WO2024037592A1 - 一种塑料的加工方法及加工系统 - Google Patents

一种塑料的加工方法及加工系统 Download PDF

Info

Publication number
WO2024037592A1
WO2024037592A1 PCT/CN2023/113550 CN2023113550W WO2024037592A1 WO 2024037592 A1 WO2024037592 A1 WO 2024037592A1 CN 2023113550 W CN2023113550 W CN 2023113550W WO 2024037592 A1 WO2024037592 A1 WO 2024037592A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste plastic
unit
liquefaction
outlet
dechlorination
Prior art date
Application number
PCT/CN2023/113550
Other languages
English (en)
French (fr)
Inventor
李明丰
任磊
李子锋
王勇
董明
申海平
侯研博
张哲民
韩颖
栗万博
Original Assignee
中国石油化工股份有限公司
中石化石油化工科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211057426.1A external-priority patent/CN117660038A/zh
Priority claimed from CN202211328729.2A external-priority patent/CN117586800A/zh
Application filed by 中国石油化工股份有限公司, 中石化石油化工科学研究院有限公司 filed Critical 中国石油化工股份有限公司
Publication of WO2024037592A1 publication Critical patent/WO2024037592A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal

Definitions

  • the present disclosure relates to the field of plastic resource reuse, and specifically, to a processing method and processing system for liquefaction, viscosity reduction and reaction of waste plastics.
  • Plastic appears in large quantities in human daily life as packaging materials. Used waste plastic usually cannot decompose by itself in nature. Only a few types of waste plastics can be reprocessed and reused through specific recycling channels, and a large amount of waste plastics enter landfills in the form of domestic waste. Since waste plastic does not break down easily, it takes up a lot of space. Especially in recent years, the generation of waste plastics has increased rapidly, and recycling waste plastics quickly and greenly has become an urgent task.
  • the recycling technology of converting waste plastics into oil products not only alleviates the pollution problem caused by waste plastics, but also realizes the recycling of waste plastics, which is an important direction for the resource treatment of waste plastics.
  • CN107746722A, CN101374930A, CN10461030A, CN109401774A, CN112538363A, and CN106118707B disclose some recycling technologies for converting waste plastics into oil products.
  • waste plastic recycling there are the following difficulties: (1) When waste plastic contains polyvinyl chloride, polyvinyl chloride is thermally decomposed into HCl, which can quickly react with double bonds in the raw material to form chlorinated hydrocarbons. As a result, it is difficult for traditional reaction devices to remove chlorine from waste plastics efficiently; (2) Waste plastics are high molecular polymers. Since the molecular weight is huge and solid, heat transfer inside the plastic is very slow. Traditional heating methods will cause the outside of the plastic to be heated.
  • An object of the present disclosure is to provide a processing method and processing system for fluidized cracking of waste plastics, which can continuously fluidize and crack waste materials, realize effective utilization of waste plastic resources, crack waste plastics into low molecular weight products, and can Effectively remove the product Impurities.
  • a first aspect of the present disclosure provides a processing method for fluidized cracking of waste plastics, which method includes the following steps:
  • reaction oil and gas enter the separation unit for separation processing, for example, obtain the second dry gas, liquefied gas, gasoline fraction, diesel fraction and wax oil fraction;
  • the contact agent to be regenerated is allowed to enter the regeneration unit, and the contact agent to be regenerated is regenerated in the presence of oxygen to obtain regenerated contact agent and regenerated flue gas; the regenerated contact agent is returned to the contact cracking reaction unit continue to use.
  • the method further includes: entering the chlorine-containing waste plastic raw material into a waste plastic hot melt dehydration and dechlorination unit, and performing a melting and dehydration treatment on the chlorine-containing waste plastic raw material under the first temperature condition, Obtain dehydrated waste plastic; then heat the dehydrated waste plastic to a second temperature for dechlorination treatment to obtain dehydrated and dechlorinated waste plastic and hydrogen chloride-containing gas; and sequentially cool the dehydrated and dechlorinated waste plastic in a cooling and crushing unit.
  • the method also includes: entering the chlorine-containing waste plastic raw material into the waste plastic preliminary melting, liquefaction and dechlorination unit for hot melt dechlorination treatment to obtain hydrogen chloride-containing gas phase material and dechlorinated waste plastic material;
  • the dechlorinated waste plastic materials enter the waste plastic liquefaction unit; or the dechlorinated waste plastic materials are sequentially cooled and pulverized to obtain dechlorinated waste plastic particles; the dechlorinated waste plastic particles are allowed to enter the Waste plastic liquefaction unit.
  • the method further includes: causing the hydrogen chloride-containing gas to enter the hydrogen chloride absorption unit, and contacting the hydrogen chloride absorbent to perform hydrogen chloride absorption treatment; optionally, causing the hydrogen chloride-containing gas to enter the hydrogen chloride absorption unit under the action of a vacuum system.
  • Hydrogen chloride absorption unit wherein the hydrogen chloride absorbent is water or an alkali solution with a pH greater than 7; optionally, the alkali solution Including one or more of sodium hydroxide solution, potassium hydroxide solution, calcium hydroxide solution, sodium bicarbonate solution, sodium carbonate solution and ammonia water.
  • the cracking reaction carried out in the contact cracking reaction unit in step S3 also obtains carbon-bearing ash; the method also includes: causing the carbon-bearing ash and the contact agent to be generated into the regeneration unit, in the presence of oxygen, The contact agent to be regenerated and the carbon on the charcoal ash are subjected to a complete combustion reaction to obtain regenerated flue gas and regenerated contact agent; preferably, the method further includes: causing at least part of the first dry gas and/or at least Part of the second dry gas enters the regeneration unit, so that the to-be-generated contact agent and carbon-bearing ash undergo a complete combustion reaction in the presence of oxygen and dry gas to obtain regenerated flue gas and regenerated contact agent; preferably, Based on the total weight of the contact agent to be produced, the carbon content of the contact agent to be produced is 0.5-5.0% by weight.
  • the waste plastic liquefaction unit uses heated liquefaction conveying equipment, preferably rapid heating liquefaction conveying equipment, to perform the liquefaction process; optionally, the heated liquefaction conveying equipment includes a first screw-type heating unit.
  • Conveying equipment Preferably, the first screw-type heated conveying equipment is selected from twin-screw type or single-screw heated conveying equipment with heating;
  • the process conditions of the liquefaction treatment include: the outlet temperature is 370-480 °C, such as 380-480°C, 380-450°C or 400-450°C; the residence time is 5-30min, such as 5-20min, or 5-15min.
  • the feeding pressure of the heating liquefaction conveying equipment can be carried out under normal pressure, reduced pressure or increased pressure.
  • the feed pressure can be normal pressure, or 0-0.6MPa, for example, 0.1-0.3MPa.
  • pressures used in this article are gauge pressures.
  • the pressure of the liquefaction process is the internal pressure of the heated liquefaction conveying equipment.
  • the waste plastic viscosity reducing unit uses a viscosity reducing reactor to perform the viscosity reducing treatment; preferably, the viscosity reducing reactor is an adiabatic reactor; preferably, the viscosity reducing reactor is
  • the process conditions include: the reaction temperature is 350-450°C, such as 370-450°C, 380-420°C, 350-400°C, 370-410°C, 390-450°C or 390-420°C; the residence time is 10-200min, From an economic point of view, the residence time is no more than 200min, for example, no more than 180min.
  • the residence time is, for example, 10-180min, 15-120min, 20-120min, 20-90min, 30-120min, 30-90min, 50-90min, 50- 70min, 20-60min, or 30-70min.
  • the pressure of the viscosity reducing treatment is not particularly limited, and the viscosity reducing treatment can be performed under normal pressure, reduced pressure, or increased pressure.
  • the pressure of the viscosity reduction treatment can be normal pressure, Or 0-0.6MPa, for example, 0.1-0.3MPa. Unless otherwise stated, pressures used in this article are gauge pressures.
  • the material entering the reactor cracks, further reducing the viscosity.
  • the viscosity reducing reactor can ensure that the temperature of the materials entering the reactor does not change significantly. Since cracking absorbs heat, if necessary, additional heat needs to be added to ensure that the temperature of the material entering the reactor does not change significantly. Therefore, in a preferred embodiment, the viscosity reducing reactor is equipped with a temperature-controlled heating device, so that the temperature of the materials entering the reactor can be achieved without significant changes.
  • the temperature of the materials entering the reactor does not change significantly
  • the temperature is maintained at 90%-110% of the temperature of the materials entering the reactor, such as 92%-108%, or 95%-105%, or In the range of 98%-102% (for example, it can be expressed as the outlet temperature of the reactor).
  • the process conditions of the viscosity reduction treatment can make the viscosity of the material leaving the reactor after the viscosity reduction treatment less than 12000cP@200°C, preferably less than 5000cP@200°C, such as 100-4000cP@200°C, 100-3000cP@200°C, 100 -2000cP@200°C, 100-1000cP@200°C, 200-1500cP@200°C, 200-1000cP@200°C.
  • the viscosity is measured using a rotational viscometer according to SY/T 0520-2008.
  • the process conditions of the cracking reaction include: the reaction temperature is 490-750°C, the gravity hourly space velocity is 1-100h -1 , and the mass ratio of the contact agent to the waste plastic to be processed is 5-30: 1;
  • the reaction temperature is 500-650°C, the gravity hourly space velocity is 3-60h - 1 , and the mass ratio of the contact agent to the waste plastic to be treated is 6-20:1;
  • the pressure of the cracking reaction is not particularly limited, and the cracking reaction can be carried out under normal pressure, reduced pressure, or increased pressure.
  • the pressure of the cracking reaction can be normal pressure, or 0-0.6MPa, for example, 0.1-0.3MPa. Unless otherwise stated, pressures used in this article are gauge pressures.
  • the contact agent is one or more selected from the group consisting of silicon-alumina material catalysts, quartz sand or coal coke powder; preferably, the particle size of the contact agent is 20-3000 ⁇ m; optionally Preferably, the silicon-aluminum material is selected from a molecular sieve-containing catalyst and/or a molecular sieve-free catalyst; preferably, the molecular sieve-containing catalyst is selected from the group consisting of X molecular sieve, Y molecular sieve, mordenite, ZSM-5, layer column Clay molecular sieve, one or more molecular sieve catalysts in SAPO, one or more waste FCC catalysts; excellent
  • the molecular sieve-free catalyst is selected from catalysts prepared from one or more of the first raw materials, including amorphous silica alumina, clay, kaolin, montmorillonite, and retort.
  • the molecular sieve-free catalyst is selected from one or more of the second raw materials that have been pickled, roasted, and screened.
  • Catalysts prepared from raw materials, the second raw materials include amorphous silica alumina, clay, kaolin, montmorillonite, rectorite, illite and chlorite; or selected from the group consisting of acid-washed, roasted and screened catalysts
  • the regeneration treatment is carried out in a dense-phase fluidized bed regenerator; preferably, the process conditions of the regeneration treatment include: air residence time 0.5-60 seconds, for example, 1.0-10 seconds, gasification temperature of the dense-phase bed The temperature is 600-750°C, for example 600-700°C, the gas introduced is a gas containing 10-50% oxygen by volume, and the linear speed of the dense phase bed is 0.05-0.6m/s, for example, 0.2-0.4m/s.
  • the waste plastic hot melt dehydration and dechlorination unit includes a second screw heating and conveying device and a vacuum device connected to the second screw heating and conveying device.
  • the second screw-type heating conveying equipment is selected from a twin-screw type or a single-screw type conveying equipment.
  • the process conditions of the melting and dehydration treatment include: the first temperature is 100-170°C, for example, 120-150°C; the time is 0.05-1h, for example, 0.05-0.5h; the feed rate of chlorine-containing waste plastic raw materials 5-5000kg/h, for example, 100-4000kg/h.
  • the process conditions of the dechlorination treatment include: the second temperature is 150-370°C, for example, 220-350°C, or 300-330°C; the time is 0.05-0.5h, for example, 0.1-0.2h; vacuum
  • the temperature is 50-300 mmHg, for example, 50-150 mmHg; preferably, the heating rate from the first temperature to the second temperature is 50-200°C/min, for example, 50-150°C/min.
  • the particle size of the dehydrated and dechlorinated waste plastic particles obtained through crushing treatment is 100-2000 ⁇ m.
  • the waste plastic preliminary melting, liquefaction and dechlorination unit includes a second screw heating and conveying device and a vacuum device connected to the second screw heating and conveying device.
  • the second screw-type heating conveying equipment is selected from a twin-screw type or a single-screw type conveying equipment.
  • the process conditions of the hot melt dechlorination treatment include: feed rate is 5-5000kg/h, for example, 100-4000kg/h; outlet temperature is 150-370°C, for example, 300-330°C, reaction time is 0.1-0.5h, for example, 0.1-0.3h; the waste plastic is initially
  • the vacuum degree of the melting liquefaction dechlorination unit is 50-300mmHg, for example, 50-150mmHg.
  • the particle size of the dechlorinated waste plastic particles obtained by pulverization is 100-2000 ⁇ m.
  • the waste plastic to be treated includes one or more of LDPE, HDPE, PS, PP, PET and PVC; optionally, the chlorine content of the waste plastic to be treated is less than 10% by weight and/or The PVC content of the waste plastic to be processed is less than 10% by weight; the ash content of the waste plastic to be processed is 1-40% by weight, for example, 3-30% by weight or 3-20% by weight.
  • the fluidized cracking processing method of waste plastics disclosed in the present disclosure can realize the effective utilization of waste plastics and increase the gasoline production.
  • the in-situ gasification of the generated coke provides the heat required for the cracking reaction and can effectively remove impurities in the product.
  • a second aspect of the present disclosure provides a processing system for fluidized cracking of waste plastics, which system includes: a waste plastic liquefaction unit, a waste plastic viscosity reduction unit, a contact cracking reaction unit, a separation unit and a regeneration unit;
  • the waste plastic liquefaction unit includes a waste plastic inlet to be processed and a liquefied waste plastic outlet, and the waste plastic liquefaction unit is configured to liquefy the waste plastic to be processed;
  • the waste plastic viscosity reducing unit includes a liquefied waste plastic inlet, a liquefied waste plastic oil outlet and a first dry gas outlet, and the waste plastic viscosity reducing unit is configured to perform viscosity reduction treatment on the liquefied waste plastic;
  • the contact cracking reaction unit includes a cracking raw material inlet, a contact agent inlet, a reaction oil and gas outlet, and a contact agent outlet to be produced; the cracking raw material inlet is connected to the liquefied waste plastic oil outlet of the waste plastic viscosity reduction unit, and the contact cracking reaction unit
  • the reaction unit is configured to perform a cracking reaction process on the liquefied waste plastic oil;
  • the separation unit includes a separation inlet, a second dry gas outlet, a liquefied gas outlet, a gasoline fraction outlet, a diesel fraction outlet and a wax oil fraction outlet; the separation inlet is connected to the reaction oil and gas outlet of the contact cracking reaction unit, and the The separation unit is configured to separate the reaction oil and gas;
  • the regeneration unit includes a contact agent inlet to be regenerated, an oxygen-containing gas inlet, a regeneration contact agent outlet, and a regeneration flue gas outlet; the regeneration unit is configured to regenerate the contact agent to be regenerated in the presence of oxygen, Regenerated contact agent and regenerated flue gas are obtained; the regenerated contact agent outlet is connected with the contact agent inlet of the contact cracking reaction unit.
  • the waste plastic viscosity reduction unit further includes at least one viscosity reduction reactor, so
  • the viscosity reducing reactor provides the liquefied waste plastic inlet, the liquefied waste plastic oil outlet and the first dry gas outlet of the waste plastic viscosity reducing unit; preferably, the viscosity reducing reactor is an adiabatic reactor.
  • the viscosity-reducing reactor is preferably equipped with a temperature-controlled heating device, so that the temperature of the materials entering the reactor does not change significantly.
  • the temperature of the materials entering the reactor does not change significantly
  • the temperature is maintained at 90%-110% of the temperature of the materials entering the reactor, such as 92%-108%, or 95%-105%, or In the range of 98%-102% (for example, it can be expressed as the outlet temperature of the reactor).
  • the processing system also includes a waste plastic hot melt dehydration and dechlorination unit, a cooling crushing unit and a hydrogen chloride absorption unit;
  • the waste plastic hot-melt dehydration and dechlorination unit includes a chlorine-containing waste plastic raw material inlet, a dehydration and dechlorination waste plastic waste outlet, and a hydrogen chloride-containing gas outlet; the waste plastic hot-melt dehydration and dechlorination unit is configured to dehydrate chlorine-containing waste plastic raw materials. Carry out melting, dehydration and dechlorination;
  • the cooling and crushing unit is configured to cool and crush the dehydrated and dechlorinated waste plastic from the waste plastic hot-melt dehydration and dechlorination unit;
  • the hydrogen chloride absorption unit includes a hydrogen chloride-containing gas phase material inlet and a hydrogen chloride absorbent inlet; the hydrogen chloride-containing gas phase material inlet is connected to the hydrogen chloride-containing gas outlet of the waste plastic hot-melt dehydration and dechlorination unit;
  • the regeneration unit further includes a dry gas inlet, which is connected to the first dry gas outlet of the waste plastic viscosity reduction unit and/or the second dry gas outlet of the separation unit;
  • the communication pipeline between the cracking raw material inlet of the contact cracking reaction unit and the liquefied waste plastic oil outlet of the waste plastic viscosity reduction unit also includes a steam inlet;
  • the waste plastic liquefaction unit includes a heated liquefaction conveying device, preferably a rapid heated liquefaction conveying device; optionally, the heated liquefaction conveying device includes a first screw-type heated conveying device; preferably, the first The screw heating and conveying equipment is selected from twin-screw or single-screw heating and conveying equipment with heating;
  • the waste plastic hot melt dehydration and dechlorination unit includes a second screw heating and conveying device and a vacuum device connected to the second screw heating and conveying device; preferably, the second screw heating and conveying device is Twin-screw or single-screw conveying equipment.
  • the present disclosure provides a processing method and processing system for fluidized cracking of waste plastics, which liquefies waste plastic raw materials and reduces viscosity.
  • the treatment can quickly liquefy the waste plastics and reduce the viscosity of the waste plastics; then contact with the fluidized contact agent for cracking reaction, which can make the waste plastics in liquid form contact with the high-temperature contact agent for rapid pyrolysis, reduce the residence time of the product, and obtain More ideal product distribution, and can remove heteroatoms in waste plastics; produce gas phase and liquid phase products through contact cracking, allowing waste plastics to realize green resource recycling, and can also regenerate raw contact agents for recycling; and the
  • the processing method can realize continuous waste plastic processing and improve processing efficiency; it has strong adaptability to waste plastic raw materials and does not need to be crushed and cleaned; waste plastics in the garbage dump can be dehydrated, dechlorinated and reduced in situ, and subsequent cracking and recycling can be centralized Processing, easy to expand the production scale and reduce processing costs.
  • Another object of the present disclosure is to provide a processing method and processing system for viscosity-reducing pyrolysis and cracking of waste plastics, which can effectively realize resource utilization, large-scale and continuous utilization of waste plastics, increase oil and gas production, and reduce coke generation.
  • a third aspect of the present disclosure provides a processing method for viscosity reduction and pyrolysis cracking of waste plastics, which method includes the following steps:
  • the pyrolysis product enters the separation unit for separation processing, for example, to obtain dry gas, liquefied gas, gasoline fraction, diesel fraction and wax oil fraction.
  • the method also includes: entering the chlorine-containing waste plastic raw material into the waste plastic preliminary melting, liquefaction and dechlorination unit for hot melt dechlorination treatment to obtain hydrogen chloride-containing gas phase material and dechlorinated waste plastic material;
  • the dechlorinated waste plastic materials enter the waste plastic liquefaction unit; or the dechlorinated waste plastic materials are sequentially cooled and pulverized to obtain dechlorinated waste plastic particles; the dechlorinated waste plastic particles are allowed to enter the Waste plastic liquefaction unit; or
  • the method further includes: causing chlorine-containing waste plastic raw materials to enter a waste plastic hot melt dehydration and dechlorination unit, and treating the chlorine-containing waste plastics under the first temperature condition.
  • the plastic raw material is melted and dehydrated to obtain dehydrated waste plastic; then the dehydrated waste plastic is heated to a second temperature for dechlorination to obtain dehydrated and dechlorinated waste plastic and hydrogen chloride-containing gas; the dehydrated and dechlorinated waste plastic is allowed to Cooling treatment and crushing treatment are performed sequentially in the cooling and crushing unit to obtain dehydrated and dechlorinated waste plastic particles; the dehydrated and dechlorinated waste plastic particles are allowed to enter the waste plastic liquefaction unit; or the dehydrated and dechlorinated waste plastic particles are directly entered into the waste plastic liquefaction unit. Waste plastic liquefaction unit.
  • the method also includes: causing the hydrogen chloride-containing gas phase material to enter a hydrogen chloride absorption unit, contacting a hydrogen chloride absorbent to perform hydrogen chloride absorption treatment, and obtaining a chlorine-containing absorbent and dechlorinated dry gas; optionally, in a vacuum system
  • the hydrogen chloride-containing gas phase material enters the hydrogen chloride absorption unit under the action of solution, calcium hydroxide solution, sodium bicarbonate solution, sodium carbonate solution and ammonia solution.
  • the method further includes: returning at least part of the wax oil fraction from the separation unit to the waste plastic viscosity reduction unit for recycling; preferably, the weight of the recycled wax oil fraction and the waste plastic to be processed
  • the ratio is 0.2-5.0:1, for example, 0.2-2:1; preferably, the fraction separated by the separation unit with a distillation range greater than 350°C is used as the wax oil fraction.
  • the waste plastic liquefaction unit uses heated liquefaction conveying equipment, preferably rapid heating liquefaction conveying equipment, to perform the liquefaction process; optionally, the heated liquefaction conveying equipment includes a first screw-type heating unit.
  • Conveying equipment Preferably, the first screw-type heated conveying equipment is selected from twin-screw type or single-screw heated conveying equipment with heating;
  • the process conditions of the liquefaction treatment include: the outlet temperature is 370-480 °C, such as 380-480°C, 380-450°C or 400-450°C; the residence time is 5-30min, such as 5-20min, or 5-15min.
  • the feeding pressure of the heating liquefaction conveying equipment can be carried out under normal pressure, reduced pressure or increased pressure.
  • the feed pressure can be normal pressure, or 0-0.6MPa, for example, 0.1-0.3MPa.
  • pressures used in this article are gauge pressures.
  • the pressure of the liquefaction process is the internal pressure of the heated liquefaction conveying equipment.
  • the waste plastic viscosity reducing unit uses a viscosity reducing reactor to perform the viscosity reducing treatment; preferably, the viscosity reducing reactor is an adiabatic reactor; preferably, the viscosity reducing reactor is Process conditions include: reaction temperature is 350-450°C, such as 370- 450°C, 380-420°C, 350-400°C, 370-410°C, 390-450°C or 390-420°C; the residence time is 10-200min.
  • the residence time is not more than 200min, for example, not more than 180min , the residence time is, for example, 10-180min, 15-120min, 20-120min, 20-90min, 30-120min, 30-90min, 50-90min, 50-70min, 20-60min, or 30-70min.
  • the pressure of the viscosity reducing treatment is not particularly limited, and the viscosity reducing treatment can be performed under normal pressure, reduced pressure, or increased pressure.
  • the pressure of the viscosity reduction treatment may be normal pressure, or 0-0.6MPa, for example, 0.1-0.3MPa. Unless otherwise stated, pressures used in this article are gauge pressures.
  • the material entering the reactor cracks, further reducing the viscosity.
  • the viscosity reducing reactor can ensure that the temperature of the materials entering the reactor does not change significantly. Since cracking absorbs heat, if necessary, additional heat needs to be added to ensure that the temperature of the material entering the reactor does not change significantly. Therefore, in a preferred embodiment, the viscosity reducing reactor is equipped with a temperature-controlled heating device, so that the temperature of the materials entering the reactor can be achieved without significant changes.
  • the temperature of the materials entering the reactor does not change significantly
  • the temperature is maintained at 90%-110% of the temperature of the materials entering the reactor, such as 92%-108%, or 95%-105%, or In the range of 98%-102% (for example, it can be expressed as the outlet temperature of the reactor).
  • the process conditions of the viscosity reduction treatment can make the viscosity of the material leaving the reactor after the viscosity reduction treatment less than 12000cP@200°C, such as 5000-10000cP@200°C, 6000-9000cP@200°C, 100-12000cP@200°C, 100 -2000cP@200°C, 100-1500cP@200°C, 100-1000cP@200°C, 100-500cP@200°C.
  • the viscosity is measured using a rotational viscometer according to SY/T 0520-2008.
  • the material heating unit includes a heating furnace; preferably, the process conditions of the heating treatment include: the outlet temperature of the heating furnace is 450°C-550°C, for example, 460°C-520°C; steam injection The amount is 0.5-5% by weight, for example, 1-3% by weight.
  • the process conditions of the pyrolysis reaction include: the top pressure of the pyrolysis tower is 0.05-0.6MPa, for example, 0.1-0.3MPa; the pyrolysis reaction temperature is 450-520°C, for example, 480- 520°C.
  • pressures used in this article are gauge pressures.
  • the waste plastic preliminary melting, liquefaction and dechlorination unit includes a second screw heating and conveying device and a vacuum device connected to the second screw heating and conveying device; preferably, the second screw heating and conveying device Choose from twin screw or single screw conveyor sending equipment; preferably, the process conditions of the hot melt dechlorination treatment include: the feed rate is 5-5000kg/h, for example, 100-4000kg/h; the outlet temperature is 150-370°C, for example, 300-330°C , the reaction time is 0.1-0.5h, for example, 0.1-0.3h; the vacuum degree of the preliminary melting and liquefaction dechlorination unit of the waste plastic is 50-300mmHg, for example, 50-150mmHg; preferably, the dechlorination obtained by crushing treatment The particle size of chlorine waste plastic particles is 100-2000 ⁇ m.
  • the waste plastic hot melt dehydration and dechlorination unit includes a second screw heating and conveying device and a vacuum device connected to the second screw heating and conveying device.
  • the second screw-type heating conveying equipment is selected from a twin-screw type or a single-screw type conveying equipment.
  • the process conditions of the melting and dehydration treatment include: the first temperature is 100-170°C, for example, 120-150°C; the time is 0.05-1h, for example, 0.05-0.5h; the feed rate of chlorine-containing waste plastic raw materials 5-5000kg/h, for example, 100-4000kg/h.
  • the process conditions of the dechlorination treatment include: the second temperature is 150-370°C, for example, 220-350°C, or 300-330°C; the time is 0.05-0.5h, for example, 0.1-0.2h; vacuum
  • the temperature is 50-300 mmHg, for example, 50-150 mmHg; preferably, the heating rate from the first temperature to the second temperature is 50-200°C/min, for example, 50-150°C/min.
  • the particle size of the dehydrated and dechlorinated waste plastic particles obtained through crushing treatment is 100-2000 ⁇ m.
  • the waste plastic to be treated includes one or more of LDPE, HDPE, PS, PP, PET and PVC; optionally, the PVC content of the waste plastic to be treated is less than 10% by weight and/or The chlorine content of the waste plastic to be treated is less than 10% by weight; the ash content of the waste plastic to be treated is 1-40% by weight, for example, 3-30% by weight or 3-20% by weight.
  • a fourth aspect of the present disclosure provides a processing system for viscosity reduction and pyrolysis cracking of waste plastics.
  • the processing system includes: a waste plastic liquefaction unit, a waste plastic viscosity reduction unit, a material heating unit, a pyrolysis reaction unit and a separation unit;
  • the waste plastic liquefaction unit includes a waste plastic inlet to be processed and a liquefied waste plastic outlet, and the waste plastic liquefaction unit is configured to liquefy the waste plastic to be processed;
  • the waste plastic viscosity reducing unit includes a liquefied waste plastic inlet and a liquefied waste plastic oil outlet, and the waste plastic viscosity reducing unit is configured to perform viscosity reducing treatment on the liquefied waste plastic;
  • the material heating unit includes a heating inlet and a heating outlet.
  • the heating inlet is connected to the liquefied waste plastic oil outlet of the waste plastic viscosity reduction unit.
  • the heating unit is equipped with Set to perform heat treatment on viscosity-reduced liquefied waste plastic oil;
  • the pyrolysis reaction unit includes a pyrolysis reactant inlet and a pyrolysis product outlet.
  • the pyrolysis reactant inlet is connected to the heating outlet of the heating unit.
  • the pyrolysis reaction unit is configured to conduct high-temperature liquefaction waste plastics. Pyrolysis reaction treatment;
  • the separation unit includes a separation inlet, a dry gas outlet, a liquefied gas outlet, a gasoline fraction outlet, a diesel fraction outlet and a wax oil fraction outlet; the separation inlet is connected to the pyrolysis product outlet of the pyrolysis reaction unit, and the separation unit The unit is configured for separation processing of the pyrolysis products.
  • the waste plastic viscosity reducing unit further includes at least one viscosity reducing reactor, which provides the liquefied waste plastic inlet and the liquefied waste plastic oil outlet of the waste plastic viscosity reducing unit; preferably, the viscosity reducing reactor
  • the viscous reactor is an adiabatic reactor.
  • the viscosity-reducing reactor is preferably equipped with a temperature-controlled heating device so that the temperature of the materials entering the reactor does not change significantly.
  • the temperature of the materials entering the reactor does not change significantly
  • the temperature is maintained at 90%-110% of the temperature of the materials entering the reactor, such as 92%-108%, or 95%-105%, or In the range of 98%-102% (for example, it can be expressed as the outlet temperature of the reactor).
  • the system also includes a waste plastic preliminary melting and liquefaction dechlorination unit and a hydrogen chloride absorption unit;
  • the waste plastic preliminary melting, liquefaction and dechlorination unit includes
  • the waste plastic preliminary melting, liquefaction and dechlorination unit is configured to perform hot melt dechlorination treatment on chlorine-containing waste plastic raw materials; the dechlorination waste plastic liquid phase material outlet is connected to the waste plastic inlet to be processed of the waste plastic liquefaction unit. .
  • the hydrogen chloride absorption unit includes a hydrogen chloride-containing gas phase material inlet, a hydrogen chloride absorbent inlet and a dechlorination dry gas outlet; the hydrogen chloride-containing gas phase material inlet is connected to the hydrogen chloride-containing gas phase material outlet of the waste plastic preliminary melting and liquefaction dechlorination unit. connected;
  • the waste plastic liquefaction unit includes a heated liquefaction conveying device, preferably a rapid heated liquefaction conveying device; optionally, the heated liquefaction conveying device includes a first screw-type heated conveying device; preferably, the first The screw heating conveying equipment is selected from twin screw heating conveying equipment with heating or single screw heating conveying equipment.
  • the waste plastic preliminary melting, liquefaction and dechlorination unit includes a second screw heating and conveying device and a vacuum device connected to the second screw heating and conveying device; preferably, the second screw heating and conveying device is Twin-screw or single-screw conveying equipment.
  • the waste plastic viscosity reduction unit further includes a circulating oil inlet; the circulating oil inlet is connected to the wax oil fraction outlet of the separation unit.
  • the waste plastic preliminary melting, liquefaction and dechlorination unit also includes a non-condensable steam outlet.
  • the present disclosure provides a processing method and processing system for the viscosity-reducing pyrolysis and cracking of waste plastics.
  • the present disclosure eliminates the occurrence of coking and excessive cracking by rapidly liquefying and reducing the viscosity of the waste plastics to be processed.
  • the present invention overcomes the difficulties in recycling waste plastics in the prior art through the following means and completes the present invention: (1) Rapidly heating waste plastics containing polyvinyl chloride to decompose them, and using a vacuum method to quickly decompose them. The decomposed HCl is separated from the reactor to improve dechlorination efficiency; (2) Increase the heating area through strong squeezing and stirring, quickly heat the waste plastic into a flowable liquid state, and reduce the viscosity. You can use a pump to transport the waste plastic. Due to the rapid liquefaction of plastics, the thermal conductivity of the liquid increases significantly.
  • Heating furnaces and other heating equipment can be used to perform pyrolysis reactions on liquid waste plastics, which can obtain higher liquid yields and lower coking rates; (3) After liquefying the waste plastics , the transportation density of raw materials is greatly increased compared with solid waste plastics, so it can not only realize the large-scale processing of waste plastics, but also realize the continuous pyrolysis recycling of waste plastics.
  • Figure 1 is an exemplary flow chart of the processing method and processing system for fluidized cracking of waste plastics provided by the present disclosure, wherein 1-Waste plastic storage tank, 2-Waste plastic hot melt dehydration, dechlorination and crushing unit, 3-Dehydration and dechlorination waste plastic particle storage tank, 4-Waste plastic liquefaction unit, 5-Waste plastic viscosity reduction unit, 6-Contact cracking reaction Unit, 7-regeneration unit, 8-separation unit, 9-hydrogen chloride absorption unit, 10-line, 11-line, 12-line, 13-line, 14-line, 15-line, 16-line, 17-line, 18-pipeline, 19-pipeline, 20-pipeline, 21-pipeline, 22-pipeline, 23-pipeline;
  • Figure 2 is an exemplary flow chart of the processing method and processing system for viscosity reduction and pyrolysis cracking of waste plastics provided by the present disclosure, wherein 1-Waste plastic storage tank, 2-Waste plastic preliminary melting, liquefaction and dechlorination unit, 3-Rapid heating and liquefaction conveying equipment, 4-Adiabatic viscosity reduction reactor, 5-Heating furnace, 6-Pyrolysis reaction unit, 7-Separation unit , 8-hydrogen chloride absorption unit, 9-line, 10-line, 11-line, 12-line, 13-line, 14-line, 15-line, 16-line, 17-line, 18-line.
  • plastic used in the present invention includes waste plastic and fresh plastic, where "fresh plastic” refers to fresh polymer formed by the polymerization reaction of the polymerized monomers constituting the plastic, usually in the form of particles.
  • Fresh polymer or fresh plastic can be processed into a variety of plastic products. These plastic products themselves can be used as "waste plastics" in the present invention. Typically, these plastic products are discarded after use and can be used as “waste plastic” in the present invention. In addition, discarded plastic products can become “new" plastic products after recycling and reuse, and the waste formed by these new plastic products can also be used as "waste plastic” in the present invention.
  • Recycling and reuse can be carried out for one, two or more generations, and the "new" plastic products of each generation and the waste they form can be used as "waste plastics" in the present invention.
  • Fresh polymers and fresh plastics can also be used as "waste plastics” in the present invention. Therefore, within the scope of the present invention, "plastic" and "waste plastic” may be considered synonymous.
  • the plastic or waste plastic is preferably derived from thermoplastics.
  • the plastic of the present invention is mainly composed of C and H, that is, the sum of the mass of C and H elements of the plastic accounts for 50% or more of the total mass of the plastic, such as 60% or more; the upper limit may be 100 %.
  • the number average molecular weight of the plastic may be 1,000-2,000,000, for example, 2,000-300,000, or 5,000-100,000.
  • the N content of the plastic is 10% or less by weight, such as 5% or less, 4% or less, 3% or less, 2% or less, or 1% or less; lower limit Can be 0%, for example, the lower limit is 0.0001%, 0.001%, or 0.01%.
  • the S content of the plastic is 1% or less by weight, such as 0.5% or less, 0.4% or less, 0.3% or less, 0.2% or less, or 0.1% or less; lower limit Can be 0%, for example, the lower limit is 0.00001%, 0.001%, or 0.001%.
  • examples of polymers that make up plastics include, but are not limited to, polyethylene (PE) such as low density polyethylene (LDPE) and high density polyethylene (HDPE), polystyrene (PS), polypropylene (PP), poly(p) Ethylene phthalate (PET) and polyvinyl chloride (PVC).
  • PE polyethylene
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • PS polystyrene
  • PP polypropylene
  • PET poly(p) Ethylene phthalate
  • PVC polyvinyl chloride
  • a processing method for fluidized cracking of waste plastic includes the following steps:
  • reaction oil and gas enter the separation unit for separation processing, for example, obtain the second dry gas, liquefied gas, gasoline fraction, diesel fraction and wax oil fraction;
  • the contact agent to be regenerated is allowed to enter the regeneration unit, and the contact agent to be regenerated is regenerated in the presence of oxygen to obtain regenerated contact agent and regenerated flue gas; the regenerated contact agent is returned to the contact cracking reaction unit continue to use.
  • the present disclosure provides a processing method for fluidizing and cracking waste plastics.
  • the waste plastic raw materials are subjected to liquefaction and viscosity reduction treatments, which can quickly liquefy the waste plastics and reduce the viscosity of the waste plastics; and then contact the fluidized contact agent for The cracking reaction can quickly pyrolyze waste plastics in liquid form in contact with high-temperature contact agents, reduce product residence time, obtain more ideal product distribution, and remove heteroatoms in waste plastics; through contact cracking
  • the gas phase and liquid phase products can be converted into gas phase and liquid phase products, so that waste plastics can be recycled as green resources, and the raw contact agents can also be regenerated and recycled; and this processing method can realize continuous waste plastic processing and improve processing efficiency; for waste plastics
  • the raw materials have strong adaptability and do not need to be crushed and cleaned; waste plastics in the garbage dump can be dehydrated, dechlorinated and reduced in situ, and subsequent cracking and recycling can be processed centrally, making it easy to expand the scale of production
  • the waste plastics to be processed include low density polyethylene (LDPE), high density polyethylene (HDPE), polystyrene (PS), polypropylene (PP), polyterephthalic acid
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • PS polystyrene
  • PP polypropylene
  • PVC polyvinyl chloride
  • the chlorine element content in the waste plastic to be treated is less than 10% by weight; and/or the waste plastic to be treated
  • the PVC content is less than 10% by weight;
  • the ash content of the waste plastic to be processed is 1-40% by weight, for example, 3-30% by weight, or 3-20% by weight.
  • the waste plastic raw material in this disclosure can be directly used from waste plastics in landfills.
  • the waste plastic hot melt dehydration dechlorination and crushing unit includes a waste plastic hot melt dehydration and dechlorination unit and a cooling crushing unit.
