WO2024041046A1 - 一种烷氧基苯高选择性制乙烯的方法 - Google Patents

一种烷氧基苯高选择性制乙烯的方法 Download PDF

Info

Publication number
WO2024041046A1
WO2024041046A1 PCT/CN2023/094591 CN2023094591W WO2024041046A1 WO 2024041046 A1 WO2024041046 A1 WO 2024041046A1 CN 2023094591 W CN2023094591 W CN 2023094591W WO 2024041046 A1 WO2024041046 A1 WO 2024041046A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
catalyst
reaction
sapo
anisole
Prior art date
Application number
PCT/CN2023/094591
Other languages
English (en)
French (fr)
Inventor
范杰
王玥
邹世辉
娄宝辉
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2024041046A1 publication Critical patent/WO2024041046A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/01Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis
    • C07C37/055Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis the substituted group being bound to oxygen, e.g. ether group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/14Phosphorus; Compounds thereof
    • C07C2527/16Phosphorus; Compounds thereof containing oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the field of olefin preparation and relates to a method for producing ethylene with high selectivity from alkoxybenzene. Specifically, under the action of molecular sieve catalyst, alkoxybenzene is converted into ethylene (ethylene gas phase selectivity>99%) and phenol (phenol liquid phase selectivity>90%) with high selectivity, and the reaction has good stability.
  • Ethylene is one of the most produced chemical products in the world and is known as the "Mother of Petrochemicals".
  • the development of clean and efficient non-petroleum-based ethylene production technology can help solve the pain points of the existing industrial ethylene production process such as strong petroleum dependence and low ethylene self-sufficiency rate.
  • Coal-based methanol-to-ethylene technology and biomass-to-ethylene technology are currently important non-petroleum-based ethylene production routes.
  • the current methanol to olefins process still has technical bottlenecks such as difficulty in product separation and short catalyst life.
  • Chinese patent CN1356299A discloses a process for producing low-carbon olefins from methanol or dimethyl ether.
  • the catalyst is silicoaluminophosphate molecular sieve SAPO-34. This process uses a gas-solid co-current downflow fluidized bed ultra-short-time contact reactor. The catalyst and raw materials contact and react in the reactor, and then are rapidly separated in the gas-solid rapid separator at the lower part of the reactor.
  • the separated catalyst enters the regenerator and is regenerated by burning charcoal for cycle reaction.
  • the conversion rate of dimethyl ether or methanol in this reaction process is greater than 98%.
  • this method has technical shortcomings such as low selectivity for ethylene and propylene, easy carbon deposition on the catalyst, and the need for repeated regeneration.
  • Biomass-to-ethylene technology also faces challenges such as complex routes, low ethylene selectivity, and high separation costs.
  • Chinese patent CN101579638A discloses a catalyst for ethanol dehydration to ethylene and its preparation method, which belongs to the technical field of biomass energy and catalyst preparation.
  • SAPO-34 molecular sieve modified with metal Mn ions solves the problem of low ethanol concentration in biomass fermentation and difficulty in subsequent applications.
  • this method still has problems such as high process energy consumption and high product separation costs.
  • the object of the present invention is to provide a method for producing ethylene with high selectivity from alkoxybenzene.
  • alkoxybenzene Under the action of a molecular sieve catalyst, alkoxybenzene can be converted into ethylene (ethylene gas phase selectivity >99%) and phenol ( The liquid phase selectivity of phenol is >90%), and the reaction stability is good (>100 h), so it has good industrial application prospects.
  • a method for producing ethylene with high selectivity from alkoxybenzene including the following steps:
  • Alkoxybenzene is used as a reaction raw material, and after gasification, it is passed into a fixed-bed catalytic reactor in an oxygen-free environment. After a period of reaction, ethylene is generated, and the reaction temperature is 160-450°C; the fixed-bed catalytic reactor includes a A constant temperature zone in which a catalyst is placed;
  • R in the alkylbenzene molecule is one of methyl and ethyl
  • R 1 to R 5 are independently selected from H atoms, alkyl groups, alkoxy groups, phenolic hydroxyl groups, alcoholic hydroxyl groups, , one of the halogens
  • R' is selected from one of the H atoms, hydroxyl, alkoxy, alkyl, and amino groups, that is They are aldehyde group, carboxyl group, ester group, ketone group and amide group respectively.
  • the catalyst includes aluminosilicate or aluminophosphate.
  • the temperature of the constant temperature zone is 200-300°C.
  • inert gas can be used to assist the feed during the reaction process.
  • the reaction raw materials are gasified and mixed with an inert gas and passed into a two-stage fixed bed catalytic reactor; the inert gas is selected from N 2 , He or Any one or more of Ar; the flow rate of the inert gas is 0-100 mL/min, preferably 20-80 mL/min, more preferably 30-40 mL/min.
  • the catalyst is one or more of aluminosilicate molecular sieves, AlPO, SAPO, ZSM, Y-type molecular sieves, amorphous aluminosilicates ASAs, acidic aluminum silicate AAS, and aluminum phosphate, and is more preferably SAPO type.
  • aluminosilicate molecular sieve most preferably SAPO-34 or SAPO-18 molecular sieve.
  • the silica-aluminum ratio of the silica-aluminum molecular sieve is 1-100, more preferably 10-80, and most preferably 20-60; the silica-aluminum ratio of the SAPO molecular sieve is 0.02-2, more preferably 0.1-1.2, and most preferably 0.2-1.0.
  • the reaction pressure of the fixed bed catalytic reactor is normal pressure.
  • the space velocity of alkoxybenzene is 1-500 kg alkoxybenzene/(kg catalyst)/h, more preferably 20-200 kg alkoxybenzene/(kg catalyst)/h, and most preferably 40 -100 kg alkoxybenzene/(kg catalyst)/h; space velocity represents the mass or volume of the reactants passing through the catalyst bed per unit time. It is usually divided by the mass or volume of the reactants per unit time by the mass or volume of the catalyst bed. Volume representation.
  • the beneficial effects of the present invention are at least:
  • the invention provides a process route method for producing ethylene with high selectivity from alkoxybenzene.
  • the alkoxybenzene is used as raw material. After the raw material is gasified during the reaction, it can be brought into the reactor by inert gas and passed through the fixed bed reactor.
  • the selectivity of ethylene in the final gas phase product reaches more than 95%, and the selectivity of phenol in the liquid phase product reaches more than 90%.
  • This method uses alkoxy groups in alkoxybenzene molecules as carbon sources, and utilizes the spatial and electronic interactions between alkoxybenzene molecules and aluminosilicates or aluminophosphates to regulate the fragmentation and transformation of O-CH 3 , and then produce ethylene with high selectivity, which is significantly different from existing ethylene preparation methods.
  • the carbon atom economy is >95%, up to 100%.
