WO2024040473A1 - 一种轴承径向间隙检测机构 - Google Patents

一种轴承径向间隙检测机构 Download PDF

Info

Publication number
WO2024040473A1
WO2024040473A1 PCT/CN2022/114524 CN2022114524W WO2024040473A1 WO 2024040473 A1 WO2024040473 A1 WO 2024040473A1 CN 2022114524 W CN2022114524 W CN 2022114524W WO 2024040473 A1 WO2024040473 A1 WO 2024040473A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
fixedly connected
bearing
push
sliding
Prior art date
Application number
PCT/CN2022/114524
Other languages
English (en)
French (fr)
Inventor
嵇旭辉
Original Assignee
嘉兴倍创网络科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 嘉兴倍创网络科技有限公司 filed Critical 嘉兴倍创网络科技有限公司
Priority to PCT/CN2022/114524 priority Critical patent/WO2024040473A1/zh
Publication of WO2024040473A1 publication Critical patent/WO2024040473A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/16Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring distance of clearance between spaced objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/14Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures

Definitions

  • the invention relates to the technical field of bearing detection, and in particular to a bearing radial clearance detection mechanism.
  • Bearings are standard parts that are widely used in production practice. When rolling bearings leave the factory, there is a gap between the rolling elements and the raceways. After the bearing is used and worn, this gap will gradually increase. When the gap exceeds a certain value, the bearing will If it cannot continue to be used normally, the radial clearance is the moving clearance value in the diameter direction of the bearing. The radial clearance value can reflect the degree of wear and tear of the bearing. In the existing detection of the radial clearance of the bearing, the outer diameter of the bearing is measured by measuring equipment.
  • the commonly used method is to contact the surface of the bearing outer ring with a dial indicator, fix the bearing inner ring, and then reciprocate the bearing outer ring in the measurement direction, and record the two values through the dial indicator. , the difference between the values is the radial clearance of the bearing.
  • the inner ring of the bearing is directly connected to the positioning shaft.
  • the outer ring of the bearing is manually supported, the outer ring of the bearing is moved back and forth along the radial direction of the bearing, and the dial indicator is used to measure.
  • the maximum clearance of the dial indicator cannot fix bearings with different inner diameters, and cannot guarantee that the measuring thimble of the dial indicator is perpendicular to the axis of the bearing. It cannot ensure that the measuring thimble of the dial indicator is aligned with the outside of the bearing. The advancing direction of the circle remains consistent, which leads to errors in measurement and low measurement accuracy.
  • the present invention provides a bearing radial clearance detection mechanism, which fixes the bearing inner ring through the expansion of the expansion shaft, can position bearings with different inner diameters, and can ensure that the inner ring axis of the bearing remains consistent. It has an outer ring fixing mechanism and is equipped with left and right adjustment guide components to ensure that the reciprocating pushing direction of the outer ring is perpendicular to the dial indicator measuring thimble, thereby reducing the measurement deviation, effectively improving the measurement accuracy and measurement efficiency, and increasing the equipment scope of application.
  • the invention provides a bearing radial clearance detection mechanism, which specifically includes: a detection platform; a longitudinal positioning frame is fixedly connected to the front of the upper surface of the detection platform; an inner ring expansion top frame is provided with two places, The two inner ring expansion top frames are both slidingly connected to the longitudinal positioning frame; the dial indicator is set on the detection platform; the outer ring clamp frame is provided with two outer ring clamp frames, two outer ring clamp frames.
  • the clamping frames are respectively slidingly connected to the left and right sides of the upper surface of the detection table; the transverse measurement push frame is slidingly connected below the detection table; the two-way screw is movably connected to the transverse measurement push frame.
  • a telescopic driving part which is fixedly connected in front of the lower surface of the detection platform, and the output push rod of the telescopic driving part is fixedly connected to the front surface of the transverse measurement push frame;
  • a clamping driving part which is clamped and driven.
  • the piece is fixedly connected to the detection platform, and the clamping driving piece is connected through a chain drive and drives the fixed driving gear; the fixed driving gear is connected to the middle of the two-way screw.
  • two side guide limit plates are fixedly connected to the front and rear of the upper surface of the detection platform, a side guide rail is fixedly connected to the inner surface of the side guide limit plate, and a rectangular space is provided in the middle of the detection platform.
  • the inner guide sliding frame has an inner sliding guide rod fixedly connected to the interior of the inner guide sliding frame. The axis of the inner sliding guide rod faces the transverse direction.
  • the lower surface of the detection platform is fixedly connected to a lower support frame. There is a lower support frame fixedly connected to the bottom of the inner bottom of the lower support frame. guide rod.
  • a bidirectional adjustment screw is rotatably connected to the inner surface of the longitudinal positioning frame through a bearing, and two longitudinal frame guide rods are fixedly connected to the inner surface of the longitudinal positioning frame.
  • two inner ring guide holes are provided on the base body of the inner ring expansion top frame.
  • the inner ring guide holes are slidably connected to the longitudinal frame guide rods.
  • the base body of the inner ring expansion top frame is provided with expansion push holes.
  • the expansion push hole is spirally connected to the two-way adjustment screw, and the expansion top frame of the inner ring is rotatably connected to two expansion struts, and the two expansion struts are parallel to each other.
  • a clamp frame slider is fixedly connected to the front and rear of the outer ring clamp frame, and the clamp frame slider is slidingly connected to the side guide rail.
  • a spiral hole is provided on the push plate under the frame, and the spiral hole is spirally connected to the two-way screw.
