WO2024040556A1 - 一种有机空穴注入材料及其应用 - Google Patents

一种有机空穴注入材料及其应用 Download PDF

Info

Publication number
WO2024040556A1
WO2024040556A1 PCT/CN2022/115055 CN2022115055W WO2024040556A1 WO 2024040556 A1 WO2024040556 A1 WO 2024040556A1 CN 2022115055 W CN2022115055 W CN 2022115055W WO 2024040556 A1 WO2024040556 A1 WO 2024040556A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole injection
organic
chloroform
synthesis
molecular formula
Prior art date
Application number
PCT/CN2022/115055
Other languages
English (en)
French (fr)
Inventor
孟鸿
陆科
闫朝一
胡钊
贺耀武
孟智敏
李婷婷
蔡瑜
Original Assignee
北京大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学深圳研究生院 filed Critical 北京大学深圳研究生院
Priority to PCT/CN2022/115055 priority Critical patent/WO2024040556A1/zh
Publication of WO2024040556A1 publication Critical patent/WO2024040556A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the invention relates to the field of organic optoelectronics, in particular to a hole injection material, an organic light-emitting diode and a perovskite solar cell.
  • OLEDs Organic Light-emitting Diodes
  • the hole injection layer serves as the key material connecting the anode and the organic functional layer. It can lower the barrier for hole injection from the anode, allowing holes to be efficiently injected from the anode into the OLED device. Therefore, when selecting the hole injection layer material, it is necessary to consider the matching of the material energy level and the anode material.
  • the function of the injection layer is to make a good match between the work function of the anode and the HOMO of the hole transport layer material, so that holes can flow smoothly from the electrode to the transport layer.
  • the luminescent material The highest occupied orbital energy level is close to the work function of the anode, lowering the hole injection energy barrier.
  • a hole injection layer is usually added between the anode and the hole transport layer, mainly because the energy barrier between the anode and the hole transport layer is large, which will cause the driving voltage of the component to increase, indirectly causing The life of the component is shortened, so a layer of material whose HOMO energy level is between the anode and the hole transport layer is added to improve the efficiency between the hole injection and the hole transport layer.
  • Developing suitable hole injection materials plays an important role in improving the device performance of OLEDs.
  • the present invention provides a hole injection material composed of an azafluorene derivative connected to an electron-deficient group and its application.
  • R 1 and R 2 are each independently selected from one of the following: benzene ring, naphthalene ring, and biphenyl;
  • X and Y are C-H, N or C-OH, which are the same or different from each other;
  • R 3 is selected from benzene ring, diphenyl ring, naphthalene ring, benzofuran, fluorene, carbazole or oxo- or thiocarbazole-substituted s-triazine.
  • part or all of the hydrogen atoms in the molecular formula are replaced by deuterium atoms.
  • its molecular formula is selected from one of the following:
  • the efficiency of organic/inorganic hybrid perovskite solar cells has exceeded 25% from 3.8% in 2009. It is the most rapidly developing battery in the third generation of photovoltaic technology.
  • the device structure contains hole transport materials and electron transport materials, which play a role in balancing carrier transmission.
  • a layer of material with a HOMO energy level between the anode and the hole transport layer is added to further enhance the hole transport layer.
  • the efficiency between the hole injection and hole transport layers improves the photoelectric conversion efficiency.
  • the present invention also provides an organic light-emitting device, which includes a cathode, an anode and each organic layer; wherein, the electron injection layer uses any of the organic hole injection materials described above.
  • the present invention also provides a perovskite solar cell, which includes a cathode, an anode and each organic layer; wherein, the hole injection layer uses any one of the aforementioned organic hole injection materials.
  • the hole injection material of the present invention has a structure containing two units, a nitrogen heterofluorene derivative and an electron-deficient group, and also contains other aromatic groups. It mainly has the following advantages: the synthesis of the material is relatively simple and is conducive to large-scale production and synthesis. ; The material has a moderate melting and boiling point or is well soluble in solvents commonly used for device preparation, so it is relatively easy to use this type of material to prepare devices and obtain high-performance devices; because the material contains multiple electron-deficient groups, The appropriate HOMO and LUMO energy level structure of the material is more conducive to hole injection from the anode into the adjacent organic layer-hole transport layer, thereby improving the performance of the device.
  • Figure 1 is a schematic structural diagram of an organic electroluminescent device prepared in an embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of a perovskite solar cell device in an embodiment of the present invention.
  • the synthesis method of molecular formula 1 specifically includes the following steps:
  • the synthesis method of the compound specifically includes the following steps:
  • the synthesis method of the compound specifically includes the following steps:
  • the synthesis method of the compound specifically includes the following steps:
  • the synthesis method of the compound specifically includes the following steps:
  • the synthesis method of the compound specifically includes the following steps:
  • the synthetic route of molecular formula 160 is as follows:
  • the synthesis method of compound 160 specifically includes the following steps:
  • the synthesis method of the compound specifically includes the following steps:
  • the present invention provides anthracene-based An organic light-emitting device of similar host material, as shown in Figure 1, consists of a metal cathode 191, an electron injection layer 180, an electron transport layer 160, a light-emitting layer 150, a hole transport layer 140, and a hole injection layer stacked in sequence from top to bottom. 130.
  • Anode 120 and glass substrate 110, the device preparation process is evaporation method.
  • the metal cathode aluminum is used as the metal cathode, the evaporation rate is 0.1-0.3nm/s, and the thickness is 100nm;
  • the electron injection layer uses materials synthesized by this patent, with an evaporation rate of 0.05-0.1nm/s and a thickness of 1nm;
  • the electron transport layer uses the compound LET003 with the following structure, the evaporation rate is 0.05-0.1nm/s, and the thickness is 40nm;
  • the light-emitting layer is formed by co-doping of host material and guest material.
  • the host material is selected from the host material provided by the present invention and the currently commercialized host material LBH001 as a comparison.
  • the guest material is selected from LBD001 with the following structure.
  • the host material and the guest material are doped
  • the mass ratio is 90:10, the evaporation rate is 0.003-0.2nm/s, and the thickness is 40nm;
  • the electron blocking layer uses the compound LEB001 with the following structure, the evaporation rate is 0.05-0.1nm/s, and the thickness is 10nm;
  • the hole transport layer uses the compound NPB with the following structure, the evaporation rate is 0.05-0.1nm/s, and the thickness is 100nm;
  • Anode 7 is made of indium tin oxide.
  • the host material provided by the present invention has lower turn-on voltage, higher current efficiency and longer lifespan of the device prepared.
  • the perovskite solar cell structure is shown in Figure 2.
  • the specific preparation process is as follows:
  • the ITO conductive glass was washed ultrasonically with acetone, deionized water, and isopropyl alcohol in sequence, and dried under vacuum at 80°C for 12 hours.
  • a hole injection layer film is evaporated on ITO, and then PTAA is spin-coated as a hole transport layer.
  • Prepare the perovskite precursor solution dissolve it in DMSO, spin-coat it on the PTAA film, and anneal it at 100°C for 10 minutes.
  • Configure the electron transport layer solution dissolve PCBM in chlorobenzene at a concentration of 10 mg/ml, and prepare it on the perovskite film by spin coating.
  • the methanol solution of BCP was spin-coated on the PCBM, and finally the metallic silver electrode was vacuum evaporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种有机空穴注入材料,化学通式如(I)所示。本发明的空穴注入材料,结构含氮杂芴烯类衍生物与缺电子基团两个单元,同时含有其它芳香基等,主要具有以下优势:材料的合成较为简单,有利于大规模生产合成;材料的熔沸点适中或者在常用的器件制备所用的溶剂中溶解得好,所以此类材料用于制备器件相对容易并且得到高性能的器件;由于材料含有多个缺电子基团的存在,因此材料的HOMO与LUMO能级结构合适,更利于空穴从阳极注入到相邻的有机层-空穴传输层中,从而提高器件的性能。

