WO2020187192A1 - 一种过热指示方法以及相关设备 - Google Patents

一种过热指示方法以及相关设备 Download PDF

Info

Publication number
WO2020187192A1
WO2020187192A1 PCT/CN2020/079552 CN2020079552W WO2020187192A1 WO 2020187192 A1 WO2020187192 A1 WO 2020187192A1 CN 2020079552 W CN2020079552 W CN 2020079552W WO 2020187192 A1 WO2020187192 A1 WO 2020187192A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
reference signal
uplink reference
information
reconfiguration information
Prior art date
Application number
PCT/CN2020/079552
Other languages
English (en)
French (fr)
Inventor
丁仁天
邝奕如
薛祎凡
徐海博
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020187192A1 publication Critical patent/WO2020187192A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications, and in particular to an overheating indication method and related equipment.
  • the 3GPP standards group formulated the next generation system network architecture at the end of 2016. It is the fifth generation (5rd generation, 5G) network architecture, also known as the 5g new communication protocol (5g new radio, 5g NR or NR).
  • 5g new communication protocol 5g new radio, 5g NR or NR.
  • both network equipment and UE can improve communication performance through multiple input multiple output (MIMO) technology, also known as multiple antenna technology.
  • MIMO multiple input multiple output
  • an antenna rotation mechanism is introduced.
  • the channel state used for transmission is estimated, and the network device can select appropriate transmission parameters according to the channel estimation result. This process is called channel estimation.
  • the UE can use sounding reference signals (SRS) for uplink channel estimation.
  • SRS sounding reference signals
  • the terminal device can use the SRS resource to perform SRS rotation and perform channel estimation on multiple antennas at the same time.
  • the network device configures the SRS resource for the terminal device according to the radio capability (radio capability) reported when the terminal device accesses.
  • the SRS antenna rotation capability may also be referred to as the SRS antenna selection (antenna selection) capability.
  • the overheating problem can be solved by reducing the capacity or configuration of the terminal device to reduce the temperature.
  • the terminal device can report auxiliary information (user equipment assistance information) to the network device to notify the network device of the capability or configuration that the terminal device expects to reduce at this time. Since the auxiliary information is sent when the terminal device is overheated, it also It can be called overheating indication information.
  • the network device reconfigures the terminal device according to the reported overheating indication information.
  • the terminal device when the terminal device is overheated, after the network device reconfigures the terminal device, the terminal device still supports the uplink reference signal antenna rotation capability, and the terminal device is still in a high power consumption state, which cannot solve the overheating problem.
  • the embodiment of the application provides an overheating indication method and related equipment. After receiving the auxiliary information reported by the terminal equipment, the network equipment can adjust the SRS antenna transmission capability of the terminal equipment to reduce the power consumption of the terminal equipment and solve the overheating of the terminal equipment. problem.
  • the embodiment of the application provides an overheating indication method.
  • the terminal device When the RRC connection reconfiguration information sent by the network device to the terminal device indicates that the terminal device can send overheating indication information to the network device, the terminal device is overheated inside the device In the state, the terminal device sends first overheating indication information to the network device.
  • the first overheating indication information is carried in radio resource control (RRC), and the first overheating indication information is used to instruct the network device to resolve the terminal
  • RRC radio resource control
  • the radio resource control information may also be referred to as RRC signaling for short.
  • the first overheating indication information is used to indicate that the terminal device needs to not support the uplink reference signal antenna rotation capability
  • the uplink reference signal may be a sounding reference signal (SRS).
  • SRS sounding reference signal
  • the uplink reference signal is an SRS
  • the first overheating indication information is used to indicate that the terminal device needs to not support the SRS antenna rotation capability.
  • the terminal device receives first reconfiguration information sent by the network device, where the first reconfiguration information is generated by the network device according to the first overheating indication information, and the terminal device does not support uplink reference according to the first reconfiguration information Signal antenna rotation ability.
  • the uplink reference signal is an SRS
  • the terminal device does not support the SRS antenna rotation capability according to the first reconfiguration information.
  • the terminal device does not support the uplink reference signal antenna alternate transmission capability, and may be to disable the uplink reference signal antenna alternate transmission capability.
  • the embodiments of the present application have the following advantages: when the terminal device is overheated inside the device, it sends first overheating indication information to the network device, and the first overheating indication information is used to indicate the current terminal
  • the device needs to not support the uplink reference signal antenna rotation capability, the network device generates the first reconfiguration information according to the first overheating indication information, and the terminal device does not support the uplink reference signal antenna rotation capability according to the first reconfiguration information.
  • the terminal equipment does not support the ability to transmit the uplink reference signal antenna in turn, which reduces the power consumption of the terminal equipment and effectively solves the problem of terminal equipment overheating.
  • the first overheating indication information specifically includes the indication information of the capability of not supporting uplink reference signal antenna rotation, wherein the indication information of the capability of not supporting uplink reference signal antenna rotation is used to request The network device sends the first reconfiguration information.
  • the network device can learn that the terminal device that sends the first overheating indication information needs to send the first overheating indication information according to the RRC signaling itself carrying the first overheating indication information
  • the SRS antenna rotation capability is not supported, that is, when the network device receives the RRC signaling carrying the overheating indication information, the terminal device that sends the RRC signaling by default needs not to support the SRS antenna rotation capability.
  • the first overheating indication information may also carry indication information of not supporting the SRS antenna rotation transmission capability, and the network device may learn that the terminal device needs not to support the SRS antenna rotation transmission capability according to the SRS antenna rotation transmission capability indication information.
  • the terminal device may use the first overheating indication information to request the network device to send the first reconfiguration information in different ways. Improve the flexibility of the program.
  • the first reconfiguration information may be carried in downlink control information (DCI), reference signals (RS), and media access control layer control information ( Media access control control element, MAC CE) or radio resource control information (radio resource control, RRC).
  • DCI downlink control information
  • RS reference signals
  • MAC CE media access control layer control information
  • RRC radio resource control information
  • the first reconfiguration information is specifically used by the terminal device to release the uplink reference signal rotation resource in the terminal device according to the first reconfiguration information or not to perform uplink transmission.
  • Reference signal rotation wherein, after the terminal device releases the uplink reference signal rotation resource in the terminal device, the terminal device does not support the uplink reference signal antenna rotation transmission capability.
  • the network device can achieve the effect that the terminal device does not support the ability of SRS antenna rotation by not sending DCI signaling to activate the aperiodic SRS resource; also
  • the first reconfiguration information carried in the DCI signaling may be sent, and the first reconfiguration information is used to deactivate the aperiodic SRS resource, so as to achieve the effect that the terminal device does not support the SRS antenna rotation capability.
  • the first reconfiguration information can be carried in different signaling, which improves the implementation flexibility of the solution.
  • the terminal device may not support the uplink reference signal rotation resource according to the first reconfiguration information sent by the network device, which can be specifically divided into the following two situations: one is not supported The uplink reference signal antenna rotation capability of all frequency band resources.
  • the first reconfiguration information carries an indication of all frequency band resources; the other is the uplink reference signal antenna rotation capability that does not support some frequency band resources. What is carried in the reconfiguration information is a partial frequency band resource indication.
  • the terminal device releases the uplink reference signal rotation resources of all frequency band resources according to the first reconfiguration information that carries the indication of all frequency band resources, wherein the terminal device releases the uplink reference signal rotation resources of all frequency band resources in the terminal device Later, the terminal device does not support the uplink reference signal antenna rotation capability in all frequency band resources, or the terminal device releases the uplink reference signal rotation transmission capability of part of the frequency band resources according to the first reconfiguration information indicated by the part frequency band resources Resource, wherein, after the terminal device releases the uplink reference signal rotation resource of the partial frequency band resource in the terminal device, the terminal device does not support the uplink reference signal antenna rotation transmission capability of the partial frequency band resource.
  • the first reconfiguration when the first overheating indication information also carries an indication to reduce the number of multiple-input multiple-output (MIMO layer), the first reconfiguration The information is also used to adjust the uplink MIMO capability and/or downlink MIMO capability (MIMO layer) in the terminal device.
  • adjusting the uplink MIMO capability of the terminal device is: adjusting the number of transmitting antennas and the number of transmitting radio frequency links in the terminal device;
  • adjusting the downlink MIMO capability of the terminal device is: adjusting the number of receiving antennas and the number of receiving radio frequency links in the terminal device.
  • the terminal device adjusts the number of transmitting antennas and the number of transmitting radio frequency links of the terminal device according to the first reconfiguration information, and/or the terminal device adjusts the receiving antenna and the number of receiving radio frequency links of the terminal device according to the first reconfiguration information number.
  • the network device can instruct the terminal device to release uplink reference signal rotation resources to reduce power consumption, and also instruct the terminal device to adjust the MIMO capability, specifically, adjust the radio frequency link and/or antenna of the terminal device To achieve a further reduction in power consumption, so that the temperature of the terminal device returns to normal faster.
  • the lower MIMO layer indication can also be carried in the first reconfiguration information, simplifying the steps.
  • the network device after the terminal device receives the first reconfiguration information sent by the network device, since the terminal device no longer supports the uplink reference signal antenna rotation capability, the network device cannot pass the uplink reference signal The antenna turns to obtain the result of uplink channel estimation with the terminal device. Therefore, the network equipment can initiate downlink channel estimation and obtain the result of downlink channel estimation. According to the channel dissimilarity, the network device can obtain the uplink channel estimation result according to the downlink channel estimation result. It should be noted that in a time division duplex (time division duplexing, TDD) system, the result of uplink channel estimation can also be obtained through the result of downlink channel estimation.
  • TDD time division duplex
  • the terminal device receives the downlink reference signal sent by the network device, where the downlink reference signal is used for downlink channel estimation; the terminal device performs downlink channel estimation by receiving the downlink reference signal; the terminal device determines the feedback of the downlink reference signal according to the downlink reference signal information.
  • the terminal device sends the feedback information of the downlink reference signal to the network device through the physical uplink control channel (PUCCH) or the physical uplink shared channel (PUSCH), where the feedback information of the downlink reference signal includes the downlink channel Estimated result.
  • the downlink reference signal may be a channel state information reference signal (CSI-RS), or other downlink reference signals, such as synchronization signal/broadcast channel block (synchronization signal/physical). broadcast channel block, SS/PBCH Block).
  • the feedback information of the downlink reference signal is a channel state information report (channel state information report, CSI report).
  • the terminal device may also receive the downlink reference signal issued by the network device to perform downlink channel estimation. Based on the channel disparity, the result of the downlink channel estimation can also be applied to the uplink data scheduling to ensure the accuracy of data transmission.
  • the network device after the network device receives the first overheating indication information sent by the terminal device, the network device starts a timer, and after the first time interval has elapsed, the terminal device receives the information sent by the network device Second reconfiguration information, where the second reconfiguration information is used to reconfigure the uplink reference signal rotation resource in the terminal device, wherein, after the terminal device reconfigures the uplink reference signal rotation resource in the terminal device,
  • the terminal equipment supports the uplink reference signal antenna rotation capability.
  • the second reconfiguration information can also readjust the uplink MIMO capability and/or downlink MIMO layer (MIMO layer) in the terminal device.
  • adjusting the uplink MIMO capability of the terminal device is: adjusting the number of transmitting antennas and the number of transmitting radio frequency links in the terminal device;
  • adjusting the downlink MIMO capability of the terminal device is: adjusting the number of receiving antennas and the number of receiving radio frequency links in the terminal device.
  • the situation of adjusting the number of transmitting antennas or the number of receiving antennas is that the decrease value indicated by the decrease MIMO layer indicator is lower than the number of antennas of the current terminal device.
  • the terminal device adjusts the number of receiving antennas from 2 to 4 according to the second reconfiguration information.
  • the terminal device After the terminal device receives the first reconfiguration information sent by the network device, the terminal device releases uplink reference signal rotation resources according to the first reconfiguration information, and the terminal device does not support the uplink reference signal rotation transmission capability. At this time, the network device will set the first time interval. After the first time interval, if the terminal device does not send a new overheating indication information, it can be considered that the temperature of the terminal device has returned to normal.
  • the second reconfiguration information for reconfiguration configures uplink reference signal rotation resources, and re-supports uplink reference signal rotation capabilities. To ensure that the terminal equipment after the temperature returns to normal, the uplink reference signal antenna rotation ability can be restored in time.
  • the network device after the network device receives the first overheating indication information sent by the terminal device, the network device starts a timer, and within the first time interval, if the terminal device recovers from the overheated state In a normal temperature state, the terminal device sends second overheating indication information to the network device, where the second overheating indication information is used to indicate that the temperature of the current terminal device has returned to normal;
  • the terminal device receives second reconfiguration information sent by the network device, where the second reconfiguration information is used to reconfigure the uplink reference signal round-transmission resource in the terminal device, wherein the terminal device reconfigures the terminal device After the uplink reference signal is transmitted in turn, the terminal device supports the uplink reference signal antenna in turn transmission capability.
  • the terminal device After the terminal device receives the first reconfiguration information sent by the network device, the terminal device releases uplink reference signal rotation resources according to the first reconfiguration information, and the terminal device does not support the uplink reference signal rotation transmission capability. At this time, the network device will set the first time interval. During the first time interval, if the terminal device detects that the internal temperature has returned to normal, the terminal device sends a new overheating indication message to the network device.
  • the overheating indication information is used to indicate The current terminal device temperature has returned to normal, and the overheating indication information is called second overheating indication information. According to the second overheating indication information, the network device learns that the temperature of the terminal device has returned to normal, and sends second reconfiguration information to the terminal device.
  • the terminal device reconfigures the configuration uplink reference according to the second reconfiguration information of the network device Signal rotation resources, and re-support uplink reference signal rotation capabilities.
  • the first overheating indication information also carries an indication of reducing MIMO layer
  • the second reconfiguration information can also readjust the uplink MIMO capability and/or downlink MIMO layer (MIMO layer) in the terminal device.
  • MIMO layer downlink MIMO layer
  • the network device after the network device receives the first overheating indication information sent by the terminal device, the network device starts a timer. During the first time interval, the temperature of the terminal device is still overheated The terminal device may send overheating indication information to the network device to inform the network device that the current temperature of the terminal device is still overheating, and the overheating indication information is called the third overheating indication information. After the terminal device sends the third overheating indication information to the network device, the network device resets the timer according to the third overheating indication information. After resetting the timer, the terminal device may have the following two situations: the first situation, the temperature returns to normal; the second situation, the temperature is still abnormal.
  • the first situation After resetting the timer and after the first time interval has elapsed, if the terminal device detects that the internal temperature has returned to normal, the terminal device sends a new overheating indication message to the network device, and the overheating indication information is used to indicate The current terminal device temperature has returned to normal, and the overheating indication information is called second overheating indication information.
  • the network device learns that the temperature of the terminal device has returned to normal, and sends second reconfiguration information to the terminal device. At this time, the terminal device reconfigures the configuration uplink reference according to the second reconfiguration information of the network device Signal rotation resources, and re-support uplink reference signal rotation capabilities.
  • Case 2 After resetting the timer and in the first time interval, when the temperature of the terminal device is still overheated, the terminal device can send the third overheating indication information to the network device to inform the network device of the current terminal device temperature It is still overheated. After the terminal device sends the third overheating indication information to the network device, the network device resets the timer according to the third overheating indication information. The network device continuously resets the timer until the temperature of the terminal device returns to normal. When the temperature of the terminal device returns to normal, the terminal device can reconfigure the uplink reference signal rotation resource according to the second reconfiguration information of the network device, and re-support the uplink reference signal rotation capability.
  • the terminal equipment While ensuring that the terminal equipment after the temperature returns to normal, the uplink reference signal antenna rotation ability can be restored in time, the terminal equipment whose temperature is still overheated will not mistakenly reconfigure the uplink reference signal rotation resource to ensure that it is still in the overheated state The terminal equipment is in a low power consumption state.
  • the embodiments of this application provide an overheating indication method.
  • the terminal device When the RRC connection reconfiguration information sent by the network device to the terminal device indicates that the terminal device can send overheating indication information to the network device, the terminal device is overheated inside the device In the state, the network device receives the first overheating indication information sent by the terminal device.
  • the first overheating indication information is carried in radio resource control (RRC), and the first overheating indication information is used to instruct the network device to solve the problem.
  • RRC radio resource control
  • the radio resource control information may also be referred to as RRC signaling for short.
  • the first overheating indication information is used to indicate that the terminal device needs to not support the uplink reference signal antenna rotation capability
  • the uplink reference signal may be a sounding reference signal (SRS).
  • SRS sounding reference signal
  • the uplink reference signal is an SRS
  • the first overheating indication information is used to indicate that the terminal device needs to not support the SRS antenna rotation capability.
  • the network device sends first reconfiguration information to the terminal device, where the first reconfiguration information is generated by the network device according to the first overheating indication information, and the terminal device does not support the uplink reference signal antenna according to the first reconfiguration information Rotating ability.
  • the uplink reference signal is an SRS
  • the terminal device does not support the SRS antenna rotation capability according to the first reconfiguration information.
  • the embodiments of the present application have the following advantages: when the terminal device is overheated inside the device, the network device receives the first overheating indication information sent by the terminal device, and the first overheating indication information is used for Indicates that the current terminal device needs to not support the uplink reference signal antenna rotation capability, the network device generates first reconfiguration information according to the first overheating indication information, and the terminal device does not support the uplink reference signal antenna rotation capability according to the first reconfiguration information.
  • the terminal equipment does not support the ability to transmit the uplink reference signal antenna in turn, which reduces the power consumption of the terminal equipment and effectively solves the problem of terminal equipment overheating.
  • the first overheating indication information specifically includes the indication information of the capability of not supporting the uplink reference signal antenna in turn, where the indication information about the capability of not supporting the uplink reference signal antenna in turn is used to request The network device sends the first reconfiguration information.
  • the network device can learn that the terminal device that sends the first overheating indication information needs to send the first overheating indication information according to the RRC signaling itself carrying the first overheating indication information
  • the SRS antenna rotation capability is not supported, that is, when the network device receives the RRC signaling carrying the overheating indication information, the terminal device that sends the RRC signaling by default needs not to support the SRS antenna rotation capability.
  • the first overheating indication information may also carry indication information of not supporting the SRS antenna rotation transmission capability, and the network device may learn that the terminal device needs not to support the SRS antenna rotation transmission capability according to the SRS antenna rotation transmission capability indication information.
  • the terminal device may use the first overheating indication information to request the network device to send the first reconfiguration information in different ways. Improve the flexibility of the program.
  • the first reconfiguration information may be carried in downlink control information (DCI), reference signals (RS), and media access control layer control information ( Media access control control element, MAC CE) or radio resource control information (radio resource control, RRC), which type of signaling is carried, and the current terminal equipment is configured for the uplink reference signal antenna
  • DCI downlink control information
  • RS reference signals
  • MAC CE media access control layer control information
  • RRC radio resource control information
  • the resource type of the uplink reference signal in rotation is determined in rotation.
  • the SRS resource used for SRS antenna rotation is hereinafter referred to as SRS resource for short, and the network device learns the SRS resource type according to the first overheating indication information reported by the terminal device. Specifically: when the configured SRS resource is a periodic SRS resource, the first reconfiguration information is carried in RRC signaling; when the configured SRS resource is a non-periodic SRS resource, the first reconfiguration information is carried in DCI signaling Medium; when the configured SRS resource is a semi-persistent SRS resource, the first reconfiguration information is carried in the MAC CE signaling.
  • the first reconfiguration information is specifically used by the terminal device to release the uplink reference signal rotation resource in the terminal device according to the first reconfiguration information or not to perform uplink transmission.
  • Reference signal rotation wherein, after the terminal device releases the uplink reference signal rotation resource in the terminal device, the terminal device does not support the uplink reference signal antenna rotation transmission capability.
  • the network device can achieve the effect that the terminal device does not support the ability of SRS antenna rotation by not sending DCI signaling to activate the aperiodic SRS resource; also
  • the first reconfiguration information carried in the DCI signaling may be sent, and the first reconfiguration information is used to deactivate the aperiodic SRS resource, so as to achieve the effect that the terminal device does not support the SRS antenna rotation capability.
  • the first reconfiguration information can be carried in different signaling, which improves the implementation flexibility of the solution.
  • the network device can indicate that the terminal device does not support uplink reference signal rotation resources by sending the first reconfiguration information to the terminal device, which can be specifically divided into the following two situations: one It is the uplink reference signal antenna rotation capability that does not support all frequency band resources.
  • the first reconfiguration information carries an indication of all frequency band resources; the other is the uplink reference signal antenna rotation capability that does not support some frequency band resources.
  • the first reconfiguration information carries a partial frequency band resource indication.
  • the network device sends the first reconfiguration information carrying an indication of all frequency band resources to the terminal device, so that the terminal device releases all frequency band resources in the terminal device according to the first reconfiguration information carrying the indication of all frequency band resources
  • the uplink reference signal rotation resource wherein, after the terminal device releases the uplink reference signal rotation resource of the all frequency band resources in the terminal device, the terminal device does not support the uplink reference signal antenna rotation transmission of the all frequency band resources Capability, or the network device sends the first reconfiguration information carrying a part of the frequency band resource indication to the terminal device, so that the terminal device releases part of the terminal equipment according to the first reconfiguration information carrying the part of the frequency band resource indication
  • the uplink reference signal rotation resource of the frequency band resource wherein, after the terminal device releases the uplink reference signal rotation resource of the part of the frequency band resource in the terminal device, the terminal device does not support the uplink reference signal of the part of the frequency band resource Antenna rotation ability.
  • the specific process of releasing the uplink reference signal rotation resource may be deleting the uplink reference signal rotation resource configured inside the terminal device.
  • the terminal device deletes the uplink reference signal in turn for all frequency band resources; when the first overheating indication information indicates yes : Does not support the uplink reference signal rotation and antenna transmission capability of some frequency band resources, and the terminal device deletes the corresponding uplink reference signal rotation resources of some frequency band resources.
  • the terminal device can release the uplink reference signal round transmission resources on all frequency band resources according to the actual network conditions, or release the uplink reference signal round transmission resources on some frequency band resources, which can achieve rapid cooling or reserve some uplink reference signal rounds. Realize slow cooling under the condition of sending resources.
  • the channel estimation results of commonly used frequency band resources are obtained, and the communication quality under commonly used frequency band resources is guaranteed, and the purpose of reducing power consumption is achieved by not performing uplink reference signal rotation of uncommon frequency band resources.
  • the first reconfiguration information is also used to adjust the uplink MIMO capability and/or downlink MIMO in the terminal device.
  • Capability MIMO layer
  • adjusting the uplink MIMO capability of the terminal device is: adjusting the number of transmitting antennas and the number of transmitting radio frequency links in the terminal device
  • adjusting the downlink MIMO capability of the terminal device is: adjusting the number of receiving antennas and the number of receiving radio frequency links in the terminal device.
  • the terminal device adjusts the number of transmitting antennas and the number of transmitting radio frequency links of the terminal device according to the first reconfiguration information, and/or the terminal device adjusts the receiving antenna and the number of receiving radio frequency links of the terminal device according to the first reconfiguration information number.
  • the network device can instruct the terminal device to release uplink reference signal rotation resources to reduce power consumption, and also instruct the terminal device to adjust the MIMO capability, specifically, adjust the radio frequency link and/or antenna of the terminal device To achieve a further reduction in power consumption, so that the temperature of the terminal device returns to normal faster.
  • the lower MIMO layer indication can also be carried in the first reconfiguration information, simplifying the steps.
  • the network device after the network device sends the first reconfiguration information to the terminal device, since the terminal device no longer supports the uplink reference signal antenna rotation capability, the network device cannot pass the uplink reference signal antenna wheel Obtain the result of uplink channel estimation with the terminal device. Therefore, the network equipment can initiate downlink channel estimation and obtain the result of downlink channel estimation. According to the channel dissimilarity, the network device can obtain the uplink channel estimation result according to the downlink channel estimation result. It should be noted that in a time division duplex (time division duplexing, TDD) system, the result of uplink channel estimation can also be obtained through the result of downlink channel estimation.
  • TDD time division duplexing
  • the network device sends a downlink reference signal to the terminal device.
  • the downlink reference signal is used for downlink channel estimation.
  • the terminal device determines the feedback information of the downlink reference signal according to the downlink reference signal.
  • the terminal device uses the physical uplink control channel. , PUCCH) or physical uplink shared channel (PUSCH) sending feedback information of the downlink reference signal to the network device, where the feedback information of the downlink reference signal includes the result of downlink channel estimation;
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the network device receives the feedback information of the downlink reference signal sent by the terminal device, and the network device obtains the result of uplink channel estimation according to the feedback information of the downlink reference signal.
  • the downlink reference signal may be a channel state information reference signal (CSI-RS), or other downlink reference signals, such as synchronization signal/broadcast channel block (synchronization signal/physical). broadcast channel block, SS/PBCH Block).
  • CSI-RS channel state information reference signal
  • the feedback information of the downlink reference signal is a channel state information report (channel state information report, CSI report).
  • the terminal device may also receive the downlink reference signal issued by the network device to perform downlink channel estimation. Based on the channel disparity, the result of the downlink channel estimation can also be applied to the uplink data scheduling to ensure the accuracy of data transmission.
  • the network device after the network device receives the first overheating indication information sent by the terminal device, the network device starts a timer, and after the first time interval has elapsed, the network device sends the first overheating indication information to the terminal device.