  • An outer ring chuck is fixedly connected to the upper end of the outer ring clamp frame, and an arc groove is provided on the inner surface of the outer ring chuck.
  • a detection hole with a circular hole structure is transversely penetrated on the outer ring chuck, and two positioning clamp wheels are rollingly connected to the arc-shaped groove on the inner surface of the detection hole.
  • two measurement slide blocks are fixedly connected to the lower surface of the transverse measurement push frame, and the measurement slide blocks are slidingly connected to the lower guide rod.
  • a measurement push plate is fixedly connected to the front surface of the transverse measurement push frame.
  • the transverse measurement push frame There is a detection push block fixedly connected in the middle of the upper surface of the detection push block. There is a sliding hole in the middle of the detection push block. The sliding hole is slidingly connected to the inner sliding guide rod.
  • an adjusting top spring is fixedly connected to the left and right sides of the detection push block respectively.
  • a driven gear cylinder is fixedly connected in the middle of the two-way screw, and the driven gear cylinder is connected to the fixed driving gear through gear transmission.
  • the sliding bearing seat is provided with a bearing seat guide hole, the sliding bearing seat is slidingly connected inside the inner guide sliding frame, and the bearing seat guide hole is slidingly connected to the inner sliding guide rod.
  • the bearing radial clearance detection equipment compared with the traditional bearing radial clearance detection equipment, it fixes the bearing inner ring through the expansion of the expansion shaft, and can position bearings with different inner diameters, and It can ensure that the inner ring axis of the bearing remains consistent. It is equipped with an outer ring fixing mechanism and a left and right adjustment guide assembly to ensure that the reciprocating pushing direction of the outer ring is perpendicular to the dial indicator measuring thimble, thereby reducing the measurement deviation and effectively Improve measurement accuracy and efficiency, and increase the scope of application of the equipment.
  • the two inner ring expansion top frames are pushed to move to the middle or both sides at the same time.
  • the inner ring of the bearing is fixed at a certain distance. This fixing method can ensure that the inner surface of the inner ring of the bearing has four contact points with the fixing parts, ensuring the stability of the positioning and the applicability of the positioning mechanism, and keeping the inner ring fixed and the axis of the inner ring always be consistent.
  • the fixed driving gear meshes with the driven gear cylinder to drive the two-way screw to rotate.
  • the spiral directions on both sides of the two-way screw are opposite, and are respectively connected with the outer sides of the two sides.
  • the screw hole of the lower push plate of the ring clamp frame forms a spiral transmission.
  • the detection push block is slidingly connected to the inner sliding guide rod, and is connected to the sliding bearing seats on both sides through two adjusting top springs, so that the two-way screw and the transverse measuring push frame are The connection relationship between them is an elastic connection.
  • the telescopic driving part expands and contracts, it can drive the transverse measuring push frame to reciprocate left and right, and push the outer ring clamp frame through the two-way screw.
  • the outer ring clamp frame clamps and exerts force on the outer ring of the bearing.
  • the lateral pushing force based on the fixed inner ring, the offset clearance on both sides is the radial clearance.
  • the lateral clearance value of the bearing can be calculated to ensure the propulsion.
  • the direction is consistent with the direction of the detection needle of the dial indicator, and the detection direction is perpendicular to the axis of the inner ring to ensure measurement accuracy.
  • Figure 1 shows a schematic diagram of the overall structure of a bearing radial clearance detection device according to an embodiment of the present invention
  • Figure 2 shows a schematic view of the rear of an embodiment according to the invention
  • Figure 3 shows a schematic diagram in an no-load state according to an embodiment of the present invention
  • Figure 4 shows a schematic diagram of the inner ring expansion top frame according to an embodiment of the present invention
  • Figure 5 shows a schematic diagram of a bidirectional lead screw according to an embodiment of the present invention
  • Figure 6 shows a schematic diagram of the bottom of the detection platform according to an embodiment of the present invention.
  • Figure 7 shows a schematic diagram of a guide sliding frame according to an embodiment of the present invention.
  • Figure 8 shows a schematic diagram of a transverse measurement push frame according to an embodiment of the present invention.
  • Figure 9 shows a schematic diagram of an outer ring clamp frame according to an embodiment of the present invention.
  • FIG. 10 shows a partially enlarged schematic diagram of A of FIG. 5 according to an embodiment of the present invention.
  • the invention proposes a bearing radial clearance detection mechanism, which includes: a detection platform 1; a longitudinal positioning frame 2 is fixedly connected to the front of the upper surface of the detection platform 1; an inner ring expansion top frame 3 is provided with two places , the two inner ring expansion top frames 3 are both slidingly connected to the longitudinal positioning frame 2; the dial indicator 4 is set on the detection platform 1; the outer ring clamp frame 5 is provided with two , the two outer ring clamp frames 5 are slidingly connected to the left and right sides of the upper surface of the detection platform 1 respectively; the transverse measurement push frame 6 is slidingly connected to the bottom of the detection platform 1; the two-way screw 7, the two-way screw The lever 7 is movably connected above the transverse measuring push frame 6; the telescopic driving part 8 is fixedly connected in front of the lower surface of the detection platform 1, and the output push rod of the telescopic driving part 8 is fixedly connected in front of the transverse measuring push frame 6 surface; the clamping driving part 9 is fixedly connected to the detection platform 1, and the
  • two side guide limiting plates 101 are fixedly connected to the front and rear of the upper surface of the detection platform 1, and there are two side guide limiting plates 101 fixedly connected to the inner surface of the side guide limiting plate 101.