  • the process of the present invention has good stability and can operate continuously for more than 100 hours. After 100 hours of reaction, the carbon content of the catalyst surface area is less than 10%, and the optimal can be less than 3%. There is no need to face the problem of repeated catalyst regeneration.
  • the raw material alkoxybenzene used in the present invention comes from a wide range of sources, and can be obtained through the reaction of alcohols and phenol, or through biomass conversion.
  • This process can be coupled with the methanol-to-anisole reaction to produce ethylene with high selectivity from methanol, and coupled with biomass conversion to produce ethylene and phenol with high selectivity from biomass. It has important social and economic value, and its excellent performance indicators also have small The potential of chemical industry production can be applied to the industrial production of small-scale annual production of ethylene.
  • Figure 1 is a trend chart of the reaction as a function of temperature in Example 1.
  • Figure 2 is a gas chromatogram of the liquid phase product of Example 1.
  • Figure 3 is a graph showing the catalytic reaction stability results of Example 1.
  • Figure 4 is the thermogravimetric spectrum of SAPO-34 before and after the reaction in Example 1.
  • Figure 5 shows the reaction principle of the highly selective ethylene production process from alkoxybenzene of the present invention.
  • Ethylene selectivity, phenol selectivity and ethylene production for 100 hours of continuous operation are calculated using the following formulas.
  • the catalyst evaluation device involved in the embodiment of the present invention includes a liquid mass spectrometer and an online gas chromatograph.
  • the components of the gas phase products in the reactor are monitored and analyzed in real time through online gas chromatography detection and analysis.
  • the liquid phase products in the reactor are collected, and then analyzed with a liquid mass spectrometer to obtain Information such as the composition and characteristic parameters of the liquid phase products of the reaction.
  • the preparation route of the present invention is as follows:
  • R in the alkylbenzene molecule is one of methyl and ethyl
  • R 1 to R 5 are independently selected from one of H atoms, alkyl, alkoxy, phenolic hydroxyl, alcoholic hydroxyl, carbonyl, and halogen. kind.
  • Anisole is used as the reaction raw material, and the injection rate is 1mL/h. After the reaction raw material is vaporized, it is passed into the reaction tube under the driving of nitrogen. The nitrogen flow rate is 30mL/min.
  • the catalyst is SAPO-34 molecular sieve, and the dosage is 150 mg.
  • quartz sand In order to enhance mass transfer and heat transfer, when loading the catalyst, mix it with 400 mg of quartz sand. The mesh size of the quartz sand is 20-40 mesh.
  • the bed temperature range was 160-230°C, the gas phase products were detected and analyzed by online gas chromatography, and the liquid phase products were collected and analyzed with a liquid mass spectrometer. The results obtained are shown in Table 1.
  • Example 1 Referring to the method described in Example 1, the experimental parameters used in Examples 2-63 are slightly different from those in Example 1. The specific experimental parameters and reaction performance are shown in Table 1.
  • the process described in the invention has good stability, can run continuously for more than 100 hours, and the catalyst is not prone to carbon deposition.
  • the catalytic performance was maintained well.
  • the 100 h ethylene production is the amount of ethylene produced per gram of catalyst during the 100 h catalyst stable life cycle, which can reach a maximum of 551.8 mmol C 2 H 4 g ⁇ 1 cat, which has potential industrial application prospects.
  • Example 1 the reaction trend with temperature is shown in Figure 1.
  • the ethylene production per 100 h increases as the reaction temperature rises.
  • the reaction temperature is 230°C, 208.79 mmol C 2 H 4 g can be achieved
  • the ethylene production of ⁇ 1 cat per 100 h, and the ethylene selectivity is >99%; throughout the test process, the selectivity of phenol in the liquid phase product is greater than 90%.
  • the gas chromatogram of the liquid phase product at 230°C is as shown in the figure 2; the catalytic stability performance is shown in Figure 3, and the reaction performance does not drop significantly within 100 hours, proving the catalytic stability of the reaction of the present invention; the thermogravimetric curves of SAPO-34 before and after the reaction are shown in Figure 4, after 100 hours
  • the weight loss curve of the SAPO-34 catalyst after the reaction is consistent with that of fresh SAPO-34. Both have only water loss peaks and no weight loss peaks of other carbon deposits, indicating that there is no obvious carbon deposits on the catalyst surface, and also indicating that the reaction method of the present invention has good performance. catalytic stability.
  • Examples 1-18 illustrate that when the alkoxybenzene molecule type is fixed to anisole, the anisole flow rate is fixed to 1.0 mL/h, the nitrogen flow rate is fixed to 30 mL/min, and the catalyst dosage is fixed to 150 mg, the catalyst Effect of species on reaction temperature, ethylene selectivity and ethylene production per 100 h.
  • the catalyst can be one or several mixtures of Y-type, The best ethylene production per 100 h was achieved when the catalysts were SAPO-34 and SAPO-18 molecular sieves.
  • the ethylene selectivity can be greater than 95%.
  • HY molecular sieve is used as the catalyst, the ethylene selectivity is only 60- 70%.
  • Examples 1, 19-24 illustrate that when the alkoxybenzene molecular species is fixed to anisole, the nitrogen flow rate is fixed to 30mL/min, the catalyst is fixed to SAPO-34 molecular sieve, the catalyst dosage is fixed to 150 mg, and the reaction temperature is fixed to 230 Effect of anisole flow rate on ethylene selectivity and ethylene production per 100 h at °C.
  • the flow rate of anisole is preferably less than 10 mL/h, more preferably less than 6 mL/h, and most preferably less than 2 mL/h.
  • the flow rate of anisole is optimized to achieve
  • the 100 h ethylene production can reach a maximum of 283.7 mmol C 2 H 4 g ⁇ 1 cat.
  • the selectivity of phenol in the liquid phase product is greater than 90%.
  • Examples 1, 25-29 illustrate that when the alkoxybenzene molecular species is fixed as anisole, the anisole flow rate is fixed at 1.0 mL/h, the nitrogen flow rate is fixed at 30 mL/min, and the catalyst is fixed as SAPO-34 molecular sieve, the catalyst When the dosage is fixed at 150 mg and the reaction temperature is fixed at 230 °C, the effect of nitrogen flow rate on ethylene selectivity and ethylene production per 100 h.
  • the nitrogen flow rate is preferably less than 0-100 mL/min, more preferably 20-80 mL/min, and most preferably 30-40 mL/min.
  • optimizing the nitrogen flow rate can achieve For the regulation of 100 h ethylene production, the 100 h ethylene production can reach a maximum of 218.8mmol C 2 H 4 g ⁇ 1 cat. In addition, the selectivity of phenol in the liquid phase product is greater than 90%.
