WO2024037291A1 - 一种射频装置的控制方法、射频装置及电子设备 - Google Patents
一种射频装置的控制方法、射频装置及电子设备 Download PDFInfo
- Publication number
- WO2024037291A1 WO2024037291A1 PCT/CN2023/108923 CN2023108923W WO2024037291A1 WO 2024037291 A1 WO2024037291 A1 WO 2024037291A1 CN 2023108923 W CN2023108923 W CN 2023108923W WO 2024037291 A1 WO2024037291 A1 WO 2024037291A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmitting circuit
- radio frequency
- temperature
- module
- frequency device
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000005540 biological transmission Effects 0.000 claims abstract description 21
- 238000012545 processing Methods 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims description 9
- 238000004891 communication Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 230000009977 dual effect Effects 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 102100032533 ADP/ATP translocase 1 Human genes 0.000 description 3
- 101000768061 Escherichia phage P1 Antirepressor protein 1 Proteins 0.000 description 3
- 101000796932 Homo sapiens ADP/ATP translocase 1 Proteins 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 102100026396 ADP/ATP translocase 2 Human genes 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 101000718417 Homo sapiens ADP/ATP translocase 2 Proteins 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
- H04B1/40—Circuits
- H04B1/401—Circuits for selecting or indicating operating mode
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
Definitions
- the present application relates to the field of communications, and in particular to a control method of a radio frequency device, a radio frequency device and electronic equipment.
- Non-Standalone (NSA) mode electronic equipment can adopt a radio frequency architecture that supports dual connection mode of 4G signals and 5G signals.
- NSA Non-Standalone
- the radio frequency circuits in the electronic devices continue to work, causing the temperature to rise and affecting the communication performance of the electronic devices.
- a control method for a radio frequency device, a radio frequency device and electronic equipment are provided.
- this application provides a method for controlling a radio frequency device.
- the radio frequency device includes a first transmitting circuit and a second transmitting circuit.
- the method includes:
- the transmitting circuit is used to support the transmission and processing of radio frequency signals of the two networks;
- the second transmitting circuit is controlled to operate instead of the first transmitting circuit.
- this application provides a radio frequency device, which includes a first transmitting circuit, a second transmitting circuit, a temperature detection module and a controller;
- the temperature detection module is used to detect the respective temperature information of the first transmitting circuit and the second transmitting circuit
- the controller is used to obtain the respective temperature information of the first transmitting circuit and the second transmitting circuit when the first transmitting circuit is working and the second transmitting circuit is idle.
- the first transmitting circuit and the second transmitting circuit are respectively used to support the transmission processing of radio frequency signals of the two networks;
- the controller is also configured to control the second transmitting circuit to operate instead of the first transmitting circuit when the temperature information of the first transmitting circuit and the second transmitting circuit satisfies a temperature difference condition.
- this application provides an electronic device, which includes a signal generating device and a radio frequency device;
- the radio frequency device When the radio frequency device operates in a single connection mode and is used to transmit radio frequency signals of the first network, the signal generating device is used to generate a baseband signal of the first network for transmission to the radio frequency device;
- the radio frequency device is used to perform the method described in the first aspect and any possible implementation manner in the first aspect.
- Figure 1 is a schematic flow chart of a control method for a radio frequency device provided by this application.
- FIG. 2 is a schematic structural diagram of a radio frequency device provided by this application.
- FIG. 3 is a schematic flow chart of yet another radio frequency device control method provided by the present application.
- FIG. 4 is a working schematic diagram of a radio frequency device provided by this application.
- FIG. 5 is a working schematic diagram of another radio frequency device provided by the present application.
- FIG. 6 is a schematic structural diagram of another radio frequency device provided by the present application.
- Figure 7 is a schematic structural diagram of an electronic device provided by this application.
- an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
- the appearances of the above phrases in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art will understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
- the control method of the radio frequency device includes the following steps 101 and 102.
- Step 101 When the first transmitting circuit is working and the second transmitting circuit is idle, obtain respective temperature information of the first transmitting circuit and the second transmitting circuit.
- the first transmitting circuit and the second transmitting circuit are respectively used to support the transmitting processing of radio frequency signals of two networks.
- the radio frequency device in this application supports dual connectivity mode, where the dual connectivity mode may include Evolved Universal Mobile Communications System Terrestrial Radio Access Network EUTRA New Radio NR-Dual Connectivity Dual Connectivity (EN-DC) mode, or NR EUTRA-Dual Connectivity (NE-DC) mode, or Next Generation EN-DC (NGEN-DC) mode, etc. Therefore, the hardware of the radio frequency device may include transmission paths that respectively support two networks (such as LTE network and NR network), that is, including two transmission circuits: a first transmission circuit and a second transmission circuit. When the radio frequency device is in dual connection mode, it can The radio frequency signals of two different networks are transmitted and processed through these two transmitting circuits respectively.
- the dual connectivity mode may include Evolved Universal Mobile Communications System Terrestrial Radio Access Network EUTRA New Radio NR-Dual Connectivity Dual Connectivity (EN-DC) mode, or NR EUTRA-Dual Connectivity (NE-DC) mode, or Next Generation EN-DC (NGEN-DC) mode, etc. Therefore, the hardware of the radio
- the radio frequency device may transmit and process radio frequency signals of the NR network, and may also transmit and process radio frequency signals of the LTE network.
- the radio frequency signals of the above two different networks can be both high-frequency signals, both medium-frequency signals, or both low-frequency signals.
- the above two transmitting circuits have a corresponding relationship with the radio frequency signals of the two different networks. This correspondence relationship is configured by the driver. Therefore, based on the type of base station (NR base station or LTE base station) that establishes a communication connection with the radio frequency device, the radio frequency device The first transmitting circuit is working or the second transmitting circuit is working, while the other of the two transmitting circuits is in an idle state.
- the temperature of a transmit circuit may rise due to continuous operation, affecting the performance of the device, resulting in the device's emission indicators such as Adjacent Channel Leakage Power Ratio (ACLR), Error Vector Magnitude (Error Vector Magnitude, EVM) and other variations. Therefore, this problem can be solved by performing steps 101 and 102.
- ACLR Adjacent Channel Leakage Power Ratio
- EVM Error Vector Magnitude
- the first transmitting circuit may include a first power amplifier (PA) module and a first power supply
- the second transmitting circuit may also include a second power amplifier module and a second power supply, where the first PA module
- the group and the second PA module are respectively used to perform power amplification processing on the radio frequency signal of the first network (such as NR network) and the radio frequency signal of the second network (such as LTE network).
- the first power supply and the second power supply are respectively used for The first PA module and the second PA module provide power.