  • step S1 the method also includes:
  • the chlorine-containing waste plastic raw materials enter the waste plastic hot-melt dehydration, dechlorination and crushing unit of the waste plastic hot-melt dehydration and dechlorination unit.
  • the chlorine-containing waste plastic raw materials are melted and dehydrated to obtain dehydrated waste plastics.
  • the dehydrated waste plastic is heated to a second temperature for dechlorination treatment to obtain dehydrated and dechlorinated waste plastic and gas containing hydrogen chloride;
  • the dehydration and dechlorination waste plastics are sequentially cooled and pulverized in a cooling and crushing unit to obtain dehydration and dechlorination waste plastic particles; the dehydration and dechlorination waste plastic particles are allowed to enter the waste plastic liquefaction unit; or the dehydration and dechlorination waste plastic particles are allowed to enter the waste plastic liquefaction unit; The dehydrated and dechlorinated waste plastic directly enters the waste plastic liquefaction unit.
  • the waste plastic hot melt dehydration and dechlorination step and the waste plastic liquefaction step can use the same (rapid) heating and liquefaction conveying equipment, or each can adopt a (rapid) heating and liquefaction conveying equipment; for example, (rapid) heating and liquefaction
  • the conveying equipment is screw-type heating conveying equipment with heating (twin-screw type or single-screw type).
  • the method further includes:
  • the hydrogen chloride-containing gas enters the hydrogen chloride absorption unit, and is contacted with the hydrogen chloride absorbent to perform hydrogen chloride absorption treatment; optionally, the hydrogen chloride-containing gas enters the hydrogen chloride absorption unit under the action of a vacuum system.
  • the invention adopts a waste plastic hot-melt dehydration, dechlorination and crushing unit and a hydrogen chloride absorption unit.
  • the chlorine in the waste plastic PVC is decomposed into the gas phase, and the vacuum system is used to quickly separate HCl to avoid secondary reactions of HCl, improve the dechlorination efficiency of waste plastics, and reduce the anti-corrosion pressure of subsequent equipment.
  • the hydrogen chloride absorbent is water or an alkali solution with a pH greater than 7; optionally, the alkali solution includes sodium hydroxide solution, potassium hydroxide solution, calcium hydroxide solution, hydrogen carbonate One or more of sodium solution, sodium carbonate solution and ammonia solution.
  • the method further includes: the cracking reaction carried out in the contact cracking reaction unit described in step S3 also obtains char-bearing ash;
  • the method also includes: causing the carbon-bearing ash and the contact agent to be regenerated to enter a regeneration unit, and causing the contact agent to be regenerated and the carbon on the carbon-bearing ash to undergo a complete combustion reaction in the presence of oxygen to obtain regenerated flue gas and Regeneration contact agent.
  • the processing method provided by the present disclosure can regenerate the carbon-containing contact agent by complete combustion reaction, thereby realizing the recycling of the contact agent.
  • the method further includes:
  • the carbon content of the contact agent to be produced is 0.5-5.0% by weight.
  • the present disclosure uses dry gas generated in the waste plastic processing process to regenerate the raw contact agent, thereby improving resource utilization efficiency and contact agent regeneration efficiency.
  • the regeneration flue gas emission standard is a conventional standard in the field, for example, refer to the GB13271-2014 standard.
  • the waste plastic liquefaction unit uses heated liquefaction conveying equipment, preferably rapid heated liquefaction conveying equipment, to perform the liquefaction process; optionally, the heated liquefaction conveying equipment includes a first Screw-type heating and conveying equipment; Preferably, the first screw-type heating and conveying equipment is selected from twin-screw type or single-screw type heating and conveying equipment with heating.
  • the process conditions of the liquefaction treatment include: the outlet temperature is 370-480°C, such as 380-480°C, 380-450°C or 400-450°C; the residence time is 5-30 min, such as 5-20min, or 5-15min.
  • the heating liquefaction The feeding pressure of the conveying equipment can be at normal pressure, reduced pressure or increased pressure.
  • the feed pressure can be normal pressure, or 0-0.6MPa, for example, 0.1-0.3MPa. Unless otherwise stated, pressures used in this article are gauge pressures.
  • the pressure of the liquefaction process is the internal pressure of the heated liquefaction conveying equipment.
  • the waste plastic viscosity reducing unit uses a viscosity reducing reactor to perform the viscosity reducing treatment; preferably, the viscosity reducing reactor is an adiabatic reactor.
  • the adiabatic viscosity reduction reactor in the present disclosure may be any reactor known in the art, such as an upflow viscosity reduction reactor or a downflow viscosity reduction reactor.
  • the process conditions of the viscosity reduction treatment include: reaction temperature is 350-450°C, such as 370-450°C, 380-420°C, 350-400°C, 370-410°C, 390- 450°C or 390-420°C; the residence time is 10-200min. From an economic point of view, the residence time is no more than 200min, for example, no more than 180min. The residence time is, for example, 10-180min, 15-120min, 20-120min, 20-90min. , 30-120min, 30-90min, 50-90min, 50-70min, 20-60min, or 30-70min.
  • the pressure of the viscosity reducing treatment is not particularly limited, and the viscosity reducing treatment can be performed under normal pressure, reduced pressure, or increased pressure.
  • the pressure of the viscosity reduction treatment may be normal pressure, or 0-0.6MPa, for example, 0.1-0.3MPa. Unless otherwise stated, pressures used in this article are gauge pressures.
  • the viscosity reducing reactor can ensure that the temperature of the materials entering the reactor does not change significantly. Since cracking absorbs heat, if necessary, additional heat needs to be added to ensure that the temperature of the material entering the reactor does not change significantly.
  • the viscosity reduction reactor is equipped with a temperature-controlled heating device, so that the temperature of the materials entering the reactor can be achieved without significant changes.
  • "the temperature of the materials entering the reactor does not change significantly” means that the temperature is maintained at 90%-110% of the temperature of the materials entering the reactor, such as 92%-108%, or 95%-105%, or In the range of 98%-102% (for example, it can be expressed as the outlet temperature of the reactor).
  • the viscosity of the material leaving the reactor after the viscosity reduction treatment can be less than 12000cP@200°C, preferably less than 5000cP@200°C, such as 100-4000cP@200°C, 100-3000cP@200°C, 100-2000cP@200 °C, 100-1000cP@200°C, 200-1500cP@200°C, 200-1000cP@200°C.
  • the viscosity is measured using a rotational viscometer according to SY/T 0520-2008.
  • step S3 the process conditions of the cracking reaction include: reaction temperature is 500-750°C, gravity hourly space velocity is 1-100h -1 , contact agent and to-be-treated The mass ratio of waste plastic is 5-30:1.
  • the cracking reaction is carried out in a fluidized bed reactor, which is a conventional structure in this field.
  • the process conditions of the cracking reaction include: the reaction temperature is 490-750°C, the gravity hourly space velocity is 1-100h -1 , and the mass ratio of the contact agent to the waste plastic to be processed is 6-20:1.
  • the pressure of the cracking reaction is not particularly limited, and the cracking reaction can be carried out under normal pressure, reduced pressure, or increased pressure.
  • the pressure of the cracking reaction can be normal pressure, or 0-0.6MPa, for example, 0.1-0.3MPa. Unless otherwise stated, pressures used in this article are gauge pressures.
  • the method further includes: causing the viscosity-reduced liquefied waste plastic oil and steam to enter the contact cracking reaction unit; preferably, the mass ratio of steam to waste plastic to be treated is 0.05-1 :1, for example, 0.1-0.5:1.
  • the contact agent is one or more selected from the group consisting of silicon-alumina material catalysts, quartz sand or coal coke powder; preferably, the particle size of the contact agent is 20-3000 ⁇ m. .
  • the silicon-aluminum material is selected from a molecular sieve-containing catalyst and/or a molecular sieve-free catalyst; preferably, the molecular sieve-containing catalyst is selected from the group consisting of X molecular sieve, Y molecular sieve, mordenite, ZSM-5, Column clay molecular sieve, one or more molecular sieve catalysts from SAPO, one or more waste FCC catalysts;
  • the molecular sieve-free catalyst is selected from catalysts prepared from one or more of the first raw materials, including amorphous silica alumina, clay, kaolin, montmorillonite, and retort. stone, illite, chlorite, pseudoboehmite and silica; or
  • the molecular sieve-free catalyst is selected from catalysts prepared from one or more of the second raw materials that have been pickled, roasted, and screened.
  • the second raw materials include amorphous silica alumina, clay, and kaolin. , montmorillonite, rectorite, illite and chlorite; or one or more of the second raw materials that have been pickled, roasted and screened are combined with pseudo-boehmite and/or chlorite.
  • the coal coke powder is coal powder and/or petroleum coke powder.
  • the regeneration treatment is carried out in a dense-phase fluidized bed regenerator; preferably, the process conditions of the regeneration treatment include: air residence time of 0.5-60 seconds, preferably 1.0-10 seconds, dense phase bed
  • the gasification temperature is 600-750°C, for example, 600-700°C, usually
  • the input gas is a gas containing 10-50% by volume of oxygen, and the linear velocity of the dense phase bed is 0.05-0.6m/s, for example, 0.2-0.4m/s.
  • the dense phase fluidized bed regenerator in this disclosure adopts equipment conventionally selected in the art.
  • the pressure of the regeneration treatment is not particularly limited, and the regeneration treatment can be performed under normal pressure, reduced pressure, or increased pressure.
  • the pressure of the regeneration treatment may be normal pressure, or 0-0.6MPa, for example, 0.1-0.3MPa. Unless otherwise stated, pressures used in this article are gauge pressures.
  • the hot-melt dehydration, dechlorination and crushing unit of the waste plastic hot-melt dehydration and dechlorination unit includes a second screw-type heating and conveying device and a vacuum device connected to the second screw-type heating and conveying device; preferably Preferably, the second screw-type heating conveying equipment is selected from a twin-screw type or a single-screw type conveying equipment.
  • the process conditions of the melting and dehydration treatment include: the first temperature is 100-170°C, for example, 120-150°C; the time is 0.05-1h, for example, 0.05-0.5h; chlorine-containing
  • the feed rate of waste plastic raw materials is 5-5000kg/h, for example, 100-4000kg/h; preferably, the temperature rise rate of the melting and dehydration treatment is 30-200°C/min, for example, 50-100°C/min. ...
  • the pressure of the melting and dehydration treatment is not particularly limited, and the melting and dehydration treatment can be performed under normal pressure, reduced pressure, or increased pressure.
  • the pressure of the melting and dehydration treatment may be normal pressure, or 0-0.6MPa, for example, 0.1-0.3MPa. Unless otherwise stated, pressures used in this article are gauge pressures.
  • the process conditions of the dechlorination treatment include: the second temperature is 150-370°C, for example, 220-350°C, or 300-330°C; the time is 0.05-0.5h, for example, 0.1-0.2h; vacuum
  • the temperature is 50-300 mmHg, for example, 50-150 mmHg; preferably, the heating rate from the first temperature to the second temperature is 50-200°C/min, for example, 50-150°C/min.
  • a stepwise heating method can be adopted, first raising the temperature to a first temperature for melting and dehydration treatment, and then raising the temperature to a second temperature for dechlorination treatment, thereby improving the dehydration and dechlorination effect of waste plastics.
  • the pressure of the dechlorination treatment is not particularly limited, and the dechlorination treatment can be performed under normal pressure, reduced pressure, or increased pressure.
  • the pressure of the dechlorination treatment may be normal pressure, or 0-0.6MPa, for example, 0.1-0.3MPa. Unless otherwise stated, pressures used in this article are gauge pressures.
  • the particle size of the dehydrated and dechlorinated waste plastic particles obtained through pulverization is 100-2000 ⁇ m.
  • the devices and methods of cooling treatment and crushing treatment may be conventional devices and methods in the art.
  • a processing system for fluidized cracking of waste plastics which system includes: a waste plastic liquefaction unit, a waste plastic viscosity reduction unit, a contact cracking reaction unit, a separation unit and a regeneration unit;
  • the waste plastic liquefaction unit includes an inlet for waste plastic to be processed and an outlet for liquefied waste plastic, and the waste plastic liquefaction unit is configured to liquefy the waste plastic to be processed;
  • the waste plastic viscosity reducing unit includes a liquefied waste plastic inlet, a liquefied waste plastic oil outlet and a first dry gas outlet, and the waste plastic viscosity reducing unit is configured to perform viscosity reduction treatment on the liquefied waste plastic;
  • the contact cracking reaction unit includes a cracking raw material inlet, a contact agent inlet, a reaction oil and gas outlet, and a contact agent outlet; the cracking raw material inlet is connected to the liquefied waste plastic oil outlet of the waste plastic viscosity reduction unit, and the contact cracking reaction unit is configured to treat the liquefied waste Plastic oil undergoes cracking reaction treatment;
  • the separation unit includes a separation inlet, a second dry gas outlet, a liquefied gas outlet, a gasoline fraction outlet, a diesel fraction outlet and a wax oil fraction outlet; the separation inlet is connected to the reaction oil and gas outlet of the contact cracking reaction unit, and the separation unit is configured to react oil and gas Separation processing is performed; the regeneration unit includes an inlet for the contact agent to be regenerated, an inlet for the oxygen-containing gas, an outlet for the regenerated contact agent, and an outlet for the regenerated flue gas; the regeneration unit is configured to regenerate the contact agent to be regenerated in the presence of oxygen to obtain a regenerated contact agent and regeneration flue gas; the regeneration contact agent outlet is connected with the contact agent inlet of the contact cracking reaction unit.
  • the waste plastic viscosity reducing unit further includes at least one viscosity reducing reactor, which provides a liquefied waste plastic inlet, a liquefied waste plastic oil outlet and a liquefied waste plastic inlet of the waste plastic viscosity reducing unit.
  • the viscosity-reducing reactor is preferably equipped with a temperature-controlled heating device so that the temperature of the materials entering the reactor does not change significantly.
  • the temperature of the materials entering the reactor does not change significantly
  • the temperature is maintained at 90%-110% of the temperature of the materials entering the reactor, such as 92%-108%, or 95%-105%, or In the range of 98%-102% (for example, it can be expressed as the outlet temperature of the reactor).
  • the communication pipeline between the cracking raw material inlet of the contact cracking reaction unit and the liquefied waste plastic oil outlet of the waste plastic viscosity reduction unit also includes a steam inlet to facilitate the atomization of the liquefied waste plastic oil.
  • the regeneration unit further includes a dry gas inlet, and the dry gas enters The port is connected to the first dry gas outlet of the waste plastic viscosity reducing unit and/or the second dry gas outlet of the separation unit.
  • the processing system also includes a waste plastic hot melt dehydration and dechlorination unit, a cooling crushing unit and a hydrogen chloride absorption unit;
  • the waste plastic hot melt dehydration and dechlorination unit includes a chlorine-containing waste plastic raw material inlet, a dehydration and dechlorination waste plastic waste outlet, and a hydrogen chloride-containing gas outlet; the waste plastic hot melt dehydration and dechlorination unit is configured to melt and dehydrate chlorine-containing waste plastic raw materials. and dechlorination;
  • the cooling and crushing unit is configured to cool and crush the dehydrated and dechlorinated waste plastic from the waste plastic hot melt dehydration and dechlorination unit;
  • the hydrogen chloride absorption unit includes a hydrogen chloride-containing gas phase material inlet and a hydrogen chloride absorbent; the hydrogen chloride-containing gas phase material inlet is connected to the hydrogen chloride-containing gas outlet of the waste plastic hot melt dehydration and dechlorination unit.
  • the waste plastic liquefaction unit includes a heated liquefaction conveying device, preferably a rapid heated liquefaction conveying device; optionally, the heated liquefaction conveying device includes a first screw-type heated conveying device; preferably, a first The screw heating and conveying equipment is selected from twin-screw or single-screw heating and conveying equipment with heating;
  • the waste plastic hot melt dehydration and dechlorination unit includes a second screw heating and conveying device and a vacuum device connected to the second screw heating and conveying device; preferably, the second screw heating and conveying device is selected from twin screw or single screw conveying. equipment.
  • the waste plastic hot-melt dehydration and dechlorination unit and the waste plastic liquefaction unit use a heated liquefaction conveying equipment, including a first screw-type heated conveying equipment, with a screw-type heated conveying equipment in the middle. There is a gas outlet connected to the vacuum device.
  • the waste plastic hot-melt dehydration, dechlorination and crushing unit also includes a non-condensable steam outlet for drawing out non-condensable steam.
  • a processing system for fluidized cracking of waste plastics includes: a waste plastic liquefaction unit, a waste plastic viscosity reduction unit, a contact cracking reaction unit, a separation unit, and a waste plastic hot melt dehydration unit. Chlorine unit, cooling and crushing unit, hydrogen chloride absorption unit and regeneration unit;
  • the waste plastic hot-melt dehydration and dechlorination unit includes a chlorine-containing waste plastic raw material inlet, a dehydration and dechlorination waste plastic waste outlet, and a hydrogen chloride-containing gas outlet; the waste plastic hot-melt dehydration and dechlorination unit is configured to melt chlorine-containing waste plastic raw materials. Dehydration and dechlorination;
  • the cooling crushing unit is configured to dechlorinate hot melt dehydration from waste plastics The dehydrated and dechlorinated waste plastics are cooled and crushed;
  • the waste plastic liquefaction unit includes a waste plastic inlet to be processed and a liquefied waste plastic outlet.
  • the waste plastic liquefaction unit is configured to liquefy the waste plastic to be processed; where the waste plastic to be processed can be dehydrated, dechlorinated waste plastic particles from the cooling and crushing unit, It can also be dehydrated and dechlorinated waste plastic from the waste plastic hot melt dehydration and dechlorination unit;
  • the waste plastic viscosity reducing unit includes a liquefied waste plastic inlet, a liquefied waste plastic oil outlet and a first dry gas outlet, and the waste plastic viscosity reducing unit is configured to perform viscosity reduction treatment on the liquefied waste plastic;
  • the contact cracking reaction unit includes a cracking raw material inlet, a contact agent inlet, a reaction oil and gas outlet, and a contact agent outlet; the cracking raw material inlet is connected to the liquefied waste plastic oil outlet of the waste plastic viscosity reduction unit, and the contact cracking reaction unit is configured to treat the liquefied waste The plastic oil undergoes cracking reaction treatment; the connecting pipeline between the cracking raw material inlet of the contact cracking reaction unit and the liquefied waste plastic oil outlet of the waste plastic viscosity reducing unit also includes a steam inlet;
  • the separation unit includes a separation inlet, a second dry gas outlet, a liquefied gas outlet, a gasoline fraction outlet, a diesel fraction outlet and a wax oil fraction outlet; the separation inlet is connected to the reaction oil and gas outlet of the contact cracking reaction unit, and the separation unit is configured to react oil and gas perform separation processing;
  • the hydrogen chloride absorption unit includes a hydrogen chloride-containing gas phase material inlet and a hydrogen chloride absorbent; the hydrogen chloride-containing gas phase material inlet is connected to the hydrogen chloride-containing gas outlet of the waste plastic hot melt dehydration and dechlorination unit;
  • the regeneration unit includes a contact agent inlet to be regenerated, an oxygen-containing gas inlet, a regenerant outlet and a flue gas outlet; the contact agent inlet to be regenerated is connected to the contact agent outlet to be regenerated in the contact cracking reaction unit, and the regenerant outlet is in contact with the contact cracking reaction unit.
  • agent inlet preferably, the regeneration unit also includes a dry gas inlet, and the dry gas inlet is connected with the first dry gas outlet of the waste plastic viscosity reduction unit and/or the second dry gas outlet of the separation unit.
  • a processing method for viscosity reduction and pyrolysis cracking of waste plastics includes the following steps:
  • the pyrolysis product enters the separation unit for separation processing, for example, to obtain dry gas, liquefied gas, gasoline fraction, diesel fraction and wax oil fraction.
  • the present disclosure provides a processing method for viscosity-reducing pyrolysis cracking of waste plastics.
  • the viscosity of the liquefied waste plastics is reduced by performing liquefaction treatment and viscosity-reducing treatment on the waste plastics to be processed; and then it is heated to reach the pyrolysis reaction temperature, And form a uniform and fluid logistics; the high-temperature liquefied waste plastic is subjected to a pyrolysis reaction, realizing the resource utilization of the waste plastic and reducing the generation of coke;
  • the waste plastic in the garbage dump can be dehydrated in situ Dechlorination and weight reduction treatment, and subsequent cracking and recycling can be processed in a centralized manner, making it easy to expand the production scale and reduce processing costs; the process is simple and the equipment investment is relatively small, allowing waste plastics to be recycled as green resources.
  • the waste plastics to be processed include low density polyethylene (LDPE), high density polyethylene (HDPE), polystyrene (PS), polypropylene (PP), polyterephthalic acid
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • PS polystyrene
  • PP polypropylene
  • PVC polyvinyl chloride
  • the chlorine element content in the waste plastic to be treated is less than 10% by weight; and/or the waste plastic to be treated
  • the PVC content is less than 10% by weight;
  • the ash content of the waste plastic to be processed is 1-40% by weight, for example, 3-30% by weight, or 3-20% by weight.
  • the waste plastic raw material in this disclosure can be directly used from waste plastics in landfills.
  • step S1 the method further includes:
  • the dechlorination waste plastic material is cooled and pulverized in sequence to obtain dechlorination waste plastic particles; the dechlorination waste plastic particles are allowed to enter the waste plastic liquefaction unit.
  • the hot melt dechlorination step and the waste plastic liquefaction step can use the same (rapid) heating and liquefaction conveying equipment, or each can use one (rapid) heating and liquefaction conveying equipment; for example (rapid) )
  • the heated liquefaction conveying equipment is a screw-type heated conveying equipment with heating (twin-screw type or single-screw type).
  • the method further includes:
  • the hydrogen chloride-containing gas is allowed to enter the hydrogen chloride absorption unit under the action of a vacuum system.
  • This disclosure uses a waste plastic preliminary melting and liquefaction dechlorination unit to decompose chlorine in the waste plastic PVC into the gas phase, and uses a vacuum system to quickly separate HCl, avoid secondary reactions of HCl, improve the dechlorination efficiency of waste plastics, and reduce the anti-corrosion pressure of subsequent equipment. .
  • the hydrogen chloride absorbent is water or an alkali solution with a pH greater than 7; optionally, the alkali solution includes sodium hydroxide solution, potassium hydroxide solution, calcium hydroxide solution, hydrogen carbonate One or more of sodium solution, sodium carbonate solution and ammonia solution.
  • the method further includes: returning at least part of the wax oil fraction from the separation unit to the waste plastic viscosity reduction unit for refining; preferably, the wax oil fraction separated by the separation unit
  • the fraction with a distillation range greater than 350°C is used as the wax oil fraction.
  • Introducing wax oil fraction into the waste plastic viscosity reduction unit can not only further improve the utilization efficiency of waste plastic resources, but also facilitate the viscosity reduction treatment of waste plastics.
  • the weight ratio of the recycled wax oil fraction to the waste plastic to be processed is 0.2-5.0:1, and the optimization is 0.2-2:1.
  • the waste plastic liquefaction unit uses heated liquefaction conveying equipment, preferably rapid heated liquefaction conveying equipment, to perform the liquefaction process; optionally, the heated liquefaction conveying equipment includes a third A screw-type heating and conveying equipment; preferably, the first screw-type heating and conveying equipment is selected from a twin-screw type or a single-screw type heating and conveying equipment with heating.
  • the rapid heating and liquefaction conveying equipment used in the present disclosure is beneficial to rapid liquefaction of solid waste plastics.
  • the process conditions of the liquefaction treatment include: the outlet temperature is 370-480°C, such as 380-480°C, 380-450°C or 400-450°C; the residence time is 5-30 min, such as 5-20min, or 5-15min.
  • the feeding pressure of the heating liquefaction conveying equipment can be carried out under normal pressure, reduced pressure or increased pressure.
  • the feed pressure can be normal pressure, or 0-0.6MPa, for example, 0.1-0.3MPa. Unless otherwise stated, pressures used in this article are gauge pressures.
  • the pressure of the liquefaction process is the internal pressure of the heated liquefaction conveying equipment.
  • the waste plastic viscosity reduction unit uses a viscosity reduction reactor to perform the viscosity reduction treatment, for example, an adiabatic viscosity reduction reactor.
  • the viscosity reduction reactor in this disclosure may be any reactor known in the art, such as an upflow viscosity reduction reactor or a downflow viscosity reduction reactor.
  • the process conditions of the viscosity reduction treatment include: reaction temperature is 350-450°C, such as 370-450°C, 380-420°C, 350-400°C, 370-410°C, 390- 450°C or 390-420°C; the residence time is 10-200min. From an economic point of view, the residence time is no more than 200min, for example, no more than 180min. The residence time is, for example, 10-180min, 15-120min, 20-120min, 20-90min. , 30-120min, 30-90min, 50-90min, 50-70min, 20-60min, or 30-70min.
  • the pressure of the viscosity reducing treatment is not particularly limited, and the viscosity reducing treatment can be performed under normal pressure, reduced pressure, or increased pressure.
  • the pressure of the viscosity reduction treatment may be normal pressure, or 0-0.6MPa, for example, 0.1-0.3MPa. Unless otherwise stated, pressures used in this article are gauge pressures.
  • the viscosity reducing reactor can ensure that the temperature of the materials entering the reactor does not change significantly. Since cracking absorbs heat, if necessary, additional heat needs to be added to ensure that the temperature of the material entering the reactor does not change significantly.
  • the viscosity reduction reactor is equipped with a temperature-controlled heating device, so that the temperature of the materials entering the reactor can be achieved without significant changes.
  • "the temperature of the materials entering the reactor does not change significantly” means that the temperature is maintained at 90%-110% of the temperature of the materials entering the reactor, such as 92%-108%, or 95%-105%, or In the range of 98%-102% (for example, it can be expressed as the outlet temperature of the reactor).
  • the viscosity of the material leaving the reactor after viscosity reduction treatment can be less than 12000cP@200°C, such as 5000-10000cP@200°C, 6000-9000cP@200°C, 100-12000cP@200°C, 100-2000cP@200 °C, 100-1500cP@200°C, 100-1000cP@200°C, 100-500cP@200°C.
  • the viscosity is measured using a rotational viscometer according to SY/T 0520-2008.
  • the material heating unit includes a heating furnace; preferably, the process conditions of the heating treatment include: the heating furnace outlet temperature is 450°C-550°C, for example, 460°C-520°C. ;
  • the steam injection amount is 0.5-5% by weight, and the optimal amount is 1-3% by weight.
  • the process conditions of the pyrolysis reaction include: the top pressure of the pyrolysis tower is 0.05-0.6MPa, for example, 0.1-0.3MPa; the pyrolysis reaction temperature is 450-520°C, for example , 480-520°C.
  • the pyrolysis reaction unit may include multiple pyrolysis towers arranged in parallel.
  • the waste plastic preliminary melting and liquefaction dechlorination unit includes a Two-screw heating and conveying equipment and a vacuum device connected with the second screw heating and conveying equipment; preferably, the second screw heating and conveying equipment is selected from twin-screw or single-screw conveying equipment.
  • the process conditions of the hot melt dechlorination treatment include: the feed rate is 5-5000kg/h, for example, 100-4000kg/h; the outlet temperature is 150-370°C, for example, 300 -330°C, the reaction time is 0.1-0.5h, for example, 0.1-0.3h; the vacuum degree of the preliminary melting, liquefaction and dechlorination unit of the waste plastic is 50-300mmHg, for example, 50-150mmHg.
  • the particle size of the dechlorinated waste plastic particles obtained by pulverization is 100-2000 ⁇ m.
  • the devices and methods of cooling treatment and crushing treatment may be conventional devices and methods in the art.
  • the processing system includes: a waste plastic liquefaction unit, a waste plastic viscosity reduction unit, a material heating unit, and a pyrolysis reaction units and separate units;
  • the waste plastic liquefaction unit includes an inlet for waste plastic to be processed and an outlet for liquefied waste plastic, and the waste plastic liquefaction unit is configured to liquefy the waste plastic to be processed;
  • the waste plastic viscosity reducing unit includes a liquefied waste plastic inlet and a liquefied waste plastic oil outlet, and the waste plastic viscosity reducing unit is configured to reduce the viscosity of the liquefied waste plastic;
  • the material heating unit includes a heating inlet and a heating outlet.
  • the heating inlet is connected to the liquefied waste plastic oil outlet of the waste plastic viscosity reduction unit.
  • the heating unit is configured to heat the viscosity-reduced liquefied waste plastic oil;
  • the pyrolysis reaction unit includes a pyrolysis reactant inlet and a pyrolysis product outlet.
  • the pyrolysis reactant inlet is connected to the heating outlet of the heating unit.
  • the pyrolysis reaction unit is configured to perform pyrolysis reaction processing on high-temperature liquefied waste plastics;
  • the separation unit includes a separation inlet, a dry gas outlet, a liquefied gas outlet, a gasoline fraction outlet, a diesel fraction outlet and a wax oil fraction outlet; the separation inlet is connected to the pyrolysis product outlet of the pyrolysis reaction unit, and the separation unit is configured to process the pyrolysis product Perform separation processing.
  • the waste plastic viscosity reduction unit further includes at least one viscosity reduction reactor, and the viscosity reduction reactor provides the liquefied waste plastic inlet and the liquefied waste plastic oil outlet of the waste plastic viscosity reduction unit;
  • the viscosity reducing reactor is an adiabatic reactor.
  • the viscosity-reducing reactor is preferably equipped with a temperature-controlled heating device to enable entry The temperature of the reactor contents did not change significantly.
  • the temperature of the materials entering the reactor does not change significantly
  • the temperature is maintained at 90%-110% of the temperature of the materials entering the reactor, such as 92%-108%, or 95%-105%, or In the range of 98%-102% (for example, it can be expressed as the outlet temperature of the reactor).
  • the waste plastic viscosity reducing unit further includes a circulating oil inlet; the circulating oil inlet is connected with the wax oil fraction outlet of the separation unit.
  • the system also includes a waste plastic preliminary melting and liquefaction dechlorination unit and a hydrogen chloride absorption unit;
  • the waste plastic preliminary melting, liquefaction and dechlorination unit includes a chlorine-containing waste plastic raw material inlet, a hydrogen chloride-containing gas phase material outlet and a dechlorinated waste plastic liquid phase material outlet.
  • the waste plastic preliminary melting, liquefaction and dechlorination unit is configured to conduct chlorine-containing waste plastic raw materials. Hot melt dechlorination treatment; the dechlorination waste plastic liquid phase material outlet is connected to the waste plastic inlet to be processed in the waste plastic liquefaction unit;
  • the hydrogen chloride absorption unit includes a hydrogen chloride-containing gas phase material inlet, a hydrogen chloride absorbent and a dechlorination dry gas outlet; the hydrogen chloride-containing gas phase material inlet is connected to the hydrogen chloride-containing gas phase material outlet of the waste plastic preliminary melting, liquefaction and dechlorination unit.
  • the waste plastic liquefaction unit includes a heated liquefaction conveying device, preferably a rapid heated liquefaction conveying device; optionally, the heated liquefaction conveying device includes a first screw-type heated conveying device; preferably, a first The screw heating and conveying equipment is selected from twin-screw or single-screw heating and conveying equipment with heating;
  • the waste plastic preliminary melting, liquefaction and dechlorination unit includes a second screw heating and conveying device and a vacuum device connected to the second screw heating and conveying device; preferably, the second screw heating and conveying device is selected from twin screw or single screw conveying. equipment.
  • the waste plastic preliminary melting, liquefaction and dechlorination unit and the waste plastic liquefaction unit adopt a heated liquefaction conveying equipment, including a first screw-type heated conveying equipment, in which the screw The middle part of the heating and conveying equipment is equipped with a gas outlet connected to a vacuum device.
  • the waste plastic preliminary melting, liquefaction and dechlorination unit also includes a non-condensable vapor outlet for drawing out non-condensable vapor.
  • the system includes: a waste plastic preliminary melting and liquefaction dechlorination unit, a hydrogen chloride absorption unit, a waste plastic liquefaction unit, a waste plastic viscosity reduction unit, a material heating unit, a pyrolysis reaction unit and a separation unit. unit;
  • the waste plastic liquefaction unit includes an inlet for waste plastic to be processed and an outlet for liquefied waste plastic. port, the waste plastic liquefaction unit is configured to liquefy the waste plastic to be processed;
  • the waste plastic viscosity reducing unit includes a liquefied waste plastic inlet, a circulating oil inlet and a liquefied waste plastic oil outlet, and the waste plastic viscosity reducing unit is configured to reduce the viscosity of the liquefied waste plastic;
  • the material heating unit includes a heating inlet and a heating outlet.
  • the heating inlet is connected to the liquefied waste plastic oil outlet of the waste plastic viscosity reduction unit.
  • the heating unit is configured to heat the viscosity-reduced liquefied waste plastic oil;
  • the pyrolysis reaction unit includes a pyrolysis reactant inlet and a pyrolysis product outlet.
  • the pyrolysis reactant inlet is connected to the heating outlet of the heating unit.
  • the pyrolysis reaction unit is configured to perform pyrolysis reaction processing on high-temperature liquefied waste plastics;
  • the separation unit includes a separation inlet, a dry gas outlet, a liquefied gas outlet, a gasoline fraction outlet, a diesel fraction outlet and a wax oil fraction outlet; the separation inlet is connected to the pyrolysis product outlet of the pyrolysis reaction unit, and the separation unit is configured to process the pyrolysis product Carry out separation processing; the wax oil fraction outlet of the separation unit is connected to the circulating oil inlet of the waste plastic viscosity reduction unit;
  • the waste plastic preliminary melting, liquefaction and dechlorination unit includes a chlorine-containing waste plastic raw material inlet, a hydrogen chloride-containing gas phase material outlet and a dechlorinated waste plastic liquid phase material outlet.
  • the waste plastic preliminary melting, liquefaction and dechlorination unit is configured to conduct chlorine-containing waste plastic raw materials. Hot melt dechlorination treatment; the dechlorination waste plastic liquid phase material outlet is connected to the waste plastic inlet to be processed in the waste plastic liquefaction unit;
  • the hydrogen chloride absorption unit includes a hydrogen chloride-containing gas phase material inlet, a hydrogen chloride absorbent and a dechlorination dry gas outlet; the hydrogen chloride-containing gas phase material inlet is connected to the hydrogen chloride-containing gas phase material outlet of the waste plastic preliminary melting, liquefaction and dechlorination unit.
  • This disclosure also provides the following two sets of technical solutions A and B.
  • a processing method for fluidized cracking of waste plastics characterized in that the method includes the following steps:
  • reaction oil and gas enter the separation unit for separation processing to obtain the second dry gas, liquefied gas, gasoline fraction, diesel fraction and wax oil fraction;
  • the contact agent to be regenerated is allowed to enter the regeneration unit, and in the presence of oxygen, the contact agent is The contact agent to be regenerated is regenerated to obtain regenerated contact agent and regenerated flue gas; the regenerated contact agent is returned to the contact cracking reaction unit for continued use.
  • step S1 The processing method according to technical solution A1, characterized in that, before step S1, the method also includes:
  • the chlorine-containing waste plastic raw materials are entered into the waste plastic hot melt dehydration and dechlorination unit. Under the first temperature condition, the chlorine-containing waste plastic raw materials are melted and dehydrated to obtain dehydrated waste plastics; and then the dehydrated waste plastics are heated to Dechlorination is performed at the second temperature to obtain dehydrated and dechlorinated waste plastics and hydrogen chloride-containing gas;
  • dehydration and dechlorination waste plastics are sequentially cooled and pulverized in a cooling and crushing unit to obtain dehydration and dechlorination waste plastic particles; the dehydration and dechlorination waste plastic particles are allowed to enter the waste plastic liquefaction unit; or
  • the dehydrated and dechlorinated waste plastic directly enters the waste plastic liquefaction unit.
  • the hydrogen chloride-containing gas enters the hydrogen chloride absorption unit, and is contacted with the hydrogen chloride absorbent to perform hydrogen chloride absorption treatment; optionally, the hydrogen chloride-containing gas enters the hydrogen chloride absorption unit under the action of a vacuum system;
  • the hydrogen chloride absorbent is water or an alkali solution with a pH greater than 7; optionally, the alkali solution includes sodium hydroxide solution, potassium hydroxide solution, calcium hydroxide solution, sodium bicarbonate solution, sodium carbonate solution and ammonia water one or more of them.
  • the method also includes: causing the carbon-bearing ash and the contact agent to be regenerated to enter a regeneration unit, and causing the contact agent to be regenerated and the carbon on the carbon-bearing ash to undergo a complete combustion reaction in the presence of oxygen to obtain regenerated flue gas and Regeneration contact agent;
  • the method also includes:
  • the carbon content of the contact agent to be regenerated is 0.5 to 5.0% by weight.
  • step S1 the waste plastic liquefaction unit uses heated liquefaction conveying equipment to perform the liquefaction treatment; optionally, the heated liquefaction conveying equipment includes a first screw-type heated conveying equipment; preferably, the first screw-type heated conveying equipment Choose from twin-screw or single-screw heated conveying equipment with heating;
  • the process conditions of the liquefaction treatment include: outlet temperature is 380-500°C, preferably 400-450°C; residence time is 5-30 min, preferably 5-15 min.
  • step S2 the waste plastic viscosity reducing unit uses a viscosity reducing reactor to perform the visbreaking treatment; preferably, the viscosity reducing reactor is Adiabatic viscosity reducing reactor;
  • the process conditions of the visbreaking treatment include: reaction temperature is 380-500°C, preferably 390-450°C, further preferably 390-420°C; residence time is 10-90min, preferably 20-70min, More preferably, it is 30 to 70 minutes.
  • step S3 The processing method according to technical solution A1, characterized in that in step S3, the process conditions of the cracking reaction include: reaction temperature is 490 ⁇ 750°C, gravity hourly space velocity is 1 ⁇ 100h-1, contact agent and The mass ratio of waste plastics to be processed is 5 to 30:1;