Description

一种有机空穴注入材料及其应用 技术领域
本发明涉及有机光电领域,特别是一种空穴注入材料和有机发光二极管及钙钛矿太阳能电池。
背景技术
有机发光二极管(Organic Light-emitting Diodes,OLEDs)作为新一代显示技术,以其具有自发光,柔性,对比度高,省电等诸多优势,逐渐成为当下显示技术中的重要组成部分,并且受到了学术界和工业界的广泛关注。在OLEDs器件中,空穴注入层作为连接阳极与有机功能层之间的关键材料。它能降低空穴从阳极注入的势垒,使空穴能从阳极有效地注入到OLED器件中。因此,在选择空穴注入层材料的时候,需要考虑材料能级和阳极材料的匹配。注入层的作用是使得阳极的功函数与空穴传输层材料的HOMO有良好的匹配,使得空穴能顺利的从电极流至传输层中,实际上透过OLED结构设计的方式,使得发光材料的最高占有轨道能阶靠近阳极的工作函数,降低空穴的注入能障。在阳极与空穴传输层之间,通常还会加入一层空穴注入层,主要是由于阳极与空穴传输层之间的能障很大,这会造成元件的驱动电压升高,间接使得组件的寿命缩短,所以加入一层HOMO能阶介于阳极与空穴传输层之间的材料来增进空穴注入与空穴传输层之间的效率。开发合适的空穴注入材料对于OLEDs器件性能的提升具有重要作用。
发明内容
针对现有空穴注入材料以上诸多不足,本发明提供一种由氮杂芴烯类衍生物与缺电子基团相连组成的空穴注入材料及其应用。
本发明的技术方案通过如下方式实现:提供一种有机空穴注入材料,化学通式如下:
Figure PCTCN2022115055-appb-000001
其中,R 1、R 2各自独立的选自如下中的一种:苯环、萘环、联苯;
X、Y为C-H、N或者C-OH,彼此相同或者不同;
R 3选自苯环、二苯环、萘环、苯并呋喃、芴、咔唑或者氧代、硫代咔唑取代的均三嗪。
优选的,在本发明的一个实施例中,其分子式中的氢原子部分或者全部被氘取代为氘原子。
优选的,在本发明的一个实施例中,其分子式选自如下中的一种:
Figure PCTCN2022115055-appb-000002
Figure PCTCN2022115055-appb-000003
Figure PCTCN2022115055-appb-000004
Figure PCTCN2022115055-appb-000005
Figure PCTCN2022115055-appb-000006
Figure PCTCN2022115055-appb-000007
Figure PCTCN2022115055-appb-000008
Figure PCTCN2022115055-appb-000009
Figure PCTCN2022115055-appb-000010
Figure PCTCN2022115055-appb-000011
Figure PCTCN2022115055-appb-000012
Figure PCTCN2022115055-appb-000013
Figure PCTCN2022115055-appb-000014
有机/无机杂化钙钛矿太阳能电池从2009年3.8%的效率,发展至今效率已经突破了25%,是第三代光伏技术中发展最为迅速的电池。其器件结构中包含空穴传输材料和电子传输材料,起到载流子传输平衡的作用,本发明中加入一层与HOMO能阶介于阳极与空穴传输层之间的材料来进一步增进空穴注入与空穴传输层之间的效率,从而提高光电转化效率。
本发明还提供一种有机发光器件,包含阴极、阳极和各个有机层;其中,电子注入层使用前述中任意一项所述的有机空穴注入材料。
本发明还提供一种钙钛矿太阳能电池,包含阴极、阳极和各个有机层;其中,空穴注入层使用前述中任意一项所述的有机空穴注入材料。
有益效果如下:
本发明的空穴注入材料,结构含氮杂芴烯类衍生物与缺电子基团两个单元,同时含有其它芳香基等,主要具有以下优势:材料的合成较为简单,有利于大规模生产合成;材料的熔沸点适中或者在常用的器件制备所用的溶剂中溶解得好,所以此类材料用于制备器件相对容易并且得到高性能的器件;由于材料含有多个缺电子基团的存在,因此材料的HOMO与LUMO能级结构合适,更利于空穴从阳极注入到相邻的有机层-空穴传输层中,从而提高器件的性能。
附图说明
图1为本发明实施例中基于所制备有机电致发光器件结构示意图。
图2为本发明实施例中钙钛矿太阳能电池器件结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图和实施例对本发明进一步详细的说明。
实施例1
分子式1的合成路线如下所示:
Figure PCTCN2022115055-appb-000015
分子式1的合成方法具体包括以下步骤:
中间体M1的合成:取乙腈(2.05g,50mmol)和LiH(0.48g,60mmol)于THF中(100mL)0℃下搅拌20小时。向体系中加入4,5-二氮芴-9-酮(9.11g,50mmol)后,于80℃下搅拌反应20小时。降至室温后,加入1N的盐酸溶液调节pH=6-7,用三氯甲烷萃取,水洗3次,再用无水硫酸镁干燥,粗产物用硅胶柱层析法纯化,获得产物M1(10.0g,产率90%)。 1H NMR(400MHz,Chloroform-d)δ8.72(quant,J=1.8Hz,2H),7.70(quant,J=6.0,1.8Hz,2H),7.32–7.30(m,2H),5.87–5.86(m,1H),4.74(s,1H),3.50(s,2H).