  • Examples 1, 30-35 illustrate that when the alkoxybenzene molecule species is fixed as anisole, the anisole flow rate is fixed at 1.0 mL/h, the nitrogen flow rate is fixed at 30 mL/min, and the catalyst is fixed as SAPO-34 molecular sieve, When the reaction temperature is fixed at 230 °C, the effect of catalyst dosage on ethylene selectivity and ethylene production per 100 h. As can be seen from the table, when the anisole flow rate is fixed at 1.0 mL/h, the catalyst dosage is preferably less than 20-2000 mg, more preferably less than 50-1000 mg, and most preferably 100-200 mg.
  • the 100 h ethylene production can be controlled, with the 100 h ethylene production reaching a maximum of 278.3mmol C 2 H 4 g ⁇ 1 cat.
  • the selectivity of phenol in the liquid phase products is greater than 90%.
  • Examples 1, 36-63 illustrate the impact of the type of phenol-like molecules on ethylene selectivity and ethylene production per 100 h.
  • the substituents may include H atoms, alkyl groups, alkoxy groups, phenolic hydroxyl groups, alcoholic hydroxyl groups, carbonyl groups, and halogens. One or more of them, in which the ethylene selectivity is greater than 98%.
  • the phenol-like molecule is methoxyphenol, the ethylene production can reach up to 540.4 mmol C 2 H 4 g ⁇ 1 cat every 100 h.
  • anisole is used as the reaction raw material, and the sampling rate is 1 mL/h.
  • the reaction raw material is vaporized, it is passed into the reaction tube under the driving of nitrogen, the nitrogen flow rate is 30 mL/min, and the catalyst is silicon Aluminum molecular sieve SSZ-13, silicon to aluminum ratio is 1, 10, 20, 30, 40, 60, 80, 100, dosage is 150 mg.
  • the catalyst is silicon Aluminum molecular sieve SSZ-13, silicon to aluminum ratio is 1, 10, 20, 30, 40, 60, 80, 100, dosage is 150 mg.
  • quartz sand In order to enhance mass transfer and heat transfer, when loading the catalyst, mix it with 400 mg quartz sand. The mesh number of quartz sand is 20-40 mesh.
  • the bed temperature range was 350°C
  • the gas phase products were detected and analyzed by online gas chromatography, and the liquid phase products were collected and analyzed using a liquid mass spectrometer.
  • the silicon-aluminum ratio is 1, the ethylene production per 100 h is 185.1 mmol C 2 H 4 g ⁇ 1 cat, when the silicon to aluminum ratio is 100, the ethylene production per 100 h is 175.2 mmol C 2 H 4 g ⁇ 1 cat.
  • the selectivity of phenol in the liquid phase products was greater than 90%.
  • anisole is used as the reaction raw material, and the sampling rate is 1 mL/h.
  • the reaction raw material is vaporized, it is passed into the reaction tube under the driving of nitrogen, the nitrogen flow rate is 30 mL/min, and the catalyst is phosphorus Aluminum molecular sieve SAPO-34, the silicon to aluminum ratio is 0.02, 0.1, 0.2, 0.25, 0.3, 0.6, 1.0, 1.5, 2.0, the dosage is 150 mg, in order to enhance the mass transfer and heat transfer, when loading the catalyst, it is mixed with 400 mg quartz sand Mix, the mesh number of quartz sand is 20-40 mesh.
  • the bed temperature range was 230°C
  • the gas phase products were detected and analyzed by online gas chromatography, and the liquid phase products were collected and analyzed using a liquid mass spectrometer. It was found that during the test process, as the silicon-aluminum ratio gradually increased from 0.02 to 1.0, the selectivity of ethylene in the gas phase products was greater than 99%.
  • the ethylene production per 100 h first increased and then decreased as the silicon-aluminum ratio of the phosphorus-aluminum molecular sieve increased. trend, when the silicon-aluminum ratio is 0.25, the ethylene production per 100 h reaches the highest value, which is 218.8 mmol C 2 H 4 g ⁇ 1 cat.
  • the silicon-aluminum ratio is 0.02
  • the ethylene production per 100 h is 175.8 mmol C 2 H 4 g ⁇ 1 cat
  • the silicon-aluminum ratio is 2.0
  • the ethylene production per 100 h is 159.4 mmol C 2 H 4 g ⁇ 1 cat.
  • the selectivity of phenol in the liquid phase products was greater than 90%.
  • anisole is used as the reaction raw material. After the reaction raw material is gasified, it is passed into the reaction tube under the driving of nitrogen, and the anisole feed rate and catalyst quality are changed.
  • the anisole space velocity is 1, 20, 40, 80, 100, 200, 500 kg anisole/(kg catalyst)/h
  • the catalyst is SAPO-34 molecular sieve
  • the dosage is 150 mg
  • the bed temperature is 230 °C, in order to enhance mass transfer and heat transfer , when loading the catalyst, mix it with 400 mg of quartz sand.
  • the mesh size of the quartz sand is 20-40 mesh.
  • the gas phase products are detected and analyzed by online gas chromatography, and the liquid phase products are collected and analyzed with a liquid mass spectrometer.
  • anisole space velocity As the anisole space velocity gradually increased from 1 to 500 kg anisole/(kg catalyst)/h, the selectivity of ethylene in the gas phase product was greater than 99%, and the ethylene production per 100 h increased with The increase in anisole space velocity shows a trend of first increasing and then decreasing.
  • anisole space velocity is 80 kg anisole/(kg catalyst)/h
  • the ethylene production reaches the highest value every 100 h, which is 431.2mmol C 2 H 4 g ⁇ 1 cat
  • the space velocity of anisole is 1 kg anisole/(kg catalyst)/h
  • the ethylene production per 100 h is 247.8.
  • anisole is used as the reaction raw material, and the sampling rate is 1 mL/h.
  • the reaction raw material is vaporized, it is passed into the reaction tube under the driving of nitrogen, the nitrogen flow rate is 30 mL/min, and the catalyst is SAPO -34 molecular sieve, the dosage is 150 mg, the bed temperature is 230°C, in order to enhance mass transfer and heat transfer, when loading the catalyst, mix it with 400 mg quartz sand, the mesh number of quartz sand is 20-40 mesh.
  • the gas phase products are detected and analyzed by online gas chromatography, and the liquid phase products are collected and analyzed with a liquid mass spectrometer. The test times were 24h, 50, and 100h.
  • the ethylene selectivity in the gas phase product was greater than 98%
  • the phenol selectivity in the liquid phase product was greater than 90%
  • the reaction activity attenuation at different test times was less than 10%.
  • the tested samples were subjected to thermogravimetric analysis, and it was found that the carbon content of the catalyst surface area was 3% smaller, indicating that the method of the present invention has excellent catalytic stability.
  • the selectivity of phenol in the liquid phase products during the test was greater than 90%.
  • Example 2 This comparative example was carried out with reference to the reaction parameters of Example 1. The difference from Example 1 is that no catalyst was added in this comparative example. Chromatographic detection of the gas and liquid phase products of the reaction revealed that the main products were methane and phenol, and there was no ethylene. This result shows that the main function of the catalyst is to catalyze the decomposition of anisole molecules into phenol and ethylene.
  • aluminosilicates or aluminophosphates including silica-aluminum molecular sieves and phosphate-aluminum molecular sieves are used.
  • the selectivity of ethylene in the gas phase product can be greater than 95%, and the selectivity of phenol in the liquid phase product can be greater than 90%.
  • the process has good stability and can run continuously for more than 100 hours, and the catalyst is not easy to accumulate. Carbon, there is no need to face the problem of repeated catalyst regeneration.