  • Dual configuration information where the second reconfiguration information is used to reconfigure the uplink reference signal rotation resource in the terminal device, where after the terminal device reconfigures the uplink reference signal rotation resource in the terminal device, the The terminal equipment supports the uplink reference signal antenna rotation capability.
  • the second reconfiguration information can also readjust the uplink MIMO capability and/or downlink MIMO layer (MIMO layer) in the terminal device.
  • adjusting the uplink MIMO capability of the terminal device is: adjusting the number of transmitting antennas and the number of transmitting radio frequency links in the terminal device;
  • adjusting the downlink MIMO capability of the terminal device is: adjusting the number of receiving antennas and the number of receiving radio frequency links in the terminal device.
  • the situation of adjusting the number of transmitting antennas or the number of receiving antennas is that the decrease value indicated by the decrease MIMO layer indication is lower than the number of antennas of the current terminal device.
  • the decrease MIMO layer indication in the first overheating indication information is reduced from 4 layer to 2 layer
  • the terminal device adjusts the number of receiving antennas from 2 to 4 according to the second reconfiguration information.
  • the terminal device After the network device sends the first reconfiguration information to the terminal device, the terminal device releases uplink reference signal rotation resources according to the first reconfiguration information, and the terminal device does not support the uplink reference signal rotation transmission capability. At this time, the network device will set the first time interval. After the first time interval has elapsed, if the terminal device does not send new overheating indication information, it can be considered that the temperature of the terminal device has returned to normal, and the network device sends the terminal device to The second reconfiguration information is sent. At this time, the terminal device reconfigures the uplink reference signal rotation resource according to the second reconfiguration information of the network device, and re-supports the uplink reference signal rotation transmission capability. To ensure that the terminal equipment after the temperature returns to normal, the uplink reference signal antenna rotation ability can be restored in time.
  • the network device after the network device receives the first overheating indication information sent by the terminal device, the network device starts a timer, and within the first time interval, if the terminal device recovers from the overheated state In a normal temperature state, the network device receives second overheating indication information sent by the terminal device, where the second overheating indication information is used to indicate that the current terminal device temperature has returned to normal;
  • the network device sends second reconfiguration information to the terminal device, the terminal device receives the second reconfiguration information sent by the network device, and the second reconfiguration information is used to reconfigure the uplink reference signal rotation resource in the terminal device , wherein, after the terminal device reconfigures the uplink reference signal rotation resource in the terminal device, the terminal device supports the uplink reference signal antenna rotation transmission capability.
  • the terminal device After the network device sends the first reconfiguration information to the terminal device, the terminal device releases uplink reference signal rotation resources according to the first reconfiguration information, and the terminal device does not support the uplink reference signal rotation transmission capability. At this time, the network device will set the first time interval. During the first time interval, if the terminal device detects that the internal temperature has returned to normal, the terminal device sends a new overheating indication message to the network device.
  • the overheating indication information is used to indicate The current terminal device temperature has returned to normal, and the overheating indication information is called second overheating indication information. According to the second overheating indication information, the network device learns that the temperature of the terminal device has returned to normal, and sends second reconfiguration information to the terminal device.
  • the terminal device reconfigures the configuration uplink reference according to the second reconfiguration information of the network device Signal rotation resources, and re-support uplink reference signal rotation capabilities.
  • the first overheating indication information also carries an indication of reducing MIMO layer
  • the second reconfiguration information can also readjust the uplink MIMO capability and/or downlink MIMO layer (MIMO layer) in the terminal device.
  • MIMO layer downlink MIMO layer
  • the network device after the network device receives the first overheating indication information sent by the terminal device, the network device starts a timer. During the first time interval, the temperature of the terminal device is still overheated The terminal device may send overheating indication information to the network device to inform the network device that the current temperature of the terminal device is still overheating, and the overheating indication information is called the third overheating indication information. After the network device receives the third overheating indication information sent by the terminal device, the network device resets the timer according to the third overheating indication information. After resetting the timer, the terminal device may have the following two situations: the first situation, the temperature returns to normal; the second situation, the temperature is still abnormal.
  • the first situation After resetting the timer and after the first time interval has elapsed, if the terminal device detects that the internal temperature has returned to normal, the terminal device sends a new overheating indication message to the network device.
  • the overheating indication information is used to indicate The current terminal device temperature has returned to normal, and the overheating indication information is called second overheating indication information.
  • the network device learns that the temperature of the terminal device has returned to normal, and sends second reconfiguration information to the terminal device. At this time, the terminal device reconfigures the configuration uplink reference according to the second reconfiguration information of the network device Signal rotation resources, and re-support uplink reference signal rotation capabilities.
  • Case 2 After resetting the timer and in the first time interval, when the temperature of the terminal device is still overheated, the terminal device can send the third overheating indication information to the network device to inform the network device of the current terminal device temperature It is still overheated. After the terminal device sends the third overheating indication information to the network device, the network device resets the timer according to the third overheating indication information. The network device continuously resets the timer until the temperature of the terminal device returns to normal. When the temperature of the terminal device returns to normal, the terminal device can reconfigure the uplink reference signal rotation resource according to the second reconfiguration information of the network device, and re-support the uplink reference signal rotation capability.
  • the terminal equipment While ensuring that the terminal equipment after the temperature returns to normal, the uplink reference signal antenna rotation ability can be restored in time, the terminal equipment whose temperature is still overheated will not mistakenly reconfigure the uplink reference signal rotation resource to ensure that it is still in the overheated state The terminal equipment is in a low power consumption state.
  • an embodiment of the present application provides a terminal device, including:
  • the sending module is used to send the first overheating indication information to the network device when the terminal device is in an overheating state
  • a receiving module configured to receive first reconfiguration information sent by a network device, where the first reconfiguration information is generated by the network device according to the first overheating indication information;
  • the processing module is configured to not support the uplink reference signal antenna rotation capability according to the first reconfiguration information.
  • the first overheating indication information specifically includes the indication information of the ability to not support the uplink reference signal antenna rotation transmission capability, where the indication information of the antenna rotation transmission capability not supporting the uplink reference signal is used to request the network device Send the first reconfiguration information.
  • the first reconfiguration information is carried in any one of downlink control information DCI, control information MAC CE of the medium access control layer, or radio resource control information RRC,
  • the first reconfiguration information is specifically used by the terminal device to release uplink reference signal rotation resources in the terminal device or not to perform uplink reference signal rotation according to the first reconfiguration information, Among them, after the terminal device releases the uplink reference signal rotation resource in the terminal device, the terminal device does not support the uplink reference signal antenna rotation transmission capability.
  • the processing module is specifically configured to release the uplink reference signal rotation resources of all frequency band resources according to the first reconfiguration information carrying all frequency band resource indications, wherein, after the terminal device releases the uplink reference signal rotation resources of all frequency band resources in the terminal device, The terminal equipment does not support the uplink reference signal antenna rotation capability in all frequency band resources, or
  • the first overheating indication information when the first overheating indication information also carries an indication of reducing the number of MIMO layers,
  • the processing module adjusts the number of antennas and/or the number of radio frequency links of the terminal device according to the first reconfiguration information.
  • the receiving module is also used to receive a downlink reference signal sent by a network device, where the downlink reference signal is used for downlink channel estimation;
  • the sending module is also used to send feedback information of the downlink reference signal to the network device, wherein the feedback information of the downlink reference signal carries the result of the downlink channel estimation.
  • the receiving module is further configured to start the timer by the network device, and after the first time interval, the receiving module receives second reconfiguration information sent by the network device, and the second reconfiguration information is used to reconfigure the uplink reference signal wheel in the terminal device
  • the terminal device supports the uplink reference signal antenna rotation transmission capability after the terminal device reconfigures the uplink reference signal rotation transmission resource in the terminal device.
  • the sending module is also used for the network device to start a timer, and within the first time interval, when the terminal device is in a normal temperature state, the sending module sends second overheating indication information to the network device;
  • the receiving module is further configured to receive second reconfiguration information sent by the network device.
  • the second reconfiguration information is used to reconfigure the uplink reference signal round transmission resources in the terminal device, wherein the terminal device reconfigures the uplink reference signal in the terminal device After the resources are transmitted in turn, the terminal device supports the ability to transmit uplink reference signal antennas in turn.
  • the sending module is also used for the network device to start a timer, and in the first time interval, when the terminal device is in an overheating state, the sending module sends third overheating indication information to the network device;
  • the receiving module is also configured to reset the timer by the network device, and after the first time interval has elapsed, the receiving module receives second reconfiguration information sent by the network device, and the second reconfiguration information is used to reconfigure the uplink reference signal in the terminal device Rotate transmission resources, where the terminal device supports the uplink reference signal antenna rotation transmission capability after the terminal device reconfigures the uplink reference signal rotation resource in the terminal device.
  • the second reconfiguration information is also used to reconfigure the number of MIMO layers in the terminal device
  • the processing module is further configured to adjust the number of antennas and/or the number of radio frequency links of the terminal device according to the second reconfiguration information.
  • an embodiment of the present application provides a network device, including:
  • the receiving module is used to receive the first overheating indication information sent by the terminal device
  • the sending module is configured to send the first reconfiguration information to the terminal device according to the first overheating indication information, so that the terminal device does not support the uplink reference signal antenna rotation capability.
  • the first overheating indication information specifically includes the indication information that the uplink reference signal antenna rotation transmission capability is not supported, and the uplink reference signal antenna rotation transmission capability indication information is used to request the network device Send the first reconfiguration information.
  • the first reconfiguration information is carried in any one of downlink control information DCI, control information MAC CE of the medium access control layer, or radio resource control information RRC,
  • the first reconfiguration information is specifically used by the terminal device to release uplink reference signal rotation resources in the terminal device or not to perform uplink reference signal rotation according to the first reconfiguration information, Among them, after the terminal device releases the uplink reference signal rotation resource in the terminal device, the terminal device does not support the uplink reference signal antenna rotation transmission capability.
  • the sending module is specifically configured to send first reconfiguration information carrying all frequency band resource indications to the terminal device, so that the terminal device releases the uplink reference signals of all frequency band resources in the terminal device according to the first reconfiguration information carrying all frequency band resource indications Rotate transmission resources, where after the terminal device releases the uplink reference signal rotation resources of all frequency band resources in the terminal device, the terminal device does not support the uplink reference signal antenna rotation ability of all frequency band resources, or
  • the first reconfiguration information carrying the indication of the partial frequency band resource is sent to the terminal device, so that the terminal device releases the uplink reference signal rotation resource of the partial frequency band resource in the terminal device according to the first reconfiguration information carrying the indication of the partial frequency band resource, wherein, After the terminal device releases the uplink reference signal rotation resource of some frequency band resources in the terminal device, the terminal device does not support the uplink reference signal antenna rotation ability of some frequency band resources.
  • the first reconfiguration information when the first overheating indication information carries the indication of reducing the number of MIMO layers, the first reconfiguration information is also used to instruct the terminal device according to the first reconfiguration The information adjusts the number of antennas and/or the number of radio frequency links of the terminal equipment.
  • the network device further includes a processing module
  • the sending module is also used to send a downlink reference signal to the terminal equipment, where the downlink reference signal is used for downlink channel estimation;
  • the receiving module is also configured to receive feedback information of the downlink reference signal sent by the terminal equipment, wherein the feedback information of the downlink reference signal carries the result of the downlink channel estimation;
  • the processing module is used to obtain the result of uplink channel estimation according to the feedback information of the downlink reference signal.
  • the sending module is also used for the network device to start the timer, and after the first time interval has elapsed, the sending module sends second reconfiguration information to the terminal device.
  • the second reconfiguration information is used to reconfigure the uplink reference signal rotation in the terminal device. Resources, where, after the terminal device reconfigures the uplink reference signal rotation resource in the terminal device, the terminal device supports the uplink reference signal antenna rotation transmission capability.
  • the receiving module is further configured to start the timer by the network device, and within the first time interval, the receiving module receives second overheating indication information sent by the terminal device, and the second overheating indication information is sent by the terminal device in a normal temperature state;
  • the sending module is further configured to send second reconfiguration information to the terminal device, the second reconfiguration information is used to reconfigure the uplink reference signal round transmission resource in the terminal device, wherein the terminal device reconfigures the uplink reference signal round transmission resource in the terminal device After the resources are transmitted, the terminal equipment supports the ability to transmit the uplink reference signal antenna in turn.
  • the receiving module is further configured to start the timer by the network device, and within the first time interval, the receiving module receives the third overheating indication information sent by the terminal device, and the third overheating indication information is sent when the terminal device is in an overheating state;
  • the sending module is also used to reset the timer by the network device. After the first time interval has elapsed, the sending module sends second reconfiguration information to the terminal device.
  • the second reconfiguration information is used to reconfigure the uplink reference signal wheel in the terminal device.
  • the terminal device supports the uplink reference signal antenna rotation transmission capability after the terminal device reconfigures the uplink reference signal rotation transmission resource in the terminal device.
  • the second reconfiguration information is also used to reconfigure the multiplex in the terminal device.
  • the number of incoming and outgoing layers is MIMO layer, so that the terminal device adjusts the number of antennas and/or the number of radio frequency links of the terminal device according to the second reconfiguration information.
  • a communication device in a fifth aspect, has the function of realizing the behavior of the terminal device or the network device or the core network device in the above method, and it includes means for executing the steps or functions described in the above method, for example, unit , Modules, devices, etc.
  • This step or function can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the aforementioned communication device includes one or more processors and communication units.
  • the one or more processors are configured to support the communication device to perform the corresponding functions of the terminal device in the foregoing method. For example, according to the first reconfiguration information carrying an indication of all frequency band resources, the uplink reference signal rotation resources of all frequency band resources are released.
  • the communication unit is used to support the communication device to communicate with other devices, and realize the receiving and/or sending functions. For example, the terminal device sends the first overheating indication information to the network device.
  • the communication device may also include one or more memories, which are used for coupling with the processor and store program instructions and/or data necessary for the communication device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the communication device may be a smart terminal or a wearable device, etc.
  • the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or interface.
  • the communication device may also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the aforementioned communication device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the communication device executes the first aspect or any one of the first aspect The method that the terminal device completes in one possible implementation.
  • the aforementioned communication device includes one or more processors and communication units.
  • the one or more processors are configured to support the communication device to perform the corresponding functions of the network device in the foregoing method.
  • the network device sends the first reconfiguration information to the terminal device.
  • the communication unit is used to support the communication device to communicate with other devices, and realize the receiving and/or sending functions. For example, receiving the first overheating indication information sent by the terminal device.
  • the communication device may also include one or more memories, which are used for coupling with the processor and store necessary program instructions and/or data for the network device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the communication device may be a base station, and the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or interface.
  • the communication device may also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device executes any one of the second aspect or the second aspect.
  • the method used by the network device in the implementation mode is used to control the transceiver or the input/output circuit to send and receive signals.
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device executes any one of the second aspect or the second aspect.
  • a system which includes the aforementioned network equipment, terminal equipment, and communication device.
  • a computer-readable storage medium for storing a computer program, and the computer program includes instructions for executing a method in any one of the possible implementation manners of the first aspect to the second aspect.
  • a computer program product comprising: computer program code, when the computer program code runs on a computer, the computer can execute any one of the first to second aspects above. The method in the way.
  • the present application provides a chip device that includes a processor for supporting network equipment to implement the functions involved in the above aspects, for example, sending or processing data and/or data involved in the above methods information.
  • the chip device further includes a memory, which is used to store necessary program instructions and data of the network device.
  • the chip device may be composed of chips, or may include chips and other discrete devices.
  • this application provides a chip device that includes a processor for supporting terminal equipment to implement the functions involved in the above aspects, for example, sending or processing data and/or data involved in the above methods information.
  • the chip device further includes a memory for storing necessary program instructions and data of the terminal device.
  • the chip device may be composed of chips, or may include chips and other discrete devices.
  • the network device After the network device receives the overheating indication information reported by the terminal device, it can adjust the uplink reference signal antenna rotation capability of the terminal device to reduce the power consumption of the terminal device and solve the terminal device overheating problem.
  • Fig. 1 is a schematic diagram of a wireless communication network topology in an embodiment of the application
  • Figure 2 is a schematic diagram of a radio frequency link in an embodiment of the application
  • FIG. 3 is a schematic diagram of a transmitting antenna of a terminal device in an embodiment of the application
  • FIG. 4 is a schematic diagram of a process of sending auxiliary information from a terminal device to a network device in an embodiment of the application
  • FIG. 5 is a schematic diagram of an embodiment of an overheat indication method in an embodiment of the application.
  • FIG. 6 is a schematic diagram of another embodiment of the overheat indication method in the embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a structure of a network device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another terminal device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another network device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the embodiment of the application provides an overheating indication method and related equipment. After receiving the auxiliary information reported by the terminal equipment, the network equipment can adjust the SRS antenna transmission capability of the terminal equipment to reduce the power consumption of the terminal equipment and solve the overheating of the terminal equipment. problem.
  • FIG. 1 is a schematic diagram of a wireless communication network topology in an embodiment of the application.
  • the wireless communication network 100 includes network devices 102-106 and terminal devices 108-122.
  • the network devices 102-106 can communicate with each other through backhaul links (such as the network devices 102-106 with each other).
  • the backhaul link can be a wired backhaul link (for example, optical fiber, copper cable), or a wireless backhaul link (for example, microwave).
  • the terminal devices 108-122 can communicate with the corresponding network devices 102-106 through wireless links (as shown by the broken lines between the network devices 102-106 and the terminal devices 108-122), and the network devices 102-106 can also be called base stations .
  • the network devices 102-106 are usually used as access devices to provide wireless access services for the terminal devices 108-122 that are usually user equipments.
  • each network device corresponds to a service coverage area (also called a cellular, as shown in each elliptical area in Figure 1), and terminal devices entering this area can communicate with the network device through wireless signals to Accept wireless access services provided by network equipment.
  • the terminal device in the overlapping area can receive wireless signals from multiple network devices, so these network devices can cooperate with each other to provide the terminal device service.
  • multiple network devices may use coordinated multipoint (CoMP) technology to provide services for terminal devices in the above-mentioned overlapping area.
  • CoMP coordinated multipoint
  • the service coverage area of the network device 102 and the network device 104 overlaps, and the terminal device 112 is within the overlapped area. Therefore, the terminal device 112 can receive data from the network device 102 and the network device 104.
  • the network device 102 and the network device 104 can cooperate with each other to provide services for the terminal device 112.
  • the service coverage areas of the network device 102, the network device 104, and the network device 106 have a common overlapping area, and the terminal device 120 is within the overlapping area, so the terminal device 120 can receive Upon receiving wireless signals from the network devices 102, 104, and 106, the network devices 102, 104, and 106 can cooperate with each other to provide services for the terminal device 120.
  • network equipment may also be called NodeB (NodeB), evolved node B (evolved nodeb, eNodeB), access point (access point, AP), etc.
  • NodeB NodeB
  • evolved node B evolved node B
  • eNodeB evolved node B
  • access point access point
  • AP access point
  • network equipment can be divided into macro network equipment for providing macro cells, micro network equipment for providing pico cells, and micro network equipment for providing micro cells. Femto cell (femto cell) network equipment, etc.
  • future network devices may also adopt other names.
  • the terminal devices 108 to 122 may be various wireless communication devices with wireless communication functions, such as but not limited to mobile cellular phones, cordless phones, personal digital assistants (PDAs), smart phones, notebook computers, tablet computers, wireless Data card, wireless modem (modulator demodulator, Modem), or wearable devices such as smart watches.
  • PDAs personal digital assistants
  • V2X vehicle-to-everything
  • This type of equipment is equipped with a wireless communication unit and has a wireless communication function, so it also belongs to the category of wireless communication equipment.
  • the terminal devices 108 to 122 may also be referred to as mobile stations, mobile devices, mobile terminals, wireless terminals, handheld devices, clients, and so on.
  • the network devices 102 to 106 and the terminal devices 108 to 122 may be configured with multiple antennas to support multiple input multiple output (MIMO) technology. Furthermore, the network equipment 102-106 and the terminal equipment 108-122 can support both single-user MIMO (single-user mimo, SU-MIMO) technology and multi-user MIMO (multi-user mimo, MU-MIMO). Among them, MU-MIMO can be implemented based on space division multiple access (SDMA) technology.
  • SDMA space division multiple access
  • the network equipment 102-106 and terminal equipment 108-122 can also flexibly support single input single output (SISO) technology, single input multiple output (SIMO) and multiple Multiple input single output (MISO) technology to achieve various diversity (such as but not limited to transmit diversity and receive diversity) and multiplexing technology.
  • the diversity technology can include, for example, but not limited to transmit diversity (TD). ) Technology and receive diversity (receive diversity, RD) technology.
  • the multiplexing technology may be a spatial multiplexing (spatial multiplexing) technology.
  • the above-mentioned various technologies may also include multiple implementation solutions.
  • transmit diversity technologies may include, for example, but not limited to, space-time transmit diversity (STTD), space-frequency transmit diversity (SFTD) ), Time Switched Transmit Diversity (TSTD), Frequency Switched Transmit Diversity (FSTD), Orthogonal Transmit Diversity (OTD), Cyclic Delay Diversity (CDD)
  • STTD space-time transmit diversity
  • SFTD space-frequency transmit diversity
  • TSTD Time Switched Transmit Diversity
  • FSTD Frequency Switched Transmit Diversity
  • OTD Orthogonal Transmit Diversity
  • CDD Cyclic Delay Diversity
  • LTE long term evolution
  • STBC space time block coding
  • SFBC space frequency block coding
  • CDD Cyclic Delay Diversity
  • transmit diversity also includes other multiple implementations. Therefore, the above introduction should not be understood as a limitation to the technical solution of the present invention, and the technical solution of the present invention should be understood as being applicable to various possible transmit diversity solutions.
  • the network equipment 102-106 and the terminal equipment 108-122 can use various wireless communication technologies to communicate, such as but not limited to time division multiple access (TDMA) technology, frequency division multiple access (frequency division multiple access) , FDMA) technology, code division multiple access (CDMA) technology, time division-synchronous code division multiple access (TD-SCDMA), orthogonal frequency division multiple access (orthogonal fdma, OFDMA) technology, single carrier frequency division multiple access (single carrier fdma, SC-FDMA) technology, space division multiple access (space division multiple access, SDMA) technology, as well as the evolution and derivative technologies of these technologies.
  • TDMA time division multiple access
  • frequency division multiple access frequency division multiple access
  • FDMA frequency division multiple access
  • CDMA code division multiple access
  • TD-SCDMA time division-synchronous code division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • SDMA space division multiple access
  • the above-mentioned wireless communication technology has been adopted by many wireless communication standards as radio access technology (RAT), thereby constructing various wireless communication systems (or networks) that are widely known today, including but not limited to WiFi, worldwide interoperability for microwave access (WiMAX), long term evolution (LTE), LTE advanced (LTE-A) and these wireless communication systems defined in the 802.22 series of standards
  • RAT radio access technology
  • WiMAX worldwide interoperability for microwave access
  • LTE long term evolution
  • LTE-A LTE advanced
  • 5G new radio 5G new radio
  • the technical solutions provided by the embodiments of the present invention can be applied to the foregoing various wireless communication technologies and wireless communication systems.
  • the terms "system” and "network” can be replaced with each other.
  • the wireless communication network 100 shown in FIG. 1 is only used as an example, and is not used to limit the technical solution of the present invention. Those skilled in the art should understand that in a specific implementation process, the wireless communication network 100 may also include other devices, and the number of network devices and terminal devices may also be configured according to specific needs.
  • FIG. 2 is a schematic diagram of a radio frequency link in an embodiment of the application.
  • a terminal device sending a signal to a network device
  • the baseband signal is first generated in the baseband, and then processed by the radio frequency link.
  • the radio frequency link generally includes a three-stage radio frequency integrated circuit and a power amplifier.
  • the duplexer/filter the baseband signal is processed to generate a radio frequency signal, and then the radio frequency signal is sent out through the antenna.
  • the process of receiving a signal by the terminal device is similar to the process of sending a signal, and will not be repeated here.
  • network equipment does not know exactly how many radio frequency links the terminal equipment has, but uses the term antenna for description. For example, when the terminal device actually has two transmitting radio frequency links, the terminal device supports up to two antennas at the same time for uplink communication with the network device. If the terminal device uses two antennas to communicate with the network device, in fact, each radio frequency link corresponds to one antenna. If the terminal device uses one antenna to communicate with the network device, the terminal device can use any uplink radio link to correspond to this antenna, or use two radio links at the same time to simulate an antenna, depending on the specific implementation of the terminal device , It is transparent to network equipment. The network device only needs to schedule which antenna or antennas the terminal device sends data on.
  • one terminal device supports one transmit radio frequency link (transmit, T), and two receive radio frequency links (receive, R) are referred to as t1r2.
  • T transmit radio frequency link
  • R receive radio frequency links
  • t1r2 receive radio frequency links
  • a terminal device supporting 2 transmitting RF links and 4 receiving RF links is called t2r4.
  • the number of receiving RF links in the terminal equipment will be greater than or equal to the number of transmitting RF links, and each receiving RF link is connected to an antenna (ie, the electromagnetic wave radiation unit), so t1r2 can also be understood as this
  • t1r2 can also be understood as this
  • t1r2 can also be understood as this
  • t2r4 can also be understood as having two transmitting radio frequency links and four antennas in the terminal device.
  • the antenna has the ability to transmit electromagnetic waves and receive electromagnetic waves. Therefore, the antenna, the transmitting antenna, and the receiving antenna in the embodiment of the present application can be regarded as the same thing.
