WO2024040832A1 - 阵列基板、显示面板及显示装置 - Google Patents

阵列基板、显示面板及显示装置 Download PDF

Info

Publication number
WO2024040832A1
WO2024040832A1 PCT/CN2022/142462 CN2022142462W WO2024040832A1 WO 2024040832 A1 WO2024040832 A1 WO 2024040832A1 CN 2022142462 W CN2022142462 W CN 2022142462W WO 2024040832 A1 WO2024040832 A1 WO 2024040832A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
layer
color
array substrate
redundant
Prior art date
Application number
PCT/CN2022/142462
Other languages
English (en)
French (fr)
Inventor
常红燕
康报虹
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2024040832A1 publication Critical patent/WO2024040832A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136254Checking; Testing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Definitions

  • the present application relates to the field of display technology, and in particular to an array substrate, a display panel and a display device.
  • Liquid Crystal Display is mainly composed of a Thin Film Transistor (TFT) array substrate, a Color Filter (CF) substrate, and a Liquid Crystal Layer (Liquid Crystal Layer) disposed between the two substrates. constitute.
  • TFT Thin Film Transistor
  • CF Color Filter
  • Liquid Crystal Layer Liquid Crystal Layer
  • Embodiments of the present application provide an array substrate, a display panel, and a display device.
  • a plurality of mutually spaced redundant color resistors are formed by extending a color resistor disposed in a display area to a measurement area, and setting reference marks in the measurement area so as to Measuring the offset of the redundant color resistor relative to the reference mark solves the problem that the existing technology cannot accurately monitor the width and offset of the color resistor block in the display area.
  • an array substrate includes a substrate substrate, the substrate substrate includes a display area and a measurement area located on the periphery of the display area, and the display area is provided with a plurality of arrays arranged along a first direction.
  • Color resistors one of the color resistors in any two adjacent columns extends to the measurement area along the second direction to form a redundant color resistor in the measurement area; the first direction and the second direction are perpendicular to each other;
  • the measurement area is further provided with a reference mark, and the reference mark is configured to determine the offset of the redundant color resistor relative to the reference mark in the first direction.
  • one of the two adjacent columns of color resistors among the plurality of color resistors arranged along the first direction in the display area is extended to the measurement area along the second direction,
  • a redundant color resistor in the measurement area it is easy to grab the edge of the redundant color resistor, making the width measurement of the redundant color resistor more accurate.
  • There is also a reference mark in the measurement area so that the redundant color resistor can be measured.
  • the offset of the resistor relative to the reference mark, and because the edges of the redundant color resistor are relatively obvious, the measured offset can be more accurate.
  • the monitoring results of the redundant color resistor are used as the monitoring results of the color resistor blocks in the display area. , thereby achieving accurate monitoring of the width and offset of the color resist block in the display area.
  • the color resistors are red, blue, green and white photoresist blocks; the color resistors are configured in a triangle, square, linear or mosaic shape.
  • the redundant color resistors are spaced apart by a width of the redundant color resistors.
  • the redundant color resistors are located on both sides of the measurement area along the second direction;
  • the redundant color resistor is located on either side of the measurement area along the second direction;
  • the redundant color resistors are located in four corner areas of the measurement area.
  • the measurement area is provided with a reference layer, and the redundant color resistor is located on a side of the reference layer away from the base substrate;
  • the reference mark is provided on the reference layer.
  • the reference layer is provided with a measurement reference hole penetrating the reference layer.
  • the measurement reference hole is a circular hole
  • the offset is determined by measuring the distance between the center of the circular hole and the side edge of the redundant color resistor.
  • the measurement reference hole includes two hole edges arranged oppositely along the first direction, and the reference mark is the hole edge;
  • the redundant color resist includes two side edges arranged oppositely along the first direction;
  • the edge of the hole and the edge of the side are parallel to each other.
  • the orthographic projection of the measurement reference hole on the substrate is located on the orthogonal projection of two adjacent redundant color resistors on the substrate. between projections.
  • the orthographic projection of the measurement reference hole on the base substrate is located within the orthographic projection of the redundant color resistor on the base substrate.
  • the reference layer is a metal layer
  • the metal layer has a signal line extending along the first direction
  • the measurement reference hole is provided on the signal line.
  • the measurement reference hole is disposed in the middle of the signal line, and the measurement reference hole is located between two adjacent redundant color resistors.
  • the size of the measurement reference hole is smaller than the size of the signal line.
  • the measurement reference hole is provided on at least one side of the signal line in the second direction.
  • a reference blocking wall is provided on the side of the reference layer away from the base substrate, and the reference blocking wall is located between two adjacent redundant color resistors;
  • the reference retaining wall includes two wall edges oppositely arranged along the first direction, and the reference mark is the wall edge.
  • each of the redundant color resistors is provided with a color resistor hole, and the color resistor hole penetrates the redundant color resistor along the thickness direction of the base substrate.
  • the measurement reference hole is a rectangular hole.
  • the color resistance hole is a rectangular hole.
  • the array substrate further includes a thin film transistor layer, a color filter layer and a transparent electrode layer; the substrate substrate, the thin film transistor layer, the color filter layer and the transparent conductive layer Layer the settings one by one.
  • the thin film transistor layer includes a first metal layer, a gate insulation layer, an active layer, a second metal layer and a passivation layer stacked in sequence; the first metal layer is disposed close to the On one side of the base substrate, the passivation layer is disposed close to the color filter layer.
  • the beneficial effect of the array substrate provided by the present application is that: compared with the prior art, the present application will provide one of the color resistors in any two adjacent columns among the plurality of color resistors arranged along the first direction in the display area.
  • the resistor extends to the measurement area along the second direction to form a redundant color resistor in the measurement area. This makes it easy to grasp the edge of the redundant color resistor, making the width measurement of the redundant color resistor more accurate.
  • the monitoring results of the color resist blocks in the display area enable accurate monitoring of the width and offset of the color resist blocks in the display area.
  • Embodiments of the present application also provide a display panel, including an array substrate, a color filter substrate and a liquid crystal layer as described in any of the above embodiments; the color filter substrate and the array substrate are arranged in a box, and the liquid crystal layer is arranged on between the color filter substrate and the array substrate.
  • the beneficial effect of the display panel provided by the present application is that: using the above-mentioned array substrate, the present application will provide one of the color resistors in any two adjacent columns among the plurality of color resistors arranged along the first direction in the display area. Extend to the measurement area along the second direction to form a redundant color resistor in the measurement area. This makes it easy to grab the edge of the redundant color resistor, making the width measurement of the redundant color resistor more accurate. There is also a benchmark in the measurement area.
  • the offset of the redundant color resistor relative to the reference mark can be measured, and because the edges of the redundant color resistor are more obvious, the measured offset can be more accurate, and the monitoring results of the redundant color resistor can be used as a display Monitoring results of the color resist blocks in the display area, thereby achieving accurate monitoring of the width and offset of the color resist blocks in the display area.
  • An embodiment of the present application also provides a display device, including the display panel as described in any of the above embodiments and a backlight module disposed on one side of the display panel.
  • the beneficial effect of the display device provided by the present application is that: using the above-mentioned display panel, the present application will set one of the color resistors in any two adjacent columns among the plurality of color resistors arranged along the first direction in the display area. Extend to the measurement area along the second direction to form a redundant color resistor in the measurement area. This makes it easy to grasp the edge of the redundant color resistor, making the width measurement of the redundant color resistor more accurate. A benchmark is also set in the measurement area.
  • the offset of the redundant color resistor relative to the reference mark can be measured, and because the edges of the redundant color resistor are more obvious, the measured offset can be more accurate, and the monitoring results of the redundant color resistor can be used as a display Monitoring results of the color resist blocks in the display area, thereby achieving accurate monitoring of the width and offset of the color resist blocks in the display area.