- the first PA module and the second PA module can be a multi-band multi-mode power amplifier (MMPA) or a power amplifier module integrated duplexer (Power amplifier module integrated duplexer, PAMid), or it can be a PAMid (that is, LPAMid) with a built-in low-noise amplifier.
- the first power supply and the second power supply can be a DC-to-DC (DirectCurrent/DirectCurrent, DC/DC) power supply, or other types of power supplies. This application does not limit. It is understandable that when the first transmit circuit is working, the temperature of both the first PA module and the first power supply may rise due to continuous operation.
- the first transmitter can be obtained by obtaining the temperatures of the first PA module and the first power supply.
- Temperature information for the circuit may include: obtaining the first temperature of the first PA module and the second temperature of the first power supply.
- obtaining the temperature information of the second transmitting circuit may include: obtaining the third temperature of the second PA module and the fourth temperature of the second power supply.
- Temperature monitoring is performed on the power amplifier module and the power supply that provides electric energy to the power amplifier module, which is conducive to increasing the reliability of the temperature information obtained, and the temperature difference conditions in the subsequent step 102 can be flexibly adjusted according to multiple temperatures to improve emission The practicality and flexibility of circuit switching strategies.
- the above-mentioned first to fourth temperatures can be obtained through a temperature detection module.
- the temperature detection module may include a thermistor. Specifically, a thermistor may be placed near the first PA module, the first power supply, the second PA module and the second power supply, and each thermistor is in a voltage dividing state. In the circuit, by obtaining the voltage across the thermistor, the above-mentioned first to fourth temperatures can be obtained.
- the placement positions of the first transmitting circuit and the second transmitting circuit in the radio frequency device satisfy the distance condition, that is, the distance between the two transmitting circuits is greater than the distance threshold.
- the distance condition that is, the distance between the two transmitting circuits is greater than the distance threshold.
- the temperature information of the first transmitting circuit and the second transmitting circuit can meet the temperature difference condition in the following step 102, thereby realizing the use of the idle and lower-temperature second transmitting circuit to replace the higher-temperature second transmitter.
- the circuit works to alleviate the heating problem of the radio frequency device and reduce the deterioration of the device's emission performance.
- the radio frequency device since the first transmitting circuit is working and the second transmitting circuit is idle, it can be determined that the radio frequency device Works in single connection mode and is used to transmit radio frequency signals of the first network.
- the radio frequency circuit also includes two antennas and a switch, wherein the two transmitting circuits correspond to the two antennas respectively, and the switch is used to select and conduct the path between the transmitting path and the antenna.
- the radio frequency device operates in the dual connection mode, the path between the first transmitting circuit and the first antenna is connected, and the path between the second transmitting circuit and the second antenna is also connected.
- the radio frequency device operates in a single connection mode and the first transmitting circuit operates, so the switch can be used to selectively conduct the path between the first transmitting circuit and the first antenna, that is, the radio frequency signal of the first network After power amplification by the first PA module in the first transmitting circuit, it can be transmitted through the first antenna.
- Step 102 When the temperature information of the first transmitting circuit and the second transmitting circuit satisfies the temperature difference condition, control the second transmitting circuit to operate instead of the first transmitting circuit.
- the temperature difference condition may include: the temperature difference between the first temperature of the first PA module and the third temperature of the second PA module is greater than a first threshold, or the above
- the temperature difference between the second temperature of the first power supply and the fourth temperature of the second power supply is greater than the second threshold.
- the first threshold and the second threshold can be set based on empirical values, can be fixed values, or can be adjusted based on the surface temperature of the radio frequency device. For example, when the surface temperature of the radio frequency device (or electronic equipment including the radio frequency device) is relatively high, When the surface temperature is high, the first threshold (and the second threshold) are set to a slightly larger value, and when the surface temperature is particularly high, the first threshold (and the second threshold) are lowered.
- the switch because when the first transmitting circuit is working, the switch conducts the path between the first PA module and the first antenna. Therefore, when the second transmitting circuit is controlled to work instead of the first transmitting circuit, the switch can Connect the path between the second PA module and the first antenna. Because the spatial channel quality at the locations of different antennas (i.e., the above-mentioned first antenna and the second antenna) is different, under the condition that the spatial channel quality does not change in a fixed use scenario, the second transmitting circuit is allowed to transmit the radio frequency signal of the first network After the power amplification process, the signal is still transmitted through the first antenna, so that the quality of the transmitted signal does not change significantly.
- the switch can also be controlled to open the path between the second PA module and the second antenna, so as to The second transmitting circuit is implemented to work instead of the first transmitting circuit.
- the second transmitting circuit when the temperature of the first transmitting circuit rises due to continuous operation, the second transmitting circuit is idle and has a lower temperature, and the temperature information of the two transmitting circuits meets the temperature difference condition, the second transmitting circuit is controlled to replace the first transmitting circuit.
- the circuit operation can make the second transmitting circuit work normally to ensure the normal transmission processing of the radio frequency signal of the first network by the radio frequency device, and the first transmitting circuit can speed up the heat dissipation and reduce the temperature, thus alleviating the problems caused by the continuous operation of the first transmitting circuit. Local heating phenomenon can avoid further deterioration of the transmission performance of radio frequency devices and improve communication quality.
- the first transmitting circuit can be controlled.
- the circuit operates in place of the second transmit circuit. It can be understood that when the radio frequency device continues to be in the single connection mode, it may happen that the temperature information of the first transmitting circuit and the second transmitting circuit meets the above temperature difference condition multiple times, so the first transmitting circuit and the second transmitting circuit can Alternately work back and forth to improve the deterioration of transmission performance caused by the continuous increase in operating temperature of a single transmission circuit, balance the heating area of the radio frequency device, and improve communication quality and user experience.
- the switch when the first transmitting circuit is working and the second transmitting circuit is idle, the switch can selectively conduct the path between the first transmitting circuit and the first antenna; when the first transmitting circuit and the second The temperature information of the transmitting circuit satisfies the temperature difference condition, the second transmitting circuit works instead of the first transmitting circuit, and the switch selectively conducts the path between the second transmitting circuit and the first antenna.
- the path loss from the second transmitting circuit to the first antenna is the same as that of the first transmitting circuit.
- the path loss from a transmitting circuit to the first antenna should satisfy the loss condition.
- the loss condition can be The method includes: the difference between the above two path losses is less than a preset threshold.
- the preset threshold can be determined according to device parameters in the actual transmit circuit and/or communication quality requirements of the uplink communication scenario, and is not limited by this application. It can be understood that the above-mentioned first transmitting circuit, second transmitting circuit, and first antenna do not refer to specific components in the radio frequency device, but are only used to distinguish different concepts.
