WO2024040920A1 - Couche de transport de trous et son utilisation - Google Patents

Couche de transport de trous et son utilisation Download PDF

Info

Publication number
WO2024040920A1
WO2024040920A1 PCT/CN2023/080198 CN2023080198W WO2024040920A1 WO 2024040920 A1 WO2024040920 A1 WO 2024040920A1 CN 2023080198 W CN2023080198 W CN 2023080198W WO 2024040920 A1 WO2024040920 A1 WO 2024040920A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
layer
perovskite
transport layer
hole transport
Prior art date
Application number
PCT/CN2023/080198
Other languages
English (en)
Chinese (zh)
Inventor
蔡子贺
赵志国
赵东明
黄斌
秦校军
张赟
赵政晶
刘云
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2024040920A1 publication Critical patent/WO2024040920A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the technical field of perovskite solar cells, and in particular relates to a hole transport layer and its application.
  • perovskite solar cells As the third generation of photovoltaic cells, perovskite solar cells have the characteristics of high theoretical efficiency, light weight, colorization, and translucency. They can be used in building curtain walls, solar cars, portable devices, etc. In addition to meeting power generation needs, perovskite solar cells should meet aesthetic needs, so the colorization technology of perovskite cells is one of the core technologies that enable them to be widely used. Perovskite cells can be given a specific color through pigments, but organic pigments absorb most of the incident light, affecting the power generation efficiency of the battery. Moreover, organic pigments have the problem of aging and fading, affecting the appearance.
  • the purpose of the present invention is to provide a hole transport layer and its preparation method and application.
  • the hole transport layer provided by the present invention can be used in a perovskite battery to achieve colorization of the perovskite battery.
  • the invention provides a hole transport layer, including:
  • the components of the first dielectric layer, the second dielectric layer, the third dielectric layer and the fourth dielectric layer are independently selected from CuI, CuSCN, Cu 2 O, CuO, MoS 2 , MoO x , WO 3 or one of NiO x ;
  • compositions of two adjacent dielectric layers are different.
  • the fourth dielectric layer surface further includes:
  • the nth dielectric layer is provided on the surface of the n-1th dielectric layer.
  • n 6-18.
  • the thickness of the dielectric layer is independently selected from 10 to 500 nm.
  • the substrate is selected from FTO, ITO, and AZO.
  • the invention provides a perovskite battery, including:
  • a hole transport layer, the hole transport layer is the hole transport layer described in the above technical solution
  • a perovskite layer provided on the surface of the hole transport layer
  • An electron transport layer provided on the surface of the perovskite layer
  • An electrode is provided on the surface of the electron transport layer.
  • the components of the perovskite layer are selected from the group consisting of organic-inorganic hybrid lead halide perovskite, organic-inorganic hybrid tin/lead mixed halide perovskite, and all-inorganic perovskite.
  • the components of the electron transport layer are selected from SnO 2 , TiO 2 , fullerene and fullerene derivatives.
  • the component of the electrode is selected from gold, silver, copper, graphene, and amorphous carbon.
  • the thickness of the perovskite layer is 50 nm to 1.5 ⁇ m;
  • the thickness of the electron transport layer is 15-500nm
  • the thickness of the electrode is 20 nm to 50 ⁇ m.
  • the present invention realizes the colorization of perovskite cells by constructing a hole transport layer with a two-dimensional photonic crystal structure.
  • the two-dimensional photonic crystal structure includes two dielectric layers, which can be determined by the type of dielectric layer, the thickness of the single dielectric layer and The number of dielectric layers controls the color, and the color of the perovskite cell obtained is also related to the incident angle of light. It displays different colors from different angles, which has more aesthetic value.
  • Figure 1 is a schematic structural diagram of a perovskite battery provided by an embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of a hole transport layer provided by an embodiment of the present invention.