  • Figure 1 is a schematic diagram of the position of the redundant color resistor in the measurement area on the array substrate according to the embodiment of the present application;
  • Figure 2 is a second schematic diagram of the position of the redundant color resistor in the measurement area on the array substrate according to the embodiment of the present application;
  • Figure 3 is a schematic diagram 3 of the position of the redundant color resistor in the measurement area on the array substrate according to the embodiment of the present application;
  • Figure 4 is a partial top view of the array substrate provided in Embodiment 1 of the present application.
  • Figure 5 is a cross-sectional view along line A-A in Figure 4.
  • Figure 6 is a position distribution diagram of the measurement reference holes of the array substrate provided by the first embodiment of the present application.
  • Figure 7 is a second position distribution diagram of the measurement reference holes of the array substrate provided by Embodiment 1 of the present application.
  • Figure 8 is the third position distribution diagram of the measurement reference holes of the array substrate provided in Embodiment 1 of the present application.
  • Figure 9 is a partial top view of the array substrate provided in Embodiment 2 of the present application.
  • Figure 10 is a B-B cross-sectional view in Figure 9;
  • Figure 11 is a schematic structural diagram of a display panel provided in Embodiment 3 of the present application.
  • FIG. 12 is a schematic structural diagram of a display device provided in Embodiment 4 of the present application.
  • Array substrate 100.
  • Color filter substrate 200.
  • Liquid crystal layer 300.
  • Backlight module 401.
  • Light guide plate 402.
  • Light source component 403.
  • Optical film Optical film.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • Embodiments of the present application provide an array substrate, a display panel and a display device, which solve the problem that the existing technology cannot accurately monitor the width and offset of the color resist blocks in the display area.
  • the array substrate in Embodiment 1 of the present application is a COA type array substrate.
  • the COA type array substrate includes a base substrate 10, a thin film transistor (TFT) layer, a color filter layer and a transparent conductive layer that are stacked in sequence.
  • the base substrate 10 includes a display area 1 and a peripheral area 2 located at the periphery of the display area 1.
  • the transparent conductive layer usually includes pixel electrodes and common electrodes for driving liquid crystal to rotate.
  • the thin film transistor layer located under the color filter layer needs to control and adjust the driving voltages on the pixel electrodes corresponding to the liquid crystals at different positions in the display area 1 to form different display brightnesses.
  • the thin film transistor layer usually includes a first metal layer, a gate insulating layer, an active layer, a second metal layer and a passivation layer that are stacked in sequence.
  • the first metal layer is disposed on the side close to the base substrate 10
  • the passivation layer is disposed on the side close to the color filter layer.
  • the first metal layer includes a plurality of scan lines and gate electrodes for forming TFTs;
  • the second metal layer includes a plurality of data lines and source and drain electrodes for forming TFTs.
  • the substrate substrate 10 includes a measurement area 3 located at the periphery of the display area 1 , the measurement area 3 is located within the peripheral area 2 , the display area 1 is generally square, and the measurement area 3 is a square ring. In some embodiments, the measurement area 3 is a square ring. In the embodiment, the display area 1 can also be in other shapes, such as a circle, and correspondingly, the measurement area 3 can be a ring.
  • the display area 1 is provided with a plurality of color resistors arranged along the first direction X.
  • the color resistors can be red, blue and green photoresist blocks.
  • the red, blue and green photoresist blocks in the display area 1 can be Triangular configuration, square configuration, linear configuration or mosaic configuration.
  • the plurality of color resistors in the display area 1 may also be red, blue, green and white photoresist blocks.
  • the plurality of color resist blocks can be made by dyeing, etching, printing, dry film or electroplating, but are not limited thereto.
  • one of the two adjacent columns of color resistors extends to the measurement area 3 along the second direction Y to form a redundant color resistor 31 in the measurement area 3; the first direction X and the second direction Y are perpendicular to each other, and the first direction X and the second direction Y are respectively perpendicular to the thickness direction Z of the base substrate 10 .
  • the color resistor extending to the measurement area 3 to form a redundant color resistor 31 can make the environment around the color resistor blocks in the display area 1 consistent, and the width W of the redundant color resistor 31 is equivalent to the corresponding color resistor block in the display area 1 Width, by monitoring the width W of the redundant color resistor 31 in the measurement area 3, the width of the color resistor block in the display area 1 can be monitored, which greatly reduces the difficulty of monitoring the width of the color resistor block in the display area 1. Since two adjacent redundant color resistors 31 are separated by a certain distance, both sides of the redundant color resistor 31 in the first direction The width W of the resistor 31 is determined, thereby obtaining the precise width value of the color resistor block in the display area 1.
  • the measurement area 3 is also provided with a reference mark, and the reference mark is configured to determine the offset D of the redundant color resistor 31 in the first direction X relative to the reference mark. That is to say, the reference mark does not move when making the redundant color resistor 31. By measuring the offset D of the redundant color resistor 31 relative to the reference mark, the offset of the color resistor block in the display area 1 can be obtained.
  • multiple redundant color resistors 31 in the measurement area 3 are set apart from each other.
  • the width of the redundant color resistor 31 can be set apart. That is, when the red redundant color resistor and the blue redundant color resistor are set, they are in the middle.
  • the green redundant color resistor is not set.
  • the colors of the color resistors arranged at the edge of the display area 1 are red, green, and blue in order, then the redundant color resistor 31 at the edge of the measurement area 3 close to the display area 1 corresponds to The red, blue, and green color resistor blocks are in sequence, so that the width W and offset D of the redundant color resistor 31 are equivalent to the width and offset of the color resistor blocks in the display area 1.
  • the width W and offset D of the resistor 31 can monitor the width and offset of the color resist block in the display area 1, which greatly reduces the difficulty of monitoring the width and offset of the color resist block in the display area 1. Difficulty. Moreover, the edges of each redundant color resistor 31 are relatively obvious, which makes it easier for the measuring equipment to grasp the edge when measuring the width W of the redundant color resistor 31, and can accurately measure the width W of the redundant color resistor 31, thereby enabling accurate monitoring. to the width of the color block in display area 1.
  • the color resistor in the display area 1 extends along the second direction Y to the redundant color resistor 31 formed in the measurement area 3, which is located on both sides of the measurement area 3 along the second direction Y; of course, refer to Figure 2 , the redundant color resistor 31 can also be located only on any side of the measurement area 3 along the second direction Y; referring to Figure 3, the redundant color resistor 31 is located at the four corners of the measurement area 3, that is, only the four corners of the display area 1 The color resistors at the corners extend into the measurement area 3 along the second direction Y. It should be noted that the color resistors at the four corners of the display area 1 are different.
  • red color resistors For example, they include red color resistors, green color resistors, and The blue color resist block, or the color resistors at the four corners are red color resist block, green color resist block, blue color resist block and white color resist block, so that the width and offset of the color resist blocks of different colors can be adjusted. Both can perform accurate monitoring, and only need to extend the four color resistors in display area 1 to measurement area 3, which greatly reduces the cost of color resistor production.
  • the measurement area 3 is provided with a reference layer 32, and the redundant color resistor 31 is located on the side of the reference layer 32 away from the base substrate 10; the reference mark is provided on the reference layer 32, and the reference The layer 32 is provided with a measurement reference hole 33 penetrating the reference layer 32 .