- the radio frequency device includes transmitting circuit A, transmitting circuit B, antenna 1, and antenna 2, then in this embodiment, the path losses of transmitting circuit A and transmitting circuit B to antenna 1 respectively meet the loss conditions, and transmitting circuit A and The path loss from transmitting circuit B to antenna 2 also meets the loss conditions.
- the method provided by this application can be used to make another idle transmit circuit work instead of the transmit circuit that generates severe heat, so as to alleviate local heating. This ensures that the quality of the transmitted signal will not change significantly due to the switching of the transmitting circuit.
- the path loss from the first transmitting circuit to the first antenna and the path loss from the second transmitting circuit to the first antenna satisfy the loss condition, which may refer to the path loss from the port of the first PA module to the first antenna
- the path loss from the port of the second PA module to the first antenna satisfies the loss condition.
- the path losses from the respective power amplifier modules in the two transmitting circuits to the same port of the same antenna are not much different.
- the temperature information of the two transmitting circuits is continuously monitored to determine whether a single transmitting circuit is severely heated.
- the second transmitting circuit is controlled to work instead of the first transmitting circuit. That is, the temperature difference between the two transmitting circuits determines that the first transmitting circuit is seriously heated, and the working transmitting circuit is changed from The first transmitting circuit is switched to work as the second transmitting circuit.
- the second transmitting circuit can be used to ensure the normal transmission of radio frequency signals, and the first transmitting circuit can reduce the temperature through heat dissipation and improve the device transmitting performance caused by the increase in the temperature of the transmitting path. Deterioration situation, alleviate the local heating problem of radio frequency devices, improve uplink communication quality and communication performance, and improve user experience.
- steps in the flowchart of FIG. 1 are shown in sequence as indicated by arrows, these steps are not necessarily executed in the order indicated by arrows. Unless explicitly stated in this article, the execution of these steps is not strictly limited in order, and they can be executed in other orders. Moreover, at least some of the steps in the figure may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times, and their execution order is not necessarily may be performed sequentially, but may be performed in turn or alternately with other steps or sub-steps of other steps or at least part of stages.
- each transmitting circuit includes its own power amplifier module and power supply, that is, the above-mentioned first PA module, first power supply, second PA module, and second power supply can be PAMiD1, DC/ DC1, PAMiD2, DC/DC2.
- the above temperature detection module can include four thermistors NTC1_0, NTC1_1, NTC2_0, and NTC2_1 in Figure 2.
- the radio frequency device may also include a switch SWITCH and two antennas ANT1 and ANT2.
- the radio frequency device may also include a radio frequency chip RF IC, which is used to modulate the baseband signal, obtain the radio frequency signal and then transmit it to the first transmitting circuit and/or the second transmitting circuit for processing. It is understandable that the radio frequency device may also include electronic components such as filters, which are not shown in FIG. 2 in this application.
- the radio frequency device shown in Figure 2 can operate in dual connection mode or single connection mode. When executing the control method of a radio frequency device provided by this application, the radio frequency device operates in a single connection mode, as shown in Figure 3. At this time, the above method includes the following steps:
- Step 301 The transmitting circuit 1 in the radio frequency device works while the transmitting circuit 2 is idle.
- the switch SWITCH selectively turns on the PAMiD1 included in the transmitting circuit 1 and the antenna ANT1.
- the path 1 between PAMiD2 (shown as a solid line in Figure 4), and the path 2 (shown as a dotted line in Figure 4) between the PAMiD2 included in the transmitting circuit 2 and the antenna ANT2 is not connected.
- Step 302 The transmitting circuit 1 operates to increase the temperature, and the temperature information of the transmitting circuit 1 and the transmitting circuit 2 is obtained.
- the temperature information of the transmitting circuit 1 includes the temperatures of PAMiD1 and DC/DC1
- the temperature information of the transmitting circuit 2 includes the temperatures of PAMiD2 and DC/DC2.
- Step 303 Determine whether the temperature information of the transmitting circuit 1 and the transmitting circuit 2 meets the temperature difference condition. If not, return to step 301; if yes, execute step 304.
- the temperature difference X can be obtained based on the temperatures of PAMiD1 and PAMiD2, and the temperature difference Y can be obtained based on the temperatures of DC/DC1 and DC/DC2.
- a and b are the above-mentioned first threshold and second threshold respectively, which can be set as needed.
- Step 304 Control the transmitting circuit 2 to work and the transmitting circuit 1 to be idle.
- the switch SWITCH selectively conducts the path 3 between the PAMiD2 included in the transmitting circuit 2 and the antenna ANT1 (shown by the solid line in FIG. 5 ).
- Step 305 The transmitting circuit 2 operates so that the temperature rises, and the temperature information of the transmitting circuit 1 and the transmitting circuit 2 is obtained.
- the temperatures of PAMiD1, DC/DC1, PAMiD2, and DC/DC2 can be continuously monitored to obtain the temperature information of the transmitting circuit 1 and the transmitting circuit 2.
- Step 306 Determine whether the temperature information of the transmitting circuit 1 and the transmitting circuit 2 meets the temperature difference condition. If not, return to step 304; if yes, return to step 301.
- the two transmitting circuits in the radio frequency device can work alternately back and forth, so that the radio frequency device
- the transmitter circuit will not cause the temperature to rise beyond the limit due to work, thereby improving the deterioration of device transmit performance caused by the original single transmit circuit operation, alleviating local heating problems of radio frequency devices, improving uplink communication quality, and improving user experience.
- the radio frequency device provided by the embodiment of the present application will be introduced below.
- FIG. 6 is a schematic structural diagram of a radio frequency device provided by an embodiment of the present application.
- the radio frequency device may include a temperature detection module 601 , a first transmitting circuit 602 , a second transmitting circuit 603 and a controller 604 .
- the temperature detection module 601 is used to detect the respective temperature information of the first transmitting circuit 602 and the second transmitting circuit 603;
- the controller 604 is configured to obtain the respective temperature information of the first transmitting circuit 602 and the second transmitting circuit 603 when the first transmitting circuit 602 is working and the second transmitting circuit 603 is idle,
- the first transmitting circuit 602 and the second transmitting circuit 603 are respectively used to support the transmission processing of radio frequency signals of two networks;
- the controller 604 is also configured to control the second transmitting circuit 603 to replace the first transmitting circuit when the temperature information of the first transmitting circuit 602 and the second transmitting circuit 603 meets the temperature difference condition. 602 works.
- the first transmitting circuit 602 includes a first power amplifier PA module and a first power supply
- the second transmitting circuit 603 includes a second power amplifier PA module and a second power supply
- the The first power supply and the second power supply are used to provide power to the first PA module and the second PA module respectively
- the controller 604 is used to:
- the temperature difference between the first temperature and the third temperature is greater than a first threshold or the temperature difference between the second temperature and the fourth temperature is greater than a second threshold, it is determined that the first transmitting circuit and The temperature information of the second transmitting circuit satisfies the temperature difference condition.