  • the side guide rail 1011 has a rectangular inner guide sliding frame 102 in the middle of the detection platform 1.
  • An inner sliding guide rod 1021 is fixedly connected to the inside of the inner guide sliding frame 102. The axis of the inner sliding guide rod 1021 faces the transverse direction.
  • the detection platform 1 The lower support frame 103 is fixedly connected to the lower surface, and a lower guide rod 1031 is fixedly connected to the inner bottom of the lower support frame 103; the inner sliding guide rod 1021 is slidingly connected to the clamp slider 501 to play a guiding role, and the sliding bearing seat 702 is provided with a lower guide rod 1031.
  • the sliding bearing seat 702 is slidingly connected inside the inner guide sliding frame 102.
  • the bearing seat guide hole 7021 is slidingly connected to the inner sliding guide rod 1021 to guide the sliding bearing seat 702 and maintain The angle of the sliding bearing seat 702 does not deflect.
  • the inner surface of the longitudinal positioning frame 2 is rotatably connected to a bidirectional adjustment screw 201 through a bearing, and the inner surface of the longitudinal positioning frame 2 is fixedly connected to two longitudinal frame guide rods 202.
  • the base body of the inner ring expansion top frame 3 is provided with two inner ring guide holes 301, the inner ring guide holes 301 are slidingly connected to the longitudinal frame guide rod 202, and the base body of the inner ring expansion top frame 3 is provided with expansion push holes 302 , the expansion push hole 302 is spirally connected to the two-way adjustment screw 201, and the inner ring expansion top frame 3 is rotatably connected with two expansion stays 303, and the two expansion stays 303 are parallel to each other; by manually rotating the two-way adjustment screw 201, the two-way adjustment screw 201 is rotated manually.
  • This fixing method can ensure that the inner surface of the bearing inner ring has four contact points with the fixing piece, ensuring the positioning stability and applicability of the positioning mechanism, and keeping the inner ring fixed differently and the inner ring axis always consistent.
  • the front and rear of the outer ring clamp frame 5 are fixedly connected with clamp frame slide blocks 501, and the clamp frame slide blocks 501 are slidingly connected to the side guide rails 1011.
  • the clamp push-down plate 502 is provided with a spiral hole.
  • the spiral hole is spirally connected to the two-way screw 7.
  • the upper end of the outer ring clamp frame 5 is fixedly connected with an outer ring chuck 503.
  • the inner surface of the outer ring chuck 503 is provided with an arc-shaped groove
  • the outer ring chuck 503 is laterally provided with a detection hole 5031 with a circular hole structure.
  • Two positioning clamps are rollingly connected to the arc-shaped groove on the inner surface of the detection hole 5031.
  • a driven gear cylinder 701 is fixedly connected in the middle of the two-way screw 7.
  • the driven gear cylinder 701 is connected to the fixed driving gear 10 through gear transmission.
  • the sliding bearing seat 702 is located on both sides of the detection push block 603, and the inner surface of the sliding bearing seat 702 is fixedly connected to the outer end of the adjusting top spring 6031; through the cooperation of the clamping driver 9, the fixed driving gear 10 and the two-way screw 7, the fixed
  • the driving gear 10 meshes with the driven gear cylinder 701 to drive the two-way screw 7 to rotate.
  • the spiral directions on both sides of the two-way screw 7 are opposite and form a spiral with the screw holes of the clamp lower push plate 502 of the outer ring clamp 5 on both sides.
  • Transmission, through the unidirectional rotation of the two-way screw 7, can drive the outer ring clamp frames 5 on both sides to move inward and outward synchronously to achieve a clamping effect on the outer ring of the bearing.
  • the outer rings of bearings with different outer diameters are equipped with four contact points to stabilize the fixing effect and applicable range of the outer rings.
  • two measurement sliders 601 are fixedly connected to the lower surface of the transverse measurement push frame 6.
  • the measurement slide blocks 601 are slidingly connected to the lower guide rod 1031.
  • the transverse measurement push frame 6 A measuring push plate 602 is fixedly connected to the front surface of the transverse measuring push frame 6, and a detection push block 603 is fixedly connected to the middle of the upper surface of the transverse measurement push frame 6.
  • a sliding hole is provided in the middle of the detection push block 603. The sliding hole is slidably connected to the inner sliding guide rod 1021.
  • the detection push block 603 is slidingly connected to the inner sliding guide rod 1021, and is connected to the sliding bearing seats 702 on both sides through two adjusting top springs 6031, so that The connection relationship between the two-way screw 7 and the transverse measurement push frame 6 is an elastic connection.
  • the transverse measurement push frame 6 can be driven to reciprocate left and right, and the outer ring clamp frame is pushed through the two-way screw 7 5.
  • the outer ring clamp 5 clamps and exerts a lateral pushing force on the outer ring of the bearing.
  • the offset gap on both sides is the radial gap.
  • the dial indicator 4 set laterally, By measuring and recording, the lateral clearance value of the bearing can be calculated, ensuring that the direction of advancement is consistent with the direction of the detection needle of dial indicator 4.
  • the fixed driving gear 10 meshes with the driven gear barrel 701 and drives the two-way screw 7 to rotate.
  • the spirals on both sides of the two-way screw 7 In the opposite direction, the screw holes of the clamp lower push plates 502 of the outer ring clamp frames 5 on both sides form a spiral transmission.
  • the outer ring clamp frames 5 on both sides can be driven to move inwards synchronously and Move outward to achieve a clamping effect on the outer ring of the bearing.
  • the measuring end of the submeter 4 contacts the surface of the outer ring of the bearing and assists in fixing the base of the dial indicator 4, and then controls the telescopic movement of the telescopic driving part 8 to drive the transverse measuring push frame 6 to reciprocate left and right, and is pushed by the two-way screw 7
  • the outer ring clamp 5 clamps and exerts a lateral pushing force on the outer ring of the bearing.
  • the offset gap on both sides is the radial gap.

