室出口604以同样的方式布置。因此,当消声器600在使用时水平布置时,消声室入口603、消声室出口604、第一排液管617和第二排液管618在消声室602的底部沿轴向对齐,消声室出口604位于第一排液管617和第二排液管618所限定的排液通道P沿轴向延伸的路径上,从而能确保从排液通道P流出的润滑液体能够从消声室出口604流出。在图示的实施例中,消声室入口603、消声室出口604、第一排液管617和第 二排液管618的横截面尺寸和形状都相同。在其他一些实施例中,消声室入口603和消声室出口604的横截面尺寸可以设计为大于第一排液管617和第二排液管618的排液通道P的横截面尺寸。消声室入口603也可以不与消声室出口604以同样的方式布置,只需要将消声室出口604以上述方式布置即能满足排液的要求。本实施例的消声器600不仅适用于在使用状态下是水平放置的情形,也适用于在使用状态下是倾斜放置的情形。
图7A示出了根据本申请第二类实施例的第二个实施例的消声器710,该实施例的消声器710与第一个实施例的消声器600相似,主要区别在于,第二个实施例的消声器710中只设置有一个隔板713、一个消声管715和一个排液管717,而第一个实施例的消声器600中设置有两个隔板、两个消声管和两个排液管。第二个实施例的消声器710中的排液管717、消声室入口711和消声室出口712的设置方式与第一个实施例的消声器600中的排液管、消声室入口和消声室出口的设置方式相同。
图7B示出了根据本申请第二类实施例的第三个实施例的消声器720,该实施例的消声器720与第二个实施例的消声器710相似,主要区别在于,第二个实施例的消声器710中的消声室入口711与消声室出口712和排液管717沿轴向对齐,而第三实施例的消声器720的消声室入口721与消声器出口722和排液管727不同轴布置,而是错开,只有消声器出口722和排液管727沿轴向对齐。
图7C示出了根据本申请第二类实施例的第四个实施例的消声器730,该实施例的消声器730与第一实施例的消声器710相似,主要区别在于,第一个实施例的消声器600中在两个隔板613和614上分别设有第一排液管617和第二排液管618,而在第四个实施例的消声器730中只设有一个排液管737,该排液管737的设置方式与图2C所示的第一类实施例的第四个实施例中的排液管147的设置方式相似。排液管737上的连通孔760围绕排液管737的轴向设置。
图7D示出了根据本申请第二类实施例的第五个实施例的消声器740,该实施例的消声器740与第一个实施例的消声器600相似,也设有两个隔板(第一隔板743和第二隔板744)和两个排液管(第一排液管747和第二排液管748),所不同的是,第五个实施例的消声器740的两个排液管彼此具有不同的设置方式,而第一个实施例的消声器600的两个排液管的设置方式相同。具体而言,第五个实施例的消声器740中的第一排液管747仅在相应的第一隔板743的上游侧延伸一段距离,而第二排液管748不仅在相应的第二隔板744的上游侧和下游侧均延伸一段距离,而且在第二隔板744的下游侧延伸直至到达消声室出口742。也就说第 二排液管748连接第二隔板744和消声室出口742处的下游端板753。第二排液管748在第二隔板744与下游端板753之间延伸的部分的设置方式与图7C所示的第四个实施例中的排液管737的设置方式类似。
图8A和8B示出了根据本申请的第三类实施例(多孔共振腔型消声器)的消声器800,其中,图8A是消声器800的立体图,图8B是消声器800的立体剖视图。如图8A和8B所示,消声器800包括筒状壳体801,壳体801限定消声室802,并具有轴线X3。消声器800还包括封闭壳体801的两个轴向端的上游端板851和下游端板853,以及分别设置在上游端板851和下游端板853上的消声室入口803和消声室出口804。消声室入口803和消声室出口804处分别连接有入口管861和出口管863,入口管861和出口管863用于将消声器800连接至压缩机的排气通道中,且入口管861和出口管863的径向尺寸与压缩机的排气通道的径向尺寸大体相同。
