WO2024037600A1 - 智能洗地机及洗地机控制方法 - Google Patents

智能洗地机及洗地机控制方法 Download PDF

Info

Publication number
WO2024037600A1
WO2024037600A1 PCT/CN2023/113609 CN2023113609W WO2024037600A1 WO 2024037600 A1 WO2024037600 A1 WO 2024037600A1 CN 2023113609 W CN2023113609 W CN 2023113609W WO 2024037600 A1 WO2024037600 A1 WO 2024037600A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative pressure
pressure source
preset
suction device
angle
Prior art date
Application number
PCT/CN2023/113609
Other languages
English (en)
French (fr)
Inventor
胡洪伟
杨博
常坚
Original Assignee
云鲸智能(深圳)有限公司
云鲸智能创新(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210989433.9A external-priority patent/CN117617836A/zh
Priority claimed from CN202310145839.3A external-priority patent/CN116236113A/zh
Application filed by 云鲸智能(深圳)有限公司, 云鲸智能创新(深圳)有限公司 filed Critical 云鲸智能(深圳)有限公司
Publication of WO2024037600A1 publication Critical patent/WO2024037600A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/29Floor-scrubbing machines characterised by means for taking-up dirty liquid
    • A47L11/30Floor-scrubbing machines characterised by means for taking-up dirty liquid by suction
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • This application relates to the technical field of floor washing machines, and in particular to an intelligent floor washing machine and a floor washing machine control method.
  • the floor scrubber is a cleaning machine suitable for cleaning hard floors while absorbing sewage and taking the sewage away from the site. It has the advantages of environmental protection, energy saving, and high efficiency. When cleaning low areas (under tables, sofas, coffee tables, bedside tables, beds and other furniture), existing floor washing machines often use the method of turning off the negative pressure source to clean in order to avoid water from the negative pressure source. This method will result in poor cleaning results.
  • the embodiment of the present application provides an intelligent floor washing machine and a floor washing machine control method, which can improve the cleaning effect of the floor washing machine when cleaning low areas.
  • Embodiments of the present application provide an intelligent floor washing machine, which includes a body, a chassis, a processor, a negative pressure source, and a sewage tank disposed on the body.
  • the negative pressure source is connected to the sewage tank for Provide a negative pressure source to pump sewage generated during the cleaning process into the sewage tank, and also include an angle detection device;
  • the fuselage is hingedly connected to the chassis, and the processor is provided on the fuselage or the chassis, wherein the fuselage can rotate around a first axis and a second axis respectively;
  • the angle detection device is disposed on the fuselage and/or the chassis, wherein the processor is electrically connected to the angle detection device and is used to obtain the angle detection device according to the detection signal of the angle detection device.
  • the negative pressure source is electrically connected to the processor, and the processor is also configured to based on the rotation angle Control the output power of the negative pressure source;
  • first axis and the second axis are perpendicular to each other.
  • the angle detection device includes a magnetic component and a Hall sensor
  • One of the magnetic member and the Hall sensor is disposed on the fuselage, and the other is disposed on the chassis, wherein the processor is electrically connected to the Hall sensor for use according to the The signal strength of the Hall sensor is used to obtain the rotation angle of the body around the first axis and/or the second axis.
  • the magnetic component includes a first magnetic component and a second magnetic component
  • the Hall sensor includes a first Hall sensor corresponding to the first magnetic component
  • at least one second Hall sensor corresponding to the second magnetic component the rotation angle includes the pitch angle of the fuselage rotating around the first axis and the torsion angle of rotating around the second axis;
  • One of the first magnetic component and the first Hall sensor is disposed on the body, and the other is disposed on the chassis, wherein the processor is electrically connected to the first Hall sensor. , used to obtain the torsion angle based on the first signal strength of the first Hall sensor;
  • One of the second magnetic component and the second Hall sensor is disposed on the body, and the other is disposed on the chassis, wherein the processor is electrically connected to the second Hall sensor. , used to obtain the pitch angle based on the second signal strength of the second Hall sensor.
  • the number of the second Hall sensors is two;
  • the two second Hall sensors are respectively provided on the chassis, and the second magnetic component is provided on the body.
  • the second magnetic component is a ring magnet
  • the included angle formed by a line connecting the two second Hall sensors and the center line of the ring magnet is greater than 0° and less than or equal to 98°.
  • the number of the second Hall sensors is two;
  • the two second Hall sensors are respectively provided on the body, and the second magnetic component is provided on the chassis.
  • the first magnetic component is provided on the chassis, And the first Hall sensor is arranged on the fuselage, wherein when the twist angle is 0°, the signal strength of the first Hall sensor is zero.
  • the first magnetic component is an arc magnet with an arc greater than or equal to 120°.
  • the first Hall sensor Opposite the middle position of the first magnetic piece.
  • the first magnetic component is provided on the body, and the first Hall sensor is provided on the chassis, wherein the twist angle is At 0°, the signal strength of the first Hall sensor is zero.
  • Embodiments of the present application also provide a floor washing machine control method, which method is applied to the intelligent floor washing machine described in any of the above embodiments.
  • the method includes:
  • the output power of the negative pressure source is controlled based on the rotation angle.
  • the acquisition of the detection signal of the angle detection device and the acquisition of the rotation angle of the body around the first axis and/or the second axis based on the detection signal include:
  • the controlling the output power of the negative pressure source based on the rotation angle includes:
  • the output power of the negative pressure source is controlled based on the pitch angle and the twist angle.
  • the method before controlling the output power of the negative pressure source based on the pitch angle and the twist angle, the method further includes:
  • the pitch angle is compared with a plurality of the preset pitch angle intervals to determine a target preset pitch angle interval including the pitch angle from the plurality of preset pitch angle intervals, and the twisted
  • the angle is compared with a plurality of the preset twist angle intervals to select from a plurality of the preset twist angle intervals. Determine a target preset torsion angle interval including the torsion angle in the angle interval;
  • the controlling the output power of the negative pressure source based on the pitch angle and the twist angle includes:
  • the output power of the negative pressure source is controlled based on the target preset pitch angle interval and the target preset twist angle interval.
  • controlling the output power of the negative pressure source based on the target preset pitch angle interval and the target preset twist angle interval includes:
  • the mapped output power is used as the output power of the negative pressure source.
  • the method further includes:
  • the output power of the negative pressure source is the mapped output power.
  • Embodiments of the present application also provide a floor washing machine control method, which method is applied to the intelligent floor washing machine described in any of the above embodiments.
  • the method includes:
  • target operating parameters of the negative pressure source are determined.
  • the motion state parameter includes at least one of the movement speed and movement acceleration of the intelligent floor washing machine.
  • the target operating parameters include the operating power of the negative pressure source
  • the operating power of the negative pressure source is negatively correlated with the movement speed; or,
  • the operating power of the negative pressure source is negatively correlated with the motion acceleration.
  • the negative pressure source of the intelligent floor washing machine includes a first suction device, and the first suction device is used to provide negative pressure to remove the intelligent floor washing machine.
  • the garbage on the surface to be cleaned by the floor machine is sucked into the sewage tank;
  • the target operating parameters of the negative pressure source are determined according to the motion state parameters, including:
  • the first target operating parameter is compared with the second target operating parameter, and the smaller value of the two is determined to be the target operating parameter of the first suction device.
  • the sewage tank includes a solid-liquid separation chamber and a sewage chamber
  • the negative pressure source of the intelligent floor washing machine includes a second suction device.
  • the suction device is connected to the sewage chamber, and the second suction device is used to increase the negative pressure of the sewage chamber so that the negative pressure of the sewage chamber is greater than the negative pressure of the solid-liquid separation chamber; according to the
  • the motion state parameters determine the target operating parameters of the negative pressure source, including:
  • the third target operating parameter is compared with the fourth target operating parameter, and the smaller value of the two is determined to be the target operating parameter of the second suction device.
  • the motion state parameters include at least one of the angle between the body and the ground, angular velocity, and angular acceleration.
  • the target operating parameters include the operating power of the negative pressure source
  • the operating power of the negative pressure source is positively related to the angle; and/or,
  • the operating power of the negative pressure source is inversely related to the angular velocity; and/or,
  • the operating power of the negative pressure source is inversely related to the angular acceleration.
  • the negative pressure source includes a first suction device, and the first suction device is used to provide negative pressure to clean the smart floor washing machine.
  • a seventh target operating parameter of the first suction device is determined according to the angular velocity and the seventh corresponding relationship between the preset angular velocity and the preset operating parameter of the negative pressure source.
  • determining the target operating parameters of the negative pressure source according to the motion state parameters includes more than two steps, then two steps are obtained according to the corresponding steps. More than two parameters are compared, and the smaller value is obtained as the target operating parameter of the first suction device;
  • the parameter is the fifth target operating parameter, the sixth target operating parameter or the seventh target operating parameter.
  • the sewage tank includes a solid-liquid separation chamber and a sewage chamber
  • the negative pressure source of the intelligent floor washing machine includes a second suction device.
  • the suction device is connected to the sewage chamber, and the second suction device is used to increase the negative pressure of the sewage chamber so that the negative pressure of the sewage chamber is greater than the negative pressure of the solid-liquid separation chamber; according to the The motion state parameters determine the target operating parameters of the negative pressure source, including at least one of the following steps:
  • the tenth target operating parameter of the second suction device is determined based on the angular velocity and the tenth corresponding relationship between the preset angular velocity and the preset operating parameter of the negative pressure source.
  • determining the target operating parameters of the negative pressure source according to the motion state parameters includes more than two steps, then two steps are obtained according to the corresponding steps. More than two parameters are compared, and the smaller value is obtained as the target operating parameter of the second suction device;
  • the parameter is the eighth target operating parameter, the ninth target operating parameter or the tenth target operating parameter.
  • the method further includes:
  • the operating parameters include operating power; and the target operating parameters of the negative pressure source are determined based on the motion state parameters and the first water level information, include:
  • the first preset water level value is greater than the second preset water level value.
  • the method includes:
  • the smart floor washing machine operates in the first mode
  • the intelligent floor washing machine operates in the set mode.
  • the sewage tank includes a solid-liquid separation chamber and a sewage chamber
  • the negative pressure source of the intelligent floor washing machine includes a second suction device.
  • the suction device is connected to the sewage chamber, and the second suction device is used to increase the negative pressure of the sewage chamber so that the negative pressure of the sewage chamber is greater than the negative pressure of the solid-liquid separation chamber;
  • the operating parameters include operating power
  • the motion state includes the angle between the body and the ground
  • the motion state parameters and the The second water level information determines the target operating parameters of the negative pressure source, including:
  • the third preset water level value is greater than the fourth preset water level value.
  • control method further includes:
  • the operating status of the negative pressure source is determined based on the water detection information of the air extraction channel of the negative pressure source.
  • the water detection information includes a water state and a water-free state
  • the operating state includes on and off.
  • the sewage tank includes a solid-liquid separation chamber and a sewage chamber
  • the negative pressure source includes a second suction device
  • the second suction device is used to increase Increase the negative pressure of the sewage chamber so that the negative pressure of the sewage chamber is greater than the negative pressure of the solid-liquid separation chamber; determine the negative pressure source based on the water detection information of the air extraction channel of the negative pressure source operating status, including:
  • the second suction device is controlled to be turned on.
  • the negative pressure source also includes a first suction device, and the first suction device is used to provide negative pressure to clean the smart floor washing machine to be cleaned.
  • the garbage on the clean floor is sucked into the sewage tank; if the water detection information is the water state, after the step of controlling the negative pressure source to close, it also includes:
  • the second suction device In response to the water detection information changing from the water-present state to the water-free state after a preset time, the second suction device is turned on.
  • the negative pressure source includes a first suction device, and the first suction device is connected to the sewage tank; the negative pressure source according to the The water detection information of the air extraction channel determines the operating status of the negative pressure source, including:
  • the first suction device is controlled to be turned on.
  • the intelligent floor washing machine adds an angle detection device and electrically connects the angle detection device to the processor of the intelligent floor washing machine.
  • the angle detection device obtains the first rotation angle of the body of the intelligent floor washing machine. Angle of rotation for axis and/or secondary axis rotation. That is, when the fuselage rotates around the first axis and/or the second axis, the detection signal of the angle detection device will change. At this time, the detection signal of the angle detection device is collected by the processor, and then the detection signal of the fuselage is obtained based on the detection signal. The angle of rotation of the first axis and/or the second axis. Finally, the output power of the negative pressure source is controlled based on the rotation angle. Therefore, when the floor washing machine cleans low areas, there is no need to turn off the negative pressure source for cleaning. The output power of the negative pressure source can be adjusted according to the rotation angle, which can avoid water leakage. Enter the negative pressure source and improve the cleaning effect.
  • Figure 1 is a first structural schematic diagram of an intelligent floor washing machine provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a smart floor washing machine body that can rotate around a first axis according to an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a smart floor washing machine body that can rotate around a second axis according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the relative installation positions of the two second Hall sensors and the second magnetic component provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of the relative installation positions of the first Hall sensor and the first magnetic component provided by the embodiment of the present application.
  • Figure 6 is a second structural schematic diagram of the intelligent floor washing machine provided by the embodiment of the present application.
  • Figure 7 is a schematic flow chart of a floor washing machine control method provided by an embodiment of the present application.
  • Figure 8 is a mapping output power diagram corresponding to the target preset pitch angle interval and the target preset twist angle interval provided by the embodiment of the present application.
  • Figure 9 is a schematic structural diagram of the sewage tank provided by the embodiment of the present application in the first scenario.
  • Figure 10 is a schematic structural diagram of the sewage tank provided by the embodiment of the present application in the second scenario.
  • Figure 11 is a schematic structural diagram of the sewage tank provided by the embodiment of the present application in the third scenario.
  • Figure 12 is a schematic flow chart of another floor washing machine control method provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a floor washing machine provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a storage medium provided by this application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of the described features.
  • “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be mechanical connection, electrical connection or mutual communication; it can be direct connection, or indirect connection through an intermediary, it can be internal connection of two elements or interaction of two elements relation.
  • the term “above” or “below” a first feature to a second feature may include direct contact between the first and second features, or may also include the first and second features. Not in direct contact but through additional characteristic contact between them.
  • the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
  • “Below”, “below” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the smart floor washing machine 1000 includes a body 10, a chassis 20, a processor (not marked in the figure), an angle detection device 30, a sewage suction channel 40 and a sewage tank 50 provided on the body 10.
  • Pressure source 60 is connected to the sewage tank 50 and is used to provide the negative pressure source 60 to pump the sewage generated during the cleaning process into the sewage tank 50.
  • the negative pressure source 60 is a fan.
  • the smart floor scrubber 1000 also includes an angle detection device 30 .
  • the fuselage 10 is hingedly connected to the chassis 20, and the processor is disposed on the fuselage 10 or the chassis 20, wherein the fuselage 10 can rotate around the first axis and the second axis respectively.
  • the hinged structure of the fuselage 10 and the chassis 20 includes a rotating shaft, the axis of the rotating shaft is the first axis, and the fuselage 10 can rotate around the rotating axis, that is, the fuselage 10 can rotate around the first axis. Line rotation.
  • the smart floor scrubber 1000 includes a handle assembly 40.
  • the handle assembly 40 includes a handle 401 and a connecting rod 402. One end of the connecting rod 402 is connected to the handle 401 and the other end is connected to the body 10.
  • the axis of the connecting rod 402 is the second axis.
  • the second axis is the position of the connection line between the handle 401 and the first axis, and the connection line is perpendicular to the axis of the rotating shaft.
  • the fuselage 10 can rotate relative to the chassis 20 about the second axis.
  • the angle detection device 30 is disposed on the fuselage 10 and/or the chassis 20 , wherein the processor is electrically connected to the angle detection device 30 and is used to obtain the fuselage 10 around the first axis and/or according to the detection signal of the angle detection device 30 . Or the rotation angle of the second axis rotation.
  • the detection signal of the angle detection device 30 will change.
  • the processor will change according to the angle detection device 30 .
  • the signal is detected to obtain the rotation angle of the fuselage 10 around the first axis and/or the second axis.
  • the negative pressure source 60 is electrically connected to the processor, and the processor is also used to control the output power of the negative pressure source 60 based on the rotation angle.
  • the processor will control the output power of the negative pressure source 60 based on the rotation angle.
  • the processor controls the output power of the negative pressure source 60 based on the rotation angle, the output power of the negative pressure source 60 is related to the rotation angle, and the output power of the negative pressure source 60 is not zero.
  • the angle detection device 30 includes a magnetic component 301 and a Hall sensor 302; one of the magnetic component 301 and the Hall sensor 302 is disposed on the fuselage 10, and the other is disposed on the chassis 20, wherein the processor and The Hall sensor 302 is electrically connected and used to obtain the rotation angle of the body 10 around the first axis and/or the second axis according to the signal strength of the Hall sensor 302 .
  • the magnetic component 301 may be disposed on the fuselage 10 and the Hall sensor 302 is disposed on the chassis 20; or the magnetic component 301 may be disposed on the chassis 20 and the Hall sensor 302 may be disposed on the fuselage 10.
  • the signal strength of the Hall sensor 302 will change.
  • the processor will change according to the signal intensity of the Hall sensor 302 .
  • the signal strength is used to obtain the rotation of the fuselage 10 around the first axis and/or the second axis. angle.
  • the magnetic component 301 includes a first magnetic component 3011 and a second magnetic component 3012
  • the Hall sensor 302 includes a first Hall sensor 3021 corresponding to the first magnetic component 3011
  • the rotation angle includes the pitch angle of the body 10 rotating around the first axis and the torsion angle of rotating around the second axis.
  • the fuselage 10 rotates around the first axis, if the pitch angle decreases, the water surface of the sewage in the sewage tank 50 will be close to the air outlet of the negative pressure source 60. At this time, if the output power of the negative pressure source 60 is too high, This will cause sewage to enter the inside of the negative pressure source 60 . Therefore, at this time, the output power of the negative pressure source 60 should be reduced to prevent the sewage in the sewage tank 50 from entering the negative pressure source 60 .
  • the sewage tank 50 may include a solid-liquid separation chamber 51 and a sewage chamber 52 that are interconnected through through holes or pipes.
  • the solid-liquid separation chamber 51 can be used to separate solid garbage and liquid garbage, and the liquid garbage flows to the sewage chamber 52 .
  • the twist angle of the fuselage 10 is zero, the sewage in the solid separation chamber 51 will gather at the drain outlet and enter the sewage chamber 52 through the drain outlet.
  • the drain outlet will rotate with the fuselage 10, and the drain outlet will be lowered.
  • the position of the nozzle becomes higher, higher than the place where sewage accumulates.
  • the sewage is not easy to enter the sewage chamber 52 from the sewer outlet, and thus collects in the solid-liquid separation chamber 51 .
  • the sewage in the solid-state separation chamber 51 is close to the air outlet of the negative pressure source. At this time, if the output power of the negative pressure source is too high, the sewage will enter the negative pressure source 60, so that the output power of the negative pressure source 60 can be reduced. , reducing the probability of water intrusion into the negative pressure source 60.
  • the fuselage 10 rotates around the second axis, if the twisting angle increases, sewage will accumulate in the solid-liquid separation chamber 51 , and the larger the twisting angle, the more sewage will accumulate in the solid-liquid separation chamber 51 . The more sewage accumulated in the solid separation chamber 51 , the closer the sewage water surface will be to the negative pressure source 60 .
  • the output power of the negative pressure source 60 should be appropriately reduced to prevent the sewage in the solid separation chamber 51 from entering the negative pressure source 60 .
  • the pitch angle is 0°.
  • the pitch angle gradually increases.
  • One of the first magnetic component 3011 and the first Hall sensor 3021 is disposed on the fuselage 10 and the other is disposed on the chassis 20 , wherein the processor is electrically connected to the first Hall sensor 3021 for performing processing based on the first Hall sensor 3021 .
  • the first signal strength of Er sensor 3021 acquires the torsion angle.
  • the first magnetic component 3011 may be provided on the body 10, and the first Hall sensor 3021 may be provided On the chassis 20 , or the first magnetic component 3011 is disposed on the chassis 20 , and the first Hall sensor 3021 is disposed on the fuselage 10 .
  • One of the second magnetic component 3012 and the second Hall sensor 3022 is disposed on the fuselage 10 and the other is disposed on the chassis 20 , wherein the processor is electrically connected to the second Hall sensor 3022 for detecting the second magnetic component 3012 based on the second Hall sensor 3022 .
  • the second signal strength of the Er sensor 3022 acquires the pitch angle.
  • the second magnetic component 3012 may be disposed on the fuselage 10 and the second Hall sensor 3022 may be disposed on the chassis 20, or the second magnetic component 3012 may be disposed on the chassis 20 and the second Hall sensor 3022 may be disposed on the fuselage 10.
  • the number of second Hall sensors 3022 is two, the two second Hall sensors 3022 are respectively disposed on the chassis 20 , and the second magnetic component 3012 is disposed on the fuselage 10 .
  • the magnetic field of the Hall sensor 3022 changes as its relative position to the second magnetic component 3012 changes.
  • the number of the second Hall sensors 3022 is two.
  • the relative positions of the two Hall sensors 3022 and the second magnetic member 3012 will change.
  • the second signal strengths of the two Hall sensors 3022 also change accordingly.
  • the two Hall sensors 3022 circle around the second magnetic component 3012, the two Hall sensors 3022 and the second magnetic component 3012 have different relative positions, and the two signals generated by the two Hall sensors 3022 are not repeated.
  • the torsion angle of the fuselage 10 can be identified more accurately.
  • the pitch angle of the body 10 rotating around the first axis can be calculated based on the second signal strengths of the two Hall sensors 3022 .
  • the second magnetic component 3012 is a ring magnet, and the included angle formed by a line connecting the two second Hall sensors 3022 and the center line of the ring magnet is greater than 0° and less than or equal to 98°.
  • the included angle formed by the line connecting the two second Hall sensors 3022 and the center line of the ring magnet is 90°.
  • the number of second Hall sensors 3022 is two, the two second Hall sensors 3022 are respectively disposed on the body 10 , and the second magnetic component 3012 is disposed on the chassis 20 .
  • the first magnetic component 3011 is disposed on the chassis 20
  • the first Hall sensor 3021 is disposed on the fuselage 10 .
  • the signal strength of the first Hall sensor 3021 is zero.
  • the first magnetic component 3011 is disposed on the chassis 20 and the first Hall sensor 3021 is disposed on the fuselage 10, then when the fuselage 10 rotates around the first axis relative to the chassis 20, the first Hall sensor 3021 will follow.
  • the body 10 rotates together, and the distance from the first magnetic part 3011 remains unchanged.
  • the processor can calculate the first rotation angle of the fuselage 10 based on the signal strength. The rotation angle of the axis relative to the chassis 20.
  • the first magnetic component 3011 is an arc-shaped magnet with an arc greater than or equal to 120°, wherein when the twist angle is 0°, the first Hall sensor 3021 faces the middle position of the first magnetic component 3011.
  • the first magnetic component 3011 is an arc magnet.
  • the twist angle is 0°
  • the first Hall sensor 3021 faces the middle position of the arc magnet.
  • the left and right rotations of the fuselage 10 around the second axis are structurally symmetrical.
  • the rear twist angle does not distinguish the left and right rotations, and the same numerical value represents the symmetrical position in the two directions.
  • the first magnetic component 3011 is disposed on the fuselage 10, and the first Hall sensor 3021 is disposed on the chassis 20.
  • the twist angle is 0°, the signal strength of the first Hall sensor 3021 is zero.
  • the first magnetic component 3011 is disposed on the fuselage 10 and the first Hall sensor 3021 is disposed on the chassis 20, then when the fuselage 10 rotates around the first axis relative to the chassis 20, the first magnetic component 3011 will follow the movement. The body 10 rotates together, and the distance from the first Hall sensor 3021 remains unchanged.
  • the first magnetic component 3011 rotates with the body 10
  • the first signal intensity of the first Hall sensor 3021 will change linearly with the torsion angle of the body, and the processor can calculate the machine based on the first signal intensity.
  • the intelligent floor washing machine 1000 provided by the embodiment of the present application adds an angle detection device. 30, and electrically connect the angle detection device 30 to the processor of the smart floor washing machine 1000, and obtain the rotation of the body 10 of the smart floor washing machine 1000 around the first axis and/or the second axis through the angle detection device 30. angle. That is, when the body 10 rotates around the first axis and/or the second axis, the detection signal of the angle detection device 30 will change. At this time, the detection signal of the angle detection device 30 is collected by the processor, and then the detection signal is obtained based on the detection signal.
  • the rotation angle of the fuselage 10 around the first axis and/or the second axis is finally used to control the output power of the negative pressure source 60 based on the rotation angle. Therefore, when the floor washing machine cleans a low area, it is not necessary to turn off the negative pressure source 60 for cleaning. It only needs to adjust the output power of the negative pressure source according to the rotation angle, which greatly improves the cleaning effect.
  • An embodiment of the present application also provides a floor washing machine control method, which method is applied to the intelligent floor washing machine described in any of the above embodiments.
  • FIG. 7 is a schematic flow chart of a floor washing machine control method provided by an embodiment of the present application.
  • the method may include the following steps:
  • Step 101 Obtain the detection signal of the angle detection device, and obtain the rotation angle of the body around the first axis and/or the second axis based on the detection signal.
  • first axis and the second axis are perpendicular to each other.
  • Step 102 Control the output power of the negative pressure source based on the rotation angle.
  • obtaining the detection signal of the angle detection device and obtaining the rotation angle of the body around the first axis and/or the second axis based on the detection signal includes:
  • the controlling the output power of the negative pressure source based on the rotation angle includes:
  • the output power of the negative pressure source is controlled based on the pitch angle and the twist angle.
  • the output of the negative pressure source is controlled based on the pitch angle and the torsion angle. Before power output, it also includes:
  • the pitch angle is compared with a plurality of the preset pitch angle intervals to determine a target preset pitch angle interval including the pitch angle from the plurality of preset pitch angle intervals, and the twisted
  • the angle is compared with a plurality of the preset twist angle intervals to determine a target preset twist angle interval including the torsion angle from the plurality of preset twist angle intervals;
  • the controlling the output power of the negative pressure source based on the pitch angle and the twist angle includes:
  • the output power of the negative pressure source is controlled based on the target preset pitch angle interval and the target preset twist angle interval.
  • the target preset includes that pitch angle (15°).
  • the pitch angle range is 5° ⁇ 20°.
  • controlling the output power of the negative pressure source based on the target preset pitch angle interval and the target preset twist angle interval includes:
  • the mapped output power is used as the output power of the negative pressure source.
  • Pitch is the target preset pitch angle
  • Roll is the target preset twist angle
  • Pitch ⁇ 5° means the target preset pitch angle range is 0° ⁇ 5°
  • Roll ⁇ 10° means the target preset twist angle range is 0° ⁇ 10°.
  • the mapping output power corresponding to the target preset pitch angle range 0° ⁇ 5° and the target preset rotation angle range 0° ⁇ 10° is 15 watts.
  • the method further includes:
  • the output power of the negative pressure source is the mapped output power.
  • a time delay strategy is added. That is, only when the residence time of the fuselage in the target preset pitch angle range and the target preset twist angle range is greater than the preset time, the output power of the negative pressure source is adjusted to the mapped output power, otherwise the original output power remains unchanged.
  • the negative pressure source 30 may also include a first suction device 31.
  • the first suction device 31 is used to provide negative pressure to clean the garbage on the floor to be cleaned by the smart floor scrubber 1000. Pump to waste water tank 50.
  • the negative pressure source 60 may also include a second suction device 62 , which is used to provide negative pressure for the sewage chamber 52 to separate the liquid waste from the solid-liquid separation chamber 51 to the sewage chamber 52 as quickly as possible.
  • the second suction device 62 provides negative pressure for the sewage chamber 52 to prevent the liquid garbage in the sewage chamber 52 from flowing back to the solid-liquid separation chamber 51 as much as possible.
  • the second suction device 62 is used to increase the negative pressure 52 of the sewage chamber, so that the negative pressure of the sewage chamber 52 is greater than the negative pressure of the solid-liquid separation chamber 51 .
  • the solid-liquid separation chamber 51 and the sewage chamber 52 are relatively independent. This arrangement can accommodate the liquid garbage in the sewage chamber 52 so that there is a certain distance between the liquid garbage and the first suction device 61 to prevent the liquid garbage from being sucked by the first suction device as much as possible.
  • Device 61 inhales.
  • the first suction device 61 in order to provide negative pressure to suck the garbage on the ground to be cleaned by the smart floor washer 1000 to the sewage tank 50, the first suction device 61 usually needs to operate at a larger power. Furthermore, in order to quickly The liquid garbage is separated from the solid-liquid separation chamber 51 to the sewage chamber 52, and the second suction device 62 usually also needs to operate with greater power.
  • some of the floors to be cleaned are at the bottom of furniture such as tables, beds or sofas.
  • the space at the bottom of furniture such as tables, beds or sofas is relatively low, and the fuselage needs to be tilted close to the ground to allow the chassis to enter these low spaces.
  • the angle between the body of the floor washing machine and the ground needs to be small so that the chassis can enter the bottom of the furniture such as tables, beds or sofas and roll the floor. Brush the floor that needs to be cleaned.
  • the water in the sewage tank on the body will move closer to the negative pressure source as the angle between the body of the floor washer and the ground becomes smaller. That is, the water in the sewage tank is getting closer to the negative pressure source, which can be a fan.
  • the negative pressure source operates at a larger power and will suck in the water near the negative pressure source.
  • Possible consequences after the negative pressure source inhales water include at least one of the following: sewage stinking in the negative pressure source, sewage being thrown to a clean ground through the negative pressure source or blown onto the user, or the negative pressure source failing due to sewage. Negative pressure source failure includes damage, short circuit, shutdown, etc.
  • the sewage tank of the floor washing machine includes a solid-liquid separation chamber and a sewage chamber, and the sewage chamber can be arranged on the chassis.
  • the negative pressure source includes a second suction device.
  • the sewage chamber is connected to the second suction device.
  • the second suction device is used to increase the negative pressure of the sewage chamber.
  • the beneficial effects of increasing the negative pressure of the sewage chamber include speeding up the solid-liquid separation chamber.
  • the separation of liquid garbage in the solid-liquid separation chamber can speed up the speed of the liquid garbage in the solid-liquid separation chamber into the sewage chamber, and can prevent the liquid garbage in the sewage chamber from flowing back to the solid-liquid separation chamber.
  • the second suction device increases the negative pressure of the sewage chamber so that the negative pressure of the sewage chamber is greater than the negative pressure of the solid-liquid separation chamber.
  • the user when using the smart floor washing machine 1000, the user will drive the body 10 to rotate around the rotational connection with the chassis 20, and the machine will rotate.
  • the body 10 gradually gets closer to the ground.
  • the liquid garbage in the sewage tank 50 gradually approaches the first suction device 61.
  • the fuselage 10 rotates to a certain angle with the ground, the liquid garbage in the sewage tank 50 is easily sucked by the first suction device 61 operating at a higher power.
  • the liquid waste may be sucked into the first suction device 61 , causing the first suction device 61 to malfunction, the liquid waste to stink in the first suction device 61 , and the liquid waste to be removed by the first suction device 61 . Throw it onto a clean floor or blow onto the user.
  • the sewage may be The water in the tank 50 rises to the vicinity of the negative pressure source 60 and is sucked into the negative pressure source 60 by the negative pressure source 60 operating at a larger power. As a result, the negative pressure source 60 may fail and the sewage may be in the negative pressure source 60. Stinky inside.
  • the embodiment of the present application adjusts the operating parameters of the negative pressure source 60 in several scenarios where the liquid in the sewage tank 50 is close to the negative pressure source 60, thereby reducing the negative pressure of the liquid garbage in the sewage tank 50. Possibility of source 60. It should be noted that while the present application reduces the operating parameters of the negative pressure source 60 so that the negative pressure source 60 does not inhale liquid waste, the function of the negative pressure source 60 of the present application is not lost. For example, when the negative pressure source 60 includes the first suction device 61, the operating power of the first suction device 61 is determined to be reduced according to the motion state parameters of the smart floor washing machine 1000. At this time, the operating power of the first suction device 61 is reduced.
  • the power of the first suction device 61 can still suck the garbage on the surface to be cleaned by the smart floor scrubber 1000 to the sewage tank 50 .
  • the negative pressure source 60 includes the second suction device 32
  • the operating power of the second suction device 62 is determined to be reduced according to the motion state parameters of the intelligent floor washing machine 1000. At this time, the operation of the second suction device 62 The power is reduced, but the power of the second suction device 62 can still increase the negative pressure of the sewage chamber 52 .
  • Figure 9 is a schematic structural diagram of the sewage tank in the first scenario provided by the embodiment of the present application
  • Figure 10 is a schematic structural diagram of the sewage tank provided by the embodiment of the present application.
  • a schematic structural diagram of the sewage tank provided in the second scenario is provided
  • Figure 11 is a schematic structural diagram of the sewage tank provided in the third scenario according to the embodiment of the present application.
  • the first scenario when the smart floor washing machine 1000 is upright and does not shake violently, the water level in the sewage tank 50 will generally not suddenly rise close to the first suction device 61 and the second suction device.
  • the distance between the water and the negative pressure source 60 is safe, and the negative pressure source 60 will not suck water.
  • the sewage tank 50 of the smart floor washing machine 1000 is rotated from the upright state as shown in Figure 2 to the lying flat state as shown in Figure 3, it gradually tilts, or lies flat in the second scene as shown in Figure 10, or as shown in Figure 10
  • the negative pressure source 60 is still running at a large operating power, the liquid close to the negative pressure source 60 is likely to be sucked into the negative pressure source by a large suction force. 60, resulting in failure of the negative pressure source 60 and other situations. Therefore, it is necessary to propose a control method for an intelligent floor washing machine to avoid water inhalation by the negative pressure source 60 as much as possible.
  • FIG 12 is a schematic flow chart of another floor washing machine control method provided by an embodiment of the present application.
  • the floor washing machine control method includes steps S201 to S202.
  • this floor washing machine control method can be applied to the above-mentioned intelligent floor washing machine. To avoid repetition, it will not be described in detail later.
  • Step S201 Obtain the motion status parameters of the intelligent floor washing machine.
  • Step S202 Determine the target operating parameters of the negative pressure source according to the motion state parameters.
  • the movement state parameters of the intelligent floor washing machine can be obtained, and then the target operating parameters of the negative pressure source can be determined based on the movement state parameters of the intelligent floor washing machine, so that the negative pressure source can operate according to the target operating parameters. , Reduce the risk of liquid waste being inhaled by the negative pressure source.
  • this application does not limit the motion state parameters of the above-mentioned smart floor washing machine.
  • they can be the angle between the fuselage and the ground, the angular acceleration of the fuselage, the angular velocity of the fuselage, the movement speed of the smart floor washing machine, At least one of the motion acceleration of the smart floor scrubber, etc.
  • the above target operating parameters may be operating power, operating speed, operating status, etc., which are not limited in this application.
  • the angle between the fuselage and the ground can be detected by an angle sensor
  • the angular acceleration can be detected by an angular accelerometer
  • the angular velocity of the fuselage rotation can be detected by an angular velocity sensor.
  • Intelligent floor scrubbing The movement speed of the machine can be detected by the speed sensor, and the movement acceleration of the intelligent floor washing machine can be detected by the acceleration sensor.
  • the floor washing machine control method proposed in this application can determine the operating parameters of the negative pressure source based on the motion status parameters of the intelligent floor washing machine, so that the negative pressure source can operate according to the operating parameters, reducing the water inflow when the negative pressure source is used. Risks, and thus try to avoid problems such as failure and odor caused by water ingress when the negative pressure source is in use.
  • the motion state parameters include at least one of motion speed and motion acceleration of the intelligent floor washing machine; the target operating parameters include the operating power of the negative pressure source.
  • the operating power of the negative pressure source is negatively related to the movement speed or movement acceleration. That is to say, the greater the movement speed or movement acceleration of the intelligent floor washing machine, the lower the operating power of the negative pressure source, and vice versa.
  • the negative pressure source is to provide negative pressure to suck the garbage on the ground to be cleaned by the intelligent floor washing machine to the sewage tank, and/or to increase the negative pressure of the sewage chamber to increase the negative pressure of the sewage chamber.
  • the negative pressure source usually needs to operate at a larger power.
  • the movement speed or movement acceleration of the intelligent floor washing machine is large, the intelligent floor washing machine shakes more strongly. Therefore, if the negative pressure source is still running at a large operating power, the liquid close to the negative pressure source is likely to be sucked into the negative pressure source by a large suction force, resulting in failure of the negative pressure source and odor.
  • the negative pressure source of the intelligent floor washing machine includes a first suction device, and the first suction device is used to provide negative pressure to suck the garbage on the surface to be cleaned by the intelligent floor washing machine to the sewage tank.
  • the garbage may be dirt, including sewage, solid garbage, and solid-liquid mixed garbage.
  • the first suction device and the sewage tank can both be arranged on the body of the intelligent floor washing machine.
  • the first target operating parameter of the first suction device is determined, and the first target operating parameter is the target of the first suction device Operating parameters.
  • the above-mentioned first correspondence is a correspondence between the preset motion acceleration and the preset operating parameters of the first suction device.
  • it can be expressed as a correspondence table between the motion acceleration range and the operating parameters, or it can also be expressed as a motion
  • the fitting function relationship curve between acceleration and operating parameters is not limited in this application.
  • this application does not limit the specific values corresponding to the preset motion acceleration and the preset operating parameters of the first suction device, and can be set by yourself according to the actual situation.
  • the operating parameters of the first suction device can be determined based on the motion acceleration and the corresponding relationship between the preset motion acceleration and the preset operating parameters.
  • the first suction device in order to provide negative pressure to suck the garbage on the floor to be cleaned by the smart floor washing machine to the sewage tank, the first suction device usually needs to operate at a larger power.
  • the greater the movement acceleration of the intelligent floor washing machine the faster the speed of the intelligent floor washing machine changes, and the stronger the shaking of the intelligent floor washing machine is at this time.
  • the first suction device is still running at a large operating power, the liquid close to the first suction device is likely to be sucked into the negative pressure source by a large suction force, causing the first suction device to fail. , smelly situation.
  • the target operating parameters of the first suction device may be determined based on the motion acceleration and the corresponding relationship between the preset motion acceleration and the preset operating parameters. In this way, the risk of liquid garbage coming into contact with the first suction device due to increased movement acceleration of the first suction device can be reduced, and problems such as failure and odor caused by water intrusion of the first suction device can be prevented as much as possible.
  • the target operation of the negative pressure source is determined based on the motion state parameters.
  • the steps for row parameters can include:
  • the second target operating parameter of the first suction device is determined, and the second target operating parameter is the target of the first suction device Operating parameters.
  • the above-mentioned second corresponding relationship is a corresponding relationship between the preset movement speed and the preset operating parameters of the first suction device.
  • it can be expressed as a correspondence table between the movement speed range and the operating parameters of the first suction device.
  • this application does not limit the specific values corresponding to the preset movement speed and the preset operating parameters of the first suction device, and the user can set it according to the actual situation.
  • the operating parameters of the first suction device can be determined according to the movement speed and the correspondence between the preset movement speed and the preset operating parameters. In this way, the risk of liquid garbage splashing and contacting the first suction device due to the increased movement speed of the first suction device can be reduced, and problems such as failure and odor caused by water intrusion in the first suction device can be prevented as much as possible. .
  • the above-mentioned step of determining the target operating parameters of the negative pressure source according to the motion state parameters may include:
  • the second corresponding relationship between the parameters determines the second target operating parameter of the first suction device; the first target operating parameter is compared with the second target operating parameter, and the smaller value of the two is determined to be the first suction device.
  • Target operating parameters of the device
  • the first target operating parameters of the intelligent floor washing machine can be obtained according to the first corresponding relationship
  • the second target operating parameters of the intelligent floor washing machine can be obtained according to the second corresponding relationship.
  • the smaller value of the two is determined to be the target operating parameter of the first suction device.
  • the sewage tank includes a solid-liquid separation chamber and a sewage chamber.
  • the negative pressure source includes a second suction device.
  • the second suction device is connected to the sewage chamber.
  • the second suction device is used to increase the negative pressure of the sewage chamber so that the negative pressure of the sewage chamber is greater than the solid-liquid separation.
  • the negative pressure in the chamber can speed up the flow of liquid in the solid-liquid separation chamber into the sewage chamber and prevent the liquid waste in the sewage chamber from flowing back to the solid-liquid separation chamber.
  • the sewage tank can be arranged on the fuselage, and correspondingly, the second suction device is arranged on the fuselage; the sewage tank can also be arranged on the chassis, and correspondingly, the second suction device is arranged on the fuselage.
  • the above-mentioned steps of determining the target operating parameters of the negative pressure source based on the motion state parameters may include:
  • the third target operating parameter of the second suction device is determined, and the third target operating parameter is the target of the second suction device Operating parameters.
  • the above-mentioned third corresponding relationship is a corresponding relationship between the preset motion acceleration and the preset operating parameters of the second suction device.
  • it can be expressed as a corresponding relationship table between the motion acceleration range and the operating parameters of the second suction device.
  • this application does not limit the specific values corresponding to the preset motion acceleration and the preset operating parameters of the second suction device.
  • the preset operating parameters of the second suction device can also be expressed as operating states.
  • the operating state includes open state, closed state, normally open state or intermittent closed state, etc.
  • the decrease in the value of the preset operating parameter of the second suction device can correspond to its open state, normally open state, intermittent closed state and closed state in sequence.
  • the operating state corresponding to the second suction device may be an intermittent closed state; when the motion acceleration is less than 5m/ s2 , the operating state corresponding to the second suction device
  • the running state can be normally open.
  • the target operating parameters of the second suction device can be determined based on the motion acceleration and the corresponding relationship between the preset motion acceleration and the preset operating parameters.
  • the operating parameters of the second suction device can be determined based on the motion acceleration and the correspondence between the preset motion acceleration and the preset operating parameters. In this way, the splashing of liquid garbage caused by the increase in motion acceleration of the second suction device can be reduced, thereby reducing the risk of the second suction device inhaling liquid garbage, and preventing the second suction device from water ingress, which may cause failure, odor, etc. .
  • the above-mentioned step of determining the target operating parameters of the negative pressure source according to the motion state parameters may include:
  • the fourth target operating parameters of the second suction device are determined according to the movement speed and the fourth corresponding relationship between the preset movement speed and the preset operating parameters.
  • the above-mentioned fourth corresponding relationship is the corresponding relationship between the preset movement speed and the preset operating parameters of the second suction device.
  • it can be expressed as a correspondence table between the movement speed and the operating parameters, or it can be expressed as a table showing the movement speed.
  • the fitting function relationship curve with the operating parameters is not limited by this application.
  • the preset operating parameters of the second suction device can also be expressed as operating states. To avoid repetition, they will not be described again here.
  • the operating state corresponding to the second suction device may be an intermittent closed state; when the movement acceleration is less than 0.5m/s, the operating state corresponding to the second suction device
  • the running state can be normally open.
  • the larger speed of the smart floor washer will cause the liquid garbage in the sewage tank to splash, so that the liquid garbage will be close to the second suction device.
  • the operating power of the second suction device is high, liquid garbage is easily sucked into the second suction device, causing problems such as the failure of the second suction device and the smell of liquid garbage in the second suction device.
  • the target operating parameters of the second suction device can be determined according to the movement speed and the correspondence between the preset movement speed and the preset operating parameters.
  • the second suction device When liquid garbage splashes, the second suction device operates at the target operating parameters, so that the second suction device does not suck in the splashed liquid garbage as much as possible, thus reducing the risk of water intrusion in the second suction device when in use. .
  • the above-mentioned step of determining the target operating parameters of the negative pressure source according to the motion state parameters may include:
  • the fourth corresponding relationship between the parameters determines the fourth target operating parameter of the second suction device; the third target operating parameter is compared with the fourth target operating parameter, and the smaller value of the two is determined to be the second suction device.
  • Target operating parameters of the device
  • the above-mentioned third corresponding relationship is the corresponding relationship between the preset movement acceleration and the preset operating parameters of the second suction device; the above-mentioned fourth corresponding relationship is the preset movement speed and the preset operation of the second suction device.
  • the preset operating parameters of the second suction device can also be expressed as operating states. To avoid duplication, they will not be described again here.
  • this application does not limit the specific numerical values of the above-mentioned third correspondence relationship and the above-mentioned fourth correspondence relationship.
  • the motion acceleration is greater than or equal to 5m/ s2 or the motion speed is greater than or equal to 0.5m/s
  • corresponding to the third correspondence relationship is
  • the operating state of the second suction device can be an intermittent closed state; when the movement acceleration is less than 5m/ s2 and the movement acceleration is less than 0.5m/s, the corresponding operating state of the second suction device can be a normally open state.
  • the third target operating parameter of the second suction device can be obtained according to the third corresponding relationship
  • the fourth target operating parameter of the second suction device can be obtained according to the fourth corresponding relationship.
  • the third target operating parameter is compared with the fourth target operating parameter, and the smaller value of the two is determined to be the target operating parameter of the second suction device.
  • the negative pressure source can also include a first suction device and a second suction device at the same time.
  • the floor washing machine control method proposed in this application can simultaneously control the first suction device and the second suction device.
  • Two suction devices are used to implement the embodiments described in any one of the above. To avoid repetition, they will not be described again here.
  • the sewage tank may be provided on the fuselage; the motion state parameters also include at least one of the angle between the fuselage and the ground, angular velocity, and angular acceleration.
  • the target operating parameter includes the operating power of the negative pressure source.
  • the operating power of the negative pressure source is positively related to the angle. It is understandable that when the angle between the fuselage and the ground is larger, it is more difficult for the water in the sewage tank to flow in the direction of the negative pressure source. That is, the distance between the water in the sewage tank and the negative pressure source is farther, and the negative pressure source is farther away. It is difficult to inhale the liquid garbage in the sewage tank. In this case, the operating power of the negative pressure source can be increased. Therefore, the operating power of the negative pressure source is set to be positively correlated with the angular relationship between the fuselage and the ground.
  • the target operating parameter includes the operating power of the negative pressure source.
  • the operating power of the negative pressure source is negatively related to the angular velocity. It can be understood that when the angular acceleration between the fuselage and the ground is larger, it means that the magnitude and/or direction of the angular velocity change rate per unit time is larger. At this time, the water in the sewage tank is easily agitated. In this way, the sewage tank The water in the sewage tank is close to the negative pressure source. When the negative pressure source operates at a high power, it will easily suck in the water in the sewage tank. At this time, the operating power of the negative pressure source needs to be reduced. Therefore, the operating power of the negative pressure source is inversely related to the angular acceleration.
  • the target operating parameter includes the operating power of the negative pressure source.
  • the operating power of the negative pressure source is negatively related to the angular acceleration. It is understandable that when the angular velocity between the fuselage and the ground is greater, the water in the sewage tank is easily agitated. In this way, the water in the sewage tank is close to the negative pressure source.
  • the negative pressure source operates at a high power, it will easily inhale sewage. water in the tank, at this time it is necessary to reduce the operating power of the negative pressure source. Therefore, the operating power of the negative pressure source is inversely related to the angular velocity.
  • the target operating parameter includes the operating power of the negative pressure source.
  • the operating power of the negative pressure source is positively related to the angle
  • the operating power of the negative pressure source is negatively related to the angular velocity
  • the operating power of the negative pressure source is negatively related to the angular acceleration.
  • Determine the operating power of the negative pressure source based on the angle determine the operating power of the negative pressure source based on the angular velocity, and determine the operating power of the negative pressure source based on the angular acceleration. Compare the operating power of these negative pressure sources to determine the smallest one among the three. The operating power is used as the target operating power of the negative pressure source.
  • the operating power of the negative pressure source becomes smaller to prevent the negative pressure source from sucking in the sewage.
  • the angular acceleration of the smart floor scrubber becomes larger, the sewage easily stirs up in the sewage tank to get closer to the negative pressure source.
  • the operating power of the negative pressure source is controlled to become smaller to avoid excessive angular acceleration between the body and the ground. This will cause sewage to splash, thereby reducing the risk of the negative pressure source inhaling sewage, and preventing problems such as failure caused by water ingress into the negative pressure source and sewage stinking in the negative pressure source.
  • the operating power of the negative pressure source is controlled to become smaller, which can avoid excessive angular speed between the machine body and the ground. This can lead to sewage splashing, thereby reducing the risk of the negative pressure source inhaling sewage, and preventing problems such as failure caused by water ingress into the negative pressure source and sewage stinking in the negative pressure source.
  • the above-mentioned step of determining the target operating parameters of the negative pressure source based on the motion state parameters includes:
  • the fifth target operating parameter of the first suction device is determined, and the fifth target operating parameter is the first suction device target operating parameters.
  • the preset angle corresponding to the above-obtained angle between the fuselage and the ground can be determined first, and the preset angle can be used as the target angle range of the first suction device. Then, according to the target angle range and the fifth corresponding relationship, the fifth target operating parameter of the first suction device is determined, that is, the target operating parameter of the first suction device.
  • the above-mentioned fifth corresponding relationship is a corresponding relationship between the preset angle and the preset operating parameters of the first suction device.
  • it can be expressed as a preset angle range or a preset angle and a preset value of the first suction device.
  • the corresponding relationship table of the operating parameters can also be expressed as a fitting function relationship curve between the angle and the operating parameters of the first suction device, which is not limited in this application.
  • this application does not limit the angle and the operating parameters of the first suction device, that is, the specific value corresponding to the operating power is not limited.
  • the operating power of the first suction device may also correspond to an operating mode, which includes a low-range mode, a mid-range mode, a mid-range and high-range mode, a high-range mode, and the like.
  • the operating power corresponding to the first suction device when the angle between the fuselage and the ground is less than 5°, the operating power corresponding to the first suction device may be 15W, or the operating mode corresponding to the first suction device may be low mode; when the angle between the fuselage and the ground When the angle between the fuselage and the ground is between 5° and 20°, the operating power corresponding to the first suction device may be 30W, or the operating mode corresponding to the first suction device may be mid-range mode; when the angle between the fuselage and the ground is 20° to 30°, the operating power corresponding to the first suction device can be 30W to 90W, or the operating mode corresponding to the first suction device is a medium to high-end mode; when the angle between the fuselage and the ground is greater than 30° , corresponding to the operating power of the first suction device may be 90W, or corresponding to the operating mode of the first suction device being a high-grade mode.
  • the operating power or operating mode of the first suction device can be adaptively adjusted based on the angle between the fuselage and the ground, thereby preventing the first suction device from sucking water in the sewage tank, and thus can Prevent problems such as failure of the first suction device and odor caused by water intrusion.
  • the target operation of the negative pressure source is determined based on the motion state parameters.
  • Row parameters which can include:
  • the sixth target operating parameter of the first suction device is determined, and the sixth target operating parameter is the first suction device.
  • Target operating parameters of the suction device are determined.
  • the preset angular acceleration corresponding to the angular acceleration of the fuselage and the ground obtained above can be determined first, and the preset angular acceleration can be used as the target angular acceleration of the first suction device. Then, based on the target angular acceleration and the sixth corresponding relationship, the sixth target operating parameter of the first suction device is determined, that is, the target operating parameter of the first suction device.