  • the reaction temperature is 500-650°C
  • the gravity hourly space velocity is 3-60h-1
  • the mass ratio of the contact agent to the waste plastic to be treated is 6-20:1;
  • the visbroken liquefied waste plastic oil and steam are allowed to enter the contact cracking reaction unit; preferably, the mass ratio of steam to waste plastic to be treated is 0.05 to 1:1, preferably 0.1 to 0.5:1 .
  • step S3 The processing method according to technical solution A1, characterized in that in step S3, the contact agent is one or more selected from the group consisting of silicon-alumina material catalysts, quartz sand or coal coke powder; preferably, the contact agent is The particle size of the contact agent is 20-3000 ⁇ m;
  • the silica-aluminum material is selected from a molecular sieve-containing catalyst and/or a molecular sieve-free catalyst; preferably, the molecular sieve-containing catalyst is selected from the group consisting of X molecular sieve, Y molecular sieve, mordenite, ZSM-5, Column clay molecular sieve, one or more molecular sieve catalysts from SAPO, one or more waste FCC catalysts;
  • the molecular sieve-free catalyst is selected from catalysts prepared from one or more of the first raw materials, including amorphous silica alumina, clay, kaolin, montmorillonite, and retort. stone, illite, chlorite, pseudoboehmite and silica; or
  • the molecular sieve-free catalyst is selected from catalysts prepared from one or more of the second raw materials that have been pickled, roasted, and screened.
  • the second raw materials include amorphous silica alumina, clay, and kaolin. , montmorillonite, rectorite, illite and chlorite; or one or more of the second raw materials that have been pickled, roasted and screened are combined with pseudo-boehmite and/or chlorite.
  • the coal coke powder is coal powder and/or petroleum coke powder.
  • the hot-melt dehydration, dechlorination and crushing unit of the waste plastic hot-melt dehydration and dechlorination unit includes a second screw-type heating and conveying device and a second screw-type heating and conveying device.
  • the process conditions of the melting and dehydration treatment include: the first temperature is 100-170°C, preferably 120-150°C; the time is 0.05-1h, preferably 0.05-0.5h; the feed rate of chlorine-containing waste plastic raw materials It is 5 ⁇ 5000kg/h, preferably 100 ⁇ 4000kg/h;
  • the process conditions of the dechlorination treatment include: the second temperature is 150-370°C, preferably 220-350°C, and further preferably 300-330°C; the time is 0.05-0.5h, preferably 0.1-0.2h ; The degree of vacuum is 50 ⁇ 300mmHg, preferably 50 ⁇ 150mmHg;
  • the heating rate from the first temperature to the second temperature is 50-200°C/min, preferably 50-150°C/min;
  • the particle size of the dehydrated and dechlorinated waste plastic particles obtained through pulverization is 100 to 2000 ⁇ m.
  • the chlorine content in the waste plastic to be treated is less than 10% by weight; the ash content in the waste plastic to be treated is 1 to 40% by weight, preferably 3 to 20% by weight.
  • a processing system for fluidized cracking of waste plastics characterized in that the system includes: a waste plastic liquefaction unit, a waste plastic viscosity reducing unit, a contact cracking reaction unit, a separation unit and a regeneration unit;
  • the waste plastic liquefaction unit includes a waste plastic inlet to be processed and a liquefied waste plastic outlet, and the waste plastic liquefaction unit is configured to liquefy the waste plastic to be processed;
  • the waste plastic viscosity reducing unit includes a liquefied waste plastic inlet, a liquefied waste plastic oil outlet and a first dry gas outlet, and the waste plastic viscosity reducing unit is configured to perform visbreaking treatment on the liquefied waste plastic;
  • the contact cracking reaction unit includes a cracking raw material inlet, a contact agent inlet, a reaction oil and gas outlet, and a contact agent outlet to be produced; the cracking raw material inlet is connected to the liquefied waste plastic oil outlet of the waste plastic viscosity reducing unit, and the contact cracking reaction unit
  • the reaction unit is configured to perform a cracking reaction process on the liquefied waste plastic oil;
  • the separation unit includes a separation inlet, a second dry gas port, a liquefied gas outlet, a gasoline fraction outlet, a diesel fraction outlet and a wax oil fraction outlet; the separation inlet is connected to the reaction oil and gas outlet of the contact cracking reaction unit, and the separation unit The unit is configured to separate the reaction oil and gas;
  • the regeneration unit includes a contact agent inlet to be regenerated, an oxygen-containing gas inlet, a regeneration contact agent outlet, and a regeneration flue gas outlet; the regeneration unit is configured to regenerate the contact agent to be regenerated in the presence of oxygen, Regenerated contact agent and regenerated flue gas are obtained; the regenerated contact agent outlet is connected with the contact agent inlet of the contact cracking reaction unit.
  • the processing system according to technical solution A12 characterized in that the processing system also includes a waste plastic hot melt dehydration and dechlorination unit, a cooling and crushing unit and a hydrogen chloride absorption unit;
  • the waste plastic hot-melt dehydration and dechlorination unit includes a chlorine-containing waste plastic raw material inlet, a dehydration and dechlorination waste plastic outlet, and a hydrogen chloride-containing gas outlet; the waste plastic hot-melt dehydration and dechlorination unit is configured to melt chlorine-containing waste plastic. Dehydration and dechlorination;
  • the cooling and crushing unit is configured to cool and crush the dehydrated and dechlorinated waste plastic from the waste plastic hot-melt dehydration and dechlorination unit;
  • the hydrogen chloride absorption unit includes a hydrogen chloride-containing gas phase material inlet and a hydrogen chloride absorbent; the hydrogen chloride-containing gas phase material inlet is connected to the hydrogen chloride-containing gas outlet of the waste plastic hot-melt dehydration and dechlorination unit;
  • the regeneration unit further includes a dry gas inlet, and the dry gas inlet is connected with the The first dry gas outlet of the waste plastic viscosity reducing unit and/or the second dry gas outlet of the separation unit are connected;
  • the communication pipeline between the cracking raw material inlet of the contact cracking reaction unit and the liquefied waste plastic oil outlet of the waste plastic viscosity reducing unit also includes a steam inlet;
  • the waste plastic liquefaction unit includes a heated liquefaction conveying device; optionally, the heated liquefaction conveying device includes a first screw-type heated conveying device; preferably, the first screw-type heated conveying device is selected from the group consisting of: Heated twin-screw heating conveyor equipment;
  • the waste plastic hot melt dehydration and dechlorination unit includes a second screw heating and conveying device and a vacuum device connected to the second screw heating and conveying device; preferably, the second screw heating and conveying device is Twin-screw conveying equipment.
  • a processing method for viscosity reduction and pyrolysis cracking of waste plastics characterized in that the method includes the following steps:
  • step S1 The processing method according to technical solution B1, characterized in that, before step S1, the method also includes:
  • the dechlorination waste plastic material is cooled and pulverized in sequence to obtain dechlorination waste plastic particles; the dechlorination waste plastic particles are allowed to enter the waste plastic liquefaction unit.
  • the hydrogen chloride-containing gas is allowed to enter the hydrogen chloride absorption unit under the action of a vacuum system;
  • the hydrogen chloride absorbent is water or an alkali solution with a pH greater than 7; optionally, the alkali solution includes sodium hydroxide solution, potassium hydroxide solution, calcium hydroxide solution, sodium bicarbonate solution, sodium carbonate solution and ammonia water one or more of them.
  • the weight ratio of the recycled wax oil fraction to the waste plastic to be processed is 0.2 to 5.0:1, preferably 0.2 to 2:1;
  • the fraction with a distillation range greater than 350°C separated by the separation unit is used as the wax oil fraction.
  • step S1 the waste plastic liquefaction unit uses rapid heating and liquefaction conveying equipment to perform the liquefaction process; optionally, the rapid heating and liquefaction conveying equipment includes First screw-type heating and conveying equipment; Preferably, the first screw-type heating and conveying equipment is selected from twin-screw type or single-screw type heating and conveying equipment with heating;
  • the process conditions of the liquefaction treatment include: outlet temperature is 370-500°C, preferably 380-450°C; residence time is 5-20 min, preferably 5-15 min.
  • step S2 the waste plastic viscosity reducing unit uses a viscosity reducing reactor to perform the visbreaking treatment.
  • the viscosity reducing reactor is Adiabatic viscosity reducing reactor;
  • the process conditions of the visbreaking treatment include: reaction temperature is 370-450°C, preferably 380-420°C, more preferably 390-420°C; residence time is 2-120 min, preferably 30-70 min.
  • step S3 the material heating unit includes a heating furnace
  • the process conditions of the heating treatment include: the heating furnace outlet temperature is 450°C to 550°C, preferably 460°C to 520°C; optionally, the steam injection amount is 0.5 to 5% by weight, preferably 1 to 3% by weight.
  • step S4 The processing method according to technical solution B1, characterized in that in step S4, the process conditions of the pyrolysis reaction include: the top pressure of the pyrolysis tower is 0.05 ⁇ 0.6MPa, preferably 0.1 ⁇ 0.3Mpa; pyrolysis The reaction temperature is 450 to 520°C, preferably 480 to 520°C.
  • waste plastic preliminary melting, liquefaction and dechlorination unit includes a second screw heating and conveying device and a vacuum device connected to the second screw heating and conveying device;
  • the second screw-type heating conveying equipment is selected from a twin-screw type or a single-screw type conveying equipment;
  • the process conditions of the hot melt dechlorination treatment include: the feed rate is 5 ⁇ 5000kg/h, preferably 100 ⁇ 4000kg/h; the outlet temperature is 150 ⁇ 370°C, preferably 300 ⁇ 330°C, and the reaction time is 0.1 ⁇ 0.5h, preferably 0.1 ⁇ 0.3h; the vacuum degree of the preliminary melting, liquefaction and dechlorination unit of the waste plastic is 50 ⁇ 300mmHg, preferably 50 ⁇ 150mmHg;
  • the particle size of the dechlorinated waste plastic particles obtained by pulverization is 100 to 2000 ⁇ m.
  • the content of PVC in the waste plastic to be processed is less than 10% by weight; the ash content in the waste plastic to be processed is 1 to 40% by weight, preferably 3 to 30% by weight.
  • a processing system for viscosity reduction and pyrolysis cracking of waste plastics characterized in that the processing system includes: a waste plastic liquefaction unit, a waste plastic viscosity reduction unit, a material heating unit, a pyrolysis reaction unit and a separation unit;
  • the waste plastic liquefaction unit includes a waste plastic inlet to be processed and a liquefied waste plastic outlet, and the waste plastic liquefaction unit is configured to liquefy the waste plastic to be processed;
  • the waste plastic viscosity reducing unit includes a liquefied waste plastic inlet and a liquefied waste plastic oil outlet, and the waste plastic viscosity reducing unit is configured to perform visbreaking treatment on the liquefied waste plastic;
  • the material heating unit includes a heating inlet and a heating outlet.
  • the heating inlet is connected to the liquefied waste plastic oil outlet of the waste plastic viscosity reducing unit.
  • the heating unit is configured to heat the visbroken liquefied waste plastic oil. deal with;
  • the pyrolysis reaction unit includes a pyrolysis reactant inlet and a pyrolysis product outlet, and the The pyrolysis reactant inlet is connected to the heating outlet of the heating unit, and the pyrolysis reaction unit is configured to perform pyrolysis reaction treatment on high-temperature liquefied waste plastic;
  • the separation unit includes a separation inlet, a dry gas outlet, a liquefied gas outlet, a gasoline fraction outlet, a diesel fraction outlet and a wax oil fraction outlet; the separation inlet is connected to the pyrolysis product outlet of the pyrolysis reaction unit, and the separation unit The unit is configured for separation processing of the pyrolysis products.
  • the processing system according to technical solution B11 characterized in that the system also includes a preliminary melting and liquefaction dechlorination unit of waste plastic and a hydrogen chloride absorption unit;
  • the waste plastic preliminary melting, liquefaction and dechlorination unit includes a chlorine-containing waste plastic raw material inlet, a hydrogen chloride-containing gas phase material outlet and a dechlorination waste plastic liquid phase material outlet.
  • the waste plastic preliminary melting, liquefaction and dechlorination unit is configured to treat chlorine-containing waste plastics.
  • the waste plastic raw materials are subjected to hot melt dechlorination treatment; the dechlorination waste plastic liquid phase material outlet is connected to the waste plastic inlet to be processed of the waste plastic liquefaction unit;
  • the hydrogen chloride absorption unit includes a hydrogen chloride-containing gas phase material inlet, a hydrogen chloride absorbent and a dechlorination dry gas outlet; the hydrogen chloride-containing gas phase material inlet is connected to the hydrogen chloride-containing gas phase material outlet of the waste plastic preliminary melting and liquefaction dechlorination unit. ;
  • the waste plastic liquefaction includes a heated liquefaction conveying device; optionally, the heated liquefaction conveying device includes a first screw-type heated conveying device; preferably, the first screw-type heated conveying device is selected from the group consisting of: Twin-screw or single-screw heating and conveying equipment;
  • the waste plastic preliminary melting, liquefaction and dechlorination unit includes a second screw heating and conveying device and a vacuum device connected to the second screw heating and conveying device; preferably, the second screw heating and conveying device is Twin-screw or single-screw conveying equipment;
  • the waste plastic viscosity reducing unit further includes a circulating oil inlet; the circulating oil inlet is connected to the wax oil fraction outlet of the separation unit;
  • the waste plastic preliminary melting, liquefaction and dechlorination unit also includes a non-condensable steam outlet.
  • the waste plastic raw materials stored in the waste plastic storage tank 1 enter the waste plastic hot-melt dehydration, dechlorination and crushing unit 2 (including the waste plastic hot-melt dehydration and dechlorination unit and the cooling and crushing unit).
  • dehydration and dechlorination waste plastics and gas containing hydrogen chloride are obtained.
  • Gas containing hydrogen chloride is pumped in through the vacuum system
  • the hydrogen chloride absorption unit 9 contacts the hydrogen chloride absorbent to perform hydrogen chloride absorption treatment.
  • a small amount of non-condensable gas is discharged through line 22.
  • the dehydrated and dechlorinated waste plastics are sequentially cooled and pulverized in a cooling and pulverizing unit to obtain dehydrated and dechlorinated waste plastic particles.
  • the dehydrated and dechlorinated waste plastic particles are placed in the waste plastic particle storage tank 3 for storage.
  • the dehydrated and dechlorinated waste plastic particles in the waste plastic particle storage tank 3 enter the waste plastic liquefaction unit 4 for liquefaction treatment to obtain liquefied waste plastic.
  • the liquefied waste plastic enters the waste plastic viscosity reducing unit 5 for viscosity reduction treatment to obtain liquefied waste plastic oil and first dry gas.
  • the viscosity-reduced liquefied waste plastic oil is sent to the contact cracking reaction unit 6 through the pipeline 11 and the steam from the pipeline 10 .
  • the fresh contactant replenished from line 13 and the regenerated contactant coming out of line 18 of the regenerator enter the contact cracking reaction unit 6 .
  • the viscosity-reduced liquefied waste plastic oil is contacted with the fluidized contact agent in the contact cracking reaction unit 6 to undergo a cracking reaction, and then the reaction oil gas and the contact agent to be produced are obtained.
  • the reaction oil gas enters the subsequent separation unit 8 through pipeline 12 for separation processing, in which: the second dry gas exits the device from pipeline 22, and the liquefied gas, gasoline fraction, diesel fraction and wax oil fraction exits the device from line 16.
  • the charred to-be-generated contact agent and optionally charred ash enter the regeneration unit 7 via line 14 .
  • the coke on the contact agent to be generated undergoes a complete combustion reaction with the cracked dry gas from pipeline 21 (including the first dry gas from pipeline 22 and/or the second dry gas from pipeline 15) and the air from pipeline 19.
  • the generated regeneration flue gas exits the device through pipeline 17, and can be directly discharged into the atmosphere after reaching the standard.
  • the obtained regenerated contact agent is led out of the regeneration unit 7 through the pipeline 18, and the balance agent and ash are discharged from the pipeline 20.
  • waste plastics or dehydrated and dechlorinated waste plastic particles stored in the waste plastic storage tank 1 enter the waste plastic preliminary melting, liquefaction and dechlorination unit 2.
  • gas phase materials containing hydrogen chloride and dechlorination waste are obtained.
  • the gas phase material containing hydrogen chloride is pumped into the hydrogen chloride absorption unit 8 through the vacuum system, and is contacted with the hydrogen chloride absorbent for hydrogen chloride absorption treatment to obtain the chlorine-containing absorbent and dechlorinated dry gas.
  • a small amount of non-condensable gas is discharged through line 9.
  • the waste plastic liquefaction unit adopts rapid heating liquefaction conveying equipment3.
  • the dechlorinated waste plastic liquid phase material from the waste plastic preliminary melting, liquefaction and dechlorination unit 2 can go out of the device for cooling and crushing to obtain dechlorinated waste plastic particles, and then enter the rapid heating and liquefaction conveying equipment 3 (waste plastic liquefaction unit), or It can directly enter the rapid heating liquefaction conveying equipment 3 (waste plastic liquefaction unit) to obtain molten dechlorinated waste plastic liquid phase material.
  • the molten dechlorinated waste plastic liquid phase material enters the adiabatic viscosity reduction reactor 4 (waste plastic viscosity reduction unit) for viscosity reduction treatment to obtain viscosity-reduced liquefied waste plastic oil.
  • the wax oil fraction from the separation unit 7 can also be processed at the same time Enter the adiabatic viscosity reduction reactor 4 for recirculation.
  • Reduced viscosity liquefied waste plastic oil It is sent to the heating furnace 5 (heating unit) through the pipeline 10. After being heated and raised by the heating furnace 5, the high-temperature liquefied waste plastic enters the pyrolysis reaction unit 6 through the pipeline 11 for pyrolysis reaction to obtain pyrolysis products and coke.
  • the pyrolysis product enters the subsequent separation unit 7 through pipeline 12 for separation processing: dry gas exits the device from pipeline 15, liquefied gas and gasoline fraction exits the device from pipeline 14, and diesel fraction exits the device from line 13; the wax oil fraction at the bottom of the tower
  • the separation unit is led out through pipeline 16, and part of the wax oil fraction can also be returned to the adiabatic viscosity reduction reactor 4 (waste plastic viscosity reduction unit) through pipeline 15 for recycling, or it can be used as a product extraction device through pipeline 17.
  • the contact agent SL-1 used is a contact agent containing 10 wt% alumina and 80 wt% kaolin, which is spray-dried and then roasted.
  • the specific preparation method refer to CN102974383A; the average particle size of SL-1 is 80 ⁇ m.
  • the catalytic cracking catalyst used is a brand name of CRC-1 (produced by Qilu Petrochemical Company), the balancer of the catalytic cracking catalyst is marked as SL-2, and the average particle size is 65 ⁇ m.
  • the quartz sand used is designated as SL-3, with a particle size of 300 ⁇ m.
  • the analysis method for chlorine content in liquefied waste plastics is: Q/SH 3360 270-2018.
  • the analysis methods for other elements in liquefied waste plastics are: carbon and hydrogen SH/T 0656-2017, oxygen SH/T 0986, nitrogen SH/T 0704-2010, and sulfur SH/T0842-2010.
  • the distribution of pyrolysis or cracking products is obtained by simulated distillation NB/SH/T 0829-2010 method.
  • the density analysis method of diesel wax oil is SH/T0604-2000; the composition of pyrolysis or cracking gas is determined by RIPP 78-90 method; the hydrocarbon composition of naphtha, diesel, etc. is determined by chromatographic analysis.
  • the fluorescence method was used to test the residual chlorine content in the waste plastic raw materials and the dechlorinated waste plastic liquid phase material obtained by dechlorination treatment.
  • the measurement method of the molecular weight of plastics can refer to ISO 16014 and ASTM D6474-99; in the present invention, the molecular weight of plastics is the index average molecular weight.
  • the particle size of the contact agent is measured by a particle size detector.
  • the manufacturer of high-temperature rapid pyrolysis chromatography is Frontier Company of Japan, and the model is PY-3030.
  • the particle size of the contact agent is measured by a particle size detector.
  • the particle size range of the particles obtained after pulverization is 100-2000 ⁇ m.
  • the contact cracking reactor is a fluidized bed reactor.
  • Viscosity is the apparent viscosity measured with a rotational viscometer according to SY/T 0520-2008.
  • the model of the rotational viscometer used in the embodiment is Brookfield LVDV-3T, the rotation speed is 20 rpm, and the rotor size used is SC4-34.
  • the mixed plastic packaging materials are crushed and dried to obtain mixed plastic.
  • the chlorine content of the mixed plastic is 2.9% by weight.
  • Twin-screw heating and conveying equipment is used as equipment for preliminary melting, liquefaction and dechlorination of mixed plastics, with a feed rate of approximately 100kg/h.
  • the outlet temperature was changed during the test process.
  • the processing time under each outlet temperature condition was 0.1h.
  • the vacuum degree of the twin-screw heating conveyor equipment was 100mmHg.
  • a vacuum system is used to extract the gas phase material containing hydrogen chloride and send it to the hydrogen chloride absorption unit, where it is contacted with the hydrogen chloride absorbent (NaOH solution) for hydrogen chloride absorption treatment.
  • the dechlorinated plastic RDCl-8-3 in the reference example was further heated to 390°C using screw heating and conveying equipment for 0.2h (liquefaction process); then the rotational viscosity was measured after holding at 390°C for 30min, 50min and 70min ( Use an adiabatic upflow viscosity reducing reactor) to obtain viscosity-reduced liquefied waste plastic oil (recorded as RDCl-8-3-30, RDCl-8-3-50, RDCl-8-3-70 respectively).
  • the properties of liquefied waste plastic oil are shown in the table below.
  • the chlorine-containing waste plastic raw materials include: LDPE, HDPE, PS, PP and PVC are mixed according to the mass percentage of 4:4:8:3:2.
  • the mixed plastic packaging material is crushed and dried.
  • the chlorine content in the mixed plastic is 5.1% by weight.
  • Use The twin-screw heating conveyor equipment mixes and pulverizes the raw materials at 200°C to obtain hot mixed plastic particles HSL. Its properties are shown in Table 2.
  • HSL is used as raw material
  • twin-screw heating and conveying equipment is used as equipment for preliminary melting, liquefaction and dechlorination of waste plastics.
  • the feed rate is about 100kg/h.
  • the chlorine-containing waste plastic raw materials are first melted under the first temperature condition. Dehydration treatment to obtain dehydrated waste plastic; the first temperature is 150°C; the time is 3min; the temperature rise rate of the melting and dehydration treatment is 80°C/min;
  • the dehydrated waste plastic is heated to a second temperature for dechlorination treatment to obtain dehydrated and dechlorinated waste plastic and gas containing hydrogen chloride, wherein the second temperature is 320°C; the time is 0.2h; the vacuum degree is 70mmHg, and the first temperature is 70mmHg.
  • the temperature rise rate to the second temperature is 100°C/min;
  • dehydration and dechlorination waste plastics are sequentially cooled and pulverized in a cooling and crushing unit to obtain dehydration and dechlorination waste plastic particles DCl-1; the properties of dehydration and dechlorination waste plastic particles DCl-1 are shown in Table 2;
  • a vacuum system is used to extract the gas phase material containing hydrogen chloride and send it to the hydrogen chloride absorption unit, where it is contacted with the hydrogen chloride absorbent (NaOH solution) for hydrogen chloride absorption treatment.
  • the process conditions for the liquefaction treatment include: the outlet temperature is 420°C, and the residence time is 0.2 h; then send it to the viscosity reducing tank for viscosity reduction treatment to obtain the viscosity-reduced liquefied waste plastic oil and the first dry gas.
  • the temperature of the viscosity reduction treatment is 380°C, and the sample is sampled and analyzed after staying for 60 minutes (recorded as DCl-1-60 ), the viscosity of the reduced liquefied waste plastic oil is shown in Table 3.
  • the viscosity-reduced liquefied waste plastic oil and steam enter the contact cracking reaction unit (contact cracking reactor), contact with the fluidized contact agent for cracking reaction, and obtain the reaction oil gas and the contact agent to be generated.
  • the mass ratio of contact agent to waste plastic raw material is 5:1
  • the process conditions of the cracking reaction include: reaction temperature is 550°C, gravity hourly space velocity is 4h -1 , and the mass ratio of steam to waste plastic to be treated is 0.4:1 ;
  • the product distribution of cracking reaction products is shown in Table 4.
  • Example 1A Referring to the process flow in Example 1A, the difference between this example and Example 1A lies in changing the process conditions, which specifically include:
  • the feed rate of chlorine-containing waste plastic raw materials is 100kg/h.
  • the process conditions for melting and dehydration include: the first temperature is 100°C and the time is 0.5h; the process conditions for the dechlorination treatment include: the second temperature is 308°C; the time is 0.05h; the vacuum degree is 150mmHg; the heating rate from the first temperature to the second temperature is 50°C/min; the properties of dehydration and dechlorination waste plastic particles DCl-7 are shown in Table 2;
  • the process conditions for the liquefaction treatment include: the outlet temperature is 380°C; the residence time is 5 minutes; the process conditions for the viscosity reduction treatment include: the reaction temperature is 380°C and the residence time is 10 minutes; the viscosity of the reduced liquefied waste plastic oil is shown in Table 3.
  • the process conditions of the cracking reaction include: reaction temperature of 650°C, gravity hourly space velocity of 5h - 1 , mass ratio of contact agent to waste plastic to be treated is 30:1; mass ratio of steam to waste plastic to be treated is 0.05:1;
  • the product distribution of cracking reaction products is shown in Table 4.
  • Real waste plastics (chlorine content is about 3% by weight) are used as raw materials for chlorine-containing waste plastics, and twin-screw heating and conveying equipment is used as equipment for preliminary melting, liquefaction, and dechlorination of waste plastics.
  • the rate is about 100kg/h.
  • the chlorine-containing waste plastic raw material is melted and dehydrated under the first temperature condition to obtain dehydrated waste plastic; the first temperature is 150°C; the time is 0.2h; the temperature rise of the melting and dehydration treatment The rate is 90°C/min;
  • the dehydrated waste plastic is heated to a second temperature for dechlorination treatment to obtain dehydrated and dechlorinated waste plastic and gas containing hydrogen chloride, where the second temperature is 300°C; the time is 0.1h; the vacuum degree is 100mmHg, and the first temperature is 100mmHg.
  • the temperature rise rate to the second temperature is 80°C/min; dehydration and dechlorination waste plastic is recorded as DCl-2.
  • the properties of DCl-2 are shown in Table 2;
  • a vacuum system is used to extract the gas phase material containing hydrogen chloride and send it to the hydrogen chloride absorption unit, where it is contacted with the hydrogen chloride absorbent (Ca(OH) 2 solution) for hydrogen chloride absorption treatment.
  • the process conditions for the liquefaction treatment include: the outlet temperature is 400°C and the residence time is 0.2h;
  • the liquefied dechlorinated plastic is sent to the viscosity reducing tank for viscosity reduction treatment to obtain viscosity-reduced liquefied waste plastic oil and first dry gas.
  • the temperature of the viscosity reduction treatment is 400°C. After staying for different times (30, 50 and 70 min , recorded as DCl-2-30, DCl-2-50 and DCl-2-70 respectively) were sampled and analyzed.
  • the viscosity of the reduced liquefied waste plastic oil is shown in Table 3.
  • the viscosity-reduced liquefied waste plastic oil and steam enter the contact cracking reaction unit (contact cracking reactor), contact with the fluidized contact agent for cracking reaction, and obtain the reaction oil gas and the contact agent to be generated.
  • the mass ratio of contact agent to waste plastic raw material is 7:1
  • the process conditions of the cracking reaction include: reaction temperature is 510°C, gravity hourly space velocity is 4h -1 , and the mass ratio of steam to waste plastic to be treated is 0.1:1 ;
  • the product distribution of cracking reaction products is shown in Table 4.
  • Real waste plastic (chlorine content is about 3% by weight) is used as a preliminary melting, liquefaction and dechlorination device for waste plastic using twin-screw heating conveyor equipment.
  • the feed rate is about 100kg/h
  • the outlet temperature is 300°C
  • the processing time is 0.1 h
  • the vacuum degree of the screw heating conveyor equipment is 70mmHg
  • the liquefied dechlorinated plastic DCl-9 is obtained.
  • the absorption process of the hydrogen chloride-containing gas obtained by the dechlorination treatment is the same as in the reference example.
  • DCl-9 is further heated to 420°C using screw heating and conveying equipment for 0.2h (liquefaction process); then it is kept at 420°C for 30min (using an adiabatic upflow viscosity reducing reactor), and samples are taken to measure the rotational viscosity (recorded as DCl-9-30) to obtain viscosity-reduced liquefied waste plastic oil.
  • the viscosity results are shown in Table 5.
  • the DCl-9-30 sample is first heated in a heating furnace to obtain high-temperature liquefied waste plastic.
  • the outlet temperature of the heating furnace is 480°C; then the high-temperature liquefied waste plastic is sent to the pyrolysis reaction device and pyrolyzed at 480°C for 2 hours.
  • the obtained pyrolysis products are separated and processed by the separation unit and then subjected to product distribution testing.
  • the distribution of pyrolysis reaction products is shown in Tables 6 and 7.
  • Real waste plastics (chlorine content is about 6% by weight) are used as raw materials for chlorine-containing waste plastics, and twin-screw heating and conveying equipment is used as equipment for preliminary melting, liquefaction and dechlorination of waste plastics.
  • the feed rate is about 100kg/h.
  • the chlorine-containing waste plastic raw material is melted and dehydrated under a first temperature condition to obtain dehydrated waste plastic;
  • the first temperature is 130°C;
  • the time is 0.1h;
  • the temperature rise rate of the melting and dehydration treatment is 80°C/min;
  • the dehydrated waste plastic is then heated to a second temperature for dechlorination treatment to obtain dehydrated and dechlorinated waste plastic and gas containing hydrogen chloride, where the second temperature is 320°C; the time is 0.2h; the vacuum degree is 90mmHg, and the first temperature is 320°C; the vacuum degree is 90mmHg.
  • the temperature rise rate to the second temperature is 100°C/min; dehydration and dechlorination waste plastic is recorded as DCl-3.
  • the properties of DCl-3 are shown in Table 2.
  • a vacuum system is used to extract the gas phase material containing hydrogen chloride and send it to the hydrogen chloride absorption unit, where it is contacted with the hydrogen chloride absorbent (NaOH solution) for hydrogen chloride absorption treatment.
  • waste plastic twin-screw high-temperature liquefaction feeding equipment as the waste plastic liquefaction unit to liquefy the dehydrated and dechlorinated waste plastic DCl-3.
  • the process conditions for the liquefaction include: the outlet temperature is 420°C and the residence time is 0.1h.
  • the liquefied dechlorinated plastic is sent to the viscosity reducing tank for viscosity reduction treatment to obtain viscosity-reduced liquefied waste plastic oil and the first dry gas.
  • the temperature of the viscosity reduction treatment is 410°C, and the sample is sampled and analyzed after staying for 20 minutes (recorded as DCl- 3-20), the viscosity of the reduced liquefied waste plastic oil is shown in Table 3.
  • the viscosity-reduced liquefied waste plastic oil and steam enter the contact cracking reaction unit (contact cracking reactor), contact with the fluidized contact agent for cracking reaction, and obtain the reaction oil gas and the contact agent to be generated.
  • the mass ratio of contact agent to waste plastic raw material is 7:1
  • the process conditions of the cracking reaction include: reaction temperature is 590°C, gravity hourly space velocity is 4h -1 , and the mass ratio of steam to waste plastic to be treated is 0.2:1 ;
  • the product distribution of the cracking reaction products is listed in Table 4.
  • the waste agricultural film is placed on the waste plastic pyrolysis medium-sized experimental device, and the twin-screw heating and conveying equipment is used as the equipment for preliminary melting, liquefaction and dechlorination of the waste plastic.
  • the feed rate is about 5kg/h.
  • the process conditions for the melting and dehydration treatment include: Section 1 The first temperature is 150°C; the time is 0.1h; the process conditions for dechlorination treatment include: the second temperature is 300°C; the time is 0.1h, and the heating rate from the first temperature to the second temperature is 100°C/min; screw
  • the vacuum degree of the heating and conveying equipment is 150mmHg, and the dehydrated and dechlorinated waste plastic sample DCl-4 is obtained. Its properties are shown in Table 2.
  • the process conditions for the liquefaction include: the outlet temperature is listed in Table 8, the residence time is 0.2h, and the liquefied waste plastic is obtained; then the liquefied waste plastic is The waste plastic enters the viscosity-reducing reactor from the outlet of the twin-screw heating conveyor equipment, and the viscosity is reduced at different temperatures and residence times to obtain the DCl-4 series samples of viscosity-reducing waste plastics.
  • the internal temperature of the viscosity-reducing reactor, The viscosity-reducing reaction time and the viscosity of the viscosity-reduced waste plastic are listed in Table 8.
  • DCl-4 was further heated to 400°C using screw heating and conveying equipment for 0.1h (liquefaction process); samples were taken to measure the rotational viscosity at 400°C for 30 minutes, 50 minutes and 70 minutes (using an adiabatic upflow viscosity reduction reactor ) to obtain viscosity-reduced liquefied waste plastic oil (recorded as DCl-8-30, DCl-8-50, and DCl-8-70 respectively).
  • the viscosity is shown in Table 9.
  • the viscosity-reduced liquefied waste plastic oil and steam enter the contact cracking reaction unit (contact cracking reactor) and contact with the fluidized contact agent.
  • the cracking reaction produces reaction oil and gas and a contact agent to be produced.
  • the mass ratio of the contact agent to the waste plastic raw material is 7:1.
  • the process conditions of the cracking reaction include: reaction temperature of 510°C, gravity hourly space velocity of 4h -1 , steam and The mass ratio of waste plastics to be processed is 0.4:1; the product distribution of the cracking reaction products is shown in Table 4.
  • DCl-4-2-60 raw material is used, and the same process as in Example 4.1 is adopted.
  • the difference is: SL-1 is used as the contact agent, and the ungenerated contact agent obtained from the cracking reaction unit (carbon content is 1.3% by weight) ) introduces a regeneration unit for regeneration treatment, which is carried out in a dense-phase fluidized bed regenerator; the process conditions of the regeneration treatment include: air residence time 3s, gasification temperature of the dense-phase bed is 660°C, and the incoming gas is oxygen-containing Volume is 21% by volume gas, the linear velocity of the dense phase bed is 0.3m/s.
  • the obtained regenerated contact agent is introduced into the cracking reaction unit together with the fresh contact agent (the weight ratio of the regenerated contact agent to the fresh contact agent is 20:1); and the first dry gas generated from the waste plastic viscosity reduction reactor is mixed with the first dry gas from the separation
  • the second dry gas obtained from the unit is introduced into the regenerator for continued use, and the to-be-regenerated agent is completely burned (the introduction amount of the first dry gas and the second dry gas can be adjusted according to the actual regeneration combustion situation).
  • Other process conditions are the same as those in Example 5 Similarly, the product distribution of cracking reaction products is shown in Table 4.
  • the DCl-8-50 sample is first heated in a heating furnace to obtain high-temperature liquefied waste plastic.
  • the outlet temperature of the heating furnace is 500°C; the steam injection amount is 0.5% by weight; then the high-temperature liquefied waste plastic is sent to the pyrolysis reaction device.
  • the obtained pyrolysis products were separated and processed by the separation unit and then subjected to product distribution testing.
  • the distribution of pyrolysis reaction products is shown in Table 10 and Table 11.
  • DCl-4 is further heated to 400°C using screw heating and conveying equipment for 0.2h (liquefaction process); then it is kept warm for viscosity reduction treatment, and the viscosity reduction temperature is 380°C.
  • the gas phase product distribution is shown in Table 14.
  • the liquid product is cut to obtain naphtha, diesel and wax oil components, whose properties are shown in Table 15, and the properties of the coke product are shown in Table 16.
  • Example 4.5 Referring to the process flow of Example 4.5, the same waste plastic raw materials are used. The difference from Example 4.5 is that DCl-4 is used as the raw material without liquefying treatment and viscosity reduction treatment, but is directly introduced into the heating furnace for heating, and then pyrolysis is performed. Reaction, specific process conditions are the same as Example 4.5. Product distribution (dry ash-free base treatment) is shown in Table 13.
  • the viscosity-reduced liquefied waste plastic oil RDCl-8-3-70 and steam in the reference example are entered into the contact cracking reaction unit (contact cracking reactor) and contacted with the fluidized contact agent.
  • Cracking reaction to obtain reaction oil and gas and contact agent to be produced, in which the mass ratio of contact agent to waste plastic raw material is 7:1.
  • the process conditions of the cracking reaction include: The response temperature is 550°C, the gravity hourly space velocity is 4h -1 , and the mass ratio of steam to waste plastic to be treated is 0.3:1; the product distribution of the cracking reaction products is shown in Table 4.
  • the RDCl-8-3-70 sample is first heated in a heating furnace to obtain high-temperature liquefied waste plastics.
  • the outlet temperature of the heating furnace is 390°C; then the high-temperature liquefied waste plastics are sent to the pyrolysis reaction device (pyrolysis tower). Pyrolysis was performed at 480°C for 2 hours.
  • the obtained pyrolysis products were separated and processed by the separation unit and then subjected to product distribution testing.
  • the distribution of pyrolysis reaction products is shown in Tables 17 and 18.
  • Example 1A Referring to the process flow of Example 1A, the same waste plastic raw materials are used. The difference from Example 1A is that: dehydration and dechlorination waste plastic particles DCl-1 are used as raw materials, no liquefaction treatment and viscosity reduction treatment are performed, and contact is directly introduced. Cracking reaction unit. Because the viscosity of the liquefied waste plastic in this comparative example is too high, water vapor dispersion and atomization cannot be used, and it cannot continuously enter the contact cracking reaction unit.
  • This comparative example is used to illustrate the processing technology of intermittent waste plastic cracking in a reactor, specifically including:
  • Plastic packaging materials containing LDPE, HDPE, PS, PP and PVC are crushed and dried (chlorine content is 2.6% by weight), and then mixed with cracked wax oil according to the waste plastic : Mix the cracked wax oil at a weight ratio of 3:1, put it into an autoclave with a stirrer, purge it with nitrogen, discharge the air out of the reactor, set the temperature to 350°C, and the reaction time to 1 hour to prepare liquefied waste plastic (Denoted as FSL-1).
  • the contact cracking reaction was carried out in a manner similar to Example 1A.
  • the process conditions of the contact cracking reaction include: the cracking temperature is 505°C, the space velocity is 20h - 1 , the agent-oil ratio is 7, and the water-oil ratio is 0.2.
  • the product distribution of cracking reaction products is shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种塑料的加工方法和加工系统。该方法包括以下步骤:S1、使待加工的塑料进入液化单元进行液化处理,得到液化后的材料;S2、使所述液化后的材料在降粘单元中进行热处理以降低其粘度,得到降粘的液化后的材料;S3、使所述降粘的液化后的材料进入裂化反应单元进行裂化反应,得到反应油气;S4、使所述反应油气进入分离单元进行分离处理。该系统包括液化单元、降粘单元、裂化反应单元、和分离单元。