  • the terminal equipment sends the uplink reference signal to the network equipment through the uplink channel, and the terminal equipment receives the downlink reference signal sent by the network equipment through the downlink channel.
  • the channel state is estimated in NR. This process is called channel estimation.
  • the network device selects appropriate transmission parameters according to the channel estimation results, and the transmission parameters include modulation and coding scheme index values (modulation and coding scheme, MCS), precoding matrix (precoding matrix, PM), and so on.
  • the terminal device can specifically send a sounding reference signal (SRS) to the network device. Perform channel estimation of the uplink channel.
  • the terminal device receives the channel state information reference signal (CSI-RS) sent by the network device, and sends a channel state information report (channel state information report, CSI report) to the network device for channel estimation of the downlink channel.
  • the terminal device can also perform downlink channel estimation by receiving the synchronization signal/physical/physical broadcast channel block (SS/PBCH Block) sent by the network device.
  • SS/PBCH Block synchronization signal/physical/physical broadcast channel block
  • a terminal device sends a sounding reference signal or a synchronization signal/broadcast channel block to a network device, and the network device performs channel estimation of the downlink channel through the reciprocity of the uplink and downlink channels. It should be noted that the terminal device can also use other reference signals for channel estimation. When other downlink reference signals are used for channel estimation, the terminal device sends feedback information of the corresponding downlink reference signal to the network device to complete the channel estimation.
  • SRS and CSI-RS are taken as examples for description, and are not limited. The SRS and CSI-RS are described separately below.
  • the network device configures the CSI-RS resource to the terminal device.
  • the network device uses the configured CSI-RS resource to send the CSI-RS to the terminal device through the downlink channel.
  • the terminal device receives the CSI-RS and processes the CSI-RS to estimate the current downlink channel state.
  • the terminal device generates a channel state information report (CSI-RS report) after processing, where the channel state information report includes one or more of the following types of information, such as rank indication (RI), precoding Matrix indication (precoding matrix indication, PMI), channel quality indication (channel quality indication, CQI), channel state information reference signal resource indicator (CSI-RS resource indicator, CRI), synchronization signal/broadcast channel block resource indication (synchronous signal/ physical broadcast channel block resource indicator, SS/PBCH BRI), layer indicator (layer indicator, LI), and layer 1 reference signal received power (layer 1 reference signal revceived power, L1-RSRP).
  • rank indication RI
  • precoding Matrix indication precoding matrix indication
  • CQI channel quality indication
  • CQI channel state information reference signal resource indicator
  • CSI-RS resource indicator CRI
  • synchronization signal/broadcast channel block resource indication synchronous signal/ physical broadcast channel block resource indicator, SS/PBCH BRI
  • layer indicator layer indicator, LI
  • layer 1 reference signal received power layer 1 reference signal revceive
  • the terminal device sends the channel state information report to the network device. This allows the network equipment to learn the current channel estimation result of the downlink channel and adjust the transmission parameters.
  • CSI-RS resources can be divided into the following three types: periodic CSI-RS resources, semi-persistent CSI-RS resources, and aperiodic CSI-RS resources. They are described separately below.
  • Periodic CSI-RS resources The network equipment configures the terminal equipment with periodic CSI-RS resources through radio resource control (RRC), which is referred to as RRC signaling for short.
  • RRC radio resource control
  • the network device When the configuration is completed, the network device will periodically send the CSI-RS, and the terminal device can periodically receive the CSI-RS.
  • Semi-persistent CSI-RS resources The network equipment configures the terminal equipment with semi-persistent CSI-RS resources through RRC signaling. At this time, the network equipment will not immediately send the CSI-RS.
  • the network device also needs to send to the terminal device the control information (media access control control element, MAC CE) of the media access control layer used to activate the semi-persistent CSI-RS resource, before the network device sends it periodically The CSI-RS.
  • the network device can also send the MAC CE that deactivates the semi-persistent CSI-RS resource to the terminal device to deactivate the semi-persistent terminal device.
  • CSI-RS resources When the network device no longer transmits the CSI-RS, the network device can also send the MAC CE that deactivates the semi-persistent CSI-RS resource to the terminal device to deactivate the semi-persistent terminal device.
  • Aperiodic CSI-RS resource The network device configures aperiodic CSI-RS resource to the terminal device through RRC signaling, but it will not send the CSI-RS immediately.
  • the network device also needs to send the DCI to trigger the aperiodic CSI-RS resource to the terminal device before the network device sends the CSI-RS once. It should be noted that, before each CSI-RS is sent by the network device, the DCI used to trigger the aperiodic CSI-RS resource needs to be sent to the terminal device.
  • the network device configures SRS resources to the terminal device, and the terminal device uses the SRS resource to send the SRS to the network device. After receiving the SRS, the network equipment analyzes and measures it to obtain the current channel estimation result of the uplink channel and adjust the transmission parameters.
  • SRS resources can be divided into the following three types: periodic SRS resources, aperiodic SRS resources, and semi-persistent SRS resources. They are described separately below.
  • Periodic SRS resources Network equipment configures periodic SRS resources to terminal equipment through RRC signaling. When the configuration is completed, the terminal device will periodically send the SRS, and the network device can periodically receive the SRS.
  • Aperiodic SRS resource The network device configures the aperiodic SRS resource to the terminal device through RRC signaling, but the terminal device does not immediately send the SRS.
  • the network device also needs to send the DCI to trigger the aperiodic SRS resource to the terminal device before the terminal device sends the SRS once. It should be noted that, before the terminal device sends the SRS each time, the network device needs to send the DCI to the terminal device to trigger the aperiodic SRS resource.
  • Semi-persistent SRS resources The network equipment configures the terminal equipment with semi-persistent SRS resources through RRC signaling. At this time, the terminal equipment will not immediately send the SRS.
  • the network device also needs to send to the terminal device the control information (media access control control element, MAC CE) used to trigger the media access control layer of the non-periodic SRS resource before the terminal device periodically sends the SRS .
  • the network device may also send the MAC CE that deactivates the semi-persistent SRS resource to the terminal device to deactivate the semi-persistent SRS resource in the terminal device.
  • TDD time division duplexing
  • the SRS resource configuration information configured by the network device to the terminal device also indicates the number of transmitting antennas used by the terminal device to transmit SRS to the network device, and the terminal device transmits the SRS to the network device according to the transmitting antenna indicated by the SRS resource.
  • FIG. 3 is a schematic diagram of a transmitting antenna of a terminal device in an embodiment of the application.
  • the terminal device is equipped with a radio frequency transmitting circuit and four transmitting antennas.
  • the radio frequency transmitting circuit can be connected to any transmitting antenna to transmit electromagnetic waves to the network device.
  • the channel status between the different transmitting antennas and the network device may be different.
  • an antenna rotation mechanism is introduced, specifically: the radio frequency circuit in the terminal device switches between different transmitting antennas, and the terminal device continuously transmits multiple SRSs, which are transmitted to the network device through different transmitting antennas. .
  • the network equipment can determine which transmitting antenna has a better channel status with the network equipment according to the signal quality of the SRS.
  • the network equipment will select the antenna with the better channel status. The priority is increased so that the terminal device preferentially uses an antenna with a better channel state to receive downlink data.
  • the antenna rotation capabilities of the terminal devices are also different.
  • the SRS antenna rotation capability is specified as follows: t1r2, t1r4, t2r4, t1r4-t2r4, t1r1, t2r2 or t4r4, etc.
  • t1r2 is a transmitting radio frequency link and two antennas in the terminal device.
  • the terminal device can use a single port to send one SRS at a time.
  • a radio frequency link and the first antenna, the second transmission of SRS uses the first radio frequency link and the second antenna.
  • t2r4 means that the terminal equipment has two transmitting radio frequency links and four antennas.
  • the terminal equipment can use dual ports to transmit one SRS each time. To complete the round transmission, it needs to transmit twice, that is, the first radio frequency link is used for the first SRS transmission. With the second radio frequency and the first antenna and the second antenna, the second transmission of SRS uses the first radio frequency link and the second radio frequency link, the third antenna and the fourth antenna.
  • t1r4-t2r4 means that the terminal device supports both t1r4 SRS antenna rotation and t2r4 SRS antenna rotation.
  • a terminal device When a terminal device accesses the cell where the network device is located, it will report its radio capability to the network device, including each band in each band combination supported by the terminal device Report SRS antenna rotation (sounding reference signal antenna switch) capability.
  • the network device can configure corresponding SRS resources for the SRS antenna rotation transmission purpose for the terminal device according to the SRS antenna rotation transmission capability reported by the terminal device.
  • the code is "supportedSRS-TxPortSwitch t1r2".
  • the SRS antenna rotation capability reported by the terminal device to the network device is to support one radio frequency link and two antennas.
  • the network device configures the terminal device according to the SRS antenna rotation capability reported by the terminal device SRS resources used for SRS antenna rotation.
  • terminal equipment can also guarantee the communication quality with network equipment in the case of multiple antennas.
  • the more antennas of the network equipment and terminal equipment the better the communication performance.
  • the power consumption of the terminal equipment also increases.
  • large power consumption brings about the problem of large heat generation, which affects the performance of the terminal equipment.
  • the terminal device can report auxiliary information (user equipment assistance information) to the network device to notify the network device of the capability or configuration that the terminal device expects to reduce at this time.
  • auxiliary information Since the auxiliary information is sent when the terminal device is overheated, it also It can be called overheating indication information.
  • the network device reconfigures the terminal device according to the reported overheating indication information.
  • FIG. 4 is a schematic diagram of a flow of sending auxiliary information from a terminal device to a network device in an embodiment of this application.
  • Step 401 The network device sends RRC connection reconfiguration information to the terminal device.
  • the network device sends RRC connection reconfiguration information to the terminal device.
  • the RRC connection reconfiguration information includes related configuration information when the terminal device is overheated, such as indicating whether the terminal device can send overheating-related indication information to the network device. And the value of the prohibition timer when the terminal device is overheated.
  • Step 402 The terminal device sends overheating indication information to the network device.
  • step 402 when the RRC connection reconfiguration information sent by the network device to the terminal device indicates that the terminal device can send overheating indication information to the network device, when the terminal device is in the device overheating state, the terminal device can send an overheating indication to the network device information.
  • the overheating indication information is used to instruct the network device to solve the overheating problem of the terminal device.
  • the overheating indication information reported by the terminal device may include: uplink and/or Downlink terminal equipment category (UE category), and/or the maximum number of uplink and/or downlink secondary (component carrier, CC)/secondary cells (SCell).
  • UE category Uplink and/or Downlink terminal equipment category
  • SCell secondary cells
  • the type of uplink and/or downlink terminal equipment also includes multiple-input multiple-output (multiple-input multiple-output layer, MIMO layer).
  • the overheating indication information reported by the terminal equipment may include: the maximum number of uplink and/or downlink secondary (secondary) carriers (CC)/secondary cells (SCell), and/or, each frequency band (low frequency FR1 and high frequency FR2) The maximum aggregate bandwidth for uplink and/or downlink, and/or the maximum number of uplink and/or downlink MIMO layers for each serving cell on each frequency band (low frequency FR1 and high frequency FR2).
  • the terminal device when a terminal device has an overheating problem, the terminal device reports overheating indication information to the network device, and the network device can reconfigure the terminal device to use low-capacity MIMO based on the overheating indication information, for example:
  • the downlink MIMO capability is 4*4MIMO
  • the uplink MIMO capability is 4*4MIMO.
  • the terminal equipment using the uplink MIMO capability is 4*4MIMO
  • the terminal equipment needs to open 4 transmission radio links and 4 transmitting antennas
  • the terminal equipment uses the uplink MIMO capability after receiving the reconfiguration information is 2*2MIMO
  • the terminal equipment is for low capacity 2*2MIMO only needs 2 transmitting RF links and 2 transmitting antennas, so it can reduce power consumption and solve the problem of overheating.
  • adjusting the MIMO capability and adjusting the SRS antenna rotation capability are decoupled. If the SRS antenna rotation capability configured by the terminal device before overheating is t2r4, after receiving the reconfiguration information sent by the network device, it still needs to turn on 2
  • the transmitting radio frequency link and 4 transmitting antennas cannot reduce power consumption and solve the problem of overheating.
  • the terminal device cannot fallback the ability of the SRS antenna to transmit in turn, which causes the terminal device to be unable to effectively solve the overheating problem.
  • the terminal device closes the corresponding radio link and antenna according to the reconfiguration information.
  • the terminal device can no longer use the SRS resources configured in the terminal device.
  • the completion of the antenna round sends. That is, the terminal equipment at this time cannot support normal antenna rotation, resulting in a waste of some SRS resources.
  • the terminal device performs SRS antenna rotation for the purpose of obtaining correct channel estimation results, when the terminal device sends SRS to the network device through the closed radio frequency link and antenna, the channel is inconsistent with the channel that the terminal device can actually use , The quality of the two channels is inconsistent, resulting in an error in the channel estimation result.
  • the network equipment using the channel estimation result to schedule data will also increase the bit error rate and affect the communication quality.
  • the embodiments of the present application propose a solution.
  • the network device can adjust the SRS antenna rotation capability of the terminal device after receiving the overheating indication information reported by the terminal device to reduce the terminal device's function. To solve the problem of overheating of terminal equipment.
  • FIG. 5 is a schematic diagram of an embodiment of an overheating indication method in an embodiment of the present application.
  • An overheating indication method provided by an embodiment of the present application includes:
  • a terminal device sends first overheating indication information to a network device.
  • the terminal device when the terminal device is in an overheating state and the network device allows the terminal device to send overheating indication information to the network device, the terminal device sends first overheating indication information to the network device, and the first overheating indication information is carried in the RRC information. Lingzhong.
  • the first overheating indication information is used to indicate that the terminal device needs not to support the SRS antenna alternate transmission capability.
  • the network equipment After receiving the first overheating indication information, the network equipment can learn from the RRC signaling itself that carries the first overheating indication information that the terminal equipment that sends the first overheating indication information needs not to support the SRS antenna rotation capability, that is, the network equipment When receiving the RRC signaling carrying the overheating indication information, the terminal device that sends the RRC signaling by default needs not to support the SRS antenna rotation capability.
  • the first overheating indication information may also carry indication information of not supporting the SRS antenna rotation transmission capability, and the network device may learn that the terminal device needs not to support the SRS antenna rotation transmission capability according to the SRS antenna rotation transmission capability indication information.
  • the non-supported SRS antenna rotation capability indication information may be the following code: "ENUMERATED supported SRS-TxPortSwitch ⁇ notsupported ⁇ OPTIONAL".
  • the non-supporting SRS antenna rotation capability can be divided into the following two situations: one is the SRS antenna rotation capability that does not support all frequency band resources; the other is the SRS antenna rotation capability that does not support some frequency band resources, such as frequency division FDD-LTE in frequency division duplexing-long term evolution (FDD-LTE) B1, 2, 3, 4, 5, 6, 7, 8, 12, 17, 18, 19, 20, or 26 At least one of the frequency bands.
  • the network equipment can configure the SRS antenna rotation capability of which frequency band resources the terminal equipment does not support according to the actual situation of the current network, or according to all frequency band resource indications or partial frequency band resource indications carried in the first overheating indication information of the terminal equipment.
  • the network device determines whether the first overheating indication information carries an indication of all frequency band resources, the network device indicates that the terminal device does not support the SRS antenna rotation capability of all frequency band resources;
  • the network device indicates that the terminal device does not support the SRS antenna rotation capability of the partial frequency band resource, and the specific frequency band resource not supported is determined by the partial frequency band resource indicator.
  • the first overheating indication information also carries an indication of reducing the MIMO layer.
  • the network device sends first reconfiguration information to the terminal device.
  • the network device after receiving the first overheating indication information sent by the terminal device, the network device sends the first reconfiguration information to the terminal device, and the terminal device does not support the SRS antenna rotation capability according to the first reconfiguration information.
  • the first reconfiguration information may be carried in downlink control information (DCI), reference signals (RS), media access control control element (MAC CE) or radio resources Any one of control information (radio resource control, RRC), which type of signaling is carried, is determined by the type of SRS resource configured for SRS antenna rotation in the current terminal device, and is used for SRS antenna rotation.
  • the SRS resource is hereinafter referred to as the SRS resource for short, and the network device learns the SRS resource type according to the first overheating indication information reported by the terminal device.
  • the first reconfiguration information is carried in RRC signaling; when the configured SRS resource is a non-periodic SRS resource, the first reconfiguration information is carried in DCI signaling Medium; when the configured SRS resource is a semi-persistent SRS resource, the first reconfiguration information is carried in the MAC CE signaling.
  • the network device can achieve the effect that the terminal device does not support the ability of SRS antenna rotation by not sending the DCI signaling to activate the aperiodic SRS resource. ; It is also possible to send the first reconfiguration information carried in the DCI signaling, the first reconfiguration information is used to deactivate (deactivate) the aperiodic SRS resources, to achieve the effect of the terminal device does not support the ability of SRS antenna rotation . That is, when the SRS resource configured in the terminal device is an aperiodic SRS resource, step 502 is an optional step.
  • the SRS resource is used for SRS antenna rotation, and there is a step of selecting a transmitting antenna to transmit SRS in SRS antenna rotation, the SRS resource can also be called antenna selection (antenna selection) Functional SRS resources.
  • the first reconfiguration information is also used to adjust the uplink MIMO capability and/or the downlink MIMO layer (MIMO layer) in the terminal device.
  • adjusting the uplink MIMO capability of the terminal device is: adjusting the number of transmitting antennas and the number of transmitting radio frequency links in the terminal device;
  • adjusting the downlink MIMO capability of the terminal device is: adjusting the number of receiving antennas and the number of receiving radio frequency links in the terminal device.
  • the case of adjusting the number of transmit antennas or the number of receive antennas is to reduce the reduction value indicated by the MIMO layer indicator to be lower than the number of antennas of the current terminal device.
  • the terminal device adjusts the number of receiving antennas from 4 to 2 according to the first reconfiguration information.
  • the terminal device does not support the SRS antenna rotation transmission capability.
  • the terminal device does not support the ability of SRS antenna rotation transmission can be achieved through various methods. Examples are as follows:
  • the terminal equipment When the internal configuration of the terminal equipment is periodic SRS resources, the terminal equipment will release (fallback) the periodic SRS resources according to the first reconfiguration information carried in the RRC signaling. When the terminal equipment releases the SRS resources, the terminal equipment The device can no longer perform SRS antenna rotation, which realizes the effect that the terminal device does not support the ability of SRS antenna rotation.
  • the SRS resource may also be deactivated according to the first reconfiguration information, so that the terminal device can no longer perform SRS antenna rotation, and realize the result that the terminal device does not support the SRS antenna rotation capability.
  • the terminal device When the internal configuration of the terminal device is the aperiodic SRS resource, the terminal device releases the aperiodic SRS resource according to the first reconfiguration information carried in the DCI signaling. When the terminal device releases the SRS resource, the terminal device The SRS antenna rotation transmission is no longer possible, and the effect that the terminal device does not support the SRS antenna rotation transmission capability is realized.
  • the terminal device when the terminal device is configured with aperiodic SRS resources, each time the terminal device performs SRS antenna rotation, it needs to receive the SRS resource activation instruction sent by the network device, and the instruction is carried in the DCI signaling. Therefore, the network device may not send the SRS resource command, so that the terminal device can no longer perform SRS antenna rotation, and realize the result that the terminal device does not support the SRS antenna rotation capability.
  • the terminal device releases the semi-persistent SRS resource according to the first reconfiguration information carried in the MAC CE signaling. After the terminal device releases the SRS resource, the terminal The device can no longer perform SRS antenna rotation, which realizes the effect that the terminal device does not support the ability of SRS antenna rotation.
  • the SRS resource can also be deactivated according to the first reconfiguration information, so that the terminal device can no longer perform SRS antenna rotation, which realizes the effect that the terminal device does not support the ability of SRS antenna rotation.
  • the specific process of releasing the SRS resource may be deleting the SRS resource configured in the terminal device.
  • the terminal device When the first overheating indication information indicates: the SRS antenna rotation capability of all frequency band resources is not supported, the terminal device releases the SRS resources of all frequency band resources; when the first overheating indication information indicates: SRS not supporting some frequency band resources With the antenna rotation capability, the terminal device releases the SRS resources of the corresponding part of the frequency band resources.
  • the network device sends a downlink reference signal to the terminal device.
  • the network device since the terminal device no longer supports the SRS antenna alternate transmission capability, the network device cannot obtain the result of uplink channel estimation with the terminal device through the SRS antenna alternate transmission. Therefore, the network equipment can initiate downlink channel estimation and obtain the result of downlink channel estimation. According to the channel dissimilarity, the network device can obtain the uplink channel estimation result according to the downlink channel estimation result. It should be noted that in a non-TDD system, the result of uplink channel estimation can also be obtained from the result of downlink channel estimation.
  • the network device sends a downlink reference signal to the terminal device, and the terminal device performs downlink channel estimation by receiving the downlink reference signal.
  • the downlink reference signal may be a CSI-RS or other downlink reference signals, which is not limited here.
  • the terminal device sends feedback information of the downlink reference signal to the network device.
  • the terminal device determines the feedback information of the downlink reference signal according to the downlink reference signal.
  • the terminal device sends the feedback information of the downlink reference signal to the network device through the physical uplink control channel (PUCCH) or the physical uplink shared channel (PUSCH), where the feedback information of the downlink reference signal includes the downlink channel
  • the feedback information of the downlink reference signal is a channel state information report (CSI-RS report).
  • the network device obtains the result of downlink channel estimation and the result of uplink channel estimation according to the feedback information of the downlink reference signal.
  • the terminal device when the terminal device is overheated inside the device, it sends first overheating indication information to the network device.
  • the first overheating indication information is used to indicate that the current terminal device needs to not support the SRS antenna rotation capability.
  • the overheating indication information generates the first reconfiguration information, and the terminal device does not support the SRS antenna rotation capability according to the first reconfiguration information. After the terminal device does not support the SRS antenna alternate transmission capability, the power consumption of the terminal device is reduced, and the overheating problem of the terminal device is effectively solved.
  • the network device can also obtain the uplink channel estimation result and the downlink channel estimation result by sending the downlink reference signal to the terminal device and receiving the feedback information of the downlink reference signal, and the guaranteed data The accuracy of transmission.
  • the terminal device has an overheating problem, and after sending the first overheating indication information to the network device, the network device sends the first reconfiguration information to the terminal device, and the terminal device does not support the SRS antenna rotation capability according to the first reconfiguration information. After the network device sends the first reconfiguration information to the terminal device, the network device may also reconfigure the SRS resource used for SRS rotation to the terminal device.
  • FIG. 6, is a schematic diagram of another embodiment of an overheating indication method in an embodiment of the application. Another method of overheating indication provided in the embodiment of the present application includes:
  • a network device sends first reconfiguration information to a terminal device.
  • step 501 The content in this embodiment is similar to step 501, and will not be repeated here.
  • the network device After the network device sends the first reconfiguration information to the terminal device, the network device starts a timer.
  • the time set by the timer is called the first time interval.
  • the first time interval can usually be set to: 0.5 second, 1 second, 5 Seconds, 10 seconds, 30 seconds, 60 seconds, etc.
  • the network device may encounter various situations, which are described below:
  • the network device receives the overheating indication information sent by the terminal device, indicating that the temperature of the terminal device is normal, and step 602 is executed;
  • the network device receives the overheating indication information sent by the terminal device, indicating that the temperature of the terminal device is overheated, and step 603 is executed;
  • the network device does not receive the overheating indication information sent by the terminal device, and step 604 is executed.
  • the terminal device sends second overheating indication information to the network device.
  • the terminal device may send overheating indication information to the network device to inform the network device that the current terminal device temperature has returned to normal.
  • the overheating indication information is called second overheating indication information.
  • the terminal device sends third overheating indication information to the network device.
  • the terminal device when the temperature of the terminal device is still overheating, can send overheating indication information to the network device to inform the network equipment that the current terminal device temperature is still overheating.
  • This overheating indication information is called the third overheating indication information .
  • the network device After the terminal device sends the third overheating indication information to the network device, the network device resets the timer according to the third overheating indication information. After resetting the timer, the steps performed by the network device are similar to those after the network device starts the timer in step 601, and will not be repeated here.
  • the network device sends second reconfiguration information to the terminal device.
  • the network device has learned that the terminal device is already in a normal temperature state at this time, so the network device can send second reconfiguration information to the terminal device.
  • the second reconfiguration information is used to reconfigure the terminal device for SRS SRS resources sent by the antenna in turn. After the terminal device reconfigures the SRS resource according to the second reconfiguration information, the terminal device supports the SRS antenna rotation capability.
  • the second reconfiguration information can also readjust the uplink MIMO capability and/or downlink MIMO layer (MIMO layer) in the terminal device.
  • adjusting the uplink MIMO capability of the terminal device is: adjusting the number of transmitting antennas and the number of transmitting radio frequency links in the terminal device;
  • adjusting the downlink MIMO capability of the terminal device is: adjusting the number of receiving antennas and the number of receiving radio frequency links in the terminal device.
  • the situation of adjusting the number of transmitting antennas or the number of receiving antennas is that the decrease value indicated by the decrease MIMO layer indication is lower than the number of antennas of the current terminal device.
  • the decrease MIMO layer indication in the first overheating indication information is reduced from 4 layer to 2 layer
  • the terminal device adjusts the number of receiving antennas from 2 to 4 according to the second reconfiguration information.