分子式1的合成:称取M1(11.15g,50mmol)于500mL的单口瓶中,加入浓HCl/EtOH=4:1混合溶液200mL,回流6小时。加入饱和碳酸钾溶液调整 pH=7-8,用三氯甲烷萃取,水相用100mL二氯甲烷萃取三次,合并有机相,用无水硫酸镁干燥,粗产物以硅胶柱层析纯化得到分子式1表示的化合物(8.7g,产率85%)。 1H NMR(400MHz,Chloroform-d)δ8.72(quant,J=6.0,1.8Hz,2H),8.29(dd,J=6.0,1.8Hz,2H),7.54–7.51(m,2H),5.82(s,1H).
实施例2
分子式2的合成路线如下所示:
Figure PCTCN2022115055-appb-000016
化合物的合成方法具体包括以下步骤:
中间体M2的合成:取丙二腈(3.3g,50mmol)和碳酸钾(8.3g,60mmol)于THF中(100mL)于室温下搅拌20小时。向体系中加入4,5-二氮芴-9-酮(9.11g,50mmol)后,于80℃下搅拌反应20小时。降至室温后,加入1N的盐酸溶液调节pH=6-7,用三氯甲烷萃取,水洗3次,再用无水硫酸镁干燥,粗产物用硅胶柱层析法纯化,获得产物M2(11.5g,产率93%)。 1H NMR(400MHz,Chloroform-d)δ8.72(quant,J=1.8Hz,2H),7.70(quant,J=6.0,1.8Hz,2H),7.32–7.30(m,2H),5.58(s,1H),5.36(s,1H).
分子式2的合成:称取M2(12.41g,50mmol)于500mL的单口瓶中,加入浓HCl/EtOH=4:1混合溶液200mL,回流6小时。加入饱和碳酸钾溶液调整pH=7-8,用三氯甲烷萃取,水相用100mL二氯甲烷萃取三次,合并有机相,用无水硫酸镁干燥,粗产物以硅胶柱层析纯化得到分子式1表示的化合物(10.12g,产率88%)。 1H NMR(400MHz,Chloroform-d)δ8.72(quant,J=6.0,1.8Hz,2H),8.29(dd,J=6.0,1.8Hz,2H),7.54–7.51(m,2H).
实施例3
分子式3的合成路线如下所示:
Figure PCTCN2022115055-appb-000017
化合物的合成方法具体包括以下步骤:
中间体M3的合成:取苯乙腈(5.85g,50mmol)和碳酸钾(8.3g,60mmol)于THF中(100mL)于室温下搅拌20小时。向体系中加入4,5-二氮芴-9-酮(9.11g,50mmol)后,于80℃下搅拌反应20小时。降至室温后,加入1N的盐酸溶液调节pH=6-7,用三氯甲烷萃取,水洗3次,再用无水硫酸镁干燥,粗产物用硅胶柱层析法纯化,获得产物M3(13.15g,产率93%)。 1H NMR(400MHz,Chloroform-d)δ8.72(quant,J=1.8Hz,2H),7.71(quant,J=6.0,1.8Hz,2H),7.45–7.42(m,2H),7.36–7.33(m,4H),7.26–7.23(m,1H),5.87(s,1H),4.96(s,1H).
分子式3的合成:称取M3(14.95g,50mmol)于500mL的单口瓶中,加入浓HCl/EtOH=4:1混合溶液200mL,回流6小时。加入饱和碳酸钾溶液调整pH=7-8,用三氯甲烷萃取,水相用100mL二氯甲烷萃取三次,合并有机相,用无水硫酸镁干燥,粗产物以硅胶柱层析纯化得到分子式3表示的化合物(10.96g,产率78%)。 1H NMR(400MHz,Chloroform-d)δ8.72(quant,J=6.0,1.8Hz,2H),8.28(quant,J=6.0,1.8Hz,2H),7.88–7.86(m,2H),7.54–7.52(m,2H),7.45–7.41(m,1H),7.40–7.36(m,2H).
实施例4
分子式5的合成路线如下所示:
Figure PCTCN2022115055-appb-000018
化合物的合成方法具体包括以下步骤:
中间体M5的合成:取4-吡啶乙腈(5.90g,50mmol)和碳酸钾(8.3g,60mmol)于THF中(100mL)于室温下搅拌20小时。向体系中加入4,5-二氮芴-9-酮(9.11g,50mmol)后,于80℃下搅拌反应20小时。降至室温后,加入1N的盐酸溶液调节pH=6-7,用三氯甲烷萃取,水洗3次,再用无水硫酸镁干燥,粗产物用硅胶柱层析法纯化,获得产物M5(12.30g,产率82%)。 1H NMR(400MHz,Chloroform-d)δ8.72(quant,J=1.8Hz,2H),8.62–8.61(m,2H),7.71(quant,J=6.0,1.8Hz,2H),7.45–7.42(m,2H),7.29–7.28(m,2H),5.87(s,1H),4.94(s,1H).