在消声室802中设置有消声管815和排液管817,消声管815和排液管817均沿着轴线X3延伸。消声管815的第一轴向端与消声室入口803连接,消声管815的第二轴向端被下游端板853封闭,并且消声管815上设有数个消声管连通孔825,用于将消声管815内的空间与消声室802连通。数个消声管连通孔825沿着消声管815的轴向和周向布置。排液管817的第一轴向端被上游端板851封闭,排液管817的第二轴向端与消声室出口804连接,并且排液管817上设有数个排液管连通孔827,用于将排液管817内的空间与消声室802连通。数个排液管连通孔827沿着排液管817的周向和轴向布置。
与第一类实施例和第二类实施例相似,第三类实施例的消声器的排液管也紧贴壳体布置或者部分地由壳体形成。在图8A和图8B所示的实施例中,排液管817通过一个完整的管状物形成(与图3A所示的实施例中的排液管相似),而不需要借助壳体801形成,并且排液管817紧贴壳体801布置。在其他的一些实施例中,排液管817也可以由附加的壁与壳体801共同形成,例如与图1、图3B和图3C所示的实施例类似。当消声器800为在使用状态下是水平放置的情形时,排液管817位于壳体801的最底部,消声室出口804与排液管817沿轴向对齐,因此位于排液管所限定的排液通道P沿轴向延伸的路径上。
由此,待消声的流体从入口管861进入,并经由消声室入口803直接进入消声管815中,然后经由消声管连通孔825进入消声室802中,再经过消声室802从排液管连通孔827进入排液管817中,并从消声室出口804以及出口管863排出消声器800。
本申请的发明人经过长期观察发现,对于第二类实施例(膨胀腔型)和第三类实施例(多孔共振腔型)消声器而言,现有技术的消声器,为了从消声室排出润滑液体,通常在消声器的底部(不管是水平放置还是倾斜放置时都在底部)设置引流孔,并外接引流管,这样不仅增加了泄露冷媒的风险,而且也消减了消声效果。而本申请的第二类实施例和第三类实施例的消声器通过设置紧贴壳体布置或由壳体部分形成的排液管,并改变消声室出口的位置,使得消声室出口与排液管沿轴向对齐,不仅能够满足制冷系统及时排出润滑液体的需求,而且不会消减消声效果,同时也不会带来冷媒泄露的风险。
图9是使用根据本申请的消声器的制冷系统900的示意图。如图9所示,制冷系统900包括蒸发器910、压缩机920、冷凝器930和节流阀940,它们连接成一个制冷循环回路,冷媒在该制冷循环回路中循环。具体而言,冷媒在压缩机920内被压缩为高压、高温状态后排出至冷凝器930中。然后冷媒在冷凝器930中与其他介质(例如环境空气)进行热交换,以释放热量而被冷凝为高压、液态状态,然后排入节流阀940中。在节流阀940中,冷媒被膨胀节流为低压两相状态后,流入蒸发器910中。然后在蒸发器910中与其他介质(例如水)进行热交换,以吸收热量而被蒸发为低压、气态状态后从压缩机920的吸气口回到压缩机920,以完成冷媒循环。根据本申请的消声器950设置在压缩机920的排气通道中,即设置在压缩机920与冷凝器930之间的连接管路上,以对压缩机排气通道中的大体为气态的冷媒进行消声操作。消声器950可以是图1A-图8B中所示的任一个实施例所示的消声器。
尽管已经结合以上概述的实施例的实例描述了本公开,但是对于本领域中至少具有普通技术的人员而言,各种替代方案、修改、变化、改进和/或基本等同方案,无论是已知的或是现在或可以不久预见的,都可能是显而易见的。另外,本说明书中所描述的技术效果和/或技术问题是示例性而不是限制性的;所以本说明书中的披露可能用于解决其他技术问题和具有其他技术效果。因此,如上陈述的本公开的实施例的实例旨在是说明性而不是限制性的。在不背离本公开的精神或范围的情况下,可以进行各种改变。因此,本公开旨在包括所有已知或较早开发的替代方案、修改、变化、改进和/或基本等同方案。