  • the network device can reconfigure the terminal device with SRS resources for SRS antenna alternate transmission. To ensure that the terminal equipment after the temperature returns to normal, the SRS antenna rotation ability can be restored in time.
  • an embodiment of the present application also provides a terminal device 700, including:
  • the sending module 701 is configured to send first overheating indication information to the network device when the terminal device is in an overheating state;
  • the processing module 703 is configured to not support the uplink reference signal antenna rotation capability according to the first reconfiguration information.
  • the first overheating indication information specifically includes the indication information of the capability of not supporting the uplink reference signal antenna rotation, wherein the indication information of the antenna rotation capability not supporting the uplink reference signal is used to request the network device to send the first retransmission capability. Configuration information.
  • the first reconfiguration information is carried in any one of downlink control information DCI, medium access control layer control information MAC CE, or radio resource control information RRC,
  • the first reconfiguration information is specifically used by the terminal device to release uplink reference signal rotation resources in the terminal device or not to perform uplink reference signal rotation according to the first reconfiguration information, Among them, after the terminal device releases the uplink reference signal rotation resource in the terminal device, the terminal device does not support the uplink reference signal antenna rotation transmission capability.
  • the processing module 703 is specifically configured to release the uplink reference signal rotation resources of all frequency band resources according to the first reconfiguration information carrying all frequency band resource indications, where the terminal device releases the uplink reference signal rotation resources of all frequency band resources in the terminal device , The terminal device does not support the uplink reference signal antenna rotation capability in all frequency band resources, or
  • the first overheating indication information when the first overheating indication information also carries an indication of reducing the number of MIMO layers,
  • the processing module 703 adjusts the number of antennas and/or the number of radio frequency links of the terminal device according to the first reconfiguration information.
  • the receiving module 702 is further configured to receive a downlink reference signal sent by a network device, where the downlink reference signal is used for downlink channel estimation;
  • the sending module 701 is further configured to send feedback information of the downlink reference signal to the network device, where the feedback information of the downlink reference signal carries the result of the downlink channel estimation.
  • the receiving module 702 is also used for the network device to start a timer. After the first time interval has elapsed, the receiving module 702 receives second reconfiguration information sent by the network device. The second reconfiguration information is used to reconfigure the uplink reference in the terminal device. Signal rotation resource, where the terminal device supports the uplink reference signal antenna rotation transmission capability after the terminal device reconfigures the uplink reference signal rotation resource in the terminal device.
  • the sending module 701 is further configured to start a timer by the network device, and within the first time interval, when the terminal device is in a normal temperature state, the sending module 701 sends second overheating indication information to the network device;
  • the receiving module 702 is further configured to receive second reconfiguration information sent by the network device.
  • the second reconfiguration information is used to reconfigure the uplink reference signal rotation resource in the terminal device.
  • the terminal device reconfigures the uplink reference in the terminal device. After the resources are transmitted in turn, the terminal device supports the ability to transmit the uplink reference signal antenna in turn.
  • the sending module 701 is further configured to: the network device starts a timer, and in the first time interval, when the terminal device is in an overheating state, the sending module 701 sends third overheating indication information to the network device;
  • the receiving module 702 is also used to reset the timer by the network device. After the first time interval, the receiving module 702 receives the second reconfiguration information sent by the network device. The second reconfiguration information is used to reconfigure the uplink in the terminal device.
  • Reference signal rotation resource where the terminal device supports the uplink reference signal antenna rotation transmission capability after the terminal device reconfigures the uplink reference signal rotation resource in the terminal device.
  • the second reconfiguration information is also used to reconfigure the number of MIMO layers in the terminal device
  • the processing module 703 is further configured to adjust the number of antennas and/or the number of radio frequency links of the terminal device according to the second reconfiguration information.
  • an embodiment of the present application also provides a network device 800, including:
  • the receiving module 801 is configured to receive the first overheating indication information sent by the terminal device;
  • the sending module 802 is configured to send first reconfiguration information to the terminal device according to the first overheating indication information, so that the terminal device does not support the uplink reference signal antenna rotation capability.
  • the first overheating indication information specifically includes the indication information of the capability of not supporting the uplink reference signal antenna rotation, wherein the indication information of the antenna rotation capability not supporting the uplink reference signal is used to request the network device to send the first retransmission capability. Configuration information.
  • the first reconfiguration information is carried in any one of downlink control information DCI, medium access control layer control information MAC CE, or radio resource control information RRC,
  • the first reconfiguration information is specifically used by the terminal device to release uplink reference signal rotation resources in the terminal device or not to perform uplink reference signal rotation according to the first reconfiguration information, Among them, after the terminal device releases the uplink reference signal rotation resource in the terminal device, the terminal device does not support the uplink reference signal antenna rotation transmission capability.
  • the sending module 802 is specifically configured to send first reconfiguration information carrying all frequency band resource indications to the terminal device, so that the terminal device releases the uplink reference of all frequency band resources in the terminal device according to the first reconfiguration information carrying all frequency band resource indications Signal rotation resources, where the terminal device does not support the uplink reference signal antenna rotation capability in all frequency band resources after the terminal device releases the uplink reference signal rotation resources of all frequency band resources in the terminal device, or
  • the first reconfiguration information carrying the indication of the partial frequency band resource is sent to the terminal device, so that the terminal device releases the uplink reference signal rotation resource of the partial frequency band resource in the terminal device according to the first reconfiguration information carrying the indication of the partial frequency band resource, wherein, After the terminal device releases the uplink reference signal rotation resource of some frequency band resources in the terminal device, the terminal device does not support the uplink reference signal antenna rotation ability of some frequency band resources.
  • the first reconfiguration information when the first overheating indication information carries an indication to reduce the number of MIMO layers, the first reconfiguration information is also used to instruct the terminal device to adjust the terminal device according to the first reconfiguration information The number of antennas and/or the number of RF links.
  • the network device further includes a processing module
  • the sending module 802 is further configured to send a downlink reference signal to a terminal device, where the downlink reference signal is used for downlink channel estimation;
  • the receiving module 801 is further configured to receive feedback information of a downlink reference signal sent by a terminal device, where the feedback information of the downlink reference signal carries a result of downlink channel estimation;
  • the processing module 803 is configured to obtain the result of uplink channel estimation according to the feedback information of the downlink reference signal.
  • the sending module 802 is also used for the network device to start the timer, and after the first time interval, the sending module 802 sends second reconfiguration information to the terminal device, the second reconfiguration information is used to reconfigure the uplink reference signal in the terminal device Rotate transmission resources, where the terminal device supports the uplink reference signal antenna rotation transmission capability after the terminal device reconfigures the uplink reference signal rotation resource in the terminal device.
  • the receiving module 801 is also used for the network device to start a timer. In the first time interval, the receiving module 801 receives the second overheating indication information sent by the terminal device, and the second overheating indication information is sent by the terminal device when the temperature is normal. ;
  • the sending module 802 is further configured to send second reconfiguration information to the terminal device.
  • the second reconfiguration information is used to reconfigure the uplink reference signal round transmission resources in the terminal device.
  • the terminal device reconfigures the uplink reference signal in the terminal device. After the resources are transmitted in turn, the terminal device supports the ability to transmit uplink reference signal antennas in turn.
  • the receiving module 801 is also used for the network device to start a timer. In the first time interval, the receiving module 801 receives the third overheating indication information sent by the terminal device, and the third overheating indication information is sent when the terminal device is in an overheating state. ;
  • the sending module 802 is also used to reset the timer by the network device. After the first time interval has elapsed, the sending module 802 sends second reconfiguration information to the terminal device.
  • the second reconfiguration information is used to reconfigure the uplink reference in the terminal device.
  • Signal rotation resource where the terminal device supports the uplink reference signal antenna rotation transmission capability after the terminal device reconfigures the uplink reference signal rotation resource in the terminal device.
  • the second reconfiguration information is also used to reconfigure the MIMO layer in the terminal device. MIMO layers are counted so that the terminal device adjusts the number of antennas and/or the number of radio frequency links of the terminal device according to the second reconfiguration information.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiment.
  • FIG. 9 only shows the main components of the terminal device.
  • the terminal device 90 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the above method embodiments, such as According to the first reconfiguration information, the uplink reference signal antenna rotation capability is not supported.
  • the memory is mainly used to store software programs and data, for example, to store the uplink reference signal rotation resources described in the foregoing embodiments.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 9 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and/or a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device. , Execute the software program, and process the data of the software program.
  • the processor in FIG. 9 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as buses.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiving function can be regarded as the transceiving unit 901 of the terminal device 90, for example, for supporting the terminal device to perform the aforementioned receiving function and sending function.
  • the chip with processing function is regarded as the processor 902 of the terminal device 90.
  • the terminal device 90 includes a transceiver unit 901 and a processor 902.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the device for implementing the receiving function in the transceiver unit 901 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 901 can be regarded as the sending unit. That is, the transceiver unit 901 includes a receiving unit and a sending unit. It can also be called a receiver, an input port, a receiving circuit, etc., and a sending unit can be called a transmitter, a transmitter, or a transmitting circuit.
  • the processor 902 may be used to execute instructions stored in the memory to control the transceiver unit 901 to receive signals and/or send signals, so as to complete the functions of the terminal device in the foregoing method embodiment.
  • the function of the transceiver unit 901 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station can be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the base station 1000 may include one or more radio frequency units, such as a remote radio unit (RRU) 1001 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 1002.
  • RRU 1001 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 10011 and a radio frequency unit 10012.
  • the RRU 1001 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending first reconfiguration information to terminal devices.
  • the 1002 part of the BBU is mainly used for baseband processing and control of the base station.