- controller 604 is also used to:
- the first transmit circuit 602 When the radio frequency device operates in a single connection mode and is used to transmit radio frequency signals of the first network, the first transmit circuit 602 is controlled to operate, and the first transmit circuit 602 is used to support the first network. Transmission processing of radio frequency signals.
- the radio frequency device also includes a first antenna and a switch, and the controller 604 is used to:
- control the switch When the first transmitting circuit is working and the second transmitting circuit is idle, control the switch to selectively conduct the path between the first transmitting circuit 602 and the first antenna;
- the switch is controlled to selectively turn on the connection between the second transmitting circuit 603 and the first antenna. path.
- the path loss between the first PA module and the first antenna and the path loss between the second PA module and the first antenna satisfy the loss condition.
- the placement position of the first transmitting circuit 602 and the placement position of the second transmitting circuit 603 satisfy the distance condition.
- FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
- the electronic device in the embodiment of the present application may include a signal generating device 701 and a radio frequency device 702, wherein the radio frequency device 702 may be the radio frequency device as shown in Figure 6, or the radio frequency device 702 may perform the operation as shown in the above figure.
- the signal generating device 701 when the radio frequency device 702 operates in a single connection mode and is used to transmit a radio frequency signal of the first network, the signal generating device 701 is used to generate a baseband signal of the first network to be transmitted to the Radio frequency device 702.
- the signal generating device 701 may be a baseband chip, a baseband processor or a modem chip.
- the signal generating device 701 can process and convert the required processing signals (such as voice, text, video and other user data), obtain the baseband signal to be sent, and then send it to the radio frequency device 702, and the radio frequency device 702 further processes it and passes it through Antennas radiate radio frequency signals into space.
- the radio frequency device 702 can perform the following operations:
- the respective temperature information of the first transmitting circuit and the second transmitting circuit is obtained, wherein the first transmitting circuit and the second transmitting circuit are respectively used to support the two networks. Transmission processing of radio frequency signals; when the temperature information of the first transmitting circuit and the second transmitting circuit meets the temperature difference condition, control the second transmitting circuit to work instead of the first transmitting circuit.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Thermal Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Transmitters (AREA)
Abstract
本申请提供一种射频装置的控制方法、射频装置及电子设备。该方法包括:在第一发射电路工作且第二发射电路空闲的情况下,获取第一发射电路和第二发射电路各自的温度信息,其中,第一发射电路和第二发射电路分别用于支持两种网络的射频信号的发射处理;在第一发射电路与第二发射电路的温度信息满足温度差条件的情况下,控制第二发射电路代替第一发射电路工作。
Description
本申请要求于2022年08月17日提交中国专利局、申请号为202210987808.8、申请名称为“一种射频装置的控制方法、射频装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信领域,尤其涉及一种射频装置的控制方法、射频装置及电子设备。
随着通信技术的发展和用户需求的提高,手机等电子设备的硬件和软件配置不断变化,可实现利用各种通信技术来提高通信质量。例如,在非独立组网(Non-Standalone,NSA)模式下,电子设备可以采用支持4G信号和5G信号的双连接模式的射频架构。但当电子设备长时间利用4G或5G网络通信时,电子设备中的射频电路持续工作使得温度上升,影响电子设备的通信性能。