  • the measurement reference hole 33 since the measurement reference hole 33 is fixed, the measurement reference hole 33 can be used as a reference object, so that the offset D of the redundant color resistor 31 relative to the measurement reference hole 33 can be accurately measured, thereby accurately measuring The offset of the color resist blocks in the display area 1 is monitored. While using the measurement reference hole 33 to monitor the offset of the color resist blocks in the display area 1, the measurement results of the width W of the redundant color resist 31 are combined. , the measurement accuracy of the width W and offset D of the redundant color resistor 31 can be further improved, so that the monitoring of the color resistor blocks in the display area 1 is more accurate.
  • the measurement reference hole 33 includes two hole edges 332 arranged oppositely along the first direction
  • the two side edges 311; the hole edge 332 and the side edge 311 are parallel to each other. That is, both the hole edge 332 and the side edge 311 are perpendicular to the first direction
  • the offset of hole 33 is D.
  • the measurement reference hole 33 is a rectangular hole, so that the hole edge 332 of the rectangular hole will be parallel to the side edge 311 of the redundant color resistor 31 to facilitate measurement between the hole edge 332 and the side edge 311 distance, so as to easily obtain the offset D of the redundant color resistor 31 relative to the measurement reference hole 33.
  • the measurement reference hole 33 needs to have a reference edge or reference point that can be easily measured. Therefore, the shape of the measurement reference hole 33 is not limited to the above-mentioned square hole.
  • the reference hole 33 may also be a circular hole, and the offset D of the redundant color resistor 31 relative to the measurement reference hole 33 can also be obtained by measuring the distance between the center of the circle and the side edge 311 of the redundant color resistor 31 .
  • the hole edge of the measurement reference hole 33 and the edge of the redundant color resistor 31 are relatively obvious, which can facilitate the measurement equipment to quickly and accurately measure the offset of the redundant color resistor 31 relative to the measurement reference hole 33 .
  • a measurement reference hole 33 can be provided between every two adjacent redundant color resistors 31, so that each redundant color resistor 31 can correspond to a measurement reference hole 33, so that The distance between the redundant color resistor 31 and the measurement reference hole 33 becomes closer, making measurement more convenient.
  • the offset D of each redundant color resistor 31 can be ensured to be measured relative to the same reference object, making the measurement results more accurate, and only setting one measurement reference hole 33 can also reduce the The manufacturing steps of the measurement reference hole 33 improve the manufacturing efficiency.
  • the orthographic projection of the measurement reference hole 33 on the base substrate 10 is located within the orthographic projection of the redundant color resistor 31 on the base substrate 10 . That is, the redundant color resistor 31 covers the measurement reference hole 33. At this time, the redundant color resistor 31 is light-transmissive, so that the measurement can be performed between the side edge 311 of the redundant color resistor 31 and the hole edge 332 of the measurement reference hole 33.
  • the offset D of the redundant color resistor 31 relative to the measurement reference hole 33 is measured by the distance between them, and at this time, the surface of the reference layer 32 between the two adjacent redundant color resistors 31 away from the base substrate 10 is Smooth, it is helpful for the transparent conductive layer produced after the redundant color resistor 31 to be laid more smoothly.
  • the reference layer 32 is disposed on the base substrate 10
  • the redundant color resistor 31 is disposed on the reference layer 32
  • the reference layer 32 is a metal layer
  • the metal layer has a shape along the first direction.
  • X extends the signal line 321
  • the measurement reference hole 33 is provided on the signal line 321. Since the position of the signal line 321 on the metal layer is fixed, arranging the measurement reference hole 33 on the signal line 321 is equivalent to having a reference object for the position of the measurement reference hole 33, which can reduce the measurement standard. The difficulty of setting the hole 33 improves the efficiency of opening the measurement reference hole 33 .
  • the reference layer 32 may be the first metal layer in the thin film transistor layer, or may be the second metal layer.
  • the embodiment of the present application takes the reference layer 32 as the first metal layer as an example for description.
  • the above signal Line 321 is a scan line included in the first metal layer.
  • the specific arrangement of the measurement reference hole 33 on the signal line 321 can be as follows: the measurement reference hole 33 is placed in the middle of the signal line 321 , and the measurement reference hole 33 is located between two adjacent redundant color resistors 31 . In the second direction Y, the size of the measurement reference hole 33 is smaller than the size of the signal line 321 . This ensures that the measurement reference hole 33 will not cut off the signal line 321 and will not affect the signal transmission performance of the signal line 321 .
  • the specific arrangement method of the measurement reference hole 33 on the signal line 321 can also be: the measurement reference hole 33 is provided in the middle of the signal line 321 , and the orthographic projection of the measurement reference hole 33 on the substrate 10 is located at a redundant position.
  • the size of the measurement reference hole 33 is smaller than the size of the signal line 321. This ensures that the measurement reference hole 33 will not cut off the signal line 321. The signal transmission performance of the signal line 321 will not be affected.
  • the specific arrangement method of the measurement reference hole 33 on the signal line 321 can also be: in the second direction Y, the measurement reference hole 33 is provided on at least one side of the signal line 321. It should be noted that if it is Measurement reference holes 33 are provided on both sides of the signal line 321. The measurement reference holes 33 on both sides of the signal line 321 are spaced apart from each other. This ensures that the signal line 321 will not be cut off and will not affect the signal transmission performance of the signal line 321. .
  • each redundant color resistor 31 is provided with a color resistor hole 312 , and the color resistor hole 312 penetrates the redundant color resistor 31 along the thickness direction Z of the base substrate 10 . Since the transparent conductive layer is produced after the redundant color resistor 31, there is also an insulating layer between the transparent conductive layer and the redundant color resistor 31. The arrangement of the color resistor hole 312 can make the transparent conductive layer above the redundant color resistor 31 and The metal layer below the redundant color resistor 31 is electrically connected. If the color resistor hole 312 is not provided, the dry etching process cannot penetrate the redundant color resistor 31 when making the insulating layer, so that the transparent conductive layer above the redundant color resistor 31 and the metal layer below will not be able to conduct conduction.
  • the position of the color resistor hole 312 on the redundant color resistor 31 must ensure that the transparent conductive layer and the metal layer are connected to form the pixel electrode through the color resistor hole 312.
  • the metal layer is a square, which will interfere with the bottom of the color resist block, making it difficult to grasp the edge of the color resist hole 312.
  • the metal layer in Embodiment 1 of the present application is provided as a whole layer on the base substrate 10 In this way, the edge of the color resistor hole 312 close to the opening on one side of the base substrate 10 is easier to identify, which is beneficial to measuring the size of the color resistor hole 312 .
  • the size of the color resistor hole 312 can be monitored by measuring the size of the color resistor hole 312. When the size of the color resistor hole 312 changes, it means that the width and offset of the redundant color resistor 31 have changed, and no specific measurement is required.
  • the width and offset of the redundant color resistor 31 can be used to know that the color resistor block in the display area 1 has changed. According to actual needs, the width W and offset D of the redundant color resistor 31 can be measured specifically to improve This improves the monitoring efficiency of the color resist blocks in display area 1.
  • the color resistance hole 312 is a rectangular hole, so that it is easy to measure the length and width M of the color resistance hole 312, when the measured length or width M of the color resistance hole 312 changes. , it means that the through holes on the color resistor blocks in the display area 1 have also changed, and the color resistor blocks in the display area 1 can be accurately monitored, thereby adjusting the size and setting position of the color resistor blocks.
  • the color resistance hole 312 can also be set as a round hole. In this way, you only need to measure the diameter of the round hole to monitor whether the size of the color resistance hole 312 has changed, thereby facilitating accurate Monitor and display the size changes of the through holes on the color resist block in area 1.
  • the size of the color resistor hole 312, the width W of the redundant color resistor 31, and the offset D of the redundant color resistor 31 will be measured at the same time.
  • the measurement results can be combined to improve the redundant color resistor 31.