Description

一种塑料的加工方法及加工系统 技术领域
本公开内容涉及塑料资源再利用领域,具体地,涉及一种废塑料的液化、降粘和反应的加工方法以及加工系统。
背景技术
塑料作为包装材料大量出现在人类日常生活中。使用过的废塑料通常在自然界无法自行分解。只有少数种类的废塑料可通过特定回收渠道重新加工利用外,大量的废塑料以生活垃圾形式进入填埋场。由于废塑料不易分解,因而占据了大量的空间。尤其近年来,废塑料的产生量极速增加,快速、绿色地将废塑料回收利用,已成为迫在眉睫的工作。
处理废塑料最简单的办法是直接焚烧,但直接焚烧会产生对人体有害的有毒气体,造成环境二度污染。
目前,通过将废塑料转化为油品的回收技术一方面缓解了废塑料造成的污染问题,另一方面实现了废塑料的回收利用,是废塑料资源化处理的重要方向。例如,CN107746722A、CN101374930A、CN10461030A、CN109401774A、CN112538363A、CN106118707B公开了一些将废塑料转化为油品的回收技术。
对于废塑料回收来说,存在以下一些难点:(1)当废塑料含聚氯乙烯时,聚氯乙烯受热分解成HCl,其能够快速与原料中的双键发生加成反应生成氯代烃,造成传统的反应装置难以高效率地脱除废塑料中的氯;(2)废塑料属于高分子聚合物,由于分子量巨大而且为固体,塑料内部传热非常慢,传统加热方式会造成塑料外部受热过度裂化,而塑料内部依然为固体,其结果造成废塑料热解生焦率较高,气体收率高;(3)废塑料的密度较低,废塑料进入反应装置的速率较低,现有的技术的加工规模较小,不能适应现代大规模回收的需求。
发明内容
本公开内容的一个目的在于提供一种废塑料流化裂化的加工方法及加工系统,可以对废料进行连续的流化裂化,实现废塑料资源有效利用,将废塑料裂化为低分子量产物,并能有效脱除产物中 杂质。
为了实现上述目的,本公开内容的第一方面提供一种废塑料流化裂化的加工方法,该方法包括以下步骤:
S1、使待处理废塑料进入废塑料液化单元进行液化处理,得到液化废塑料;
S2、使所述液化废塑料进入废塑料降粘单元进行降粘处理,得到降粘的液化废塑料油和第一干气;
S3、使所述降粘的液化废塑料油进入接触裂化反应单元,与流化态的接触剂接触进行裂化反应,得到反应油气和待生接触剂;
S4、使所述反应油气进入分离单元进行分离处理,例如,得到第二干气、液化气、汽油馏分、柴油馏分和蜡油馏分;
使所述待生接触剂进入再生单元,在氧气存在条件下,对所述待生接触剂进行再生处理,得到再生接触剂和再生烟气;使所述再生接触剂返回所述接触裂化反应单元继续使用。
任选地,在步骤S1之前,该方法还包括:使含氯废塑料原料进入废塑料热熔脱水脱氯单元,在第一温度条件下,对所述含氯废塑料原料进行熔化脱水处理,得到脱水废塑料;然后将所述脱水废塑料升温至第二温度进行脱氯处理,得到脱水脱氯废塑料和含氯化氢的气体;使所述脱水脱氯废塑料在冷却粉碎单元中依次进行冷却处理、粉碎处理,得到脱水脱氯废塑料颗粒;使所述脱水脱氯废塑料颗粒进入所述废塑料液化单元;或者使所述脱水脱氯废塑料直接进入所述废塑料液化单元;或者
任选地,在步骤S1之前,该方法还包括:使含氯废塑料原料进入废塑料初步熔化液化脱氯单元进行热熔脱氯处理,得到含氯化氢的气相物料和脱氯废塑料物料;使所述脱氯废塑料物料进入所述废塑料液化单元;或者使所述脱氯废塑料物料依次进行冷却处理、粉碎处理,得到脱氯废塑料颗粒;使所述脱氯废塑料颗粒进入所述废塑料液化单元。
任选地,该方法还包括:使所述含氯化氢的气体进入氯化氢吸收单元,与氯化氢吸收剂接触进行氯化氢吸收处理;任选地,在真空系统作用下使所述含氯化氢的气体进入所述氯化氢吸收单元;其中所述氯化氢吸收剂为水或pH大于7的碱液;任选地,所述碱液 包括氢氧化钠溶液、氢氧化钾溶液、氢氧化钙溶液、碳酸氢钠溶液、碳酸钠溶液和氨水中的一种或几种。
任选地,步骤S3中所述接触裂化反应单元中进行的裂化反应还得到带炭灰分;该方法还包括:使所述带炭灰分和待生接触剂进入再生单元,在氧气存在条件下,使所述待生接触剂以及带炭灰分上的炭进行完全燃烧反应,得到再生烟气和再生接触剂;优选地,该方法还包括:使至少部分的所述第一干气和/或至少部分的所述第二干气进入所述再生单元,使所述待生接触剂和带炭灰分在氧气和干气存在条件下进行完全燃烧反应,得到再生烟气和再生接触剂;优选地,以所述待生接触剂的总重量为基准,所述待生接触剂的含炭量为0.5-5.0重量%。
任选地,步骤S1中,所述废塑料液化单元采用加热液化输送设备,优选地,快速加热液化输送设备进行所述液化处理;任选地,所述加热液化输送设备包括第一螺杆式加热输送设备;优选地,所述第一螺杆式加热输送设备选自带有加热的双螺杆式或者单螺杆式加热输送设备;优选地,所述液化处理的工艺条件包括:出口温度为370-480℃,例如380-480℃,380-450℃或者400-450℃;停留时间为5-30min,例如5-20min,或者5-15min。所述加热液化输送设备的进料压力可以在常压或减压或加压下进行。例如,进料压力可以为常压,或0-0.6MPa,例如,0.1-0.3MPa。在没有特别指出的情况下,本文中所用的压力为表压。所述的液化处理的压力为在所述加热液化输送设备内部压力。
任选地,步骤S2中,所述废塑料降粘单元采用降粘反应器进行所述降粘处理;优选地,所述降粘反应器为绝热反应器;优选地,所述降粘处理的工艺条件包括:反应温度为350-450℃,例如370-450℃,380-420℃,350-400℃,370-410℃,390-450℃或者390-420℃;停留时间为10-200min,从经济角度出发,停留时间不大于200min,例如不大于180min,停留时间例如为10-180min,15-120min,20-120min,20-90min,30-120min,30-90min,50-90min,50-70min,20-60min,或者30-70min。
对于所述降粘处理的压力不作特别限定,所述降粘处理可以在常压或减压或加压下进行。例如,所述降粘处理的压力可以为常压, 或0-0.6MPa,例如,0.1-0.3MPa。在没有特别指出的情况下,本文中所用的压力为表压。
在降粘反应器中进行降粘处理时,进入反应器的物料发生裂化,使得粘度进一步降低。所述降粘反应器能够保证进入反应器的物料的温度没有显著变化。由于裂化吸热,必要时,还需补充热量以保证进入反应器的物料的温度没有显著变化。因此在优选的实施方案中,降粘反应器带有控温加热装置,使得能够实现进入反应器的物料的温度没有显著变化。在本文中,“进入反应器的物料的温度没有显著变化”是指使温度保持在进入反应器的物料的温度的90%-110%,例如92%-108%,或95%-105%,或98%-102%的范围内(例如,可以以反应器的出口温度表示)。所述降粘处理的工艺条件能够使降粘处理后离开反应器的物料的粘度小于12000cP@200℃,优选小于5000cP@200℃,例如100-4000cP@200℃,100-3000cP@200℃,100-2000cP@200℃,100-1000cP@200℃,200-1500cP@200℃,200-1000cP@200℃。粘度是根据SY/T 0520-2008采用旋转粘度计测量的。
任选地,步骤S3中,所述裂化反应的工艺条件包括:反应温度为490-750℃,重时空速为1-100h-1,接触剂与待处理废塑料的质量比为5-30:1;优选地,反应温度为500-650℃,重时空速为3-60h- 1,接触剂与待处理废塑料的质量比为6-20:1;优选地,使所述降粘的液化废塑料油与蒸汽进入所述接触裂化反应单元;优选地,蒸汽与待处理废塑料的质量比为0.05-1:1,例如,0.1-0.5:1。
对于所述裂化反应的压力不作特别限定,所述裂化反应可以在常压或减压或加压下进行。例如,所述裂化反应的压力可以为常压,或0-0.6MPa,例如,0.1-0.3MPa。在没有特别指出的情况下,本文中所用的压力为表压。
任选地,步骤S3中,所述接触剂为选自硅铝材料催化剂、石英砂或煤焦粉中的一种或几种;优选地,所述接触剂的粒度为20-3000μm;任选地,所述硅铝材料选自含分子筛的催化剂和/或不含分子筛的催化剂;优选地,所述含分子筛的催化剂为选自含X分子筛、Y分子筛、丝光沸石、ZSM-5、层柱粘土分子筛、SAPO中的一种或几种分子筛的催化剂、废FCC催化剂中的一种或几种;优 选地,所述不含分子筛的催化剂选自以第一原料中的一种或几种为原料制备的催化剂,所述第一原料包括无定型硅铝、白土、高岭土、蒙脱石、累托石、伊利石、绿泥石、拟薄水铝石和二氧化硅;或者所述不含分子筛的催化剂选自以经过酸洗、焙烧、筛分处理的第二原料中的一种或几种为原料制备的催化剂,所述第二原料包括无定型硅铝、白土、高岭土、蒙脱石、累托石、伊利石和绿泥石;或者选自以经过酸洗、焙烧、筛分处理的所述第二原料中的一种或几种与拟薄水铝石和/或二氧化硅为原料制备的催化剂;任选地,所述煤焦粉为煤粉和/或石油焦粉。
任选地,所述再生处理在密相流化床再生器中进行;优选地,再生处理的工艺条件包括:空气停留时间0.5-60秒,例如1.0-10秒,密相床的气化温度为600-750℃,例如600-700℃,通入气体为含氧体积为10-50体积%的气体,密相床的线速度0.05-0.6m/s,例如,0.2-0.4m/s。
任选地,所述废塑料热熔脱水脱氯单元包括第二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置。优选地,所述第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输送设备。优选地,所述熔化脱水处理的工艺条件包括:第一温度为100-170℃,例如,120-150℃;时间为0.05-1h,例如,0.05-0.5h;含氯废塑料原料进料速率为5-5000kg/h,例如,100-4000kg/h。优选地,所述脱氯处理的工艺条件包括:第二温度为150-370℃,例如,220-350℃,或者300-330℃;时间为0.05-0.5h,例如,0.1-0.2h;真空度为50-300mmHg,例如,50-150mmHg;优选地,由第一温度升温至第二温度的升温速率为50-200℃/min,例如,50-150℃/min。任选地,经粉碎处理得到的所述脱水脱氯废塑料颗粒的颗粒粒径为100-2000μm。
任选地,所述废塑料初步熔化液化脱氯单元包括第二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置。优选地,所述第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输送设备。优选地,所述热熔脱氯处理的工艺条件包括:进料速率为5-5000kg/h,例如,100-4000kg/h;出口温度为150-370℃,例如,300-330℃,反应时间为0.1-0.5h,例如,0.1-0.3h;所述废塑料初步 熔化液化脱氯单元的真空度为50-300mmHg,例如,50-150mmHg。优选地,粉碎处理得到的所述脱氯废塑料颗粒的颗粒粒径为100-2000μm。
任选地,所述待处理废塑料包括LDPE、HDPE、PS、PP、PET和PVC中的一种或几种;任选地,所述待处理废塑料的氯含量小于10重量%和/或所述待处理废塑料的PVC含量小于10重量%;所述待处理废塑料的灰分含量为为1-40重量%,例如,3-30重量%或者3-20重量%。
本公开的废塑料的流化裂化加工方法能够实现废塑料的有效利用,提高汽油产量,所产生的焦炭原位气化提供裂化反应所需要的热量,并能有效脱除产物中杂质。
本公开内容的第二方面提供一种废塑料流化裂化的加工系统,该系统包括:废塑料液化单元、废塑料降粘单元、接触裂化反应单元、分离单元和再生单元;
所述废塑料液化单元包括待处理废塑料入口和液化废塑料出口,所述废塑料液化单元被配置为对待处理废塑料进行液化处理;
所述废塑料降粘单元包括液化废塑料入口、液化废塑料油出口和第一干气出口,所述废塑料降粘单元被配置为对液化废塑料进行降粘处理;
所述接触裂化反应单元包括裂化原料入口、接触剂入口、反应油气出口和待生接触剂出口;所述裂化原料入口与所述废塑料降粘单元的液化废塑料油出口连通,所述接触裂化反应单元被配置为对液化废塑料油进行裂化反应处理;
所述分离单元包括分离入口、第二干气出口、液化气出口、汽油馏分出口、柴油馏分出口和蜡油馏分出口;所述分离入口与所述接触裂化反应单元的反应油气出口连通,所述分离单元被配置为对反应油气进行分离处理;
所述再生单元包括待生接触剂入口、含氧气体入口、再生接触剂出口和再生烟气出口;所述再生单元被配置为在氧气存在条件下,对所述待生接触剂进行再生处理,得到再生接触剂和再生烟气;所述再生接触剂出口与所述接触裂化反应单元的接触剂入口连通。
优选地,所述废塑料降粘单元还包括至少一个降粘反应器,所 述降粘反应器提供了废塑料降粘单元的液化废塑料入口、液化废塑料油出口和第一干气出口;优选地,所述降粘反应器为绝热反应器。所述降粘反应器优选地带有控温加热装置,使得能够实现进入反应器的物料的温度没有显著变化。在本文中,“进入反应器的物料的温度没有显著变化”是指使温度保持在进入反应器的物料的温度的90%-110%,例如92%-108%,或95%-105%,或98%-102%的范围内(例如,可以以反应器的出口温度表示)。
任选地,该加工系统还包括废塑料热熔脱水脱氯单元、冷却粉碎单元和氯化氢吸收单元;
所述废塑料热熔脱水脱氯单元包括含氯废塑料原料入口、脱水脱氯废塑料出口和含氯化氢的气体出口;所述废塑料热熔脱水脱氯单元被配置为对含氯废塑料原料进行熔化脱水处理和脱氯处理;
所述冷却粉碎单元被配置为对来自废塑料热熔脱水脱氯单元的脱水脱氯废塑料进行冷却处理和粉碎处理;
所述氯化氢吸收单元包括含氯化氢的气相物料入口和氯化氢吸收剂入口;所述含氯化氢的气相物料入口与所述废塑料热熔脱水脱氯单元的含氯化氢的气体出口连通;
优选地,所述再生单元还包括干气入口,所述干气入口与所述废塑料降粘单元的第一干气出口和/或所述分离单元的第二干气出口连通;
任选地,所述接触裂化反应单元的裂化原料入口与所述废塑料降粘单元的液化废塑料油出口之间的连通管线上还包括蒸汽入口;
优选地,所述废塑料液化单元包括加热液化输送设备,优选地,快速加热液化输送设备;任选地,所述加热液化输送设备包括第一螺杆式加热输送设备;优选地,所述第一螺杆式加热输送设备选自带有加热的双螺杆式或者单螺杆式加热输送设备;
优选地,所述废塑料热熔脱水脱氯单元包括第二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置;优选地,所述第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输送设备。
通过上述这些技术技术方案,本公开内容提供了一种废塑料流化裂化的加工方法及加工系统,将废塑料原料进行液化处理和降粘 处理,能够使废塑料快速液化并降低废塑料粘度;然后与流化态的接触剂接触进行裂化反应,能够使废塑料以液态的形式与高温接触剂接触快速热解,减少产物停留时间,获得更理想的产物分布,并可以脱除废塑料中的杂原子;通过接触裂化制气相、液相产物,使废塑料实现绿色资源化回收,还可以对待生接触剂进行再生后循环使用;并且该加工方法可以实现连续式废塑料加工处理,提高加工处理效率;对废塑料原料的适应性强,无需要粉碎和清洗;垃圾场废塑料可以原地脱水脱氯减量处理,后续裂化回收可以集中处理,易于扩大生成规模,降低加工成本。
本公开内容的另一个目的在于提供一种废塑料降粘热解裂化的加工方法及加工系统,可以有效实现废塑料资源化、大型化、连续化的利用,提高油气产量,并且减少焦炭生成。
为了实现上述目的,本公开内容的第三方面提供一种废塑料降粘热解裂化的加工方法,该方法包括以下步骤:
S1、使待处理废塑料进入废塑料液化单元进行液化处理,得到液化废塑料;
S2、使所述液化废塑料进入废塑料降粘单元进行降粘处理,得到降粘的液化废塑料油;
S3、使所述降粘的液化废塑料油进入物料加热单元进行加热处理,得到高温液化废塑料;
S4、使所述高温液化废塑料进入热解反应单元进行热解反应,得到热解产物和焦炭;
S5、使所述热解产物进入分离单元进行分离处理,例如,得到干气、液化气、汽油馏分、柴油馏分和蜡油馏分。
任选地,在步骤S1之前,该方法还包括:使含氯废塑料原料进入废塑料初步熔化液化脱氯单元进行热熔脱氯处理,得到含氯化氢的气相物料和脱氯废塑料物料;使所述脱氯废塑料物料进入所述废塑料液化单元;或者使所述脱氯废塑料物料依次进行冷却处理、粉碎处理,得到脱氯废塑料颗粒;使所述脱氯废塑料颗粒进入所述废塑料液化单元;或者
任选地,在步骤S1之前,该方法还包括:使含氯废塑料原料进入废塑料热熔脱水脱氯单元,在第一温度条件下,对所述含氯废 塑料原料进行熔化脱水处理,得到脱水废塑料;然后将所述脱水废塑料升温至第二温度进行脱氯处理,得到脱水脱氯废塑料和含氯化氢的气体;使所述脱水脱氯废塑料在冷却粉碎单元中依次进行冷却处理、粉碎处理,得到脱水脱氯废塑料颗粒;使所述脱水脱氯废塑料颗粒进入所述废塑料液化单元;或者使所述脱水脱氯废塑料直接进入所述废塑料液化单元。
任选地,该方法还包括:使所述含氯化氢的气相物料进入氯化氢吸收单元,与氯化氢吸收剂接触进行氯化氢吸收处理,得到含氯吸收剂和脱氯干气;任选地,在真空系统作用下使所述含氯化氢的气相物料进入所述氯化氢吸收单元;其中所述氯化氢吸收剂为水或pH大于7的碱液;任选地,所述碱液包括氢氧化钠溶液、氢氧化钾溶液、氢氧化钙溶液、碳酸氢钠溶液、碳酸钠溶液和氨水中的一种或几种。
任选地,该方法还包括:将至少部分的来自所述分离单元的蜡油馏分返回所述废塑料降粘单元进行回炼;优选地,回炼的蜡油馏分与待处理废塑料的重量比为0.2-5.0:1,例如,0.2-2:1;优选地,将所述分离单元分离得到的馏程大于350℃以上馏分作为所述蜡油馏分。
任选地,步骤S1中,所述废塑料液化单元采用加热液化输送设备,优选地,快速加热液化输送设备进行所述液化处理;任选地,所述加热液化输送设备包括第一螺杆式加热输送设备;优选地,所述第一螺杆式加热输送设备选自带有加热的双螺杆式或者单螺杆式加热输送设备;优选地,所述液化处理的工艺条件包括:出口温度为370-480℃,例如380-480℃,380-450℃或者400-450℃;停留时间为5-30min,例如5-20min,或者5-15min。所述加热液化输送设备的进料压力可以在常压或减压或加压下进行。例如,进料压力可以为常压,或0-0.6MPa,例如,0.1-0.3MPa。在没有特别指出的情况下,本文中所用的压力为表压。所述的液化处理的压力为在所述加热液化输送设备内部压力。
任选地,步骤S2中,所述废塑料降粘单元采用降粘反应器进行所述降粘处理;优选地,所述降粘反应器为绝热反应器;优选地,所述降粘处理的工艺条件包括:反应温度为350-450℃,例如370- 450℃,380-420℃,350-400℃,370-410℃,390-450℃或者390-420℃;停留时间为10-200min,从经济角度出发,停留时间不大于200min,例如不大于180min,停留时间例如为10-180min,15-120min,20-120min,20-90min,30-120min,30-90min,50-90min,50-70min,20-60min,或者30-70min。对于所述降粘处理的压力不作特别限定,所述降粘处理可以在常压或减压或加压下进行。例如,所述降粘处理的压力可以为常压,或0-0.6MPa,例如,0.1-0.3MPa。在没有特别指出的情况下,本文中所用的压力为表压。
在降粘反应器中进行降粘处理时,进入反应器的物料发生裂化,使得粘度进一步降低。所述降粘反应器能够保证进入反应器的物料的温度没有显著变化。由于裂化吸热,必要时,还需补充热量以保证进入反应器的物料的温度没有显著变化。因此在优选的实施方案中,降粘反应器带有控温加热装置,使得能够实现进入反应器的物料的温度没有显著变化。在本文中,“进入反应器的物料的温度没有显著变化”是指使温度保持在进入反应器的物料的温度的90%-110%,例如92%-108%,或95%-105%,或98%-102%的范围内(例如,可以以反应器的出口温度表示)。所述降粘处理的工艺条件能够使降粘处理后离开反应器的物料的粘度小于12000cP@200℃,例如5000-10000cP@200℃,6000-9000cP@200℃,100-12000cP@200℃,100-2000cP@200℃,100-1500cP@200℃,100-1000cP@200℃,100-500cP@200℃。粘度是根据SY/T 0520-2008采用旋转粘度计测量的。
任选地,步骤S3中,所述物料加热单元包括加热炉;优选地,所述加热处理的工艺条件包括:加热炉出口温度为450℃-550℃,例如,460℃-520℃;注汽量为0.5-5重量%,例如,1-3重量%。
任选地,步骤S4中,所述热解反应的工艺条件包括:热解塔顶压力为0.05-0.6MPa,例如,0.1-0.3MPa;热解反应温度为450-520℃,例如,480-520℃。
在没有特别指出的情况下,本文中所用的压力为表压。
任选地,所述废塑料初步熔化液化脱氯单元包括第二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置;优选地,所述第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输 送设备;优选地,所述热熔脱氯处理的工艺条件包括:进料速率为5-5000kg/h,例如,100-4000kg/h;出口温度为150-370℃,例如,300-330℃,反应时间为0.1-0.5h,例如,0.1-0.3h;所述废塑料初步熔化液化脱氯单元的真空度为50-300mmHg,例如,50-150mmHg;优选地,粉碎处理得到的所述脱氯废塑料颗粒的颗粒粒径为100-2000μm。
任选地,所述废塑料热熔脱水脱氯单元包括第二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置。优选地,所述第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输送设备。优选地,所述熔化脱水处理的工艺条件包括:第一温度为100-170℃,例如,120-150℃;时间为0.05-1h,例如,0.05-0.5h;含氯废塑料原料进料速率为5-5000kg/h,例如,100-4000kg/h。优选地,所述脱氯处理的工艺条件包括:第二温度为150-370℃,例如,220-350℃,或者300-330℃;时间为0.05-0.5h,例如,0.1-0.2h;真空度为50-300mmHg,例如,50-150mmHg;优选地,由第一温度升温至第二温度的升温速率为50-200℃/min,例如,50-150℃/min。任选地,经粉碎处理得到的所述脱水脱氯废塑料颗粒的颗粒粒径为100-2000μm。
任选地,所述待处理废塑料包括LDPE、HDPE、PS、PP、PET和PVC中的一种或几种;任选地,所述待处理废塑料的PVC含量小于10重量%和/或所述待处理废塑料的氯含量小于10重量%;所述待处理废塑料的灰分含量为为1-40重量%,例如,3-30重量%或者3-20重量%。
本公开内容的第四个方面提供一种废塑料降粘热解裂化的加工系统,该加工系统包括:废塑料液化单元、废塑料降粘单元、物料加热单元、热解反应单元和分离单元;
所述废塑料液化单元包括待处理废塑料入口和液化废塑料出口,所述废塑料液化单元被配置为对待处理废塑料进行液化处理;
所述废塑料降粘单元包括液化废塑料入口和液化废塑料油出口,所述废塑料降粘单元被配置为对液化废塑料进行降粘处理;
所述物料加热单元包括加热入口和加热出口,所述加热入口与所述废塑料降粘单元的液化废塑料油出口连通,所述加热单元被配 置为对降粘的液化废塑料油进行加热处理;
所述热解反应单元包括热解反应物入口和热解产物出口,所述热解反应物入口与所述加热单元的加热出口连通,所述热解反应单元被配置为对高温液化废塑料进行热解反应处理;
所述分离单元包括分离入口、干气出口、液化气出口、汽油馏分出口、柴油馏分出口和蜡油馏分出口;所述分离入口与所述热解反应单元的热解产物出口连通,所述分离单元被配置为对热解产物进行分离处理。
优选地,所述废塑料降粘单元还包括至少一个降粘反应器,所述降粘反应器提供了废塑料降粘单元的液化废塑料入口和液化废塑料油出口;优选地,所述降粘反应器为绝热反应器。所述降粘反应器优选地带有控温加热装置,使得能够实现进入反应器的物料的温度没有显著变化。在本文中,“进入反应器的物料的温度没有显著变化”是指使温度保持在进入反应器的物料的温度的90%-110%,例如92%-108%,或95%-105%,或98%-102%的范围内(例如,可以以反应器的出口温度表示)。
任选地,该系统还包括废塑料初步熔化液化脱氯单元和氯化氢吸收单元;
所述废塑料初步熔化液化脱氯单元包括
含氯废塑料原料入口、
含氯化氢的气相物料出口、和
脱氯废塑料液相物料出口,
所述废塑料初步熔化液化脱氯单元被配置为对含氯废塑料原料进行热熔脱氯处理;所述脱氯废塑料液相物料出口与所述废塑料液化单元的待处理废塑料入口连通。
所述氯化氢吸收单元包括含氯化氢的气相物料入口、氯化氢吸收剂入口和脱氯干气出口;所述含氯化氢的气相物料入口与所述废塑料初步熔化液化脱氯单元的含氯化氢的气相物料出口连通;
优选地,所述废塑料液化单元包括加热液化输送设备,优选地,快速加热液化输送设备;任选地,所述加热液化输送设备包括第一螺杆式加热输送设备;优选地,所述第一螺杆式加热输送设备选自带有加热的双螺杆式或者单螺杆式加热输送设备。
优选地,所述废塑料初步熔化液化脱氯单元包括第二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置;优选地,所述第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输送设备。
优选地,所述废塑料降粘单元还包括循环油入口;所述循环油入口与所述分离单元的蜡油馏分出口连通。
任选地,所述废塑料初步熔化液化脱氯单元还包括不凝汽出口。
通过上述这些技术方案,本公开内容提供了一种废塑料降粘热解裂化的加工方法及加工系统,本公开内容通过对待处理废塑料进行快速液化处理以及降粘处理,不在发生结焦及过度裂化的条件下降低液化废塑料的粘度,形成可以使用泵输送的均匀、流动性良好的流态化废塑料;然后通过加热炉等方式处理使其快速达到热解反应温度,将高温液化废塑料输送至热解塔中进行热解反应,实现了废塑料的资源化利用,并且减少焦炭生成;通本公开内容的加工方法,垃圾场废塑料可以原地脱水脱氯减量处理,后续裂化回收可以集中处理,易于扩大生成规模,降低加工成本;该工艺流程简单,设备投入相对较少,使废塑料实现大规模、连续化、绿色资源化回收。
总之,本发明通过下述手段克服了现有技术中的废塑料回收的难点,从而完成了本发明:(1)通过快速加热含聚氯乙烯的废塑料使其分解,并使用真空方式快速将分解出的HCl从反应器中分离,提高脱氯效率;(2)通过强力挤压及搅动加大受热面积,快速加热至废塑料成为可流动的液态,并降低粘度可以使用泵输送,当废塑料快速液化由于液态的导热性大幅增加,可以使用加热炉等升温设备对液态废塑料进行热解反应,可以获得较高的液体收率和较低的结焦率;(3)将废塑料液化后,原料的输送密度与固体废塑料相比大幅增加,因此不仅可以实现废塑料加工的大型化同时还可以实现废塑料热解回收的连续化。
本公开内容的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开内容的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本公开内容提供的废塑料流化裂化的加工方法及加工系统的一种示例性流程图,其中
1-废塑料贮槽,2-废塑料热熔脱水脱氯粉碎单元,3-脱水脱氯
废塑料颗粒贮槽,4-废塑料液化单元,5-废塑料降粘单元,6-接触裂化反应单元,7-再生单元,8-分离单元,9-氯化氢吸收单元,10-管线,11-管线,12-管线,13-管线,14-管线,15-管线,16-管线,17-管线,18-管线,19-管线,20-管线,21-管线,22-管线,23-管线;
图2是本公开内容提供的废塑料降粘热解裂化的加工方法及加工系统的一种示例性流程图,其中
1-废塑料贮槽,2-废塑料初步熔化液化脱氯单元,3-快速加热
液化输送设备,4-绝热降粘反应器,5-加热炉,6-热解反应单元,7-分离单元,8-氯化氢吸收单元,9-管线,10-管线,11-管线,12-管线,13-管线,14-管线,15-管线,16-管线,17-管线,18-管线。
具体实施方式
以下对本公开内容的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明中所述的术语“塑料”包括废塑料和新鲜塑料,其中“新鲜塑料”是指通过构成塑料的聚合单体经聚合反应形成的新鲜聚合物,通常以颗粒形式存在。新鲜聚合物或新鲜塑料可以被加工成各种塑料产品。这些塑料产品本身可以作为本发明的“废塑料”。通常,这些塑料产品在使用后会被废弃并且可以作为本发明的“废塑料”。另外,被废弃的塑料产品在经过回收和再利用后可以变为“新的”塑料产品以及这些新的塑料产品所形成的废弃物也可以作为本发明的“废塑料”。回收和再利用可以进行一代、两代或多代,这些各代的“新的”塑料产品以及其所形成的废弃物都可以作为本发明的“废塑料”。新鲜聚合物和新鲜塑料也可以作为本发明的“废塑料”使用。因此,在本发明的范围内,“塑料”和“废塑料”可以被认为是同义词。