  • the RRU 1001 and the BBU 1002 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1002 is the control center of the base station, and can also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing unit) 1002 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 1002 can be composed of one or more single boards, and multiple single boards can jointly support a radio access network (such as an LTE network) with a single access indication, or can respectively support radio access of different access standards. Access to the network (such as LTE network, 5G network or other networks).
  • the BBU 1002 also includes a memory 10021 and a processor 10022.
  • the memory 10021 is used to store necessary instructions and data.
  • the memory 10021 stores the updated configuration information in the above-mentioned embodiment.
  • the processor 10022 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 10021 and the processor 10022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • FIG. 11 shows a schematic structural diagram of a communication device 1100.
  • the communication device 1100 may be used to implement the method described in the foregoing method embodiment, and reference may be made to the description in the foregoing method embodiment.
  • the communication device 1100 may be a chip, a network device (such as a base station), a terminal device or a core network device, or other network devices.
  • the communication device 1100 includes one or more processors 1101.
  • the processor 1101 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips, etc.), execute software programs, and process software program data.
  • the communication device may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the communication device may be a chip, and the transceiver unit may be an input and/or output circuit of the chip, or a communication interface. Chips can be used in terminals or base stations or other network equipment.
  • the communication device may be a terminal or a base station or other network equipment, and the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the communication apparatus 1100 includes one or more processors 1101, and the one or more processors 1101 can implement the method of the network device or the terminal device in the foregoing embodiment.
  • the communication device 1100 includes a device for releasing uplink reference signal rotation resources in the terminal device.
  • One or more processors may be used to release the uplink reference signal rotation resources in the terminal device.
  • the communication device 1100 includes a device for sending the first overheating indication information to the network device when the terminal device is in an overheating state.
  • the first overheating indication information refer to the related description in the foregoing method embodiment.
  • one or more processors determine the first overheating indication information.
  • the communication apparatus 1100 may be used to receive the second reconfiguration information sent by the network device.
  • the second reconfiguration information can be received through a transceiver, or an input/output circuit, or an interface of a chip.
  • processor 1101 may also implement other functions.
  • the processor 1101 may execute instructions to make the communication device 1100 execute the method described in the foregoing method embodiment.
  • the instructions can be stored in whole or in part in the processor, such as the instruction 1103, or in the memory 1102 coupled with the processor, such as the instruction 1104, or the communication device 1100 can be executed by the instructions 1103 and 1104 together. The method described in the examples.
  • the communication device 1100 may also include a circuit, and the circuit may implement the function of the network device or the terminal device in the foregoing method embodiment.
  • the communication device 1100 may include one or more memories 1102, on which instructions 1104 are stored, and the instructions may be executed on the processor, so that the communication device 1100 executes the methods described in the above method embodiments .
  • data may also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • one or more memories 1102 may store the first overheating indication information described in the foregoing embodiment.
  • the processor and memory can be set separately or integrated together.
  • the communication device 1100 may further include a transceiver unit 1105 and an antenna 1106.
  • the processor 1101 may be called a processing unit, and controls a communication device (terminal or base station).
  • the transceiver unit 1105 may be called a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the communication device through the antenna 1106.
  • the present application also provides a communication system, which includes the aforementioned one or more network devices, and, one or more terminal devices.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种过热指示方法以及相关设备。其中,本申请实施例提供的一种过热指示方法包括:当终端设备处于过热状态时,所述终端设备向网络设备发送第一过热指示信息;所述终端设备接收所述网络设备发送的第一重配置信息,其中所述第一重配置信息为所述网络设备根据所述第一过热指示信息生成的;所述终端设备根据所述第一重配置信息不支持上行参考信号天线轮发能力。网络设备在接收到终端设备上报的过热指示信息后,可以调整终端设备的上行参考信号天线轮发能力,以降低终端设备功耗,解决终端设备过热问题。

Description

一种过热指示方法以及相关设备 技术领域
本申请涉及通信领域,尤其涉及一种过热指示方法以及相关设备。
背景技术
为了应对无线宽带技术的挑战,保持第三代合作伙伴计划(3rd generation partnership project,3GPP)网络的领先优势,3GPP标准组在2016年底制定了下一代移动通信系统(next generation system)网络架构,称为第五代(5rd generation,5G)网络架构,还称为5g新通信协议(5g new radio,5g NR或NR)。在NR中,终端设备(user equipment,UE)在发送信号的时候,在基带生成基带信号后,会经过射频链路生成射频信号,然后经过天线发送出去。终端设备在接收信号的时候,也会有对应的射频接收链路。在NR中,网络设备和UE都可以通过多输入多输出(multiple input multiple output,MIMO)技术提升通信性能,又称为多天线技术。为了提升通信质量,引入了天线轮发机制。而为了更好的调度数据传输。NR中会对传输使用的信道状态进行估计,并且网络设备根据信道估计结果可以选择合适的传输参数,该过程称为信道估计(channel estimation)。在NR中,UE可以使用探测参考信号(sounding reference signal,SRS)进行上行信道估计。结合MIMO技术,当SRS资源支持SRS天线轮发能力时,终端设备可以使用该SRS资源进行SRS轮发,同时对多根天线进行信道估计。网络设备根据终端设备接入时上报的无线能力(radio capability)向终端设备配置SRS资源。SRS天线轮发能力还可以称为SRS天线选择(antenna selection)能力。
当出现终端设备内部过热问题,可以通过降低终端设备能力或配置来降温解决过热问题。终端设备可以向网络设备上报辅助信息(user equipment assistance information),用以通知网络设备此时终端设备所期望降低的能力或配置,该辅助信息由于是在终端设备处于过热状态时发送的,因此还可以称为过热指示信息。网络设备根据该上报的过热指示信息、对终端设备进行重配。
但终端设备过热时,网络设备对终端设备进行重配后,终端设备仍然支持上行参考信号天线轮发能力,终端设备仍然处于高功耗状态,无法解决过热问题。
发明内容
本申请实施例提供了一种过热指示方法以及相关设备,网络设备在接收到终端设备上报的辅助信息后,可以调整终端设备的SRS天线轮发能力,以降低终端设备功耗,解决终端设备过热问题。
第一方面,本申请实施例提供了一种过热指示方法,当网络设备向终端设备发送的RRC连接重配信息中,指示终端设备可以向网络设备发送过热指示信息后,终端设备处于设备内部过热状态时,该终端设备向网络设备发送第一过热指示信息,该第一过热指示信息承载于无线资源控制信息(radio resource control,RRC)中,该第一过热指示信息用于指示网络设备解决终端设备的过热问题,该无线资源控制信息还可以简称为RRC信令。该第一过热指示信息用于指示该终端设备需要不支持上行参考信号天线轮发能力,该上行参考信号可以为探测参考信号(sounding reference signal,SRS)。当该上行参考信号为SRS时,该第一过热指示信息用于指示该终端设备需要不支持SRS天线轮发能力。
该终端设备接收该网络设备发送的第一重配置信息,其中该第一重配置信息为该网络设备根据该第一过热指示信息生成的,该终端设备根据该第一重配置信息不支持上行参考信号天线轮发能力。当该上 行参考信号为SRS时,终端设备根据该第一重配置信息不支持SRS天线轮发能力。终端设备根据所述第一重配置信息不支持上行参考信号天线轮发能力,可以是将上行参考信号天线轮发能力去使能。
从上述第一方面中的技术方案可以看出,本申请实施例具有以下优点:终端设备在设备内部过热情况下,向网络设备发送第一过热指示信息,第一过热指示信息用于指示当前终端设备需要不支持上行参考信号天线轮发能力,网络设备根据第一过热指示信息生成第一重配置信息,终端设备根据第一重配置信息不支持上行参考信号天线轮发能力。终端设备不支持上行参考信号天线轮发能力,降低了终端设备的功耗,有效的解决终端设备过热问题。
结合第一方面,在第一方面实施例中,该第一过热指示信息具体包含不支持上行参考信号天线轮发能力指示信息,其中,该不支持上行参考信号天线轮发能力指示信息用于请求该网络设备发送该第一重配置信息。
具体的,当上行参考信号为SRS时,网络设备在接收第一过热指示信息后,可以根据承载有该第一过热指示信息的RRC信令本身,获知发送该第一过热指示信息的终端设备需要不支持SRS天线轮发能力,即网络设备接收到携带有过热指示信息的RRC信令时,默认发送该RRC信令的终端设备需要不支持SRS天线轮发能力。第一过热指示信息中还可以携带不支持SRS天线轮发能力指示信息,网络设备可以根据该不支持SRS天线轮发能力指示信息,获知终端设备需要不支持SRS天线轮发能力。终端设备可以通过不同的方式,使用第一过热指示信息请求网络设备发送第一重配置信息。提升了方案的灵活性。
结合第一方面,在第一方面实施例中,第一重配置信息可以承载于下行控制信息(downlink control information,DCI)、参考信号(reference signals,RS)、媒体接入控制层的控制信息(media access control control element,MAC CE)或无线资源控制信息(radio resource control,RRC)中的任意一种,具体承载于哪一种信令,由当前终端设备中所配置的用于上行参考信号天线轮发的上行参考信号轮发资源类型决定。
当上行参考信号为SRS时,用于SRS天线轮发的SRS资源在下文中简称为SRS资源,网络设备根据终端设备上报的第一过热指示信息获知该SRS资源类型。具体的:当配置的SRS资源为周期性SRS资源时,第一重配置信息承载于RRC信令中;当配置的SRS资源为非周期性SRS资源时,第一重配置信息承载于DCI信令中;当配置的SRS资源为半持续性SRS资源时,第一重配置信息承载于MAC CE信令中。
当该第一重配置信息承载于RRC信令时,该第一重配置信息具体用于该终端设备根据该第一重配置信息释放该终端设备中的该上行参考信号轮发资源或者不进行上行参考信号轮发,其中,该终端设备释放该终端设备中的该上行参考信号轮发资源后,该终端设备不支持该上行参考信号天线轮发能力。
当终端设备配置的SRS资源为非周期性SRS资源,网络设备可以通过不发送激活(activate)该非周期性SRS资源的DCI信令,达到该终端设备不支持SRS天线轮发能力的效果;也可以通过发送承载于DCI信令的第一重配置信息,该第一重配置信息用于去激活(deactivate)该非周期性SRS资源,达到该终端设备不支持SRS天线轮发能力的效果。根据上行参考信号轮发资源类型的不同,第一重配置信息可承载于不同的信令中,提升了方案的实现灵活性。
结合第一方面,在第一方面实施例中,终端设备根据网络设备发送的第一重配置信息,可以不支持上行参考信号轮发资源,具体可分为以下两种情况:一种是不支持全部频段资源的上行参考信号天线轮发能力,此时第一重配置信息中携带的是全部频段资源指示;另一种是不支持部分频段资源的上行参考信号天线轮发能力,此时第一重配置信息中携带的是部分频段资源指示。
终端设备根据携带全部频段资源指示的该第一重配置信息释放全部频段资源的该上行参考信号轮发资源,其中,该终端设备释放该终端设备中该全部频段资源的该上行参考信号轮发资源后,该终端设 备不支持该全部频段资源中的该上行参考信号天线轮发能力,或该终端设备根据携带部分频段资源指示的该第一重配置信息释放部分频段资源的该上行参考信号轮发资源,其中,该终端设备释放该终端设备中该部分频段资源的该上行参考信号轮发资源后,该终端设备不支持该部分频段资源中的该上行参考信号天线轮发能力。
具体的释放上行参考信号轮发资源的过程,可以为删除配置于终端设备内部的上行参考信号轮发资源。当第一过热指示信息指示的是:不支持全部频段资源的上行参考信号轮发天线轮发能力时,终端设备删除所有频段资源的上行参考信号轮发资源;当第一过热指示信息指示的是:不支持部分频段资源的上行参考信号轮发天线轮发能力,终端设备删除对应的部分频段资源的上行参考信号轮发资源。终端设备可以根据实际网络情况释放全部频段资源上的上行参考信号轮发资源,或者释放部分频段资源上的上行参考信号轮发资源,既可以实现快速的降温,也可以在保留部分上行参考信号轮发资源的情况下实现慢速的降温。获得了常用频段资源的信道估计结果,在保证常用频段资源下的通信质量,也通过不进行不常用频段资源的上行参考信号轮发,达到了降低功耗的目的。
结合第一方面,在第一方面实施例中,当该第一过热指示信息中还携带有降低多入多出层数(multiple-input multiple-output layer,MIMO layer)指示时,第一重配置信息还用于调整终端设备中上行MIMO能力和/或下行MIMO能力(MIMO layer)。具体的,调整终端设备中上行MIMO能力为:调整终端设备中的发送天线数目以及发射射频链路数目;调整终端设备中下行MIMO能力为:调整终端设备中的接收天线以及接收射频链路数目。
该终端设备根据该第一重配置信息调整该终端设备的发送天线数目以及发射射频链路数目,和/或该终端设备根据该第一重配置信息调整该终端设备的接收天线以及接收射频链路数目。
当终端设备处于过热状态时,网络设备除了指示终端设备释放上行参考信号轮发资源以降低功耗外,还可以指示终端设备调整MIMO能力,具体的,调整终端设备的射频链路和/或天线数目,以实现更进一步的降低功耗,使得终端设备的温度更快恢复正常。同时,该降低MIMO layer指示还可以携带在第一重配置信息中,简化步骤。
结合第一方面,在第一方面实施例中,终端设备接收网络设备发送的该第一重配置信息之后,由于终端设备已经不支持上行参考信号天线轮发能力,因此网络设备无法通过上行参考信号天线轮发获得与该终端设备之间的上行信道估计的结果。因此网络设备可以发起下行信道估计,获得下行信道估计的结果。根据信道互异性,网络设备可以根据该下行信道估计的结果获得上行信道估计的结果。需要说明的是,在非时分双工(time division duplexing,TDD)系统中,也可以通过下行信道估计的结果获得上行信道估计的结果。
终端设备接收该网络设备发送的下行参考信号,其中,该下行参考信号用于下行信道估计;终端设备通过接收该下行参考信号,进行下行信道估计;终端设备根据下行参考信号确定下行参考信号的反馈信息。终端设备通过物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)向网络设备发送下行参考信号的反馈信息,其中,下行参考信号的反馈信息包含下行信道估计的结果。需要说明的是,该下行参考信号可以为信道状态信息参考信号(channel state information reference signal,CSI-RS),还可以为其它的下行参考信号,例如:同步信号/广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH Block)。当下行参考信号为CSI-RS时,该下行参考信号的反馈信息为信道状态信息报告(channel state information report,CSI report)。当终端设备不支持上行参考信号天线轮发能力后,终端设备还可以通过接收网络设备下发的下行参考信号,以进行下行信道估计。基于信道互异性, 该下行信道估计的结果也可以应用于上行数据调度中,保证了数据传输的准确性。
结合第一方面,在第一方面实施例中,在网络设备接收终端设备发送的第一过热指示信息之后,网络设备启动定时器,经过第一时间间隔后,该终端设备接收该网络设备发送的第二重配置信息,该第二重配置信息用于重新配置该终端设备中的该上行参考信号轮发资源,其中,该终端设备重新配置该终端设备中的该上行参考信号轮发资源后,该终端设备支持该上行参考信号天线轮发能力。
当第一过热指示信息中还携带有减少MIMO layer指示时,该第二重配置信息还可以重新调整终端设备中上行MIMO能力和/或下行MIMO能力(MIMO layer)。具体的,调整终端设备中上行MIMO能力为:调整终端设备中的发送天线数目以及发射射频链路数目;调整终端设备中下行MIMO能力为:调整终端设备中的接收天线以及接收射频链路数目。其中,调整发送天线数目或接收天线数目的情况为,降低MIMO layer指示所指示的降低值低于当前终端设备的天线数目,例如第一过热指示信息中的降低MIMO layer指示为从4layer降低至2layer时,终端设备根据该第二重配置信息将接收天线数目从2调整为4。
终端设备接收网络设备发送的该第一重配置信息之后,终端设备根据该第一重配置信息释放上行参考信号轮发资源,终端设备不支持上行参考信号轮发能力。此时网络设备会设定第一时间间隔,经过第一时间间隔之后,若终端设备并未发送新的过热指示信息时,可以认为该终端设备的温度已恢复正常,此时终端设备根据网络设备的第二重配置信息,重配配置上行参考信号轮发资源,重新支持上行参考信号轮发能力。以保证温度恢复正常后的终端设备,可以及时恢复上行参考信号天线轮发能力。
结合第一方面,在第一方面实施例中,在网络设备接收终端设备发送的第一过热指示信息之后,网络设备启动定时器,在第一时间间隔内,若该终端设备从温度过热状态恢复为温度正常状态,该终端设备向该网络设备发送第二过热指示信息,该第二过热指示信息用于指示当前终端设备温度已恢复正常;
该终端设备接收该网络设备发送的第二重配置信息,该第二重配置信息用于重新配置该终端设备中的该上行参考信号轮发资源,其中,该终端设备重新配置该终端设备中的该上行参考信号轮发资源后,该终端设备支持该上行参考信号天线轮发能力。
终端设备接收网络设备发送的该第一重配置信息之后,终端设备根据该第一重配置信息释放上行参考信号轮发资源,终端设备不支持上行参考信号轮发能力。此时网络设备会设定第一时间间隔,在第一时间间隔内,若终端设备检测到内部的温度已恢复正常,终端设备向网络设备发送新的过热指示信息,该过热指示信息用于指示当前终端设备温度已恢复正常,该过热指示信息称为第二过热指示信息。网络设备根据该第二过热指示信息,获知该终端设备的温度已恢复正常,并向终端设备发送第二重配置信息,此时终端设备根据网络设备的第二重配置信息,重配配置上行参考信号轮发资源,重新支持上行参考信号轮发能力。当第一过热指示信息中还携带有减少MIMO layer指示时,该第二重配置信息还可以重新调整终端设备中上行MIMO能力和/或下行MIMO能力(MIMO layer)。以保证温度恢复正常后的终端设备,可以及时恢复上行参考信号天线轮发能力。
结合第一方面,在第一方面实施例中,在网络设备接收终端设备发送的第一过热指示信息之后,网络设备启动定时器,在第一时间间隔内,终端设备的温度仍然为过热状态时,终端设备可以向网络设备发送过热指示信息,以告知网络设备当前终端设备温度仍然为过热状态,该过热指示信息称为第三过热指示信息。当终端设备向网络设备发送第三过热指示信息之后,网络设备根据该第三过热指示信息,重置定时器。重置定时器后,终端设备可能出现下列两种情况:第一种情况、温度恢复正常;第二种情况、温度仍然为异常状态。
第一种情况:重置定时器后,且经过第一时间间隔后,若终端设备检测到内部的温度已恢复正常, 终端设备向网络设备发送新的过热指示信息,该过热指示信息用于指示当前终端设备温度已恢复正常,该过热指示信息称为第二过热指示信息。网络设备根据该第二过热指示信息,获知该终端设备的温度已恢复正常,并向终端设备发送第二重配置信息,此时终端设备根据网络设备的第二重配置信息,重配配置上行参考信号轮发资源,重新支持上行参考信号轮发能力。
第二种情况:重置定时器后,且在第一时间间隔内,终端设备的温度仍然为过热状态时,终端设备可以向网络设备发送第三过热指示信息,以告知网络设备当前终端设备温度仍然为过热状态。当终端设备向网络设备发送第三过热指示信息之后,网络设备根据该第三过热指示信息,重置定时器。网络设备不断的重置定时器,直到终端设备的温度恢复正常。当终端设备的温度恢复正常后,终端设备可以根据网络设备的第二重配置信息,重新配置上行参考信号轮发资源,重新支持上行参考信号轮发能力。在保证温度恢复正常后的终端设备,可以及时恢复上行参考信号天线轮发能力的同时,温度仍然为过热状态的终端设备不会错误的重新配置上行参考信号轮发资源,以保证仍然处于过热状态的终端设备处于低功耗状态。
第二方面,本申请实施例提供了一种过热指示方法,当网络设备向终端设备发送的RRC连接重配信息中,指示终端设备可以向网络设备发送过热指示信息后,终端设备处于设备内部过热状态时,网络设备接收该终端设备发送的第一过热指示信息,该第一过热指示信息承载于无线资源控制信息(radio resource control,RRC)中,该第一过热指示信息用于指示网络设备解决终端设备的过热问题,该无线资源控制信息还可以简称为RRC信令。该第一过热指示信息用于指示该终端设备需要不支持上行参考信号天线轮发能力,该上行参考信号可以为探测参考信号(sounding reference signal,SRS)。当该上行参考信号为SRS时,该第一过热指示信息用于指示该终端设备需要不支持SRS天线轮发能力。
网络设备向该终端设备发送第一重配置信息,其中该第一重配置信息为该网络设备根据该第一过热指示信息生成的,该终端设备根据该第一重配置信息不支持上行参考信号天线轮发能力。当该上行参考信号为SRS时,终端设备根据该第一重配置信息不支持SRS天线轮发能力。
从上述第二方面中的技术方案可以看出,本申请实施例具有以下优点:终端设备在设备内部过热情况下,网络设备接收终端设备发送的第一过热指示信息,第一过热指示信息用于指示当前终端设备需要不支持上行参考信号天线轮发能力,网络设备根据第一过热指示信息生成第一重配置信息,终端设备根据第一重配置信息不支持上行参考信号天线轮发能力。终端设备不支持上行参考信号天线轮发能力,降低了终端设备的功耗,有效的解决终端设备过热问题。
结合第二方面,在第二方面实施例中,该第一过热指示信息具体包含不支持上行参考信号天线轮发能力指示信息,其中,该不支持上行参考信号天线轮发能力指示信息用于请求该网络设备发送该第一重配置信息。
具体的,当上行参考信号为SRS时,网络设备在接收第一过热指示信息后,可以根据承载有该第一过热指示信息的RRC信令本身,获知发送该第一过热指示信息的终端设备需要不支持SRS天线轮发能力,即网络设备接收到携带有过热指示信息的RRC信令时,默认发送该RRC信令的终端设备需要不支持SRS天线轮发能力。第一过热指示信息中还可以携带不支持SRS天线轮发能力指示信息,网络设备可以根据该不支持SRS天线轮发能力指示信息,获知终端设备需要不支持SRS天线轮发能力。终端设备可以通过不同的方式,使用第一过热指示信息请求网络设备发送第一重配置信息。提升了方案的灵活性。
结合第二方面,在第二方面实施例中,第一重配置信息可以承载于下行控制信息(downlink control information,DCI)、参考信号(reference signals,RS)、媒体接入控制层的控制信息(media access  control control element,MAC CE)或无线资源控制信息(radio resource control,RRC)中的任意一种,具体承载于哪一种信令,由当前终端设备中所配置的用于上行参考信号天线轮发的上行参考信号轮发资源类型决定。
当上行参考信号为SRS时,用于SRS天线轮发的SRS资源在下文中简称为SRS资源,网络设备根据终端设备上报的第一过热指示信息获知该SRS资源类型。具体的:当配置的SRS资源为周期性SRS资源时,第一重配置信息承载于RRC信令中;当配置的SRS资源为非周期性SRS资源时,第一重配置信息承载于DCI信令中;当配置的SRS资源为半持续性SRS资源时,第一重配置信息承载于MAC CE信令中。
当该第一重配置信息承载于RRC信令时,该第一重配置信息具体用于该终端设备根据该第一重配置信息释放该终端设备中的该上行参考信号轮发资源或者不进行上行参考信号轮发,其中,该终端设备释放该终端设备中的该上行参考信号轮发资源后,该终端设备不支持该上行参考信号天线轮发能力。
当终端设备配置的SRS资源为非周期性SRS资源,网络设备可以通过不发送激活(activate)该非周期性SRS资源的DCI信令,达到该终端设备不支持SRS天线轮发能力的效果;也可以通过发送承载于DCI信令的第一重配置信息,该第一重配置信息用于去激活(deactivate)该非周期性SRS资源,达到该终端设备不支持SRS天线轮发能力的效果。根据上行参考信号轮发资源类型的不同,第一重配置信息可承载于不同的信令中,提升了方案的实现灵活性。
结合第二方面,在第二方面实施例中,网络设备通过向终端设备发送第一重配置信息,可以指示终端设备不支持上行参考信号轮发资源,具体可分为以下两种情况:一种是不支持全部频段资源的上行参考信号天线轮发能力,此时第一重配置信息中携带的是全部频段资源指示;另一种是不支持部分频段资源的上行参考信号天线轮发能力,此时第一重配置信息中携带的是部分频段资源指示。
该网络设备向该终端设备发送携带全部频段资源指示的该第一重配置信息,以使得该终端设备根据携带该全部频段资源指示的该第一重配置信息,释放该终端设备中全部频段资源的该上行参考信号轮发资源,其中,该终端设备释放该终端设备中该全部频段资源的该上行参考信号轮发资源后,该终端设备不支持该全部频段资源中的该上行参考信号天线轮发能力,或该网络设备向该终端设备发送携带部分频段资源指示的该第一重配置信息,以使得该终端设备根据携带该部分频段资源指示的该第一重配置信息,释放该终端设备中部分频段资源的该上行参考信号轮发资源,其中,该终端设备释放该终端设备中该部分频段资源的该上行参考信号轮发资源后,该终端设备不支持该部分频段资源中的该上行参考信号天线轮发能力。
具体的释放上行参考信号轮发资源的过程,可以为删除配置于终端设备内部的上行参考信号轮发资源。当第一过热指示信息指示的是:不支持全部频段资源的上行参考信号轮发天线轮发能力时,终端设备删除所有频段资源的上行参考信号轮发资源;当第一过热指示信息指示的是:不支持部分频段资源的上行参考信号轮发天线轮发能力,终端设备删除对应的部分频段资源的上行参考信号轮发资源。终端设备可以根据实际网络情况释放全部频段资源上的上行参考信号轮发资源,或者释放部分频段资源上的上行参考信号轮发资源,既可以实现快速的降温,也可以在保留部分上行参考信号轮发资源的情况下实现慢速的降温。获得了常用频段资源的信道估计结果,在保证常用频段资源下的通信质量,也通过不进行不常用频段资源的上行参考信号轮发,达到了降低功耗的目的。