  • the invention provides a hole transport layer, including:
  • the components of the first dielectric layer, the second dielectric layer, the third dielectric layer and the fourth dielectric layer are independently selected from CuI, CuSCN, Cu 2 O, CuO, MoS 2 , MoO x , WO 3 or one of NiO x ;
  • compositions of two adjacent dielectric layers are different.
  • the substrate is preferably selected from transparent conductive substrates such as FTO, ITO, and AZO.
  • the thicknesses of the first dielectric layer, the second dielectric layer, the third dielectric layer and the fourth dielectric layer are independently preferably 10 to 500 nm, more preferably 20 to 400 nm, and more preferably 100 to 300 nm. Most preferred is 200nm.
  • the surface of the fourth dielectric layer preferably further includes:
  • the nth dielectric layer is provided on the surface of the n-1th dielectric layer.
  • n is preferably 6 to 18, more preferably 8 to 16, more preferably 10 to 14, and most preferably 12.
  • the hole transport layer is preferably provided with multiple dielectric layers, that is, a first dielectric layer, a second dielectric layer, and a third dielectric layer that are sequentially provided on the surface of the substrate. . . , the nth dielectric layer, the composition of the dielectric layer is independently selected from one of CuI, CuSCN, Cu 2 O, CuO, MoS 2 , MoO x , WO 3 or NiO x , and the thickness of each dielectric layer is independently Selected from 20 to 500nm, the components of two adjacent dielectric layers different.
  • the preparation method of the hole transport layer preferably includes:
  • a fourth dielectric layer is prepared on the surface of the third dielectric layer.
  • the first dielectric layer before preparing the first dielectric layer, it preferably further includes:
  • the method for cleaning the substrate is preferably ultrasonic cleaning and then drying for use.
  • the ultrasonic cleaning is preferably performed in deionized water, acetone and ethanol respectively for 10 to 30 minutes, more preferably 15 to 25 minutes, and most preferably 20 minutes; the drying is preferably performed with nitrogen.
  • the method for preparing the first dielectric layer preferably includes:
  • the first dielectric layer material is formed into a film layer on the surface of the substrate.
  • the first dielectric layer material is selected from one of CuI, CuSCN, Cu 2 O, CuO, MoS 2 , MoO x , WO 3 or NiO x , more preferably WO 3 or NiO.
  • the method for forming the film layer may be spin coating, blade coating, spray coating, slit coating, screen printing, evaporation, magnetron sputtering, CVD, etc., and the magnetron sputtering method is more preferred.
  • the formation of the film layer preferably further includes an annealing treatment.
  • the temperature of the annealing treatment is preferably 330 to 370°C, more preferably 340 to 360°C, and most preferably 350°C; the annealing time is Preferably it is 0.5-1.5 hours, More preferably, it is 1 hour.
  • the preparation method of the second dielectric layer preferably includes:
  • the second dielectric layer material is formed into a film layer on the surface of the first dielectric layer.
  • the second dielectric layer material is selected from one of CuI, CuSCN, Cu 2 O, CuO, MoS 2 , MoO x , WO 3 or NiO x , preferably WO 3 or NiO;
  • the material of the second dielectric layer is different from the material of the first dielectric layer.
  • the method for forming the film layer may be spin coating, blade coating, spray coating, slit coating, screen printing, evaporation, magnetron sputtering, CVD, etc., and magnetron sputtering is preferred.
  • the thickness of the second dielectric layer is preferably 10 to 500 nm, more preferably 20 to 400 nm, more preferably 100 to 300 nm, and most preferably 200 nm.
  • the formation of the film layer preferably further includes an annealing treatment.
  • the temperature of the annealing treatment is preferably 330 to 370°C, more preferably 340 to 360°C, and most preferably 350°C.
  • the preparation method of the third dielectric layer is the same as the preparation method of the first dielectric layer, which will not be described in detail here; the material composition of the third dielectric layer is different from that of the second dielectric layer; the fourth dielectric layer