  • the measurement accuracy of the width W and offset D of the redundant color resistor 31 is high, and the redundant color resistor 31 can be comprehensively monitored, thereby comprehensively monitoring changes in the color resistor blocks in the display area 1 .
  • a reference blocking wall 34 is provided on the side of the reference layer 32 away from the base substrate 10.
  • the reference blocking wall 34 is located between two adjacent redundant color resists 31; the reference blocking wall 34 includes Two wall edges 341 are arranged oppositely along the first direction X, and the reference mark is the wall edge 341.
  • the above-mentioned reference retaining wall 34 and the redundant color resistor 31 are arranged on the same layer. By measuring the distance between one of the wall edges 341 of the reference retaining wall 34 and the side edge 311 of the redundant color resistor 31, the value of the redundant color resistor 31 can be obtained.
  • the offset D is the offset by which the color resist blocks in display area 1 are offset.
  • a process before making the redundant color resistor 31 is to make an insulating layer, and a reference barrier 34 can be set on the insulating layer.
  • the reference layer 32 is the insulating layer. layer, and the reference retaining wall 34 is located between two adjacent redundant color resistors 31, so that after the redundant color resistor 31 is made, the distance between the redundant color resistor 31 and the reference retaining wall 34 can be measured, so that By knowing the offset D of the position of the redundant color resistor 31 on the insulating layer, the offset of the color resistor block in the display area 1 can be obtained.
  • the height of the reference blocking wall 34 in the thickness direction Z of the base substrate 10 can be set to be the same as the thickness of the redundant color resistor 31. In this way, it is convenient to measure the distance between the reference blocking wall 34 and the side edge 311 of the redundant color resistor 31 without increasing the thickness of the array substrate.
  • the third embodiment of the present application provides a display panel, including the array substrate 100, the color filter substrate 200 and the liquid crystal layer 300 as in any of the above embodiments; the color filter substrate 200 and the array substrate 100 are arranged in a box.
  • the liquid crystal layer 300 is provided between the color filter substrate 200 and the array substrate 100 .
  • the detailed structure of the array substrate 100 can be referred to the above-mentioned embodiments and will not be described again here. It can be understood that since the above-mentioned array substrate 100 is used in the display panel of the present application, the embodiment of the display panel of the present application includes the above-mentioned array. All technical solutions of all embodiments of the substrate 100 can achieve the technical effects achieved by the above technical solutions.
  • Embodiment 4 of the present application provides a display device, including the display panel as in any of the above embodiments and a backlight module 400 disposed on one side of the display panel.
  • the above-mentioned backlight module 400 includes a light guide plate 401, a light source assembly 402 and an optical film 403.
  • the backlight module 400 is used to provide illumination for the liquid crystal display panel.
  • the display device may be various electronic devices or the display device may be applied in various electronic devices.
  • the electronic device can be a desktop computer, a notebook computer, a smartphone, a tablet computer, an e-reader, a car computer, a navigator, a digital camera, a smart TV, a smart wearable device, etc. .