分子式5的合成:称取M5(14.95g,50mmol)于500mL的单口瓶中,加入浓HCl/EtOH=4:1混合溶液200mL,回流6小时。加入饱和碳酸钾溶液调整pH=7-8,用三氯甲烷萃取,水相用100mL二氯甲烷萃取三次,合并有机相,用无水硫酸镁干燥,粗产物以硅胶柱层析纯化得到分子式5表示的化合物(10.96g,产率78%)。 1H NMR(400MHz,Chloroform-d)δ8.72(quant,J=6.0,1.8Hz,2H),8.67–8.66(m,2H),8.28(quant,J=6.0,1.8Hz,2H),7.53–7.50(m,4H).
实施例5
分子式93合成路线如下所示:
Figure PCTCN2022115055-appb-000019
化合物的合成方法具体包括以下步骤:
中间体M93的合成:取乙腈(2.05g,50mmol)和LiH(0.48g,60mmol)于THF中(100mL)0℃下搅拌20小时。向体系中加入4-氮芴-9-酮(9.05g,50mmol)后,于80℃下搅拌反应20小时。降至室温后,加入1N的盐酸溶液调节pH=6-7,用三氯甲烷萃取,水洗3次,再用无水硫酸镁干燥,粗产物用硅胶柱层析法纯化,获得产物M93(10.0g,产率90%)。 1H NMR(400MHz,Chloroform-d)δ8.66(quant,J=1.8Hz,1H),7.90–7.88(m,1H),7.58(dd,J=6.0,1.8Hz,1H),7.54–7.48(m,2H),7.30–7.24(m,2H),5.13(s,1H),3.42(d,J=11.5Hz,1H),3.11(d,J=11.5Hz,1H).
分子式93的合成:称取M93(11.10g,50mmol)于500mL的单口瓶中,加入浓HCl/EtOH=4:1混合溶液200mL,回流6小时。加入饱和碳酸钾溶液调整pH=7-8,用三氯甲烷萃取,水相用100mL二氯甲烷萃取三次,合并有机相,用无水硫酸镁干燥,粗产物以硅胶柱层析纯化得到分子式93表示的化合物(8.37g,产率82%)。 1H NMR(400MHz,Chloroform-d)δ8.79(quant,J=1.8Hz,1H),8.30(dd,J=6.0,1.8Hz,1H),8.18–8.16(m,1H),8.14–8.12(m,1H),7.59–7.55(m,1H),7.53–7.50(m,1H),7.44–7.41(m,1H),5.65(s,1H).
实施例6
分子式113的合成路线如下所示:
Figure PCTCN2022115055-appb-000020
化合物的合成方法具体包括以下步骤:
中间体M113的合成:取二乙腈(3.30g,50mmol)和和碳酸钾(8.3g,60mmol)于THF中(100mL)于室温下搅拌20小时。向体系中加入7-溴-4-氮芴-9-酮(12.95g,50mmol)后,于80℃下搅拌反应20小时。降至室温后,加入1N的盐酸溶液调节pH=6-7,用三氯甲烷萃取,水洗3次,再用无水硫酸镁干燥,得到粗产物不需要进行提纯分离。取上面得到的粗产物于500mL的单口瓶中,加入浓HCl/EtOH=4:1混合溶液200mL,回流6小时。加入饱和碳酸钾溶液调整pH=7-8,用三氯甲烷萃取,水相用100mL二氯甲烷萃取三次,合并有机相,用无水硫酸镁干燥,粗产物用硅胶柱层析法纯化,获得产物M113(10.43g,产率68%)。 1H NMR(400MHz,Chloroform-d)δ8.80(dd,J=4.4,1.8Hz,1H),8.37–8.35(m,1H),8.07–8.05(m,2H),7.70(dd,J=9.0,2.5Hz,1H),7.51–7.49(m,1H).
分子式113的合成:称取M113(11.10g,50mmol)于500mL的单口瓶中,加入浓HCl/EtOH=4:1混合溶液200mL,回流6小时。加入饱和碳酸钾溶液调整pH=7-8,用三氯甲烷萃取,水相用100mL二氯甲烷萃取三次,合并有机相,用无水硫酸镁干燥,粗产物以硅胶柱层析纯化得到分子式113表示的化合物 (8.37g,产率82%)。 1H NMR(400MHz,Chloroform-d)δ8.80(dd,J=4.4,1.8Hz,1H),8.38(dd,J=7.8,1.8Hz,1H),8.14(d,J=10.6Hz,1H),8.07(d,J=2.2Hz,1H),8.01(dd,J=9.6,2.2Hz,1H),7.98–7.95(m,2H),7.91–7.89(m,2H),7.80(dd,J=10.6,2.5Hz,1H),7.73–7.71(m,2H),7.69(t,J=1.3Hz,1H),7.61–7.59(m,2H),7.51–7.48(m,2H),7.46–7.42(m,2H),7.40–7.34(m,3H),1.55(s,6H).
实施例7
分子式160的合成路线如下所示:
Figure PCTCN2022115055-appb-000021
化合物160的合成方法具体包括以下步骤:
中间体M160的合成:取乙腈(2.05g,50mmol)和LiH(0.48g,60mmol)于THF(100mL)中0℃下搅拌20小时。向体系中加入7-溴-4-氮芴-9-酮(12.95g,50mmol)后,于80℃下搅拌反应20小时。降至室温后,加入1N的盐酸溶液调节pH=6-7,用三氯甲烷萃取,水洗3次,再用无水硫酸镁干燥,得到粗产物不需要进行提纯分离。取上面得到的粗产物于500mL的单口瓶中,加入浓HCl/EtOH=4:1混合溶液200mL,回流6小时。加入饱和碳酸钾溶液调整pH=7-8,用三氯甲烷萃取,水相用100mL二氯甲烷萃取三次,合并有机相,用无水硫酸镁干燥,粗产物用硅胶柱层析法纯化,获得产物M160(10.43g,产率 68%)。 1H NMR(400MHz,Chloroform-d)δ8.79(dd,J=4.4,1.8Hz,1H),8.37–8.35(m,1H),8.07–8.05(m,2H),7.70(dd,J=9.0,2.5Hz,1H),7.51–7.49(m,1H),5.66(s,1H).