发明内容
根据本申请的各种实施例,提供一种射频装置的控制方法、射频装置及电子设备。
第一方面,本申请提供一种射频装置的控制方法,所述射频装置包括第一发射电路和第二发射电路,所述方法包括:
在所述第一发射电路工作且所述第二发射电路空闲的情况下,获取所述第一发射电路和所述第二发射电路各自的温度信息,所述第一发射电路和所述第二发射电路分别用于支持两种网络的射频信号的发射处理;
在所述第一发射电路与所述第二发射电路的温度信息满足温度差条件的情况下,控制所述第二发射电路代替所述第一发射电路工作。
第二方面,本申请提供一种射频装置,该射频装置包括第一发射电路、第二发射电路、温度检测模块和控制器;
所述温度检测模块用于检测所述第一发射电路和所述第二发射电路各自的温度信息;
所述控制器用于在所述第一发射电路工作且所述第二发射电路空闲的情况下,获取所述第一发射电路和所述第二发射电路各自的温度信息,所述第一发射电路和所述第二发射电路分别用于支持两种网络的射频信号的发射处理;
所述控制器还用于在所述第一发射电路与所述第二发射电路的温度信息满足温度差条件的情况下,控制所述第二发射电路代替所述第一发射电路工作。
第三方面,本申请提供一种电子设备,该电子设备包括信号发生装置和射频装置;
在所述射频装置工作于单连接模式,且用于发射第一网络的射频信号的情况下,所述信号发生装置用于生成所述第一网络的基带信号以输送至所述射频装置;所述射频装置用于执行如第一方面以及第一方面中任一可能的实现方式描述的方法。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的一种射频装置的控制方法的流程示意图;
图2为本申请提供的一种射频装置的结构示意图;
图3为本申请提供的又一种射频装置的控制方法的流程示意图;
图4为本申请提供的一种射频装置的工作示意图;
图5为本申请提供的又一种射频装置的工作示意图;
图6为本申请提供的又一种射频装置的结构示意图;
图7为本申请提供的一种电子设备的结构示意图。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的一些实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现上述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
以下结合图1介绍本申请实施例提供的射频装置的控制方法。
如图1所示,该射频装置的控制方法包括以下步骤101和步骤102。
步骤101,在第一发射电路工作且第二发射电路空闲的情况下,获取所述第一发射电路和所述第二发射电路各自的温度信息。
其中,所述第一发射电路和所述第二发射电路分别用于支持两种网络的射频信号的发射处理。
本申请中的射频装置支持双连接模式,其中,双连接模式可以包括演进型通用移动通信系统陆地无线接入网EUTRA新无线电NR-双连接Dual Connectivity(EN-DC)模式,或NR EUTRA-Dual Connectivity(NE-DC)模式,或下一代Next Generation EN-DC(NGEN-DC)模式等。因此该射频装置的硬件可以包括分别支持两种网络(如LTE网络和NR网络)的发射通路,即包括第一发射电路、第二发射电路这两个发射电路。当射频装置处于双连接模式时,可以
分别通过这两个发射电路对两种不同网络的射频信号进行发射处理。当射频装置处于单连接模式时,射频装置可能对NR网络的射频信号进行发射处理,也可能对LTE网络的射频信号进行发射处理。其中,上述两种不同网络的射频信号可以都为高频信号、都为中频信号、或者都为低频信号。上述两个发射电路与上述两种不同网络的射频信号具有对应关系,该对应关系是由驱动配置的,因此,基于与射频装置建立通信连接的基站类型(NR基站或LTE基站),射频装置中的第一发射电路工作或第二发射电路工作,而两个发射电路中的另一个发射电路处于空闲状态。当射频装置长时间处于单连接模式时,一个发射电路可能因持续工作而温度上升,影响器件性能,导致器件的发射指标如邻道泄漏抑制比(Adjacent Channel Leakage Power Ratio,ACLR)、误差矢量幅度(Error Vector Magnitude,EVM)等变差。因此可以通过执行步骤101和步骤102来解决这个问题。
在本申请实施例中,在第一发射电路工作且第二发射电路空闲的情况下,可以获取这两个发射电路各自的温度信息,后续基于该温度信息来确定是否执行步骤102。具体的,第一发射电路可以包括第一功率放大器(Power amplifier,PA)模组和第一电源,第二发射电路可也包括第二功率放大器模组和第二电源,其中,第一PA模组、第二PA模组分别用于对第一网络(如NR网络)的射频信号、第二网络(如LTE网络)的射频信号进行功率放大处理,第一电源、第二电源分别用于为第一PA模组、第二PA模组提供电源。可理解的,第一PA模组、第二PA模组可以为多频多模功率放大器(Multi band multi mode power amplifier,MMPA)、集成双工器的功率放大器模组(Power amplifier module integrated duplexer,PAMid),也可以为内置低噪声放大器的PAMid(即LPAMid),第一电源、第二电源可以为直流变直流(DirectCurrent/DirectCurrent,DC/DC)电源,也可以为其他类型电源,本申请不作限制。可理解的,由于第一发射电路工作时,第一PA模组和第一电源均可能因为持续工作而温度上升,因此可以通过获取第一PA模组和第一电源的温度来获得第一发射电路的温度信息。也就是说,获取第一发射电路的温度信息可以包括:获取第一PA模组的第一温度和第一电源的第二温度。相应的,获取第二发射电路的温度信息可以包括:获取第二PA模组的第三温度和第二电源的第四温度。这样,可以监控发射电路中包括的多个电子器件的温度状态,来确定该发射电路中工作的电子器件是否发热严重,对射频装置的通信性能产生较大影响。对功率放大器模组、为功率放大器模组提供电能的电源均进行温度监控,有利于增加获得的温度信息的可靠性,并且可根据多个温度灵活调整后续步骤102中的温度差条件,提高发射电路的切换策略的实用性和灵活度。
在一种实施例中,可以通过温度检测模块来获得上述第一温度至第四温度。该温度检测模块可以包括热敏电阻,具体的,上述第一PA模组、第一电源、第二PA模组和第二电源附近可以均放置一个热敏电阻,每个热敏电阻处于分压电路中,通过获得该热敏电阻两端的电压,可以获得上述第一温度至第四温度。
在一种可能的实施例中,上述射频装置中的第一发射电路和第二发射电路在射频装置中的放置位置满足距离条件,即两个发射电路之间的距离大于距离阈值。在这种情况下,当一个发射电路工作时,若该发射电路因持续工作而温度上升,散发热量时,不会导致另一个发射电路也受影响发热,也就是说,第一发射电路和第二发射电路在布局上具有一定距离,不在同一个受热区域。这样,可以保证第一发射电路和第二发射电路的温度信息能满足下述步骤102中的温度差条件,从而实现利用空闲且温度较低的第二发射电路来代替温度较高的第二发射电路工作,缓解射频装置的发热问题,降低器件发射性能的恶化程度。
在本申请实施例中,由于第一发射电路工作而第二发射电路空闲,因此可确定射频装置
工作于单连接模式,且用于发射第一网络的射频信号。该射频电路中还包括两个天线和开关,其中,两个发射电路与两个天线分别对应,开关用于选择导通发射通路与天线之间的通路。当射频装置工作于双连接模式时,第一发射电路与第一天线之间的通路被导通,第二发射电路与第二天线之间的通路也被导通。在本申请中,射频装置工作于单连接模式且第一发射电路工作,因此开关可以用于选择导通第一发射电路与第一天线之间的通路,也就是说,第一网络的射频信号经第一发射电路中的第一PA模组进行功率放大后,可通过第一天线发射出去。
步骤102,在所述第一发射电路与所述第二发射电路的温度信息满足温度差条件的情况下,控制所述第二发射电路代替所述第一发射电路工作。