  • the above-mentioned sixth corresponding relationship is the corresponding relationship between the angular acceleration and the operating parameters of the first suction device.
  • it can be expressed as a preset angular acceleration range or a preset angular acceleration and a preset operation of the first suction device.
  • the correspondence table of parameters can also be expressed as a fitting function relationship curve between the angular acceleration and the operating parameters of the first suction device, which is not limited in this application.
  • this application does not limit the specific numerical value corresponding to the angular acceleration and the operating parameter of the first suction device, and the user can set it according to the actual situation.
  • the operating power of the first suction device may also correspond to the operating mode. For details, refer to the above. To avoid repetition, no details will be described here.
  • determining the target operating parameters of the negative pressure source based on the motion state parameters may include:
  • the seventh target operating parameter of the first suction device is determined, and the seventh target operating parameter is the first suction device target operating parameters.
  • the preset angular velocity corresponding to the angular velocity of the smart floor washing machine obtained above can be determined first, and the preset angular velocity can be used as the target angular velocity of the first suction device. Furthermore, based on the target angular velocity and the seventh corresponding relationship, the seventh target operating parameter of the first suction device is determined, that is, the target operating parameter of the first suction device.
  • the above-mentioned seventh corresponding relationship is the corresponding relationship between the angular velocity and the operating parameters of the first suction device.
  • it can be expressed as the correspondence between the preset angular velocity range or the preset angular velocity and the preset operating parameters of the first suction device.
  • the relationship table can also be expressed as a fitting function relationship curve between the angular velocity and the operating parameters of the first suction device, which is not limited in this application.
  • this application for angular velocity with first are not limited, and the user can set them according to the actual situation.
  • the operating power of the first suction device may also correspond to the operating mode. For details, refer to the above. To avoid repetition, no details will be described here.
  • determining the target operating parameters of the negative pressure source based on the motion state parameters may also include:
  • the sixth corresponding relationship between the preset operating parameters of the pressure source determines the sixth target operating parameter of the first suction device; and, based on the angular velocity and the third relationship between the preset angular velocity and the preset operating parameters of the negative pressure source. Seven corresponding relationships, determine the seventh target operating parameter of the first suction device; compare the fifth target operating parameter, the sixth target operating parameter and the seventh target operating parameter, and determine the smaller value among the three as the first suction device. Target operating parameters of the suction device.
  • the fifth target operating parameter of the first suction device can be obtained according to the fifth corresponding relationship
  • the sixth target operating parameter of the first suction device can be obtained according to the sixth corresponding relationship
  • the fifth target operating parameter of the first suction device can be obtained according to the seventh corresponding relationship.
  • the relationship obtains a seventh target operating parameter of the first suction device.
  • determining the target operating parameters of the negative pressure source according to the motion state parameters may include any two of the following steps:
  • a seventh target operating parameter of the first suction device is determined according to the angular velocity and the seventh corresponding relationship between the preset angular velocity and the preset operating parameter of the negative pressure source.
  • the target operating parameters of the negative pressure source are determined according to the motion state parameters, including the above According to the above two steps, the two parameters are obtained according to the corresponding steps, and the two parameters are compared, and the smaller value is obtained as the target operating parameter of the first suction device;
  • the parameter is a fifth target operating parameter, a sixth target operating parameter or a seventh target operating parameter.
  • determining the target operating parameters of the negative pressure source according to the motion state parameters may include the steps:
  • the sixth target operating parameter of the first suction device is determined according to the angular acceleration, and the sixth corresponding relationship between the preset angular acceleration range and the preset operating parameter of the negative pressure source.
  • two parameters are obtained.
  • the two parameters are the fifth target operating parameter and the sixth target operating parameter.
  • the fifth target operating parameter and the sixth target operating parameter are compared to obtain the fifth target operating parameter.
  • the smaller value of the five target operating parameters and the sixth target operating parameter is the target operating parameter of the first suction device.
  • determining the target operating parameters of the negative pressure source according to the motion state parameters may include the steps:
  • a seventh target operating parameter of the first suction device is determined according to the angular velocity and the seventh corresponding relationship between the preset angular velocity and the preset operating parameter of the negative pressure source.
  • two parameters are obtained.
  • the two parameters are the sixth target operation parameter and the seventh target operation parameter respectively.
  • the parameters of the sixth target operation parameter and the seventh target operation parameter are compared to obtain the sixth target operation parameter.
  • the smaller value of the six target operating parameters and the seventh target operating parameter is the target operating parameter of the first suction device.
  • the sewage tank includes a solid-liquid separation chamber and a sewage chamber, a second suction device is connected to the sewage chamber, and the second suction device provides negative pressure to accelerate the flow of liquid from the solid-liquid separation chamber into the sewage chamber. speed.
  • the above-mentioned target operating parameters of the negative pressure source are determined based on the motion status parameters, including:
  • the second Eighth target operating parameter for the suction device According to the angle and the eighth corresponding relationship between the angle and the operating parameters of the negative pressure source, the second Eighth target operating parameter for the suction device.
  • the above-mentioned eighth corresponding relationship is the corresponding relationship between the angle and the operating parameters of the second suction device.
  • it can be expressed as an angle range or a corresponding relationship table between the angle and the operating parameters of the second suction device. It can also be expressed as It is a fitting function relationship curve between the angle and the operating parameters of the second suction device, which is not limited by this application.
  • this application does not limit the specific numerical value corresponding to the angle and the operating parameter of the second suction device, and the user can set it according to the actual situation.
  • the preset operating parameters of the second suction device can also be expressed as operating states. To avoid repetition, they will not be described again here.
  • the angle between the body and the ground is reduced, which may cause the liquid garbage to splash or cause the liquid garbage to flow closer to the second suction device.
  • the liquid garbage is Near the second suction device, when the second suction device operates at a larger operating power, it is easy to suck sewage into the interior of the second suction device.
  • the target operating parameters of the second suction device can be determined according to the corresponding relationship between the angle range and the operating parameters of the second suction device, or the corresponding relationship between the angle and the operating parameters of the second suction device. In this way, This reduces the splashing of liquid garbage caused by the reduced angle of the second suction device, or causes the liquid garbage to flow closer to the second suction device, thereby reducing the risk of water intrusion when the second suction device is in use.
  • determining the target operating parameters of the negative pressure source based on the motion state parameters may also include:
  • the ninth target operating parameter of the second suction device is determined according to the angular acceleration and the ninth corresponding relationship between the preset angular acceleration and the preset operating parameter of the negative pressure source.
  • the above-mentioned ninth corresponding relationship is the corresponding relationship between the preset angular acceleration and the preset operating parameters of the second suction device.
  • it can be expressed as a corresponding relationship table between the angular acceleration range and the operating parameters of the second suction device.
  • this application does not limit the specific values corresponding to the angular acceleration and the operating parameters of the second suction device, and the user can set them according to the actual situation.
  • the preset operating parameters of the second suction device can also be expressed as operating states. To avoid repetition, they will not be described again here.
  • the method can be determined based on the angular acceleration range and the operating parameters of the second suction device.
  • the corresponding relationship between the two suction devices is determined to determine the target operating parameters of the second suction device.
  • the target operating parameters of the second suction device can be determined based on the angular acceleration and the corresponding relationship between the preset angular acceleration and the preset operating parameters of the second suction device. In this way, the risk of liquid garbage splashing and contacting the second suction device due to changes in angular acceleration of the second suction device can be reduced, and failure, odor, etc. caused by water intrusion of the second suction device can be prevented as much as possible. The problem.
  • determining the target operating parameters of the negative pressure source based on the motion state parameters may include:
  • the tenth target operating parameter of the second suction device is determined based on the angular velocity and the tenth corresponding relationship between the preset angular velocity and the preset operating parameter of the negative pressure source.
  • the above-mentioned tenth corresponding relationship is a corresponding relationship between the preset angular velocity and the preset operating parameters of the second suction device.
  • it can be expressed as a corresponding relationship table between the angular velocity range and the operating parameters of the second suction device, or
  • the correspondence table between the angular velocity and the operating parameters of the second suction device can also be expressed as a fitting function relationship curve between the angular velocity and the operating parameters of the second suction device, which is not limited in this application.
  • this application does not limit the specific values corresponding to the angular velocity and the operating parameters of the second suction device, and the user can set it according to the actual situation.
  • the preset operating parameters of the second suction device can also be expressed as operating states. To avoid repetition, they will not be described again here.
  • the angular velocity between the body and the ground increases, which causes liquid garbage to splash, thereby reducing the distance between the liquid garbage and the second suction device.
  • the liquid garbage Near the second suction device when the second suction device operates at a larger operating power, sewage is easily sucked into the interior of the second suction device.
  • the target operating parameters of the second suction device can be determined according to the corresponding relationship between the angular velocity range and the operating parameters of the second suction device, or the corresponding relationship between the angular velocity and the operating parameters of the second suction device. In this way, Reduce the splashing of liquid garbage caused by the increase in angular velocity of the second suction device, thereby reducing the risk of water intrusion when the second suction device is in use.
  • the target operation of the negative pressure source is determined according to the movement state parameter.
  • Row parameters which can include:
  • the eighth target operating parameter of the second suction device is determined; according to the angular acceleration, the preset angular acceleration and the negative pressure source.
  • the ninth corresponding relationship between the preset operating parameters of the second suction device is determined; according to the angular velocity, and the tenth corresponding relationship between the preset angular velocity and the preset operating parameters of the negative pressure source, Determine the tenth target operating parameter of the second suction device; compare the eighth target operating parameter, the ninth target operating parameter, and the tenth target operating parameter, and determine the smaller value among the three as the second suction device.
  • Target operating parameters are the eighth target operating parameter, the ninth target operating parameter, and the tenth target operating parameter, and determine the smaller value among the three as the second suction device.
  • the eighth target operating parameter of the second suction device can be obtained according to the eighth corresponding relationship
  • the ninth target operating parameter of the second suction device can be obtained according to the ninth corresponding relationship
  • the eighth target operating parameter of the second suction device can be obtained according to the tenth corresponding relationship.
  • the relationship obtains the tenth target operating parameter of the second suction device.
  • the motion state parameters of the intelligent floor washing machine can be comprehensively considered in multiple dimensions, thereby determining the operating parameters of the second suction device, that is, the suction speed, and minimizing the possibility of water intrusion during use of the second suction device. risk.
  • determining the target operating parameters of the negative pressure source according to the motion state parameters may include any two of the following steps:
  • the tenth target operating parameter of the second suction device is determined based on the angular velocity and the tenth corresponding relationship between the preset angular velocity and the preset operating parameter of the negative pressure source.
  • Two parameters are obtained according to the corresponding steps, and the two parameters are compared, and the smaller value is obtained as the target operating parameter of the second suction device.
  • determining the target operating parameters of the negative pressure source according to the motion state parameters may include the following two steps:
  • Two parameters are obtained according to the corresponding steps.
  • the two parameters are the eighth target operation parameter and the ninth target operation parameter.
  • the eighth target operation parameter and the ninth target operation parameter are compared with the two parameters to obtain the eighth target operation parameter.
  • the smaller value of the target operating parameter and the ninth target operating parameter is the target operating parameter of the second suction device.
  • determining the target operating parameters of the negative pressure source according to the motion state parameters may include the following two steps:
  • the tenth target operating parameter of the second suction device is determined based on the angular velocity and the tenth corresponding relationship between the preset angular velocity and the preset operating parameter of the negative pressure source.
  • Two parameters are obtained according to the corresponding steps.
  • the two parameters are the ninth target operating parameter and the tenth target operating parameter.
  • the ninth target operating parameter and the tenth target operating parameter are compared with the two parameters to obtain the ninth
  • the smaller value of the target operating parameter and the tenth target operating parameter is the target operating parameter of the second suction device.
  • the cleaning control method includes:
  • the smart floor scrubber operates in the first mode
  • the intelligent floor washing machine operates in the set mode.
  • the first mode is that the roller brush, the negative pressure source operates with a smaller operating power, and the water supply speed of the roller brush is reduced.
  • the smaller operating power can be set according to the situation of the intelligent floor washing machine.
  • the angle between the fuselage and the ground is smaller than the first preset angle
  • the sewage in the sewage tank easily flows in the direction of the negative pressure source.
  • the sewage is close to the negative pressure source.
  • the negative pressure source operates at a larger power
  • the sewage will easily flow into the direction of the negative pressure source. Inhale negative pressure source.
  • the smart floor scrubber operates in the first mode, which can minimize the risk of the negative pressure source inhaling sewage.
  • the rotation speed of the roller brush can be reduced accordingly, and the water supply speed of the roller brush is reduced.
  • the first mode is for the roller brush, the negative pressure source to operate at a smaller operating power, and the water supply speed of the roller brush is reduced
  • smaller” and “reduce” are related to other features of the intelligent floor scrubber. model for comparison.
  • the sewage in the sewage tank flows to a small extent in the direction of the negative pressure source, and the distance between the sewage and the negative pressure source is within a safe range.
  • the operating power of the negative pressure source can be controlled.
  • the pressure source operates in the mode set by the user at the time of use. For example, when a user uses a smart floor scrubber, he or she uses one of the normal mode, the powerful mode, or the water absorption mode to clean the floor to be cleaned. When the user rotates the body close to the ground and the angle is less than the first preset angle, the cleaning mode changes from the normal mode, the strong mode, or the water absorption mode in use to the first mode.
  • the roller brush and the negative pressure source operate at a smaller operating power, and the water supply speed of the roller brush is reduced.
  • the smart floor scrubber changes from the first mode to the mode originally set by the user, such as normal mode, strong mode or water absorption mode.
  • the mode set by the user may also be the first mode.
  • the motion state parameters may include at least one of the motion speed, motion acceleration, angle between the body and the ground, angular velocity, and angular acceleration of the intelligent floor washing machine.
  • Target operating parameters include the operating power of the negative pressure source.
  • the above-mentioned determination of the target operating parameters of the negative pressure source based on the motion state parameters may include: corresponding control based on at least one of the motion speed, motion acceleration, angle between the body and the ground, angular velocity, and angular acceleration of the intelligent floor washing machine.
  • Method to determine the operating power of the negative pressure source See the above for details. To avoid repetition, they will not be described again here. If according to the corresponding control method based on at least one of the movement speed, movement acceleration, angle between the body and the ground, angular velocity, and angular acceleration of the intelligent floor washing machine, the determined operating power of the negative pressure source is different. , the operating power of all obtained negative pressure sources can be compared, and the minimum operating power among them can be used as the target operating power of the negative pressure source.
  • the motion state parameters may include at least one of the motion speed, motion acceleration, angle between the body and the ground, angular velocity and angular acceleration of the intelligent floor washing machine.
  • the target operating parameters include the operating power of the negative pressure source and the suction speed of the second suction device.
  • the negative pressure source may include at least one of the first suction device and the second suction device.
  • the above-mentioned determination of the target operating parameters of the negative pressure source based on the motion state parameters may include: a corresponding control method based on at least one of the motion speed, motion acceleration, angle between the body and the ground, angular velocity, and angular acceleration of the intelligent floor washing machine. , determine the operating power of the negative pressure source and the suction speed of the second suction device. See the above for details. To avoid repetition, they will not be described again here.
  • the negative pressure source includes a first suction device and a second suction device
  • the motion state parameters include the motion speed, motion acceleration, angle, angular velocity, and angular acceleration of the intelligent floor washing machine.
  • the above-mentioned determination of the target operating parameters of the negative pressure source based on the motion state parameters may include: determining the operating power of the four first suction devices according to the control methods corresponding to the motion speed, motion acceleration, angle, and angular acceleration, and selecting the smallest one among them. is the target operating power of the first suction device;
  • the operating power of the four second suction devices is determined, and the smallest one is selected as the target operating power of the second suction device.
  • the target operating power of the first suction device and the target operating power of the second suction device can be determined based on the control method corresponding to the movement speed, movement acceleration, angle, and angular acceleration.
  • the motion state parameters of the intelligent floor washing machine can be comprehensively considered in multiple dimensions, thereby determining the operating parameters of the first suction device and the second suction device, and preventing the first suction device and the second suction device from being damaged due to intrusion as much as possible.
  • problems such as failure and odor caused by water.
  • the floor washing machine control method proposed in this application may also include;
  • the operating status of the negative pressure source is determined based on the water detection information of the air extraction channel of the negative pressure source.
  • the water detection information includes water status and water-free status
  • the operating status includes on and off.
  • the negative pressure source includes a first suction device, which is connected to the sewage tank; when the water detection information is in the water state, the first suction device is controlled to be closed; when the water detection information is in the water-free state when, the first suction device is controlled to open.
  • the opening and closing of the first suction device can be controlled based on the water detection information of the air suction channel. In this way, the operating status of the negative pressure source can be directly controlled to avoid sewage entering the first suction device as much as possible.
  • the floor washing machine control method proposed in this application may also include;
  • the test information includes water status and water-free status, and the operating status includes on and off.
  • the sewage tank includes a solid-liquid separation chamber and a sewage chamber.
  • the negative pressure source includes a second suction device.
  • the second suction device is used to increase the negative pressure of the sewage chamber so that the negative pressure of the sewage chamber is greater than the solid-liquid separation chamber. of negative pressure.
  • Determine the operating status of the negative pressure source based on the water detection information of the air extraction channel of the negative pressure source, including:
  • the second suction device is controlled to close
  • the second suction device is controlled to be turned on.
  • the negative pressure source also includes a first suction device.
  • the first suction device is used to provide negative pressure to suck the garbage on the ground to be cleaned by the intelligent floor washing machine to the sewage tank; if the water detection information is water state, after the step of controlling the negative pressure source to close, it also includes:
  • the first suction device In response to the fact that the water detection information is still in the water state after the preset time, the first suction device is closed;
  • the second suction device In response to the water detection information changing from the water state to the water-free state after the preset time, the second suction device is turned on.
  • the reason why the water detection information is in the water state may be that the sewage chamber is full of water and the water level has reached the height of the second suction device; it may also be that the tilt of the sewage tank causes the water to flow in the direction of the second suction device, and the water flows to The position of the second suction device; it is also possible that the sewage tank shakes, causing the sewage in the sewage chamber to be stirred up, and the height of the sewage reaches the position of the second suction device. All of the above situations can cause the water detection information to show that there is water.
  • the first suction device should be turned off at this time to avoid the water level from continuing to rise as much as possible.
  • the tilt of the sewage tank causes the water to flow in the direction of the second suction device, and the water flows to the position of the second suction device, causing the water detection information to show that there is water
  • the tilt of the sewage tank may decrease or The wastewater tank may be in an upright position.
  • the water detection information changes from the water state to the water-free state, and the second suction device is turned on to allow the smart floor scrubber to continue working.
  • the sewage tank shakes, causing the sewage in the sewage chamber to be stirred up, and the height of the sewage reaches the position of the second suction device, causing the water detection information to show that there is water, then after the preset time, the sewage tank The degree of agitation may be reduced. At this time, the water detection information changes from the water state to the water-free state, and the second suction device is turned on to allow the smart floor scrubber to continue working.
  • the floor washing machine control method proposed in this application may also include;
  • the first water level information of the sewage tank is obtained, and the target operating parameters of the negative pressure source are determined based on the motion state parameters and the first water level information.
  • the operating parameters include operating power; if the water level in the first water level information is greater than or equal to the first preset water level value, and the angle between the fuselage and the ground remains unchanged or increases, then the operation of the negative pressure source The power is reduced; if the water level in the first water level information is greater than or equal to the first preset water level value, and the angle between the fuselage and the ground is reduced, the operating power of the negative pressure source is reduced; if the water level in the first water level information is The water level is less than the second preset water level value and the angle between the fuselage and the ground increases, then the operating power of the negative pressure source remains unchanged.
  • the negative pressure source here includes at least one of a first suction device and a second suction device.
  • the sewage tank includes a solid-liquid separation chamber and a sewage chamber.
  • the operating power of the negative pressure source is controlled to decrease; when the first water level When the water level in the information is greater than or equal to the first preset water level value and the angle between the fuselage and the ground decreases, the operating power of the negative pressure source is reduced; when the water level in the first water level information is less than the second preset When the water level value increases and the angle between the fuselage and the ground increases, the possibility of the negative pressure source inhaling water decreases, and the operating power of the negative pressure source can be controlled to remain unchanged or increase.
  • the first preset water level value is greater than the second preset water level value.
  • the first preset water level value is the dangerous water level of the sewage tank.
  • the probability of the negative pressure source inhaling sewage is greater.
  • the second preset water level value is the safe water level of the sewage tank.
  • the water level is lower than the second preset digital value, it means that there is very little water in the sewage tank and the water is far away from the negative pressure source. At this time, the negative pressure source absorbs water The probability is small.
  • the operating parameters of the negative pressure source can be comprehensively determined based on the motion state parameters and the first water level information of the sewage tank, and the operating power of the negative pressure source can be adaptively adjusted to avoid water intrusion as much as possible.
  • a negative pressure source occurs.
  • the floor washing machine control method proposed in this application can determine the operating parameters of the negative pressure source through the motion status parameters of the intelligent floor washing machine to avoid water entering the negative pressure source.
  • the water detection information of the air extraction channel and the first water level information of the sewage tank can be further combined to comprehensively determine the operating parameters of the negative pressure source, realizing a multi-dimensional consideration of the status of the intelligent floor scrubber, and based on the intelligent The status of the floor scrubber determines the operating parameters of the negative pressure source to avoid the problem of water ingress when the negative pressure source is in use.
  • the sewage tank includes a solid-liquid separation chamber and a sewage chamber
  • the negative pressure source of the smart floor scrubber includes a second suction device, the second suction device is connected to the sewage chamber, and the second suction device is used to increase
  • the negative pressure of the large sewage chamber makes the negative pressure of the sewage chamber greater than the negative pressure of the solid-liquid separation chamber;
  • the floor washing machine control method also includes:
  • the target operating parameters of the negative pressure source are determined.
  • the operating parameters include operating power. If the second water level information is greater than or equal to the third preset water level value, and the angle between the fuselage and the ground remains unchanged or increases, the operating power of the negative pressure source decreases. ; If the water level in the second water level information is greater than or equal to the third preset water level value, and the angle between the fuselage and the ground decreases, the operating power of the negative pressure source decreases; if the water level in the second water level information is less than The fourth preset water level value, and the angle between the fuselage and the ground increases, the operating power of the negative pressure source remains unchanged or increases; wherein, the third preset water level value is greater than the fourth preset water level value.
  • the water level in the solid-liquid separation chamber is high, and the sewage in the solid-liquid separation chamber does not flow into the sewage chamber in time, which can easily cause the solid-liquid separation chamber to become full of water, or cause the negative pressure source to suck in sewage, causing the smart floor scrubber to stop. run.
  • the third preset water level value is the dangerous water level of the solid-liquid separation chamber.
  • the negative pressure source has a greater probability of inhaling sewage.
  • the fourth preset water level value is the safe water level. When the water level is lower than the fourth preset digital value, it means that there is very little water in the solid-liquid separation chamber and the water is far away from the negative pressure source. At this time, the probability of the negative pressure source inhaling water is smaller.
  • the negative pressure source also includes a first suction device.
  • the power of the second suction device can be increased, thereby increasing the negative pressure of the sewage chamber, speeding up the speed of liquid garbage in the solid-liquid separation chamber into the sewage chamber, and reducing the water level in the solid-liquid separation chamber.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