Abstract

本发明涉及一种烷氧基苯高选择性制乙烯的方法。烷氧基苯在包括分子筛在内的硅铝酸盐或磷铝酸盐催化剂的作用下,可高选择性转化为乙烯(乙烯气相选择性>99%)和苯酚(苯酚液相选择性>90%),且反应稳定性良好,催化剂不易积炭。烷氧基苯来源丰富,既可以通过醇类与苯酚反应得到,也可以通过生物质转化得到。本工艺与甲醇制苯甲醚反应耦合可实现甲醇高选择性制乙烯,而与生物质转化耦合可实现生物质高选择性制乙烯和苯酚,因此具有重要的社会经济价值。

Description

一种烷氧基苯高选择性制乙烯的方法 技术领域
本发明属于烯烃制备领域,涉及一种烷氧基苯高选择性制乙烯的方法。具体而言,是在分子筛催化剂的作用下,将烷氧基苯高选择性转化为乙烯(乙烯气相选择性>99%)和苯酚(苯酚液相选择性>90%),且反应具有良好的稳定性。
背景技术
乙烯是世界上产量最大的化学产品之一,被誉为“石化之母”。发展清洁高效的非石油基乙烯生产技术有助于解决现有工业乙烯生产工艺中强石油依赖性、乙烯自给率低等痛点问题。
煤基甲醇制乙烯技术和生物质制乙烯技术是目前重要的非石油基乙烯生产路线。然而,目前甲醇制烯烃工艺仍存在产物分离难、催化剂寿命短等技术瓶颈。如中国专利CN1356299A,公开了一种甲醇或二甲醚制低碳烯烃的工艺,催化剂为磷酸硅铝型分子筛SAPO-34。该工艺采用气固并流下行式流化床超短时间接触反应器,催化剂和原料在该反应器中接触并发生反应,然后在反应器下部的气固快速分离器进行快速分离。分离出的催化剂进入再生器中烧炭再生,进行循环反应。该反应工艺二甲醚或甲醇的转化率大于98%。但该方法存在乙烯及丙烯选择性低、催化剂易积炭、需要反复再生等技术缺点。
生物质制乙烯技术也面临路线复杂,乙烯选择性低,分离成本高等挑战。如中国专利CN101579638A公开了属于生物质能源及催化剂制备技术领域的一种乙醇脱水制乙烯用催化剂及其制备方法。使用金属Mn离子改性的SAPO-34分子筛,解决了生物质发酵乙醇浓度低、后续应用困难的问题,但该方法仍存在工艺能耗大,产物分离成本较高等问题。
因此,亟需一种新的烷氧基苯制烯烃的工艺路线,可与甲醇制烯烃以及生物质制烯烃的工艺路线耦合,为乙烯工业生产提供新的路径。
发明内容
本发明的目的在于提供一种烷氧基苯高选择性制乙烯的方法,在分子筛催化剂的作用下,烷氧基苯可高选择性转化为乙烯(乙烯气相选择性>99%)和苯酚(苯酚液相选择性>90%),且反应稳定性良好(>100 h),具有良好的工业应用前景。
一种烷氧基苯高选择性制乙烯的方法,包括如下步骤:
将烷氧基苯作为反应原料,气化后在无氧环境下通入固定床催化反应器中,反应一段时间后生成乙烯,反应温度为160-450℃;所述固定床催化反应器包括一个恒温区,所述恒温区中放置催化剂;
所述烷氧基苯的结构式如下所示:
其中,烷基苯分子中R为甲基、乙基中的一种,R 1-R 5分别独立选自H原子、烷基、烷氧基、酚羟基、醇羟基、 、卤素中的一种;R’选自H原子、羟基、烷氧基、烷基、氨基中的一种,即 分别为醛基、羧基、酯基、酮基、酰胺基。
所述催化剂为包括硅铝酸盐或磷铝酸盐。
作为优选,所述恒温区的温度为200-300°C。
作为优选,反应过程中可采用惰性气体来辅助进料,具体为将反应原料气化后与惰性气体混合通入两段式固定床催化反应器中;所述惰性气体选自N 2、He或Ar中的任意一种或多种;惰性气体的流速为0-100 mL/min,优选为20-80 mL/min,更优选为30-40 mL/min。
作为优选,所述催化剂为硅铝分子筛、AlPO、SAPO、ZSM、Y型分子筛、无定形硅铝酸盐ASAs、酸性硅酸铝AAS、磷酸铝中的一种或几种,更优选为SAPO型分子筛,最优选为SAPO-34或SAPO-18分子筛。
作为优选,硅铝分子筛的硅铝比为1-100,更优选为10-80,最优选为20-60;SAPO分子筛的硅铝比为0.02-2,更优选为0.1-1.2,最优选为0.2-1.0。
作为优选,固定床催化反应器的反应压力为常压。
作为优选,烷氧基苯的空速为1-500 kg 烷氧基苯/(kg催化剂)/h,更优选为20-200 kg 烷氧基苯/(kg催化剂)/h,最优选为40-100 kg 烷氧基苯/(kg催化剂)/h;空速表示单位时间内反应物通过催化剂床层的质量或体积,通常用单位时间内反应物的质量或体积除以催化剂床的质量或体积表示。
与现有技术相比,本发明的有益效果至少在于:
本发明提供了一种烷氧基苯高选择性制乙烯的工艺路线方法,以烷氧基苯为原料,反应中原料气化后,可由惰性气体带入反应器内,经过固定床反应器,最终气相产物中乙烯的选择性能达到95%以上,液相产物中苯酚的选择性能达到90%以上。该方法以烷氧基苯分子中的烷氧基作为碳源,利用烷氧基苯分子与硅铝酸盐或磷铝酸盐之间空间和电子相互作用来调控O-CH 3的断裂和转化,进而高选择性生产乙烯,显著区别于现有的乙烯制备方法。反应过程中,碳原子经济性>95%, 最高可达100%。同时本发明所述工艺具有良好的稳定性,可连续运行100 h以上,反应100 h后,催化剂表面积炭量小于10%,最优可小于3%,无需面临催化剂反复再生的问题。
此外,本发明所用原料烷氧基苯来源广泛,既可以通过醇类与苯酚反应得到,也可以通过生物质转化得到。本工艺与甲醇制苯甲醚反应耦合可实现甲醇高选择性制乙烯,与生物质转化耦合可实现生物质高选择性制乙烯和苯酚,具有重要的社会经济价值,优异的性能指标也具有小型化工业生产的潜力,可应用于年产小规模产量乙烯的工业生产中。
附图说明
图1为实施例1反应随温度变化的趋势图。
图2为实施例1液相产物的气相色谱图。
图3为实施例1催化反应稳定性结果图。
图4为实施例1反应前后SAPO-34的热重图谱。
图5为本发明烷氧基苯高选择性制乙烯工艺的反应原理。
实施方式
下面通过实施例对本发明的内容做进一步的说明,但并不因此而限制本发明。
实施例中,所用试剂除特别说明外,均采用分析纯试剂。
乙烯选择性,苯酚选择性以及连续运行100小时乙烯产量(简写成100 h乙烯产量)分别采用如下公式进行计算。
(1)
  (2)
(3)       
其中,|C 2H 4|代表每小时气相反应产物中乙烯的摩尔数;|products|代表每小时各气相反应产物的摩尔数,|phenol|代表每小时液相产物中苯酚的摩尔数,|anisole inlet|代表反应前每小时原料中苯甲醚的摩尔数,|anisole outlet|代表每小时液相产物中苯甲醚的摩尔数,m cat代表催化剂的质量, x是气相产物的碳原子数。比如,对于CH 4x=1, 对于C 2H 4x=2。
本发明实施例所涉及的催化剂评价装置包括液质联用质谱仪和在线气相色谱。反应过程中,通过在线气相色谱检测分析,对反应器内气相产物的成分进行实时监测和分析,同时将反应器内液相产物进行收集,然后利用液质联用质谱仪对其进行分析,得到反应的液相产物组成和特性参数等信息。
本发明的制备路线如下所示:
其中,烷基苯分子中R为甲基、乙基中的一种,R 1-R 5分别独立选自H原子、烷基、烷氧基、酚羟基、醇羟基、羰基、卤素中的一种。
实施例
以苯甲醚为反应原料,进样速度为1mL/h,反应原料气化后在氮气的带动下通入反应管,氮气流速为30mL/min,催化剂为SAPO-34分子筛,用量为150 mg,为了增强传质和传热,装填催化剂时,与400 mg石英砂混合,石英砂的目数为20-40目。测试过程中,床层温度区间为160-230°C,气相产物通过在线气相色谱检测分析,液相产物收集后用液质联用质谱仪分析结果。所得结果如表1所示。
实施例2-63
参照实施例1所述的方法,实施例2-63所用实验参数与实施例1略有不同,具体实验参数和反应性能见表1。
表1 实施例实验参数和反应性能汇总表
实施例编号 烷氧基 苯分子的 种类 原料 流速mL/h 氮气 流速mL/min 催化剂 种类 用量(mg) 温度 ( oC) 乙烯 选择性(%) 100 h乙烯 产量(mmolC 2H 4g −1cat)