分子式160的合成:称取M160(11.10g,50mmol)于500mL的单口瓶中,加入浓HCl/EtOH=4:1混合溶液200mL,回流6小时。加入饱和碳酸钾溶液调整pH=7-8,用三氯甲烷萃取,水相用100mL二氯甲烷萃取三次,合并有机相,用无水硫酸镁干燥,粗产物以硅胶柱层析纯化得到分子式160表示的化合物(8.37g,产率82%)。1H NMR(400MHz,Chloroform-d)δ8.70(dd,J=4.4,1.8Hz,1H),8.55(d,J=7.2Hz,1H),8.31(dd,J=7.4,1.8Hz,1H),7.98–7.95(m,4H),7.71–7.69(m,4H),7.61–7.58(m,4H),7.51–7.49(m,1H),7.46–7.42(m,4H),7.40–7.36(m,4H),7.25(d,J=2.0Hz,1H),5.67(s,1H).
实施例8
分子式4的合成路线如下所示:
Figure PCTCN2022115055-appb-000022
化合物的合成方法具体包括以下步骤:
中间体M4的合成:取五氘代苯乙腈(6.10g,50mmol)和乙醇钠(4.08g,60mmol)于乙醇(100mL)中0℃下搅拌20小时。向体系中加入4,5-二氮芴-9-酮(9.10g,50mmol)后,于80℃下搅拌反应20小时。降至室温后,加入1N的盐酸溶液调节pH=6-7,用三氯甲烷萃取,水洗3次,再用无水硫酸镁干燥,获得产物M4。
分子式4的合成:称取M4(11.15g,50mmol)于500mL的单口瓶中,加入浓HCl/EtOH=4:1混合溶液200mL,回流6小时。加入饱和碳酸钾溶液调整pH=7-8,用三氯甲烷萃取,水相用100mL二氯甲烷萃取三次,合并有机相,用无水硫酸镁干燥,粗产物以硅胶柱层析纯化得到分子式4表示的化合物(11.7 g,产率82%)。 1H NMR(400MHz,Chloroform-d)δ8.72(m,2H),8.25(dd,J=6.0,1.6Hz,2H),7.53(m,2H).
实施例9
本发明提供了基于蒽
Figure PCTCN2022115055-appb-000023
类主体材料的有机发光器件,如图1所示,从上至下依次层叠设置的金属阴极191、电子注入层180、电子传输层160、发光层150、空穴传输层140、空穴注入层130、阳极120以及玻璃基板110,器件制备工艺为蒸镀法。
其中金属阴极选用铝,蒸镀速率为0.1-0.3nm/s,厚度为100nm;
电子注入层选用本专利合成的材料,蒸镀速率为0.05-0.1nm/s厚度为1nm;
电子传输层选用具有如下结构的化合物LET003,蒸镀速率为0.05-0.1nm/s,厚度为40nm;
Figure PCTCN2022115055-appb-000024
发光层由主体材料和客体材料共掺杂形成,其中主体材料选用本发明提供的主体材料和目前商业化的主体材料LBH001作为对比,客体材料选用具有如下结构的LBD001,主体材料与客体材料掺杂的质量比为90:10,蒸镀速率为0.003-0.2nm/s,厚度为40nm;
Figure PCTCN2022115055-appb-000025
电子阻挡层选用具有如下结构的化合物LEB001,蒸镀速率为0.05-0.1nm/s,厚度为10nm;
Figure PCTCN2022115055-appb-000026
空穴传输层选用具有如下结构的化合物NPB,蒸镀速率为0.05-0.1nm/s,厚度为100nm;
Figure PCTCN2022115055-appb-000027
阳极7选用氧化铟锡。
表1.器件性能表
Figure PCTCN2022115055-appb-000028
由表1可知,本发明提供的主体材料,与商业化材料LBH001相比,制备的器件具有较低的启亮电压,较高的电流效率和较长的寿命。
实施例10:
钙钛矿太阳能电池结构如图2所示,具体制备过程如下:
将ITO导电玻璃依次用丙酮、去离子水、异丙醇超声洗涤,真空80℃下干燥12小时。在ITO上蒸镀一层空穴注入层薄膜,然后旋涂PTAA作为空穴传输层。配置钙钛矿前驱体溶液,溶于DMSO中,旋涂在PTAA薄膜上,100℃条件下退火10分钟。配置电子传输层溶液,将PCBM溶于氯苯中,浓度为10mg/ml,通过旋涂法在钙钛矿薄膜上制备。然后,在PCBM上旋涂BCP的甲醇溶液,最后真空蒸镀金属银电极。
最终制得的钙钛矿太阳能电池器件性能如下表2所示:
Figure PCTCN2022115055-appb-000029
以上所列举的聚合物结构仅为部分代表,其他的含有同等思想的有机空穴注入材料分子均在此专利保护范围之内。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (5)