本申请实施例提供一种智能洗地机及洗地机控制方法,智能洗地机包括机身、底盘、处理器、负压源、以及设置在机身的污水箱,负压源与污水箱相连,用于提供负压源将清洁过程中产生的污水抽入污水箱,还包括角度检测装置;机身与底盘铰接,处理器设置在机身或底盘上,其中,机身可分别绕第一轴线和第二轴线旋转;角度检测装置设置在机身和/或底盘上,处理器与角度检测装置电性相连,用于根据角度检测装置的检测信号来获取机身绕第一轴线和/或第二轴线旋转的旋转角度;负压源与处理器电性相连,处理器还用于基于旋转角度控制负压源的输出功率;其中,第一轴线和第二轴线互相垂直。本申请实施例能够提高洗地机在对低矮区域进行清洁时的清洁效果。

Description

智能洗地机及洗地机控制方法
本申请要求于2022年08月17日提交中国专利局、申请号为202310145839.3发明名称为“智能洗地机及洗地机控制方法”的中国专利申请的优先权,以及申请号为2022109894339发明名称为“一种清洁装置的控制方法、清洁装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及洗地机技术领域,特别涉及一种智能洗地机及洗地机控制方法。
背景技术
洗地机是一种适用于硬质地面清洗同时吸干污水,并将污水带离现场的清洁机械,具有环保、节能、高效等优点。在针对低矮区域(桌子、沙发、茶几、床头柜、床等家具的下面)的清洁时,现有的洗地机为了避免负压源进水,往往采用关闭负压源的方式来进行清洁,而该方式将导致清洁效果很差。
因此,现有技术存在缺陷,有待改进与发展。
发明内容
本申请实施例提供一种智能洗地机及洗地机控制方法,能够提高洗地机在对低矮区域进行清洁时的清洁效果。
本申请实施例提供一种智能洗地机,包括机身、底盘、处理器、负压源、以及设置在所述机身的污水箱,所述负压源与所述污水箱相连,用于提供负压源将清洁过程中产生的污水抽入所述污水箱,还包括角度检测装置;
所述机身与所述底盘铰接,所述处理器设置在所述机身或所述底盘上,其中,所述机身可分别绕第一轴线和第二轴线旋转;
所述角度检测装置设置在所述机身和/或所述底盘上,其中,所述处理器与所述角度检测装置电性相连,用于根据所述角度检测装置的检测信号来获取所述机身绕所述第一轴线和/或所述第二轴线旋转的旋转角度;
所述负压源与所述处理器电性相连,所述处理器还用于基于所述旋转角度 控制所述负压源的输出功率;
其中,所述第一轴线和所述第二轴线互相垂直。
在本申请实施例所述的智能洗地机中,所述角度检测装置包括磁性件和霍尔传感器;
所述磁性件和所述霍尔传感器中一个设置在所述机身上,另一个设置在所述底盘上,其中,所述处理器与所述霍尔传感器电性连接,用于根据所述霍尔传感器的信号强度来获取所述机身绕所述第一轴线和/或所述第二轴线旋转的旋转角度。
在本申请实施例所述的智能洗地机中,所述磁性件包括第一磁性件和第二磁性件,所述霍尔传感器包括与所述第一磁性件对应的第一霍尔传感器,以及与所述第二磁性件对应的至少一第二霍尔传感器,所述旋转角度包括所述机身绕所述第一轴线旋转的俯仰角度和绕所述第二轴线旋转的扭转角度;
所述第一磁性件和所述第一霍尔传感器中一个设置在所述机身上,另一个设置在所述底盘上,其中,所述处理器与所述第一霍尔传感器电性连接,用于基于所述第一霍尔传感器的第一信号强度获取所述扭转角度;
所述第二磁性件和所述第二霍尔传感器中一个设置在所述机身上,另一个设置在所述底盘上,其中,所述处理器与所述第二霍尔传感器电性连接,用于基于所述第二霍尔传感器的第二信号强度获取所述俯仰角度。
在本申请实施例所述的智能洗地机中,所述第二霍尔传感器的数量为两个;
两个所述第二霍尔传感器分别设置在所述底盘上,且所述第二磁性件设置在所述机身上。
在本申请实施例所述的智能洗地机中,所述第二磁性件为环形磁铁;
两个所述第二霍尔传感器与所述环形磁铁的中心线的连线所形成的夹角大于0°且小于或等于98°。
在本申请实施例所述的智能洗地机中,所述第二霍尔传感器的数量为两个;
两个所述第二霍尔传感器分别设置在所述机身上,且所述第二磁性件设置在所述底盘上。
在本申请实施例所述的智能洗地机中,所述第一磁性件设置在所述底盘上, 且所述第一霍尔传感器设置在所述机身上,其中,所述扭转角度为0°时,所述第一霍尔传感器的信号强度为零。
在本申请实施例所述的智能洗地机中,所述第一磁性件为弧度大于或等于120°的弧形磁铁,其中,所述扭转角度为0°时,所述第一霍尔传感器对着所述第一磁性件的中间位置。
在本申请实施例所述的智能洗地机中,所述第一磁性件设置在所述机身上,且所述第一霍尔传感器设置在所述底盘上,其中,所述扭转角度为0°时,所述第一霍尔传感器的信号强度为零。
本申请实施例还提供一种洗地机控制方法,所述方法应用于上述任一实施例所述的智能洗地机中,所述方法包括:
获取角度检测装置的检测信号,基于所述检测信号获取机身绕第一轴线和/或第二轴线旋转的旋转角度;
基于所述旋转角度控制负压源的输出功率。
在本申请实施例所述的洗地机控制方法中,所述获取角度检测装置的检测信号,基于所述检测信号获取机身绕第一轴线和/或第二轴线旋转的旋转角度,包括:
获取所述角度检测装置中第一霍尔传感器的第一信号强度,基于所述第一信号强度获取所述机身绕所述第二轴线旋转的扭转角度;以及
获取所述角度检测装置中第二霍尔传感器的第二信号强度,基于所述第二信号强度获取所述机身绕所述第一轴线旋转的俯仰角度;
所述基于所述旋转角度控制负压源的输出功率,包括:
基于所述俯仰角度和所述扭转角度控制负压源的输出功率。
在本申请实施例所述的洗地机控制方法中,所述基于所述俯仰角度和所述扭转角度控制负压源的输出功率之前,还包括:
获取多个预设俯仰角度区间和多个预设扭转角度区间;
将所述俯仰角度与多个所述预设俯仰角度区间进行比较,以从多个所述预设俯仰角度区间中确定出包含所述俯仰角度的目标预设俯仰角度区间,以及将所述扭转角度与多个所述预设扭转角度区间进行比较,以从多个所述预设扭转 角度区间中确定出包含所述扭转角度的目标预设扭转角度区间;
所述基于所述俯仰角度和所述扭转角度控制负压源的输出功率,包括:
基于所述目标预设俯仰角度区间和所述目标预设扭转角度区间控制负压源的输出功率。
在本申请实施例所述的洗地机控制方法中,所述基于所述目标预设俯仰角度区间和所述目标预设扭转角度区间控制负压源的输出功率,包括:
基于预设映射关系,获取所述目标预设俯仰角度区间和所述目标预设扭转角度区间对应的映射输出功率;
将所述映射输出功率作为所述负压源的输出功率。
在本申请实施例所述的洗地机控制方法中,所述目标预设俯仰角度区间越小,所述目标预设扭转角度区间越大,则对应的映射输出功率越小。
在本申请实施例所述的洗地机控制方法中,所述将所述映射输出功率作为所述负压源的输出功率后,还包括:
获取所述机身在所述目标预设俯仰角度区间和所述目标预设扭转角度区间的停留时间;
将所述停留时间与预设时间进行对比;
若所述停留时间小于所述预设时间,则所述负压源的输出功率保持不变;
若所述停留时间大于所述预设时间,则所述负压源的输出功率为所述映射输出功率。
本申请实施例还提供一种洗地机控制方法,所述方法应用于上述任一实施例所述的智能洗地机中,所述方法包括:
获取所述智能洗地机的运动状态参数;
根据所述运动状态参数,确定所述负压源的目标运行参数。
在本申请实施例所述的洗地机控制方法中,所述运动状态参数包括所述智能洗地机的运动速度、运动加速度中的至少一种。
在本申请实施例所述的洗地机控制方法中,所述目标运行参数包括所述负压源的运行功率;
所述负压源的运行功率与所述运动速度成负相关;或,
所述负压源的运行功率与所述运动加速度成负相关。
在本申请实施例所述的洗地机控制方法中,所述智能洗地机的负压源包括第一抽吸装置,所述第一抽吸装置用于提供负压以将所述智能洗地机清洗待清洁表面的垃圾抽吸至所述污水箱;所述根据所述运动状态参数,确定所述负压源的目标运行参数,包括:
根据所述运动加速度、以及预设运动加速度与预设运行参数之间的第一对应关系,确定所述第一抽吸装置的第一目标运行参数;和/或,
根据所述运动速度、以及预设运动速度与预设运行参数之间的第二对应关系,确定所述第一抽吸装置的第二目标运行参数;
将所述第一目标运行参数与所述第二目标运行参数进行比较,确定二者中的较小值为所述第一抽吸装置的目标运行参数。
在本申请实施例所述的洗地机控制方法中,所述污水箱包括固液分离室和污水室,所述智能洗地机的负压源包括第二抽吸装置,所述第二抽吸装置与所述污水室相连,所述第二抽吸装置用于增大所述污水室的负压,使所述污水室的负压大于所述固液分离室的负压;所述根据所述运动状态参数,确定所述负压源的目标运行参数,包括:
根据所述运动加速度、以及预设运动加速度与预设运行参数之间的第三对应关系,确定所述第二抽吸装置的第三目标运行参数;和/或,
根据所述运动速度、以及预设运动速度与预设运行参数之间的第四对应关系,确定所述第二抽吸装置的第四目标运行参数;
将所述第三目标运行参数与所述第四目标运行参数进行比较,确定二者中的较小值为所述第二抽吸装置的目标运行参数。
在本申请实施例所述的洗地机控制方法中,所述运动状态参数包括所述机身与地面的角度、角速度、角度加速度的至少一种。
在本申请实施例所述的洗地机控制方法中,所述目标运行参数包括所述负压源的运行功率;
所述负压源的运行功率与所述角度成正相关;和/或,
所述负压源的运行功率与所述角速度成负相关;和/或,
所述负压源的运行功率与所述角度加速度成负相关。
在本申请实施例所述的洗地机控制方法中,所述负压源包括第一抽吸装置,所述第一抽吸装置用于提供负压以将所述智能洗地机清洗待清洁地面的垃圾抽吸至所述污水箱;所述根据所述运动状态参数,确定所述负压源的目标运行参数,包括如下至少一个步骤:
根据所述角度、以及预设角度与所述负压源的预设运行参数之间的第五对应关系,确定所述第一抽吸装置的第五目标运行参数;
根据所述角度加速度、以及预设角度加速度范围与所述负压源的预设运行参数之间的第六对应关系,确定所述第一抽吸装置的第六目标运行参数;
根据所述角速度、以及预设角速度与所述负压源的预设运行参数之间的第七对应关系,确定所述第一抽吸装置的第七目标运行参数。
在本申请实施例所述的洗地机控制方法中,若所述根据所述运动状态参数,确定所述负压源的目标运行参数,包括两个以上的步骤,则根据对应步骤获取到两个以上的参数,并将两个以上的所述参数进行比较,获取其中的较小值为所述第一抽吸装置的目标运行参数;
其中,所述参数为所述第五目标运行参数、所述第六目标运行参数或者所述第七目标运行参数。
在本申请实施例所述的洗地机控制方法中,所述污水箱包括固液分离室和污水室,所述智能洗地机的负压源包括第二抽吸装置,所述第二抽吸装置与所述污水室相连,所述第二抽吸装置用于增大所述污水室的负压,使所述污水室的负压大于所述固液分离室的负压;所述根据所述运动状态参数,确定所述负压源的目标运行参数,包括如下至少一个步骤:
根据所述角度、以及所述预设角度与所述负压源的预设运行参数之间的第八对应关系,确定所述第二抽吸装置的第八目标运行参数;
根据所述角度加速度、以及预设角度加速度与所述负压源的预设运行参数之间的第九对应关系,确定所述第二抽吸装置的第九目标运行参数;
根据所述角速度、以及预设角速度与所述负压源的预设运行参数之间的第十对应关系,确定所述第二抽吸装置的第十目标运行参数。
在本申请实施例所述的洗地机控制方法中,若所述根据所述运动状态参数,确定所述负压源的目标运行参数,包括两个以上的步骤,则根据对应步骤获取到两个以上的参数,并将两个以上的所述参数进行比较,获取其中的较小值为所述第二抽吸装置的目标运行参数;
其中,所述参数为所述第八目标运行参数、所述第九目标运行参数或者所述第十目标运行参数。
在本申请实施例所述的洗地机控制方法中,所述方法还包括:
获取所述污水箱的第一水位信息;
所述根据所述运动状态参数以及所述第一水位信息,确定所述负压源的目标运行参数。
在本申请实施例所述的洗地机控制方法中,所述运行参数包括运行功率;所述根据所述运动状态参数以及所述第一水位信息,确定所述负压源的目标运行参数,包括:
若所述第一水位信息中的水位大于或等于第一预设水位值,且所述机身与地面之间的角度不变或增大,则所述负压源的运行功率减小;
若所述第一水位信息中的水位大于或等于所述第一预设水位值,且所述机身与地面之间的角度减小,则所述负压源的运行功率减小;
若所述第一水位信息中的小于所述第二预设水位值,且所述机身与地面之间的角度增大或不变,则所述负压源的运行功率保持不变或增大;
其中,所述第一预设水位值大于所述第二预设水位值。
在本申请实施例所述的洗地机控制方法中,所述方法包括:
响应于所述角度小于第一预设角度时,智能洗地机以第一模式运行;
响应于所述角度大于或等于第一预设角度时,智能洗地机以设定的模式运行。
在本申请实施例所述的洗地机控制方法中,所述污水箱包括固液分离室和污水室,所述智能洗地机的负压源包括第二抽吸装置,所述第二抽吸装置与所述污水室相连,所述第二抽吸装置用于增大所述污水室的负压,使所述污水室的负压大于所述固液分离室的负压;所述方法还包括:
获取所述固液分离室的第二水位信息;
所述根据所述运动状态参数以及所述第二水位信息,确定所述负压源的目标运行参数。
在本申请实施例所述的洗地机控制方法中,所述运行参数包括运行功率,所述运动状态包括所述机身与地面之间的角度;所述根据所述运动状态参数以及所述第二水位信息,确定所述负压源的目标运行参数,包括:
若所述第二水位信息中的水位大于或等于第三预设水位值,且所述机身与地面之间的角度不变或增大,则所述负压源的运行功率减小;
若所述第二水位信息中的水位大于或等于第三预设水位值,且所述机身与地面之间的角度减小,则所述负压源的运行功率减小;
若所述第二水位信息中的水位小于第四预设水位值,且所述机身与地面之间的角度增大,则所述负压源的运行功率保持不变或增大;
其中,所述第三预设水位值大于所述第四预设水位值。
在本申请实施例所述的洗地机控制方法中,所述控制方法还包括:
根据所述负压源的抽气通道的水检测信息确定所述负压源的运行状态。
在本申请实施例所述的洗地机控制方法中,所述水检测信息包括有水状态和无水状态,所述运行状态包括开启和关闭。
在本申请实施例所述的洗地机控制方法中,所述污水箱包括固液分离室和污水室,所述负压源包括第二抽吸装置,所述第二抽吸装置用于增大所述污水室的负压,使所述污水室的负压大于所述固液分离室的负压;所述根据所述负压源的抽气通道的水检测信息确定所述负压源的运行状态,包括:
若所述水检测信息为所述有水状态,则控制所述第二抽吸装置关闭;
若所述水检测信息为所述无水状态,则控制所述第二抽吸装置开启。
在本申请实施例所述的洗地机控制方法中,所述负压源还包括第一抽吸装置,所述第一抽吸装置用于提供负压以将所述智能洗地机清洗待清洁地面的垃圾抽吸至所述污水箱;所述若所述水检测信息为所述有水状态,则控制所述负压源关闭步骤之后,还包括:
响应于预设时间后,所述水检测信息仍为所述有水状态,关闭所述第一抽 吸装置;
响应于预设时间后,所述水检测信息由所述有水状态变为所述无水状态,开启所述第二抽吸装置。
在本申请实施例所述的洗地机控制方法中,所述负压源包括第一抽吸装置,所述第一抽吸装置与所述污水箱相连;所述根据所述负压源的抽气通道的水检测信息确定所述负压源的运行状态,包括:
若所述水检测信息为所述有水状态,则控制所述第一抽吸装置关闭;
若所述水检测信息为所述无水状态,则控制所述第一抽吸装置开启。
本申请实施例提供的智能洗地机,通过增加角度检测装置,并将角度检测装置与智能洗地机的处理器电性连接,通过角度检测装置来获取智能洗地机的机身绕第一轴线和/或第二轴线旋转的旋转角度。即当机身绕第一轴线和/或第二轴线旋转时,角度检测装置的检测信号将发生改变,此时通过处理器来采集角度检测装置的检测信号,然后根据该检测信号获取机身绕第一轴线和/或所述第二轴线旋转的旋转角度。最后基于该旋转角度控制负压源的输出功率,从而在洗地机对低矮区域进行清洁时,不需要关闭负压源进行清洁,可以根据旋转角度调节负压源的输出功率,可避免水进入负压源,且提高了清洁效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的智能洗地机的第一结构示意图。
图2为本申请实施例提供的智能洗地机机身可绕第一轴线旋转的结构示意图。
图3为本申请实施例提供的智能洗地机机身可绕第二轴线旋转的结构示意图。
图4为本申请实施例提供的两个第二霍尔传感器与第二磁性件的安装相对位置示意图。
图5为本申请实施例提供的第一霍尔传感器与第一磁性件的安装相对位置示意图。
图6是本申请实施例提供的智能洗地机的第二结构示意图。
图7为本申请实施例提供的一种洗地机控制方法的流程示意图。
图8为本申请实施例提供的目标预设俯仰角度区间和目标预设扭转角度区间对应的映射输出功率图。
图9是本申请实施例提供的污水箱在第一场景下的结构示意图。
图10是本申请实施例提供的污水箱在第二场景下的结构示意图。
图11是本申请实施例提供的污水箱在第三场景下的结构示意图。
图12是本申请实施例提供的另一种洗地机控制方法的示意流程图。
图13是本申请实施例提供的一种洗地机的结构示意图。
图14为本申请提供的一种存储介质的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件一定具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
本申请实施例提供一种智能洗地机1000。参考图1至图6,智能洗地机1000包括机身10、底盘20、处理器(图中未标识)、角度检测装置30、吸污通道40以及设置在机身10的污水箱50,负压源60。负压源60与污水箱50相连,用于提供负压源60将清洁过程中产生的污水抽入污水箱50,示例性地,负压源60为风机。智能洗地机1000还包括角度检测装置30。
机身10与底盘20铰接,处理器设置在机身10或底盘20上,其中,机身10可分别绕第一轴线和第二轴线旋转。示例性地,机身10和底盘20铰接的结构包括转轴,转轴的轴线为第一轴线,机身10可绕转轴转动,即机身10可绕第一轴 线旋转。
其中,第一轴线和第二轴线互相垂直。智能洗地机1000包括手柄组件40,手柄组件40包括把手401和连接杆402,连接杆402一端与把手401相连,另一端与机身10相连,连接杆402的轴线为第二轴线。第二轴线为把手401与第一轴线连接线所在位置,连接线垂直于转轴的轴线。机身10可绕第二轴线相对底盘20旋转。
角度检测装置30设置在机身10和/或底盘20上,其中,处理器与角度检测装置30电性相连,用于根据角度检测装置30的检测信号来获取机身10绕第一轴线和/或第二轴线旋转的旋转角度。
其中,当机身10绕第一轴线相对底盘20旋转和/或第二轴线旋转相对底盘20旋转旋转时,角度检测装置30的检测信号会发生改变,此时处理器将根据角度检测装置30的检测信号来获取机身10绕第一轴线和/或第二轴线旋转的旋转角度。
负压源60与处理器电性相连,处理器还用于基于旋转角度控制负压源60的输出功率。
其中,当处理器在根据角度检测装置30的检测信号获取到机身10绕第一轴线和/或第二轴线旋转的旋转角度后,处理器将基于旋转角度控制负压源60的输出功率。其中,处理器在基于旋转角度控制负压源60的输出功率时,负压源60的输出功率大小跟旋转角度的大小有关,且负压源60的输出功率不为零。
在一些实施例中,角度检测装置30包括磁性件301和霍尔传感器302;磁性件301和霍尔传感器302中一个设置在机身10上,另一个设置在底盘20上,其中,处理器与霍尔传感器302电性连接,用于根据霍尔传感器302的信号强度来获取机身10绕第一轴线和/或第二轴线旋转的旋转角度。
例如,可以是磁性件301设置在机身10上,霍尔传感器302设置在底盘20上;或者磁性件301设置在底盘20上,霍尔传感器302设置在机身10上。
其中,当机身10绕第一轴线相对底盘20旋转和/或第二轴线旋转相对底盘20旋转旋转时,霍尔传感器302的信号强度会发生改变,此时处理器将根据霍尔传感器302的信号强度来获取机身10绕第一轴线和/或第二轴线旋转的旋转 角度。
在一些实施例中,磁性件301包括第一磁性件3011和第二磁性件3012,霍尔传感器302包括与第一磁性件3011对应的第一霍尔传感器3021,以及与第二磁性件3012对应的至少一第二霍尔传感器3022,旋转角度包括机身10绕第一轴线旋转的俯仰角度和绕第二轴线旋转的扭转角度。
其中,当机身10绕第一轴线旋转时,若俯仰角度减小,则污水箱50中的污水其水面会接近负压源60的风口,此时若负压源60的输出功率过高,将会导致污水进入负压源60内部。因此,此时要降低负压源60的输出功率,从而防止污水箱50中的污水进入负压源60内部。
另外,污水箱50可以包括通过通孔或管道而相互连通的固液分离室51和污水室52,固液分离室51能够用于将固态垃圾和液态垃圾分离,液态垃圾流至污水室52。在机身10扭转角度为零时,固态分离室51中的污水会汇聚在下水口,通过下水口进入污水室52,当机身10扭转角度大于零时,下水口随着机身10扭转,下水口位置变高,高于污水聚集的地方,污水不容易从下水口进入污水室52,从而聚集在固液分离室51内。固态分离室51内的污水离负压源的风口较近,此时若负压源的输出功率过高,将会导致污水进入负压源60内部,从而可以通过降低负压源60的输出功率,减少负压源60进水的概率。当机身10绕第二轴线旋转时,若扭转角度增大,会造成污水在固液分离室51里面存积,且扭转角度越大,固液分离室51中存积的污水越多。而固态分离室51中存积的污水越多,其污水水面会更接近负压源60口,此时若负压源60的输出功率过高,将会导致污水进入负压源60内部。因此,此时要适当降低负压源60的输出功率,从而防止固态分离室51中的污水进入负压源60内部。
其中,当机身10自然平躺在地面上时,俯仰角度为0°。随着机身10绕第一轴线旋转逐渐远离地面,俯仰角度逐渐增加。
第一磁性件3011和第一霍尔传感器3021中一个设置在机身10上,另一个设置在底盘20上,其中,处理器与第一霍尔传感器3021电性连接,用于基于第一霍尔传感器3021的第一信号强度获取扭转角度。
例如,可以是第一磁性件3011设置在机身10上,第一霍尔传感器3021设置 在底盘20上,或者是第一磁性件3011设置在底盘20上,第一霍尔传感器3021设置在机身10上。
第二磁性件3012和第二霍尔传感器3022中一个设置在机身10上,另一个设置在底盘20上,其中,处理器与第二霍尔传感器3022电性连接,用于基于第二霍尔传感器3022的第二信号强度获取俯仰角度。
例如,可以是第二磁性件3012设置在机身10上,第二霍尔传感器3022设置在底盘20上,或者是第二磁性件3012设置在底盘20上,第二霍尔传感器3022设置在机身10上。
在一些实施例中,第二霍尔传感器3022的数量为两个,两个第二霍尔传感器3022分别设置在底盘20上,且第二磁性件3012设置在机身10上。
其中,由于第二磁性件3012具有N极和S极,霍尔传感器3022的磁场会随着与第二磁性件3012相对位置的变化而变化。在一示例中,第二霍尔传感器3022的数量为两个,随着机身10绕第一轴线旋转,同样地,两个霍尔传感器3022与第二磁性件3012的相对位置将发生变化,此时两个霍尔传感器3022的第二信号强度也随着发生改变。两个霍尔传感器3022绕第二磁性件3012一圈时,两个霍尔传感器3022与第二磁性件3012不同的相对位置,两个霍尔传感器3022所产生的两个信号是没有重复的,可较准确地识别机身10的扭转角度。由于两个霍尔传感器3022与第二磁性件3012的相对位置不一样(即机身10绕第一轴线旋转的俯仰角度不一样)时,两个霍尔传感器3022的第二信号强度也不一样,因此可根据两个霍尔传感器3022的第二信号强度计算出机身10绕第一轴线旋转的俯仰角度。例如,假设两个第二霍尔传感器3022此时的第二信号强度分别为H1和H2,则俯仰角度θ的计算公式为:θ=tan-1H1/H2。
在一些实施例中,第二磁性件3012为环形磁铁,两个第二霍尔传感器3022与环形磁铁的中心线的连线所形成的夹角大于0°且小于或等于98°。
例如,如图4所示,两个第二霍尔传感器3022与环形磁铁的中心线的连线所形成的夹角为90°。
在一些实施例中,第二霍尔传感器3022的数量为两个,两个第二霍尔传感器3022分别设置在机身10上,且第二磁性件3012设置在底盘20上。
在一些实施例中,第一磁性件3011设置在底盘20上,且第一霍尔传感器3021设置在机身10上,其中,扭转角度为0°时,第一霍尔传感器3021的信号强度为零。
其中,若第一磁性件3011设置在底盘20上,第一霍尔传感器3021设置在机身10上,则当机身10绕第一轴线相对底盘20旋转时,第一霍尔传感器3021将跟随机身10一起旋转,并且与第一磁性件3011的距离保持不变。其中,第一霍尔传感器3021在跟随机身10一起旋转的过程中,第一霍尔传感器3021的信号强度随扭转角度线性变化,处理器根据该信号强度即可计算得到机身10绕第一轴线相对底盘20旋转的扭转角度。
在一些实施例中,第一磁性件3011为弧度大于或等于120°的弧形磁铁,其中,扭转角度为0°时,第一霍尔传感器3021对着第一磁性件3011的中间位置。