结合第二方面,在第二方面实施例中,当该第一过热指示信息中还携带有降低MIMO layer指示时,第一重配置信息还用于调整终端设备中上行MIMO能力和/或下行MIMO能力(MIMO layer)。具体的,调整终端设备中上行MIMO能力为:调整终端设备中的发送天线数目以及发射射频链路数目;调整终端设 备中下行MIMO能力为:调整终端设备中的接收天线以及接收射频链路数目。
该终端设备根据该第一重配置信息调整该终端设备的发送天线数目以及发射射频链路数目,和/或该终端设备根据该第一重配置信息调整该终端设备的接收天线以及接收射频链路数目。
当终端设备处于过热状态时,网络设备除了指示终端设备释放上行参考信号轮发资源以降低功耗外,还可以指示终端设备调整MIMO能力,具体的,调整终端设备的射频链路和/或天线数目,以实现更进一步的降低功耗,使得终端设备的温度更快恢复正常。同时,该降低MIMO layer指示还可以携带在第一重配置信息中,简化步骤。
结合第二方面,在第二方面实施例中,网络设备向终端设备发送第一重配置信息之后,由于终端设备已经不支持上行参考信号天线轮发能力,因此网络设备无法通过上行参考信号天线轮发获得与该终端设备之间的上行信道估计的结果。因此网络设备可以发起下行信道估计,获得下行信道估计的结果。根据信道互异性,网络设备可以根据该下行信道估计的结果获得上行信道估计的结果。需要说明的是,在非时分双工(time division duplexing,TDD)系统中,也可以通过下行信道估计的结果获得上行信道估计的结果。
首先网络设备向该终端设备发送下行参考信号,其中,该下行参考信号用于下行信道估计,终端设备根据下行参考信号确定下行参考信号的反馈信息,终端设备通过物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)向网络设备发送该下行参考信号的反馈信息,其中,下行参考信号的反馈信息包含下行信道估计的结果;
网络设备接收该终端设备发送的该下行参考信号的反馈信息,网络设备根据该下行参考信号的反馈信息获得上行信道估计的结果。
需要说明的是,该下行参考信号可以为信道状态信息参考信号(channel state information reference signal,CSI-RS),还可以为其它的下行参考信号,例如:同步信号/广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH Block)。当下行参考信号为CSI-RS时,该下行参考信号的反馈信息为信道状态信息报告(channel state information report,CSI report)。当终端设备不支持上行参考信号天线轮发能力后,终端设备还可以通过接收网络设备下发的下行参考信号,以进行下行信道估计。基于信道互异性,该下行信道估计的结果也可以应用于上行数据调度中,保证了数据传输的准确性。
结合第二方面,在第二方面实施例中,在网络设备接收终端设备发送的第一过热指示信息之后,网络设备启动定时器,经过第一时间间隔后,该网络设备向该终端设备发送第二重配置信息,该第二重配置信息用于重新配置该终端设备中的该上行参考信号轮发资源,其中,该终端设备重新配置该终端设备中的该上行参考信号轮发资源后,该终端设备支持该上行参考信号天线轮发能力。
当第一过热指示信息中还携带有减少MIMO layer指示时,该第二重配置信息还可以重新调整终端设备中上行MIMO能力和/或下行MIMO能力(MIMO layer)。具体的,调整终端设备中上行MIMO能力为:调整终端设备中的发送天线数目以及发射射频链路数目;调整终端设备中下行MIMO能力为:调整终端设备中的接收天线以及接收射频链路数目。其中,调整发送天线数目或接收天线数目的情况为,降低MIMO layer指示所指示的降低值低于当前终端设备的天线数目,例如第一过热指示信息中的降低MIMO layer指示为从4layer降低至2layer时,终端设备根据该第二重配置信息将接收天线数目从2调整为4。
网络设备向终端设备发送第一重配置信息之后,终端设备根据该第一重配置信息释放上行参考信号轮发资源,终端设备不支持上行参考信号轮发能力。此时网络设备会设定第一时间间隔,经过第一时间 间隔之后,若终端设备并未发送新的过热指示信息时,可以认为该终端设备的温度已恢复正常,该网络设备向该终端设备发送第二重配置信息,此时终端设备根据网络设备的第二重配置信息,重配配置上行参考信号轮发资源,重新支持上行参考信号轮发能力。以保证温度恢复正常后的终端设备,可以及时恢复上行参考信号天线轮发能力。
结合第二方面,在第二方面实施例中,在网络设备接收终端设备发送的第一过热指示信息之后,网络设备启动定时器,在第一时间间隔内,若该终端设备从温度过热状态恢复为温度正常状态,网络设备接收到该终端设备发送的第二过热指示信息,该第二过热指示信息用于指示当前终端设备温度已恢复正常;
网络设备向该终端设备发送第二重配置信息,该终端设备接收该网络设备发送的第二重配置信息,该第二重配置信息用于重新配置该终端设备中的该上行参考信号轮发资源,其中,该终端设备重新配置该终端设备中的该上行参考信号轮发资源后,该终端设备支持该上行参考信号天线轮发能力。
网络设备向终端设备发送第一重配置信息之后,终端设备根据该第一重配置信息释放上行参考信号轮发资源,终端设备不支持上行参考信号轮发能力。此时网络设备会设定第一时间间隔,在第一时间间隔内,若终端设备检测到内部的温度已恢复正常,终端设备向网络设备发送新的过热指示信息,该过热指示信息用于指示当前终端设备温度已恢复正常,该过热指示信息称为第二过热指示信息。网络设备根据该第二过热指示信息,获知该终端设备的温度已恢复正常,并向终端设备发送第二重配置信息,此时终端设备根据网络设备的第二重配置信息,重配配置上行参考信号轮发资源,重新支持上行参考信号轮发能力。当第一过热指示信息中还携带有减少MIMO layer指示时,该第二重配置信息还可以重新调整终端设备中上行MIMO能力和/或下行MIMO能力(MIMO layer)。以保证温度恢复正常后的终端设备,可以及时恢复上行参考信号天线轮发能力。
结合第二方面,在第二方面实施例中,在网络设备接收终端设备发送的第一过热指示信息之后,网络设备启动定时器,在第一时间间隔内,终端设备的温度仍然为过热状态时,终端设备可以向网络设备发送过热指示信息,以告知网络设备当前终端设备温度仍然为过热状态,该过热指示信息称为第三过热指示信息。当网络设备接收终端设备发送的第三过热指示信息之后,网络设备根据该第三过热指示信息,重置定时器。重置定时器后,终端设备可能出现下列两种情况:第一种情况、温度恢复正常;第二种情况、温度仍然为异常状态。
第一种情况:重置定时器后,且经过第一时间间隔后,若终端设备检测到内部的温度已恢复正常,终端设备向网络设备发送新的过热指示信息,该过热指示信息用于指示当前终端设备温度已恢复正常,该过热指示信息称为第二过热指示信息。网络设备根据该第二过热指示信息,获知该终端设备的温度已恢复正常,并向终端设备发送第二重配置信息,此时终端设备根据网络设备的第二重配置信息,重配配置上行参考信号轮发资源,重新支持上行参考信号轮发能力。
第二种情况:重置定时器后,且在第一时间间隔内,终端设备的温度仍然为过热状态时,终端设备可以向网络设备发送第三过热指示信息,以告知网络设备当前终端设备温度仍然为过热状态。当终端设备向网络设备发送第三过热指示信息之后,网络设备根据该第三过热指示信息,重置定时器。网络设备不断的重置定时器,直到终端设备的温度恢复正常。当终端设备的温度恢复正常后,终端设备可以根据网络设备的第二重配置信息,重新配置上行参考信号轮发资源,重新支持上行参考信号轮发能力。在保证温度恢复正常后的终端设备,可以及时恢复上行参考信号天线轮发能力的同时,温度仍然为过热状态的终端设备不会错误的重新配置上行参考信号轮发资源,以保证仍然处于过热状态的终端设备处于低功耗状态。
第三方面,本申请实施例提供了一种终端设备,包括:
发送模块,用于当终端设备处于过热状态时,向网络设备发送第一过热指示信息;
接收模块,用于接收网络设备发送的第一重配置信息,其中第一重配置信息为网络设备根据第一过热指示信息生成的;
处理模块,用于根据第一重配置信息不支持上行参考信号天线轮发能力。
结合第三方面,在第三方面实施例中,第一过热指示信息具体包含不支持上行参考信号天线轮发能力指示信息,其中,不支持上行参考信号天线轮发能力指示信息用于请求网络设备发送第一重配置信息。
结合第三方面,在第三方面实施例中,第一重配置信息承载于可以承载于下行控制信息DCI、媒体接入控制层的控制信息MAC CE或无线资源控制信息RRC中的任意一种,
当第一重配置信息承载于无线资源控制信息时,第一重配置信息具体用于终端设备根据第一重配置信息释放终端设备中的上行参考信号轮发资源或者不进行上行参考信号轮发,其中,终端设备释放终端设备中的上行参考信号轮发资源后,终端设备不支持上行参考信号天线轮发能力。
结合第三方面,在第三方面实施例中,
处理模块,具体用于根据携带全部频段资源指示的第一重配置信息释放全部频段资源的上行参考信号轮发资源,其中,终端设备释放终端设备中全部频段资源的上行参考信号轮发资源后,终端设备不支持全部频段资源中的上行参考信号天线轮发能力,或
根据携带部分频段资源指示的第一重配置信息释放部分频段资源的上行参考信号轮发资源,其中,终端设备释放终端设备中部分频段资源的上行参考信号轮发资源后,终端设备不支持部分频段资源中的上行参考信号天线轮发能力。
结合第三方面,在第三方面实施例中,当第一过热指示信息中还携带有减少多入多出层数MIMO layer指示时,
处理模块,根据第一重配置信息调整终端设备的天线数目和/或射频链路数目。
结合第三方面,在第三方面实施例中,
接收模块,还用于接收网络设备发送的下行参考信号,其中,下行参考信号用于下行信道估计;
发送模块,还用于向网络设备发送下行参考信号的反馈信息,其中,下行参考信号的反馈信息中携带下行信道估计的结果。
结合第三方面,在第三方面实施例中,
接收模块,还用于,网络设备启动定时器,经过第一时间间隔后,接收模块接收网络设备发送的第二重配置信息,第二重配置信息用于重新配置终端设备中的上行参考信号轮发资源,其中,终端设备重新配置终端设备中的上行参考信号轮发资源后,终端设备支持上行参考信号天线轮发能力。
结合第三方面,在第三方面实施例中,
发送模块,还用于,网络设备启动定时器,在第一时间间隔内,当终端设备处于温度正常状态时,发送模块向网络设备发送第二过热指示信息;
接收模块,还用于接收网络设备发送的第二重配置信息,第二重配置信息用于重新配置终端设备中的上行参考信号轮发资源,其中,终端设备重新配置终端设备中的上行参考信号轮发资源后,终端设备支持上行参考信号天线轮发能力。
结合第三方面,在第三方面实施例中,
发送模块,还用于,网络设备启动定时器,在第一时间间隔内,当终端设备处于过热状态时,发送模块向网络设备发送第三过热指示信息;
接收模块,还用于,网络设备重置定时器,经过第一时间间隔后,接收模块接收网络设备发送的第二重配置信息,第二重配置信息用于重新配置终端设备中的上行参考信号轮发资源,其中,终端设备重新配置终端设备中的上行参考信号轮发资源后,终端设备支持上行参考信号天线轮发能力。
结合第三方面,在第三方面实施例中,第二重配置信息还用于重新配置终端设备中的多入多出层数MIMO layer,
处理模块,还用于根据第二重配置信息调整终端设备的天线数目和/或射频链路数目。
第四方面,本申请实施例提供了一种网络设备,包括:
接收模块,用于接收终端设备发送的第一过热指示信息;
发送模块,用于根据第一过热指示信息,向终端设备发送第一重配置信息,以使得终端设备不支持上行参考信号天线轮发能力。
结合第四方面,在第四方面实施例中,第一过热指示信息具体包含不支持上行参考信号天线轮发能力指示信息,其中,不支持上行参考信号天线轮发能力指示信息用于请求网络设备发送第一重配置信息。
结合第四方面,在第四方面实施例中,第一重配置信息承载于可以承载于下行控制信息DCI、媒体接入控制层的控制信息MAC CE或无线资源控制信息RRC中的任意一种,
当第一重配置信息承载于无线资源控制信息时,第一重配置信息具体用于终端设备根据第一重配置信息释放终端设备中的上行参考信号轮发资源或不进行上行参考信号轮发,其中,终端设备释放终端设备中的上行参考信号轮发资源后,终端设备不支持上行参考信号天线轮发能力。
结合第四方面,在第四方面实施例中,
发送模块,具体用于向终端设备发送携带全部频段资源指示的第一重配置信息,以使得终端设备根据携带全部频段资源指示的第一重配置信息,释放终端设备中全部频段资源的上行参考信号轮发资源,其中,终端设备释放终端设备中全部频段资源的上行参考信号轮发资源后,终端设备不支持全部频段资源中的上行参考信号天线轮发能力,或
向终端设备发送携带部分频段资源指示的第一重配置信息,以使得终端设备根据携带部分频段资源指示的第一重配置信息,释放终端设备中部分频段资源的上行参考信号轮发资源,其中,终端设备释放终端设备中部分频段资源的上行参考信号轮发资源后,终端设备不支持部分频段资源中的上行参考信号天线轮发能力。
结合第四方面,在第四方面实施例中,当第一过热指示信息中携带有减少多入多出层数MIMO layer指示时,第一重配置信息还用于指示终端设备根据第一重配置信息调整终端设备的天线数目和/或射频链路数目。
结合第四方面,在第四方面实施例中,网络设备还包括处理模块;
发送模块,还用于向终端设备发送下行参考信号,其中,下行参考信号用于下行信道估计;
接收模块,还用于接收终端设备发送的下行参考信号的反馈信息,其中,下行参考信号的反馈信息中携带下行信道估计的结果;
处理模块,用于根据下行参考信号的反馈信息获得上行信道估计的结果。
结合第四方面,在第四方面实施例中,
发送模块,还用于,网络设备启动定时器,经过第一时间间隔后,发送模块向终端设备发送第二重配置信息,第二重配置信息用于重新配置终端设备中的上行参考信号轮发资源,其中,终端设备重新配置终端设备中的上行参考信号轮发资源后,终端设备支持上行参考信号天线轮发能力。
结合第四方面,在第四方面实施例中,
接收模块,还用于,网络设备启动定时器,在第一时间间隔内,接收模块接收到终端设备发送的第二过热指示信息,第二过热指示信息为终端设备处于温度正常状态发送的;
发送模块,还用于向终端设备发送第二重配置信息,第二重配置信息用于重新配置终端设备中的上行参考信号轮发资源,其中,终端设备重新配置终端设备中的上行参考信号轮发资源后,终端设备支持上行参考信号天线轮发能力。
结合第四方面,在第四方面实施例中,
接收模块,还用于,网络设备启动定时器,在第一时间间隔内,接收模块接收到终端设备发送的第三过热指示信息,第三过热指示信息为终端设备处于过热状态时发送的;
发送模块,还用于,网络设备重置定时器,经过第一时间间隔后,发送模块向终端设备发送第二重配置信息,第二重配置信息用于重新配置终端设备中的上行参考信号轮发资源,其中,终端设备重新配置终端设备中的上行参考信号轮发资源后,终端设备支持上行参考信号天线轮发能力。
结合第四方面,在第四方面实施例中,当第一过热指示信息中还携带有减少多入多出层数MIMO layer指示时,第二重配置信息还用于重新配置终端设备中的多入多出层数MIMO layer,以使得终端设备根据第二重配置信息调整终端设备的天线数目和/或射频链路数目。
第五方面,提供了一种通信装置。本申请提供的通信装置具有实现上述方法方面中终端设备或网络设备或核心网设备行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means),例如,单元、模块、装置等。该步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述通信装置包括一个或多个处理器和通信单元。该一个或多个处理器被配置为支持该通信装置执行上述方法中终端设备相应的功能。例如,根据携带全部频段资源指示的第一重配置信息释放全部频段资源的上行参考信号轮发资源。该通信单元用于支持该通信装置与其他设备通信,实现接收和/或发送功能。例如,终端设备向网络设备发送第一过热指示信息。
该通信装置还可以包括一个或多个存储器,该存储器用于与处理器耦合,其保存通信装置必要的程序指令和/或数据。该一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
该通信装置可以为智能终端或者可穿戴设备等,该通信单元可以是收发器,或收发电路。可选的,该收发器也可以为输入/输出电路或者接口。
该通信装置还可以为通信芯片。该通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该通信装置执行第一方面或第一方面中任一种可能实现方式中终端设备完成的方法。
在一种可能的设计中,上述通信装置包括一个或多个处理器和通信单元。该一个或多个处理器被配置为支持该通信装置执行上述方法中网络设备相应的功能。例如,根据第一过热指示信息,网络设备向终端设备发送第一重配置信息。该通信单元用于支持该通信装置与其他设备通信,实现接收和/或发送功能。例如,接收终端设备发送的第一过热指示信息。
该通信装置还可以包括一个或多个存储器,该存储器用于与处理器耦合,其保存网络设备必要的程序指令和/或数据。该一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
该通信装置可以为基站,该通信单元可以是收发器,或收发电路。可选的,该收发器也可以为输入/输出电路或者接口。
该通信装置还可以为通信芯片。该通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第二方面或第二方面中任一种可能实现方式中网络设备完成的方法。
第六方面,提供了一种系统,该系统包括上述网络设备、终端设备以及通信装置。
第七方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面至第二方面中任一种可能实现方式中的方法的指令。
第八方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行上述第一方面至第二方面中任一种可能实现方式中的方法。
第九方面,本申请提供了一种芯片装置,该芯片装置包括处理器,用于支持网络设备实现上述方面中所涉及的功能,例如,例如发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片装置还包括存储器,该存储器,用于保存网络设备必要的程序指令和数据。该芯片装置,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,本申请提供了一种芯片装置,该芯片装置包括处理器,用于支持终端设备实现上述方面中所涉及的功能,例如,例如发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片装置还包括存储器,该存储器,用于保存终端设备必要的程序指令和数据。该芯片装置,可以由芯片构成,也可以包括芯片和其他分立器件。
从以上技术方案可以看出,本申请实施例具有以下优点:
网络设备在接收到终端设备上报的过热指示信息后,可以调整终端设备的上行参考信号天线轮发能力,以降低终端设备功耗,解决终端设备过热问题。
附图说明
图1为本申请实施例中的无线通信网络拓扑示意图;
图2为本申请实施例中射频链路示意图;
图3为本申请实施例中终端设备发射天线示意图;
图4为本申请实施例中终端设备向网络设备发送辅助信息的流程示意图;
图5为本申请实施例中过热指示方法的一种实施例示意图;
图6为本申请实施例中过热指示方法的另一种实施例示意图;
图7是本申请实施例提供的终端设备的一种结构示意图;
图8是本申请实施例提供的网络设备的一种结构示意图;
图9是本申请实施例提供的另一种终端设备的结构示意图;
图10是本申请实施例提供的另一种网络设备的结构示意图;
图11是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
本申请实施例提供了一种过热指示方法以及相关设备,网络设备在接收到终端设备上报的辅助信息后,可以调整终端设备的SRS天线轮发能力,以降低终端设备功耗,解决终端设备过热问题。
在介绍本实施例之前,首先介绍本实施例中可能出现的几个概念。应理解的是,以下的概念解释可 能会因为本实施例的具体情况有所限制,但并不代表本申请仅能局限于该具体情况,以下概念的解释伴随不同实施例的具体情况可能也会存在差异。
图1为本申请实施例中的无线通信网络拓扑示意图。如图1所示,无线通信网络100包括网络设备102~106和终端设备108~122,其中,网络设备102~106彼此之间可通过回程(backhaul)链路(如网络设备102~106彼此之间的直线所示)进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。终端设备108~122可通过无线链路(如网络设备102~106与终端设备108~122之间的折线所示)与对应的网络设备102~106通信,网络设备102~106还可以称为基站。
网络设备102~106通常作为接入设备来为通常作为用户设备的终端设备108~122提供无线接入服务。具体来说,每个网络设备都对应一个服务覆盖区域(又可称为蜂窝,如图1中各椭圆区域所示),进入该区域的终端设备可通过无线信号与网络设备通信,以此来接受网络设备提供的无线接入服务。网络设备的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个网络设备的无线信号,因此这些网络设备可以进行相互协同,以此来为该终端设备提供服务。例如,多个网络设备可以采用多点协作(coordinated multipoint,CoMP)技术为处于上述交叠区域的终端设备提供服务。例如,如图1所示,网络设备102与网络设备104的服务覆盖区域存在交叠,终端设备112便处于该交叠区域之内,因此终端设备112可以收到来自网络设备102和网络设备104的无线信号,网络设备102和网络设备104可以进行相互协同,来为终端设备112提供服务。又例如,如图1所示,网络设备102、网络设备104和网络设备106的服务覆盖区域存在一个共同的交叠区域,终端设备120便处于该交叠区域之内,因此终端设备120可以收到来自网络设备102、104和106的无线信号,网络设备102、104和106可以进行相互协同,来为终端设备120提供服务。
依赖于所使用的无线通信技术,网络设备又可称为节点B(NodeB),演进节点B(evolved nodeb,eNodeB)以及接入点(access point,AP)等。此外,根据所提供的服务覆盖区域的大小,网络设备又可分为用于提供宏蜂窝(macro cell)的宏网络设备、用于提供微蜂窝(pico cell)的微网络设备和用于提供毫微微蜂窝(femto cell)的毫微微网络设备等。随着无线通信技术的不断演进,未来的网络设备也可以采用其他的名称。
终端设备108~122可以是具备无线通信功能的各种无线通信设备,例如但不限于移动蜂窝电话、无绳电话、个人数字助理(personal digital assistant,PDA)、智能电话、笔记本电脑、平板电脑、无线数据卡、无线调制解调器(modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(internet of things,IOT)技术和车联网(vehicle-to-everything,V2X)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备108~122还可以称为移动台、移动设备、移动终端、无线终端、手持设备、客户端等。
网络设备102~106,和终端设备108~122均可配置有多根天线,以支持多入多出(multiple input multiple output,MIMO)技术。进一步的说,网络设备102~106和终端设备108~122既可以支持单用户MIMO(single-user mimo,SU-MIMO)技术,也可以支持多用户MIMO(multi-user mimo,MU-MIMO),其中MU-MIMO可以基于空分多址(space division multiple access,SDMA)技术来实现。由于配置有多根天线,网络设备102~106和终端设备108~122还可灵活支持单入单出(single input single output,SISO)技术、单入多出(single input multiple output,SIMO)和多入单出(multiple input  single output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括例如但不限于发射分集(transmit diversity,TD)技术和接收分集(receive diversity,RD)技术,复用技术可以是空间复用(spatial multiplexing)技术。而且上述各种技术还可以包括多种实现方案,例如发射分集技术可以包括,例如但不限于,空时发射分集(space-timetransmit diversity,STTD)、空频发射分集(space-frequency transmit diversity,SFTD)、时间切换发射分集(time switched transmit diversity,TSTD)、频率切换发射分集(frequency switch transmit diversity,FSTD)、正交发射分集(orthogonal transmit diversity,OTD)、循环延迟分集(cyclic delay diversity,CDD)等分集方式,以及上述各种分集方式经过衍生、演进以及组合后获得的分集方式。例如,目前长期演进(long term evolution,LTE)标准便采用了空时块编码(space time block coding,STBC)、空频块编码(space frequency block coding,SFBC)和CDD等发射分集方式。上文以举例的方式对发射分集进行了的概括性的描述。本领域技术人员应当明白,除上述实例外,发射分集还包括其他多种实现方式。因此,上述介绍不应理解为对本发明技术方案的限制,本发明技术方案应理解为适用于各种可能的发射分集方案。
此外,网络设备102~106和终端设备108~122可采用各种无线通信技术进行通信,例如但不限于,时分多址(time division multiple access,TDMA)技术、频分多址(frequency division multiple access,FDMA)技术、码分多址(code division multiple access,CDMA)技术、时分同步码分多址(time division-synchronous code division multiple access,TD-SCDMA)、正交频分多址(orthogonal fdma,OFDMA)技术、单载波频分多址(single carrier fdma,SC-FDMA)技术、空分多址(space division multiple access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(radio access technology,RAT)被众多无线通信标准所采纳,从而构建出了在今天广为人们所熟知的各种无线通信系统(或者网络),包括但不限于由802.22系列标准中定义的WiFi、全球互通微波存取(worldwide interoperability for microwave access,WiMAX)、长期演进(long term evolution,LTE)、LTE升级版(lte advanced,LTE-A)以及这些无线通信系统的演进系统,例如5G新空口技术(5G new radio,5G NR)等。如无特别说明,本发明实施例提供的技术方案可应用于上述各种无线通信技术和无线通信系统。此外,术语“系统”和“网络”可以相互替换。
应注意,图1所示的无线通信网络100仅用于举例,并非用于限制本发明的技术方案。本领域的技术人员应当明白,在具体实现过程中,无线通信网络100还可能包括其他设备,同时也可根据具体需要来配置网络设备和终端设备的数量。
下面对MIMO技术进行说明。多天线技术,即多输入多输出(multiple-input multiple-output,MIMO)技术指在发射端和接收端分别使用多个发送天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量,显示出明显的优势、被视为下一代移动通信的核心技术。在新无线电通信(new radio,NR)中,网络设备与终端设备都可以通过MIMO技术提升通信性能。
为了便于理解终端设备与网络设备之间信号交互的过程,请参见图2,图2为本申请实施例中射频链路示意图。以终端设备向网络设备发送信号为例,终端设备在向网络设备发送信号,首先在基带生成基带信号后,会经过射频链路处理,其中,射频链路一般包含三级射频集成电路、功率放大器以及双工器/滤波器,基带信号经过处理后生成射频信号,然后射频信号经过天线发送出去。终端设备接收信号 的过程与发送信号的过程类似,此处不再赘述。
在现有标准中,网络设备并不明确知道终端设备有多少射频链路,而是采用天线这一术语进行描述。比如当终端设备实际有两个发射射频链路的时候,该终端设备最多支持同时使用2个天线与网络设备进行上行通信。如果终端设备使用2个天线与网络设备进行通信,则在实际上每个射频链路会对应一个天线。如果终端设备使用1个天线与网络设备进行通信,终端设备可以使用任意一个上行射频链路对应到这个天线,也可以同时使用两个射频链路模拟成一个天线,这取决于终端设备的具体实现,对网络设备而言是透明的。网络设备只需要调度终端设备在哪个或哪些天线上发送数据即可。下面为了简化描述,将一个终端设备支持一个发射射频链路(transmit,T),两个接收射频链路(receive,R)称为t1r2。以此类推,一个终端设备支持2个发射射频链路和4个接收射频链路称为t2r4。通常情况下,终端设备中的接收射频链路数量会大于或等于发射射频链路数量,并且每一个接收射频链路与一根天线(即电磁波的辐射单元)连接,因此t1r2也可以理解为该终端设备中有一个发射射频链路与两根天线。以此类推,t2r4也可以理解为该终端设备中有两个发射射频链路与四根天线。该天线具有发射电磁波与接收电磁波的能力,因此本申请实施例中的天线、发送天线以及接收天线可视为同一事物。
终端设备通过上行信道向网络设备发送上行参考信号,终端设备通过下行信道接收网络设备发送的下行参考信号,为了保证数据传输的质量,NR中会对信道状态进行估计,这个过程称为信道估计,网络设备根据信道估计结果选择合适的传输参数,该传输参数包括调制和编码方案索引值(modulation and coding scheme,MCS),预编码矩阵(precoding matrix,PM)等。
在NR中,终端设备具体可以向网络设备发送探测参考信号(sounding reference signal,SRS)。进行上行信道的信道估计。终端设备通过接收网络设备发送的信道状态信息参考信号(channel state information reference signal,CSI-RS),并向网络设备发送信道状态信息报告(channel state information report,CSI report)进行下行信道的信道估计。终端设备还可以通过接收网络设备发送的同步信号/广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH Block)进行下行信道估计,具体信道估计的过程与使用CSI-RS类似,此处不再赘述。或者在时分双工(time division duplexing,TDD)系统中终端设备向网络设备发送探测参考信号或同步信号/广播信道块,网络设备通过上下行信道的互易性进行下行信道的信道估计。需要说明的是,终端设备还可以使用其它的参考信号进行信道估计,当使用其它的下行参考信号进行信道估计时,终端设备向网络设备发送对应的下行参考信号的反馈信息以完成信道估计,本实施例中仅以SRS与CSI-RS为例进行说明,不作限定。下面对SRS与CSI-RS分别进行描述。
(1)、CSI-RS。
网络设备向终端设备配置CSI-RS资源,当网络设备需要获知终端设备下行信道的信道状态时,网络设备通过下行信道使用配置的CSI-RS资源向终端设备发送CSI-RS。终端设备接收该CSI-RS,并对该CSI-RS进行处理,以对当前下行信道进行状态估计。终端设备处理结束后生成信道状态信息报告(CSI-RS report),其中,信道状态信息报告中包括下列多种信息中的一种或多种,例如:秩指示(rank indication,RI)、预编码矩阵指示(precoding matrix indication,PMI)、信道质量指示(channel quality indication,CQI)、信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI)、同步信号/广播信道块资源指示(synchronous signal/physical broadcast channel block resource indicator,SS/PBCH BRI)、层指示(layer indicator,LI)以及层1参考信号接收功率(layer 1reference signal revceived power,L1-RSRP),需要说明的是,该层1参考信号接收功率所指的层1为物理层。
终端设备向网络设备发送该信道状态信息报告。以使得网络设备获知当前的下行信道的信道估计结 果并调整传输参数。
其中,CSI-RS资源可分为下列三种:周期性CSI-RS资源、半持续性CSI-RS资源以及非周期性CSI-RS资源。下面分别进行描述。
周期性CSI-RS资源:网络设备通过无线资源控制信息(radio resource control,RRC),该无线资源控制信息简称为RRC信令,向终端设备配置周期性CSI-RS资源。当配置完成后,网络设备就会周期性发送CSI-RS,终端设备可以周期性接收CSI-RS。