在本发明中,塑料或废塑料优选地来源于热塑性塑料。在一种优选的实施方案中,本发明的塑料主要由C和H构成,即塑料的C和H元素质量之和占塑料总质量的50%或以上,例如60%或以上;上限可以为100%。在一种优选的实施方案中,塑料的数均分子量可以为1,000-200万,例如,2,000-30万,或者5,000-10万。在一种优选的实施方案中,塑料的N含量按重量计为10%或以下,例如5%或以下,4%或以下,3%或以下,2%或以下,或1%或以下;下限可以为0%,例如,下限为0.0001%,0.001%,或0.01%。在一种优选的实施方案中,塑料的S含量按重量计为1%或以下,例如0.5%或以下,0.4%或以下,0.3%或以下,0.2%或以下,或0.1%或以下;下限可以为0%,例如,下限为0.00001%,0.001%,或0.001%。例如,构成塑料的聚合物的实例包括但不限于聚乙烯(PE)如低密度聚乙烯(LDPE)和高密度聚乙烯(HDPE)、聚苯乙烯(PS)、聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)。
根据本公开内容的第一方面,提供一种废塑料流化裂化的加工方法。参考图1,该方法包括以下步骤:
S1、使待处理废塑料进入废塑料液化单元进行液化处理,得到液化废塑料;
S2、使所述液化废塑料进入废塑料降粘单元进行降粘处理,得到降粘的液化废塑料油和第一干气;
S3、使所述降粘的液化废塑料油进入接触裂化反应单元,与流化态的接触剂接触进行裂化反应,得到反应油气和待生接触剂;
S4、使所述反应油气进入分离单元进行分离处理,例如,得到第二干气、液化气、汽油馏分、柴油馏分和蜡油馏分;
使所述待生接触剂进入再生单元,在氧气存在条件下,对所述待生接触剂进行再生处理,得到再生接触剂和再生烟气;使所述再生接触剂返回所述接触裂化反应单元继续使用。
本公开内容提供了一种废塑料流化裂化的加工方法,将废塑料原料进行液化处理和降粘处理,能够使废塑料快速液化并降低废塑料粘度;然后与流化态的接触剂接触进行裂化反应,能够使废塑料以液态的形式与高温接触剂接触快速热解,减少产物停留时间,获得更理想的产物分布,并可以脱除废塑料中的杂原子;通过接触裂 化制气相、液相产物,使废塑料实现绿色资源化回收,还可以对待生接触剂进行再生后循环使用;并且该加工方法可以实现连续式废塑料加工处理,提高加工处理效率;对废塑料原料的适应性强,无需要粉碎和清洗;垃圾场废塑料可以原地脱水脱氯减量处理,后续裂化回收可以集中处理,易于扩大生成规模,降低加工成本。
在一种具体的实施方案中,所述待处理废塑料包括低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚苯乙烯(PS)、聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)中的一种或几种;任选地,所述待处理废塑料中氯元素含量小于10重量%;和/或所述待处理废塑料的PVC含量小于10重量%;所述待处理废塑料的灰分含量为1-40重量%,例如,3-30重量%,或者3-20重量%。本公开内容中的废塑料原料可以直接采用垃圾填埋场中的废塑料。
在一种优选的实施方案中,废塑料热熔脱水脱氯粉碎单元包括废塑料热熔脱水脱氯单元和冷却粉碎单元。
参考图1,在步骤S1之前,该方法还包括:
使含氯废塑料原料进入废塑料热熔脱水脱氯粉碎单元的废塑料热熔脱水脱氯单元,在第一温度条件下,对所述含氯废塑料原料进行熔化脱水处理,得到脱水废塑料;然后对所述脱水废塑料升温至第二温度进行脱氯处理,得到脱水脱氯废塑料和含氯化氢的气体;
使所述脱水脱氯废塑料在冷却粉碎单元中依次进行冷却处理、粉碎处理,得到脱水脱氯废塑料颗粒;使所述脱水脱氯废塑料颗粒进入所述废塑料液化单元;或者使所述脱水脱氯废塑料直接进入所述废塑料液化单元。
在本公开内容中,废塑料热熔脱水脱氯步骤和废塑料液化步骤可以采用同一台(快速)加热液化输送设备,或者各自采用一台(快速)加热液化输送设备;例如(快速)加热液化输送设备为带有加热的螺杆式加热输送设备(双螺杆式或单螺杆式)。
在一种进一步的实施方案中,该方法还包括:
使所述含氯化氢的气体进入氯化氢吸收单元,与氯化氢吸收剂接触进行氯化氢吸收处理;任选地,在真空系统作用下使所述含氯化氢的气体进入所述氯化氢吸收单元。
本发明采用废塑料热熔脱水脱氯粉碎单元和氯化氢吸收单元, 使得废塑料PVC中的氯分解于气相,使用真空系统快速将HCl分离,避免HCl二次反应,提高废塑料的脱氯效率,降低后续设备防腐压力。
在一种具体的实施方案中,所述氯化氢吸收剂为水或pH大于7的碱液;任选地,所述碱液包括氢氧化钠溶液、氢氧化钾溶液、氢氧化钙溶液、碳酸氢钠溶液、碳酸钠溶液和氨水中的一种或几种。
在一种优选的实施方案中,参考图1,该方法还包括:步骤S3中所述接触裂化反应单元中进行的裂化反应还得到带炭灰分;
该方法还包括:使所述带炭灰分和待生接触剂进入再生单元,在氧气存在条件下,使所述待生接触剂以及带炭灰分上的炭进行完全燃烧反应,得到再生烟气和再生接触剂。本公开内容提供的加工方法可以对含炭的待生接触剂进行完全燃烧反应进行再生,实现接触剂的循环使用。
在一种优选的实施方案中,参考图1,该方法还包括:
使至少部分的所述第一干气和/或至少部分的所述第二干气进入所述再生单元,使所述待生接触剂和带炭灰分在氧气和干气存在条件下进行完全燃烧反应,得到再生烟气和再生接触剂;
优选地,以所述待生接触剂的总重量为基准,所述待生接触剂的含炭量为0.5-5.0重量%。
本公开内容采用废塑料加工工艺中产生的干气对待生接触剂进行再生,提高资源利用效率以及接触剂再生效率。
在一种具体的实施方案中,当所述再生烟气达到排放标准后,使所述再生烟气进行外排;其中再生烟气排放标准为本领域常规标准,例如参照GB13271-2014标准。
在一种实施方案中,步骤S1中,所述废塑料液化单元采用加热液化输送设备,优选地,快速加热液化输送设备进行所述液化处理;任选地,所述加热液化输送设备包括第一螺杆式加热输送设备;优选地,所述第一螺杆式加热输送设备选自带有加热的双螺杆式或者单螺杆式加热输送设备。
在一种优选的实施方案中,所述液化处理的工艺条件包括:出口温度为370-480℃,例如380-480℃,380-450℃或者400-450℃;停留时间为5-30min,例如5-20min,或者5-15min。所述加热液化 输送设备的进料压力可以在常压或减压或加压下进行。例如,进料压力可以为常压,或0-0.6MPa,例如,0.1-0.3MPa。在没有特别指出的情况下,本文中所用的压力为表压。所述的液化处理的压力为在所述加热液化输送设备内部压力。
在一种实施方案中,步骤S2中,所述废塑料降粘单元采用降粘反应器进行所述降粘处理;优选地,所述降粘反应器为绝热反应器。本公开内容中的绝热降粘反应器可以为本领域已知的任意反应器,例如上流式降粘反应器或下流式降粘反应器。
在一种优选的实施方案中,所述降粘处理的工艺条件包括:反应温度为350-450℃,例如370-450℃,380-420℃,350-400℃,370-410℃,390-450℃或者390-420℃;停留时间为10-200min,从经济角度出发,停留时间不大于200min,例如不大于180min,停留时间例如为10-180min,15-120min,20-120min,20-90min,30-120min,30-90min,50-90min,50-70min,20-60min,或者30-70min。
对于所述降粘处理的压力不作特别限定,所述降粘处理可以在常压或减压或加压下进行。例如,所述降粘处理的压力可以为常压,或0-0.6MPa,例如,0.1-0.3MPa。在没有特别指出的情况下,本文中所用的压力为表压。
所述降粘反应器能够保证进入反应器的物料的温度没有显著变化。由于裂化吸热,必要时,还需补充热量以保证进入反应器的物料的温度没有显著变化。在优选的实施方案中,降粘反应器带有控温加热装置,使得能够实现进入反应器的物料的温度没有显著变化。在本文中,“进入反应器的物料的温度没有显著变化”是指使温度保持在进入反应器的物料的温度的90%-110%,例如92%-108%,或95%-105%,或98%-102%的范围内(例如,可以以反应器的出口温度表示)。通过降粘处理能够使降粘处理后离开反应器的物料的粘度小于12000cP@200℃,优选小于5000cP@200℃,例如100-4000cP@200℃,100-3000cP@200℃,100-2000cP@200℃,100-1000cP@200℃,200-1500cP@200℃,200-1000cP@200℃。粘度是根据SY/T 0520-2008采用旋转粘度计测量的。
在一种实施方案中,步骤S3中,所述裂化反应的工艺条件包括:反应温度为500-750℃,重时空速为1-100h-1,接触剂与待处理 废塑料的质量比为5-30:1。本公开内容中,裂化反应在流化床反应器中进行,流化床反应器为本领域常规结构。
在一种优选的实施方案中,步骤S3中,所述裂化反应的工艺条件包括:反应温度为490-750℃,重时空速为1-100h-1,接触剂与待处理废塑料的质量比为6-20:1。
对于所述裂化反应的压力不作特别限定,所述裂化反应可以在常压或减压或加压下进行。例如,所述裂化反应的压力可以为常压,或0-0.6MPa,例如,0.1-0.3MPa。在没有特别指出的情况下,本文中所用的压力为表压。
在一种优选的实施方案中,该方法还包括:使所述降粘的液化废塑料油与蒸汽进入所述接触裂化反应单元;优选地,蒸汽与待处理废塑料的质量比为0.05-1:1,例如,0.1-0.5:1。
在一种实施方案中,步骤S3中,所述接触剂为选自硅铝材料催化剂、石英砂或煤焦粉中的一种或几种;优选地,所述接触剂的粒度为20-3000μm。
任选地,所述硅铝材料选自含分子筛的催化剂和/或不含分子筛的催化剂;优选地,所述含分子筛的催化剂为选自含X分子筛、Y分子筛、丝光沸石、ZSM-5、层柱粘土分子筛、SAPO中的一种或几种分子筛的催化剂、废FCC催化剂中的一种或几种;
优选地,所述不含分子筛的催化剂选自以第一原料中的一种或几种为原料制备的催化剂,所述第一原料包括无定型硅铝、白土、高岭土、蒙脱石、累托石、伊利石、绿泥石、拟薄水铝石和二氧化硅;或者
所述不含分子筛的催化剂选自以经过酸洗、焙烧、筛分处理的第二原料中的一种或几种为原料制备的催化剂,所述第二原料包括无定型硅铝、白土、高岭土、蒙脱石、累托石、伊利石和绿泥石;或者选自以经过酸洗、焙烧、筛分处理的所述第二原料中的一种或几种与拟薄水铝石和/或二氧化硅为原料制备的催化剂;
任选地,所述煤焦粉为煤粉和/或石油焦粉。
在一种实施方案中,所述再生处理在密相流化床再生器中进行;优选地,再生处理的工艺条件包括:空气停留时间0.5-60秒,优选1.0-10秒,密相床的气化温度为600-750℃,例如,600-700℃,通 入气体为含氧体积为10-50体积%的气体,密相床的线速度0.05-0.6m/s,例如,0.2-0.4m/s。本公开内容中密相流化床再生器采用本领域常规选择的装置。对于所述再生处理的压力不作特别限定,所述再生处理可以在常压或减压或加压下进行。例如,所述再生处理的压力可以为常压,或0-0.6MPa,例如,0.1-0.3MPa。在没有特别指出的情况下,本文中所用的压力为表压。
在一种实施方案中,所述废塑料热熔脱水脱氯粉碎单元的热熔脱水脱氯单元包括第二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置;优选地,所述第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输送设备。
在一种优选的实施方案中,所述熔化脱水处理的工艺条件包括:第一温度为100-170℃,例如,120-150℃;时间为0.05-1h,例如,0.05-0.5h;含氯废塑料原料进料速率为5-5000kg/h,例如,100-4000kg/h;优选地,熔化脱水处理的升温速率为30-200℃/min,例如,50-100℃/min。…
对于所述熔化脱水处理的压力不作特别限定,所述熔化脱水处理可以在常压或减压或加压下进行。例如,所述熔化脱水处理的压力可以为常压,或0-0.6MPa,例如,0.1-0.3MPa。在没有特别指出的情况下,本文中所用的压力为表压。
优选地,所述脱氯处理的工艺条件包括:第二温度为150-370℃,例如,220-350℃,或者300-330℃;时间为0.05-0.5h,例如,0.1-0.2h;真空度为50-300mmHg,例如,50-150mmHg;优选地,由第一温度升温至第二温度的升温速率为50-200℃/min,例如,50-150℃/min。本公开内容中可以采用逐步升温的方式,先升温至第一温度进行熔化脱水处理,然后再升温至第二温度进行脱氯处理,提高废塑料脱水脱氯效果。
对于所述脱氯处理的压力不作特别限定,所述脱氯处理可以在常压或减压或加压下进行。例如,所述脱氯处理的压力可以为常压,或0-0.6MPa,例如,0.1-0.3MPa。在没有特别指出的情况下,本文中所用的压力为表压。
在一种具体的实施方案中,经粉碎处理得到的所述脱水脱氯废塑料颗粒的颗粒粒径为100-2000μm。
在本公开内容中,冷却处理和粉碎处理的装置及方法可以为本领域常规的装置和方法。
根据本公开内容的第二方面,提供一种废塑料流化裂化的加工系统,该系统包括:废塑料液化单元、废塑料降粘单元、接触裂化反应单元、分离单元和再生单元;
废塑料液化单元包括待处理废塑料入口和液化废塑料出口,废塑料液化单元被配置为对待处理废塑料进行液化处理;
废塑料降粘单元包括液化废塑料入口、液化废塑料油出口和第一干气出口,废塑料降粘单元被配置为对液化废塑料进行降粘处理;
接触裂化反应单元包括裂化原料入口、接触剂入口、反应油气出口和待生接触剂出口;裂化原料入口与废塑料降粘单元的液化废塑料油出口连通,接触裂化反应单元被配置为对液化废塑料油进行裂化反应处理;
分离单元包括分离入口、第二干气出口、液化气出口、汽油馏分出口、柴油馏分出口和蜡油馏分出口;分离入口与接触裂化反应单元的反应油气出口连通,分离单元被配置为对反应油气进行分离处理;再生单元包括待生接触剂入口、含氧气体入口、再生接触剂出口和再生烟气出口;再生单元被配置为在氧气存在条件下,对待生接触剂进行再生处理,得到再生接触剂和再生烟气;再生接触剂出口与接触裂化反应单元的接触剂入口连通。
在一种优选的实施方案中,所述废塑料降粘单元还包括至少一个降粘反应器,所述降粘反应器提供了废塑料降粘单元的液化废塑料入口、液化废塑料油出口和第一干气出口;优选地,所述降粘反应器为绝热反应器。所述降粘反应器优选地带有控温加热装置,使得能够实现进入反应器的物料的温度没有显著变化。在本文中,“进入反应器的物料的温度没有显著变化”是指使温度保持在进入反应器的物料的温度的90%-110%,例如92%-108%,或95%-105%,或98%-102%的范围内(例如,可以以反应器的出口温度表示)。
在一种优选的实施方案中,接触裂化反应单元的裂化原料入口与废塑料降粘单元的液化废塑料油出口之间的连通管线上还包括蒸汽入口,有助于液化废塑料油的雾化。
在一种优选的实施方案中,再生单元还包括干气入口,干气入 口与废塑料降粘单元的第一干气出口和/或分离单元的第二干气出口连通。
在一种实施方案中,该加工系统还包括废塑料热熔脱水脱氯单元、冷却粉碎单元和氯化氢吸收单元;
废塑料热熔脱水脱氯单元包括含氯废塑料原料入口、脱水脱氯废塑料出口和含氯化氢的气体出口;废塑料热熔脱水脱氯单元被配置为对含氯废塑料原料进行熔化脱水处理和脱氯处理;
冷却粉碎单元被配置为对来自废塑料热熔脱水脱氯单元的脱水脱氯废塑料进行冷却处理和粉碎处理;
氯化氢吸收单元包括含氯化氢的气相物料入口和氯化氢吸收剂;含氯化氢的气相物料入口与废塑料热熔脱水脱氯单元的含氯化氢的气体出口连通。
在一种具体的实施方案中,废塑料液化单元包括加热液化输送设备,优选地,快速加热液化输送设备;任选地,加热液化输送设备包括第一螺杆式加热输送设备;优选地,第一螺杆式加热输送设备选自带有加热的双螺杆式或者单螺杆式加热输送设备;
废塑料热熔脱水脱氯单元包括第二螺杆式加热输送设备和与第二螺杆式加热输送设备连通的真空装置;优选地,第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输送设备。
在一种优选的实施方案中,废塑料热熔脱水脱氯单元和废塑料液化单元采用一台加热液化输送设备,包括第一螺杆式加热输送设备,在所述的螺杆式加热输送设备中部设有气体出口连通真空装置。
在一种具体的实施方案中,废塑料热熔脱水脱氯粉碎单元还包括不凝汽出口用于引出不凝汽。
在一种具体的实施方案中,参考图1,一种废塑料流化裂化的加工系统包括:废塑料液化单元、废塑料降粘单元、接触裂化反应单元、分离单元、废塑料热熔脱水脱氯单元、冷却粉碎单元、氯化氢吸收单元和再生单元;
其中,废塑料热熔脱水脱氯单元包括含氯废塑料原料入口、脱水脱氯废塑料出口和含氯化氢的气体出口;废塑料热熔脱水脱氯单元被配置为对含氯废塑料原料进行熔化脱水处理和脱氯处理;
所述冷却粉碎单元被配置为对来自废塑料热熔脱水脱氯单元 的脱水脱氯废塑料进行冷却处理和粉碎处理;
废塑料液化单元包括待处理废塑料入口和液化废塑料出口,废塑料液化单元被配置为对待处理废塑料进行液化处理;其中待处理废塑料可以为来自冷却粉碎单元的脱水脱氯废塑料颗粒,也可以为来自废塑料热熔脱水脱氯单元的脱水脱氯废塑料;
废塑料降粘单元包括液化废塑料入口、液化废塑料油出口和第一干气出口,废塑料降粘单元被配置为对液化废塑料进行降粘处理;
接触裂化反应单元包括裂化原料入口、接触剂入口、反应油气出口和待生接触剂出口;裂化原料入口与废塑料降粘单元的液化废塑料油出口连通,接触裂化反应单元被配置为对液化废塑料油进行裂化反应处理;接触裂化反应单元的裂化原料入口与废塑料降粘单元的液化废塑料油出口之间的连通管线上还包括蒸汽入口;
分离单元包括分离入口、第二干气出口、液化气出口、汽油馏分出口、柴油馏分出口和蜡油馏分出口;分离入口与接触裂化反应单元的反应油气出口连通,分离单元被配置为对反应油气进行分离处理;
氯化氢吸收单元包括含氯化氢的气相物料入口和氯化氢吸收剂;含氯化氢的气相物料入口与废塑料热熔脱水脱氯单元的含氯化氢的气体出口连通;
再生单元包括待生接触剂入口、含氧气体入口、再生剂出口和烟气出口;待生接触剂入口与接触裂化反应单元的待生接触剂出口连通,再生剂出口与接触裂化反应单元的接触剂入口连通;优选地,再生单元还包括干气入口,干气入口与废塑料降粘单元的第一干气出口和/或分离单元的第二干气出口连通。
根据本公开内容的第三方面,提供一种废塑料降粘热解裂化的加工方法,该方法包括以下步骤:
S1、使待处理废塑料进入废塑料液化单元进行液化处理,得到液化废塑料;
S2、使所述液化废塑料进入废塑料降粘单元进行降粘处理,得到降粘的液化废塑料油;
S3、使所述降粘的液化废塑料油进入物料加热单元进行加热处理,得到高温液化废塑料;
S4、使所述高温液化废塑料进入热解反应单元进行热解反应,得到热解产物和焦炭;
S5、使所述热解产物进入分离单元进行分离处理,例如,得到干气、液化气、汽油馏分、柴油馏分和蜡油馏分。
本公开内容提供了一种废塑料降粘热解裂化的加工方法,通过对待处理废塑料进行液化处理以及降粘处理,降低液化废塑料的粘度;然后通过加热处理使其达到热解反应温度,并形成均匀、流动性良好的物流;将高温液化废塑料进行热解反应,实现了废塑料的资源化利用,并且减少焦炭生成;通过本公开内容的加工方法,垃圾场废塑料可以原地脱水脱氯减量处理,后续裂化回收可以集中处理,易于扩大生成规模,降低加工成本;该工艺流程简单,设备投入相对较少,使废塑料实现绿色资源化回收。
在一种具体的实施方案中,所述待处理废塑料包括低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚苯乙烯(PS)、聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)中的一种或几种;任选地,所述待处理废塑料中氯元素含量小于10重量%;和/或所述待处理废塑料的PVC含量小于10重量%;所述待处理废塑料的灰分含量为1-40重量%,例如,3-30重量%,或者3-20重量%。本公开内容中的废塑料原料可以直接采用垃圾填埋场中的废塑料。
在一种优选的实施方案中,在步骤S1之前,该方法还包括:
使含氯废塑料原料进入废塑料初步熔化液化脱氯单元进行热熔脱氯处理,得到含氯化氢的气相物料和脱氯废塑料物料;
使所述脱氯废塑料物料进入所述废塑料液化单元;或者
使所述脱氯废塑料物料依次进行冷却处理、粉碎处理,得到脱氯废塑料颗粒;使所述脱氯废塑料颗粒进入所述废塑料液化单元。
在本公开内容中,所述的热熔脱氯步骤和所述的废塑料液化步骤可以采用同一台(快速)加热液化输送设备,或者各自采用一台(快速)加热液化输送设备;例如(快速)加热液化输送设备为带有加热的螺杆式加热输送设备(双螺杆式或单螺杆式)。
在一种实施方案中,该方法还包括:
使所述含氯化氢的气体进入氯化氢吸收单元,与氯化氢吸收剂接触进行氯化氢吸收处理,得到含氯吸收剂和脱氯干气;
任选地,在真空系统作用下使所述含氯化氢的气体进入所述氯化氢吸收单元。
本公开内容通过废塑料初步熔化液化脱氯单元使得废塑料PVC中的氯分解于气相,使用真空系统快速将HCl分离,避免HCl二次反应,提高废塑料的脱氯效率,降低后续设备防腐压力。
在一种具体的实施方案中,所述氯化氢吸收剂为水或pH大于7的碱液;任选地,所述碱液包括氢氧化钠溶液、氢氧化钾溶液、氢氧化钙溶液、碳酸氢钠溶液、碳酸钠溶液和氨水中的一种或几种。
在一种优选的实施方案中,该方法还包括:将至少部分的来自所述分离单元的蜡油馏分返回所述废塑料降粘单元进行回炼;优选地,将所述分离单元分离得到的馏程大于350℃以上馏分作为所述蜡油馏分。向废塑料降粘单元引入蜡油馏分不仅可以进一步提高废塑料资源利用效率,而且还利于废塑料的降粘处理。在一种具体的实施方案中,回炼的蜡油馏分与待处理废塑料的重量比为0.2-5.0:1,优化0.2-2:1。
在一种实施方案中,步骤S1中,所述废塑料液化单元采用加热液化输送设备,优选地,快速加热液化输送设备进行所述液化处理;任选地,所述的加热液化输送设备包括第一螺杆式加热输送设备;优选地,所述第一螺杆式加热输送设备选自带有加热的双螺杆式或者单螺杆式加热输送设备。本公开内容采用的快速加热液化输送设备有利于对固态的废塑料进行快速液化处理。
在一种优选的实施方案中,所述液化处理的工艺条件包括:出口温度为370-480℃,例如380-480℃,380-450℃或者400-450℃;停留时间为5-30min,例如5-20min,或者5-15min。所述加热液化输送设备的进料压力可以在常压或减压或加压下进行。例如,进料压力可以为常压,或0-0.6MPa,例如,0.1-0.3MPa。在没有特别指出的情况下,本文中所用的压力为表压。所述的液化处理的压力为在所述加热液化输送设备内部压力。
在一种实施方案中,步骤S2中,所述废塑料降粘单元采用降粘反应器进行所述降粘处理,例如,绝热降粘反应器。本公开内容中降粘反应器可以为本领域已知的任意反应器,例如上流式降粘反应器或下流式降粘反应器。
在一种优选的实施方案中,所述降粘处理的工艺条件包括:反应温度为350-450℃,例如370-450℃,380-420℃,350-400℃,370-410℃,390-450℃或者390-420℃;停留时间为10-200min,从经济角度出发,停留时间不大于200min,例如不大于180min,停留时间例如为10-180min,15-120min,20-120min,20-90min,30-120min,30-90min,50-90min,50-70min,20-60min,或者30-70min。
对于所述降粘处理的压力不作特别限定,所述降粘处理可以在常压或减压或加压下进行。例如,所述降粘处理的压力可以为常压,或0-0.6MPa,例如,0.1-0.3MPa。在没有特别指出的情况下,本文中所用的压力为表压。
所述降粘反应器能够保证进入反应器的物料的温度没有显著变化。由于裂化吸热,必要时,还需补充热量以保证进入反应器的物料的温度没有显著变化。在优选的实施方案中,降粘反应器带有控温加热装置,使得能够实现进入反应器的物料的温度没有显著变化。在本文中,“进入反应器的物料的温度没有显著变化”是指使温度保持在进入反应器的物料的温度的90%-110%,例如92%-108%,或95%-105%,或98%-102%的范围内(例如,可以以反应器的出口温度表示)。通过降粘处理能够使降粘处理后离开反应器的物料的粘度小于12000cP@200℃,例如5000-10000cP@200℃,6000-9000cP@200℃,100-12000cP@200℃,100-2000cP@200℃,100-1500cP@200℃,100-1000cP@200℃,100-500cP@200℃。粘度是根据SY/T 0520-2008采用旋转粘度计测量的。
在一种实施方案中,步骤S3中,所述物料加热单元包括加热炉;优选地,所述加热处理的工艺条件包括:加热炉出口温度为450℃-550℃,例如,460℃-520℃;注汽量为0.5-5重量%,优化为1-3重量%。
在一种实施方案中,步骤S4中,所述热解反应的工艺条件包括:热解塔顶压力为0.05-0.6MPa,例如,0.1-0.3MPa;热解反应温度为450-520℃,例如,480-520℃。
在本公开内容中,所述热解反应单元中可以包括多台并联设置的热解塔。
在一种实施方案中,所述废塑料初步熔化液化脱氯单元包括第 二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置;优选地,所述第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输送设备。
在一种优选的实施方案中,所述热熔脱氯处理的工艺条件包括:进料速率为5-5000kg/h,例如,100-4000kg/h;出口温度为150-370℃,例如,300-330℃,反应时间为0.1-0.5h,例如,0.1-0.3h;所述废塑料初步熔化液化脱氯单元的真空度为50-300mmHg,例如,50-150mmHg。
优选地,粉碎处理得到的所述脱氯废塑料颗粒的颗粒粒径为100-2000μm。
在本公开内容中,冷却处理和粉碎处理的装置及方法可以为本领域常规的装置和方法。
根据本公开内容的第四方面,提供一种废塑料降粘热解裂化的加工系统,参考图2,该加工系统包括:废塑料液化单元、废塑料降粘单元、物料加热单元、热解反应单元和分离单元;
废塑料液化单元包括待处理废塑料入口和液化废塑料出口,废塑料液化单元被配置为对待处理废塑料进行液化处理;
废塑料降粘单元包括液化废塑料入口和液化废塑料油出口,废塑料降粘单元被配置为对液化废塑料进行降粘处理;
物料加热单元包括加热入口和加热出口,加热入口与废塑料降粘单元的液化废塑料油出口连通,加热单元被配置为对降粘的液化废塑料油进行加热处理;
热解反应单元包括热解反应物入口和热解产物出口,热解反应物入口与加热单元的加热出口连通,热解反应单元被配置为对高温液化废塑料进行热解反应处理;
分离单元包括分离入口、干气出口、液化气出口、汽油馏分出口、柴油馏分出口和蜡油馏分出口;分离入口与热解反应单元的热解产物出口连通,分离单元被配置为对热解产物进行分离处理。
在一种优选的实施方案中,所述废塑料降粘单元还包括至少一个降粘反应器,所述降粘反应器提供了废塑料降粘单元的液化废塑料入口和液化废塑料油出口;优选地,所述降粘反应器为绝热反应器。所述降粘反应器优选地带有控温加热装置,使得能够实现进入 反应器的物料的温度没有显著变化。在本文中,“进入反应器的物料的温度没有显著变化”是指使温度保持在进入反应器的物料的温度的90%-110%,例如92%-108%,或95%-105%,或98%-102%的范围内(例如,可以以反应器的出口温度表示)。
在一种优选的实施方案中,废塑料降粘单元还包括循环油入口;循环油入口与分离单元的蜡油馏分出口连通。
在一种实施方案中,参考图2,该系统还包括废塑料初步熔化液化脱氯单元和氯化氢吸收单元;
废塑料初步熔化液化脱氯单元包括含氯废塑料原料入口、含氯化氢的气相物料出口和脱氯废塑料液相物料出口,废塑料初步熔化液化脱氯单元被配置为对含氯废塑料原料进行热熔脱氯处理;脱氯废塑料液相物料出口与废塑料液化单元的待处理废塑料入口连通;
氯化氢吸收单元包括含氯化氢的气相物料入口、氯化氢吸收剂和脱氯干气出口;含氯化氢的气相物料入口与废塑料初步熔化液化脱氯单元的含氯化氢的气相物料出口连通。
在一种具体的实施方案中,废塑料液化单元包括加热液化输送设备,优选地,快速加热液化输送设备;任选地,加热液化输送设备包括第一螺杆式加热输送设备;优选地,第一螺杆式加热输送设备选自带有加热的双螺杆式或者单螺杆式加热输送设备;