  • the preparation method is the same as the preparation method of the second dielectric layer, which will not be described again here; the materials of the fourth dielectric layer and the third dielectric layer have different compositions.
  • the fourth dielectric layer after obtaining the fourth dielectric layer, it preferably further includes:
  • a fifth dielectric layer is prepared on the surface of the fourth dielectric layer, a sixth dielectric layer is prepared on the surface of the fifth dielectric layer, and by analogy, the nth dielectric layer is prepared on the surface of the n-1th dielectric layer to obtain a hole transport layer.
  • the preparation method of the n-1th dielectric layer is consistent with the preparation method of the first dielectric layer, and will not be described in detail here; the preparation method of the n-th dielectric layer is consistent with the preparation method of the second dielectric layer. This will not be described again; the n-1th dielectric layer material and the nth dielectric layer material have different compositions.
  • the invention provides a perovskite battery, including:
  • a hole transport layer, the hole transport layer is the hole transport layer described in the above technical solution
  • a perovskite layer provided on the surface of the hole transport layer
  • An electron transport layer provided on the surface of the perovskite layer
  • An electrode is provided on the surface of the electron transport layer.
  • the components of the perovskite layer are preferably selected from organic-inorganic hybrid lead halide perovskites, organic-inorganic hybrid tin/lead mixed halide perovskites, all-inorganic perovskites, etc.
  • Crystalline light-absorbing material more preferably includes: PbI 2 and MAI; the mass ratio of PbI 2 and MAI is preferably (3 ⁇ 4): (1 ⁇ 1.5), more preferably (3.5 ⁇ 3.8): (1.2 ⁇ 1.4), the most preferred is 3.688:1.272.
  • the thickness of the perovskite layer is preferably 50 nm to 1.5 ⁇ m, more preferably 100 nm to 1 ⁇ m, more preferably 200 nm to 800 nm, more preferably 300 nm to 600 nm, and most preferably 450 nm.
  • the component of the electron transport layer is preferably selected from SnO 2 , TiO 2 , fullerene, fullerene derivatives, etc., and is more preferably C60.
  • the thickness of the electron transport layer is preferably 15 to 500 nm, more preferably 50 to 400 nm, more preferably 100 to 300 nm, and most preferably 200 nm.
  • the components of the electrode are preferably selected from metal materials such as gold, silver, copper, and graphene, Carbon materials such as amorphous carbon are more preferably Ag.
  • the thickness of the electrode is preferably 20 nm to 50 ⁇ m, more preferably 100 nm to 40 ⁇ m, more preferably 500 nm to 30 ⁇ m, more preferably 1 to 20 ⁇ m, more preferably 5 to 15 ⁇ m, and most preferably 10 ⁇ m.
  • the structural schematic diagram of the perovskite battery includes:
  • top electrode (1) The structural diagram of the top electrode (1), electron transport layer (2), perovskite layer (3), hole transport layer (4), transparent conductive glass substrate (5), and hole transport layer (4) is shown in Figure 2 shown, including: dielectric layer 1 (6), dielectric layer 2 (7), dielectric layer n (8), and dielectric layer n+1 (9).
  • the preparation method of the perovskite battery preferably includes:
  • An electrode is prepared on the surface of the electron transport layer.
  • the preparation method of the hole transport layer is consistent with the above technical solution and will not be described again.
  • the preparation method of the perovskite layer preferably includes:
  • the perovskite material is prepared into a film on the surface of the hole transport layer.
  • the perovskite material is preferably selected from organic-inorganic hybrid lead halide perovskite, organic-inorganic hybrid tin/lead mixed halide perovskite, all-inorganic perovskite, etc. with perovskite crystals.
  • type light-absorbing material preferably includes: PbI 2 and MAI; the mass ratio of PbI 2 and MAI is preferably (3 ⁇ 4): (1 ⁇ 1.5), more preferably (3.5 ⁇ 3.8): (1.2 ⁇ 1.4) , the most preferred is 3.688:1.272.
  • the perovskite material is preferably a perovskite material solution, and the mass concentration of the perovskite material solution is preferably 20 to 30%, more preferably 25%;