半持续性CSI-RS资源:网络设备通过RRC信令向终端设备配置半持续性CSI-RS资源,此时网络设备不会立刻发送CSI-RS。网络设备还需要向终端设备发送用以激活(activate)该半持续性CSI-RS资源的媒体接入控制层的控制信息(media access control control element,MAC CE)后,网络设备才会周期性发送该CSI-RS。当网络设备不再发送该CSI-RS时,网络设备还可以通过向终端设备发送去激活(deactivate)该半持续性CSI-RS资源的MAC CE,以去激活的终端设备中的该半持续性CSI-RS资源。
非周期性CSI-RS资源:网络设备通过RRC信令向终端设备配置非周期性CSI-RS资源,但是不会立刻发送CSI-RS。网络设备还需要向终端设备发送用以触发(trigger)该非周期性CSI-RS资源的DCI后,网络设备才会发送一次该CSI-RS。需要说明的是,网络设备在每一次发送CSI-RS之前,都需要向终端设备发送用以触发该非周期性CSI-RS资源的DCI。
(2)、SRS。
网络设备向终端设备配置SRS资源,终端设备使用SRS资源向网络设备发送SRS。网络设备接收该SRS后对其进行分析测量,以获知当前的上行信道的信道估计结果并调整传输参数。
其中,SRS资源可分为下列三种:周期性SRS资源、非周期性SRS资源以及半持续性SRS资源。下面分别进行描述。
周期性SRS资源:网络设备通过RRC信令向终端设备配置周期性SRS资源。当配置完成后,终端设备就会周期性发送SRS,网络设备可以周期性接收SRS。
非周期性SRS资源:网络设备通过RRC信令向终端设备配置非周期性SRS资源,但是终端设备不会立刻发送SRS。网络设备还需要向终端设备发送用以触发(trigger)该非周期性SRS资源的DCI后,终端设备才会发送一次该SRS。需要说明的是,终端设备在每一次发送SRS之前,网络设备都需要向终端设备发送用以触发该非周期性SRS资源的DCI。
半持续性SRS资源:网络设备通过RRC信令向终端设备配置半持续性SRS资源,此时终端设备不会立刻发送SRS。网络设备还需要向终端设备发送用以触发(trigger)该非周期性SRS资源的媒体接入控制层的控制信息(media access control control element,MAC CE)后,终端设备才会周期性发送该SRS。当终端设备不再发送该SRS时,网络设备还可以通过向终端设备发送去激活(deactivate)该半持续性SRS资源的MAC CE,以去激活的终端设备中的该半持续性SRS资源。
需要说明的是,在时分双工(time division duplexing,TDD)系统中,由于终端设备上行传输与下行传输使用相同的频域资源,因此可以认为上行信道与下行信道的信道状态非常相似,该信道状态包括有功率衰减、相位移动等,这个特性称为信道互异性。利用TDD系统中的信道互异性,仅通过配置SRS资源或CSI-RS资源并进行信道估计,即可获得上行信道与下行信道的信道估计结果。在非TDD系统中也可以仅通过配置SRS资源或CSI-RS资源并进行信道估计,即可获得上行信道与下行信道的信道估计结果,在非TDD系统中信道估计结果误差大于TDD系统中的误差。
网络设备向终端设备配置的SRS资源配置信息中,还指示了终端设备向网络设备发送SRS时所采用 的发送天线数,终端设备按照SRS资源所指示的发送天线向网络设备发送SRS。下面对上述过程进行详细描述。请参阅图3,图3为本申请实施例中终端设备发送天线示意图。图3中该终端设备中配置有一个发射射频电路与四根发送天线,该发射射频电路可以与任意一根发送天线连接以向网络设备发送电磁波。当终端设备使用不同的发送天线向网络设备发送电磁波时,不同的发送天线与网络设备之间的信道状态有可能是不同的,这种情况出现的原因是例如:当用户握持终端设备时,有可能遮挡住某一根发送天线,造成该发送天线发送至网络设备的电磁波衰减较大,影响通信质量。因此为了提升通信质量,引入了天线轮发机制,具体为:终端设备中射频电路在不同的发送天线之间进行切换,终端设备连续发送多个SRS,这些SRS通过不同的发送天线向网络设备发送。网络设备接收到这些SRS之后,可根据SRS的信号质量,确定哪一根发送天线与网络设备之间的信道状态较好,网络设备在调度终端设备接收下行数据时,将信道状态较好的天线优先级升高,以使得终端设备优先使用信道状态较好的天线接收下行数据。
由于不同的终端设备硬件配置不相同,基于硬件配置,终端设备的天线轮发能力也是不一样的。在NR中规定SRS天线轮发能力如下:t1r2、t1r4、t2r4、t1r4-t2r4、t1r1、t2r2或t4r4等。下面举例说明,t1r2为终端设备中有一个发射射频链路与两根天线,此时终端设备每次可以使用单端口发送一个SRS,完成轮发需要发送两次,即第一次发送SRS使用第一射频链路与第一天线,第二次发送SRS使用第一射频链路与第二天线。t2r4为终端设备有两个发射射频链路与四根天线,此时终端设备每次可以使用双端口发送一个SRS,完成轮发需要发送两次,即第一次发送SRS使用第一射频链路与第二射频拦路以及第一天线与第二天线,第二次发送SRS使用第一射频链路与第二射频链路以及第三天线与第四天线。t1r4-t2r4为该终端设备既支持t1r4的SRS天线轮发也支持t2r4的SRS天线轮发。
当终端设备接入网络设备所在的小区时,会向网络设备上报自己的无线能力(radio capability),其中包括针对终端设备支持的每一种频带组合(band combination)中的每一频带(band)上报SRS天线轮发(sounding reference signal antenna switch)能力。网络设备可以根据终端设备上报的SRS天线轮发能力,为终端设备配置相应的用于SRS天线轮发目的SRS资源。例如代码为“supportedSRS-TxPortSwitch t1r2”,终端设备向网络设备上报的SRS天线轮发能力为支持一个发射射频链路与两根天线,网络设备根据终端设备上报的SRS天线轮发能力向终端设备配置用于SRS天线轮发的SRS资源。
通过引入MIMO技术以及信道估计,终端设备在多天线的情况下也可以保障与网络设备的通信质量,同时,网络设备与终端设备的天线数越多,通信性能越好。但是随着天线数的增加,终端设备的功耗也随之增大,同时大功耗带来了发热量大的问题,发热量大影响终端设备的性能。当出现终端设备内部过热问题,可以通过降低终端设备能力或配置来降温解决过热问题。终端设备可以向网络设备上报辅助信息(user equipment assistance information),用以通知网络设备此时终端设备所期望降低的能力或配置,该辅助信息由于是在终端设备处于过热状态时发送的,因此还可以称为过热指示信息。网络设备根据该上报的过热指示信息、对终端设备进行重配。下面结合图4进行详细说明,图4为本申请实施例中终端设备向网络设备发送辅助信息的流程示意图。
步骤401、网络设备向终端设备发送RRC连接重配信息。
步骤401中,网络设备向终端设备发送RRC连接重配信息,该RRC连接重配信息中包括当终端设备过热时的相关配置信息,例如指示终端设备是否可以发送过热相关的指示信息给网络设备,以及终端设备过热时相关的禁止定时器的取值。
步骤402、终端设备向网络设备发送过热指示信息。
步骤402中,当网络设备向终端设备发送的RRC连接重配信息中,指示终端设备可以向网络设备发送过热指示信息后,当终端设备处于设备过热状态时,终端设备可以向网络设备发送过热指示信息。该过热指示信息用于指示网络设备解决终端设备的过热问题。
在长期演进(long term evolution,LTE)场景或E-UTRA-NR双连接(e-utra-nr dual connectivity,EN-DC)场景中,终端设备上报的过热指示信息中可以包含:上行和/或下行终端设备类型(UE category),和/或,上行和/或下行最大辅(secondary)载波(component carrier,CC)/辅小区(SCell)数。其中上行和/或下行终端设备类型中还包含多入多出层数(multiple-input multiple-output layer,MIMO layer)。
在独立组网架构(standalone,SA)或NR-E-UTRA双连接(nr-e-utra dual connectivity,NE-DC)或NR-NR双连接(nr-nr dual connectivity,NR-DC)场景中,终端设备上报的过热指示信息中可以包含:上行和/或下行最大辅(secondary)载波(component carrier,CC)/辅小区(SCell)数,和/或,每个频段(低频FR1及高频FR2)上行和/或下行最大聚合带宽,和/或,每个频段(低频FR1及高频FR2)上每个服务小区的上行和/或下行最大MIMO layer数。
现有技术中,当终端设备出现过热问题时,终端设备向网络设备上报过热指示信息,网络设备可以根据该过热指示信息重新配置终端设备使用低能力的MIMO,例如:过热前,终端设备使用的下行MIMO能力是4*4MIMO,上行MIMO能力是4*4MIMO。当上报过热指示信息后,终端设备根据网络设备的重配置信息,上行MIMO能力是4*4MIMO。过热前终端设备使用上行MIMO能力是4*4MIMO,终端设备需要打开4条发射射频链路和4个发送天线;终端设备接收重配置信息后使用上行MIMO能力是2*2MIMO,终端设备针对低能力2*2MIMO只需要2条发射射频链路和2个发送天线,因此可以降低功耗,解决过热问题。然而,调整MIMO能力与调整SRS天线轮发能力是解耦的,若终端设备在过热前配置的SRS天线轮发能力是t2r4,则在接收网络设备发送的重配置信息之后,依然需要开启2条发射射频链路和4个发送天线,无法降低功耗,解决过热问题。而现有技术中,终端设备无法降低(fallback)SRS天线轮发能力,这导致了终端设备无法有效解决过热问题。
另一方面,终端设备根据重配置信息降低了MIMO能力后,终端设备根据该重配置信息关闭了对应的射频链路与天线,此时终端设备无法再使用配置于该终端设备内部的SRS资源正常的完成天线轮发。即此时的终端设备无法支持正常的天线轮发,造成部分SRS资源的浪费。并且,由于终端设备进行SRS天线轮发的目的是获得正确的信道估计结果,当终端设备通过被关闭的射频链路与天线向网络设备发送SRS,该信道与终端设备实际上能够使用的信道不一致,这两个信道的质量不一致,造成了信道估计结果的错误,网络设备使用该信道估计结果调度数据,也会造成误码率提升,影响通信质量。
基于上述问题,本申请实施例提出了一种方案,当终端设备过热时,网络设备在接收到终端设备上报的过热指示信息后,可以调整终端设备的SRS天线轮发能力,以降低终端设备功耗,解决终端设备过热问题。
下面结合附图对本申请实施例进行描述,请参阅图5,图5为本申请实施例中过热指示方法的一种实施例示意图,本申请实施例提供的一种过热指示的方法包括:
501、终端设备向网络设备发送第一过热指示信息。
本实施例中,当终端设备处于过热状态时,且网络设备允许终端设备向网络设备发送过热指示信息时,终端设备向网络设备发送第一过热指示信息,该第一过热指示信息承载于RRC信令中。该第一过热指示信息用于指示该终端设备需要不支持SRS天线轮发能力。网络设备在接收第一过热指示信息后,可 以根据承载有该第一过热指示信息的RRC信令本身,获知发送该第一过热指示信息的终端设备需要不支持SRS天线轮发能力,即网络设备接收到携带有过热指示信息的RRC信令时,默认发送该RRC信令的终端设备需要不支持SRS天线轮发能力。第一过热指示信息中还可以携带不支持SRS天线轮发能力指示信息,网络设备可以根据该不支持SRS天线轮发能力指示信息,获知终端设备需要不支持SRS天线轮发能力。具体的,该不支持SRS天线轮发能力指示信息可以为以下代码:“ENUMERATED supportedSRS-TxPortSwitch{notsupported}OPTIONAL”。
不支持SRS天线轮发能力具体可以分为以下两种情况:一种是不支持全部频段资源的SRS天线轮发能力;另一种是不支持部分频段资源的SRS天线轮发能力,例如频分双工长期演进技术(frequency division duplexing-long term evolution,FDD-LTE)中的FDD-LTE B1、2、3、4、5、6、7、8、12、17、18、19、20或26频段中的至少一种。网络设备可以根据当前网络实际情况,配置终端设备不支持哪一些频段资源的SRS天线轮发能力,或者是根据终端设备的第一过热指示信息中携带的全部频段资源指示或部分频段资源指示,指示终端设备不支持哪一些频段资源的SRS天线轮发能力,其中,当第一过热指示信息中携带的是全部频段资源指示时,网络设备指示终端设备不支持全部频段资源的SRS天线轮发能力;当第一过热指示信息中携带的是部分频段资源指示时,网络设备指示终端设备不支持部分频段资源的SRS天线轮发能力,具体的不支持哪一部分频段资源由部分频段资源指示决定。
需要说明的是,当终端设备需要降低MIMO能力时,该第一过热指示信息中还携带有降低MIMO layer指示。
502、网络设备向终端设备发送第一重配置信息。
本实施例中,网络设备在接收到终端设备发送的第一过热指示信息之后,向终端设备发送第一重配置信息,终端设备根据第一重配置信息不支持SRS天线轮发能力。该第一重配置信息可以承载于下行控制信息(downlink control information,DCI)、参考信号(reference signals,RS)、媒体接入控制层的控制信息(media access control control element,MAC CE)或无线资源控制信息(radio resource control,RRC)中的任意一种,具体承载于哪一种信令,由当前终端设备中所配置的用于SRS天线轮发的SRS资源类型决定,用于SRS天线轮发的SRS资源在下文中简称为SRS资源,网络设备根据终端设备上报的第一过热指示信息获知该SRS资源类型。具体的:当配置的SRS资源为周期性SRS资源时,第一重配置信息承载于RRC信令中;当配置的SRS资源为非周期性SRS资源时,第一重配置信息承载于DCI信令中;当配置的SRS资源为半持续性SRS资源时,第一重配置信息承载于MAC CE信令中。
其中,当终端设备配置的SRS资源为非周期性SRS资源,网络设备可以通过不发送激活(activate)该非周期性SRS资源的DCI信令,达到该终端设备不支持SRS天线轮发能力的效果;也可以通过发送承载于DCI信令的第一重配置信息,该第一重配置信息用于去激活(deactivate)该非周期性SRS资源,达到该终端设备不支持SRS天线轮发能力的效果。即当终端设备中配置的SRS资源为非周期性SRS资源时,步骤502为可选步骤。
需要说明的是,该SRS资源由于是用于SRS天线轮发的,而SRS天线轮发中存在选择发送天线进行发送SRS的步骤,因此该SRS资源还可以称为用于天线选择(antenna selection)功能的SRS资源。
当该第一过热指示信息中还携带有降低MIMO layer指示时,第一重配置信息还用于调整终端设备中上行MIMO能力和/或下行MIMO能力(MIMO layer)。具体的,调整终端设备中上行MIMO能力为:调整终端设备中的发送天线数目以及发射射频链路数目;调整终端设备中下行MIMO能力为:调整终端设备中的接收天线以及接收射频链路数目。其中,调整发送天线数目或接收天线数目的情况为,降低MIMO layer指示所指示的降低值低于当前终端设备的天线数目,例如当降低MIMO layer指示为从4layer降 低至2layer,终端设备中接收天线数目为4时,终端设备根据该第一重配置信息将接收天线数目从4调整为2。
503、终端设备不支持SRS天线轮发能力。
本实施例中,根据终端设备内部所配置的SRS资源类型的不同,终端设备不支持SRS天线轮发能力可以通过多种方法实现。下面分别举例说明:
当终端设备内部配置的为周期性SRS资源时,终端设备根据承载于RRC信令中的第一重配置信息,释放(fallback)该周期性SRS资源,当终端设备释放了该SRS资源后,终端设备无法再进行SRS天线轮发,实现了终端设备不支持SRS天线轮发能力的效果。也可以根据该第一重配置信息去激活该SRS资源,使得终端设备无法再进行SRS天线轮发,实现终端设备不支持SRS天线轮发能力的结果。
当终端设备内部配置的为非周期性SRS资源时,终端设备根据承载于DCI信令中的第一重配置信息,释放该非周期性SRS资源,当终端设备释放了该SRS资源后,终端设备无法再进行SRS天线轮发,实现了终端设备不支持SRS天线轮发能力的效果。另外,终端设备中配置的为非周期性SRS资源时,终端设备每次执行SRS天线轮发,都需要接收网络设备发送的激活SRS资源指令,该指令承载于DCI信令中。因此,网络设备可以通过不发送激SRS资源指令,使得终端设备无法再进行SRS天线轮发,实现终端设备不支持SRS天线轮发能力的结果。
当终端设备内部配置的为半持续性SRS资源时,终端设备根据承载于MAC CE信令中的第一重配置信息,释放该半持续性SRS资源,当终端设备释放了该SRS资源后,终端设备无法再进行SRS天线轮发,实现了终端设备不支持SRS天线轮发能力的效果。也可以根据该第一重配置信息去激活该SRS资源,使得终端设备无法再进行SRS天线轮发,实现终端设备不支持SRS天线轮发能力的效果。
具体的释放SRS资源的过程,可以为删除配置于终端设备内部的SRS资源。
当第一过热指示信息指示的是:不支持全部频段资源的SRS天线轮发能力时,终端设备释放所有频段资源的SRS资源;当第一过热指示信息指示的是:不支持部分频段资源的SRS天线轮发能力,终端设备释放对应的部分频段资源的SRS资源。
504、网络设备向终端设备发送下行参考信号。
本实施例中,由于终端设备已经不支持SRS天线轮发能力,因此网络设备无法通过SRS天线轮发获得与该终端设备之间的上行信道估计的结果。因此网络设备可以发起下行信道估计,获得下行信道估计的结果。根据信道互异性,网络设备可以根据该下行信道估计的结果获得上行信道估计的结果。需要说明的是,在非TDD系统中,也可以通过下行信道估计的结果获得上行信道估计的结果。
本实施例中,网络设备向终端设备发送下行参考信号,终端设备通过接收该下行参考信号,进行下行信道估计。需要说明的是,该下行参考信号可以为CSI-RS,还可以为其它的下行参考信号,此处不作限定。
505、终端设备向网络设备发送下行参考信号的反馈信息。
本实施例中,终端设备在接收到下行参考信号之后,终端设备根据下行参考信号确定下行参考信号的反馈信息。终端设备通过物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)向网络设备发送下行参考信号的反馈信息,其中,下行参考信号的反馈信息包含下行信道估计的结果,当下行参考信号为CSI-RS时,该下行参考信号的反馈信息为信道状态信息报告(CSI-RS report)。
网络设备根据该下行参考信号的反馈信息获得下行信道估计的结果以及上行信道估计的结果。
本申请实施例中,终端设备在设备内部过热情况下,向网络设备发送第一过热指示信息,第一过热 指示信息用于指示当前终端设备需要不支持SRS天线轮发能力,网络设备根据第一过热指示信息生成第一重配置信息,终端设备根据第一重配置信息不支持SRS天线轮发能力。终端设备在不支持SRS天线轮发能力后,降低了终端设备的功耗,有效的解决终端设备过热问题。在终端设备不支持SRS天线轮发能力后,网络设备还可以通过向终端设备发送下行参考信号,并接收下行参考信号的反馈信息,获得上行信道估计的结果以及下行信道估计的结果,保证的数据传输的准确性。
终端设备出现过热问题,向网络设备发送第一过热指示信息之后,网络设备向终端设备发送第一重配置信息,终端设备根据第一重配置信息不支持SRS天线轮发能力。在网络设备向终端设备发送第一重配置信息后,网络设备还可以向终端设备重新配置用于SRS轮发的SRS资源。为了便于理解,请参阅图6,图6为本申请实施例中过热指示方法的另一种实施例示意图。本申请实施例提供的另一种过热指示的方法包括:
601、网络设备向终端设备发送第一重配置信息。
本实施例中的内容与步骤501相似,此处不再赘述。
当网络设备向终端设备发送第一重配置信息之后,网络设备启动定时器,该定时器设定的时长称为第一时间间隔,第一时间间隔通常可以设置为:0.5秒、1秒、5秒、10秒、30秒或60秒等。
网络设备启动定时器后,网络设备可能遇到多种情况,下面分别描述:
在第一时间间隔内,网络设备接收到该终端设备发送的过热指示信息中,指示终端设备温度正常情况,执行步骤602;
在第一时间间隔内,网络设备接收到该终端设备发送的过热指示信息中,指示终端设备温度过热情况,执行步骤603;
在第一时间间隔内,网络设备没有接收到该终端设备发送的过热指示信息,执行步骤604。
602、终端设备向网络设备发送第二过热指示信息。
本实施例中,终端设备的温度恢复正常后,终端设备可以向网络设备发送过热指示信息,以告知网络设备当前终端设备温度已恢复正常,该过热指示信息称为第二过热指示信息。当终端设备向网络设备发送第二过热指示信息之后,执行步骤604。
603、终端设备向网络设备发送第三过热指示信息。
本实施例中,终端设备的温度仍然为过热状态时,终端设备可以向网络设备发送过热指示信息,以告知网络设备当前终端设备温度仍然为过热状态,该过热指示信息称为第三过热指示信息。当终端设备向网络设备发送第三过热指示信息之后,网络设备根据该第三过热指示信息,重置定时器。重置定时器后,网络设备执行的步骤与步骤601中网络设备启动定时器后类似,此处不再赘述。
604、网络设备向终端设备发送第二重配置信息。
本实施例中,网络设备已获知终端设备此时已经处于温度正常状态,因此网络设备可以向终端设备发送第二重配置信息,该第二重配置信息用以重新配置终端设备中,用于SRS天线轮发的SRS资源。终端设备根据该第二重配置信息重新配置SRS资源后,终端设备支持SRS天线轮发能力。
当第一过热指示信息中还携带有减少MIMO layer指示时,该第二重配置信息还可以重新调整终端设备中上行MIMO能力和/或下行MIMO能力(MIMO layer)。具体的,调整终端设备中上行MIMO能力为:调整终端设备中的发送天线数目以及发射射频链路数目;调整终端设备中下行MIMO能力为:调整终端设备中的接收天线以及接收射频链路数目。其中,调整发送天线数目或接收天线数目的情况为,降低MIMO layer指示所指示的降低值低于当前终端设备的天线数目,例如第一过热指示信息中的降低MIMO layer指示为从4layer降低至2layer时,终端设备根据该第二重配置信息将接收天线数目从2调整为 4。
本申请实施例中,终端设备在不支持SRS天线轮发能力之后,若终端设备已经从过热状态恢复为温度正常状态,则网络设备可以重新向终端设备配置用于SRS天线轮发的SRS资源。以保证温度恢复正常后的终端设备,可以及时恢复SRS天线轮发能力。
接下来,请参阅图7,本申请实施例还提供了一种终端设备700,包括:
发送模块701,用于当终端设备处于过热状态时,向网络设备发送第一过热指示信息;
接收模块702,用于接收网络设备发送的第一重配置信息,其中第一重配置信息为网络设备根据第一过热指示信息生成的;
处理模块703,用于根据第一重配置信息不支持上行参考信号天线轮发能力。
在本申请的一些实施例中,第一过热指示信息具体包含不支持上行参考信号天线轮发能力指示信息,其中,不支持上行参考信号天线轮发能力指示信息用于请求网络设备发送第一重配置信息。
在本申请的一些实施例中,第一重配置信息承载于可以承载于下行控制信息DCI、媒体接入控制层的控制信息MAC CE或无线资源控制信息RRC中的任意一种,
当第一重配置信息承载于无线资源控制信息时,第一重配置信息具体用于终端设备根据第一重配置信息释放终端设备中的上行参考信号轮发资源或者不进行上行参考信号轮发,其中,终端设备释放终端设备中的上行参考信号轮发资源后,终端设备不支持上行参考信号天线轮发能力。
在本申请的一些实施例中,
处理模块703,具体用于根据携带全部频段资源指示的第一重配置信息释放全部频段资源的上行参考信号轮发资源,其中,终端设备释放终端设备中全部频段资源的上行参考信号轮发资源后,终端设备不支持全部频段资源中的上行参考信号天线轮发能力,或
根据携带部分频段资源指示的第一重配置信息释放部分频段资源的上行参考信号轮发资源,其中,终端设备释放终端设备中部分频段资源的上行参考信号轮发资源后,终端设备不支持部分频段资源中的上行参考信号天线轮发能力。
在本申请的一些实施例中,当第一过热指示信息中还携带有减少多入多出层数MIMO layer指示时,
处理模块703,根据第一重配置信息调整终端设备的天线数目和/或射频链路数目。
在本申请的一些实施例中,
接收模块702,还用于接收网络设备发送的下行参考信号,其中,下行参考信号用于下行信道估计;
发送模块701,还用于向网络设备发送下行参考信号的反馈信息,其中,下行参考信号的反馈信息中携带下行信道估计的结果。
在本申请的一些实施例中,
接收模块702,还用于,网络设备启动定时器,经过第一时间间隔后,接收模块702接收网络设备发送的第二重配置信息,第二重配置信息用于重新配置终端设备中的上行参考信号轮发资源,其中,终端设备重新配置终端设备中的上行参考信号轮发资源后,终端设备支持上行参考信号天线轮发能力。
在本申请的一些实施例中,
发送模块701,还用于,网络设备启动定时器,在第一时间间隔内,当终端设备处于温度正常状态时,发送模块701向网络设备发送第二过热指示信息;
接收模块702,还用于接收网络设备发送的第二重配置信息,第二重配置信息用于重新配置终端设备中的上行参考信号轮发资源,其中,终端设备重新配置终端设备中的上行参考信号轮发资源后,终端设备支持上行参考信号天线轮发能力。
在本申请的一些实施例中,
发送模块701,还用于,网络设备启动定时器,在第一时间间隔内,当终端设备处于过热状态时,发送模块701向网络设备发送第三过热指示信息;
接收模块702,还用于,网络设备重置定时器,经过第一时间间隔后,接收模块702接收网络设备发送的第二重配置信息,第二重配置信息用于重新配置终端设备中的上行参考信号轮发资源,其中,终端设备重新配置终端设备中的上行参考信号轮发资源后,终端设备支持上行参考信号天线轮发能力。
在本申请的一些实施例中,第二重配置信息还用于重新配置终端设备中的多入多出层数MIMO layer,
处理模块703,还用于根据第二重配置信息调整终端设备的天线数目和/或射频链路数目。
接下来,请参阅图8所示,本申请实施例还提供一种网络设备800,包括:
接收模块801,用于接收终端设备发送的第一过热指示信息;
发送模块802,用于根据第一过热指示信息,向终端设备发送第一重配置信息,以使得终端设备不支持上行参考信号天线轮发能力。
在本申请的一些实施例中,第一过热指示信息具体包含不支持上行参考信号天线轮发能力指示信息,其中,不支持上行参考信号天线轮发能力指示信息用于请求网络设备发送第一重配置信息。
在本申请的一些实施例中,第一重配置信息承载于可以承载于下行控制信息DCI、媒体接入控制层的控制信息MAC CE或无线资源控制信息RRC中的任意一种,
当第一重配置信息承载于无线资源控制信息时,第一重配置信息具体用于终端设备根据第一重配置信息释放终端设备中的上行参考信号轮发资源或不进行上行参考信号轮发,其中,终端设备释放终端设备中的上行参考信号轮发资源后,终端设备不支持上行参考信号天线轮发能力。
在本申请的一些实施例中,
发送模块802,具体用于向终端设备发送携带全部频段资源指示的第一重配置信息,以使得终端设备根据携带全部频段资源指示的第一重配置信息,释放终端设备中全部频段资源的上行参考信号轮发资源,其中,终端设备释放终端设备中全部频段资源的上行参考信号轮发资源后,终端设备不支持全部频段资源中的上行参考信号天线轮发能力,或
向终端设备发送携带部分频段资源指示的第一重配置信息,以使得终端设备根据携带部分频段资源指示的第一重配置信息,释放终端设备中部分频段资源的上行参考信号轮发资源,其中,终端设备释放终端设备中部分频段资源的上行参考信号轮发资源后,终端设备不支持部分频段资源中的上行参考信号天线轮发能力。
在本申请的一些实施例中,当第一过热指示信息中携带有减少多入多出层数MIMO layer指示时,第一重配置信息还用于指示终端设备根据第一重配置信息调整终端设备的天线数目和/或射频链路数目。
在本申请的一些实施例中,网络设备还包括处理模块;
发送模块802,还用于向终端设备发送下行参考信号,其中,下行参考信号用于下行信道估计;
接收模块801,还用于接收终端设备发送的下行参考信号的反馈信息,其中,下行参考信号的反馈信息中携带下行信道估计的结果;
处理模块803,用于根据下行参考信号的反馈信息获得上行信道估计的结果。
在本申请的一些实施例中,
发送模块802,还用于,网络设备启动定时器,经过第一时间间隔后,发送模块802向终端设备发送第二重配置信息,第二重配置信息用于重新配置终端设备中的上行参考信号轮发资源,其中,终端设 备重新配置终端设备中的上行参考信号轮发资源后,终端设备支持上行参考信号天线轮发能力。
在本申请的一些实施例中,
接收模块801,还用于,网络设备启动定时器,在第一时间间隔内,接收模块801接收到终端设备发送的第二过热指示信息,第二过热指示信息为终端设备处于温度正常状态发送的;
发送模块802,还用于向终端设备发送第二重配置信息,第二重配置信息用于重新配置终端设备中的上行参考信号轮发资源,其中,终端设备重新配置终端设备中的上行参考信号轮发资源后,终端设备支持上行参考信号天线轮发能力。
在本申请的一些实施例中,
接收模块801,还用于,网络设备启动定时器,在第一时间间隔内,接收模块801接收到终端设备发送的第三过热指示信息,第三过热指示信息为终端设备处于过热状态时发送的;
发送模块802,还用于,网络设备重置定时器,经过第一时间间隔后,发送模块802向终端设备发送第二重配置信息,第二重配置信息用于重新配置终端设备中的上行参考信号轮发资源,其中,终端设备重新配置终端设备中的上行参考信号轮发资源后,终端设备支持上行参考信号天线轮发能力。
在本申请的一些实施例中,当第一过热指示信息中还携带有减少多入多出层数MIMO layer指示时,第二重配置信息还用于重新配置终端设备中的多入多出层数MIMO layer,以使得终端设备根据第二重配置信息调整终端设备的天线数目和/或射频链路数目。
图9是本申请实施例提供的一种终端设备的结构示意图。该终端设备可适用于图1所示出的系统中,执行上述方法实施例中终端设备的功能。为了便于说明,图9仅示出了终端设备的主要部件。如图9所示,终端设备90包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作,如根据第一重配置信息不支持上行参考信号天线轮发能力。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的上行参考信号轮发资源等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和/或中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图9中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。基带处理器也可以表述为基带处理电路或者基 带处理芯片。中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备90的收发单元901,例如,用于支持终端设备执行前述的接收功能和发送功能。将具有处理功能的芯片视为终端设备90的处理器902。如图9所示,终端设备90包括收发单元901和处理器902。收发单元也可以称为收发器、收发机、收发装置等。例如,可以将收发单元901中用于实现接收功能的器件视为接收单元,将收发单元901中用于实现发送功能的器件视为发送单元,即收发单元901包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器902可用于执行该存储器存储的指令,以控制收发单元901接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元901的功能可以考虑通过收发电路或者收发的专用芯片实现。
图10是本申请实施例提供的一种网络设备的结构示意图,如可以为基站的结构示意图。如图10所示,该基站可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。基站1000可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1001和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1002。RRU 1001可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线10011和射频单元10012。RRU 1001部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送第一重配置信息。BBU 1002部分主要用于进行基带处理,对基站进行控制等。RRU 1001与BBU 1002可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
BBU 1002为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如BBU(处理单元)1002可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实例中,BBU 1002可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。BBU1002还包括存储器10021和处理器10022,存储器10021用于存储必要的指令和数据。例如存储器10021存储上述实施例中更新配置信息等。处理器10022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。存储器10021和处理器10022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图11给出了一种通信装置1100的结构示意图。通信装置1100可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。通信装置1100可以是芯片,网络设备(如基站),终端设备或者核心网设备,或者其他网络设备等。