如图5所示,第一磁性件3011为弧形磁铁,当扭转角度为0°时,第一霍尔传感器3021对着弧形磁铁的中间位置。此时,机身10绕第二轴线向左旋转和向右旋转在结构上是对称的,后面扭转角度不区分左右方向的旋转,其相同数值大小代表两个方向上的对称位置。
在一些实施例中,第一磁性件3011设置在机身10上,且第一霍尔传感器3021设置在底盘20上,其中,扭转角度为0°时,第一霍尔传感器3021的信号强度为零。
其中,若第一磁性件3011设置在机身10上,第一霍尔传感器3021设置在底盘20上,则当机身10绕第一轴线相对底盘20旋转时,第一磁性件3011将跟随机身10一起旋转,并且与第一霍尔传感器3021的距离保持不变。其中,第一磁性件3011在跟随机身10一起旋转的过程中,第一霍尔传感器3021的第一信号强度将随机身的扭转角度线性变化,处理器根据第一信号强度即可计算得到机身10绕第一轴线相对底盘20旋转的扭转角度。
上述所有可选技术方案,可以采用任意结合形成本申请的可选实施例,在此不再一一赘述。
由上可知,本申请实施例提供的智能洗地机1000,通过增加角度检测装置 30,并将角度检测装置30与智能洗地机1000的处理器电性连接,通过角度检测装置30来获取智能洗地机1000的机身10绕第一轴线和/或第二轴线旋转的旋转角度。即当机身10绕第一轴线和/或第二轴线旋转时,角度检测装置30的检测信号将发生改变,此时通过处理器来采集角度检测装置30的检测信号,然后根据该检测信号获取机身10绕第一轴线和/或所述第二轴线旋转的旋转角度,最后基于该旋转角度控制负压源60的输出功率。从而在洗地机对低矮区域进行清洁时,不需要关闭负压源60进行清洁,只需要根据旋转角度调节负压源的输出功率即可,大大提高了清洁效果。
本申请实施例还提供一种洗地机控制方法,所述方法应用于以上任一实施例所述的智能洗地机中。
请参阅图7,图7为本申请实施例提供的洗地机控制方法的流程示意图。所述方法可以包括以下步骤:
步骤101,获取角度检测装置的检测信号,基于所述检测信号获取机身绕第一轴线和/或第二轴线旋转的旋转角度。
其中,第一轴线和第二轴线互相垂直。
步骤102,基于所述旋转角度控制负压源的输出功率。
在一些实施例中,所述获取角度检测装置的检测信号,基于所述检测信号获取机身绕第一轴线和/或第二轴线旋转的旋转角度,包括:
获取所述角度检测装置中第一霍尔传感器的第一信号强度,基于所述第一信号强度获取所述机身绕所述第二轴线旋转的扭转角度;以及
获取所述角度检测装置中第二霍尔传感器的第二信号强度,基于所述第二信号强度获取所述机身绕所述第一轴线旋转的俯仰角度;
所述基于所述旋转角度控制负压源的输出功率,包括:
基于所述俯仰角度和所述扭转角度控制负压源的输出功率。
其中,当角度检测装置中第二霍尔传感器的数量为两个时,假设两个第二霍尔传感器的第二信号强度分别为H1和H2,则机身绕第一轴线旋转的俯仰角度θ的计算公式为:θ=tan-1H1/H2。
在一些实施例中,所述基于所述俯仰角度和所述扭转角度控制负压源的输 出功率之前,还包括:
获取多个预设俯仰角度区间和多个预设扭转角度区间;
将所述俯仰角度与多个所述预设俯仰角度区间进行比较,以从多个所述预设俯仰角度区间中确定出包含所述俯仰角度的目标预设俯仰角度区间,以及将所述扭转角度与多个所述预设扭转角度区间进行比较,以从多个所述预设扭转角度区间中确定出包含所述扭转角度的目标预设扭转角度区间;
所述基于所述俯仰角度和所述扭转角度控制负压源的输出功率,包括:
基于所述目标预设俯仰角度区间和所述目标预设扭转角度区间控制负压源的输出功率。
例如,有三个预设俯仰角度区间,分别为0°~5°、5°~20°和20°~30°,然后俯仰角度为15°,则包含该俯仰角度(15°)的目标预设俯仰角度区间为5°~20°。再比如,有三个预设扭转角度区间,分别为0°~10°、10°~30°和30°~90°,然后扭转角度为45°,则包含该扭转角度(45°)的目标预设扭转角度区间为30°~90°。
其中,本领域技术人员可以根据实际情况来设置多个预设俯仰角度区间和多个预设扭转角度区间,在此不做具体限制。
在一些实施例中,所述基于所述目标预设俯仰角度区间和所述目标预设扭转角度区间控制负压源的输出功率,包括:
基于预设映射关系,获取所述目标预设俯仰角度区间和所述目标预设扭转角度区间对应的映射输出功率;
将所述映射输出功率作为所述负压源的输出功率。
例如,如图8所示。其中,Pitch为目标预设俯仰角度,Roll为目标预设扭转角度,Pitch<5°即目标预设俯仰角度区间为0°~5°,Roll<10°即目标预设扭转角度区间为0°~10°,此时目标预设俯仰角度区间0°~5°和目标预设扭转角度区间0°~10°对应的映射输出功率为15瓦。
如图8所示,在一些实施例中,所述目标预设俯仰角度区间越小,所述目标预设扭转角度区间越大,则对应的映射输出功率越小。
其中,目标预设俯仰角度区间越小,目标预设扭转角度区间越大,说明洗 地机此时清洁的区域越矮。此时为了避免负压源进水,需要将负压源的输出功率减小。
在一些实施例中,所述将所述映射输出功率作为所述负压源的输出功率后,还包括:
获取所述机身在所述目标预设俯仰角度区间和所述目标预设扭转角度区间的停留时间;
将所述停留时间与预设时间进行对比;
若所述停留时间小于所述预设时间,则所述负压源的输出功率保持不变;
若所述停留时间大于所述预设时间,则所述负压源的输出功率为所述映射输出功率。
其中,由于输出功率的变化会造成声音的变化,所以为了避免负压源输出功率响应太快,给用户带来不好的体验感,增加了时间延迟的策略。即只有当机身在目标预设俯仰角度区间和目标预设扭转角度区间的停留时间大于预设时间时,才将负压源的输出功率调整为映射输出功率,否则保持原输出功率不变。
其中,本领域技术人员可以根据实际情况来设置预设时间,在此不做具体限制。
请继续参阅图6,如图6所示,负压源30还可以包括第一抽吸装置31,第一抽吸装置31用于提供负压以将智能洗地机1000清洗待清洁地面的垃圾抽吸至污水箱50。负压源60还可以包括第二抽吸装置62,第二抽吸装置62用于为污水室52提供负压,以将液态垃圾尽快的从固液分离室51分离至污水室52。除此之外,第二抽吸装置62为污水室52提供负压,尽可能防止污水室52的液态垃圾回流至固液分离室51。具体地,第二抽吸装置62用于增大污水室的52负压,使污水室52的负压大于固液分离室51的负压。固液分离室51和污水室52相对独立,如此设置能够将液态垃圾容纳在污水室52,使液态垃圾与第一抽吸装置61的具有一定的距离,尽可能防止液体垃圾被第一抽吸装置61吸入。
可以理解地,为提供负压以将智能洗地机1000清洗待清洁地面的垃圾抽吸至污水箱50,第一抽吸装置61通常需要以较大功率运行。进一步地,为尽快将 液态垃圾从固液分离室51分离至污水室52,第二抽吸装置62通常也需要以较大功率运行。
在一相关技术的洗地机使用情景中,有些待清洁地面在桌子、床或是沙发等家具底部。桌子、床或是沙发等家具底部的空间较低矮,需要机身倾斜靠近地面才能使底盘进入这些低矮空间。在清洁桌子、床或是沙发等家具底部的待清洁地面时,需要洗地机的机身与地面之间的角度较小,以便于底盘进入桌子、床或是沙发等家具底部,从而使滚刷清洗该待清洁地面。当洗地机的机身与地面之间的角度较小时,机身上污水箱的水会随着洗地机的机身与地面之间的角度变小,往靠近负压源的方向移动,即污水箱的水越来越靠近负压源,负压源可以是风机。当污水箱的水离负压源较近时,负压源以较大功率运行,会将负压源附近的水吸入。负压源吸入水后的可能性后果包括污水在负压源内发臭、污水通过负压源甩到清洁干净的地面或是吹到用户身上、负压源因污水而失效中的至少一种,负压源失效包括损坏、短路、关闭等。
在一相关技术的洗地机使用情景中,洗地机的污水箱包括固液分离室和污水室,污水室可以设置在底盘。负压源包括第二抽吸装置,污水室连接第二抽吸装置,第二抽吸装置用于增大污水室的负压,增大污水室负压的有益效果包括可以加快固液分离室中液体垃圾的分离、可以加快固液分离室中液体垃圾进入污水室的速度、可以防止污水室的液体垃圾回流至固液分离室的至少一种。具体地,第二抽吸装置增大污水室的负压,使污水室的负压大于固液分离室的负压。
示例性地,相较于智能洗地机1000闲置时机身10处于相对直立的状态,在使用智能洗地机1000时,用户会驱动机身10绕与底盘20的转动连接处转动,且机身10逐渐靠近地面。污水箱50内的液态垃圾逐渐靠近第一抽吸装置61,当机身10转动至与地面成一定角度时,污水箱50内的液态垃圾容易被以较大功率运行的第一抽吸装置61抽吸,而进入第一抽吸装置61内,导致第一抽吸装置61可能发生失效、液态垃圾可能在第一抽吸装置61内发臭、以及可能通过第一抽吸装置61将液态垃圾甩到清洁干净的地面或是吹到用户身上。除此之外,当用户沿前后方向较快推拉智能洗地机1000或相对底盘20转动机身时,可能使污水 箱50内的水荡起至负压源60附近而被以较大功率运行的负压源60抽吸入负压源60内,导致负压源60可能发生失效、污水可能在负压源60内发臭。因此,综合考虑上述因素,本申请实施例在污水箱50内液体靠近负压源60的若干场景下,对负压源60的运行参数进行调整,从而降低污水箱50中的液体垃圾进入负压源60的可能性。需要说明的是,本申请在降低负压源60的运行参数,使负压源60不吸入液体垃圾的同时,本申请负压源60的功能并没有失去。例如,负压源60包括第一抽吸装置61时,根据智能洗地机1000的运动状态参数确定降低第一抽吸装置61的运行功率,此时,第一抽吸装置61的运行功率降低了,但是第一抽吸装置61的功率仍能够将智能洗地机1000清洗待清洁表面的垃圾抽吸至污水箱50。同样地,负压源60包括第二抽吸装32置时,根据智能洗地机1000的运动状态参数确定降低第二抽吸装置62的运行功率,此时,第二抽吸装置62的运行功率降低了,但是第二抽吸装置62的功率仍能够增大污水室52的负压。
具体的,污水箱50设置在机身10上,请参阅图9至图11,其中,图9是本申请实施例提供的污水箱在第一场景下的结构示意图;图10是本申请实施例提供的污水箱在第二场景下的结构示意图;图11是本申请实施例提供的污水箱在第三场景下的结构示意图。如图9所示,在第一场景下,智能洗地机1000在直立且无剧烈晃动时,其污水箱50内的水位一般不会突然上升到靠近第一抽吸装置61以及第二抽吸装置62的位置,这时水离负压源60的距离是安全的,负压源60不会吸入水。然而当智能洗地机1000的污水箱50由如图2所示的直立状态转动至图3所示躺平状态过程中逐渐倾斜,或如图10所示在第二场景下躺平,或如图11所示在第三场景下的剧烈晃动时,若负压源60仍以较大运行功率运行,则靠近负压源60的液体很有可能会被较大的抽吸力吸入负压源60,而导致负压源60失效等情况。因此,有必要提出一种智能洗地机的控制方法,使得尽可能避免负压源60吸入水。
请参阅图12,图12是本申请实施例提供的另一种洗地机控制方法的示意流程图。如图5所示,该洗地机控制方法包括步骤S201至步骤S202。其中,该洗地机控制方法能够应用于上述提到的智能洗地机,为避免重复,后续不加以赘述。
步骤S201:获取智能洗地机的运动状态参数。
步骤S202:根据运动状态参数,确定负压源的目标运行参数。
在本申请实施例中,可获取智能洗地机的运动状态参数,进而可根据智能洗地机的运动状态参数,确定负压源的目标运行参数,以使得负压源能够按照目标运行参数运行,降低负压源吸入液态垃圾的风险。
需要说明的是,本申请对于上述智能洗地机的运动状态参数不做限定,例如可以为机身与地面的角度、机身的角度加速度、机身的角速度、智能洗地机的运动速度、智能洗地机的运动加速度等中的至少一种。进一步的,上述目标运行参数可以为运行功率、运行转速、运行状态等,本申请对此不加以限定。
在一些实施例中,机身与地面的角度可通过角度传感器进行检测而得到、角度加速度可通过角加速度计进行检测而得到、机身转动的角速度可通过角速度传感器进行检测而得到、智能洗地机的运动速度可通过速度传感器进行检测而得到、以及智能洗地机的运动加速度可通过加速度传感器进行检测而得到。
本申请提出的洗地机控制方法,能够基于智能洗地机的运动状态参数,确定负压源的运行参数,使得负压源能够按照该运行参数运行,减少了负压源在使用时进水的风险,进而尽可能避免负压源在使用时由于进水导致的失效、发臭等问题。
可选地,运动状态参数包括智能洗地机的运动速度、运动加速度中的至少一种;目标运行参数包括负压源的运行功率。在此基础上,负压源的运行功率与运动速度或运动加速度成负相关。也就是说,智能洗地机的运动速度或运动加速度越大,则负压源的运行功率越低,反之亦然。
可以理解地,负压源为提供负压以将智能洗地机清洗待清洁地面的垃圾抽吸至污水箱,和/或增大所述污水室的负压,使所述污水室的负压大于所述固液分离室的负压,负压源通常需要以较大功率运行。当智能洗地机的运动速度或运动加速度较大时,智能洗地机晃动的较强烈。因此,若负压源仍以较大运行功率运行,则靠近负压源的液体很有可能会被较大的抽吸力吸入负压源,进而导致负压源失效、发臭的情况。
因此,将负压源的运行功率与运动速度或运动加速度成负相关,可减少由 于智能洗地机的运动速度或运动加速度增大导致的液态垃圾溅起,进而与负压源接触的风险,尽可能防止负压源进水导致的失效、发臭等问题。
进一步的,智能洗地机的负压源包括第一抽吸装置,第一抽吸装置用于提供负压以将智能洗地机清洗待清洁表面的垃圾抽吸至污水箱。需要说明的是,所述垃圾可以是污物,所述污物包括污水、固体垃圾、固液混合垃圾。其中,第一抽吸装置与污水箱可均设置在智能洗地机的机身。上述根据运动状态参数,确定负压源的目标运行参数的步骤,包括:
根据运动加速度、以及预设运动加速度与预设运行参数之间的第一对应关系,确定第一抽吸装置的第一目标运行参数,该第一目标运行参数即为第一抽吸装置的目标运行参数。
需要说明的是,上述第一对应关系为预设运动加速度与第一抽吸装置的预设运行参数的对应关系,例如可以表现为运动加速度范围与运行参数的对应关系表,也可以表现为运动加速度与运行参数的拟合函数关系曲线,本申请对此不加以限定。此外,本申请对于预设运动加速度与第一抽吸装置的预设运行参数对应的具体数值不做限定,可根据实际情况自行设定。
在本申请实施例中,可根据运动加速度、以及预设运动加速度与预设运行参数之间的对应关系,确定第一抽吸装置的运行参数。
可以理解的,为提供负压以将智能洗地机清洗待清洁地面的垃圾抽吸至污水箱,第一抽吸装置通常需要以较大功率运行。而智能洗地机的运动加速度越大,说明智能洗地机速度变化的越快,此时智能洗地机晃动的越强烈。此时,若第一抽吸装置仍以较大运行功率运行,则靠近第一抽吸装置的液体很有可能会被较大的抽吸力吸入负压源,进而导致第一抽吸装置失效、发臭的情况。
因此,为了尽可能防止第一抽吸装置进水导致的失效问题。可基于运动加速度、以及预设运动加速度与预设运行参数之间的对应关系,确定第一抽吸装置的目标运行参数。如此,便可降低第一抽吸装置由于运动加速度增大导致的液态垃圾与第一抽吸装置接触的风险,尽可能防止第一抽吸装置进水导致的失效、发臭等问题。
可选地,在其他实施例中,上述根据运动状态参数,确定负压源的目标运 行参数的步骤,可以包括:
根据运动速度、以及预设运动速度与预设运行参数之间的第二对应关系,确定第一抽吸装置的第二目标运行参数,该第二目标运行参数即为第一抽吸装置的目标运行参数。
需要说明的是,上述第二对应关系为预设运动速度与第一抽吸装置的预设运行参数的对应关系,例如可以表现为运动速度范围与第一抽吸装置的运行参数的对应关系表,也可以表现为运动速度与第一抽吸装置的运行参数的拟合函数关系曲线,本申请对此不加以限定。此外,本申请对于预设运动速度与第一抽吸装置的预设运行参数对应的具体数值不做限定,用户可根据实际情况自行设定。
在本申请实施例中,可根据运动速度、以及预设运动速度与预设运行参数之间的对应关系,确定第一抽吸装置的运行参数。如此,可减少第一抽吸装置由于运动速度增大导致的液态垃圾溅起,进而与第一抽吸装置接触的风险,尽可能防止第一抽吸装置进水导致的失效、发臭等问题。
可选地,在其他实施例中,上述根据运动状态参数,确定负压源的目标运行参数的步骤,可以包括:
根据运动加速度、以及预设运动加速度与预设运行参数之间的第一对应关系,确定第一抽吸装置的第一目标运行参数;和,根据运动速度、以及预设运动速度与预设运行参数之间的第二对应关系,确定第一抽吸装置的第二目标运行参数;将第一目标运行参数与第二目标运行参数进行比较,确定二者中的较小值为第一抽吸装置的目标运行参数。
在本申请实施例中,可根据第一对应关系获取智能洗地机的第一目标运行参数,以及根据第二对应关系获取智能洗地机的第二目标运行参数。通过将第一目标运行参数与第二目标运行参数进行比较,确定二者中的较小值为第一抽吸装置的目标运行参数。如此,便可多维度的综合考虑智能洗地机的运动状态参数,并根据运动状态参数确定第一抽吸装置的运行参数,减少第一抽吸装置在使用时进水的风险。
可选地,在一些实施例中,污水箱包括固液分离室和污水室,智能洗地机 的负压源包括第二抽吸装置,第二抽吸装置与污水室相连,第二抽吸装置用于用于增大污水室的负压,使污水室的负压大于所述固液分离室的负压,可加快固液分离室的液体流入污水室的速度、以及防止污水室的液体垃圾回流至固液分离室。
需要说明的是,本申请对于污水箱以及第二抽吸装置的具体位置不做限定。例如污水箱可以设置在机身,相应的,第二抽吸装置设置在机身;污水箱也可以设置在底盘,相应的,第二抽吸装置设置在机身。上述根据运动状态参数,确定负压源的目标运行参数的步骤,可以包括:
根据运动加速度、以及预设运动加速度与预设运行参数之间的第三对应关系,确定第二抽吸装置的第三目标运行参数,该第三目标运行参数即为第二抽吸装置的目标运行参数。
需要说明的是,上述第三对应关系为预设运动加速度与第二抽吸装置的预设运行参数的对应关系,例如可以表现为运动加速度范围与第二抽吸装置的运行参数的对应关系表,也可以表现为运动加速度与运行参数的拟合函数关系曲线,本申请对此不加以限定。此外,本申请对于预设运动加速度与第二抽吸装置的预设运行参数对应的具体数值不做限定,在其他实施例中,第二抽吸装置的预设运行参数还可以表现为运行状态,该运行状态包括开启状态,关闭状态、常开状态或间歇性关闭状态等。
可以理解的,第二抽吸装置预设运行参数数值的降低可依次对应于其的开启状态、常开状态、间歇性关闭状态以及关闭状态。例如,当运动加速度为大于等于5m/s2时,对应于第二抽吸装置的运行状态可以为间歇性关闭状态;当运动加速度为小于5m/s2时,对应于第二抽吸装置的运行状态可以为常开状态。
在本申请实施例中,可根据运动加速度、以及预设运动加速度与预设运行参数之间的对应关系,确定第二抽吸装置的目标运行参数。
可以理解的,智能洗地机的运动加速度越大,说明智能洗地机速度变化的越快,此时智能洗地机晃动的越强烈,液态垃圾越靠近第二抽吸装置附近。此时,若第二抽吸装置以较大的运行功率运行时,则靠近第二抽吸装置的液态垃圾很有可能会轻易吸入第二抽吸装置内,进而导致第二抽吸装置失效、发臭等 问题。
因此,在本申请实施例中,可根据运动加速度、以及预设运动加速度与预设运行参数之间的对应关系,确定第二抽吸装置的运行参数。如此,可减少第二抽吸装置由于运动加速度增大导致的液态垃圾溅起,进而减少第二抽吸装置吸入液体垃圾风险,尽可能防止第二抽吸装置进水导致失效、发臭等问题。
可选地,在其他实施例中,上述根据运动状态参数,确定负压源的目标运行参数的步骤,可以包括:
根据运动速度、以及预设运动速度与预设运行参数之间的第四对应关系,确定第二抽吸装置的第四目标运行参数。
需要说明的是,上述第四对应关系为预设运动速度与第二抽吸装置的预设运行参数的对应关系,例如可以表现为运动速度与运行参数的对应关系表,也可以为表现运动速度与运行参数的拟合函数关系曲线,本申请对此不加以限定。
此外,本申请对于预设运动速度与第二抽吸装置的预设运行参数对应的具体数值不做限定,用户可根据实际情况自行设定。参见上述,在其他实施例中,第二抽吸装置的预设运行参数还可以表现为运行状态,为避免重复,此处不加以赘述。例如,当运动速度为大于等于0.5m/s时,对应于第二抽吸装置的运行状态可以为间歇性关闭状态;当运动加速度为小于0.5m/s时,对应于第二抽吸装置的运行状态可以为常开状态。
在本申请实施例中,在智能洗地机清洁待清洁地面时,智能洗地机较大的速度会引起污水箱内的液态垃圾溅起,以使液态垃圾靠近第二抽吸装置附近,此时,第二抽吸装置的运行功率较大时,容易将液态垃圾吸入第二抽吸装置内部,从而引发第二抽吸装置失效、液态垃圾在第二抽吸装置内发臭等的问题。可根据运动速度、以及预设运动速度与预设运行参数之间的对应关系,确定第二抽吸装置的目标运行参数。在液态垃圾溅起时,第二抽吸装置以目标运行参数运行,从而尽可能使第二抽吸装置不吸入溅起的液态垃圾,如此,减少第二抽吸装置在使用时进水的风险。
可选地,在其他实施例中,上述根据运动状态参数,确定负压源的目标运行参数的步骤,可以包括:
根据运动加速度、以及预设运动加速度与预设运行参数之间的第三对应关系,确定第二抽吸装置的第三目标运行参数;和,根据运动速度、以及预设运动速度与预设运行参数之间的第四对应关系,确定第二抽吸装置的第四目标运行参数;将第三目标运行参数与第四目标运行参数进行比较,确定二者中的较小值为第二抽吸装置的目标运行参数。
需要说明的是,上述第三对应关系为预设运动加速度与第二抽吸装置的预设运行参数的对应关系;上述第四对应关系为预设运动速度与第二抽吸装置的预设运行参数的对应关系;在其他实施例中,第二抽吸装置的预设运行参数还可以表现为运行状态,为避免重复,此处不加以赘述。
此外,本申请对于上述第三对应关系以及上述第四对应关系的具体数值不做限定,例如当运动加速度为大于等于5m/s2时或运动速度为大于等于0.5m/s时,对应于第二抽吸装置的运行状态可以为间歇性关闭状态;当运动加速度为小于5m/s2且运动加速度为小于0.5m/s时,对应于第二抽吸装置的运行状态可以为常开状态。
在本申请实施例中,可根据第三对应关系获取第二抽吸装置的第三目标运行参数,以及根据第四对应关系获取第二抽吸装置第四目标运行参数。并将第三目标运行参数与第四目标运行参数进行比较,确定二者中的较小值为第二抽吸装置的目标运行参数。如此,便可多维度的综合考虑智能洗地机的运动状态参数,从而确定第二抽吸装置的运行参数,防止第二抽吸装置由于进水导致的损坏以及短路等问题的出现。
可选地,在上述实施例的基础上,负压源还可以同时包括第一抽吸装置和第二抽吸装置,本申请提出的洗地机控制方法可同时控制第一抽吸装置以及第二抽吸装置以实现如上述任一项所述的实施例,为避免重复,此处不加以赘述。
可选地,在其他实施例中,污水箱可设置在机身;运动状态参数还包括机身与地面的角度、角速度、以及角度加速度的至少一种。
在一实施例中,目标运行参数包括负压源的运行功率。其中,负压源的运行功率与角度成正相关。可以理解的,当机身与地面的角度越大时,污水箱内的水较难往负压源的方向流动,即污水箱的水与负压源的距离较远,负压源较 难吸入污水箱内的液体垃圾,这时负压源的运行功率可增大一些。因此,将负压源的运行功率与机身与地面的角度关系设置成正相关。
在一实施例中,目标运行参数包括负压源的运行功率。其中,负压源的运行功率与角速度成负相关。可以理解的,当机身与地面的角度加速度越大时,说明角速度的大小和/或方向在单位时间内的变化率较大,此时污水箱内的水容易被激荡起来,如此,污水箱内的水靠近负压源,负压源以较大功率运行时会容易吸入污水箱内的水,这时需要减小负压源的运行功率。因此,负压源的运行功率与角度加速度成负相关。
在一实施例中,目标运行参数包括负压源的运行功率。其中,负压源的运行功率与角度加速度成负相关。可以理解的,当机身与地面的角速度越大时,污水箱内的水容易被激荡起来,如此,污水箱内的水靠近负压源,负压源以较大功率运行时会容易吸入污水箱内的水,这时需要减小负压源的运行功率。因此,负压源的运行功率与角速度成负相关。
在一实施例中,目标运行参数包括负压源的运行功率。其中,负压源的运行功率与角度成正相关,负压源的运行功率与角速度成负相关以及负压源的运行功率与角度加速度成负相关。分别根据角度确定负压源的运行功率、根据角速度确定负压源的运行功率以及根据角度加速度确定负压源的运行功率,将这些负压源的运行功率进行比较,确定三者中最小的一个运行功率作为负压源的目标运行功率。
综上所述,在机身与地面的之间的角度变小,污水往负压源方向流动时,这时控制负压源的运行功率变小,可避免负压源将污水吸入。在智能洗地机的角度加速度变大时,污水容易在污水箱内激荡起来,以靠近负压源,这时控制负压源的运行功率变小,可避免机身与地面的角度加速度过大导致污水溅起,进而减小负压源吸入污水的风险,可防止负压源进水导致的失效、污水在负压源内发臭等问题的出现。同样地,在智能洗地机的角速度变大时,污水容易在污水箱内激荡起来,以靠近负压源,这时控制负压源的运行功率变小,可避免机身与地面的角速度过大导致污水溅起,进而减小负压源吸入污水的风险,可防止负压源进水导致的失效、污水在负压源内发臭等问题的出现。
可选地,上述根据运动状态参数,确定负压源的目标运行参数的步骤,包括:
根据角度、以及预设角度与负压源的预设运行参数之间的第五对应关系,确定第一抽吸装置的第五目标运行参数,该第五目标运行参数即为第一抽吸装置的目标运行参数。