废塑料初步熔化液化脱氯单元包括第二螺杆式加热输送设备和与第二螺杆式加热输送设备连通的真空装置;优选地,第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输送设备。
在一种优选的实施方案中,所述的废塑料初步熔化液化脱氯单元和所述的废塑料液化单元采用一台加热液化输送设备,包括第一螺杆式加热输送设备,在所述的螺杆式加热输送设备中部设有气体出口连通真空装置。
在一种具体的实施方案中,废塑料初步熔化液化脱氯单元还包括不凝汽出口,用于引出不凝汽。
在一种具体的实施方案中,参考图2,系统包括:废塑料初步熔化液化脱氯单元、氯化氢吸收单元、废塑料液化单元、废塑料降粘单元、物料加热单元、热解反应单元和分离单元;
其中,废塑料液化单元包括待处理废塑料入口和液化废塑料出 口,废塑料液化单元被配置为对待处理废塑料进行液化处理;
废塑料降粘单元包括液化废塑料入口、循环油入口和液化废塑料油出口,废塑料降粘单元被配置为对液化废塑料进行降粘处理;
物料加热单元包括加热入口和加热出口,加热入口与废塑料降粘单元的液化废塑料油出口连通,加热单元被配置为对降粘的液化废塑料油进行加热处理;
热解反应单元包括热解反应物入口和热解产物出口,热解反应物入口与加热单元的加热出口连通,热解反应单元被配置为对高温液化废塑料进行热解反应处理;
分离单元包括分离入口、干气出口、液化气出口、汽油馏分出口、柴油馏分出口和蜡油馏分出口;分离入口与热解反应单元的热解产物出口连通,分离单元被配置为对热解产物进行分离处理;分离单元的蜡油馏分出口与废塑料降粘单元的循环油入口连通;
废塑料初步熔化液化脱氯单元包括含氯废塑料原料入口、含氯化氢的气相物料出口和脱氯废塑料液相物料出口,废塑料初步熔化液化脱氯单元被配置为对含氯废塑料原料进行热熔脱氯处理;脱氯废塑料液相物料出口与废塑料液化单元的待处理废塑料入口连通;
氯化氢吸收单元包括含氯化氢的气相物料入口、氯化氢吸收剂和脱氯干气出口;含氯化氢的气相物料入口与废塑料初步熔化液化脱氯单元的含氯化氢的气相物料出口连通。
本公开内容还提供了下述两组技术方案A和B。
A1、一种废塑料流化裂化的加工方法,其特征在于,该方法包括以下步骤:
S1、使待处理废塑料进入废塑料液化单元进行液化处理,得到液化废塑料;
S2、使所述液化废塑料进入废塑料减粘单元进行减粘裂化处理,得到减粘裂化的液化废塑料油和第一干气;
S3、使所述减粘裂化的液化废塑料油进入接触裂化反应单元,与流化态的接触剂接触进行裂化反应,得到反应油气和待生接触剂;
S4、使所述反应油气进入分离单元进行分离处理,得到第二干气、液化气、汽油馏分、柴油馏分和蜡油馏分;
使所述待生接触剂进入再生单元,在氧气存在条件下,对所述 待生接触剂进行再生处理,得到再生接触剂和再生烟气;使所述再生接触剂返回所述接触裂化反应单元继续使用。
A2、根据技术方案A1所述的加工方法,其特征在于,在步骤S1之前,该方法还包括:
使含氯废塑料原料进入废塑料热熔脱水脱氯单元,在第一温度条件下,对所述含氯废塑料原料进行熔化脱水处理,得到脱水废塑料;然后将所述脱水废塑料升温至第二温度进行脱氯处理,得到脱水脱氯废塑料和含氯化氢气体;
使所述脱水脱氯废塑料在冷却粉碎单元中依次进行冷却处理、粉碎处理,得到脱水脱氯废塑料颗粒;使所述脱水脱氯废塑料颗粒进入所述废塑料液化单元;或者
使所述脱水脱氯废塑料直接进入所述废塑料液化单元。
A3、根据技术方案A2所述的加工方法,其特征在于,该方法还包括:
使所述含氯化氢气体进入氯化氢吸收单元,与氯化氢吸收剂接触进行氯化氢吸收处理;可选地,在真空系统作用下使所述含氯化氢气体进入所述氯化氢吸收单元;
其中所述氯化氢吸收剂为水或PH大于7的碱液;可选地,所述碱液包括氢氧化钠溶液、氢氧化钾溶液、氢氧化钙溶液、碳酸氢钠溶液、碳酸钠溶液和氨水中的一种或几种。
A4、根据技术方案A1所述的加工方法,其特征在于,步骤S3中所述接触裂化反应单元进行裂化反应还得到带炭灰分;
该方法还包括:使所述带炭灰分和待生接触剂进入再生单元,在氧气存在条件下,使所述待生接触剂以及带炭灰分上的炭进行完全燃烧反应,得到再生烟气和再生接触剂;
优选地,该方法还包括:
使至少部分的所述第一干气和/或至少部分的所述第二干气进入所述再生单元,使所述待生接触剂和带炭灰分在氧气和干气存在条件下进行完全燃烧反应,得到再生烟气和再生接触剂;
优选地,以所述待再生接触剂总重量为基准,所述待再生接触剂含炭量为0.5~5.0重量%。
A5、根据技术方案A1所述的加工方法,其特征在于,步骤S1 中,所述废塑料液化单元采用加热液化输送设备进行所述液化处理;可选地,所述加热液化输送设备包括第一螺杆式加热输送设备;优选地,所述第一螺杆式加热输送设备选自带有加热的双螺杆式或者单螺杆式加热输送设备;
优选地,所述液化处理的工艺条件包括:出口温度为380~500℃,优选为400~450℃;停留时间为5~30min,优选为5~15min。
A6、根据技术方案A1所述的加工方法,其特征在于,步骤S2中,所述废塑料减粘单元采用减粘反应器进行所述减粘裂化处理;优选地,所述减粘反应器为绝热减粘反应器;
优选地,所述减粘裂化处理的工艺条件包括:反应温度为380~500℃,优选为390~450℃,进一步优选为390~420℃;停留时间为10~90min,优选为20~70min,进一步优选为30~70min。
A7、根据技术方案A1所述的加工方法,其特征在于,步骤S3中,所述裂化反应的工艺条件包括:反应温度为490~750℃,重时空速为1~100h-1,接触剂与待处理废塑料的质量比为5~30:1;
优选地,反应温度为500~650℃,重时空速为3~60h-1,接触剂与待处理废塑料的质量比为6~20:1;
优选地,使所述减粘裂化的液化废塑料油与蒸汽进入所述接触裂化反应单元;优选地,蒸汽与待处理废塑料的质量比为0.05~1:1,优选为0.1~0.5:1。
A8、根据技术方案A1所述的加工方法,其特征在于,步骤S3中,所述接触剂为选自硅铝材料催化剂、石英砂或煤焦粉中的一种或几种;优选地,所述接触剂的粒度为20~3000μm;
可选地,所述硅铝材料选自含分子筛的催化剂和/或不含分子筛的催化剂;优选地,所述含分子筛的催化剂为选自含X分子筛、Y分子筛、丝光沸石、ZSM-5、层柱粘土分子筛、SAPO中的一种或几种分子筛的催化剂、废FCC催化剂中的一种或几种;
优选地,所述不含分子筛的催化剂选自以第一原料中的一种或几种为原料制备的催化剂,所述第一原料包括无定型硅铝、白土、高岭土、蒙脱石、累托石、伊利石、绿泥石、拟薄水铝石和二氧化硅;或者
所述不含分子筛的催化剂选自以经过酸洗、焙烧、筛分处理的第二原料中的一种或几种为原料制备的催化剂,所述第二原料包括无定型硅铝、白土、高岭土、蒙脱石、累托石、伊利石和绿泥石;或者选自以经过酸洗、焙烧、筛分处理的所述第二原料中的一种或几种与拟薄水铝石和/或二氧化硅为原料制备的催化剂;
可选地,所述煤焦粉为煤粉和/或石油焦粉。
A9、根据技术方案A4所述的加工方法,其特征在于,所述再生处理在密相流化床再生器中进行;优选地,再生处理的工艺条件包括:空气停留时间0.5~60秒,优选1.0~10秒,密相床的气化温度为600~750℃,优选600~700℃,通入气体为含氧体积为10~50体积%的气体,密相床的线速度0.05~0.6m/s,优选为0.2~0.4m/s。
A10、根据技术方案A2所述的加工方法,其特征在于,所述废塑料热熔脱水脱氯粉碎单元的热熔脱水脱氯单元包括第二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置;优选地,所述第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输送设备;
优选地,所述熔化脱水处理的工艺条件包括:第一温度为100~170℃,优选为120~150℃;时间为0.05~1h,优选为0.05~0.5h;含氯废塑料原料进料速率为5~5000kg/h,优选为100~4000kg/h;
优选地,所述脱氯处理的工艺条件包括:第二温度为150~370℃,优选为220~350℃,进一步优选为300~330℃;时间为0.05~0.5h,优选为0.1~0.2h;真空度为50~300mmHg,优选为50~150mmHg;
优选地,由第一温度升温至第二温度的升温速率为50~200℃/min,优选为50~150℃/min;
可选地,经粉碎处理得到的所述脱水脱氯废塑料颗粒的颗粒粒径为100~2000μm。
A11、根据技术方案A1所述的加工方法,其特征在于,所述待处理废塑料包括LDPE、HDPE、PS、PP、PET和PVC中的一种或几种;
可选地,所述待处理废塑料中氯含量小于10重量%;所述待处理废塑料中灰分含量1~40重量%,优选为3~20重量%。
A12、一种废塑料流化裂化的加工系统,其特征在于,该系统包括:废塑料液化单元、废塑料减粘单元、接触裂化反应单元、分离单元和再生单元;
所述废塑料液化单元包括待处理废塑料入口和液化废塑料出口,所述废塑料液化单元被配置为对待处理废塑料进行液化处理;
所述废塑料减粘单元包括液化废塑料入口、液化废塑料油出口和第一干气出口,所述废塑料减粘单元被配置为对液化后的废塑料进行减粘裂化处理;
所述接触裂化反应单元包括裂化原料入口、接触剂入口、反应油气出口和待生接触剂出口;所述裂化原料入口与所述废塑料减粘单元的液化废塑料油出口连通,所述接触裂化反应单元被配置为对液化废塑料油进行裂化反应处理;
所述分离单元包括分离入口、第二干气口、液化气出口、汽油馏分出口、柴油馏分出口和蜡油馏分出口;所述分离入口与所述接触裂化反应单元的反应油气出口连通,所述分离单元被配置为对反应油气进行分离处理;
所述再生单元包括待生接触剂入口、含氧气体入口、再生接触剂出口和再生烟气出口;所述再生单元被配置为在氧气存在条件下,对所述待生接触剂进行再生处理,得到再生接触剂和再生烟气;所述再生接触剂出口与所述接触裂化反应单元的接触剂入口连通。
A13、根据技术方案A12所述的加工系统,其特征在于,该加工系统还包括废塑料热熔脱水脱氯单元、冷却粉碎单元和氯化氢吸收单元;
所述废塑料热熔脱水脱氯单元包括含氯废塑料原料入口、脱水脱氯废塑料出口和含氯化氢气体出口;所述废塑料热熔脱水脱氯单元被配置为对含氯废塑料进行熔化脱水处理和脱氯处理;
所述冷却粉碎单元被配置为对来自废塑料热熔脱水脱氯单元的脱水脱氯废塑料进行冷却处理和粉碎处理;
所述氯化氢吸收单元包括含氯化氢的气相物料入口和氯化氢吸收剂;所述含氯化氢的气相物料入口与所述废塑料热熔脱水脱氯单元的含氯化氢气体出口连通;
优选地,所述再生单元还包括干气入口,所述干气入口与所述 废塑料减粘单元的第一干气出口和/或所述分离单元的第二干气出口连通;
可选地,所述接触裂化反应单元的裂化原料入口与所述废塑料减粘单元的液化废塑料油出口之间的连通管线上还包括蒸汽入口;
优选地,所述废塑料液化单元包括加热液化输送设备;可选地,所述加热液化输送设备包括第一螺杆式加热输送设备;优选地,所述第一螺杆式加热输送设备选自带有加热的双螺杆式加热输送设备;
优选地,所述废塑料热熔脱水脱氯单元包括第二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置;优选地,所述第二螺杆式加热输送设备选自双螺杆式输送设备。
B1、一种废塑料降粘热解裂化的加工方法,其特征在于,该方法包括以下步骤:
S1、使待处理废塑料进入废塑料液化单元进行液化处理,得到液化废塑料;
S2、使所述液化废塑料进入废塑料减粘单元进行减粘裂化处理,得到减粘裂化的液化废塑料油;
S3、使所述减粘裂化的液化废塑料油进入物料加热单元进行加热处理,得到高温液化废塑料;
S4、使所述高温液化废塑料进入热解反应单元进行热解反应,得到热解产物和焦炭;
S5、使所述热解产物进入分离单元进行分离处理,得到干气、液化气、汽油馏分、柴油馏分和蜡油馏分。
B2、根据技术方案B1所述的加工方法,其特征在于,在步骤S1之前,该方法还包括:
使含氯废塑料原料进入废塑料初步熔化液化脱氯单元进行热熔脱氯处理,得到含氯化氢的气相物料和脱氯废塑料物料;
使所述脱氯废塑料物料进入所述废塑料液化单元;或者
使所述脱氯废塑料物料依次进行冷却处理、粉碎处理,得到脱氯废塑料颗粒;使所述脱氯废塑料颗粒进入所述废塑料液化单元。
B3、根据技术方案B2所述的加工方法,其特征在于,该方法还包括:
使所述含氯化氢气体进入氯化氢吸收单元,与氯化氢吸收剂接触进行氯化氢吸收处理,得到含氯吸收剂和脱氯干气;
可选地,在真空系统作用下使所述含氯化氢气体进入所述氯化氢吸收单元;
其中所述氯化氢吸收剂为水或PH大于7的碱液;可选地,所述碱液包括氢氧化钠溶液、氢氧化钾溶液、氢氧化钙溶液、碳酸氢钠溶液、碳酸钠溶液和氨水中的一种或几种。
B4、根据技术方案B1所述的加工方法,其特征在于,该方法还包括:
将至少部分的来自所述分离单元的蜡油馏分返回所述废塑料减粘单元进行回炼;
优选地,回炼的蜡油馏分与待处理废塑料的重量比为0.2~5.0:1,优选为0.2~2:1;
优选地,将所述分离单元分离得到的馏程大于350℃以上馏分作为所述蜡油馏分。
B5、根据技术方案B1所述的加工方法,其特征在于,步骤S1中,所述废塑料液化单元采用快速加热液化输送设备进行所述液化处理;可选地,所述快速加热液化输送设备包括第一螺杆式加热输送设备;优选地,所述第一螺杆式加热输送设备选自带有加热的双螺杆式或者单螺杆式加热输送设备;
优选地,所述液化处理的工艺条件包括:出口温度为370~500℃,优选为380~450℃;停留时间为5~20min,优选为5~15min。
B6、根据技术方案B1所述的加工方法,其特征在于,步骤S2中,所述废塑料减粘单元采用减粘反应器进行所述减粘裂化处理,优选地,所述减粘反应器为绝热减粘反应器;
优选地,所述减粘裂化处理的工艺条件包括:反应温度为370~450℃,优选为380~420℃,更优选为390~420℃;停留时间为2~120min,优选为30~70min。
B7、根据技术方案B1所述的加工方法,其特征在于,步骤S3中,所述物料加热单元包括加热炉;
优选地,所述加热处理的工艺条件包括:加热炉出口温度为 450℃~550℃,优选为460℃~520℃;可选地,注汽量为0.5~5重量%,优化为1~3重量%。
B8、根据技术方案B1所述的加工方法,其特征在于,步骤S4中,所述热解反应的工艺条件包括:热解塔顶压力为0.05~0.6MPa,优选为0.1~0.3Mpa;热解反应温度为450~520℃,优选为480~520℃。
B9、根据技术方案B2所述的加工方法,其特征在于,所述废塑料初步熔化液化脱氯单元包括第二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置;优选地,所述第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输送设备;
所述热熔脱氯处理的工艺条件包括:进料速率为5~5000kg/h,优选为100~4000kg/h;出口温度为150~370℃,优选为300~330℃,反应时间为0.1~0.5h,优选为0.1~0.3h;所述废塑料初步熔化液化脱氯单元的真空度为50~300mmHg,优选为50~150mmHg;
优选地,粉碎处理得到的所述脱氯废塑料颗粒的颗粒粒径为100~2000μm。
B10、根据技术方案B1所述的加工方法,其特征在于,所述待处理废塑料包括LDPE、HDPE、PS、PP、PET和PVC中的一种或几种;
可选地,所述待处理废塑料中PVC的含量小于10重量%;所述待处理废塑料中灰分含量1~40重量%,优选为3~30重量%。
B11、一种废塑料降粘热解裂化的加工系统,其特征在于,该加工系统包括:废塑料液化单元、废塑料减粘单元、物料加热单元、热解反应单元和分离单元;
所述废塑料液化单元包括待处理废塑料入口和液化废塑料出口,所述废塑料液化单元被配置为对待处理废塑料进行液化处理;
所述废塑料减粘单元包括液化废塑料入口和液化废塑料油出口,所述废塑料减粘单元被配置为对液化后的废塑料进行减粘裂化处理;
所述物料加热单元包括加热入口和加热出口,所述加热入口与所述废塑料减粘单元的液化废塑料油出口连通,所述加热单元被配置为对减粘裂化的液化废塑料油进行加热处理;
所述热解反应单元包括热解反应物入口和热解产物出口,所述 热解反应物入口与所述加热单元的加热出口连通,所述热解反应单元被配置为对高温液化废塑料进行热解反应处理;
所述分离单元包括分离入口、干气出口、液化气出口、汽油馏分出口、柴油馏分出口和蜡油馏分出口;所述分离入口与所述热解反应单元的热解产物出口连通,所述分离单元被配置为对热解产物进行分离处理。
B12、根据技术方案B11所述的加工系统,其特征在于,该系统还包括废塑料初步熔化液化脱氯单元和氯化氢吸收单元;
所述废塑料初步熔化液化脱氯单元包括含氯废塑料原料入口、含氯化氢的气相物料出口和脱氯废塑料液相物料出口,所述废塑料初步熔化液化脱氯单元被配置为对含氯废塑料原料进行热熔脱氯处理;所述脱氯废塑料液相物料出口与所述废塑料液化单元的待处理废塑料入口连通;
所述氯化氢吸收单元包括含氯化氢的气相物料入口、氯化氢吸收剂和脱氯干气出口;所述含氯化氢的气相物料入口与所述废塑料初步熔化液化脱氯单元的含氯化氢的气相物料出口连通;
优选地,所述废塑料液化包括加热液化输送设备;可选地,所述加热液化输送设备包括第一螺杆式加热输送设备;优选地,所述第一螺杆式加热输送设备选自带有加热的双螺杆式或者单螺杆式加热输送设备;
优选地,所述废塑料初步熔化液化脱氯单元包括第二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置;优选地,所述第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输送设备;
优选地,所述废塑料减粘单元还包括循环油入口;所述循环油入口与所述分离单元的蜡油馏分出口连通;
可选地,所述废塑料初步熔化液化脱氯单元还包括不凝汽出口。
下文结合附图进一步说明本发明的加工方法和加工系统。
如图1所示,贮存于废塑料贮槽1中的废塑料原料进入废塑料热熔脱水脱氯粉碎单元2(包括废塑料热熔脱水脱氯单元和冷却粉碎单元),先经废塑料热熔脱水脱氯单元进行脱水脱氯后,得到脱水脱氯废塑料和含氯化氢的气体。经真空系统将含氯化氢的气体抽入 氯化氢吸收单元9与氯化氢吸收剂接触进行氯化氢吸收处理。少量不凝气经管线22排出。使所述脱水脱氯废塑料在冷却粉碎单元中依次进行冷却处理、粉碎处理,得到脱水脱氯废塑料颗粒。脱水脱氯废塑料颗粒置于废塑料颗粒贮槽3贮存。使废塑料颗粒贮槽3中的脱水脱氯废塑料颗粒进入废塑料液化单元4进行液化处理,得到液化废塑料。使液化废塑料进入废塑料降粘单元5进行降粘处理,得到液化废塑料油和第一干气。降粘后的液化废塑料油经管线11与来自管线10的蒸汽送至接触裂化反应单元6。从管线13补充的新鲜接触剂与从再生器的管线18出来的再生接触剂进入接触裂化反应单元6。降粘的液化废塑料油在接触裂化反应单元6内与流化态的接触剂发生接触进行裂化反应后,得到反应油气和待生接触剂。反应油气通过管线12进入后续的分离单元8进行分离处理,其中:第二干气从管线22出装置,液化气、汽油馏分、柴油馏分和蜡油馏分从管线16出装置。带炭的待生接触剂以及任选的带炭灰分通过管线14进入再生单元7。待生接触剂上的焦炭和来自管线21的裂化干气(包括来自管线22的第一干气和/或来自管线15的第二干气)以及来自管线19的空气发生完全燃烧反应。生成的再生烟气通过管线17出装置,达标准后可以直接排放大气。得到的再生接触剂通过管线18引出再生单元7,平衡剂及灰分从管线20卸出。
如图2所示,贮存于废塑料贮槽1中废塑料或脱水脱氯的废塑料颗粒进入废塑料初步熔化液化脱氯单元2,脱水脱氯后,得到含氯化氢的气相物料和脱氯废塑料物料。经真空系统将含氯化氢的气相物料抽入氯化氢吸收单元8,与氯化氢吸收剂接触进行氯化氢吸收处理,得到含氯吸收剂和脱氯干气。少量不凝气经管线9排出。废塑料液化单元采用快速加热液化输送设备3。来自废塑料初步熔化液化脱氯单元2的脱氯废塑料液相物料可以出装置进行冷却处理和粉碎处理得到脱氯废塑料颗粒后,进入快速加热液化输送设备3(废塑料液化单元),或者可以直接进入快速加热液化输送设备3(废塑料液化单元),得到熔融态的脱氯废塑料液相物料。熔融态的脱氯废塑料液相物料进入绝热降粘反应器4(废塑料降粘单元)进行降粘处理,得到降粘的液化废塑料油,也可以使来自分离单元7的蜡油馏分同时进入绝热降粘反应器4中进行回炼。降粘的液化废塑料油 经管线10送至加热炉5(加热单元),经加热炉5加热升温后,高温液化废塑料经管线11进入热解反应单元6进行热解反应,得到热解产物和焦炭。热解产物通过管线12进入后续的分离单元7进行分离处理:其中干气从管线15出装置,液化气、汽油馏分从管线14出装置,柴油馏分从管线13出装置;塔底的蜡油馏分经管线16引出分离单元,其中部分蜡油馏分也可以经管线15返回绝热降粘反应器4(废塑料降粘单元)进行回炼,也可经管线17作为产品引出装置。
实施例
以下通过实施例进一步详细说明本公开内容。实施例中所用到的原材料均可通过商购途径获得。
所采用的接触剂SL-1为含10重量%氧化铝、80重量%高岭土的喷雾干燥后焙烧制得的接触剂,具体制备方法参考文献CN102974383A;SL-1平均粒度为80μm。
所采用的催化裂化催化剂为商品牌号为CRC-1(齐鲁石油化工公司生产)催化裂化催化剂的平衡剂记为SL-2,平均粒度为65μm。
所采用的石英砂记为SL-3,粒度为300μm。
液化废塑料中氯含量的分析方法为:Q/SH 3360 270-2018。
液化废塑料中其他元素的分析方法为:碳和氢元素SH/T 0656-2017、氧元素SH/T 0986、氮元素SH/T 0704-2010、硫元素SH/T0842-2010。
热解或裂化产物分布由模拟蒸馏NB/SH/T 0829-2010方法得到。
柴油蜡油的密度分析方法为SH/T0604-2000;热解或裂化气体组成由RIPP 78-90方法测定;石脑油、柴油等的烃组成由色谱法分析测定。
采用荧光法(XRF)对废塑料原料以及脱氯处理得到的脱氯废塑料液相物料中残余氯元素含量进行测试。
塑料的分子量的测量方法可以参考ISO 16014和ASTM D6474-99;在本发明中,塑料的分子量是指数均分子量。
塑料的灰分的测量方法可以参考GB 508(Petroleum Products–Determination of ash);
塑料的硫含量的测量方法可以参考梁成劲等的《微波消解ICP-AES测定塑料颗粒中硫元素》(Technology Innovation and Application,2018年3期,20-21页)。
接触剂的粒度通过粒度检测仪测量得到。
高温快速热解色谱厂家为日本Frontier公司、型号为PY-3030。
接触剂的粒度通过粒度检测仪测量得到。
在以下实施例中,经过粉碎处理得到的颗粒粒径范围为100-2000μm。
接触裂化反应器为流化床反应器。
粘度是根据SY/T 0520-2008采用旋转粘度计测量的表观粘度。在实施例中使用的旋转粘度计的型号为Brookfield LVDV-3T,转速为20转/分钟,使用转子大小号为SC4-34。
参考例
将废弃的塑料包装材料LDPE、HDPE、PS、PP和PVC按照质量百分比为4:4:8:3:1混合,将混合后的塑料包装材料粉碎、干燥得到混合塑料。混合塑料的氯含量为2.9重量%。用双螺杆式加热输送设备作为混合塑料的初步熔化液化脱氯的设备,进料速率约为100kg/h。试验过程改变出口温度,每个出口温度条件下的处理时间均为0.1h,双螺杆式加热输送设备的真空度为100mmHg,测试不同出口温度条件下混合塑料经输送后的形态及氯含量,得到脱氯塑料RDCl-8-1至RDCl-8-7。所得的脱氯塑料RDCl-8-1至RDCl-8-7的性质见表1。
在脱氯处理过程中,采用真空系统将含氯化氢的气相物料抽出并送入氯化氢吸收单元,与氯化氢吸收剂(NaOH溶液)接触进行氯化氢吸收处理。
表1:参考例中的脱氯塑料的性质
将参考例中的脱氯塑料RDCl-8-6用螺杆式加热输送设备热到250℃并直接挤入带气体出口的内温为250℃常压容器中,保温60min,并取样品RDCl-8-6-60测试粘度,其粘度过大超出测量范围,其形态为可塑性固体,不可自流动。
将参考例中的脱氯塑料RDCl-8-3用螺杆式加热输送设备进一步加热到390℃,时间为0.2h(液化处理过程);然后在390℃保温30min、50min和70min后测量旋转粘度(采用绝热上流式降粘反应器),得到降粘的液化废塑料油(分别记为RDCl-8-3-30,RDCl-8-3-50,RDCl-8-3-70),降粘的液化废塑料油的性质见下表。
表中,粘度栏“-”表示粘度过高无法测试。
实施例1A
含氯废塑料原料包含:LDPE、HDPE、PS、PP和PVC按照质量百分比为4:4:8:3:2混合,将混合塑料包装材料粉碎干燥,混合塑料中氯含量为5.1重量%,使用双螺杆式加热输送设备在200℃的条件下,将原料混合并粉碎,得到热混合塑料颗粒HSL,其性质见表2。
将HSL作为原料,使用双螺杆式加热输送设备作为废塑料初步熔化液化脱氯的设备,进料速率约为100kg/h,先在第一温度条件下,对所述含氯废塑料原料进行熔化脱水处理,得到脱水废塑料;第一温度为150℃;时间为3min;熔化脱水处理的升温速率为80℃/min;
然后将所述脱水废塑料升温至第二温度进行脱氯处理,得到脱水脱氯废塑料和含氯化氢的气体,其中第二温度为320℃;时间为0.2h;真空度为70mmHg,由第一温度升温至第二温度的升温速率为100℃/min;
使所述脱水脱氯废塑料在冷却粉碎单元中依次进行冷却处理、粉碎处理,得到脱水脱氯废塑料颗粒DCl-1;脱水脱氯废塑料颗粒DCl-1性质见表2;
在脱氯处理过程中,采用真空系统将含氯化氢的气相物料抽出并送入氯化氢吸收单元,与氯化氢吸收剂(NaOH溶液)接触进行氯化氢吸收处理。
然后将脱水脱氯废塑料颗粒DCl-1粉碎,使用废塑料双螺杆高温液化进料设备作为废塑料液化单元,进行液化处理,液化处理的工艺条件包括:出口温度为420℃,停留时间为0.2h;然后送入降粘罐中进行降粘处理,得到降粘的液化废塑料油和第一干气,降粘处理的温度为380℃,停留60min后取样分析(记为DCl-1-60),降粘的液化废塑料油的粘度见表3。
使用SL-1为接触剂,将降粘的液化废塑料油与蒸汽进入接触裂化反应单元(接触裂化反应器),与流化态的接触剂接触进行裂化反应,得到反应油气和待生接触剂,其中接触剂与废塑料原料的质量比为5:1,裂化反应的工艺条件包括:反应温度为550℃,重时空速为4h-1,蒸汽与待处理废塑料的质量比为0.4:1;裂化反应产物的产物分布见表4。
实施例1B
参照实施例1A中的工艺流程,本实施例与实施例1A的不同之处在于改变工艺条件,具体包括:
含氯废塑料原料进料速率为100kg/h,熔化脱水处理的工艺条件包括:第一温度为100℃,时间为0.5h;脱氯处理的工艺条件包括:第二温度为308℃;时间为0.05h;真空度为150mmHg;由第一温度升温至第二温度的升温速率为50℃/min;脱水脱氯废塑料颗粒DCl-7性质见表2;
液化处理的工艺条件包括:出口温度为380℃;停留时间为5min;降粘处理的工艺条件包括:反应温度为380℃,停留时间为10min;降粘的液化废塑料油的粘度见表3。
裂化反应的工艺条件包括:反应温度为650℃,重时空速为5h- 1,接触剂与待处理废塑料的质量比为30:1;蒸汽与待处理废塑料的质量比为0.05:1;裂化反应产物的产物分布见表4。
实施例2.1
将真实废塑料(氯含量约为3重量%)作为含氯废塑料原料,用双螺杆式加热输送设备作为废塑料初步熔化液化脱氯的设备,进料 速率约为100kg/h,先在第一温度条件下,对所述含氯废塑料原料进行熔化脱水处理,得到脱水废塑料;第一温度为150℃;时间为0.2h;熔化脱水处理的升温速率为90℃/min;
然后将所述脱水废塑料升温至第二温度进行脱氯处理,得到脱水脱氯废塑料和含氯化氢的气体,其中第二温度为300℃;时间为0.1h;真空度为100mmHg,由第一温度升温至第二温度的升温速率为80℃/min;脱水脱氯废塑料记为DCl-2,DCl-2的性质见表2;
在脱氯处理过程中,采用真空系统将含氯化氢的气相物料抽出并送入氯化氢吸收单元,与氯化氢吸收剂(Ca(OH)2溶液)接触进行氯化氢吸收处理。
然后使用废塑料双螺杆高温液化进料设备作为废塑料液化单元对脱水脱氯废塑料DCl-2进行液化处理,液化处理的工艺条件包括:出口温度为400℃,停留时间为0.2h;
然后将液化脱氯塑料送入降粘罐中进行降粘处理,得到降粘的液化废塑料油和第一干气,降粘处理的温度为400℃,停留不同时间后(30,50和70min,分别记为DCl-2-30,DCl-2-50和DCl-2-70)取样分析,降粘的液化废塑料油的粘度见表3。
使用SL-2为接触剂,将降粘的液化废塑料油与蒸汽进入接触裂化反应单元(接触裂化反应器),与流化态的接触剂接触进行裂化反应,得到反应油气和待生接触剂,其中接触剂与废塑料原料的质量比为7:1,裂化反应的工艺条件包括:反应温度为510℃,重时空速为4h-1,蒸汽与待处理废塑料的质量比为0.1:1;裂化反应产物的产物分布见表4。
表2:塑料颗粒的性质