  • the molar concentration is preferably 0.6-1.0 mol/L, more preferably 0.7-0.9 mol/L, and most preferably 0.8 mol/L;
  • the solvent in the perovskite material solution preferably includes: DMF and NMP; the DMF and The volume ratio of NMP is preferably (85 to 95): (5 to 15), and more preferably 90:10.
  • the method for preparing the film can be spin coating, blade coating, spray coating, slit coating, screen printing, evaporation, CVD, etc., preferably the blade coating method; the speed during the blade coating process It is preferably 5 to 15 mm/s, more preferably 8 to 12 mm/s, and most preferably 10 mm/s.
  • the preparation after film formation preferably further includes:
  • the temperature of the annealing treatment is preferably 120-140°C, more preferably 130°C; the time of the annealing treatment is preferably 10-30 minutes, more preferably 20 minutes.
  • the preparation method of the electron transport layer preferably includes:
  • the electron transport layer material is preferably selected from SnO 2 , TiO 2 , fullerene, fullerene derivatives, etc., and is more preferably C60.
  • the method for preparing the film can be spin coating, blade coating, spray coating, slit coating, screen printing, evaporation, magnetron sputtering, CVD, thermal evaporation deposition, etc., and more preferably thermal evaporation deposition. Evaporation deposition.
  • the preparation method of the electrode preferably includes:
  • the electrode material is prepared into a film on the surface of the electron transport layer.
  • the electrode material is preferably selected from metal materials such as gold, silver, copper, and carbon materials such as graphene and amorphous carbon, and is more preferably Ag.
  • the method for preparing the film may be magnetron sputtering, electron beam evaporation, thermal evaporation, atomic layer deposition, pulse laser deposition, evaporation, etc., more preferably evaporation, and the evaporation process is preferably In a high vacuum environment, the high vacuum is preferably ⁇ 5x10 -4 Pa; the evaporation speed is preferably More preferably
  • the present invention uses a hole transmission layer composed of two dielectric layers arranged alternately.
  • a hole transmission layer composed of two dielectric layers arranged alternately.
  • the transmission of visible light in a certain band can be limited in the dielectric layer.
  • the type, thickness and number of layers of materials ensure that the wavelength band of light is within the visible light range, thereby achieving colorized preparation of perovskite cells.
  • WO 3 dielectric layer 1 was prepared using the magnetron sputtering method with a thickness of 100 nm and annealing at 350°C for 1 hour.
  • NiO dielectric layer 2 was prepared using the magnetron sputtering method with a thickness of 20 nm and annealed at 350°C for 1 hour.
  • the perovskite active layer is prepared on the surface of the dielectric layer 2 using the scraping method. The scraping speed is 10mm/s. After annealing at 130°C for 20 minutes, the final thickness of the perovskite layer is 450nm.
  • An electron transport layer is deposited on the surface of the perovskite layer, and C60 is deposited using thermal evaporation method with a thickness of 15nm.
  • a top electrode on the surface of the electron transport layer evaporates to prepare a metal Ag electrode layer on the surface of the electron transport layer, evaporate metal Ag to the surface of the electron transport layer in a high vacuum ( ⁇ 5 ⁇ 10 -4 Pa) environment, the evaporation rate for With a thickness of 100nm, a perovskite solar cell is obtained.
  • WO 3 dielectric layer 1 was prepared using the magnetron sputtering method with a thickness of 20 nm and annealing at 350°C for 1 hour.
  • NiO dielectric layer 2 was prepared using the magnetron sputtering method with a thickness of 100 nm and annealing at 350°C for 1 hour.
  • WO 3 dielectric layer 3 was prepared using the magnetron sputtering method with a thickness of 20 nm and annealing at 350°C for 1 hour.
  • NiO dielectric layer 4 was prepared using the magnetron sputtering method with a thickness of 100 nm and annealing at 350°C for 1 hour.
  • the perovskite active layer is prepared on the surface of the dielectric layer 4 using the scraping method. The scraping speed is 10mm/s. After annealing at 130°C for 20 minutes, the final thickness of the perovskite layer is 450nm.