1 苯甲醚 1.0 30 SAPO-34 150 230 99.4 218.8
2 苯甲醚 1.0 30 AlPO-34 150 310 99.5 142.7
3 苯甲醚 1.0 30 SAPO-18 150 160 99.6 58.4
4 苯甲醚 1.0 30 SAPO-18 150 200 99.6 155.7
5 苯甲醚 1.0 30 SAPO-18 150 230 99.6 304.6
6 苯甲醚 1.0 30 AlPO-18 150 350 99.1 192.9
7 苯甲醚 1.0 30 SAPO-11 150 230 99.5 95.2
8 苯甲醚 1.0 30 SAPO-14 150 230 99.4 139.8
9 苯甲醚 1.0 30 SSZ-13 150 350 99.8 351.4
10 苯甲醚 1.0 30 ZSM-5 150 230 99.2 239.5
11 苯甲醚 1.0 30 菱沸石 150 330 99.3 175.0
12 苯甲醚 1.0 30 KY 150 290 97.3 218.0
13 苯甲醚 1.0 30 KX 150 360 96.3 107.5
14 苯甲醚 1.0 30 K-beta 150 360 96.5 113.6
15 苯甲醚 1.0 30 HY 150 360 59.6 141.2
16 苯甲醚 1.0 30 ASAs 150 370 99.9 132.0
17 苯甲醚 1.0 30 AAS 150 390 99.5 119.7
18 苯甲醚 1.0 30 磷酸铝 150 410 99.2 113.6
19 苯甲醚 0.5 30 SAPO-34 150 230 99.6 283.7
20 苯甲醚 2.0 30 SAPO-34 150 230 99.1 203.4
21 苯甲醚 4.0 30 SAPO-34 150 230 99.6 181.3
22 苯甲醚 6.0 30 SAPO-34 150 230 99.6 177.4
23 苯甲醚 8.0 30 SAPO-34 150 230 99.2 184.6
24 苯甲醚 10.0 30 SAPO-34 150 230 99.2 189.2
25 苯甲醚 1.0 100 SAPO-34 150 230 99.6 144.3
26 苯甲醚 1.0 80 SAPO-34 150 230 99.9 165.6
27 苯甲醚 1.0 40 SAPO-34 150 230 99.3 189.5
28 苯甲醚 1.0 20 SAPO-34 150 230 99.6 197.4
29 苯甲醚 1.0 0 SAPO-34 150 230 99.2 108.1
30 苯甲醚 1.0 30 SAPO-34 20 230 99.5 147.8
31 苯甲醚 1.0 30 SAPO-34 50 230 99.6 278.3
32 苯甲醚 1.0 30 SAPO-34 200 230 99.2 256.7
33 苯甲醚 1.0 30 SAPO-34 500 230 99.1 249.6
34 苯甲醚 1.0 30 SAPO-34 1000 230 99.1 267.5
35 苯甲醚 1.0 30 SAPO-34 2000 230 99.1 238.5
36 苯乙醚 1.0 30 SAPO-34 150 230 99.6 494.3
37 2-甲基苯甲醚 1.0 30 SAPO-34 150 230 99.5 463.6
38 3-甲基苯甲醚 1.0 30 SAPO-34 150 230 99.6 497.4
39 4-甲基苯甲醚 1.0 30 SAPO-34 150 230 99.6 525.0
40 4-溴苯甲醚 1.0 30 SAPO-34 150 230 99.0 187.3
41 4-氯苯甲醚 1.0 30 SAPO-34 150 230 99.6 159.7
42 2,4-二甲基苯甲醚 1.0 30 SAPO-34 150 230 99.5 540.4
43 2,3-二甲基苯甲醚 1.0 30 SAPO-34 150 230 99.7 528.9
44 3,4-二甲基苯甲醚 1.0 30 SAPO-34 150 230 99.3 519.7
45 甲苯 1.0 30 SAPO-34 150 230 99.3 119.5
46 4-甲基苯酚 1.0 30 SAPO-34 150 230 99.1 89.7
47 4-乙基苯酚 1.0 30 SAPO-34 150 300 99.4 114.3
48 4-甲氧基苯酚 1.0 30 SAPO-34 150 300 99.3 168.7
49 4-乙氧基苯酚 1.0 30 SAPO-34 150 300 99.4 189.7
50 4-羟基苯甲醇 1.0 30 SAPO-34 150 230 99.6 156.8
51 4-羟基苯乙醇 1.0 30 SAPO-34 150 350 99.4 178.5
52 2-甲氧基苯酚 1.0 30 SAPO-34 150 230 99.5 204.5
53 2-乙氧基苯酚 1.0 30 SAPO-34 150 230 99.2 256.7
54 2-甲氧基-4-甲基苯酚 1.0 30 SAPO-34 150 230 99.7 504.2
55 2-甲氧基-4-烯丙基苯酚 1.0 30 SAPO-34 150 300 99.5 157.7
56 3-甲氧基-4-羟基苯甲醛 1.0 30 SAPO-34 150 350 99.3 135.6
57 3-甲氧基-4-羟基苯甲酸 1.0 30 SAPO-34 150 300 99.8 145.2
58 3-甲氧基-4-羟基苯甲酸甲酯 1.0 30 SAPO-34 150 350 99.9 127.8
59 3-甲氧基-4-羟基苄醇 1.0 30 SAPO-34 150 300 99.5 189.5
60 2,6-二甲氧基苯酚 1.0 30 SAPO-34 150 300 99.4 358.7
61 3,5-二甲氧基-4-羟基苯甲醛 1.0 30 SAPO-34 150 450 99.1 314.9
62 3,5-二甲氧基-4-羟基苯甲酸 1.0 30 SAPO-34 150 250 99.4 286.8
63 3,5-二甲氧基-4-羟基苯乙酮 1.0 30 SAPO-34 150 450 99.7 256.9
本发明所述工艺具有良好的稳定性,可连续运行100 h以上,催化剂不易积炭。在实施例1-67的100 h稳定性测试中,催化性能均保持良好,100 h乙烯产量即为该100 h催化剂稳定生命周期内每克催化剂上产生的乙烯的量,最高可达551.8 mmol C 2H 4 g −1cat,具有潜在的工业化应用前景。
以实施例1为例,反应随温度变化的趋势如图1所示,每100 h乙烯产量随着反应温度上升而增加,当反应温度为230°C时,可实现208.79 mmol C 2H 4 g −1cat的每100 h乙烯产量,且乙烯选择性>99%;在整个测试过程中,液相产物中苯酚的选择性均大于90%,230°C时液相产物的气相色谱图如图2所示;催化稳定性能如图3所示,反应性能在100小时内没有明显的下降,证明本发明反应的催化稳定性;反应前后SAPO-34的热重曲线如图4所示,经过100小时反应后SAPO-34催化剂的失重曲线与新鲜的SAPO-34一致,两者均只有失水峰,没有其它积炭的失重峰,说明催化剂表面没有明显积炭,也表明本发明反应方法具有良好的催化稳定性。
实施例1-18说明了当烷氧基苯分子种类固定为苯甲醚、苯甲醚流速固定为1.0 mL/h、氮气流速固定为30 mL/min、催化剂用量固定为150 mg时,催化剂的种类对反应温度、乙烯选择性和每100 h乙烯产量的影响。从表中可以看出,催化剂可为Y型、X型、AlPO、SAPO、SSZ、ZSM、菱沸石、ASAs、AAS、磷酸铝中的一种或几种混合物,更优选为SAPO型分子筛,当催化剂为SAPO-34和SAPO-18分子筛时每100 h乙烯产量最佳。在制备过程中,当催化剂选自KY、KX、AlPO、SAPO、SSZ、ZSM、菱沸石分子筛时,乙烯选择性均可大于95%,而采用HY分子筛作为催化剂时,乙烯选择性仅为60-70%。