表3:降粘塑料油的粘度
表4:产物分布

实施例2.2
将真实废塑料(氯含量约为3重量%)用双螺杆式加热输送设备作为废塑料初步熔化液化脱氯的设备,进料速率约为100kg/h,出口温度为300℃,处理时间为0.1h,螺杆式加热输送设备真空度为70mmHg,得到液化脱氯塑料DCl-9。脱氯处理得到的含氯化氢的气体的吸收过程与参考例相同。
将DCl-9用螺杆式加热输送设备进一步加热到420℃,时间为0.2h(液化处理过程);然后在420℃保温30min(采用绝热上流式降粘反应器),取样测量旋转粘度(记为DCl-9-30),得到降粘的液化废塑料油,粘度结果见表5。
表5降粘塑料的粘度
将DCl-9-30样品先经加热炉进行加热,得到高温液化废塑料,加热炉出口温度为480℃;然后将得到高温液化废塑料送入热解反应装置,在480℃条件下热解2h,所得热解产物经分离单元进行分离处理后进行产物分布测试,热解反应产物分布见表6和表7。
表6:干燥无灰基废塑料热解产物分布

表7:废塑料热解产物干气和液化气质量组成
实施例3
将真实废塑料(氯含量约为6重量%)作为含氯废塑料原料,用双螺杆式加热输送设备作为废塑料初步熔化液化脱氯的设备,进料速率约为100kg/h,
先在第一温度条件下,对所述含氯废塑料原料进行熔化脱水处理,得到脱水废塑料;第一温度为130℃;时间为0.1h;熔化脱水处理的升温速率为80℃/min;
然后将所述脱水废塑料升温至第二温度进行脱氯处理,得到脱水脱氯废塑料和含氯化氢的气体,其中第二温度为320℃;时间为0.2h;真空度为90mmHg,由第一温度升温至第二温度的升温速率为100℃/min;脱水脱氯废塑料记为DCl-3,DCl-3的性质见表2。
在脱氯处理过程中,采用真空系统将含氯化氢的气相物料抽出并送入氯化氢吸收单元,与氯化氢吸收剂(NaOH溶液)接触进行氯化氢吸收处理。
然后使用废塑料双螺杆高温液化进料设备作为废塑料液化单元对脱水脱氯废塑料DCl-3进行液化处理,液化处理的工艺条件包括:出口温度为420℃,停留时间为0.1h。
然后将液化脱氯塑料送入降粘罐中进行降粘处理,得到降粘的液化废塑料油和第一干气,降粘处理的温度为410℃,停留20min后取样分析(记为DCl-3-20),降粘的液化废塑料油的粘度见表3。
使用SL-3为接触剂,将降粘的液化废塑料油与蒸汽进入接触裂化反应单元(接触裂化反应器),与流化态的接触剂接触进行裂化反应,得到反应油气和待生接触剂,其中接触剂与废塑料原料的质量比为7:1,裂化反应的工艺条件包括:反应温度为590℃,重时空速为4h-1,蒸汽与待处理废塑料的质量比为0.2:1;裂化反应产物的产物分布列于表4。
实施例4
将废农膜在废塑料热解中型试验装置上,用双螺杆式加热输送设备作为废塑料初步熔化液化脱氯的设备,进料速率约为5kg/h,熔化脱水处理的工艺条件包括:第一温度为150℃;时间为0.1h;脱氯处理的工艺条件包括:第二温度为300℃;时间为0.1h,由第一温度升温至第二温度的升温速率为100℃/min;螺杆式加热输送设备真空度为150mmHg,得到脱水脱氯废塑料样品DCl-4,其性质见表2。
继续使用同一双螺杆式加热输送设备对脱水脱氯废塑料DCl-4进行液化处理,液化处理的工艺条件包括:出口温度列于表8,停留时间为0.2h,得到液化废塑料;然后将液化废塑料从该双螺杆式加热输送设备的出口进入降粘反应器中,在不同的温度及停留时间下进行降粘,得到降粘废塑料DCl-4系列样品,其中降粘反应器内温、降粘反应时间以及降粘废塑料的粘度列于表8。
表8降粘条件、及降粘废塑料性质