  • An electron transport layer is deposited on the surface of the perovskite layer, and C60 is deposited using thermal evaporation method with a thickness of 15nm.
  • a top electrode on the surface of the electron transport layer evaporates to prepare a metal Ag electrode layer on the surface of the electron transport layer, evaporate metal Ag to the surface of the electron transport layer in a high vacuum ( ⁇ 5 ⁇ 10 -4 Pa) environment, the evaporation rate for With a thickness of 100nm, a perovskite solar cell is obtained.
  • WO 3 dielectric layer 1 was prepared using the magnetron sputtering method with a thickness of 100 nm and annealing at 350°C for 1 hour.
  • NiO dielectric layer 2 was prepared using the magnetron sputtering method with a thickness of 20 nm and annealed at 350°C for 1 hour.
  • NiO dielectric layer 4 was prepared using the magnetron sputtering method with a thickness of 20 nm and annealed at 350°C for 1 hour.
  • a perovskite layer on the above-mentioned dielectric layer 4 (hole transport layer), and configure 10 ml of precursor solution for the perovskite layer with a molar concentration of 0.8M (composition: 3.688g PbI 2 , 1.272g MAI), and the solvent is 90% DMF+10% NMP, use scraping method to prepare perovskite active layer on the surface of dielectric layer 4, scraping speed 10mm/s, annealed at 130°C for 20 minutes, and the final thickness of the perovskite layer is 450nm.
  • An electron transport layer is deposited on the surface of the perovskite layer, and C60 is deposited using thermal evaporation method with a thickness of 15nm.
  • a top electrode on the surface of the electron transport layer evaporates to prepare a metal Ag electrode layer on the surface of the electron transport layer, evaporate metal Ag to the surface of the electron transport layer in a high vacuum ( ⁇ 5 ⁇ 10 -4 Pa) environment, the evaporation rate for With a thickness of 100nm, a perovskite solar cell is obtained.
  • a UV-visible spectrophotometer was used to conduct a reflection spectrum test (including the reflection peak position and half-wave width) on the hole transport layer prepared in the example (including the transparent conductive glass and the dielectric layer disposed thereon).
  • the test results are as follows: It can be seen that when the number of dielectric layers is 2, no color is displayed. When the number of dielectric layers is increased to 4, the displayed color is related to the thickness of each layer.
  • the present invention realizes the colorization of perovskite cells by constructing a hole transport layer with a two-dimensional photonic crystal structure.
  • the two-dimensional photonic crystal structure includes two dielectric layers, which can be determined by the type of dielectric layer, the thickness of the single dielectric layer and The number of dielectric layers controls the color, and the color of the perovskite cell obtained is also related to the incident angle of light. It displays different colors from different angles, which has more aesthetic value.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne une couche de transport de trous (4) et une batterie à pérovskite. La couche de transport de trous (4) comprend : une première couche diélectrique (6) ; une deuxième couche diélectrique (7) disposée sur la surface de la première couche diélectrique (6) ; une troisième couche diélectrique (8) disposée sur la surface de la deuxième couche diélectrique (7) ; et une quatrième couche diélectrique (9) disposée sur la surface de la troisième couche diélectrique (8). La première couche diélectrique (6), la deuxième couche diélectrique (7), la troisième couche diélectrique (8) et la quatrième couche diélectrique (9) sont indépendamment choisies parmi l'un d'entre le CuI, le CuSCN, le Cu2O, le CuO, le MoS2, le MoOx, le WO3 et le NiOx, et deux couches diélectriques adjacentes ont des constituants différents. La coloration de la batterie à pérovskite est obtenue par construction de la couche de transport de trous (4) avec une structure cristalline photonique bidimensionnelle.
PCT/CN2023/080198 2022-08-25 2023-03-08 Couche de transport de trous et son utilisation WO2024040920A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211023527.7 2022-08-25
CN202211023527.7A CN115132926B (zh) 2022-08-25 2022-08-25 一种空穴传输层及其应用