  1. 一种有机空穴注入材料,其特征在于,化学通式如下:
    Figure PCTCN2022115055-appb-100001
    其中,R 1、R 2各自独立的选自如下中的一种:苯环、萘环、联苯;
    X、Y为C-H、N或者C-OH,彼此相同或者不同;
    R 3选自苯环、二苯环、萘环、苯并呋喃、芴、咔唑或者氧代、硫代咔唑取代的均三嗪。
  2. 根据权利要求1所述的有机空穴注入材料,其特征在于,其分子式中的氢原子部分或者全部被氘取代。
  3. 根据权利要求1所述的有机空穴注入材料,其特征在于,其分子式选自如下中的一种:
    Figure PCTCN2022115055-appb-100002
    Figure PCTCN2022115055-appb-100003
    Figure PCTCN2022115055-appb-100004
    Figure PCTCN2022115055-appb-100005
    Figure PCTCN2022115055-appb-100006
    Figure PCTCN2022115055-appb-100007
    Figure PCTCN2022115055-appb-100008
    Figure PCTCN2022115055-appb-100009
    Figure PCTCN2022115055-appb-100010
    Figure PCTCN2022115055-appb-100011
    Figure PCTCN2022115055-appb-100012
    Figure PCTCN2022115055-appb-100013
    Figure PCTCN2022115055-appb-100014
  4. 一种有机发光器件,其特征在于,包含阴极、阳极和各个有机层;其中,电子注入层使用权利要求1-3中任意一项所述的有机空穴注入材料。
  5. 一种钙钛矿太阳能电池,其特征在于,包含阴极、阳极和各个有机层;其中,空穴注入层使用权利要求1-3中任意一项所述的有机空穴注入材料。
PCT/CN2022/115055 2022-08-26 2022-08-26 一种有机空穴注入材料及其应用 WO2024040556A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115055 WO2024040556A1 (zh) 2022-08-26 2022-08-26 一种有机空穴注入材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115055 WO2024040556A1 (zh) 2022-08-26 2022-08-26 一种有机空穴注入材料及其应用