Abstract

一种轴承径向间隙检测机构,其包括:检测台(1);检测台(1)上表面前方固定连接有纵向定位架(2);内圈扩张顶架(3),内圈扩张顶架(3)设有两处,两处内圈扩张顶架(3)均滑动连接在纵向定位架(2)上;百分表(4),百分表(4)设置在检测台(1)上;外圈夹架(5),外圈夹架(5)设有两处,两处外圈夹架(5)分别滑动连接在检测台(1)上表面左侧和右侧。该轴承径向间隙检测机构对不同内径的轴承进行定位,并且可以保证轴承的内圈轴线保持一致,可以保证对外圈的往复推动方向与百分表测量顶针垂直,有效地提高测量精度和测量效率,并增加了适用范围。

Description

一种轴承径向间隙检测机构 技术领域
本发明涉及轴承检测技术领域,特别涉及一种轴承径向间隙检测机构。
背景技术
轴承是生产实践中应用非常广泛的标准件,滚动轴承在出厂时,滚动体和滚道之间存在间隙,轴承经过使用、磨损之后,这个间隙将逐渐增大,当间隙超过一定数值以后,轴承将不能继续正常使用,径向间隙为轴承的直径方向的活动间隙数值,径向间隙数值可以体现此轴承使用磨损的程度,现有的对轴承的径向间隙的检测中,通过测量设备测量轴承外圈与内圈之间的可活动间隙,常使用的方法为通过百分表接触轴承外圈表面,将轴承内圈固定,而后沿测量方向往复活动轴承外圈,通过百分表记录两次数值,数值之差即为轴承的径向间隙。
然而,就目前传统的测量方式而言,直接将轴承内圈套接在定位轴上,测量过程中手动扶持轴承外圈,将轴承外圈沿轴承的径向方向往复拨动,通过百分表测量拨动的最大间隙,而此种测量方式和轴承定位方式,不能对不同内径的轴承进行固定,且不能保证百分表的测量顶针与轴承轴线垂直,不能保证百分表的测量顶针与轴承外圈的推进方向保持一致,导致测量容易出现误差,测量精度偏低。
发明内容
有鉴于此,本发明提供一种轴承径向间隙检测机构,其通过扩张轴的扩张对轴承内圈进行固定,可以对不同内径的轴承进行定位,并且可以保证轴承的内圈轴线保持一致,设置有外圈固定机构,并设有左右调节导向组件,可以保证对外圈的往复推动方向与百分表测量顶针垂直,从而减小测量的偏差,有效的提高测量精度和测量效率,并 增加了设备的适用范围。
本发明提供了一种轴承径向间隙检测机构,具体包括:检测台;所述检测台上表面前方固定连接有纵向定位架;内圈扩张顶架,所述内圈扩张顶架设有两处,两处内圈扩张顶架均滑动连接在纵向定位架上;百分表,所述百分表设置在检测台上;外圈夹架,所述外圈夹架设有两处,两处外圈夹架分别滑动连接在检测台上表面左侧和右侧;横向测量推架,所述横向测量推架滑动连接在检测台的下方;双向丝杠,所述双向丝杠活动连接在横向测量推架的上方;伸缩驱动件,所述伸缩驱动件固定连接在检测台的下表面前方,且伸缩驱动件输出推杆固定连接横向测量推架的前表面;夹紧驱动件,所述夹紧驱动件固定连接在检测台上,且夹紧驱动件通过链传动连接并驱动固定主动齿轮;所述固定主动齿轮连接双向丝杠的中间。
可选地,所述检测台的上表面前方和后方分别固定连接有两处侧导限位板,侧导限位板的内表面上固定连接有侧导轨,检测台的中间开设有一处矩形的内导向滑框,内导向滑框的内部固定连接有内滑动导杆,内滑动导杆轴线朝向横向方向,检测台的下表面固定连接有下支框,下支框内部底部固定连接有一处下导杆。
可选地,所述纵向定位架内表面通过轴承转动连接有一处双向调节丝杠,纵向定位架的内表面固定连接有两处纵架导杆。
可选地,所述内圈扩张顶架的座体上开设有两处内圈导孔,内圈导孔滑动连接纵架导杆,内圈扩张顶架的座体上开设有扩张推孔,扩张推孔螺旋连接双向调节丝杠,内圈扩张顶架上转动连接有两处扩张撑杆,两处扩张撑杆互相平行。
可选地,所述外圈夹架的前方和后方固定连接有夹架滑块,夹架滑块滑动连接侧导轨,外圈夹架的下表面固定连接有两处夹架下推板,夹架下推板上开设有螺旋孔,螺旋孔螺旋连接双向丝杠,外圈夹架的上端固定连接有外圈夹头,外圈夹头内表面开设有弧形槽。
可选地,所述外圈夹头上横向贯穿开设有圆孔结构的检测孔,检 测孔的内表面弧形槽上滚动连接有两处定位夹轮。
可选地,所述横向测量推架的下表面固定连接有两处测量滑块,测量滑块滑动连接在下导杆上,横向测量推架的前表面固定连接有测量推板,横向测量推架的上表面中间固定连接有检测推块,检测推块中间设有滑孔,滑孔滑动连接内滑动导杆。
可选地,所述检测推块的左侧和右侧分别固定连接有一处调节顶簧。
可选地,所述双向丝杠的中间固定连接有从动齿筒,从动齿筒通过齿轮传动连接固定主动齿轮,双向丝杠上通过轴承转动连接有两处滑动轴承座,两处滑动轴承座位于检测推块的两侧,且滑动轴承座的内表面固定连接调节顶簧外端。
可选地,所述滑动轴承座上开设有一处轴承座导孔,滑动轴承座滑动连接在内导向滑框内部,轴承座导孔滑动连接在内滑动导杆上。
有益效果