Publications (1)

Publication Number Publication Date
WO2024040920A1 true WO2024040920A1 (fr) 2024-02-29

Family

ID=83387044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080198 WO2024040920A1 (fr) 2022-08-25 2023-03-08 Couche de transport de trous et son utilisation

Country Status (2)

Country Link
CN (1) CN115132926B (fr)
WO (1) WO2024040920A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115132926B (zh) * 2022-08-25 2022-11-25 中国华能集团清洁能源技术研究院有限公司 一种空穴传输层及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137879A (zh) * 2011-12-02 2013-06-05 三星显示有限公司 含有多层空穴传输层的有机发光二极管和平板显示装置
CN103515537A (zh) * 2012-06-27 2014-01-15 三星显示有限公司 包括多层空穴传输层的有机发光装置以及包括该装置的有机发光显示设备
US9136495B2 (en) * 2010-05-14 2015-09-15 Samsung Display Co., Ltd. Organic light-emitting device
CN111403604A (zh) * 2020-03-05 2020-07-10 暨南大学 一种双空穴传输层钙钛矿太阳能电池及其制备方法
CN114188485A (zh) * 2021-12-06 2022-03-15 吉林大学 一种基于茚添加剂的锡基钙钛矿太阳能电池及其制备方法
CN115132926A (zh) * 2022-08-25 2022-09-30 中国华能集团清洁能源技术研究院有限公司 一种空穴传输层及其应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203055993U (zh) * 2012-11-26 2013-07-10 五邑大学 一种半透明有机太阳能电池
US20170330693A1 (en) * 2016-05-11 2017-11-16 Board Of Trustees Of Michigan State University Interlayer Additives For Highly Efficient And Hysteresis-Free Perovskite-Based Photovoltaic Devices
CN107104193B (zh) * 2017-05-03 2020-04-03 上海大学 复合空穴传输层、led器件结构、应用和制备方法
CN108011044B (zh) * 2017-11-14 2020-07-31 中国科学院化学研究所 大面积柔性钙钛矿太阳能电池及其制备方法
CN207834358U (zh) * 2017-12-25 2018-09-07 华南农业大学 一种基于叠层一维光子晶体的半透明有机太阳能电池
CN109119538A (zh) * 2018-07-27 2019-01-01 暨南大学 柔性一维光子晶体调控的半透明无铟聚合物太阳能电池
CN112578601A (zh) * 2019-09-27 2021-03-30 北京载诚科技有限公司 一种透明电极及装置
CN113130796B (zh) * 2020-01-16 2022-11-25 京东方科技集团股份有限公司 Qled器件、空穴传输材料及其制作方法、显示装置
US20210226086A1 (en) * 2020-01-21 2021-07-22 Samsung Display Co., Ltd. Light emitting element and display device including the same
CN113571640A (zh) * 2020-04-28 2021-10-29 杭州纤纳光电科技有限公司 一种含叠加复合传输层的钙钛矿太阳能电池及其制备方法
WO2022154030A1 (fr) * 2021-01-13 2022-07-21 出光興産株式会社 Élément électroluminescent organique, appareil d'affichage électroluminescent organique et dispositif numérique
CN114447229A (zh) * 2022-01-28 2022-05-06 中国科学院上海光学精密机械研究所 一种宽角度入射颜色不变彩色太阳能电池
CN114695672A (zh) * 2022-03-31 2022-07-01 华北电力大学 一种基于选择性滤光设计的半透明全无机钙钛矿/有机叠层太阳电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136495B2 (en) * 2010-05-14 2015-09-15 Samsung Display Co., Ltd. Organic light-emitting device
CN103137879A (zh) * 2011-12-02 2013-06-05 三星显示有限公司 含有多层空穴传输层的有机发光二极管和平板显示装置
CN103515537A (zh) * 2012-06-27 2014-01-15 三星显示有限公司 包括多层空穴传输层的有机发光装置以及包括该装置的有机发光显示设备
CN111403604A (zh) * 2020-03-05 2020-07-10 暨南大学 一种双空穴传输层钙钛矿太阳能电池及其制备方法
CN114188485A (zh) * 2021-12-06 2022-03-15 吉林大学 一种基于茚添加剂的锡基钙钛矿太阳能电池及其制备方法
CN115132926A (zh) * 2022-08-25 2022-09-30 中国华能集团清洁能源技术研究院有限公司 一种空穴传输层及其应用