Publications (1)

Publication Number Publication Date
WO2024040556A1 true WO2024040556A1 (zh) 2024-02-29

Family

ID=90012123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115055 WO2024040556A1 (zh) 2022-08-26 2022-08-26 一种有机空穴注入材料及其应用

Country Status (1)

Country Link
WO (1) WO2024040556A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052063A (ja) * 2005-08-15 2007-03-01 Canon Inc 電子写真感光体ならびにそれを有するプロセスカートリッジおよび電子写真装置
CN101313425A (zh) * 2005-11-17 2008-11-26 出光兴产株式会社 有机电致发光元件
CN101492447A (zh) * 2009-02-23 2009-07-29 南京邮电大学 氮杂芴类有机半导体材料及制备和应用方法
CN101558507A (zh) * 2006-12-15 2009-10-14 出光兴产株式会社 有机电致发光元件用材料以及有机电致发光元件
JP2009288621A (ja) * 2008-05-30 2009-12-10 Canon Inc 電子写真感光体及びそれを用いたプロセスカートリッジ及び電子写真装置
CN108349878A (zh) * 2015-11-17 2018-07-31 株式会社Lg化学 化合物和包含其的有机电子元件
CN109134348A (zh) * 2018-09-30 2019-01-04 长春海谱润斯科技有限公司 一种咔唑类化合物及其有机发光器件
CN109180598A (zh) * 2018-09-30 2019-01-11 长春海谱润斯科技有限公司 一种芴烯的衍生物及其有机电致发光器件
CN109336782A (zh) * 2018-09-26 2019-02-15 长春海谱润斯科技有限公司 一种芴类衍生物及其有机电致发光器件
KR102323603B1 (ko) * 2021-03-16 2021-11-10 최돈수 유기 전기 발광 소자용 발광 재료, 이를 이용한 유기 전기 발광 소자 및 유기 전기 발광 소자용 재료