根据本发明的各实施例的轴承径向间隙的检测设备,与传统轴承径向间隙检测设备相比,其通过扩张轴的扩张对轴承内圈进行固定,可以对不同内径的轴承进行定位,并且可以保证轴承的内圈轴线保持一致,设置有外圈固定机构,并设有左右调节导向组件,可以保证对外圈的往复推动方向与百分表测量顶针垂直,从而减小测量的偏差,有效的提高测量精度和测量效率,并增加了设备的适用范围。
此外,通过手动旋转双向调节丝杠,通过双向调节丝杠与扩张推孔的螺旋传动,推动两处内圈扩张顶架同时向中间或者两侧移动,通过增加两组扩张撑杆之间的横向间距对轴承内圈进行固定,此种固定方式可以保证轴承内圈的内表面与固定件有四处接触点,保证定位稳固性和定位机构的适用性,并保持内圈固定不同,内圈轴线始终保持一致。
此外,通过夹紧驱动件、固定主动齿轮和双向丝杠的配合,固定 主动齿轮与从动齿筒啮合传动,驱动双向丝杠转动,双向丝杠两侧的螺旋方向相反,分别与两侧外圈夹架的夹架下推板螺孔形成螺旋传动,通过双向丝杠的单向旋转,可以驱动两侧的外圈夹架同步向里移动和向外移动,对轴承的外圈实现夹紧的效果,通过定位夹轮的作用,对不同外径的轴承外圈均设有四处接触点,稳定外圈的固定效果和适用范围。
此外,通过滑动轴承座和横向测量推架的配合,检测推块滑动连接在内滑动导杆上,并且与两侧的滑动轴承座通过两调节顶簧连接,使得双向丝杠与横向测量推架之间的连接关系为弹性连接,当伸缩驱动件伸缩时,即可驱动横向测量推架进行左右往复移动,通过双向丝杠推动外圈夹架,外圈夹架对轴承外圈夹持并施加横向推动的力,在内圈固定不动的基础上,两侧偏移的间隙即为径向间隙,通过横向设置的百分表测量并记录,即可计算轴承的横向间隙数值,保证了推进方向与百分表的检测针方向一致,检测方向与内圈轴线保持垂直,保证测量精度。
附图说明
为了更清楚地说明本发明的实施例的技术方案,下面将对实施例的附图作简单地介绍。
下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
在附图中:
图1示出了根据本发明的实施例的轴承径向间隙检测设备的整体结构的示意图;
图2示出了根据本发明的实施例后方的示意图;
图3示出了根据本发明的实施例空载状态下的示意图;
图4示出了根据本发明的实施例内圈扩张顶架的示意图;
图5示出了根据本发明的实施例双向丝杠的示意图;
图6示出了根据本发明的实施例检测台底部的示意图;
图7示出了根据本发明的实施例内导向滑框的示意图;
图8示出了根据本发明的实施例横向测量推架的示意图;
图9示出了根据本发明的实施例外圈夹架的示意图;
图10示出了根据本发明的实施例图5的A处局部放大的示意图。
附图标记列表
1、检测台;101、侧导限位板;1011、侧导轨;102、内导向滑框;1021、内滑动导杆;103、下支框;1031、下导杆;2、纵向定位架;201、双向调节丝杠;202、纵架导杆;3、内圈扩张顶架;301、内圈导孔;302、扩张推孔;303、扩张撑杆;4、百分表;5、外圈夹架;501、夹架滑块;502、夹架下推板;503、外圈夹头;5031、检测孔;5032、定位夹轮;6、横向测量推架;601、测量滑块;602、测量推板;603、检测推块;6031、调节顶簧;7、双向丝杠;701、从动齿筒;702、滑动轴承座;7021、轴承座导孔;8、伸缩驱动件;9、夹紧驱动件;10、固定主动齿轮。
具体实施方式
为了使得本发明的技术方案的目的、方案和优点更加清楚,下文中将结合本发明的具体实施例的附图,对本发明实施例的技术方案进行清楚、完整的描述。除非另有说明,否则本文所使用的术语具有本领域通常的含义。附图中相同的附图标记代表相同的部件。
实施例:请参考图1至图10:
本发明提出了一种轴承径向间隙检测机构,包括:检测台1;检测台1上表面前方固定连接有纵向定位架2;内圈扩张顶架3,内圈扩张顶架3设有两处,两处内圈扩张顶架3均滑动连接在纵向定位架2上;百分表4,百分表4设置在检测台1上;外圈夹架5,外圈夹架5设有 两处,两处外圈夹架5分别滑动连接在检测台1上表面左侧和右侧;横向测量推架6,横向测量推架6滑动连接在检测台1的下方;双向丝杠7,双向丝杠7活动连接在横向测量推架6的上方;伸缩驱动件8,伸缩驱动件8固定连接在检测台1的下表面前方,且伸缩驱动件8输出推杆固定连接横向测量推架6的前表面;夹紧驱动件9,夹紧驱动件9固定连接在检测台1上,且夹紧驱动件9通过链传动连接并驱动固定主动齿轮10;固定主动齿轮10连接双向丝杠7的中间。
此外,根据本发明的实施例,如图7所示,检测台1的上表面前方和后方分别固定连接有两处侧导限位板101,侧导限位板101的内表面上固定连接有侧导轨1011,检测台1的中间开设有一处矩形的内导向滑框102,内导向滑框102的内部固定连接有内滑动导杆1021,内滑动导杆1021轴线朝向横向方向,检测台1的下表面固定连接有下支框103,下支框103内部底部固定连接有一处下导杆1031;内滑动导杆1021滑动连接夹架滑块501,起到导向的作用,滑动轴承座702上开设有一处轴承座导孔7021,滑动轴承座702滑动连接在内导向滑框102内部,轴承座导孔7021滑动连接在内滑动导杆1021上,起到对滑动轴承座702导向的作用,并保持滑动轴承座702的角度不发生偏转。