在一种可能的实施例中,上述温度差条件可以包括:上述第一PA模组的第一温度与上述第二PA模组的第三温度之间的温度差大于第一阈值,或者,上述第一电源的第二温度与上述第二电源的第四温度之间的温度差大于第二阈值。该第一阈值和第二阈值可以根据经验值设定,可以为固定的值,也可以根据射频装置的表面温度进行调整,例如当射频装置(或包括该射频装置的电子设备)的表面温度较高时,第一阈值(和第二阈值)设为稍大的值,当该表面温度特别高时,降低第一阈值(和第二阈值)。
在一种实施例中,由于第一发射电路工作时,开关导通第一PA模组和第一天线之间的通路,因此,当控制第二发射电路代替第一发射电路工作时,开关可以导通第二PA模组和第一天线之间的通路。因为不同天线(即上述第一天线和第二天线)所处位置的空间信道质量不一样,在固定使用场景空间信道质量不发生变化的情况下,让第二发射电路对第一网络的射频信号进行功率放大处理后依然通过第一天线发射出去,可以使得发射出去的信号质量不产生较大变化。这样,在第二天线所处位置的空间信道质量比第一天线所处位置的空间信道质量差时,可以避免因切换发射电路导致射频装置的发射性能进一步恶化。可选的,若确定第二天线所处位置的空间信道质量比第一天线所处位置的空间信道质量好,也可以控制开关导通第二PA模组与第二天线之间的通路,以实现第二发射电路代替第一发射电路工作。
可理解的,当第一发射电路因持续工作而温度上升,第二发射电路空闲且温度较低,且两个发射电路的温度信息满足温度差条件时,通过控制第二发射电路代替第一发射电路工作,可以使得第二发射电路正常工作来保证射频装置对第一网络的射频信号的正常发射处理,且第一发射电路可以加快散热使温度降低,因而可缓解第一发射电路持续工作导致的局部发热现象,避免射频装置的发射性能的进一步恶化,提高通信质量。
进一步的,若上述第二发射电路持续工作后温度上升,第一发射电路散热后温度下降,第二发射电路与第一发射电路的温度信息再次满足上述温度差条件,那么,可以控制第一发射电路代替第二发射电路工作。可理解的,当射频装置持续处于该单连接模式时,可能出现第一发射电路和第二发射电路的温度信息多次满足上述温度差条件的情况,因而第一发射电路和第二发射电路可以来回交替工作,以实现改善因单一发射电路持续工作温度升高导致的发射性能变差的情况,均衡射频装置的发热区域,提高通信质量和用户体验。
在一种可能的实施例中,上述第一发射电路工作而第二发射电路空闲时,上述开关可选择导通第一发射电路与第一天线之间的通路;当第一发射电路和第二发射电路的温度信息满足温度差条件,上述第二发射电路代替第一发射电路工作,上述开关选择导通第二发射电路与第一天线之间的通路。为了保证第二发射电路通过第一天线发射的射频信号与第一发射电路通过第一天线发射的射频信号的质量尽量接近,在本申请中,第二发射电路到第一天线的路径损耗与第一发射电路到第一天线的路径损耗应满足损耗条件,示例性的,该损耗条件可
以包括:上述两个路径损耗的差值小于预设阈值,该预设阈值可以根据实际发射电路中的器件参数和/或上行通信场景的通信质量要求等确定,本申请不作限制。可理解的,上述第一发射电路、第二发射电路、第一天线不特指射频装置中的具体器件,而只是用于区分不同的概念。因此,若射频装置中包括发射电路A、发射电路B、天线1、天线2,那么在本实施例中,发射电路A和发射电路B分别到天线1的路径损耗满足损耗条件,发射电路A和发射电路B分别到天线2的路径损耗也满足损耗条件。这样,可以在射频装置处于单连接模式且单一发射电路持续工作发热严重时,采取本申请提供的方法来使得另一空闲的发射电路代替发热严重的发射电路工作,以实现缓解局部发热的同时,保证发射的信号质量不因发射电路的切换而发生较大改变。
具体的,上述第一发射电路到第一天线的路径损耗与第二发射电路到第一天线的路径损耗满足损耗条件,可以是指上述第一PA模组到第一天线的端口的路径损耗,与上述第二PA模组到第一天线的端口的路径损耗满足损耗条件。也就是说,两个发射电路中各自的功率放大器模组到同一天线的同一端口的路径损耗相差不大。
本申请实施例中,在射频装置包括的第一发射电路持续工作而第二发射电路空闲时,持续监控这两个发射电路的温度信息,以确定是否出现单一发射电路发热严重的情况。当两个发射电路的温度信息满足温度差条件时,控制第二发射电路代替第一发射电路工作,即通过两个发射电路的温度差确定第一发射电路发热严重,则将工作的发射电路从第一发射电路切换为第二发射电路工作,这样,可以利用第二发射电路来保证射频信号的正常发射,且使第一发射电路通过散热降低温度,改善因发射通路温度上升导致的器件发射性能恶化的情况,缓解射频装置的局部发热问题,提高上行通信质量和通信性能,提高用户体验。
应该理解的是,虽然图1的流程图中的各个步骤按照箭头的指示依次显示但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,该图中的至少部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
以下将结合具体的应用场景介绍本申请实施例提供的射频装置的控制方法。
在该应用场景下,本申请提供的射频装置的结构示意图如图2所示,该射频装置包括的上述第一发射电路、第二发射电路可以分别是图2中的发射电路1、发射电路2。其中,每个发射电路均包括各自的功率放大器模组和电源,也即上述第一PA模组、第一电源、第二PA模组、第二电源可以分别是图2中的PAMiD1、DC/DC1、PAMiD2、DC/DC2。上述温度检测模块可以包括图2中的四个热敏电阻NTC1_0、NTC1_1、NTC2_0、NTC2_1,这些热敏电阻可分别用于检测PAMiD1、DC/DC1、PAMiD2、DC/DC2的温度。射频装置还可以包括开关SWITCH和两个天线ANT1、ANT2。该射频装置还可以包括射频芯片RF IC,用于将基带信号进行调制,得到射频信号后传输给第一发射电路和/或第二发射电路进行处理。可理解的,该射频装置还可以包括滤波器等电子器件,本申请中未在图2中示出。图2所示的射频装置可以工作于双连接模式,也可以工作于单连接模式。而执行本申请提供的射频装置的控制方法时,射频装置工作于单连接模式,如图3所示,此时上述方法包括以下步骤:
步骤301,射频装置中的发射电路1工作而发射电路2空闲。
其中,如图4所示,开关SWITCH选择导通发射电路1包括的PAMiD1与天线ANT1之
间的通路1(如图4中实线所示),而发射电路2包括的PAMiD2与天线ANT2之间的通路2(如图4中虚线所示)未被导通。
步骤302,发射电路1工作使得温度上升,获取发射电路1和发射电路2的温度信息。
其中,发射电路1的温度信息包括PAMiD1、DC/DC1的温度,发射电路2的温度信息包括PAMiD2、DC/DC2的温度。
步骤303,判断发射电路1和发射电路2的温度信息是否满足温度差条件。若否,返回步骤301,若是,执行步骤304。
具体的,可以基于PAMiD1与PAMiD2的温度得到温度差X,基于DC/DC1与DC/DC2的温度得到温度差Y,当X>a或者Y>b时,确定满足温度差条件,其中,X和Y均为绝对值,a和b分别为上述第一阈值、第二阈值,可根据需要设定。
步骤304,控制发射电路2工作,发射电路1空闲。
此时,如图5所示,开关SWITCH选择导通发射电路2包括的PAMiD2与天线ANT1之间的通路3(如图5中实线所示)。
步骤305,发射电路2工作使得温度上升,获取发射电路1和发射电路2的温度信息。
其中,可以持续监测获得PAMiD1、DC/DC1、PAMiD2、DC/DC2的温度,来获得发射电路1和发射电路2的温度信息。
步骤306,判断发射电路1和发射电路2的温度信息是否满足温度差条件。若否,返回步骤304,若是,返回步骤301。
此时,可以继续获得PAMiD1与PAMiD2的温度差X,DC/DC1与DC/DC2的温度Y,并判断是否满足:X>a或者Y>b。根据判断结果确定后续执行步骤。若满足判断条件,则说明此时又出现单一发射电路发热且满足温度差条件的情况,需要再次进行发射电路的切换,缓解发热。
这样,在射频装置持续处于单连接模式且与上述第一网络(如NR网络或LTE网络)的基站进行通信的情况下,射频装置中的两个发射电路可以来回交替工作,以使得射频装置中的发射电路不会因工作导致温度上升超出限制,从而改善原有的单一发射电路工作导致器件发射性能恶化的情况,缓解射频装置的局部发热问题,提高上行通信质量,提高用户体验。