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052063A (ja) * 2005-08-15 2007-03-01 Canon Inc 電子写真感光体ならびにそれを有するプロセスカートリッジおよび電子写真装置
CN101313425A (zh) * 2005-11-17 2008-11-26 出光兴产株式会社 有机电致发光元件
CN101558507A (zh) * 2006-12-15 2009-10-14 出光兴产株式会社 有机电致发光元件用材料以及有机电致发光元件
JP2009288621A (ja) * 2008-05-30 2009-12-10 Canon Inc 電子写真感光体及びそれを用いたプロセスカートリッジ及び電子写真装置
CN101492447A (zh) * 2009-02-23 2009-07-29 南京邮电大学 氮杂芴类有机半导体材料及制备和应用方法
CN108349878A (zh) * 2015-11-17 2018-07-31 株式会社Lg化学 化合物和包含其的有机电子元件
CN109336782A (zh) * 2018-09-26 2019-02-15 长春海谱润斯科技有限公司 一种芴类衍生物及其有机电致发光器件
CN109134348A (zh) * 2018-09-30 2019-01-04 长春海谱润斯科技有限公司 一种咔唑类化合物及其有机发光器件
CN109180598A (zh) * 2018-09-30 2019-01-11 长春海谱润斯科技有限公司 一种芴烯的衍生物及其有机电致发光器件
KR102323603B1 (ko) * 2021-03-16 2021-11-10 최돈수 유기 전기 발광 소자용 발광 재료, 이를 이용한 유기 전기 발광 소자 및 유기 전기 발광 소자용 재료

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAKO, K. ET AL.: "Synthesis and redox properties of π-conjugated 4,5-diazafluorene derivatives incorporating 9-cyanomethylene moiety as an electron acceptor", TETRAHEDRON LETTERS, vol. 52, no. 44, 7 September 2011 (2011-09-07), XP028301585, ISSN: 0040-4039, DOI: 10.1016/j.tetlet.2011.08.164 *

Similar Documents

Publication Publication Date Title
EP2660300B1 (en) Novel compound, and organic light-emitting device using same
WO2018033088A1 (zh) 一种以氧杂蒽酮为核心的五元环取代化合物及其应用
WO2018033087A1 (zh) 一种以蒽酮为核心的化合物及其应用
CN112321646B (zh) 一种有机化合物、电致发光材料及其应用
WO2022134602A1 (zh) 含氮化合物、电子元件和电子装置
CN114075202A (zh) 一种含氮化合物及包含其的有机电致发光器件和电子装置
CN113173858A (zh) 含氮化合物、电子元件和电子装置
CN110835351A (zh) 一种以吡咯亚甲基硼络合物为核心的有机化合物及其制备和应用
WO2022161453A1 (zh) 一种有机金属配合物及含有该化合物的有机光电元件
CN110294663A (zh) 一种以蒽为核心的化合物及其在有机电致发光器件上的应用
CN101671256B (zh) N,n'-双(三苯胺基)芴二胺类空穴注入材料的制备及其用途
WO2024078287A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2023231531A1 (zh) 含氮化合物、有机电致发光器件和电子装置
CN112538022A (zh) 一种新型空穴传输材料及其应用
WO2024040556A1 (zh) 一种有机空穴注入材料及其应用
CN114262328B (zh) 有机电致发光化合物及其制备方法和有机电致发光器件
CN114335399B (zh) 有机电致发光器件及包括其的电子装置
CN102807554A (zh) 含萘、蒽、二苯并噻吩砜单元的有机半导体材料及其制备方法和应用
WO2024044937A1 (zh) 一种有机空穴注入材料及其应用
CN113999215A (zh) 一种有机化合物及其应用
CN113105383A (zh) 一种含乙烯基的1-芳基取代咔唑类可交联型小分子空穴传输材料及应用
CN102807556A (zh) 含萘、蒽、二苯并噻吩砜单元的有机半导体材料及其制备方法和应用
CN113764604A (zh) 一种组合物及包含其的电子元件和电子装置
WO2024060203A1 (zh) 一种有机空穴注入材料及应用
WO2019085758A1 (zh) 一种含有酮的化合物及其在有机电致发光器件上的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956102

Country of ref document: EP

Kind code of ref document: A1