  • the display device provided in Embodiment 4 of the present application has very broad application prospects.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种阵列基板(100)、显示面板及显示装置,阵列基板(100)包括衬底基板(10),衬底基板(10)包括显示区(1)以及位于显示区(1)外围的测量区(3),显示区(1)设有多个沿第一方向(X)排列的色阻,任意相邻两列色阻中的其中一列色阻沿第二方向(Y)延伸至测量区(3),以在测量区(3)内形成冗余色阻(31);第一方向(X)和第二方向(Y)互相垂直;测量区(3)还设有基准标识,基准标识被配置为确定冗余色阻(31)在第一方向(X)上相对于基准标识的偏移量。本申请解决了现有技术无法准确监控到显示区(1)内色阻块的宽度、偏移量的问题。

Description

阵列基板、显示面板及显示装置 【技术领域】
本申请涉及显示技术领域,特别涉及一种阵列基板、显示面板及显示装置。
【背景技术】
液晶显示器(Liquid Crystal Display,LCD)主要是由一薄膜晶体管(Thin FilmTransistor,TFT)阵列基板、一彩膜(Color Filter,CF)基板、以及配置于两基板间的液晶层(Liquid Crystal Layer)所构成。随着显示技术的提升,已经发展了COA(Color Filteron array)技术,COA技术是将色阻块制作在薄膜晶体管阵列基板上。
在液晶显示面板的制程中,需要对显示区的色阻块宽度和色阻块产生的偏移量进行监控,以为大批量生产的液晶显示面板提供准确的制程参数。目前,色阻块宽度和色阻块的偏移量的测量都是从色阻块的侧边处开始的,但是制作在薄膜晶体管阵列基板上的色阻块会互相交叠,不好抓边,因此不容易准确测量色阻块的宽度和色阻块的偏移量。
【发明内容】
本申请实施例提供一种阵列基板、显示面板及显示装置,通过将设置在显示区内的色阻延伸到测量区形成多个互相间隔的冗余色阻,并且在测量区设置基准标识,以便测量冗余色阻相对于基准标识的偏移量,解决了现有技术无法准确监控到显示区色阻块的宽度和偏移量的问题。
本申请是这样实现的,一种阵列基板,包括衬底基板,所述衬底基板包括显示区以及位于所述显示区外围的测量区,所述显示区设有多个沿第一方向排列的色阻,任意相邻的两列所述色阻中的其中一列所述色阻沿第二方向延伸至所述测量区,以在所述测量区内形成冗余色阻;所述第一方向和所述第二方向互相垂直;
所述测量区还设有基准标识,所述基准标识被配置为确定所述冗余色阻在所述第一方向上相对于所述基准标识的偏移量。
根据本申请实施例提供的阵列基板,将设置在显示区内沿第一方向排列的多个色阻中任意相邻的两列色阻中的其中一列色阻沿第二方向延伸到测量区,以在测量区内形成冗余色阻,这样容易抓取到冗余色阻的边,使得冗余色阻的宽度测量更加准确,在测量区还设置有基准标识,这样就可以测量冗余色阻相对于基准标识的偏移量,而且由于冗余色阻的边比较明显,可以使测量的偏移量更加准确,将冗余色阻的监控结果作为显示区内的色阻块的监控结果,从而实现对显示区内色阻块的宽度和偏移量的准确监控。
在其中一个实施例中,所述色阻为红色、蓝色、绿色及白色的光阻块;所述色阻配置为三角形、正方形、线形或马赛克形。
在其中一个实施例中,所述冗余色阻间隔一个所述冗余色阻的宽度设置。
在其中一个实施例中,所述冗余色阻位于所述测量区沿所述第二方向的两 侧;
或者,所述冗余色阻位于所述测量区沿所述第二方向的任意一侧;
或者,所述冗余色阻位于所述测量区的四个角区域。
在其中一个实施例中,所述测量区设有基准层,所述冗余色阻位于所述基准层远离所述衬底基板的一侧;
所述基准标识设置于所述基准层上。
在其中一个实施例中,所述基准层上设有贯通所述基准层的测量基准孔。
在其中一个实施例中,所述测量基准孔为圆形孔,通过测量所述圆形孔的圆心与所述冗余色阻的侧边沿的距离确定所述偏移量。
在其中一个实施例中,所述测量基准孔包括沿所述第一方向相对设置的两个孔边沿,所述基准标识为所述孔边沿;
所述冗余色阻包括沿所述第一方向相对设置的两个侧边沿;
所述孔边沿与所述侧边沿互相平行。
在其中一个实施例中,沿所述第一方向,所述测量基准孔在所述衬底基板上的正投影位于两个相邻的所述冗余色阻在所述衬底基板上的正投影之间。
或者,所述测量基准孔在所述衬底基板上的正投影位于所述冗余色阻在所述衬底基板上的正投影内。
在其中一个实施例中,所述基准层为金属层,所述金属层具有沿所述第一方向延伸的信号线,所述测量基准孔设置于所述信号线上。
在其中一个实施例中,所述测量基准孔设置于所述信号线的中间,且所述测量基准孔位于两个相邻的所述冗余色阻之间。
在其中一个实施例中,在所述第二方向上,所述测量基准孔的尺寸小于所述信号线的尺寸。
在其中一个实施例中,在所述第二方向上,在所述信号线的至少一侧设置所述测量基准孔。
在其中一个实施例中,所述基准层上远离所述衬底基板的一侧设有基准挡墙,所述基准挡墙位于两个相邻的所述冗余色阻之间;
所述基准挡墙包括沿所述第一方向相对设置的两个墙边沿,所述基准标识为所述墙边沿。
在其中一个实施例中,每一个所述冗余色阻上均设有色阻孔,所述色阻孔沿所述衬底基板的厚度方向贯通所述冗余色阻。
在其中一个实施例中,所述测量基准孔为矩形孔。
和/或,所述色阻孔为矩形孔。
在其中一个实施例中,所述阵列基板还包括薄膜晶体管层、彩色滤光层和透明电极层;所述衬底基板、所述薄膜晶体管层、所述彩色滤光层和所述透明导电层依次层叠设置。
在其中一个实施例中,所述薄膜晶体管层包括依次层叠的第一金属层、栅极绝缘层、有源层、第二金属层以及钝化层;所述第一金属层设置于靠近所述衬底基板的一侧,所述钝化层设置于靠近所述彩色滤光层的一侧。
本申请提供的阵列基板的有益效果在于:与现有技术相比,本申请将设置 在显示区内沿第一方向排列的多个色阻中任意相邻的两列色阻中的其中一列色阻沿第二方向延伸到测量区,以在测量区内形成冗余色阻,这样容易抓取到冗余色阻的边,使得冗余色阻的宽度测量更加准确,在测量区还设置有基准标识,这样就可以测量冗余色阻相对于基准标识的偏移量,而且由于冗余色阻的边比较明显,可以使测量的偏移量更加准确,将冗余色阻的监控结果作为显示区内的色阻块的监控结果,从而实现对显示区内色阻块的宽度和偏移量的准确监控。
本申请实施例还提供了一种显示面板,包括如上述任一实施例所述的阵列基板、彩膜基板以及液晶层;所述彩膜基板与所述阵列基板对盒设置,液晶层设在所述彩膜基板与所述阵列基板之间。
本申请提供的显示面板的有益效果在于:采用了上述阵列基板,本申请将设置在显示区内沿第一方向排列的多个色阻中任意相邻的两列色阻中的其中一列色阻沿第二方向延伸到测量区,以在测量区内形成冗余色阻,这样容易抓取到冗余色阻的边,使得冗余色阻的宽度测量更加准确,在测量区还设置有基准标识,这样就可以测量冗余色阻相对于基准标识的偏移量,而且由于冗余色阻的边比较明显,可以使测量的偏移量更加准确,将冗余色阻的监控结果作为显示区内的色阻块的监控结果,从而实现对显示区内色阻块的宽度和偏移量的准确监控。
本申请实施例还提供了一种显示装置,包括如上述任一实施例所述的显示面板以及设置于所述显示面板一侧的背光模组。
本申请提供的显示装置的有益效果在于:采用了上述显示面板,本申请将设置在显示区内沿第一方向排列的多个色阻中任意相邻的两列色阻中的其中一列色阻沿第二方向延伸到测量区,以在测量区内形成冗余色阻,这样容易抓取到冗余色阻的边,使得冗余色阻的宽度测量更加准确,在测量区还设置有基准标识,这样就可以测量冗余色阻相对于基准标识的偏移量,而且由于冗余色阻的边比较明显,可以使测量的偏移量更加准确,将冗余色阻的监控结果作为显示区内的色阻块的监控结果,从而实现对显示区内色阻块的宽度和偏移量的准确监控。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例的阵列基板上的测量区内的冗余色阻的位置示意图一;
图2是本申请实施例的阵列基板上的测量区内的冗余色阻的位置示意图二;
图3是本申请实施例的阵列基板上的测量区内的冗余色阻的位置示意图三;
图4是本申请实施例一提供的阵列基板的局部俯视图;
图5是图4中的A-A截面图;
图6是本申请实施例一提供的阵列基板的测量基准孔的位置分布图一;
图7是本申请实施例一提供的阵列基板的测量基准孔的位置分布图二;
图8是本申请实施例一提供的阵列基板的测量基准孔的位置分布图三;
图9是本申请实施例二提供的阵列基板的局部俯视图;
图10是图9中的B-B截面图;
图11是本申请实施例三提供的显示面板的结构示意图;
图12是本申请实施例四提供的显示装置的结构示意图。
附图标记:1、显示区;2、周边区;
10、衬底基板;
3、测量区;31、冗余色阻;311、侧边沿;312、色阻孔;32、基准层;321、信号线;33、测量基准孔;332、孔边沿;34、基准挡墙;341、墙边沿;
100、阵列基板;200、彩膜基板;300、液晶层;400、背光模组;401、导光板;402、光源组件;403、光学膜片。
【具体实施方式】
为为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