此外,根据本发明的实施例,如图4所示,纵向定位架2内表面通过轴承转动连接有一处双向调节丝杠201,纵向定位架2的内表面固定连接有两处纵架导杆202,内圈扩张顶架3的座体上开设有两处内圈导孔301,内圈导孔301滑动连接纵架导杆202,内圈扩张顶架3的座体上开设有扩张推孔302,扩张推孔302螺旋连接双向调节丝杠201,内圈扩张顶架3上转动连接有两处扩张撑杆303,两处扩张撑杆303互相平行;通过手动旋转双向调节丝杠201,通过双向调节丝杠201与扩张推孔302的螺旋传动,推动两处内圈扩张顶架3同时向中间或者两侧移动,通过增加两组扩张撑杆303之间的横向间距对轴承内圈进行固定,此种固定方式可以保证轴承内圈的内表面与固定件有四处接触点,保证定位稳固性和定位机构的适用性,并保持内圈固定不同,内圈轴线始终保持一致。
此外,根据本发明的实施例,如图9所示,外圈夹架5的前方和后方固定连接有夹架滑块501,夹架滑块501滑动连接侧导轨1011,外圈夹架5的下表面固定连接有两处夹架下推板502,夹架下推板502上开设有螺旋孔,螺旋孔螺旋连接双向丝杠7,外圈夹架5的上端固定连接有外圈夹头503,外圈夹头503内表面开设有弧形槽,外圈夹头503上横向贯穿开设有圆孔结构的检测孔5031,检测孔5031的内表面弧形槽上滚动连接有两处定位夹轮5032,双向丝杠7的中间固定连接有从动齿筒701,从动齿筒701通过齿轮传动连接固定主动齿轮10,双向丝杠7上通过轴承转动连接有两处滑动轴承座702,两处滑动轴承座702位于检测推块603的两侧,且滑动轴承座702的内表面固定连接调节顶簧6031外端;通过夹紧驱动件9、固定主动齿轮10和双向丝杠7的配合,固定主动齿轮10与从动齿筒701啮合传动,驱动双向丝杠7转动,双向丝杠7两侧的螺旋方向相反,分别与两侧外圈夹架5的夹架下推板502螺孔形成螺旋传动,通过双向丝杠7的单向旋转,可以驱动两侧的外圈夹架5同步向里移动和向外移动,对轴承的外圈实现夹紧的效果,通过定位夹轮5032的作用,对不同外径的轴承外圈均设有四处接触点,稳定外圈的固定效果和适用范围。
此外,根据本发明的实施例,如图8所示,横向测量推架6的下表面固定连接有两处测量滑块601,测量滑块601滑动连接在下导杆1031上,横向测量推架6的前表面固定连接有测量推板602,横向测量推架6的上表面中间固定连接有检测推块603,检测推块603中间设有滑孔,滑孔滑动连接内滑动导杆1021,检测推块603的左侧和右侧分别固定连接有一处调节顶簧6031,检测推块603滑动连接在内滑动导杆1021上,并且与两侧的滑动轴承座702通过两调节顶簧6031连接,使得双向丝杠7与横向测量推架6之间的连接关系为弹性连接,当伸缩驱动件8伸缩时,即可驱动横向测量推架6进行左右往复移动,通过双向丝杠7推动外圈夹架5,外圈夹架5对轴承外圈夹持并施加横向推动的力,在内圈固定不动的基础上,两侧偏移的间隙即为径向间隙,通过横向设置的百分表4测量并记录,即可计算轴承的横向间隙数值,保证了推进方向与百分表4的检测针方向一致。
本实施例的具体使用方式与作用:本发明中,首先,将轴承的轴线方向朝向前后方向,而后将轴承从后向前移动,使轴承内圈套接在四处扩张撑杆303上,而后手动旋转双向调节丝杠201,通过双向调节丝杠201与扩张推孔302的螺旋传动,推动两处内圈扩张顶架3同时向中间或者两侧移动,通过增加两组扩张撑杆303之间的横向间距对轴承内圈进行固定,而后通过夹紧驱动件9驱动固定主动齿轮10旋转,固定主动齿轮10与从动齿筒701啮合传动,驱动双向丝杠7转动,双向丝杠7两侧的螺旋方向相反,分别与两侧外圈夹架5的夹架下推板502螺孔形成螺旋传动,通过双向丝杠7的单向旋转,可以驱动两侧的外圈夹架5同步向里移动和向外移动,对轴承的外圈实现夹紧的效果,通过定位夹轮5032的作用,对不同外径的轴承外圈均设有四处接触点,稳定外圈的固定效果和适用范围;使百分表4的测量端接触轴承外圈表面,并对百分表4的底座进行辅助固定,而后控制伸缩驱动件8伸缩运动,驱动横向测量推架6进行左右往复移动,通过双向丝杠7推动外圈夹架5,外圈夹架5对轴承外圈夹持并施加横向推动的力,在内圈固定不动的基础上,两侧偏移的间隙即为径向间隙,通过横向设置的百分表4测量并记录,记录双向丝杠7收缩时百分表4的测量数值和记录双向丝杠7展开时百分表4的测量数值,再取两数值的差,即可计算轴承的横向间隙数值。
最后,需要说明的是,本发明在描述各个构件的位置及其之间的配合关系等时,通常会以一个/一对构件举例而言,然而本领域技术人员应该理解的是,这样的位置、配合关系等,同样适用于其他构件/其他成对的构件。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (10)