以下将介绍本申请实施例提供的射频装置。
请参见图6,图6为本申请实施例提供的一种射频装置的结构示意图。如图6所示,本申请实施例的射频装置可以包括温度检测模块601、第一发射电路602、第二发射电路603和控制器604。
所述温度检测模块601用于检测所述第一发射电路602和所述第二发射电路603各自的温度信息;
所述控制器604用于在所述第一发射电路602工作且所述第二发射电路603空闲的情况下,获取所述第一发射电路602和所述第二发射电路603各自的温度信息,所述第一发射电路602和所述第二发射电路603分别用于支持两种网络的射频信号的发射处理;
所述控制器604还用于在所述第一发射电路602与所述第二发射电路603的温度信息满足温度差条件的情况下,控制所述第二发射电路603代替所述第一发射电路602工作。
在一种可能的设计中,所述第一发射电路602包括第一功率放大器PA模组和第一电源,所述第二发射电路603包括第二功率放大器PA模组和第二电源,所述第一电源、第二电源分别用于为所述第一PA模组、所述第二PA模组提供电源,所述控制器604用于:
获取所述第一PA模组的第一温度和所述第一电源的第二温度,并获取所述第二PA模组的第三温度和所述第二电源的第四温度;
在所述第一温度与所述第三温度的温度差大于第一阈值或者所述第二温度与所述第四温度的温度差大于第二阈值的情况下,确定所述第一发射电路与所述第二发射电路的温度信息满足所述温度差条件。
在一种可能的设计中,所述控制器604还用于:
在所述射频装置工作于单连接模式,且用于发射第一网络的射频信号的情况下,控制所述第一发射电路602工作,所述第一发射电路602用于支持所述第一网络的射频信号的发射处理。
在一种可能的设计中,所述射频装置还包括第一天线和开关,所述控制器604用于:
在所述第一发射电路工作且所述第二发射电路空闲的情况下,控制所述开关选择导通所述第一发射电路602与所述第一天线之间的通路;
在所述第一发射电路与所述第二发射电路的温度信息满足所述温度差条件的情况下,控制所述开关选择导通所述第二发射电路603与所述第一天线之间的通路。
在一种可能的设计中,所述第一PA模组到所述第一天线之间的路径损耗与所述第二PA模组到所述第一天线之间的路径损耗满足损耗条件。
在一种可能的设计中,所述第一发射电路602的放置位置与所述第二发射电路603的放置位置满足距离条件。
需要说明的是,具体执行过程可以参见图1至图5所示的方法实施例的具体说明,在此不进行赘述。
本申请实施例还提供一种电子设备,请参见图7,图7为本申请实施例提供的一种电子设备的结构示意图。如图7所示,本申请实施例的电子设备可以包括信号发生装置701和射频装置702,其中,射频装置702可以为如图6所示的射频装置,或者,射频装置702可以执行如上述图1-图5所示的射频装置的控制方法。
其中,在所述射频装置702工作于单连接模式,且用于发射第一网络的射频信号的情况下,所述信号发生装置701用于生成所述第一网络的基带信号以输送至所述射频装置702。具体的,该信号发生装置701可以为基带芯片、基带处理器或调制解调器(modem)芯片。该信号发生装置701可以将需要的处理信号(如语音、文本、视频等用户数据)进行处理转换,得到待发送的基带信号后输送给射频装置702,而射频装置702对其进行进一步处理后通过天线将射频信号辐射到空间中。具体的,射频装置702可以执行以下操作:
在第一发射电路工作且第二发射电路空闲的情况下,获取第一发射电路和第二发射电路各自的温度信息,其中,第一发射电路和第二发射电路分别用于支持两种网络的射频信号的发射处理;在第一发射电路与第二发射电路的温度信息满足温度差条件的情况下,控制第二发射电路代替第一发射电路工作。
需要说明的是,具体执行过程可以参见图1至图5所示的实施例的具体说明,在此不进行赘述。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
Claims (10)
- 一种射频装置的控制方法,所述射频装置包括第一发射电路和第二发射电路,所述方法包括:在所述第一发射电路工作且所述第二发射电路空闲的情况下,获取所述第一发射电路和所述第二发射电路各自的温度信息,所述第一发射电路和所述第二发射电路分别用于支持两种网络的射频信号的发射处理;在所述第一发射电路与所述第二发射电路的温度信息满足温度差条件的情况下,控制所述第二发射电路代替所述第一发射电路工作。
- 如权利要求1所述的方法,其特征在于,所述第一发射电路包括第一功率放大器PA模组和第一电源,所述第二发射电路包括第二功率放大器PA模组和第二电源,所述获取所述第一发射电路和所述第二发射电路各自的温度信息,包括:获取所述第一PA模组的第一温度和所述第一电源的第二温度,并获取所述第二PA模组的第三温度和所述第二电源的第四温度,所述第一电源、第二电源分别用于为所述第一PA模组、所述第二PA模组提供电源。
- 如权利要求2所述的方法,其特征在于,所述温度差条件包括:所述第一温度与所述第三温度的温度差大于第一阈值,或者,所述第二温度与所述第四温度的温度差大于第二阈值。
- 如权利要求3所述的方法,其特征在于,所述获取所述第一发射电路和所述第二发射电路各自的温度信息之前,还包括:在所述射频装置工作于单连接模式,且用于发射第一网络的射频信号的情况下,控制所述第一发射电路工作,所述第一发射电路用于支持所述第一网络的射频信号的发射处理。
- 如权利要求4所述的方法,其特征在于,所述射频装置还包括第一天线和开关,所述控制所述第一发射电路工作,包括:控制所述开关选择导通所述第一发射电路与所述第一天线之间的通路。
- 如权利要求5所述的方法,其特征在于,所述控制所述第二发射电路代替所述第一发射电路工作,包括:控制所述开关选择导通所述第二发射电路与所述第一天线之间的通路。
- 一种射频装置,所述射频装置包括第一发射电路、第二发射电路、温度检测模块和控制器;所述温度检测模块用于检测所述第一发射电路和所述第二发射电路各自的温度信息;所述控制器用于在所述第一发射电路工作且所述第二发射电路空闲的情况下,获取所述第一发射电路和所述第二发射电路各自的温度信息,所述第一发射电路和所述第二发射电路分别用于支持两种网络的射频信号的发射处理;所述控制器还用于在所述第一发射电路与所述第二发射电路的温度信息满足温度差条件 的情况下,控制所述第二发射电路代替所述第一发射电路工作。
- 如权利要求7所述的射频装置,其特征在于,所述第一发射电路包括第一功率放大器PA模组和第一电源,所述第二发射电路包括第二功率放大器PA模组和第二电源,所述第一电源、第二电源分别用于为所述第一PA模组、所述第二PA模组提供电源,所述控制器还用于:获取所述第一PA模组的第一温度和所述第一电源的第二温度,并获取所述第二PA模组的第三温度和所述第二电源的第四温度;在所述第一温度与所述第三温度的温度差大于第一阈值或者所述第二温度与所述第四温度的温度差大于第二阈值的情况下,确定所述第一发射电路与所述第二发射电路的温度信息满足所述温度差条件。
- 如权利要求8所述的射频装置,其特征在于,所述射频装置还包括第一天线和开关,所述控制器用于:在所述第一发射电路工作且所述第二发射电路空闲的情况下,控制所述开关选择导通所述第一发射电路与所述第一天线之间的通路;在所述第一发射电路与所述第二发射电路的温度信息满足所述温度差条件的情况下,控制所述开关选择导通所述第二发射电路与所述第一天线之间的通路。
- 一种电子设备,所述电子设备包括信号发生装置和用于执行如权利要求1-6任一项所述方法的射频装置;在所述射频装置工作于单连接模式,且用于发射第一网络的射频信号的情况下,所述信号发生装置用于生成所述第一网络的基带信号以输送至所述射频装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210987808.8A CN115412120A (zh) | 2022-08-17 | 2022-08-17 | 一种射频装置的控制方法、射频装置及电子设备 |
CN202210987808.8 | 2022-08-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024037291A1 true WO2024037291A1 (zh) | 2024-02-22 |