还需说明的是,本申请实施例中以同一附图标记表示同一组成部分或同一零部件,对于本申请实施例中相同的零部件,图中可能仅以其中一个零件或部件为例标注了附图标记,应理解的是,对于其他相同的零件或部件,附图标记同样适用。
本申请实施例提供一种阵列基板、显示面板及显示装置,解决了现有技术无法准确监控到显示区内色阻块的宽度和偏移量的问题。
实施例一
本申请实施例一的阵列基板为COA型阵列基板,该COA型阵列基板包括依次层叠设置的衬底基板10、薄膜晶体管(thin film transistor,TFT)层、彩色滤光层和透明导电层。衬底基板10包括显示区1以及位于显示区1外围的周边区2,在显示区1中,透明导电层通常包括用于驱动液晶进行旋转的像素电极和 公共电极。而位于彩色滤光层下方的薄膜晶体管层为了进行显示,在显示区1中需要控制并调整不同位置处液晶所对应的像素电极上的驱动电压,以形成不同的显示亮度。
上述薄膜晶体管的结构在制程过程中,薄膜晶体管层通常包括依次层叠的第一金属层、栅极绝缘层、有源层、第二金属层以及钝化层。第一金属层设置于靠近衬底基板10的一侧,钝化层设置于靠近彩色滤光层的一侧。其中,第一金属层包括多条扫描线以及用于形成TFT的栅极;第二金属层包括多条数据线以及用于形成TFT的源极和漏极。
在一些实施例中,参考图1,衬底基板10包括位于显示区1外围的测量区3,测量区3位于周边区2内,显示区1大致为方形,测量区3为方形环,在一些实施例中,显示区1也可以为其他形状,比如圆形,对应的,测量区3就为圆环。
显示区1设有多个沿第一方向X排列的色阻,该色阻可为红色、蓝色及绿色的光阻块,红色、蓝色及绿色的光阻块在显示区1内可为三角形配置、正方形配置、线形配置或马赛克形配置。当然,在一些实施例中,显示区1内的多个色阻也可为红色、蓝色、绿色及白色的光阻块。多个色阻块可使用染色法、蚀刻法、印刷法、干膜法或电着法制成,但不限于此。
参考图4,任意相邻的两列色阻中的其中一列色阻沿第二方向Y延伸至测量区3,以在测量区3内形成冗余色阻31;第一方向X和第二方向Y互相垂直,且第一方向X和第二方向Y分别与衬底基板10的厚度方向Z互相垂直。色阻延伸到测量区3形成冗余色阻31可以使显示区1内的色阻块周围的环境一致,而且冗余色阻31的宽度W就相当于是显示区1内对应的色阻块的宽度,通过监控测量区3的冗余色阻31的宽度W就可以监控到显示区1内的色阻块的宽度,极大的降低了监控显示区1内的色阻块的宽度的难度。由于相邻两个冗余色阻31之间间隔一定的距离,因此冗余色阻31在第一方向X上的两侧边都是非常明显的,这样可以有利于精准的测量到冗余色阻31的宽度W,从而得到显示区1内色阻块的精确的宽度值。
测量区3还设有基准标识,基准标识被配置为确定冗余色阻31在第一方向X上相对于基准标识的偏移量D。也就是在制作冗余色阻31时基准标识是不发生移动的,通过测量冗余色阻31相对于基准标识的偏移量D就可以得到显示区1内色阻块的偏移量。
其中,测量区3的多个冗余色阻31互相间隔设置,具体可以是间隔一个冗余色阻31的宽度设置,也就是设置红色冗余色阻和蓝色冗余色阻时,处于中间的绿色冗余色阻不设置,例如,显示区1的边缘排列的色阻块的颜色依次为红色、绿色、蓝色,那么测量区3靠近显示区1的边缘处的冗余色阻31对应依次为红色、蓝色、绿色的色阻块,这样冗余色阻31的宽度W和偏移量D就相当于是显示区1内的色阻块的宽度和偏移量,通过监控冗余色阻31的宽度W和偏移量D就可以监控到显示区1内的色阻块的宽度和偏移量,极大的降低了监控显示区1内的色阻块的宽度和偏移量的难度。而且每一个冗余色阻31的边都比较明显,使得测量设备测量冗余色阻31的宽度W时比较好抓边,能够精准 的测量到冗余色阻31的宽度W,进而精准的监控到显示区1内的色阻块的宽度。
具体的,参考图1,显示区1内的色阻沿第二方向Y延伸至测量区3内形成的冗余色阻31位于测量区3沿第二方向Y的两侧;当然,参考图2,冗余色阻31也可以只位于测量区3沿第二方向Y的任意一侧;参考图3,冗余色阻31位于测量区3的四个角,也就是只有显示区1的四个角处的色阻沿第二方向Y延伸至测量区3内了,需要说明的是,这里显示区1的四个角处的色阻不相同,比如包括红色色阻块、绿色色阻块和蓝色色阻块,或者四个角处的色阻分别为红色色阻块、绿色色阻块、蓝色色阻块和白色色阻块,这样可以对不同颜色的色阻块的宽度和偏移量都能进行精准的监控,而且只需要将显示区1内的四个色阻延伸至测量区3,极大的降低了色阻制作的成本。
在一些实施例中,参考图4和图5,测量区3设有基准层32,冗余色阻31位于基准层32远离衬底基板10的一侧;基准标识设置于基准层32上,基准层32上设有贯通基准层32的测量基准孔33。
通过以上设置,由于测量基准孔33固定不动,因此可以将测量基准孔33当做参照物,以便能够精准的测量冗余色阻31相对于测量基准孔33的偏移量D,从而精准的对显示区1内的色阻块的偏移量进行监控,在利用测量基准孔33监控显示区1内的色阻块的偏移量的同时,结合对冗余色阻31的宽度W的测量结果,可以进一步的提高对冗余色阻31的宽度W和偏移量D的测量精确度,从而对于显示区1内的色阻块的监控更加准确。
在其中一个实施例中,参考图4,测量基准孔33包括沿第一方向X相对设置的两个孔边沿332,基准标识为孔边沿332;冗余色阻31包括沿第一方向X相对设置的两个侧边沿311;孔边沿332与侧边沿311互相平行。也就是孔边沿332和侧边沿311均与第一方向X垂直,这样能够便于测量其中一个孔边沿332和其中一个侧边沿311之间的距离,从而准确的得到冗余色阻31相对于测量基准孔33的偏移量D。
在一些实施例中,参考图4,测量基准孔33为矩形孔,这样矩形孔的孔边沿332就会与冗余色阻31的侧边沿311平行,方便测量孔边沿332与侧边沿311之间的距离,从而便于得到冗余色阻31相对于测量基准孔33的偏移量D。为了方便测量冗余色阻31相对于测量基准孔33的偏移量D,需要测量基准孔33具有可以方便测量的参考边或者参考点,因此测量基准孔33的形状不仅限于上述方形孔,测量基准孔33也可以为圆形孔,通过测量圆心与冗余色阻31的侧边沿311之间的距离也可以得到冗余色阻31相对于测量基准孔33的偏移量D。
在其中一个实施例中,参考图6,沿第一方向X,测量基准孔33在衬底基板10上的正投影位于两个相邻的冗余色阻31在衬底基板10上的正投影之间。这样测量基准孔33的孔边与冗余色阻31的边都比较明显,可以便于测量设备快速准确的测量出冗余色阻31相对于测量基准孔33的偏移量。
由于冗余色阻31有多个,因此可以在每相邻两个冗余色阻31之间都设置测量基准孔33,这样每一个冗余色阻31就可以对应一个测量基准孔33,使得冗余色阻31与测量基准孔33之间的距离变得更近,更加方便测量,当然,也可以只设置一个测量基准孔33,测量每一个冗余色阻31相对于该测量基准孔 33的偏移量D,这样可以确保每一个冗余色阻31的偏移量D都是相对于同一个参照物进行测量的,使得测量结果更加准确,而且只设置一个测量基准孔33也可以减少测量基准孔33的制作步骤,提高制作效率。
在其中一个实施例中,参考图7,测量基准孔33在衬底基板10上的正投影位于冗余色阻31在衬底基板10上的正投影内。也就是冗余色阻31覆盖测量基准孔33,此时冗余色阻31是可透光的,这样就可以通过测量冗余色阻31的侧边沿311与测量基准孔33的孔边沿332之间的距离来测量冗余色阻31相对于测量基准孔33的偏移量D,而且此时相邻两个冗余色阻31之间的基准层32远离衬底基板10的一侧表面是平整的,有利于在冗余色阻31之后制作的透明导电层的铺设更加顺利。
在一些实施例中,参考图6-图8,基准层32设置于衬底基板10上,冗余色阻31设置于基准层32上,基准层32为金属层,金属层具有沿第一方向X延伸的信号线321,测量基准孔33设置于信号线321上。由于金属层上的信号线321的设置位置是固定不变的,因此将测量基准孔33设置于信号线321上就相当于使测量基准孔33的设置位置有了一个参照物,可以降低测量基准孔33的设置难度,提高测量基准孔33的开设效率。
需要说明的是,该基准层32可以是上述薄膜晶体管层中的第一金属层,也可以是第二金属层,本申请实施例以基准层32为第一金属层为例进行说明,上述信号线321即为第一金属层包括的扫描线。
参考图6,测量基准孔33在信号线321上的具体设置方式可以为:将测量基准孔33设置于信号线321的中间,且测量基准孔33位于两个相邻的冗余色阻31之间,在第二方向Y上,测量基准孔33的尺寸小于信号线321的尺寸,这样可以确保测量基准孔33不会将信号线321截断,不会影响信号线321的信号传输性能。
参考图7,测量基准孔33在信号线321上的具体设置方式也可以为:将测量基准孔33设置于信号线321的中间,且测量基准孔33在衬底基板10上的正投影位于冗余色阻31在衬底基板10上的正投影内,在第二方向Y上,测量基准孔33的尺寸小于信号线321的尺寸,这样可以确保测量基准孔33不会将信号线321截断,不会影响信号线321的信号传输性能。
参考图8,测量基准孔33在信号线321上的具体设置方式也可以为:在第二方向Y上,在信号线321的至少一侧设置测量基准孔33,需要注意的是,如果是在信号线321的两侧均设置了测量基准孔33,那么信号线321两侧的测量基准孔33互相间隔,这样才能够保证信号线321不会被截断,不会影响信号线321的信号传输性能。