实施例1,19-24说明了当烷氧基苯分子种类固定为苯甲醚、氮气流速固定为30mL/min、催化剂固定为SAPO-34分子筛、催化剂用量固定为150 mg、反应温度固定为230 °C时,苯甲醚流速对乙烯选择性和每100 h乙烯产量的影响。从表中可以看出,苯甲醚流速优选为小于10 mL/h,更优选为小于6 mL/h,最优选为小于2 mL/h,在测试过程中,优化苯甲醚流速,可实现对100 h乙烯产量的调控,其中100 h乙烯产量最高可达283.7 mmol C 2H 4 g −1cat,此外,液相产物中苯酚的选择性均大于90%。
实施例1,25-29说明了当烷氧基苯分子种类固定为苯甲醚、苯甲醚流速固定为1.0 mL/h、氮气流速固定为30mL/min、催化剂固定为SAPO-34分子筛、催化剂用量固定为150 mg、反应温度固定为230 °C时,氮气流速对乙烯选择性和每100 h乙烯产量的影响。从表中可以看出,氮气流速优选为小于0-100 mL/min,更优选为20-80 mL/min,最优选为30-40 mL/min,在测试过程中,优化氮气流速,可实现对100 h乙烯产量的调控,其中100 h乙烯产量最高可达218.8mmol C 2H 4 g −1cat,此外,液相产物中苯酚的选择性均大于90%。
实施例1,30-35说明了当类烷氧基苯分子种类固定为苯甲醚、苯甲醚流速固定为1.0 mL/h、氮气流速固定为30mL/min、催化剂固定为SAPO-34分子筛、反应温度固定为230 °C时,催化剂用量对乙烯选择性和每100 h乙烯产量的影响。从表中可以看出,当苯甲醚流速固定为1.0 mL/h时,催化剂用量优选为小于20-2000 mg,更优选为小于50-1000 mg,最优选为100-200 mg,在测试过程中,优化催化剂用量,可实现对100 h乙烯产量的调控,其中100 h乙烯产量最高可达278.3mmol C 2H 4 g −1cat,此外,液相产物中苯酚的选择性均大于90%。
实施例1,36-63说明了类苯酚分子的种类对乙烯选择性和每100 h乙烯产量的影响,取代基可包括H原子、烷基、烷氧基、酚羟基、醇羟基、羰基、卤素中的一种或多种,其中乙烯选择性均大于98%,当类苯酚分子为甲氧基苯酚时,每100 h乙烯产量最高可达540.4 mmol C 2H 4 g −1cat。
实施例64:
参照实施例1所述的方法,以苯甲醚为反应原料,进样速度为1mL/h,反应原料气化后在氮气的带动下通入反应管,氮气流速为30mL/min,催化剂为硅铝分子筛SSZ-13,硅铝比为1, 10, 20, 30, 40, 60, 80, 100,用量为150 mg,为了增强传质和传热,装填催化剂时,与400 mg石英砂混合,石英砂的目数为20-40目。测试过程中,床层温度区间为350°C,气相产物通过在线气相色谱检测分析,液相产物收集后用液质联用质谱仪分析结果。发现在测试过程中,随着硅铝比从0.1至100逐渐增加,气相产物中乙烯的选择性均大于99%,每100 h乙烯产量随着硅铝分子筛硅铝比的增加呈现先增加后减少的趋势,当硅铝比为30时,每100 h乙烯产量达到最高值,为351.4mmol C 2H 4 g −1cat,当硅铝比为1时,每100 h乙烯产量为185.1 mmol C 2H 4 g −1cat,当硅铝比为100时,每100 h乙烯产量为175.2 mmol C 2H 4 g −1cat。此外,液相产物中苯酚的选择性均大于90%。
实施例65:
参照实施例1所述的方法,以苯甲醚为反应原料,进样速度为1mL/h,反应原料气化后在氮气的带动下通入反应管,氮气流速为30mL/min,催化剂为磷铝分子筛SAPO-34,硅铝比为0.02, 0.1, 0.2, 0.25, 0.3, 0.6, 1.0, 1.5, 2.0,用量为150 mg,为了增强传质和传热,装填催化剂时,与400 mg石英砂混合,石英砂的目数为20-40目。测试过程中,床层温度区间为230°C,气相产物通过在线气相色谱检测分析,液相产物收集后用液质联用质谱仪分析结果。发现在测试过程中,随着硅铝比从0.02至1.0逐渐增加,气相产物中乙烯的选择性均大于99%,每100 h乙烯产量随着磷铝分子筛硅铝比的增加呈现先增加后减少的趋势,当硅铝比为0.25时,每100 h乙烯产量达到最高值,为218.8 mmol C 2H 4 g −1cat,当硅铝比为0.02时,每100 h乙烯产量为175.8 mmol C 2H 4 g −1cat,当硅铝比为2.0时,每100 h乙烯产量为159.4 mmol C 2H 4 g −1cat。此外,液相产物中苯酚的选择性均大于90%。
实施例66:
参照实施例1所述的方法,以苯甲醚为反应原料,反应原料气化后在氮气的带动下通入反应管,改变苯甲醚进料速度和催化剂质量,苯甲醚空速1, 20, 40, 80, 100, 200, 500 kg 苯甲醚/(kg催化剂)/h,催化剂为SAPO-34分子筛,用量为150 mg,床层温度为230 °C,为了增强传质和传热,装填催化剂时,与400 mg石英砂混合,石英砂的目数为20-40目。气相产物通过在线气相色谱检测分析,液相产物收集后用液质联用质谱仪分析结果。发现在测试过程中,随着苯甲醚空速从1至500 kg苯甲醚/(kg催化剂)/h逐渐增加,气相产物中乙烯的选择性均大于99%,每100 h乙烯产量随着苯甲醚空速的增加呈现先增加后减少的趋势,当苯甲醚空速为80 kg苯甲醚/(kg催化剂)/h 时,每100 h乙烯产量达到最高值,为431.2mmol C 2H 4 g −1cat,当苯甲醚空速为1 kg苯甲醚/(kg催化剂)/h 时,每100 h乙烯产量为247.8. mmol C 2H 4 g −1cat,当苯甲醚空速为500 kg苯甲醚/(kg催化剂)/h 时,每100 h乙烯产量为104.1 mmol C 2H 4 g −1cat。此外,液相产物中苯酚的选择性均大于90%。
实施例67:
参照实施例1所述的方法,以苯甲醚为反应原料,进样速度为1mL/h,反应原料气化后在氮气的带动下通入反应管,氮气流速为30mL/min,催化剂为SAPO-34分子筛,用量为150 mg,床层温度为230°C,为了增强传质和传热,装填催化剂时,与400 mg石英砂混合,石英砂的目数为20-40目。气相产物通过在线气相色谱检测分析,液相产物收集后用液质联用质谱仪分析结果。测试时间为24h, 50, 100h,发现三次测试中气相产物中乙烯选择性均大于98%,液相产物中苯酚选择性均大于90%,不同测试时间的反应活性衰减均小于10%,对三次测试的样品进行热重分析,发现催化剂表面积炭量均小3%,说明了本发明方法具有优异的催化稳定性。此外,测试过程中液相产物中苯酚的选择性均大于90%。
对比例1:
本对比例参照实施例1的反应参数进行反应,与实施例1不同之处在于,本对比例不添加催化剂。通过色谱检测反应的气相和液相产物发现,主要产物为甲烷和苯酚,且不存在乙烯。该结果表明,催化剂的主要作用是催化苯甲醚分子分解成为苯酚和乙烯。
综合实施例1-67及对比例1可知,在本发明所提出的类烷氧基苯分子制乙烯工艺中,在包括硅铝分子筛、磷铝分子筛在内的硅铝酸盐或磷铝酸盐的催化作用下,气相产物中乙烯的选择性可大于95%,液相产物中苯酚的选择性可大于90%,同时所述工艺具有良好的稳定性,可连续运行100 h以上,催化剂不易积炭,无需面临催化剂反复再生的问题。此外,从实施例1-67可知,催化剂的种类、用量、硅铝比,载气的流速,类烷氧基苯分子的流速、种类等因素都会影响催化反应性能。