具体的,可先确定上述获得的机身与地面的角度所对应的预设角度,并将该预设角度作为第一抽吸装置的目标角度范围。进而根据目标角度范围和第五对应关系,确定第一抽吸装置的第五目标运行参数,也即第一抽吸装置的目标运行参数。
需要说明的是,上述第五对应关系为预设角度与第一抽吸装置的预设运行参数的对应关系,例如可以表现为预设角度范围或预设角度与第一抽吸装置的预设运行参数的对应关系表,也可以表现为角度与第一抽吸装置的运行参数的拟合函数关系曲线,本申请对此不加以限定。此外,本申请对于角度与第一抽吸装置的运行参数不做限定,也即运行功率对应的具体数值不做限定。在其他实施例中,第一抽吸装置的运行功率还可以对应于运行模式,该运行模式包括低档模式,中档模式、中高档模式以及高档模式等。
示例性的,当机身与地面的角度小于5°时,对应于第一抽吸装置的运行功率可以为15W,或对应于第一抽吸装置的运行模式为低档模式;当机身与地面的角度5°至20°之间时,对应于第一抽吸装置的运行功率可以为30W,或对应于第一抽吸装置的运行模式为中档模式;当机身与地面的角度为20°至30°之间时,对应于第一抽吸装置的运行功率可以为30W至90W,或对应于第一抽吸装置的运行模式为中高档模式;当机身与地面的角度大于30°时,对应于第一抽吸装置的运行功率可以为90W,或对应于第一抽吸装置的运行模式为高档模式。
在本申请实施例中,可基于机身与地面之间的角度,适应性的调节第一抽吸装置的运行功率或运行模式,从而防止第一抽吸装置吸入污水箱内的水,进而可防止由于进水导致的第一抽吸装置失效、发臭等问题的出现。
可选地,在其他实施例中,上述根据运动状态参数,确定负压源的目标运 行参数,可以包括:
根据角度加速度、以及预设角度加速度与负压源的预设运行参数之间的第六对应关系,确定第一抽吸装置的第六目标运行参数,该第六目标运行参数即为第一抽吸装置的目标运行参数。
具体的,可先确定上述获得的机身与地面的角度加速度所对应的预设角度加速度,并将该预设角度加速度作为第一抽吸装置的目标角度加速度。进而根据目标角度加速度和第六对应关系,确定第一抽吸装置的第六目标运行参数,也即第一抽吸装置的目标运行参数。
需要说明的是,上述第六对应关系为角度加速度与第一抽吸装置的运行参数的对应关系,例如可以表现为预设角度加速度范围或预设角度加速度与第一抽吸装置的预设运行参数的对应关系表,也可以表现为角度加速度与第一抽吸装置的运行参数的拟合函数关系曲线,本申请对此不加以限定。此外,本申请对于角度加速度与第一抽吸装置的运行参数对应的具体数值不做限定,用户可根据实际情况自行设定。在其他实施例中,第一抽吸装置的运行功率还可以对应于运行模式,具体参见上述,未避免重复,此处不加以赘述。
可选地,在其他实施例中,上述根据运动状态参数,确定负压源的目标运行参数,可以包括:
根据角速度、以及预设角速度与负压源的预设运行参数之间的第七对应关系,确定第一抽吸装置的第七目标运行参数,该第七目标运行参数即为第一抽吸装置的目标运行参数。
具体的,可先确定上述获得的智能洗地机的角速度所对应的预设角速度,并将该预设角速度作为第一抽吸装置的目标角速度。进而根据目标角速度和第七对应关系,确定第一抽吸装置的第七目标运行参数,也即第一抽吸装置的目标运行参数。
需要说明的是,上述第七对应关系为角速度与第一抽吸装置的运行参数的对应关系,例如可以表现为预设角速度范围或预设角速度与第一抽吸装置的预设运行参数的对应关系表,也可以表现为角速度与第一抽吸装置的运行参数的拟合函数关系曲线,本申请对此不加以限定。此外,本申请对于角速度与第一 抽吸装置的运行参数对应的具体数值不做限定,用户可根据实际情况自行设定。在其他实施例中,第一抽吸装置的运行功率还可以对应于运行模式,具体参见上述,为避免重复,此处不加以赘述。
可选地,在其他实施例中,上述根据运动状态参数,确定负压源的目标运行参数,还可以包括:
根据角度、以及预设角度与负压源的预设运行参数之间的第五对应关系,确定第一抽吸装置的第五目标运行参数;和,根据角度加速度、以及预设角度加速度与负压源的预设运行参数之间的第六对应关系,确定第一抽吸装置的第六目标运行参数;和,根据角速度、以及预设角速度与负压源的预设运行参数之间的第七对应关系,确定第一抽吸装置的第七目标运行参数;将第五目标运行参数、第六目标运行参数以及第七目标运行参数进行比较,确定三者中的较小值为第一抽吸装置的目标运行参数。
在本申请实施例中,可分别根据第五对应关系获取第一抽吸装置的第五目标运行参数、根据第六对应关系获取第一抽吸装置的第六目标运行参数、以及根据第七对应关系获取第一抽吸装置的第七目标运行参数。通过将第五目标运行参数、第六目标运行参数以及第七目标运行参数进行比较,确定三者中的较小值为第一抽吸装置的目标运行参数。如此,便可多维度的综合考虑智能洗地机的运动状态参数,从而确定第第一抽吸装置的运行参数,尽可能减小第一抽吸装置在使用时进水的风险。
可选地,在其他实施例中,所述根据运动状态参数,确定负压源的目标运行参数,可以包括如下步骤中的任意两项:
根据所述角度、以及预设角度与所述负压源的预设运行参数之间的第五对应关系,确定所述第一抽吸装置的第五目标运行参数;
根据所述角度加速度、以及预设角度加速度范围与所述负压源的预设运行参数之间的第六对应关系,确定所述第一抽吸装置的第六目标运行参数;
根据所述角速度、以及预设角速度与所述负压源的预设运行参数之间的第七对应关系,确定所述第一抽吸装置的第七目标运行参数。
若所述根据所述运动状态参数,确定所述负压源的目标运行参数,包括上 述的两个步骤,则根据对应步骤获取到两个的参数,并将两个的参数进行比较,获取其中的较小值为第一抽吸装置的目标运行参数;
其中,参数为第五目标运行参数、第六目标运行参数或者第七目标运行参数。
在一示例中,所述根据运动状态参数,确定负压源的目标运行参数,可以包括步骤:
根据所述角度、以及预设角度与所述负压源的预设运行参数之间的第五对应关系,确定所述第一抽吸装置的第五目标运行参数;
根据所述角度加速度、以及预设角度加速度范围与所述负压源的预设运行参数之间的第六对应关系,确定所述第一抽吸装置的第六目标运行参数。
根据对应步骤获取到两个的参数,两个参数分别为第五目标运行参数与第六目标运行参数,并将第五目标运行参数与第六目标运行参数这两个的参数进行比较,获取第五目标运行参数与第六目标运行参数中的较小值为第一抽吸装置的目标运行参数。
在另一示例中,所述根据运动状态参数,确定负压源的目标运行参数,可以包括步骤:
根据所述角度加速度、以及预设角度加速度范围与所述负压源的预设运行参数之间的第六对应关系,确定所述第一抽吸装置的第六目标运行参数;
根据所述角速度、以及预设角速度与所述负压源的预设运行参数之间的第七对应关系,确定所述第一抽吸装置的第七目标运行参数。
根据对应步骤获取到两个的参数,两个参数分别为第六目标运行参数与第七目标运行参数,并将第六目标运行参数与第七目标运行参数这两个的参数进行比较,获取第六目标运行参数与第七目标运行参数中的较小值为第一抽吸装置的目标运行参数。
可选地,在其他实施例中,污水箱包括固液分离室和污水室,第二抽吸装置与污水室相连,第二抽吸装置提供负压以加快固液分离室的液体流入污水室的速度。上述根据运动状态参数,确定负压源的目标运行参数,包括:
根据角度、以及角度与负压源的运行参数之间的第八对应关系,确定第二 抽吸装置的第八目标运行参数。
需要说明的是,上述第八对应关系为角度与第二抽吸装置的运行参数的对应关系,例如可以表现为角度范围或角度与第二抽吸装置的运行参数的对应关系表,也可以表现为角度与第二抽吸装置的运行参数的拟合函数关系曲线,本申请对此不加以限定。此外,本申请对于角度与第二抽吸装置的运行参数对应的具体数值不做限定,用户可根据实际情况自行设定。在其他实施例中,第二抽吸装置的预设运行参数还可以表现为运行状态,为避免重复,此处不加以赘述。
在本申请实施例中,在使用洗地机时,机身与地面的角度减小,会引起液态垃圾溅起、或引起的液体垃圾往靠近第二抽吸装置流动,如此,液体垃圾在第二抽吸装置附近,第二抽吸装置以较大的运行功率运行时,容易将污水吸入第二抽吸装置的内部。可根据角度范围与第二抽吸装置的运行参数之间的对应关系,或角度与第二抽吸装置的运行参数之间的对应关系,确定第二抽吸装置的目标运行参数,如此,可减少第二抽吸装置由于角度减小引起的液态垃圾溅起、或引起的液体垃圾往靠近第二抽吸装置流动,进而减小第二抽吸装置在使用时进水的风险。
可选地,在其他实施例中,上述根据运动状态参数,确定负压源的目标运行参数,还可以包括:
根据角度加速度、以及预设角度加速度与负压源的预设运行参数之间的第九对应关系,确定第二抽吸装置的第九目标运行参数。
需要说明的是,上述第九对应关系为预设角度加速度与第二抽吸装置的预设运行参数的对应关系,例如可以表现为角度加速度范围与第二抽吸装置的运行参数的对应关系表,也可以表现为角度加速度与第二抽吸装置的运行参数的拟合函数关系曲线,本申请对此不加以限定。此外,本申请对于角度加速度与第二抽吸装置的运行参数对应的具体数值不做限定,用户可根据实际情况自行设定。在其他实施例中,第二抽吸装置的预设运行参数还可以表现为运行状态,为避免重复,此处不加以赘述。
在本申请实施例中,可根据角度加速度范围与第二抽吸装置的运行参数之 间的对应关系,确定第二抽吸装置的目标运行参数。
可以理解的,当机身与地面的角度加速度越大时,说明角速度的大小和/或方向在单位时间内的变化率较大,此时污水箱内的水容易被激荡起来,如此,污水箱内的水靠近第二抽吸装置,第二抽吸装置以较大功率运行时会容易吸入污水箱内的水,从而导致第二抽吸装置失效、发臭等问题出现。
因此,可基于角度加速度、以及预设角度加速度与第二抽吸装置的预设运行参数之间的对应关系,确定第二抽吸装置的目标运行参数。如此,可减少第二抽吸装置由于角度加速度改变引起的导致的液态垃圾溅起,进而与第二抽吸装置接触的风险,尽可能防止第二抽吸装置进水导致的失效、发臭等的问题。
可选地,在其他实施例中,上述根据运动状态参数,确定负压源的目标运行参数,可以包括:
根据角速度、以及预设角速度与负压源的预设运行参数之间的第十对应关系,确定第二抽吸装置的第十目标运行参数。
需要说明的是,上述第十对应关系为预设角速度与第二抽吸装置的预设运行参数的对应关系,例如可以表现为角速度范围与第二抽吸装置的运行参数的对应关系表,或角速度与第二抽吸装置的运行参数的对应关系表,也可以表现为角速度与第二抽吸装置的运行参数的拟合函数关系曲线,本申请对此不加以限定。此外,本申请对于角速度与第二抽吸装置的运行参数对应的具体数值不做限定,用户可根据实际情况自行设定。在其他实施例中,第二抽吸装置的预设运行参数还可以表现为运行状态,为避免重复,此处不加以赘述。
在本申请实施例中,在使用智能洗地机时,机身与地面的角速度增大,会引起液态垃圾溅起,以减小了液体垃圾与第二抽吸装置的距离,如此,液体垃圾在第二抽吸装置附近,第二抽吸装置以较大的运行功率运行时,容易将污水吸入第二抽吸装置的内部。可根据角速度范围与第二抽吸装置的运行参数之间的对应关系,或角速度与第二抽吸装置的运行参数之间的对应关系,确定第二抽吸装置的目标运行参数,如此,可减少第二抽吸装置由于角速度增大引起的液态垃圾溅起,进而减小第二抽吸装置在使用时进水的风险。
可选地,在其他实施例中,所述根据运动状态参数,确定负压源的目标运 行参数,可以包括:
根据角度、以及预设角度与负压源的预设运行参数之间的第八对应关系,确定第二抽吸装置的第八目标运行参数;根据角度加速度、以及预设角度加速度与负压源的预设运行参数之间的第九对应关系,确定第二抽吸装置的第九目标运行参数;根据角速度、以及预设角速度与负压源的预设运行参数之间的第十对应关系,确定第二抽吸装置的第十目标运行参数;将第八目标运行参数、第九目标运行参数、以及第十目标运行参数进行比较,确定三者中的较小值为第二抽吸装置的目标运行参数。
在本申请实施例中,可分别根据第八对应关系获取第二抽吸装置的第八目标运行参数、根据第九对应关系获取第二抽吸装置的第九目标运行参数、以及根据第十对应关系获取第二抽吸装置的第十目标运行参数。通过将第八目标运行参数、第九目标运行参数、以及第十目标运行参数进行比较,确定三者中的较小值为第二抽吸装置的目标运行参数。如此,便可多维度的综合考虑智能洗地机的运动状态参数,从而确定第二抽吸装置的运行参数,也即抽吸速度,尽可能减小第二抽吸装置在使用时进水的风险。
在一些实施例中,所述根据运动状态参数,确定负压源的目标运行参数,可以包括如下步骤中的任意两项:
根据所述角度、以及所述预设角度与所述负压源的预设运行参数之间的第八对应关系,确定所述第二抽吸装置的第八目标运行参数;
根据所述角度加速度、以及预设角度加速度与所述负压源的预设运行参数之间的第九对应关系,确定所述第二抽吸装置的第九目标运行参数;
根据所述角速度、以及预设角速度与所述负压源的预设运行参数之间的第十对应关系,确定所述第二抽吸装置的第十目标运行参数。
根据对应步骤获取到两个参数,并将两个所述参数进行比较,获取其中的较小值为所述第二抽吸装置的目标运行参数。
在一示例中,所述根据运动状态参数,确定负压源的目标运行参数,可以包括如下两个步骤:
根据所述角度、以及所述预设角度与所述负压源的预设运行参数之间的第 八对应关系,确定所述第二抽吸装置的第八目标运行参数;
根据所述角度加速度、以及预设角度加速度与所述负压源的预设运行参数之间的第九对应关系,确定所述第二抽吸装置的第九目标运行参数;
根据对应步骤获取到两个参数,两个参数为第八目标运行参数和第九目标运行参数,并将第八目标运行参数和第九目标运行参数这两个所述参数进行比较,获取第八目标运行参数和第九目标运行参数中的较小值为所述第二抽吸装置的目标运行参数。
在一示例中,所述根据运动状态参数,确定负压源的目标运行参数,可以包括如下两个步骤:
根据所述角度加速度、以及预设角度加速度与所述负压源的预设运行参数之间的第九对应关系,确定所述第二抽吸装置的第九目标运行参数;
根据所述角速度、以及预设角速度与所述负压源的预设运行参数之间的第十对应关系,确定所述第二抽吸装置的第十目标运行参数。
根据对应步骤获取到两个参数,两个参数为第九目标运行参数和第十目标运行参数,并将第九目标运行参数和第十目标运行参数这两个所述参数进行比较,获取第九目标运行参数和第十目标运行参数中的较小值为所述第二抽吸装置的目标运行参数。
在一实施例中,所述清洁控制方法包括:
响应于角度小于第一预设角度时,智能洗地机以第一模式运行;
响应于角度大于或等于第一预设角度时,智能洗地机以设定的模式运行。
可以理解地,第一模式为滚刷、负压源以较小的运行功率运行,以及滚刷的给水速度减小。所述较小的运行功率可以根据智能洗地机的情况设定。当机身与地面的角度小于第一预设角度时,污水箱的污水容易往负压源方向流动,此时,污水靠近负压源,负压源以较大的功率运行时,容易将污水吸入负压源。角度小于第一预设角度时,智能洗地机以第一模式运行,可尽可能减小负压源吸入污水的风险。相应地,负压源运行功率减小时,滚刷转速可相应地减小,滚刷的给水速度减小。“所述第一模式为滚刷、负压源以较小的运行功率运行,以及滚刷的给水速度减小”中的“较小”以及“减小”是与智能洗地机的其他 模式进行对比而言的。
角度大于或等于第一预设角度时,污水箱的污水往负压源方向流动的程度小,污水距离负压源的距离在安全范围内,此时,可以控制负压源的运行功率,负压源以用户在使用时设定的模式运行。例如,用户在使用智能洗地机时,使用正常模式、强劲模式或吸水模式等的一种在进行清洁待清洁地面。用户将机身转动且靠近地面,角度小于第一预设角度时,清洁模式从使用中的正常模式、强劲模式、或吸水模式变为第一模式。第一模式中,滚刷、负压源以较小的运行功率运行,以及滚刷的给水速度减小。用户将机身转动远离地面,角度大于或等于第一预设角度时,智能洗地机从第一模式变为原先用户设定的模式,例如,正常模式、强劲模式或是吸水模式。用户设定的模式也可以是第一模式。
可选地,在上述实施例的基础上,运动状态参数可以包括智能洗地机的运动速度、运动加速度、机身与地面的角度、角速度、以及角度加速度的至少一种。目标运行参数包括负压源的运行功率。
上述根据运动状态参数,确定负压源的目标运行参数可包括:基于智能洗地机的运动速度、运动加速度、机身与地面的角度、角速度、以及角度加速度中的至少一种的对应的控制方法,确定负压源的运行功率。具体参见上述,为避免重复,此处不加以赘述。若根据上述基于智能洗地机的运动速度、运动加速度、机身与地面的角度、角速度、以及角度加速度中的至少一种的对应的控制方法,确定的负压源的运行功率是不相同的,可将获得的所有负压源的运行功率进行比较,将其中最小值的运行功率作为负压源的目标运行功率。
可选地,在上述实施例的基础上,运动状态参数可以包括智能洗地机的运动速度、运动加速度、机身与地面之间的角度、角速度以及角度加速度的至少一种。目标运行参数包括负压源的运行功率以及第二抽吸装置的抽吸速度,负压源可以包括第一抽吸装置以及第二抽吸装置中的至少一种。
上述根据运动状态参数,确定负压源的目标运行参数可包括:基于智能洗地机的运动速度、运动加速度、机身与地面的角度、角速度、以及角度加速度的至少一种的对应的控制方法,确定负压源的运行功率以及第二抽吸装置的抽吸速度。具体参见上述,为避免重复,此处不加以赘述。
可选地,在上述实施例的基础上,负压源包括第一抽吸装置、以及第二抽吸装置,运动状态参数包括智能洗地机的运动速度、运动加速度、角度、角速度、角度加速度。
上述根据运动状态参数,确定负压源的目标运行参数可以包括:分别根据运动速度、运动加速度、角度、角度加速度对应的控制方法,确定四个第一抽吸装置的运行功率,选取其中最小的为第一抽吸装置的目标运行功率;
分别根据运动速度、运动加速度、角度、角度加速度对应的控制方法,确定四个第二抽吸装置的运行功率,选取其中最小的为第二抽吸装置的目标运行功率。
在本申请实施例中,可基于运动速度、运动加速度、角度、角度加速度对应的控制方法,确定第一抽吸装置的目标运行功率以及第二抽吸装置的目标运行功率。如此,便可多维度的综合考虑智能洗地机的运动状态参数,从而确定第一抽吸装置以及第二抽吸装置的运行参数,尽可能防止一抽吸装置以及第二抽吸装置由于进水导致的失效、发臭等问题的出现。
在一些实施例中,本申请提出的洗地机控制方法,还可以包括;
根据负压源的抽气通道的水检测信息确定负压源的运行状态。
其中,水检测信息包括有水状态和无水状态,运行状态包括开启和关闭。
具体的,负压源包括第一抽吸装置,第一抽吸装置与污水箱相连;当水检测信息为有水状态时,则控制第一抽吸装置关闭;当水检测信息为无水状态时,则控制第一抽吸装置开启。
可以理解的,当第一抽吸装置的抽气通道为有水状态时,第一抽吸装置吸入污水的可能性较大,因此,控制第一抽吸装置关闭能够有效的防止第一抽吸装置继续吸入污水。
在本申请实施例中,可根据抽气通道的水检测信息控制第一抽吸装置的开启和关闭。如此,可直接的控制负压源的运行状态,尽可能避免污水进入第一抽吸装置的情况发生。
在一实施例中,本申请提出的洗地机控制方法,还可以包括;
根据负压源的抽气通道的水检测信息确定负压源的运行状态;其中,水检 测信息包括有水状态和无水状态,运行状态包括开启和关闭。
具体地,污水箱包括固液分离室和污水室,负压源包括第二抽吸装置,第二抽吸装置用于增大污水室的负压,使污水室的负压大于固液分离室的负压。根据负压源的抽气通道的水检测信息确定负压源的运行状态,包括:
若水检测信息为有水状态,则控制第二抽吸装置关闭;
若水检测信息为无水状态,则控制第二抽吸装置开启。
可以理解的,当第二抽吸装置的抽气通道为有水状态时,第二抽吸装置吸入污水的可能性较大,因此,控制第二抽吸装置关闭能够有效的防止第二抽吸装置继续吸入污水。
进一步地,负压源还包括第一抽吸装置,第一抽吸装置用于提供负压以将智能洗地机清洗待清洁地面的垃圾抽吸至污水箱;若所述水检测信息为有水状态,则控制负压源关闭步骤之后,还包括:
响应于预设时间后,水检测信息仍为有水状态,关闭第一抽吸装置;
响应于预设时间后,水检测信息由有水状态变为无水状态,开启第二抽吸装置。
可以理解地,水检测信息为有水状态的原因可能是污水室已水满,水位到达第二抽吸装置的高度;也可能是污水箱倾斜导致往第二抽吸装置方向流动,水流动到第二抽吸装置的位置;还可能是污水箱晃动,导致污水室内的污水被激荡起来,污水的高度到达第二抽吸装置的位置。如上情况均可以造成水检测信息为有水状态。
可以理解地,当污水室已水满,在预设时间后,水检测信息仍为有水状态,那么此时应该关闭第一抽吸装置,尽可能避免水位继续上升。
当污水箱倾斜导致往第二抽吸装置方向流动,水流动到第二抽吸装置的位置,造成水检测信息为有水状态时,那么在预设时间之后,污水箱倾斜程度可能减小或污水箱可能是直立状态。此时,水检测信息由有水状态变为无水状态,开启第二抽吸装置,使智能洗地机继续工作。
当污水箱晃动,导致污水室内的污水被激荡起来,污水的高度到达第二抽吸装置的位置,造成水检测信息为有水状态时,那么在预设时间之后,污水箱 的激荡程度可能减小。此时,水检测信息由有水状态变为无水状态,开启第二抽吸装置,使智能洗地机继续工作。
在一些实施例中,本申请提出的洗地机控制方法,还可以包括;
获取污水箱的第一水位信息,根据运动状态参数以及第一水位信息,确定负压源的目标运行参数。
具体的,运行参数包括运行功率;若第一水位信息中的水位大于或等于第一预设水位值,且所述机身与地面之间的角度不变或增大,则负压源的运行功率减小;若第一水位信息中的水位大于或等于第一预设水位值,且机身与地面之间的角度减小,则负压源的运行功率减小;若第一水位信息中的水位小于所述第二预设水位值,且机身与地面之间的角度增大,则负压源的运行功率保持不变。需要说明的是,这里的负压源包括第一抽吸装置,以及第二抽吸装置中的至少一种。相应地,负压源包括第二抽吸装置时,或包括第一抽吸装置和第二抽吸装置时,污水箱包括固液分离室和污水室。
可以理解的,污水箱中的水位大于或等于第一预设水位值,负压源吸入水可能性越大;此外,机身与地面之间的角度越小,负压源吸入水可能性越大。因此,当第一水位信息中的水位大于或等于第一预设水位值,且机身与地面之间的角度不变或增大时,控制负压源的运行功率减小;当第一水位信息中的水位大于或等于第一预设水位值,机身与地面之间的角度减小时,控制负压源的运行功率减小;当第一水位信息中的水位小于所述第二预设水位值,且机身与地面之间的角度增大时,此时负压源吸入水可能性降低,可控制负压源的运行功率保持不变或增大。其中,第一预设水位值大于第二预设水位值。
第一预设水位值为污水箱的危险水位,当水位达到第一预设水位时,负压源吸入污水的概率较大,这时无论机身与地面之间的角度不变、增大或减小时,负压源吸入污水的概率还是较大,故而需要减小负压源的运行功率。第二预设水位值为污水箱的安全水位,当水位小于第二预设数位值时,说明污水箱的水很少,水离负压源的距离较远,这时负压源吸入水的概率较小。
在本申请实施例中,可结合运动状态参数以及污水箱的第一水位信息,综合确定负压源的运行参数,适应性的调整负压源的运行功率,尽可能避免水进 入负压源的情况发生。
本申请提出的洗地机控制方法,能够通过智能洗地机的运动状态参数,确定负压源的运行参数,避免水进入负压源的情况发生。除此之外,还可以进一步结合抽气通道的水检测信息以及污水箱的第一水位信息,综合确定负压源的运行参数,实现了多维度的考虑智能洗地机的状态,并根据智能洗地机的状态确定负压源的运行参数,避免负压源在使用时进水的问题出现。
在一些实施例中,污水箱包括固液分离室和污水室,智能洗地机的负压源包括第二抽吸装置,第二抽吸装置与污水室相连,第二抽吸装置用于增大污水室的负压,使污水室的负压大于固液分离室的负压;所述洗地机控制方法还包括:
获取固液分离室的第二水位信息;
根据运动状态参数以及第二水位信息,确定负压源的目标运行参数。
具体地,运行参数包括运行功率,若第二水位信息中的大于或等于第三预设水位值,且机身与地面之间的角度不变或增大,则负压源的运行功率减小;若第二水位信息中的水位大于或等于第三预设水位值,且机身与地面之间的角度减小,则负压源的运行功率减小;若第二水位信息中的水位小于第四预设水位值,且机身与地面之间的角度增大,则负压源的运行功率保持不变或增大;其中,第三预设水位值大于第四预设水位值。
可以理解地,固液分离室的水位较高,固液分离室的污水没有及时流入污水室,容易造成固液分离室水满,或容易使负压源吸入污水,进而造成智能洗地机停止运行。
第三预设水位值为固液分离室的危险水位,当水位达到第三预设水位时,负压源吸入污水的概率较大,这时无论机身与地面之间的角度不变、增大或减小时,负压源吸入污水的概率还是较大,故而需要减小负压源的运行功率。第四预设水位值为安全水位,当水位小于第四预设数位值时,说明固液分离室的水很少,水离负压源的距离较远,这时负压源吸入水的概率较小。
负压源还包括第一抽吸装置,固液分离室的水位越高,污水越靠近第一抽吸装置,此时第一抽吸装置容易吸入污水。为了尽可能避免第一抽吸装置吸入 污水,可增大第二抽吸装置的功率,进而增大污水室的负压,加快固液分离室中的液体垃圾进入污水室的速度,以减小固液分离室的水位。
以上对本申请实施例所提供的智能洗地机及洗地机控制方法进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (36)