在其中一个实施例中,参考图6-图9,每一个冗余色阻31上均设有色阻孔312,色阻孔312沿衬底基板10的厚度方向Z贯通冗余色阻31。由于冗余色阻31之后制作的是透明导电层,透明导电层与冗余色阻31之间还设有绝缘层,色阻孔312的设置可以使冗余色阻31上方的透明导电层与冗余色阻31下方的金属层电连接,如果不设置色阻孔312,在做绝缘层的时候,干刻过程吃不穿冗余色阻31,这样冗余色阻31上方的透明导电层和下方的金属层将无法导通。
需要说明的是,色阻孔312在冗余色阻31上的开设位置要保证透明导电层与金属层通过色阻孔312连接成像素电极,相比较现有技术中色阻孔312下方位置的金属层是一个方块,会与色阻块的下底产生干涉,不好抓取色阻孔312的孔口边沿,本申请实施例一中的金属层为在衬底基板10上一整层设置,这样色阻孔312靠近衬底基板10的一侧孔口的边就比较容易识别,有利于测量色阻孔312的尺寸。通过测量色阻孔312的尺寸可以对色阻孔312的尺寸进行监控,当色阻孔312的尺寸发生变化时就说明冗余色阻31的宽度和偏移量发生了变化,不需要具体测量冗余色阻31的宽度和偏移量就可以知道显示区1内的色阻块发生了变化,根据实际需要可以再去具体的测量冗余色阻31的宽度W和偏移量D,提高了对显示区1内的色阻块的监控效率。
在一些实施例中,参考图6-图9,色阻孔312为矩形孔,这样容易测量色阻孔312的长度和宽度M,当测量到的色阻孔312的长度或者宽度M发生变化时,就说明显示区1内的色阻块上的通孔也发生了改变,可以实现对显示区1内的色阻块的准确监控,从而调整色阻块的尺寸和设置位置。
当然,为了方便测量色阻孔312的尺寸,也可以将色阻孔312设置为圆孔,这样只需要测量圆孔的直径就可以监控到色阻孔312的尺寸是否发生了改变,从而便于准确的监控显示区1内的色阻块上的通孔的尺寸变化情况。
将对色阻孔312的尺寸进行测量,对冗余色阻31的宽度W进行测量以及对冗余色阻31的偏移量D进行测量同时进行,可以将测量结果进行结合,以便提高对冗余色阻31的宽度W和偏移量D的测量精确度,而且还可以全面的对冗余色阻31进行监控,从而全面的监控显示区1内的色阻块的变化。
实施例二
参考图9-图10,本申请实施例二提供的阵列基板与实施例一相比,区别仅在于辅助测量结构的结构不同。在本申请实施例二中,基准层32上远离衬底基板10的一侧设有基准挡墙34,基准挡墙34位于两个相邻的冗余色阻31之间;基准挡墙34包括沿第一方向X相对设置的两个墙边沿341,基准标识为墙边沿341。
上述基准挡墙34与冗余色阻31同层设置,通过测量基准挡墙34的其中一个墙边沿341与冗余色阻31的侧边沿311之间的距离就可以得到冗余色阻31的偏移量D,也就得到了显示区1内的色阻块发生偏移的偏移量。
在一些实施例中,参考图10,在阵列基板的制程中,制作冗余色阻31之前的一个制程是制作绝缘层,可以在绝缘层上设置基准挡墙34,此时基准层32就是绝缘层,而且基准挡墙34位于相邻的两个冗余色阻31之间,这样在制作完冗余色阻31之后就可以测量冗余色阻31与基准挡墙34之间的距离,以便了解冗余色阻31在绝缘层上设置的位置发生偏移的偏移量D,从而可以得到显示区1的色阻块发生偏移的偏移量。
需要说明的是,为了使基准挡墙34的设置不增加阵列基板的厚度,可以将基准挡墙34在衬底基板10的厚度方向Z上的高度设置为与冗余色阻31的厚度相同,这样既方便测量基准挡墙34与冗余色阻31的侧边沿311之间的距离,又不会增大阵列基板的厚度。
实施例三
参考图11,本申请实施例三提供了一种显示面板,包括如上述任一实施例中的阵列基板100、彩膜基板200以及液晶层300;彩膜基板200与阵列基板100对盒设置,液晶层300设在彩膜基板200与阵列基板100之间。
该阵列基板100的详细结构可参照上述实施例,此处不再赘述;可以理解的是,由于在本申请显示面板中使用了上述阵列基板100,因此,本申请显示面板的实施例包括上述阵列基板100全部实施例的全部技术方案,且能达到上述技术方案所达到的技术效果。
实施例四
参考图12,本申请实施例四提供了一种显示装置,包括如上述任一实施例中的显示面板以及设置于显示面板一侧的背光模组400。
上述背光模组400包括导光板401、光源组件402和光学膜片403,背光模组400用于为液晶显示面板提供照明。
在应用中,该显示装置可以为各种电子设备或者该显示装置可以应用于各种电子设备中。
例如,该电子设备可以为桌上型计算机、笔记本电脑、智能手机、平板电脑、电子阅读器、车载电脑、导航仪、数码相机、智能电视机以及智能可穿戴设备等多种不同类型的电子设备。本申请实施例四提供的显示装置具有非常广泛的应用前景。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种阵列基板,包括衬底基板(10),所述衬底基板(10)包括显示区(1)以及位于所述显示区(1)外围的测量区(3),其中,所述显示区(1)设有多个沿第一方向排列的色阻,任意相邻的两列所述色阻中的其中一列所述色阻沿第二方向延伸至所述测量区(3),以在所述测量区(3)内形成冗余色阻(31);所述第一方向和所述第二方向互相垂直;
    所述测量区(3)还设有基准标识,所述基准标识被配置为确定所述冗余色阻(31)在所述第一方向上相对于所述基准标识的偏移量。
  2. 根据权利要求1所述的阵列基板,其中,
    所述色阻为红色、蓝色、绿色及白色的光阻块;所述色阻配置为三角形、正方形、线形或马赛克形。
  3. 根据权利要求1所述的阵列基板,其中,
    所述冗余色阻(31)间隔一个所述冗余色阻(31)的宽度设置。
  4. 根据权利要求1所述的阵列基板,其中,
    所述冗余色阻(31)位于所述测量区(3)沿所述第二方向的两侧;
    或者,所述冗余色阻(31)位于所述测量区(3)沿所述第二方向的任意一侧;
    或者,所述冗余色阻(31)位于所述测量区(3)的四个角区域。
  5. 根据权利要求1所述的阵列基板,其中,
    所述测量区(3)设有基准层(32),所述冗余色阻(31)位于所述基准层(32)远离所述衬底基板(10)的一侧;
    所述基准标识设置于所述基准层(32)上。
  6. 根据权利要求5所述的阵列基板,其中,
    所述基准层(32)上设有贯通所述基准层(32)的测量基准孔(33)。
  7. 根据权利要求6所述的阵列基板,其中,
    所述测量基准孔为圆形孔,通过测量所述圆形孔的圆心与所述冗余色阻(31)的侧边沿(311)的距离确定所述偏移量。
  8. 根据权利要求6所述的阵列基板,其中,
    所述测量基准孔(33)包括沿所述第一方向相对设置的两个孔边沿(332),所述基准标识为所述孔边沿(332);
    所述冗余色阻(31)包括沿所述第一方向相对设置的两个侧边沿(311);
    所述孔边沿(332)与所述侧边沿(311)互相平行。
  9. 根据权利要求8所述的阵列基板,其中,
    沿所述第一方向,所述测量基准孔(33)在所述衬底基板(10)上的正投影位于两个相邻的所述冗余色阻(31)在所述衬底基板(10)上的正投影之间;
    或者,所述测量基准孔(33)在所述衬底基板(10)上的正投影位于所述冗余色阻(31)在所述衬底基板(10)上的正投影内。
  10. 根据权利要求8或9所述的阵列基板,其中,
    所述基准层(32)为金属层,所述金属层具有沿所述第一方向延伸的信号 线(321),所述测量基准孔(33)设置于所述信号线(321)上。
  11. 根据权利要求10所述的阵列基板,其中,
    所述测量基准孔(33)设置于所述信号线(321)的中间,且所述测量基准孔位于两个相邻的所述冗余色阻(31)之间。
  12. 根据权利要求11所述的阵列基板,其中,
    在所述第二方向上,所述测量基准孔(33)的尺寸小于所述信号线(321)的尺寸。
  13. 根据权利要求10所述的阵列基板,其中,
    在所述第二方向上,在所述信号线(321)的至少一侧设置所述测量基准孔(33)。
  14. 根据权利要求5所述的阵列基板,其中,
    所述基准层(32)上远离所述衬底基板(10)的一侧设有基准挡墙(34),所述基准挡墙(34)位于两个相邻的所述冗余色阻(31)之间;
    所述基准挡墙(34)包括沿所述第一方向相对设置的两个墙边沿(341),所述基准标识为所述墙边沿(341)。
  15. 根据权利要求8或9所述的阵列基板,其中,
    每一个所述冗余色阻(31)上均设有色阻孔(312),所述色阻孔(312)沿所述衬底基板(10)的厚度方向贯通所述冗余色阻(31)。
  16. 根据权利要求15所述的阵列基板,其中,
    所述测量基准孔(33)为矩形孔;
    和/或,所述色阻孔(312)为矩形孔。
  17. 根据权利要求1所述的阵列基板,其中,
    所述阵列基板还包括薄膜晶体管层、彩色滤光层和透明电极层;所述衬底基板(10)、所述薄膜晶体管层、所述彩色滤光层和所述透明导电层依次层叠设置。