  1. 一种轴承径向间隙检测机构,其特征在于,包括:检测台(1);所述检测台(1)上表面前方固定连接有纵向定位架(2);内圈扩张顶架(3),所述内圈扩张顶架(3)设有两处,两处内圈扩张顶架(3)均滑动连接在纵向定位架(2)上;百分表(4),所述百分表(4)设置在检测台(1)上;外圈夹架(5),所述外圈夹架(5)设有两处,两处外圈夹架(5)分别滑动连接在检测台(1)上表面左侧和右侧;横向测量推架(6),所述横向测量推架(6)滑动连接在检测台(1)的下方;双向丝杠(7),所述双向丝杠(7)活动连接在横向测量推架(6)的上方;伸缩驱动件(8),所述伸缩驱动件(8)固定连接在检测台(1)的下表面前方,且伸缩驱动件(8)输出推杆固定连接横向测量推架(6)的前表面;夹紧驱动件(9),所述夹紧驱动件(9)固定连接在检测台(1)上,且夹紧驱动件(9)通过链传动连接并驱动固定主动齿轮(10);所述固定主动齿轮(10)连接双向丝杠(7)的中间。
  2. 如权利要求1所述一种轴承径向间隙检测机构,其特征在于:所述检测台(1)的上表面前方和后方分别固定连接有两处侧导限位板(101),侧导限位板(101)的内表面上固定连接有侧导轨(1011),检测台(1)的中间开设有一处矩形的内导向滑框(102),内导向滑框(102)的内部固定连接有内滑动导杆(1021),内滑动导杆(1021)轴线朝向横向方向,检测台(1)的下表面固定连接有下支框(103),下支框(103)内部底部固定连接有一处下导杆(1031)。
  3. 如权利要求1所述一种轴承径向间隙检测机构,其特征在于:所述纵向定位架(2)内表面通过轴承转动连接有一处双向调节丝杠(201),纵向定位架(2)的内表面固定连接有两处纵架导杆(202)。
  4. 如权利要求3所述一种轴承径向间隙检测机构,其特征在于:所述内圈扩张顶架(3)的座体上开设有两处内圈导孔(301),内圈导 孔(301)滑动连接纵架导杆(202),内圈扩张顶架(3)的座体上开设有扩张推孔(302),扩张推孔(302)螺旋连接双向调节丝杠(201),内圈扩张顶架(3)上转动连接有两处扩张撑杆(303),两处扩张撑杆(303)互相平行。
  5. 如权利要求2所述一种轴承径向间隙检测机构,其特征在于:所述外圈夹架(5)的前方和后方固定连接有夹架滑块(501),夹架滑块(501)滑动连接侧导轨(1011),外圈夹架(5)的下表面固定连接有两处夹架下推板(502),夹架下推板(502)上开设有螺旋孔,螺旋孔螺旋连接双向丝杠(7),外圈夹架(5)的上端固定连接有外圈夹头(503),外圈夹头(503)内表面开设有弧形槽。
  6. 如权利要求5所述一种轴承径向间隙检测机构,其特征在于:所述外圈夹头(503)上横向贯穿开设有圆孔结构的检测孔(5031),检测孔(5031)的内表面弧形槽上滚动连接有两处定位夹轮(5032)。
  7. 如权利要求2所述一种轴承径向间隙检测机构,其特征在于:所述横向测量推架(6)的下表面固定连接有两处测量滑块(601),测量滑块(601)滑动连接在下导杆(1031)上,横向测量推架(6)的前表面固定连接有测量推板(602),横向测量推架(6)的上表面中间固定连接有检测推块(603),检测推块(603)中间设有滑孔,滑孔滑动连接内滑动导杆(1021)。
  8. 如权利要求7所述一种轴承径向间隙检测机构,其特征在于:所述检测推块(603)的左侧和右侧分别固定连接有一处调节顶簧(6031)。
  9. 如权利要求8所述一种轴承径向间隙检测机构,其特征在于:所述双向丝杠(7)的中间固定连接有从动齿筒(701),从动齿筒(701)通过齿轮传动连接固定主动齿轮(10),双向丝杠(7)上通过轴承转动连接有两处滑动轴承座(702),两处滑动轴承座(702)位于检测推块(603)的两侧,且滑动轴承座(702)的内表面固定连接调节顶簧(6031)外端。
  10. 如权利要求9所述一种轴承径向间隙检测机构,其特征在于: 所述滑动轴承座(702)上开设有一处轴承座导孔(7021),滑动轴承座(702)滑动连接在内导向滑框(102)内部,轴承座导孔(7021)滑动连接在内滑动导杆(1021)上。
PCT/CN2022/114524 2022-08-24 2022-08-24 一种轴承径向间隙检测机构 WO2024040473A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114524 WO2024040473A1 (zh) 2022-08-24 2022-08-24 一种轴承径向间隙检测机构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/114524 WO2024040473A1 (zh) 2022-08-24 2022-08-24 一种轴承径向间隙检测机构