  1. 一种智能洗地机,包括机身、底盘、处理器、负压源、以及设置在所述机身的污水箱,所述负压源与所述污水箱相连,用于提供负压源将清洁过程中产生的污水抽入所述污水箱,其特征在于,还包括角度检测装置;
    所述机身与所述底盘铰接,所述处理器设置在所述机身或所述底盘上,其中,所述机身可分别绕第一轴线和第二轴线旋转;
    所述角度检测装置设置在所述机身和/或所述底盘上,其中,所述处理器与所述角度检测装置电性相连,用于根据所述角度检测装置的检测信号来获取所述机身绕所述第一轴线和/或所述第二轴线旋转的旋转角度;
    所述负压源与所述处理器电性相连,所述处理器还用于基于所述旋转角度控制所述负压源的输出功率;
    其中,所述第一轴线和所述第二轴线互相垂直。
  2. 如权利要求1所述的智能洗地机,其特征在于,所述角度检测装置包括磁性件和霍尔传感器;
    所述磁性件和所述霍尔传感器中一个设置在所述机身上,另一个设置在所述底盘上,其中,所述处理器与所述霍尔传感器电性连接,用于根据所述霍尔传感器的信号强度来获取所述机身绕所述第一轴线和/或所述第二轴线旋转的旋转角度。
  3. 如权利要求2所述的智能洗地机,其特征在于,所述磁性件包括第一磁性件和第二磁性件,所述霍尔传感器包括与所述第一磁性件对应的第一霍尔传感器,以及与所述第二磁性件对应的至少一第二霍尔传感器,所述旋转角度包括所述机身绕所述第一轴线旋转的俯仰角度和绕所述第二轴线旋转的扭转角度;
    所述第一磁性件和所述第一霍尔传感器中一个设置在所述机身上,另一个设置在所述底盘上,其中,所述处理器与所述第一霍尔传感器电性连接,用于基于所述第一霍尔传感器的第一信号强度获取所述扭转角度;
    所述第二磁性件和所述第二霍尔传感器中一个设置在所述机身上,另一个设置在所述底盘上,其中,所述处理器与所述第二霍尔传感器电性连接,用于基于所述第二霍尔传感器的第二信号强度获取所述俯仰角度。
  4. 如权利要求3所述的智能洗地机,其特征在于,所述第二霍尔传感器的数量为两个;
    两个所述第二霍尔传感器分别设置在所述底盘上,且所述第二磁性件设置在所述机身上。
  5. 如权利要求4所述的智能洗地机,其特征在于,所述第二磁性件为环形磁铁;
    两个所述第二霍尔传感器与所述环形磁铁的中心线的连线所形成的夹角大于0°且小于或等于98°。
  6. 如权利要求3所述的智能洗地机,其特征在于,所述第二霍尔传感器的数量为两个;
    两个所述第二霍尔传感器分别设置在所述机身上,且所述第二磁性件设置在所述底盘上。
  7. 如权利要求3所述的智能洗地机,其特征在于,所述第一磁性件设置在所述底盘上,且所述第一霍尔传感器设置在所述机身上,其中,所述扭转角度为0°时,所述第一霍尔传感器的信号强度为零。
  8. 如权利要求3所述的智能洗地机,其特征在于,所述第一磁性件为弧度大于或等于120°的弧形磁铁,其中,所述扭转角度为0°时,所述第一霍尔传感器对着所述第一磁性件的中间位置。
  9. 如权利要求3所述的智能洗地机,其特征在于,所述第一磁性件设置在所述机身上,且所述第一霍尔传感器设置在所述底盘上,其中,所述扭转角度为0°时,所述第一霍尔传感器的信号强度为零。
  10. 一种洗地机控制方法,其特征在于,所述方法应用于权利要求1~9任一项所述的智能洗地机中,所述方法包括:
    获取角度检测装置的检测信号,基于所述检测信号获取机身绕第一轴线和/或第二轴线旋转的旋转角度;
    基于所述旋转角度控制负压源的输出功率。
  11. 如权利要求10所述的洗地机控制方法,其特征在于,所述获取角度检测装置的检测信号,基于所述检测信号获取机身绕第一轴线和/或第二轴线 旋转的旋转角度,包括:
    获取所述角度检测装置中第一霍尔传感器的第一信号强度,基于所述第一信号强度获取所述机身绕所述第二轴线旋转的扭转角度;以及
    获取所述角度检测装置中第二霍尔传感器的第二信号强度,基于所述第二信号强度获取所述机身绕所述第一轴线旋转的俯仰角度;
    所述基于所述旋转角度控制负压源的输出功率,包括:
    基于所述俯仰角度和所述扭转角度控制负压源的输出功率。
  12. 如权利要求11所述的洗地机控制方法,其特征在于,所述基于所述俯仰角度和所述扭转角度控制负压源的输出功率之前,还包括:
    获取多个预设俯仰角度区间和多个预设扭转角度区间;
    将所述俯仰角度与多个所述预设俯仰角度区间进行比较,以从多个所述预设俯仰角度区间中确定出包含所述俯仰角度的目标预设俯仰角度区间,以及将所述扭转角度与多个所述预设扭转角度区间进行比较,以从多个所述预设扭转角度区间中确定出包含所述扭转角度的目标预设扭转角度区间;
    所述基于所述俯仰角度和所述扭转角度控制负压源的输出功率,包括:
    基于所述目标预设俯仰角度区间和所述目标预设扭转角度区间控制负压源的输出功率。
  13. 如权利要求12所述的洗地机控制方法,其特征在于,所述基于所述目标预设俯仰角度区间和所述目标预设扭转角度区间控制负压源的输出功率,包括:
    基于预设映射关系,获取所述目标预设俯仰角度区间和所述目标预设扭转角度区间对应的映射输出功率;
    将所述映射输出功率作为所述负压源的输出功率。
  14. 如权利要求13所述的洗地机控制方法,其特征在于,所述目标预设俯仰角度区间越小,所述目标预设扭转角度区间越大,则对应的映射输出功率越小。
  15. 如权利要求13所述的洗地机控制方法,其特征在于,所述将所述映射输出功率作为所述负压源的输出功率后,还包括:
    获取所述机身在所述目标预设俯仰角度区间和所述目标预设扭转角度区间的停留时间;
    将所述停留时间与预设时间进行对比;
    若所述停留时间小于所述预设时间,则所述负压源的输出功率保持不变;
    若所述停留时间大于所述预设时间,则所述负压源的输出功率为所述映射输出功率。
  16. 一种洗地机控制方法,其特征在于,所述方法应用于权利要求1~9任一项所述的智能洗地机中,所述方法包括:
    获取所述智能洗地机的运动状态参数;
    根据所述运动状态参数,确定所述负压源的目标运行参数。
  17. 根据权利要求16所述的洗地机控制方法,其特征在于,所述运动状态参数包括所述智能洗地机的运动速度、运动加速度中的至少一种。
  18. 根据权利要求17所述的洗地机控制方法,其特征在于,所述目标运行参数包括所述负压源的运行功率;
    所述负压源的运行功率与所述运动速度成负相关;或,
    所述负压源的运行功率与所述运动加速度成负相关。
  19. 根据权利要求17所述的洗地机控制方法,其特征在于,所述智能洗地机的负压源包括第一抽吸装置,所述第一抽吸装置用于提供负压以将所述智能洗地机清洗待清洁表面的垃圾抽吸至所述污水箱;所述根据所述运动状态参数,确定所述负压源的目标运行参数,包括:
    根据所述运动加速度、以及预设运动加速度与预设运行参数之间的第一对应关系,确定所述第一抽吸装置的第一目标运行参数;和/或,
    根据所述运动速度、以及预设运动速度与预设运行参数之间的第二对应关系,确定所述第一抽吸装置的第二目标运行参数;
    将所述第一目标运行参数与所述第二目标运行参数进行比较,确定二者中的较小值为所述第一抽吸装置的目标运行参数。
  20. 根据权利要求17所述的洗地机控制方法,其特征在于,所述污水箱包括固液分离室和污水室,所述智能洗地机的负压源包括第二抽吸装置,所述 第二抽吸装置与所述污水室相连,所述第二抽吸装置用于增大所述污水室的负压,使所述污水室的负压大于所述固液分离室的负压;所述根据所述运动状态参数,确定所述负压源的目标运行参数,包括:
    根据所述运动加速度、以及预设运动加速度与预设运行参数之间的第三对应关系,确定所述第二抽吸装置的第三目标运行参数;和/或,
    根据所述运动速度、以及预设运动速度与预设运行参数之间的第四对应关系,确定所述第二抽吸装置的第四目标运行参数;
    将所述第三目标运行参数与所述第四目标运行参数进行比较,确定二者中的较小值为所述第二抽吸装置的目标运行参数。
  21. 根据权利要求16-20所述的洗地机控制方法,其特征在于,所述运动状态参数包括所述机身与地面的角度、角速度、角度加速度的至少一种。
  22. 根据权利要求21所述的洗地机控制方法,其特征在于,所述目标运行参数包括所述负压源的运行功率;
    所述负压源的运行功率与所述角度成正相关;和/或,
    所述负压源的运行功率与所述角速度成负相关;和/或,
    所述负压源的运行功率与所述角度加速度成负相关。
  23. 根据权利要求21所述的洗地机控制方法,其特征在于,所述负压源包括第一抽吸装置,所述第一抽吸装置用于提供负压以将所述智能洗地机清洗待清洁地面的垃圾抽吸至所述污水箱;所述根据所述运动状态参数,确定所述负压源的目标运行参数,包括如下至少一个步骤:
    根据所述角度、以及预设角度与所述负压源的预设运行参数之间的第五对应关系,确定所述第一抽吸装置的第五目标运行参数;
    根据所述角度加速度、以及预设角度加速度范围与所述负压源的预设运行参数之间的第六对应关系,确定所述第一抽吸装置的第六目标运行参数;
    根据所述角速度、以及预设角速度与所述负压源的预设运行参数之间的第七对应关系,确定所述第一抽吸装置的第七目标运行参数。
  24. 根据权利要求23所述的洗地机控制方法,其特征在于,若所述根据所述运动状态参数,确定所述负压源的目标运行参数,包括两个以上的步骤, 则根据对应步骤获取到两个以上的参数,并将两个以上的所述参数进行比较,获取其中的较小值为所述第一抽吸装置的目标运行参数;
    其中,所述参数为所述第五目标运行参数、所述第六目标运行参数或者所述第七目标运行参数。
  25. 根据权利要求21所述的洗地机控制方法,其特征在于,所述污水箱包括固液分离室和污水室,所述智能洗地机的负压源包括第二抽吸装置,所述第二抽吸装置与所述污水室相连,所述第二抽吸装置用于增大所述污水室的负压,使所述污水室的负压大于所述固液分离室的负压;所述根据所述运动状态参数,确定所述负压源的目标运行参数,包括如下至少一个步骤:
    根据所述角度、以及所述预设角度与所述负压源的预设运行参数之间的第八对应关系,确定所述第二抽吸装置的第八目标运行参数;
    根据所述角度加速度、以及预设角度加速度与所述负压源的预设运行参数之间的第九对应关系,确定所述第二抽吸装置的第九目标运行参数;
    根据所述角速度、以及预设角速度与所述负压源的预设运行参数之间的第十对应关系,确定所述第二抽吸装置的第十目标运行参数。
  26. 根据权利要求25所述的洗地机控制方法,其特征在于,若所述根据所述运动状态参数,确定所述负压源的目标运行参数,包括两个以上的步骤,则根据对应步骤获取到两个以上的参数,并将两个以上的所述参数进行比较,获取其中的较小值为所述第二抽吸装置的目标运行参数;
    其中,所述参数为所述第八目标运行参数、所述第九目标运行参数或者所述第十目标运行参数。
  27. 根据权利要求21所述的洗地机控制方法,其特征在于,所述方法还包括:
    获取所述污水箱的第一水位信息;
    所述根据所述运动状态参数以及所述第一水位信息,确定所述负压源的目标运行参数。
  28. 根据权利要求27所述的洗地机控制方法,其特征在于,所述运行参数包括运行功率;所述根据所述运动状态参数以及所述第一水位信息,确定所 述负压源的目标运行参数,包括:
    若所述第一水位信息中的水位大于或等于第一预设水位值,且所述机身与地面之间的角度不变或增大,则所述负压源的运行功率减小;
    若所述第一水位信息中的水位大于或等于所述第一预设水位值,且所述机身与地面之间的角度减小,则所述负压源的运行功率减小;
    若所述第一水位信息中的小于所述第二预设水位值,且所述机身与地面之间的角度增大或不变,则所述负压源的运行功率保持不变或增大;
    其中,所述第一预设水位值大于所述第二预设水位值。
  29. 根据权利要求21所述的洗地机控制方法,其特征在于,所述方法包括:
    响应于所述角度小于第一预设角度时,智能洗地机以第一模式运行;
    响应于所述角度大于或等于第一预设角度时,智能洗地机以设定的模式运行。
  30. 根据权利要求21所述的洗地机控制方法,其特征在于,所述污水箱包括固液分离室和污水室,所述智能洗地机的负压源包括第二抽吸装置,所述第二抽吸装置与所述污水室相连,所述第二抽吸装置用于增大所述污水室的负压,使所述污水室的负压大于所述固液分离室的负压;所述方法还包括:
    获取所述固液分离室的第二水位信息;
    所述根据所述运动状态参数以及所述第二水位信息,确定所述负压源的目标运行参数。
  31. 根据权利要求30所述的洗地机控制方法,其特征在于,所述运行参数包括运行功率,所述运动状态包括所述机身与地面之间的角度;所述根据所述运动状态参数以及所述第二水位信息,确定所述负压源的目标运行参数,包括:
    若所述第二水位信息中的水位大于或等于第三预设水位值,且所述机身与地面之间的角度不变或增大,则所述负压源的运行功率减小;
    若所述第二水位信息中的水位大于或等于第三预设水位值,且所述机身与地面之间的角度减小,则所述负压源的运行功率减小;
    若所述第二水位信息中的水位小于第四预设水位值,且所述机身与地面之间的角度增大,则所述负压源的运行功率保持不变或增大;
    其中,所述第三预设水位值大于所述第四预设水位值。
  32. 根据权利要求16所述的洗地机控制方法,其特征在于,所述控制方法还包括:
    根据所述负压源的抽气通道的水检测信息确定所述负压源的运行状态。
  33. 根据权利要求32所述的洗地机控制方法,其特征在于,所述水检测信息包括有水状态和无水状态,所述运行状态包括开启和关闭。
  34. 根据权利要求33所述的洗地机控制方法,其特征在于,所述污水箱包括固液分离室和污水室,所述负压源包括第二抽吸装置,所述第二抽吸装置用于增大所述污水室的负压,使所述污水室的负压大于所述固液分离室的负压;所述根据所述负压源的抽气通道的水检测信息确定所述负压源的运行状态,包括:
    若所述水检测信息为所述有水状态,则控制所述第二抽吸装置关闭;
    若所述水检测信息为所述无水状态,则控制所述第二抽吸装置开启。
  35. 根据权利要求34所述的洗地机控制方法,其特征在于,所述负压源还包括第一抽吸装置,所述第一抽吸装置用于提供负压以将所述智能洗地机清洗待清洁地面的垃圾抽吸至所述污水箱;所述若所述水检测信息为所述有水状态,则控制所述负压源关闭步骤之后,还包括:
    响应于预设时间后,所述水检测信息仍为所述有水状态,关闭所述第一抽吸装置;
    响应于预设时间后,所述水检测信息由所述有水状态变为所述无水状态,开启所述第二抽吸装置。
  36. 根据权利要求33所述的洗地机控制方法,其特征在于,所述负压源包括第一抽吸装置,所述第一抽吸装置与所述污水箱相连;所述根据所述负压源的抽气通道的水检测信息确定所述负压源的运行状态,包括:
    若所述水检测信息为所述有水状态,则控制所述第一抽吸装置关闭;
    若所述水检测信息为所述无水状态,则控制所述第一抽吸装置开启。
PCT/CN2023/113609 2022-08-17 2023-08-17 智能洗地机及洗地机控制方法 WO2024037600A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210989433.9 2022-08-17
CN202210989433.9A CN117617836A (zh) 2022-08-17 2022-08-17 一种清洁装置的控制方法、清洁装置及存储介质
CN202310145839.3 2023-02-01
CN202310145839.3A CN116236113A (zh) 2023-02-01 2023-02-01 智能洗地机及洗地机控制方法