  18. 根据权利要求17所述的阵列基板,其中,
    所述薄膜晶体管层包括依次层叠的第一金属层、栅极绝缘层、有源层、第二金属层以及钝化层;所述第一金属层设置于靠近所述衬底基板(10)的一侧,所述钝化层设置于靠近所述彩色滤光层的一侧。
  19. 一种显示面板,其中,包括:
    如权利要求1-8任一项所述的阵列基板(100);
    彩膜基板(200),所述彩膜基板(200)与所述阵列基板(100)对盒设置;
    液晶层(300),所述液晶层(300)位于所述彩膜基板(200)和所述阵列基板(100)之间。
  20. 一种显示装置,其中,包括如权利要求9所述的显示面板以及设置于所述显示面板一侧的背光模组(400)。
PCT/CN2022/142462 2022-08-23 2022-12-27 阵列基板、显示面板及显示装置 WO2024040832A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211012791.0A CN115291446B (zh) 2022-08-23 2022-08-23 阵列基板、显示面板及显示装置
CN202211012791.0 2022-08-23

Publications (1)

Publication Number Publication Date
WO2024040832A1 true WO2024040832A1 (zh) 2024-02-29

Family

ID=83832288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142462 WO2024040832A1 (zh) 2022-08-23 2022-12-27 阵列基板、显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN115291446B (zh)
WO (1) WO2024040832A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115291446B (zh) * 2022-08-23 2023-08-11 惠科股份有限公司 阵列基板、显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487333A (zh) * 2016-01-04 2016-04-13 重庆京东方光电科技有限公司 掩膜板组、彩膜基板及其制作方法、检测装置、显示装置
CN107678200A (zh) * 2017-10-26 2018-02-09 惠科股份有限公司 显示面板
CN110716359A (zh) * 2019-10-14 2020-01-21 深圳市华星光电技术有限公司 阵列基板及其制造方法与对准精度检测方法
CN111650789A (zh) * 2020-04-29 2020-09-11 深圳市华星光电半导体显示技术有限公司 显示面板及电子装置
US20210096434A1 (en) * 2019-09-27 2021-04-01 Electronics And Telecommunications Research Institute Display device
CN115291446A (zh) * 2022-08-23 2022-11-04 惠科股份有限公司 阵列基板、显示面板及显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031359B (zh) * 2021-03-23 2022-08-23 滁州惠科光电科技有限公司 Coa型阵列基板及其测量方法、液晶显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487333A (zh) * 2016-01-04 2016-04-13 重庆京东方光电科技有限公司 掩膜板组、彩膜基板及其制作方法、检测装置、显示装置
CN107678200A (zh) * 2017-10-26 2018-02-09 惠科股份有限公司 显示面板
US20210096434A1 (en) * 2019-09-27 2021-04-01 Electronics And Telecommunications Research Institute Display device
CN110716359A (zh) * 2019-10-14 2020-01-21 深圳市华星光电技术有限公司 阵列基板及其制造方法与对准精度检测方法
CN111650789A (zh) * 2020-04-29 2020-09-11 深圳市华星光电半导体显示技术有限公司 显示面板及电子装置
CN115291446A (zh) * 2022-08-23 2022-11-04 惠科股份有限公司 阵列基板、显示面板及显示装置

Also Published As

Publication number Publication date
CN115291446A (zh) 2022-11-04
CN115291446B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
US10317757B2 (en) Manufacturing method of black matrix with easy recognition of alignment mark
US9897876B2 (en) Display substrate and method of manufacturing the same, display device
US20210011333A1 (en) Method for manufacturing display panel and display panel thereof
KR20120067288A (ko) 액정 표시 장치
US10274762B2 (en) Display substrate motherboard, manufacturing and detecting methods thereof and display panel motherboard
WO2024040832A1 (zh) 阵列基板、显示面板及显示装置
WO2019085224A1 (zh) 阵列基板及显示面板
US20160116797A1 (en) Liquid crystal display device
US20240111193A1 (en) Display substrate, display panel, display device, method of detecting post spacer, and method of manufacturing post spacer
US20220342248A1 (en) Display substrate and manufacturing method therefor, and display device
WO2021217741A1 (zh) 显示面板及电子装置
US12013615B2 (en) Liquid crystal display panel, and liquid crystal display device
WO2022227676A1 (zh) 阵列基板、液晶显示面板及液晶显示装置
WO2022166451A1 (zh) 彩膜基板及其制作方法和显示面板
WO2022199192A1 (zh) Coa型阵列基板及其测量方法、液晶显示面板
CN205809499U (zh) 一种阵列基板、显示面板和显示装置
JP2006293343A (ja) 液晶表示装置及び表示装置
KR20150137278A (ko) 어레이 기판 및 이를 포함하는 액정 표시 장치
CN211293538U (zh) 显示基板、显示面板和显示装置
KR20070003004A (ko) 액정 표시 장치의 제조 방법 및 장치
US20170261795A1 (en) Method for manufacturing liquid crystal display panel
US9136191B2 (en) Measuring method for width of color filter unit and manufacturing method for liquid crystal panel
US11342359B2 (en) Display panel and electronic device
WO2017148065A1 (zh) 显示基板、液晶面板、显示装置及显示基板的制作方法
WO2023179434A1 (zh) 阵列基板及液晶面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956363

Country of ref document: EP

Kind code of ref document: A1