表中,粘度栏“-”表示粘度过高无法测试。
另外,将DCl-4用螺杆式加热输送设备进一步加热到400℃,时间为0.1h(液化处理过程);在400℃保温30min、50min和70min取样测量旋转粘度(采用绝热上流式降粘反应器),得到降粘的液化废塑料油(分别记为DCl-8-30,DCl-8-50,DCl-8-70),粘度见表9。
表9降粘条件、及降粘废塑料性质
实施例4.1
以DCl-4-2-60为原料,使用SL-2为接触剂,将降粘的液化废塑料油与蒸汽进入接触裂化反应单元(接触裂化反应器),与流化态的接触剂接触进行裂化反应,得到反应油气和待生接触剂,其中接触剂与废塑料原料的质量比为7:1,裂化反应的工艺条件包括:反应温度为510℃,重时空速为4h-1,蒸汽与待处理废塑料的质量比为0.4:1;裂化反应产物的产物分布见表4。
实施例4.2
使用DCl-4-2-60原料,采用与实施例4.1相同的过程,不同之处在于:使用SL-1为接触剂,将裂化反应单元得到的待生接触剂(含炭量为1.3重量%)引入再生单元进行再生处理,再生处理在密相流化床再生器中进行;再生处理的工艺条件包括:空气停留时间3s,密相床的气化温度为660℃,通入气体为含氧体积为21体积% 的气体,密相床的线速度0.3m/s。将得到的再生接触剂与新鲜接触剂一起引入裂化反应单元(再生接触剂与新鲜接触剂的重量比为20:1);并且将来自废塑料降粘反应器生成的第一干气和来自分离单元得到的第二干气引入再生器中继续使用,对待生剂进行完全燃烧(第一干气和第二干气的引入量可根据实际再生燃烧情况进行调整),其他工艺条件与实施例5相同,裂化反应产物的产物分布见表4。
实施例4.3
将DCl-8-50样品先经加热炉进行加热,得到高温液化废塑料,加热炉出口温度为500℃;注汽量为0.5重量%;然后将得到高温液化废塑料送入热解反应装置,在480℃条件下热解2h,所得热解产物经分离单元进行分离处理后进行产物分布测试,热解反应产物分布见表10和表11。
表10干燥无灰基废塑料热解产物分布
表11废塑料热解产物干气和液化气质量组成

实施例4.4
使用废塑料连续热解中型装置,以DCl-4为原料,在400℃进行液化,然后在380℃保温一段时间进行降粘处理(采用绝热上流式降粘反应器);然后将得到的降粘的液化废塑料油送入加热装置(加热炉),设定不同的加热炉出口温度,并在不同的温度条件下热解(本实施例中热解温度为相应的加热炉出口温度),所得热解产物经分离单元进行分离处理后进行产物分布测试,反应条件以及热解反应产物分布见表12。
表12

实施例4.5
使用废塑料连续热解中型装置,将DCl-4用螺杆式加热输送设备进一步加热到400℃,时间为0.2h(液化处理过程);然后保温进行降粘处理,降粘的温度为380℃,降粘时间为1h(采用绝热上流式降粘反应器);加热炉出口温度(反应温度)为500℃,热解塔压力(反应压力)为0.15MPa时,废农膜颗粒的RPCC加工产物分布(干燥无灰基处理)见表13,气相产物分布见表14,将液体产物经切割得到石油脑、柴油和蜡油组分,其性质见表15,焦炭产物性质见表16。
对比例4.5
参照实施例4.5的工艺流程,采用相同的废塑料原料,与实施例4.5不同之处在于将DCl-4为原料不进行液化处理和降粘处理,而直接引入加热炉进行加热,然后进行热解反应,具体工艺条件与实施例4.5相同。产物分布(干燥无灰基处理)见表13。
表13:实施例4.5和对比例4.5的热解产物分布
表14:实施例4.5热解气体组成

表15:实施例4.5热解产物性质

表16:焦炭的性质
实施例5.1
使用SL-1为接触剂,将参考例中的降粘的液化废塑料油RDCl-8-3-70与蒸汽进入接触裂化反应单元(接触裂化反应器),与流化态的接触剂接触进行裂化反应,得到反应油气和待生接触剂,其中接触剂与废塑料原料的质量比为7:1,裂化反应的工艺条件包括:反 应温度为550℃,重时空速为4h-1,蒸汽与待处理废塑料的质量比为0.3:1;裂化反应产物的产物分布见表4。
实施例5.2
将RDCl-8-3-70样品先经加热炉进行加热,得到高温液化废塑料,加热炉出口温度为390℃;然后将得到高温液化废塑料送入热解反应装置(热解塔),在480℃条件下热解2h,所得热解产物经分离单元进行分离处理后进行产物分布测试,热解反应产物分布见表17和18。
表17:干燥无灰基废塑料热解产物分布
表18:废塑料热解产物干气和液化气质量组成

对比例1
参照实施例1A的工艺流程,采用相同的废塑料原料,与实施例1A不同之处在于:以脱水脱氯废塑料颗粒DCl-1作为原料,不进行液化处理和降粘处理,而直接引入接触裂化反应单元。该对比例由于液化废塑料粘度太大,无法使用水蒸汽分散雾化,不能连续进入接触裂化反应单元。
对比例2
本对比例用于说明在反应釜中进行间歇式的废塑料裂化的加工工艺,具体包括:
将包含LDPE、HDPE、PS、PP和PVC(按照质量百分比为4:4:8:3:2)的塑料包装材料粉碎干燥(氯含量为2.6重量%),然后与裂化蜡油按照混合废塑料:裂化蜡油为3:1的重量比进行混合,放入带搅拌器的高压釜中,通过氮气吹扫,将空气排出反应釜,设置温度350℃,反应时间为1h,制备得到液化废塑料(记为FSL-1)。
以SL-1为接触剂,以类似于实施例1A的方式进行接触裂化反应。接触裂化反应的工艺条件包括:裂化温度为505℃、空速为20h- 1,剂油比为7,水油比为0.2。裂化反应产物的产物分布见表4。
所采用的裂化蜡油的性质列于下表。

Claims (26)

  1. 一种塑料的加工方法,其特征在于,该方法包括以下步骤:
    S1、使待加工的塑料进入液化单元进行液化处理,得到液化后的材料;
    S2、使所述液化后的材料在降粘单元中进行热处理以降低其粘度,得到降粘的液化后的材料;
    S3、使所述降粘的液化后的材料进入裂化反应单元进行裂化反应,得到反应油气;
    S4、使所述反应油气进入分离单元进行分离处理。
  2. 根据前述权利要求中任一项所述的加工方法,其特征在于,步骤S1中,所述待加工的塑料满足以下条件中的一个或多个:
    (1)所述待加工的塑料的氯含量小于10重量%;和/或
    (2)所述待加工的塑料包含PVC,优选地PVC的含量小于10重量%;和/或
    (3)所述待加工的塑料包括LDPE、HDPE、PS、PP、PET和PVC中的一种或几种;和/或
    (4)所述待加工的塑料的灰分含量为1-40重量%,例如3-30重量%或者3-20重量%。
  3. 根据前述权利要求中任一项所述的加工方法,其特征在于,步骤S1中,所述废塑料液化单元采用加热液化输送设备(优选地快速加热液化输送设备)进行所述液化处理;任选地,所述加热液化输送设备包括第一螺杆式加热输送设备,例如双螺杆式或者单螺杆式输送设备;优选地,所述第一螺杆式加热输送设备选自带有加热的双螺杆式或者单螺杆式加热输送设备;
    优选地,所述液化处理的工艺条件包括:出口温度为370-480℃,例如380-480℃,380-450℃或者400-450℃;停留时间为5-30min,例如5-20min,或者5-15min。
  4. 根据前述权利要求中任一项所述的加工方法,其特征在于, 步骤S2中,所述废塑料降粘单元采用降粘反应器进行所述降粘处理;
    优选地,所述降粘反应器为绝热反应器;
    优选地,所述降粘处理的工艺条件包括:
    反应温度为350-450℃,例如370-450℃,380-420℃,350-400℃,370-410℃,390-450℃或者390-420℃;优选地,该反应温度不大于、例如低于步骤S1中的液化处理的出口温度;
    停留时间为10-200min,例如10-180min,15-120min,20-120min,20-90min,30-120min,30-90min,50-90min,50-70min,20-60min,或者30-70min。
  5. 根据前述权利要求中任一项所述的加工方法,其特征在于,步骤S2中,所述废塑料降粘单元采用降粘反应器进行所述降粘处理;所述降粘反应器使进入反应器的物料的温度没有显著变化
    优选地,降粘反应器带有控温加热装置,使得进入反应器的物料的温度没有显著变化;
    其中,“进入反应器的物料的温度没有显著变化”是指使温度保持在进入反应器的物料的温度的90%-110%,例如92%-108%,或95%-105%,或98%-102%的范围内,进入反应器的物料的温度以反应器的出口温度表示。
  6. 根据前述权利要求中任一项所述的加工方法,其特征在于,步骤S2中的热处理使离开反应器的物料的粘度小于12000cP@200℃,例如5000-10000cP@200℃,6000-9000cP@200℃,100-12000cP@200℃,100-2000cP@200℃,100-1500cP@200℃,100-1000cP@200℃,100-500cP@200℃。
  7. 根据前述权利要求中任一项所述的加工方法,其特征在于,步骤S3中,裂化反应单元是接触裂化反应单元,
    在接触裂化反应单元中与流化态的接触剂接触进行裂化反应,得到反应油气和待生接触剂;
    任选地,使所述待生接触剂进入再生单元,在氧气存在条件下, 对所述待生接触剂进行再生处理,得到再生接触剂和再生烟气;使所述再生接触剂返回所述接触裂化反应单元继续使用。
  8. 根据前述权利要求中任一项所述的加工方法,其特征在于,步骤S3中,所述裂化反应的工艺条件包括:反应温度为490-750℃,重时空速为1-100h-1,接触剂与待处理废塑料的质量比为5-30:1;
    优选地,反应温度为500-650℃,重时空速为3-60h-1,接触剂与待处理废塑料的质量比为6-20:1;
    优选地,使所述降粘的液化废塑料油与蒸汽进入所述接触裂化反应单元;优选地,蒸汽与待处理废塑料的质量比为0.05-1:1,例如,0.1-0.5:1。
  9. 根据前述权利要求中任一项所述的加工方法,其特征在于,步骤S3中,所述接触剂为选自硅铝材料催化剂、石英砂或煤焦粉中的一种或几种;优选地,所述接触剂的粒度为20-3000μm。
    任选地,所述硅铝材料选自含分子筛的催化剂和/或不含分子筛的催化剂;优选地,所述含分子筛的催化剂为选自含X分子筛、Y分子筛、丝光沸石、ZSM-5、层柱粘土分子筛、SAPO中的一种或几种分子筛的催化剂、废FCC催化剂中的一种或几种;
    优选地,所述不含分子筛的催化剂选自以第一原料中的一种或几种为原料制备的催化剂,所述第一原料包括无定型硅铝、白土、高岭土、蒙脱石、累托石、伊利石、绿泥石、拟薄水铝石和二氧化硅;或者
    所述不含分子筛的催化剂选自以经过酸洗、焙烧、筛分处理的第二原料中的一种或几种为原料制备的催化剂,所述第二原料包括无定型硅铝、白土、高岭土、蒙脱石、累托石、伊利石和绿泥石;或者选自以经过酸洗、焙烧、筛分处理的所述第二原料中的一种或几种与拟薄水铝石和/或二氧化硅为原料制备的催化剂;
    任选地,所述煤焦粉为煤粉和/或石油焦粉。
  10. 根据前述权利要求中任一项所述的加工方法,其特征在于,步骤S3中所述接触裂化反应单元中进行的裂化反应还得到带炭灰 分;
    该方法还包括:使所述带炭灰分和待生接触剂进入再生单元,在氧气存在条件下,使所述待生接触剂以及带炭灰分上的炭进行完全燃烧反应,得到再生烟气和再生接触剂;
    优选地,该方法还包括:
    使至少部分的所述第一干气和/或至少部分的所述第二干气进入所述再生单元,使所述待生接触剂和带炭灰分在氧气和干气存在条件下进行完全燃烧反应,得到再生烟气和再生接触剂;
    优选地,以所述待生接触剂的总重量为基准,所述待生接触剂的含炭量为0.5-5.0重量%。
  11. 根据前述权利要求中任一项所述的加工方法,其特征在于,所述再生处理在密相流化床再生器中进行;优选地,再生处理的工艺条件包括:空气停留时间0.5-60秒,优选1.0-10秒,密相床的气化温度为600-750℃,优选600-700℃,通入气体为含氧体积为10-50体积%的气体,密相床的线速度0.05-0.6m/s,例如,0.2-0.4m/s。
  12. 根据前述权利要求中任一项所述的加工方法,其特征在于,步骤S3中,裂化反应单元是热解反应单元,其中使所述降粘的液化废塑料油在物料加热单元中进行加热处理,得到高温液化废塑料,然后使所述高温液化废塑料进入热解反应单元进行热解反应,得到热解产物和焦炭;
    优选地,
    所述物料加热单元包括加热炉;和/或
    所述加热处理的工艺条件包括:加热炉出口温度为450℃-550℃,例如,460℃-520℃;任选地,注汽量为0.5-5重量%,优化为1-3重量%;和/或
    所述热解反应的工艺条件包括:热解塔顶压力为0.05-0.6MPa,例如,0.1-0.3MPa;热解反应温度为450-520℃,例如,480-520℃。
  13. 根据前述权利要求中任一项所述的加工方法,其特征在于,该方法还包括:
    将至少部分的来自所述分离单元的蜡油馏分返回所述废塑料降粘单元进行回炼;
    优选地,回炼的蜡油馏分与待处理废塑料的重量比为0.2-5.0:1,例如,0.2-2:1;
    优选地,将所述分离单元分离得到的馏程大于350℃以上馏分作为所述蜡油馏分。
  14. 根据前述权利要求中任一项所述的加工方法,其特征在于
    在步骤S4中,使所述反应油气进入分离单元进行分离处理,得到干气、液化气、汽油馏分(<180℃)、柴油馏分(180-350℃)和蜡油馏分(>350℃)。
  15. 根据前述权利要求中任一项所述的加工方法,其特征在于,在步骤S1之前,该方法还包括:
    使含氯废塑料原料进入废塑料热熔脱水脱氯粉碎单元的废塑料热熔脱水脱氯单元,在第一温度条件下,对所述含氯废塑料原料进行熔化脱水处理,得到脱水废塑料;
    然后将所述脱水废塑料升温至第二温度进行脱氯处理,得到脱水脱氯废塑料和含氯化氢的气体;
    使所述脱水脱氯废塑料在冷却粉碎单元中依次进行冷却处理、粉碎处理,得到脱水脱氯废塑料颗粒;使所述脱水脱氯废塑料颗粒进入所述废塑料液化单元;或者使所述脱水脱氯废塑料直接进入所述废塑料液化单元。
  16. 根据前述权利要求中任一项所述的加工方法,其特征在于,所述废塑料热熔脱水脱氯粉碎单元的热熔脱水脱氯单元包括第二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置;优选地,所述第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输送设备;
    优选地,所述熔化脱水处理的工艺条件包括:第一温度为100-170℃,例如,120-150℃;时间为0.05-1h,例如,0.05-0.5h;含氯废塑料原料进料速率为5-5000kg/h,例如,100-4000kg/h;优选地, 熔化脱水处理的升温速率为30-200℃/min,例如,50-100℃/min;
    优选地,所述脱氯处理的工艺条件包括:第二温度为150-370℃,例如,220-350℃,或者300-330℃;时间为0.05-0.5h,例如,0.1-0.2h;真空度为50-300mmHg,例如,50-150mmHg;优选地,由第一温度升温至第二温度的升温速率为50-200℃/min,例如,50-150℃/min;
    任选地,经粉碎处理得到的所述脱水脱氯废塑料颗粒的颗粒粒径为100-2000μm。
  17. 根据前述权利要求中任一项所述的加工方法,其特征在于,在步骤S1之前,该方法还包括:
    使含氯废塑料原料进入废塑料初步熔化液化脱氯单元进行热熔脱氯处理,得到含氯化氢的气相物料和脱氯废塑料物料;
    使所述脱氯废塑料物料进入所述废塑料液化单元;或者
    使所述脱氯废塑料物料依次进行冷却处理、粉碎处理,得到脱氯废塑料颗粒;使所述脱氯废塑料颗粒进入所述废塑料液化单元。
  18. 根据前述权利要求中任一项所述的加工方法,其特征在于,所述废塑料初步熔化液化脱氯单元包括第二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置;优选地,所述第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输送设备;
    所述热熔脱氯处理的工艺条件包括:进料速率为5-5000kg/h,例如,100-4000kg/h;出口温度为150-370℃,例如,300-330℃,反应时间为0.1-0.5h,例如,0.1-0.3h;所述废塑料初步熔化液化脱氯单元的真空度为50-300mmHg,例如,50-150mmHg;
    优选地,粉碎处理得到的所述脱氯废塑料颗粒的颗粒粒径为100-2000μm。
  19. 根据前述权利要求中任一项所述的加工方法,其特征在于,含氯废塑料原料是热塑性塑料,其满足以下条件中的一项或多项:
    (1)塑料的C和H元素质量之和占塑料总质量的50%或以上,例如60%或以上;和/或
    (2)塑料的数均分子量可以为1,000-200万,例如,2,000-30万,或者5,000-10万;和/或
    (3)塑料的硫含量不大于0.5%,例如,不大于0.1%;和/或
    (4)塑料是含氯的或不含氯的,优选含氯的;和/或
    (5)塑料仅仅包含一种聚合物或者包含两种或更多种聚合物;和/或
    (6)塑料是废塑料或者包含废塑料;和/或
    (7)塑料的N含量按重量计为10%或以下,例如5%或以下,4%或以下,3%或以下,2%或以下,或1%或以下;和/或
    (8)塑料的S含量按重量计为1%或以下,例如0.5%或以下,0.4%或以下,0.3%或以下,0.2%或以下,或0.1%或以下;
    (9)构成塑料的聚合物的实例包括但不限于聚乙烯(PE)如低密度聚乙烯(LDPE)和高密度聚乙烯(HDPE)、聚苯乙烯(PS)、聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)和聚氯乙烯(PVC)。
  20. 根据前述权利要求中任一项所述的加工方法,其特征在于,该方法还包括:
    使所述含氯化氢的气体进入氯化氢吸收单元,与氯化氢吸收剂接触进行氯化氢吸收处理,任选地,在真空系统作用下使所述含氯化氢的气体进入所述氯化氢吸收单元;
    其中所述氯化氢吸收剂为水或pH大于7的碱液;任选地,所述碱液包括氢氧化钠溶液、氢氧化钾溶液、氢氧化钙溶液、碳酸氢钠溶液、碳酸钠溶液和氨水中的一种或几种。
  21. 一种塑料的加工系统,其特征在于,该系统包括:液化单元、降粘单元、裂化反应单元、和分离单元;
    所述液化单元包括待处理的塑料的入口和液化后的塑料的出口,所述液化单元被配置为对待处理的塑料进行液化处理,优选地,所述液化单元具有快速输送机构,使得待处理的塑料在所述液化单元中的停留时间为5-30min,例如,5-20min,5-15min;
    所述降粘单元包括液化后的塑料的入口、液相材料出口和干气出口,所述降粘单元被配置为对液化后的塑料进行热处理以降低其 粘度,形成液相材料;
    所述裂化反应单元包括裂化原料入口和反应油气出口;所述裂化原料入口与所述降粘单元的液相材料出口连通,所述裂化反应单元被配置为对液相材料进行裂化反应处理;
    所述分离单元包括分离入口、干气出口、液化气出口、汽油馏分出口、柴油馏分出口和蜡油馏分出口;所述分离入口与所述接触裂化反应单元的反应油气出口连通,所述分离单元被配置为对反应油气进行分离处理。
  22. 根据前述权利要求中任一项所述的加工系统,其特征在于,该系统包括:废塑料液化单元、废塑料降粘单元、接触裂化反应单元、分离单元和再生单元;
    所述废塑料液化单元包括待处理废塑料入口和液化废塑料出口,所述废塑料液化单元被配置为对待处理废塑料进行液化处理;
    所述废塑料降粘单元包括液化废塑料入口、液化废塑料油出口和第一干气出口,所述废塑料降粘单元被配置为对液化废塑料进行降粘处理;
    所述接触裂化反应单元包括裂化原料入口、接触剂入口、反应油气出口和待生接触剂出口;所述裂化原料入口与所述废塑料降粘单元的液化废塑料油出口连通,所述接触裂化反应单元被配置为对液化废塑料油进行裂化反应处理;
    所述分离单元包括分离入口、第二干气出口、液化气出口、汽油馏分出口、柴油馏分出口和蜡油馏分出口;所述分离入口与所述接触裂化反应单元的反应油气出口连通,所述分离单元被配置为对反应油气进行分离处理;
    所述再生单元包括待生接触剂入口、含氧气体入口、再生接触剂出口和再生烟气出口;所述再生单元被配置为在氧气存在条件下,对所述待生接触剂进行再生处理,得到再生接触剂和再生烟气;所述再生接触剂出口与所述接触裂化反应单元的接触剂入口连通。
  23. 根据前述权利要求中任一项所述的加工系统,其特征在于,该加工系统包括:废塑料液化单元、废塑料降粘单元、物料加热单 元、热解反应单元和分离单元;
    所述废塑料液化单元包括待处理废塑料入口和液化废塑料出口,所述废塑料液化单元被配置为对待处理废塑料进行液化处理;
    所述废塑料降粘单元包括液化废塑料入口和液化废塑料油出口,所述废塑料降粘单元被配置为对液化废塑料进行降粘处理;
    所述物料加热单元包括加热入口和加热出口,所述加热入口与所述废塑料降粘单元的液化废塑料油出口连通,所述加热单元被配置为对降粘的液化废塑料油进行加热处理;
    所述热解反应单元包括热解反应物入口和热解产物出口,所述热解反应物入口与所述加热单元的加热出口连通,所述热解反应单元被配置为对高温液化废塑料进行热解反应处理;
    所述分离单元包括分离入口、干气出口、液化气出口、汽油馏分出口、柴油馏分出口和蜡油馏分出口;所述分离入口与所述热解反应单元的热解产物出口连通,所述分离单元被配置为对热解产物进行分离处理。
  24. 根据前述权利要求中任一项所述的加工系统,其特征在于,所述废塑料降粘单元还包括至少一个降粘反应器,
    所述降粘反应器优选地为绝热反应器;和/或
    所述降粘反应器优选地带有控温加热装置,使得能够实现进入反应器的物料的温度没有显著变化,其中,“进入反应器的物料的温度没有显著变化”是指使温度保持在进入反应器的物料的温度的90%-110%,例如92%-108%,或95%-105%,或98%-102%的范围内,其中以反应器的出口温度来表示进入反应器的物料的温度;
    任选地,所述降粘反应器提供了废塑料降粘单元的液化废塑料入口、液化废塑料油出口和任选地第一干气出口。
  25. 根据前述权利要求中任一项所述的加工系统,其特征在于,该加工系统还包括废塑料热熔脱水脱氯单元、冷却粉碎单元和氯化氢吸收单元;
    所述废塑料热熔脱水脱氯单元包括含氯废塑料原料入口、脱水脱氯废塑料出口和含氯化氢的气体出口;所述废塑料热熔脱水脱氯 单元被配置为对含氯废塑料原料进行熔化脱水处理和脱氯处理;
    所述冷却粉碎单元被配置为对来自废塑料热熔脱水脱氯单元的脱水脱氯废塑料进行冷却处理和粉碎处理;
    所述氯化氢吸收单元包括含氯化氢的气相物料入口和氯化氢吸收剂;所述含氯化氢的气相物料入口与所述废塑料热熔脱水脱氯单元的含氯化氢的气体出口连通;
    优选地,所述再生单元还包括干气入口,所述干气入口与所述废塑料降粘单元的第一干气出口和/或所述分离单元的第二干气出口连通;
    任选地,所述接触裂化反应单元的裂化原料入口与所述废塑料降粘单元的液化废塑料油出口之间的连通管线上还包括蒸汽入口;
    优选地,所述废塑料液化单元包括加热液化输送设备;任选地,所述加热液化输送设备包括第一螺杆式加热输送设备;优选地,所述第一螺杆式加热输送设备选自带有加热的双螺杆式加热输送设备;
    优选地,所述废塑料热熔脱水脱氯单元包括第二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置;优选地,所述第二螺杆式加热输送设备选自双螺杆式输送设备。
  26. 根据前述权利要求中任一项所述的加工系统,其特征在于,该系统还包括废塑料初步熔化液化脱氯单元和氯化氢吸收单元;
    所述废塑料初步熔化液化脱氯单元包括含氯废塑料原料入口、含氯化氢的气相物料出口和脱氯废塑料液相物料出口,所述废塑料初步熔化液化脱氯单元被配置为对含氯废塑料原料进行热熔脱氯处理;所述脱氯废塑料液相物料出口与所述废塑料液化单元的待处理废塑料入口连通;
    所述氯化氢吸收单元包括含氯化氢的气相物料入口、氯化氢吸收剂和脱氯干气出口;所述含氯化氢的气相物料入口与所述废塑料初步熔化液化脱氯单元的含氯化氢的气相物料出口连通;
    优选地,所述废塑料液化包括加热液化输送设备;任选地,所述加热液化输送设备包括第一螺杆式加热输送设备;优选地,所述第一螺杆式加热输送设备选自带有加热的双螺杆式或者单螺杆式 加热输送设备;
    优选地,所述废塑料初步熔化液化脱氯单元包括第二螺杆式加热输送设备和与所述第二螺杆式加热输送设备连通的真空装置;优选地,所述第二螺杆式加热输送设备选自双螺杆式或者单螺杆式输送设备;
    优选地,所述废塑料降粘单元还包括循环油入口;所述循环油入口与所述分离单元的蜡油馏分出口连通;
    任选地,所述废塑料初步熔化液化脱氯单元还包括不凝汽出口。
PCT/CN2023/113550 2022-08-17 2023-08-17 一种塑料的加工方法及加工系统 WO2024037592A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210989471 2022-08-17
CN202210989471.4 2022-08-17
CN202211057426.1A CN117660038A (zh) 2022-08-31 2022-08-31 一种废塑料流化裂化的加工方法以及加工系统
CN202211057426.1 2022-08-31
CN202211328729.2 2022-10-27
CN202211328729.2A CN117586800A (zh) 2022-08-17 2022-10-27 一种废塑料降粘热解裂化的加工方法及加工系统

Publications (1)

Publication Number Publication Date
WO2024037592A1 true WO2024037592A1 (zh) 2024-02-22

Family

ID=89940755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113550 WO2024037592A1 (zh) 2022-08-17 2023-08-17 一种塑料的加工方法及加工系统

Country Status (2)

Country Link
TW (1) TW202409258A (zh)
WO (1) WO2024037592A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195451A (ja) * 1996-12-27 1998-07-28 Takashi Tachibana 廃プラスチックの溶融・熱分解方法、その溶融・熱分解 槽及び廃プラスチックの油化方法
CN1526793A (zh) * 2003-09-25 2004-09-08 北京帅更新能源技术有限公司 工业化用废塑料生产汽油、柴油的方法
GB2402397A (en) * 2002-04-18 2004-12-08 Chevron Usa Inc Preparation of lube base oils by pyrolysis of Fischer-Tropsch wax
CN107922848A (zh) * 2015-12-18 2018-04-17 索尔维公司 用于从废塑料生产蜡和液体燃料的方法
CN111057569A (zh) * 2020-01-02 2020-04-24 青岛惠城环保科技股份有限公司 一种废塑料回收利用方法
CN114106865A (zh) * 2020-09-01 2022-03-01 中国石油化工股份有限公司 一种废塑料的加工方法和系统
CN116064064A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种热解回收废塑料的方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195451A (ja) * 1996-12-27 1998-07-28 Takashi Tachibana 廃プラスチックの溶融・熱分解方法、その溶融・熱分解 槽及び廃プラスチックの油化方法
GB2402397A (en) * 2002-04-18 2004-12-08 Chevron Usa Inc Preparation of lube base oils by pyrolysis of Fischer-Tropsch wax
CN1526793A (zh) * 2003-09-25 2004-09-08 北京帅更新能源技术有限公司 工业化用废塑料生产汽油、柴油的方法
CN107922848A (zh) * 2015-12-18 2018-04-17 索尔维公司 用于从废塑料生产蜡和液体燃料的方法
CN111057569A (zh) * 2020-01-02 2020-04-24 青岛惠城环保科技股份有限公司 一种废塑料回收利用方法
CN114106865A (zh) * 2020-09-01 2022-03-01 中国石油化工股份有限公司 一种废塑料的加工方法和系统
CN116064064A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种热解回收废塑料的方法及系统

Also Published As

Publication number Publication date
TW202409258A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN102583373B (zh) 一种用煤制备活性炭的方法
TW294686B (zh)
WO2014146520A1 (zh) 一种油砂、油泥、油页岩及生物质的低温干馏设备及方法
CN111750358B (zh) 一种废塑料绿色油化技术嵌入垃圾焚烧方法
JPH06500592A (ja) ポリマーからのモノマー回収
CA2744742A1 (en) Counter-current process for biomass conversion
AU2011324788B2 (en) Process for obtaining petrochemical products from carbonaceous feedstock
US20210348072A1 (en) Process of Treating Carbonaceous Material and Apparatus Therefor
CN106753502B (zh) 一种用废橡胶和/或废塑料生产汽油、柴油和炭黑的方法
WO2022002091A1 (zh) 废塑料处理方法和系统
CN109517612A (zh) 一种连续高效绿色的废轮胎过热蒸汽能源转化方法
JPH05503954A (ja) 炭素質材料の水蒸気処理方法
WO2024037592A1 (zh) 一种塑料的加工方法及加工系统
CN101613613B (zh) 秸秆快速热裂解过程的高效热能利用方法
CN115960621A (zh) 废塑料低温脱氯耦合催化热解制备燃料油的装置及方法
CN116064064B (zh) 一种热解回收废塑料的方法及系统
KR100636616B1 (ko) 음식물 쓰레기의 급속 열분해 장치 및 그 방법
CN114106876B (zh) 一种含氯塑料油生产低碳烯烃的催化转化方法
CN113980700A (zh) 一种将废弃塑料解聚转化为燃油的生产线及方法
JP3959009B2 (ja) 有機物の熱分解リサイクル方法
CN106497594A (zh) 一种煤加氢热解的系统和方法
CN117660038A (zh) 一种废塑料流化裂化的加工方法以及加工系统
CN117586800A (zh) 一种废塑料降粘热解裂化的加工方法及加工系统
CN206408170U (zh) 一种煤粉热解耦合电石生产的系统
CN116064065A (zh) 一种废塑料流化裂化的加工方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854491

Country of ref document: EP

Kind code of ref document: A1