Publications (1)

Publication Number Publication Date
WO2024037600A1 true WO2024037600A1 (zh) 2024-02-22

Family

ID=89940722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113609 WO2024037600A1 (zh) 2022-08-17 2023-08-17 智能洗地机及洗地机控制方法

Country Status (1)

Country Link
WO (1) WO2024037600A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111887775A (zh) * 2020-07-17 2020-11-06 江苏美的清洁电器股份有限公司 一种控制方法、装置、电子设备及计算机存储介质
CN114287844A (zh) * 2021-12-29 2022-04-08 杭州英乐特智能科技有限公司 清洁机及其控制方法
CN114391784A (zh) * 2022-01-06 2022-04-26 杰瑞华创科技有限公司 洗地机及其控制方法
EP4122367A2 (en) * 2021-07-23 2023-01-25 Bissell Inc. Filter assembly and floor cleaner
CN116236113A (zh) * 2023-02-01 2023-06-09 云鲸智能(深圳)有限公司 智能洗地机及洗地机控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111887775A (zh) * 2020-07-17 2020-11-06 江苏美的清洁电器股份有限公司 一种控制方法、装置、电子设备及计算机存储介质
EP4122367A2 (en) * 2021-07-23 2023-01-25 Bissell Inc. Filter assembly and floor cleaner
CN114287844A (zh) * 2021-12-29 2022-04-08 杭州英乐特智能科技有限公司 清洁机及其控制方法
CN114391784A (zh) * 2022-01-06 2022-04-26 杰瑞华创科技有限公司 洗地机及其控制方法
CN116236113A (zh) * 2023-02-01 2023-06-09 云鲸智能(深圳)有限公司 智能洗地机及洗地机控制方法

Similar Documents

Publication Publication Date Title
JP2010057647A (ja) 電気掃除機
WO2022048510A1 (zh) 智能清洁系统
WO2024037600A1 (zh) 智能洗地机及洗地机控制方法
WO2023109135A1 (zh) 污物处理装置、清洁设备及其控制方法
WO2024114421A1 (zh) 一种清洁机的清洁控制方法及其清洁机
KR20100008293A (ko) 공기청정가습기
CN115104957B (zh) 扫地机器人的尘盒清洁控制方法、装置及存储介质
WO2024032733A1 (zh) 检测扫地机状态的方法、装置、扫地机及存储介质
CN207613718U (zh) 一种电子智能扫地机器人
CN116236113A (zh) 智能洗地机及洗地机控制方法
CN208563212U (zh) 直流吹吸机
CN116584849A (zh) 一种表面清洁设备的清洁方法
JP2018047051A (ja) 電気掃除機
KR101330729B1 (ko) 로봇청소기
JP2006340828A (ja) 電気掃除機
CN115067829B (zh) 污水桶状态检测方法、设备及可读存储介质
CN108800366A (zh) 一种家用高效空气净化器
JPS62277927A (ja) クリ−ナ−
CN106628751A (zh) 一种家用垃圾桶
CN118252436A (zh) 可平躺清洁的表面清洁方法及系统
CN116616652A (zh) 表面清洁装置及其控制方法
CN117678936A (zh) 清洁设备的污水箱以及清洁设备
CN117617836A (zh) 一种清洁装置的控制方法、清洁装置及存储介质
JP2008154760A (ja) 自走式掃除機
CN117378965A (zh) 洗地机及其控制方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854498

Country of ref document: EP

Kind code of ref document: A1