Claims (12)

  1. 一种烷氧基苯高选择性制乙烯的方法,其特征在于,包括如下步骤:
    将烷氧基苯作为反应原料,气化后在无氧环境下通入固定床催化反应器中,反应一段时间后生成乙烯,反应温度为160-450℃;所述固定床催化反应器包括一个恒温区,所述恒温区中放置催化剂;
    所述烷氧基苯的结构式如下所示:
  2. 其中,烷基苯分子中R为甲基、乙基中的一种,R 1-R 5分别独立选自H原子、烷基、烷氧基、酚羟基、醇羟基、 、卤素中的一种;R’选自H原子、羟基、烷氧基、烷基、氨基中的一种;
    所述催化剂包括硅铝酸盐或磷铝酸盐。
  3. 根据权利要求1所述的方法,其特征在于,所述反应温度为200-300℃。
  4. 根据权利要求1所述的方法,其特征在于,反应过程中还可以通入惰性气体。
  5. 根据权利要求3所述的方法,其特征在于,所述惰性气体为N 2、He或Ar中的一种或多种。
  6. 根据权利要求3或4所述的方法,其特征在于,所述惰性气体的流速为0-100 mL/min。
  7. 根据权利要求1所述的方法,其特征在于,所述催化剂为硅铝分子筛、AlPO分子筛、SAPO分子筛、无定形硅铝酸盐ASAs、酸性硅酸铝AAS、磷酸铝中的一种或几种。
  8. 根据权利要求6所述的方法,其特征在于,所述硅铝分子筛为SSZ分子筛、ZSM、Y型分子筛中的一种或几种。
  9. 根据权利要求6所述的方法,其特征在于,所述SAPO分子筛的硅铝摩尔比为(0.02-2):1。
  10. 根据权利要求6或7所述的方法,其特征在于,所述硅铝分子筛的硅铝摩尔比为(1-100):1。
  11. 根据权利要求1所述的方法,其特征在于,所述固定床催化反应器中恒温区中还可以加入石英砂,所述石英砂和催化剂混合。
  12. 根据权利要求1所述的方法,其特征在于,所述烷氧基苯的空速为1-500 kg烷氧基苯/(kg催化剂)/h。
PCT/CN2023/094591 2023-04-14 2023-05-16 一种烷氧基苯高选择性制乙烯的方法 WO2024041046A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310399566.5A CN116375551B (zh) 2023-04-14 2023-04-14 一种烷氧基苯高选择性制乙烯的方法
CN202310399566.5 2023-04-14