Publications (1)

Publication Number Publication Date
WO2024040473A1 true WO2024040473A1 (zh) 2024-02-29

Family

ID=90011997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114524 WO2024040473A1 (zh) 2022-08-24 2022-08-24 一种轴承径向间隙检测机构

Country Status (1)

Country Link
WO (1) WO2024040473A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212432A (ja) * 2006-01-16 2007-08-23 Ntn Corp 残留ラジアル内部すきま調整ゲージ
CN206369518U (zh) * 2016-12-21 2017-08-01 张元良 一种用于自动化系统工程的平面间距检测装置
CN108592760A (zh) * 2018-08-14 2018-09-28 洛阳市通航电子设备有限公司 一种方便操作的轴承径向游隙测量仪
CN212227949U (zh) * 2020-05-13 2020-12-25 洛阳鑫凯轴承科技有限公司 一种精密轴承轴向游隙检测设备
CN114152174A (zh) * 2021-11-29 2022-03-08 六安滚动轴承有限公司 一种滚动轴承成品检测装置
CN216348214U (zh) * 2021-12-20 2022-04-19 江苏伟同如自动化设备有限公司 一种轴承旋转精度检测装置
CN114877788A (zh) * 2022-06-10 2022-08-09 中国航天标准化研究所 一种航天轴承径向间隙的检测装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212432A (ja) * 2006-01-16 2007-08-23 Ntn Corp 残留ラジアル内部すきま調整ゲージ
CN206369518U (zh) * 2016-12-21 2017-08-01 张元良 一种用于自动化系统工程的平面间距检测装置
CN108592760A (zh) * 2018-08-14 2018-09-28 洛阳市通航电子设备有限公司 一种方便操作的轴承径向游隙测量仪
CN212227949U (zh) * 2020-05-13 2020-12-25 洛阳鑫凯轴承科技有限公司 一种精密轴承轴向游隙检测设备
CN114152174A (zh) * 2021-11-29 2022-03-08 六安滚动轴承有限公司 一种滚动轴承成品检测装置
CN216348214U (zh) * 2021-12-20 2022-04-19 江苏伟同如自动化设备有限公司 一种轴承旋转精度检测装置
CN114877788A (zh) * 2022-06-10 2022-08-09 中国航天标准化研究所 一种航天轴承径向间隙的检测装置及方法

Similar Documents

Publication Publication Date Title
CN104132605B (zh) 一种用于转台框架同轴度检测的装置
CN101907441B (zh) 滚珠丝杠的激光螺距测量仪及其测量方法
CN202041165U (zh) 转向器螺杆螺纹滚道及轴承滚道同轴度专用检具
CN107514965A (zh) 一种曲轴主轴颈圆度及曲轴同轴度误差检测装置
CN109341486B (zh) 一种系统化沟道轴承内外圈测量装置及其测量方法
CN105135971A (zh) 双立柱支撑可移动式球芯综合误差检测装置
CN204115647U (zh) 同轴度检测装置
CN110160453A (zh) 一种轴承内外圈沟道测量机及其测量方法
CN109015108A (zh) 一种机床用零件找正装置
JPWO2014073367A1 (ja) バックラッシュ測定装置及びバックラッシュ測定方法
WO2024040473A1 (zh) 一种轴承径向间隙检测机构
CN209877932U (zh) 一种核反应柱组件安装测量工装
CN102564385B (zh) 滚珠丝杠副内循环螺母检测装置
CN104330007A (zh) 空心轴内孔径向跳动检具
CN207923067U (zh) 一种轴类零件检测装置
US1554646A (en) Gear-testing machine
CN205718771U (zh) 轴承外圈台阶高度检测量具
JP5035534B2 (ja) 転がり軸受のすきま測定方法
CN204165479U (zh) 轴内深孔径向跳动检具
CN104330259A (zh) 一种球轴承承受倾覆力矩载荷能力的检测装置
CN101135552A (zh) 大直径回转支承滚道直径测量杆比对装置
CN204594406U (zh) 一种环形工件校正装置
CN204988093U (zh) 内径杠杆百分表校正器
CN219064399U (zh) 一种车床旋转轴与刀架导轨平行度检测装器
CN103116149A (zh) 曲柄摇杆复合式俯仰角度调整磁场探头测试架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956022

Country of ref document: EP

Kind code of ref document: A1