Also Published As

Publication number Publication date
CN115132926A (zh) 2022-09-30
CN115132926B (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
CN107565024B (zh) 一种阶梯式吸收层结构的钙钛矿太阳能电池及其制备方法
US8962982B2 (en) Dye-sensitized solar cell
CN104969362B (zh) 带表面电极的透明导电玻璃基板及其制造方法、以及薄膜太阳能电池及其制造方法
EP1684362A2 (fr) Procédé de formation de couches minces, de préférence pour cellules photovoltaiques
CN106024978A (zh) 一种抗紫外线功能的金属合金夹层结构透明导电薄膜
WO2024040920A1 (fr) Couche de transport de trous et son utilisation
CN109768167B (zh) 无电流迟滞的钙钛矿太阳电池及其制备方法
Cao et al. Bottom-contact passivation for high-performance perovskite solar cells using TaCl5-doped SnO2 as electron-transporting layer
CN110224066A (zh) 一种无辅助层的半透明钙钛矿太阳能电池及其制备方法
Bhoomanee et al. Effect of al-doped ZnO for electron transporting layer in planar perovskite solar cells
CN209963073U (zh) 一种新型高效率双面入光CdTe钙钛矿叠层光伏电池
WO2023098022A1 (fr) Procédé de préparation de couche de matériau de pérovskite et dispositif de batterie
CN108183141A (zh) 一种新型结构的碲化镉薄膜电池及其制备方法
CN105448524B (zh) 银掺杂有机金属钙钛矿材料、太阳能电池及其制作方法
CN115943745A (zh) 半透明钙钛矿基光伏电池及其制备方法
Zong et al. Improved open-circuit voltage via Cs2CO3-Doped TiO2 for high-performance and stable perovskite solar cells
WO2023082730A1 (fr) Cellule solaire pérovskite et son procédé de préparation
CN116171053B (zh) 一种全钙钛矿叠层太阳能电池及其制备方法
Chang et al. The Cesium doping using the nonstoichiometric precursor for improved CH3NH3PbI3 perovskite films and solar cells in ambient air
Kiruthiga et al. Indium-free MgSnO3 transparent conductive oxide layer: investigation on structural, optical and electrical properties and photovoltaic performance analysis
WO2023109071A1 (fr) Cellule solaire en pérovskite contenant une structure de micro-cavité optique
Li et al. CsCl induced efficient fully-textured perovskite/crystalline silicon tandem solar cell
TWI814965B (zh) 鈣鈦礦前驅物溶液及鈣鈦礦吸收層的製造方法
Zhang et al. Tungsten doped indium oxide (IWO) transparent electrode used in air-annealed perovskite solar cells
CN108389970A (zh) 一种基于混蒸工艺的具有能带梯度的钙钛矿太阳能电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856017

Country of ref document: EP

Kind code of ref document: A1