Publications (1)

Publication Number Publication Date
WO2024041046A1 true WO2024041046A1 (zh) 2024-02-29

Family

ID=86976704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094591 WO2024041046A1 (zh) 2023-04-14 2023-05-16 一种烷氧基苯高选择性制乙烯的方法

Country Status (2)

Country Link
CN (1) CN116375551B (zh)
WO (1) WO2024041046A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1355778A (zh) * 1999-06-15 2002-06-26 埃克森化学专利公司 提高从含氧化合物合成烯烃的反应的选择性的方法
CN1356299A (zh) * 2001-12-14 2002-07-03 清华大学 一种由甲醇或二甲醚生产低碳烯烃的工艺方法及其系统
CN101157593A (zh) * 2007-03-07 2008-04-09 中国科学院大连化学物理研究所 由甲醇或/和二甲醚生产低碳烯烃的方法
CN101348404A (zh) * 2007-07-18 2009-01-21 中国石油化工股份有限公司 甲醇或二甲醚转化过程中提高乙烯、丙烯收率的方法
CN101696145A (zh) * 2009-11-04 2010-04-21 兆威兴业有限公司 一种采用甲醇或二甲醚制备低碳烯烃的工艺
CN113387763A (zh) * 2020-03-13 2021-09-14 中国石油化工股份有限公司 含氧化合物生产低碳烯烃的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101165019B (zh) * 2006-10-20 2010-06-16 中国石油化工股份有限公司 生产乙烯、丙烯的方法
CN101381272B (zh) * 2007-09-06 2012-05-30 中国石油化工股份有限公司 一种两步法制备乙烯和丙烯的方法
CN101270020B (zh) * 2008-04-11 2011-11-30 中国石油化工股份有限公司 甲醇生产低碳烯烃的方法
US10201806B2 (en) * 2013-12-20 2019-02-12 Basf Se Catalyst and process for the conversion of oxygenates to olefins

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1355778A (zh) * 1999-06-15 2002-06-26 埃克森化学专利公司 提高从含氧化合物合成烯烃的反应的选择性的方法
CN1356299A (zh) * 2001-12-14 2002-07-03 清华大学 一种由甲醇或二甲醚生产低碳烯烃的工艺方法及其系统
CN101157593A (zh) * 2007-03-07 2008-04-09 中国科学院大连化学物理研究所 由甲醇或/和二甲醚生产低碳烯烃的方法
CN101348404A (zh) * 2007-07-18 2009-01-21 中国石油化工股份有限公司 甲醇或二甲醚转化过程中提高乙烯、丙烯收率的方法
CN101696145A (zh) * 2009-11-04 2010-04-21 兆威兴业有限公司 一种采用甲醇或二甲醚制备低碳烯烃的工艺
CN113387763A (zh) * 2020-03-13 2021-09-14 中国石油化工股份有限公司 含氧化合物生产低碳烯烃的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JARVIS MARK W., DAILY JOHN W., CARSTENSEN HANS-HEINRICH, DEAN ANTHONY M., SHARMA SHANTANU, DAYTON DAVID C., ROBICHAUD DAVID J., NI: "Direct Detection of Products from the Pyrolysis of 2-Phenethyl Phenyl Ether", THE JOURNAL OF PHYSICAL CHEMISTRY A, WASHINGTON DC, US, vol. 115, no. 4, 3 February 2011 (2011-02-03), US , pages 428 - 438, XP093143434, ISSN: 1089-5639, DOI: 10.1021/jp1076356 *
KONG LINGHAO, LI GANG, JIN LIJUN, HU HAOQUAN: "Effects of the oxygen substituent on the pyrolysis of phenyl ethers on a fixed-bed reactor", JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, ELSEVIER BV, NL, vol. 115, 1 September 2015 (2015-09-01), NL , pages 362 - 369, XP093143429, ISSN: 0165-2370, DOI: 10.1016/j.jaap.2015.08.020 *

Also Published As

Publication number Publication date
CN116375551B (zh) 2024-03-29
CN116375551A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
CN102190550B (zh) 低碳烯烃的生产方法
CN103664482B (zh) 一种使用移动床技术将含氧化合物转化为芳烃的反应工艺
CN101165017B (zh) 增产丙烯的方法
CN101157593B (zh) 由甲醇或/和二甲醚生产低碳烯烃的方法
CN102190551B (zh) 一种由含氧化合物制取丙烯的方法
CN103140458B (zh) 由异丁醇制造烯烃的组合方法
CN1978408B (zh) 一体化的含氧化合物转化和产物裂化
EA020426B1 (ru) Очистка спиртов перед их применением в присутствии кислотного катализатора
CN101081799B (zh) 一种由含氧化合物制取小分子烯烃的方法
CN102464524B (zh) 甲醇生产低碳烯烃的方法
WO2012016788A1 (en) Process to make olefins from methanol and isobutanol
CN101081801A (zh) 一种制取小分子烯烃的方法
CN102190542B (zh) 甲醇制烯烃与碳四以上烃催化裂解的耦合方法
WO2024041046A1 (zh) 一种烷氧基苯高选择性制乙烯的方法
CN102464522B (zh) 低碳烯烃的生产方法
CN101165020B (zh) 提高丙烯收率的方法
WO2014178543A1 (ko) 중간생성물의 실시간 모니터링을 통한 메탄올로부터 경질올레핀 제조용 순환 유동층 공정의 효율적 운전
US7078364B2 (en) Ship-in-a-bottle catalysts
CN104557415A (zh) 甲醇和/或二甲醚转化制芳烃联产液化气的系统及其方法
Guo et al. Molecular volume-controlled shape-selective catalysis for synthesis of cinnamate over microporous zeolites
WO2023236735A1 (zh) 一种甲醇制烯烃的方法
CN113387763B (zh) 含氧化合物生产低碳烯烃的方法
CN104557362A (zh) 甲醇和/或二甲醚转化制芳烃联产乙烯、丙烯的系统及其方法
CN102872772B (zh) 以甲醇和乙醇为原料联产二甲醚和乙烯的反应装置
CN101293800A (zh) 含氧化合物与轻烃转化集成制取小分子烯烃的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856139

Country of ref document: EP

Kind code of ref document: A1