Claims (16)

  1. 一种消声器,包括:
    限定消声室的筒状壳体,所述壳体具有轴线;
    位于所述壳体的两个相对的轴向端的消声室入口和消声室出口;
    位于所述消声室内的至少一个隔板,每个隔板大体上垂直于所述壳体的轴线布置,并将所述消声室分成至少两个隔间;
    至少一个消声管,所述至少一个消声管分别设置在所述至少一个隔板上并在相应的所述隔板的至少一侧沿所述轴线延伸一定距离,每个消声管限定行进通道,所述行进通道贯穿相应的所述隔板;以及
    至少一个排液管,所述至少一个排液管分别设置在所述至少一个隔板上并在相应的所述隔板的至少一侧沿所述轴线延伸一定距离,每个所述排液管限定排液通道,所述排液通道贯穿相应的所述隔板,其中,每个所述排液管紧贴所述壳体布置或者部分地由所述壳体形成;
    其中,所述消声室出口相对于所述至少一个排液管的位置设置为使得从所述至少一个排液管流出的液体能够经由所述消声室出口排出。
  2. 根据权利要求1所述的消声器,其特征在于:
    每个所述排液管在相应的所述隔板的位于泄液方向下游的一侧沿所述轴线延伸一定距离;
    其中,所述消声器在使用时使所述壳体的轴线相对于水平面水平布置,所述至少一个排液管位于所述消声室的底部,并且所述消声室出口与所述至少一个排液管在所述消声室的底部沿轴向对齐;或者
    其中,所述消声器在使用时使所述壳体的轴线相对于水平面倾斜布置。
  3. 根据权利要求1所述的消声器,其特征在于:
    每个所述排液管在相应的所述隔板的位于泄液方向上游的一侧沿所述轴线延伸一定距离,或者每个所述排液管在相应的所述隔板的位于泄液方向上游和下游的相对两侧均沿所述轴线延伸一定距离;
    其中,所述消声器在使用时使所述壳体的轴线相对于水平面水平布置,所述至少一个排液管位于所述消声室的底部,并且所述消声室出口与所述至少一个排液管在所述消声室的底部沿轴向对齐。
  4. 根据权利要求2或3所述的消声器,其特征在于:
    每个隔板上的所述排液管限定的排液通道的总横截面由机组运行中的润滑液体循环量决定,其为相应的隔板的横截面的0.1%-30%,以便实时泄除系统循环的液体润滑液。
  5. 根据权利要求4所述的消声器,其特征在于:
    每个所述排液管包括单个管。
  6. 根据权利要求5所述的消声器,其特征在于:
    所述单个管沿周向的一部分由所述壳体形成,另一部分由附加的壁形成,其中所述排液管的横截面形状为非圆形;或者
    所述单个管由横截面为圆形的管道形成。
  7. 根据权利要求4所述的消声器,其特征在于:
    每个所述排液管包括由数个子管形成的管束,所述管束中的每个子管被配置为具有相同或不同的长度。
  8. 根据权利要求4所述的消声器,其特征在于:
    所述排液管与相应的隔板上的所述消声管沿径向连通或隔离开。
  9. 根据权利要求2或3所述的消声器,其特征在于:
    其中,当所述消声器在使用时相对于水平面水平布置时,所述消声室入口、所述消声室出口与所述至少一个排液管在所述消声室的底部对齐。
  10. 根据权利要求2或3所述的消声器,其特征在于:
    每个所述排液管在相应的所述隔板的一侧延伸的距离根据预期消除的声波的波长确定。
  11. 一种消声器,包括:
    限定消声室的筒状壳体,所述壳体具有轴线;
    分别封闭所述壳体的两个轴向端的上游端板和下游端板,以及分别设置在所述上游端板和下游端板上的消声室入口和消声室出口;
    位于所述消声室内的消声管,所述消声管的第一轴向端与所述消声室入口连接,所述消声管的第二轴向端被所述下游端板封闭,所述消声管具有穿过其管壁设置的数个消声管连通孔,以将所述消声室与所述消声管内的空间连通;
    位于所述消声室内的排液管,所述排液管的第一轴向端被所述上游端板封闭,所述消声管的第二轴向端与所述消声室出口连接,所述排液管路具有穿过其管壁设置的数个排液管连通孔,以将所述消声室与所述排液管内的空间连通;
    其中,所述排液管紧贴所述壳体布置或部分地由所述壳体形成。
  12. 根据权利要求11所述的消声器,其特征在于:
    所述消声室出口与所述排液管沿轴向对齐。
  13. 一种消声器,包括:
    限定消声室的筒状壳体,所述壳体具有轴线;
    位于所述壳体的两个相对的轴向端的消声室入口和消声室出口;
    位于所述消声室内的至少一个隔板,每个隔板大体上垂直于所述壳体的轴线布置,并将所述消声室分成至少两个隔间;
    至少一个消声管,所述至少一个消声管分别设置在所述至少一个隔板上并在相应的所述隔板的至少一侧沿所述轴线延伸一定距离,每个消声管限定行进通道,所述行进通道贯穿相应的所述隔板;以及
    排液管,所述排液管连接相邻的两个隔板,并且所述排液管限定排液通道,所述排液通道贯穿所述相邻的两个隔板;或者所述排液管设置在与所述消声室出口相邻的隔板上并连接所述与消声室出口相邻的隔板和所述消声室出口,并且所述排液管限定排液通道,所述排液通道贯穿所述与消声室出口相邻的隔板;
    其中,所述排液管紧贴所述壳体布置或者部分地由所述壳体形成,并且所述消声室出口与所述排液管沿着轴向对齐;并且
    其中,所述排液管上设有数个连通孔,以将所述排液管的内部空间与所述排液管所在的所述隔间连通。
  14. 根据权利要求13所述的消声器,其特征在于:
    其中,所述消声器在使用时使所述壳体的轴线相对于水平面水平布置,所述排液管位于所述消声室的底部,并且所述消声室出口与所述排液管在所述消声室的底部沿轴向对齐;或者
    其中,所述消声器在使用时使所述壳体的轴线相对于水平面倾斜布置。
  15. 根据权利要求14所述的消声器,其特征在于:
    每个隔板上的所述排液管限定的排液通道的总横截面由机组运行的润滑液体循环量决定,其为相应的隔板的横截面的0.1%-30%,以便实时泄除系统循环的润滑液体。
  16. 根据权利要求15所述的消声器,其特征在于:
    所述排液管沿周向的一部分由所述壳体形成,另一部分由附加的壁形成,其中所述排液管的横截面形状为非圆形;所述排液管由横截面为圆形的管道形成。
PCT/CN2023/110530 2022-08-26 2023-08-01 消声器和具有该消声器的制冷系统 WO2024041329A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211031804.9 2022-08-26
CN202211031804.9A CN115419600A (zh) 2022-08-26 2022-08-26 消声器和具有该消声器的制冷系统