Family
ID=84158543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/108923 WO2024037291A1 (zh) | 2022-08-17 | 2023-07-24 | 一种射频装置的控制方法、射频装置及电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115412120A (zh) |
WO (1) | WO2024037291A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115412120A (zh) * | 2022-08-17 | 2022-11-29 | 深圳市广和通无线股份有限公司 | 一种射频装置的控制方法、射频装置及电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102097766B1 (ko) * | 2019-07-16 | 2020-04-06 | 스마트론파워(주) | 전원공급장치의 과 온도 보호 회로 및 보호 방법 |
WO2020187192A1 (zh) * | 2019-03-15 | 2020-09-24 | 华为技术有限公司 | 一种过热指示方法以及相关设备 |
KR102246093B1 (ko) * | 2020-02-07 | 2021-04-29 | 엘지전자 주식회사 | 발열 완화를 지원하는 전자기기 및 그 전자기기의 제어 방법 |
CN113905459A (zh) * | 2021-10-11 | 2022-01-07 | Oppo广东移动通信有限公司 | 电子设备及其控制方法、计算机设备和可读存储介质 |
CN115412120A (zh) * | 2022-08-17 | 2022-11-29 | 深圳市广和通无线股份有限公司 | 一种射频装置的控制方法、射频装置及电子设备 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104791948B (zh) * | 2015-03-31 | 2018-11-09 | 青岛海尔空调器有限总公司 | 射频遥控器及空调遥控方法 |
CN111970022B (zh) * | 2020-08-24 | 2022-03-15 | 维沃移动通信有限公司 | 射频电路和电子设备 |
CN113810912A (zh) * | 2021-10-29 | 2021-12-17 | 维沃移动通信有限公司 | 射频控制方法、装置和电子设备 |
-
2022
- 2022-08-17 CN CN202210987808.8A patent/CN115412120A/zh active Pending
-
2023
- 2023-07-24 WO PCT/CN2023/108923 patent/WO2024037291A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020187192A1 (zh) * | 2019-03-15 | 2020-09-24 | 华为技术有限公司 | 一种过热指示方法以及相关设备 |
KR102097766B1 (ko) * | 2019-07-16 | 2020-04-06 | 스마트론파워(주) | 전원공급장치의 과 온도 보호 회로 및 보호 방법 |
KR102246093B1 (ko) * | 2020-02-07 | 2021-04-29 | 엘지전자 주식회사 | 발열 완화를 지원하는 전자기기 및 그 전자기기의 제어 방법 |
US20210250070A1 (en) * | 2020-02-07 | 2021-08-12 | Lg Electronics Inc. | Electronic device supporting thermal mitigating and a control method of thereof |
CN113905459A (zh) * | 2021-10-11 | 2022-01-07 | Oppo广东移动通信有限公司 | 电子设备及其控制方法、计算机设备和可读存储介质 |
CN115412120A (zh) * | 2022-08-17 | 2022-11-29 | 深圳市广和通无线股份有限公司 | 一种射频装置的控制方法、射频装置及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN115412120A (zh) | 2022-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024037291A1 (zh) | 一种射频装置的控制方法、射频装置及电子设备 | |
EP2681945B1 (en) | Apparatus and method for saving power of base stations | |
CN206135901U (zh) | 一种非异频上行载波聚合电路及装置 | |
WO2018014422A1 (zh) | 一种天线、载波射频电路、终端和载波聚合方法 | |
US20120108185A1 (en) | Multi-mode wireless transceiver and multi-mode switching method thereof | |
KR20130106257A (ko) | 처리 대역폭의 동적 제어를 통한 이동 통신 장치에서의 전력 절감 | |
WO2019137145A1 (zh) | 一种终端设备 | |
US11223382B2 (en) | Uplink carrier aggregation device and mobile terminal | |
WO2017220027A1 (zh) | 射频前端发射方法及发射模块、芯片和通信终端 | |
WO2017185328A1 (zh) | 一种射频前端、终端设备及载波聚合方法 | |
WO2012152019A1 (zh) | 相邻频段共存的方法、装置及终端 | |
CN103178868A (zh) | 射频传输电路及其电子装置与其节省功率方法 | |
US20120108277A1 (en) | Design and Method to Enable Single Radio Handover | |
JP7524358B2 (ja) | チャネル情報の処理方法及び装置 | |
JP5376682B2 (ja) | 無線装置及び無線装置の無線干渉軽減方法 | |
WO2024067406A1 (zh) | 射频电路和电子设备 | |
KR101572933B1 (ko) | 다중반송파 주파수 전력증폭기 자원의 제어 방법 및 장치 | |
JP6035120B2 (ja) | エネルギ消費削減方法及び無線通信端末 | |
WO2023045502A1 (zh) | 组网工作参数控制方法、终端及存储介质 | |
WO2012159517A1 (zh) | 一种天线性能优化方法和系统 | |
JP4917390B2 (ja) | 無線通信装置及び通信方法 | |
WO2023241453A1 (zh) | 天线能力变更方法、装置、终端及网络侧设备 | |
US20240204775A1 (en) | Fast switching radio frequency switch with reduced spurs | |
CN113348712A (zh) | Mimo层数自适应调整方法及相关产品 | |
CN110430601B (zh) | 一种PCI Express链路速率管理系统和管理方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23854196 Country of ref document: EP Kind code of ref document: A1 |