Publications (1)

Publication Number Publication Date
WO2024041329A1 true WO2024041329A1 (zh) 2024-02-29

Family

ID=84200827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110530 WO2024041329A1 (zh) 2022-08-26 2023-08-01 消声器和具有该消声器的制冷系统

Country Status (3)

Country Link
CN (1) CN115419600A (zh)
TW (1) TW202409424A (zh)
WO (1) WO2024041329A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115419600A (zh) * 2022-08-26 2022-12-02 江森自控空调冷冻设备(无锡)有限公司 消声器和具有该消声器的制冷系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307718A (ja) * 2005-04-27 2006-11-09 Calsonic Kansei Corp 消音器の水抜き構造
CN102996215A (zh) * 2012-12-27 2013-03-27 金坛市佳越机械有限公司 单缸柴油机立式双腔消声器
CN204225978U (zh) * 2014-10-30 2015-03-25 奇瑞汽车股份有限公司 一种汽车排气消声器
CN110145456A (zh) * 2019-05-31 2019-08-20 芜湖欧宝机电有限公司 压缩机排气过滤器及其消声方法
CN211397696U (zh) * 2020-01-20 2020-09-01 郑州铁路职业技术学院 一种内燃机用消音器
CN115419600A (zh) * 2022-08-26 2022-12-02 江森自控空调冷冻设备(无锡)有限公司 消声器和具有该消声器的制冷系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307718A (ja) * 2005-04-27 2006-11-09 Calsonic Kansei Corp 消音器の水抜き構造
CN102996215A (zh) * 2012-12-27 2013-03-27 金坛市佳越机械有限公司 单缸柴油机立式双腔消声器
CN204225978U (zh) * 2014-10-30 2015-03-25 奇瑞汽车股份有限公司 一种汽车排气消声器
CN110145456A (zh) * 2019-05-31 2019-08-20 芜湖欧宝机电有限公司 压缩机排气过滤器及其消声方法
CN211397696U (zh) * 2020-01-20 2020-09-01 郑州铁路职业技术学院 一种内燃机用消音器
CN115419600A (zh) * 2022-08-26 2022-12-02 江森自控空调冷冻设备(无锡)有限公司 消声器和具有该消声器的制冷系统

Also Published As

Publication number Publication date
CN115419600A (zh) 2022-12-02
TW202409424A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2024041329A1 (zh) 消声器和具有该消声器的制冷系统
US8016071B1 (en) Multi-stage low pressure drop muffler
JP5229391B2 (ja) 内燃機関の排気装置
US7578659B2 (en) Compressor discharge muffler
US3741336A (en) Expansion type silencer
WO2011024231A1 (ja) 内燃機関の排気装置
US20140166393A1 (en) Crossover Muffler
US3512607A (en) Co-axial tuning tubes for muffler
JP2008050989A (ja) 消音器
US2739661A (en) Muffler
EP1288499A2 (en) Manifold assembly for a compressor
KR200371655Y1 (ko) 자동차용 소음기
WO2021074804A1 (en) Screw compressor
CN102829581A (zh) 用于压缩机组制冷系统的带消声功能的气体分流/汇流器
JP2009209854A (ja) 消音器
JP4261711B2 (ja) 排気消音装置
EP4279784A1 (en) Pipeline provided with silencing structure
JPS6221702Y2 (zh)
CN211623652U (zh) 消音组件及空调器
CN218495352U (zh) 消音器和空调
CN215490464U (zh) 一种带亥姆霍兹消音器隔板及压缩机
CN110985342B (zh) 一种冰箱压缩机吸气消声器
US3513939A (en) Exhaust gas muffler
US3101811A (en) Marine type muffler
JP2006283645A (ja) 偏平マフラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856419

Country of ref document: EP

Kind code of ref document: A1