通信装置1100包括一个或多个处理器1101。处理器1101可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,通信装置可以为芯片,收发单元可以是芯片的输入和/或输出电路,或者通信接口。芯片可以用于终端或基站或其他网络设备。又如,通信装置可以为终端或基站或其他网络设备,收发单元可以为收发器,射频芯片等。
通信装置1100包括一个或多个处理器1101,一个或多个处理器1101可实现前述实施例中网络设备或者终端设备的方法。
在一种可能的设计中,通信装置1100包括用于释放终端设备中的上行参考信号轮发资源。可以通过一个或多个处理器来实现释放终端设备中的上行参考信号轮发资源。
在一种可能的设计中,通信装置1100包括用于当终端设备处于过热状态时,终端设备向网络设备发送第一过热指示信息。第一过热指示信息,可以参见上述方法实施例中的相关描述。例如通过一个或多个处理器确定第一过热指示信息。
在一种可能的设计中,通信装置1100可以用于接收网络设备发送的第二重配置信息。可以通过收发器、或输入/输出电路、或芯片的接口接收第二重配置信息。
处理器1101除了实现图4至图6所示的实施例的方法,还可以实现其他功能。
在一种设计中,处理器1101可以执行指令,使得通信装置1100执行上述方法实施例中描述的方法。指令可以全部或部分存储在处理器内,如指令1103,也可以全部或部分存储在与处理器耦合的存储器1102中,如指令1104,也可以通过指令1103和1104共同使得通信装置1100执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置1100也可以包括电路,电路可以实现前述方法实施例中网络设备或终端设备的功能。
在又一种可能的设计中通信装置1100中可以包括一个或多个存储器1102,其上存有指令1104,指令可在处理器上被运行,使得通信装置1100执行上述方法实施例中描述的方法。可选的,存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,一个或多个存储器1102可以存储上述实施例中所描述的第一过热指示信息等。处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,通信装置1100还可以包括收发单元1105以及天线1106。处理器1101可以称为处理单元,对通信装置(终端或者基站)进行控制。收发单元1105可以称为收发机、收发电路、或者收发器等,用于通过天线1106实现通信装置的收发功能。
本申请还提供一种通信系统,其包括前述的一个或多个网络设备,和,一个或多个终端设备。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。在本申请中出现的对步骤进行的命名或者编号,并不意味着必须按照命名或者编号所指示的时间/逻辑先后顺序执行方法流程中的步骤,已经命名或者编号的流程步骤可以根据要实现的技术目的变更执行次序,只要能达到相同或者相类似的技术效果即可。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (55)

  1. 一种过热指示方法,其特征在于,包括:
    当终端设备处于过热状态时,所述终端设备向网络设备发送第一过热指示信息;
    所述终端设备接收所述网络设备发送的第一重配置信息,其中所述第一重配置信息为所述网络设备根据所述第一过热指示信息生成的;
    所述终端设备根据所述第一重配置信息不支持上行参考信号天线轮发能力。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一过热指示信息具体包含不支持上行参考信号天线轮发能力指示信息,其中,所述不支持上行参考信号天线轮发能力指示信息用于请求所述网络设备发送所述第一重配置信息。
  3. 根据权利要求1-2中任一项所述的方法,其特征在于,
    所述第一重配置信息承载于下行控制信息DCI、媒体接入控制层的控制信息MAC CE或无线资源控制信息RRC中的任意一种,
    当所述第一重配置信息承载于所述无线资源控制信息时,所述第一重配置信息具体用于所述终端设备根据所述第一重配置信息释放所述终端设备中的所述上行参考信号轮发资源或者不进行上行参考信号轮发,其中,所述终端设备释放所述终端设备中的所述上行参考信号轮发资源后,所述终端设备不支持所述上行参考信号天线轮发能力。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备根据所述第一重配置信息释放所述上行参考信号轮发资源,包括:
    所述终端设备根据携带全部频段资源指示的所述第一重配置信息释放全部频段资源的所述上行参考信号轮发资源,其中,所述终端设备释放所述终端设备中所述全部频段资源的所述上行参考信号轮发资源后,所述终端设备不支持所述全部频段资源中的所述上行参考信号天线轮发能力;或,
    所述终端设备根据携带部分频段资源指示的所述第一重配置信息释放部分频段资源的所述上行参考信号轮发资源,其中,所述终端设备释放所述终端设备中所述部分频段资源的所述上行参考信号轮发资源后,所述终端设备不支持所述部分频段资源中的所述上行参考信号天线轮发能力。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    当所述第一过热指示信息中还携带有减少多入多出层数MIMO layer指示时,所述终端设备根据所述第一重配置信息调整所述终端设备的天线数目和/或射频链路数目。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述终端设备接收所述网络设备发送的所述第一重配置信息之后,所述方法还包括:
    所述终端设备接收所述网络设备发送的下行参考信号,其中,所述下行参考信号用于下行信道估计;
    所述终端设备向所述网络设备发送所述下行参考信号的反馈信息,其中,所述下行参考信号的反馈信息中携带所述下行信道估计的结果。
  7. 根据权利要求3所述的方法,其特征在于,所述终端设备接收所述网络设备发送的所述第一重配置信息之后,所述方法还包括:
    所述终端设备接收所述网络设备启动定时器并经过第一时间间隔后发送的第二重配置信息,所述第二重配置信息用于重新配置所述终端设备中的所述上行参考信号轮发资源,其中,所述终端设备重新配置所述终端设备中的所述上行参考信号轮发资源后,所述终端设备支持所述上行参考信号天线轮发能力。
  8. 根据权利要求3所述的方法,其特征在于,所述终端设备接收所述网络设备发送的所述第一重配置信息之后,所述方法还包括:
    在所述网络设备启动定时器后的第一时间间隔内,当所述终端设备处于温度正常状态时,所 述终端设备向所述网络设备发送第二过热指示信息;
    所述终端设备接收所述网络设备发送的第二重配置信息,所述第二重配置信息用于重新配置所述终端设备中的所述上行参考信号轮发资源,其中,所述终端设备重新配置所述终端设备中的所述上行参考信号轮发资源后,所述终端设备支持所述上行参考信号天线轮发能力。
  9. 根据权利要求3所述的方法,其特征在于,所述终端设备接收所述网络设备发送的所述第一重配置信息之后,所述方法还包括:
    在所述网络设备启动定时器后的第一时间间隔内,当所述终端设备处于过热状态时,所述终端设备向所述网络设备发送第三过热指示信息;
    所述终端设备接收所述网络设备在重置所述定时器并经过所述第一时间间隔后发送的第二重配置信息,所述第二重配置信息用于重新配置所述终端设备中的所述上行参考信号轮发资源,其中,所述终端设备重新配置所述终端设备中的所述上行参考信号轮发资源后,所述终端设备支持所述上行参考信号天线轮发能力。
  10. 根据权利要求7-9中任一项所述的方法,其特征在于,当所述第一过热指示信息中还携带有所述减少多入多出层数MIMO layer指示时,
    所述第二重配置信息还用于重新配置所述终端设备中的多入多出层数MIMO layer,所述终端设备根据所述第二重配置信息调整所述终端设备的所述天线数目和/或所述射频链路数目。
  11. 根据权利要求10所述的方法,其特征在于,所述上行参考信号为探测参考信号SRS。
  12. 根据权利要求11所述的方法,其特征在于,所述下行参考信号为信道状态信息参考信号CSI-RS,或同步信号/广播信道块SS/PBCH Block。
  13. 一种过热指示方法,其特征在于,包括:
    网络设备接收终端设备发送的第一过热指示信息;
    根据所述第一过热指示信息,所述网络设备向所述终端设备发送第一重配置信息,以使得所述终端设备不支持上行参考信号天线轮发能力。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第一过热指示信息具体包含不支持上行参考信号天线轮发能力指示信息,其中,所述不支持上行参考信号天线轮发能力指示信息用于请求所述网络设备发送所述第一重配置信息。
  15. 根据权利要求13-14中任一项所述的方法,其特征在于,
    所述第一重配置信息承载于可以承载于下行控制信息DCI、媒体接入控制层的控制信息MAC CE或无线资源控制信息RRC中的任意一种,
    当所述第一重配置信息承载于所述无线资源控制信息时,所述第一重配置信息具体用于所述终端设备根据所述第一重配置信息释放所述终端设备中的所述上行参考信号轮发资源或不进行上行参考信号轮发,其中,所述终端设备释放所述终端设备中的所述上行参考信号轮发资源后,所述终端设备不支持所述上行参考信号天线轮发能力。
  16. 根据权利要求15所述的方法,其特征在于,所述网络设备向所述终端设备发送所述第一重配置信息,包括:
    所述网络设备向所述终端设备发送携带全部频段资源指示的所述第一重配置信息,以使得所述终端设备根据携带所述全部频段资源指示的所述第一重配置信息,释放所述终端设备中全部频段资源的所述上行参考信号轮发资源,其中,所述终端设备释放所述终端设备中所述全部频段资源的所述上行参考信号轮发资源后,所述终端设备不支持所述全部频段资源中的所述上行参考信号天线轮发能力;或,
    所述网络设备向所述终端设备发送携带部分频段资源指示的所述第一重配置信息,以使得所述终端设备根据携带所述部分频段资源指示的所述第一重配置信息,释放所述终端设备中部分频段资源的所述上行参考信号轮发资源,其中,所述终端设备释放所述终端设备中所述部分频段资 源的所述上行参考信号轮发资源后,所述终端设备不支持所述部分频段资源中的所述上行参考信号天线轮发能力。
  17. 根据权利要求16所述的方法,其特征在于,
    当所述第一过热指示信息中携带有减少多入多出层数MIMO layer指示时,所述第一重配置信息还用于指示所述终端设备根据所述第一重配置信息调整所述终端设备的天线数目和/或射频链路数目。
  18. 根据权利要求13-17中任一项所述的方法,其特征在于,所述网络设备向所述终端设备发送所述第一重配置信息之后,所述方法还包括;
    所述网络设备向所述终端设备发送下行参考信号,其中,所述下行参考信号用于下行信道估计;
    所述网络设备接收所述终端设备发送的所述下行参考信号的反馈信息,其中,所述下行参考信号的反馈信息中携带所述下行信道估计的结果;
    所述网络设备根据所述下行参考信号的反馈信息获得上行信道估计的结果。
  19. 根据权利要求15所述的方法,其特征在于,所述网络设备向所述终端设备发送第一重配置信息之后,所述方法还包括:
    所述网络设备启动定时器,经过第一时间间隔后,所述网络设备向所述终端设备发送第二重配置信息,所述第二重配置信息用于重新配置所述终端设备中的所述上行参考信号轮发资源,其中,所述终端设备重新配置所述终端设备中的所述上行参考信号轮发资源后,所述终端设备支持所述上行参考信号天线轮发能力。
  20. 根据权利要求15所述的方法,其特征在于,所述网络设备向所述终端设备发送第一重配置信息之后,所述方法还包括:
    所述网络设备启动定时器,在第一时间间隔内,所述网络设备接收到所述终端设备发送的第二过热指示信息,所述第二过热指示信息为所述终端设备处于温度正常状态发送的;
    所述网络设备向所述终端设备发送第二重配置信息,所述第二重配置信息用于重新配置所述终端设备中的所述上行参考信号轮发资源,其中,所述终端设备重新配置所述终端设备中的所述上行参考信号轮发资源后,所述终端设备支持所述上行参考信号天线轮发能力。
  21. 根据权利要求15所述的方法,其特征在于,所述网络设备向所述终端设备发送第一重配置信息之后,所述方法还包括:
    所述网络设备启动定时器,在第一时间间隔内,所述网络设备接收到所述终端设备发送的第三过热指示信息,所述第三过热指示信息为所述终端设备处于过热状态时发送的;
    所述网络设备重置所述定时器,经过所述第一时间间隔后,所述网络设备向所述终端设备发送第二重配置信息,所述第二重配置信息用于重新配置所述终端设备中的所述上行参考信号轮发资源,其中,所述终端设备重新配置所述终端设备中的所述上行参考信号轮发资源后,所述终端设备支持所述上行参考信号天线轮发能力。
  22. 根据权利要求19-21中任一项所述的方法,其特征在于,
    当所述第一过热指示信息中还携带有所述减少多入多出层数MIMO layer指示时,所述第二重配置信息还用于重新配置所述终端设备中的多入多出层数MIMO layer,以使得所述终端设备根据所述第二重配置信息调整所述终端设备的所述天线数目和/或所述射频链路数目。
  23. 根据权利要求22所述的方法,其特征在于,
    所述上行参考信号为探测参考信号SRS。
  24. 根据权利要求23所述的方法,其特征在于,
    所述下行参考信号为信道状态信息参考信号CSI-RS,或同步信号/广播信道块SS/PBCH Block。
  25. 一种通信装置,其特征在于,包括:
    用于当终端设备处于过热状态时,所述终端设备向网络设备发送第一过热指示信息的装置;
    用于接收所述网络设备发送的第一重配置信息的装置,其中所述第一重配置信息为所述网络设备根据所述第一过热指示信息生成的;
    用于根据所述第一重配置信息不支持上行参考信号天线轮发能力的装置。
  26. 根据权利要求25所述的通信装置,其特征在于,
    所述第一过热指示信息具体包含不支持上行参考信号天线轮发能力指示信息,其中,所述不支持上行参考信号天线轮发能力指示信息用于请求所述网络设备发送所述第一重配置信息。
  27. 根据权利要求25-26中任一项所述的通信装置,其特征在于,
    所述第一重配置信息承载于下行控制信息DCI、媒体接入控制层的控制信息MAC CE或无线资源控制信息RRC中的任意一种,
    当所述第一重配置信息承载于所述无线资源控制信息时,所述第一重配置信息具体用于指示所述终端设备根据所述第一重配置信息释放所述终端设备中的所述上行参考信号轮发资源或者不进行上行参考信号轮发,其中,所述终端设备释放所述终端设备中的所述上行参考信号轮发资源后,所述终端设备不支持所述上行参考信号天线轮发能力。
  28. 根据权利要求27所述的通信装置,其特征在于,还包括:
    用于根据携带全部频段资源指示的所述第一重配置信息释放全部频段资源的所述上行参考信号轮发资源的装置,其中,所述终端设备释放所述终端设备中所述全部频段资源的所述上行参考信号轮发资源后,所述终端设备不支持所述全部频段资源中的所述上行参考信号天线轮发能力;或,
    用于根据携带部分频段资源指示的所述第一重配置信息释放部分频段资源的所述上行参考信号轮发资源的装置,其中,所述终端设备释放所述终端设备中所述部分频段资源的所述上行参考信号轮发资源后,所述终端设备不支持所述部分频段资源中的所述上行参考信号天线轮发能力。
  29. 根据权利要求28所述的通信装置,其特征在于,还包括:
    用于当所述第一过热指示信息中还携带有减少多入多出层数MIMO layer指示时,根据所述第一重配置信息调整所述终端设备的天线数目和/或射频链路数目的装置。
  30. 根据权利要求25-29中任一项所述的通信装置,其特征在于,还包括:
    用于在接收所述网络设备发送的所述第一重配置信息之后,接收所述网络设备发送的下行参考信号的装置,其中,所述下行参考信号用于下行信道估计;
    用于向所述网络设备发送所述下行参考信号的反馈信息的装置,其中,所述下行参考信号的反馈信息中携带所述下行信道估计的结果。
  31. 根据权利要求27所述的通信装置,其特征在于,还包括:
    用于接收所述网络设备启动定时器并经过第一时间间隔后发送的第二重配置信息的装置,所述第二重配置信息用于重新配置所述终端设备中的所述上行参考信号轮发资源,其中,所述终端设备重新配置所述终端设备中的所述上行参考信号轮发资源后,所述终端设备支持所述上行参考信号天线轮发能力。
  32. 根据权利要求27所述的通信装置,其特征在于,还包括:
    用于接收所述网络设备发送的所述第一重配置信息之后,且在所述网络设备启动定时器起的第一时间间隔内,如果所述终端设备处于温度正常状态,则向所述网络设备发送第二过热指示信息的装置;
    用于接收所述网络设备发送的第二重配置信息的装置,所述第二重配置信息用于重新配置所述终端设备中的所述上行参考信号轮发资源,其中,所述终端设备重新配置所述终端设备中的所述上行参考信号轮发资源后,所述终端设备支持所述上行参考信号天线轮发能力。
  33. 根据权利要求27所述的通信装置,其特征在于,还包括:
    用于接收所述网络设备发送的所述第一重配置信息之后,且在所述网络设备启动定时器起的 第一时间间隔内,如果所述终端设备处于过热状态时,则向所述网络设备发送第三过热指示信息的装置;
    用于在所述网络设备重置所述定时器且经过所述第一时间间隔后,接收所述网络设备发送的第二重配置信息的装置,所述第二重配置信息用于重新配置所述终端设备中的所述上行参考信号轮发资源,其中,所述终端设备重新配置所述终端设备中的所述上行参考信号轮发资源后,所述终端设备支持所述上行参考信号天线轮发能力。
  34. 根据权利要求31-33中任一项所述的通信装置,其特征在于,当所述第一过热指示信息中还携带有所述减少多入多出层数MIMO layer指示时,
    所述第二重配置信息还用于重新配置所述终端设备中的多入多出层数MIMO layer,所述终端设备根据所述第二重配置信息调整所述终端设备的所述天线数目和/或所述射频链路数目。
  35. 根据权利要求34所述的通信装置,其特征在于,所述上行参考信号为探测参考信号SRS。
  36. 根据权利要求35所述的通信装置,其特征在于,所述下行参考信号为信道状态信息参考信号CSI-RS,或同步信号/广播信道块SS/PBCH Block。
  37. 一种过热指示通信装置,其特征在于,包括:
    用于接收终端设备发送的第一过热指示信息的装置;
    用于根据所述第一过热指示信息,向所述终端设备发送第一重配置信息的装置,以使得所述终端设备不支持上行参考信号天线轮发能力。
  38. 根据权利要求37所述的通信装置,其特征在于,
    所述第一过热指示信息具体包含不支持上行参考信号天线轮发能力指示信息,其中,所述不支持上行参考信号天线轮发能力指示信息用于请求网络设备发送所述第一重配置信息。
  39. 根据权利要求37-38中任一项所述的通信装置,其特征在于,
    所述第一重配置信息承载于可以承载于下行控制信息DCI、媒体接入控制层的控制信息MAC CE或无线资源控制信息RRC中的任意一种,
    当所述第一重配置信息承载于所述无线资源控制信息时,所述第一重配置信息具体用于指示所述终端设备根据所述第一重配置信息释放所述终端设备中的所述上行参考信号轮发资源或不进行上行参考信号轮发,其中,所述终端设备释放所述终端设备中的所述上行参考信号轮发资源后,所述终端设备不支持所述上行参考信号天线轮发能力。
  40. 根据权利要求39所述的通信装置,其特征在于,用于向所述终端设备发送所述第一重配置信息的装置,包括:
    用于向所述终端设备发送携带全部频段资源指示的所述第一重配置信息,以使得所述终端设备根据携带所述全部频段资源指示的所述第一重配置信息,释放所述终端设备中全部频段资源的所述上行参考信号轮发资源的装置,其中,所述终端设备释放所述终端设备中所述全部频段资源的所述上行参考信号轮发资源后,所述终端设备不支持所述全部频段资源中的所述上行参考信号天线轮发能力;或,
    用于向所述终端设备发送携带部分频段资源指示的所述第一重配置信息,以使得所述终端设备根据携带所述部分频段资源指示的所述第一重配置信息,释放所述终端设备中部分频段资源的所述上行参考信号轮发资源的装置,其中,所述终端设备释放所述终端设备中所述部分频段资源的所述上行参考信号轮发资源后,所述终端设备不支持所述部分频段资源中的所述上行参考信号天线轮发能力。
  41. 根据权利要求40所述的通信装置,其特征在于,
    当所述第一过热指示信息中携带有减少多入多出层数MIMO layer指示时,所述第一重配置信息还用于指示所述终端设备根据所述第一重配置信息调整所述终端设备的天线数目和/或射频链路数目。
  42. 根据权利要求37-41中任一项所述的通信装置,其特征在于,还包括:
    用于在向所述终端设备发送所述第一重配置信息之后,向所述终端设备发送下行参考信号的装置,其中,所述下行参考信号用于下行信道估计;
    用于接收所述终端设备发送的所述下行参考信号的反馈信息的装置,其中,所述下行参考信号的反馈信息中携带所述下行信道估计的结果;
    用于根据所述下行参考信号的反馈信息获得上行信道估计的结果的装置。
  43. 根据权利要求42所述的通信装置,其特征在于,还包括:
    用于在向所述终端设备发送第一重配置信息之后,启动定时器并经过第一时间间隔后,向所述终端设备发送第二重配置信息的装置,所述第二重配置信息用于重新配置所述终端设备中的所述上行参考信号轮发资源,其中,所述终端设备重新配置所述终端设备中的所述上行参考信号轮发资源后,所述终端设备支持所述上行参考信号天线轮发能力。
  44. 根据权利要求42所述的通信装置,其特征在于,还包括:
    用于在向所述终端设备发送第一重配置信息之后,启动定时器并在第一时间间隔内,接收所述终端设备发送的第二过热指示信息的装置,所述第二过热指示信息为所述终端设备处于温度正常状态发送的;
    用于向所述终端设备发送第二重配置信息的装置,所述第二重配置信息用于重新配置所述终端设备中的所述上行参考信号轮发资源,其中,所述终端设备重新配置所述终端设备中的所述上行参考信号轮发资源后,所述终端设备支持所述上行参考信号天线轮发能力。
  45. 根据权利要求42所述的通信装置,其特征在于,还包括:
    所述网络设备向所述终端设备发送第一重配置信息之后,所述通信装置还包括:
    用于在向所述终端设备发送第一重配置信息之后,启动定时器并在第一时间间隔内,接收所述终端设备发送的第三过热指示信息,所述第三过热指示信息为所述终端设备处于过热状态时发送的;
    用于重置所述定时器,并在经过所述第一时间间隔后,向所述终端设备发送第二重配置信息的装置,所述第二重配置信息用于重新配置所述终端设备中的所述上行参考信号轮发资源,其中,所述终端设备重新配置所述终端设备中的所述上行参考信号轮发资源后,所述终端设备支持所述上行参考信号天线轮发能力。
  46. 根据权利要求43-45中任一项所述的通信装置,其特征在于,
    当所述第一过热指示信息中还携带有所述减少多入多出层数MIMO layer指示时,所述第二重配置信息还用于重新配置所述终端设备中的多入多出层数MIMO layer,以使得所述终端设备根据所述第二重配置信息调整所述终端设备的所述天线数目和/或所述射频链路数目。
  47. 根据权利要求46所述的通信装置,其特征在于,
    所述上行参考信号为探测参考信号SRS。
  48. 根据权利要求47所述的通信装置,其特征在于,
    所述下行参考信号为信道状态信息参考信号CSI-RS,或同步信号/广播信道块SS/PBCH Block。
  49. 一种终端设备,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时,实现如权利要求1至12中任一项所述的方法。
  50. 一种网络设备,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时,实现如权利要求13至24中任一项所述的方法
  51. 一种装置,其特征在于,所述装置包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行如权利要求1至12中任一项所述的方法,或根据所述指令执 行如权利要求13至24中任一项所述的方法。
  52. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至12中任一项所述的方法,或执行如权利要求13至24中任一项所述的方法。
  53. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至12中任一项所述的方法,或使得计算机执行如权利要求13至24中任一项所述的方法。
  54. 一种芯片,其特征在于,与存储器相连或者包括存储器,用于读取并执行所述存储器中存储的软件程序,以实现如权利要求1至12中任一项所述的方法,或以实现如权利要求13至24中任一项所述的方法。
  55. 一种通信系统,其特征在于,包括:网络设备与终端设备;
    终端设备在处于过热状态时,向网络设备发送第一过热指示信息;接收所述网络设备发送的第一重配置信息,其中所述第一重配置信息为所述网络设备根据所述第一过热指示信息生成的;根据所述第一重配置信息不支持上行参考信号天线轮发能力;
    网络设备接收终端设备发送的第一过热指示信息;根据所述第一过热指示信息,向所述终端设备发送第一重配置信息。
PCT/CN2020/079552 2019-03-15 2020-03-16 一种过热指示方法以及相关设备 WO2020187192A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910198417.6A CN110049563B (zh) 2019-03-15 2019-03-15 一种过热指示方法以及相关设备
CN201910198417.6 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020187192A1 true WO2020187192A1 (zh) 2020-09-24

Family

ID=67273804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079552 WO2020187192A1 (zh) 2019-03-15 2020-03-16 一种过热指示方法以及相关设备

Country Status (2)

Country Link
CN (1) CN110049563B (zh)
WO (1) WO2020187192A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022642A1 (en) * 2021-08-20 2023-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Reporting of predicted ue overheating
WO2024037291A1 (zh) * 2022-08-17 2024-02-22 深圳市广和通无线股份有限公司 一种射频装置的控制方法、射频装置及电子设备
WO2024094624A1 (en) * 2022-11-03 2024-05-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods by wireless device and network node regarding adaptive multi-chain rx activity

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110049563B (zh) * 2019-03-15 2021-07-16 华为技术有限公司 一种过热指示方法以及相关设备
CN117676863A (zh) * 2019-03-28 2024-03-08 华为技术有限公司 一种上报srs能力的方法、装置及系统
CN111836407B (zh) * 2019-08-09 2023-09-15 维沃移动通信有限公司 处理方法和设备
US11297576B2 (en) * 2019-08-12 2022-04-05 Qualcomm Incorporated Innovative signaling approaches to network for overheating indication in new radio (NR) and multi-radio dual connectivity (MR-DC)
CN112399645B (zh) * 2019-08-15 2023-02-28 华为技术有限公司 Scg释放方法、用户设备及网络设备
CN112398554B (zh) * 2019-08-16 2022-06-07 华为技术有限公司 用于信道测量的方法以及终端装置
WO2021035561A1 (zh) * 2019-08-28 2021-03-04 北京小米移动软件有限公司 过热处理方法及装置
CN112564871B (zh) * 2019-09-26 2023-05-09 维沃移动通信有限公司 Srs轮发配置信息的上报、配置、终端及网络侧设备
WO2021097671A1 (zh) * 2019-11-19 2021-05-27 北京小米移动软件有限公司 辅助信息传输方法、装置、终端、接入网设备及存储介质
CN114830613B (zh) * 2019-12-31 2024-04-26 华为技术有限公司 一种通信传输的方法、设备及系统
CN113099542B (zh) * 2020-01-09 2023-04-07 维沃移动通信有限公司 参数上报方法及上行调度方法、设备及介质
CN111278097A (zh) * 2020-02-21 2020-06-12 Oppo广东移动通信有限公司 信息上报方法、终端及存储介质
WO2021179266A1 (zh) * 2020-03-12 2021-09-16 北京小米移动软件有限公司 多输入多输出模式配置方法、装置及存储介质
CN114554517A (zh) * 2020-11-24 2022-05-27 深圳市万普拉斯科技有限公司 一种终端过热处理方法、装置、终端和存储介质
WO2022133707A1 (en) * 2020-12-22 2022-06-30 Qualcomm Incorporated Dynamic reconfiguration associated with transmitting sounding reference signal (srs) information
CN113301559B (zh) * 2021-05-21 2022-08-02 维沃移动通信(杭州)有限公司 终端能力上报方法、装置和电子设备
CN113329423B (zh) * 2021-05-21 2022-09-06 Oppo广东移动通信有限公司 网络连接的控制方法、装置、终端设备及计算机存储介质
CN113329482B (zh) * 2021-05-21 2022-07-29 Oppo广东移动通信有限公司 一种功耗控制方法、装置、设备及计算机存储介质
CN115460626A (zh) * 2021-06-09 2022-12-09 华为技术有限公司 一种信息上报的方法与装置
WO2023004703A1 (zh) * 2021-07-29 2023-02-02 华为技术有限公司 数据传输方法及通信装置
CN116347427A (zh) * 2021-12-25 2023-06-27 华为技术有限公司 用于配置的方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108353311A (zh) * 2017-09-19 2018-07-31 北京小米移动软件有限公司 用户设备的过热保护方法、装置及基站
US20190075014A1 (en) * 2017-09-07 2019-03-07 Comcast Cable Communications, Llc Unified Downlink Control Information for Beam Management
CN110049563A (zh) * 2019-03-15 2019-07-23 华为技术有限公司 一种过热指示方法以及相关设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11363473B2 (en) * 2017-08-31 2022-06-14 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for adaptive SRS transmit antenna selection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190075014A1 (en) * 2017-09-07 2019-03-07 Comcast Cable Communications, Llc Unified Downlink Control Information for Beam Management
CN108353311A (zh) * 2017-09-19 2018-07-31 北京小米移动软件有限公司 用户设备的过热保护方法、装置及基站
CN110049563A (zh) * 2019-03-15 2019-07-23 华为技术有限公司 一种过热指示方法以及相关设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining Issues for UE Overheating", 3GPP TSG-RAN WG2 #99BIS TDOC R2-1711537, 13 October 2017 (2017-10-13), XP051343507, DOI: 20200522090450A *
MITSUBISHI ELECTRIC: "Physical Layer Parameters to Specify for Transmit Antenna Selection: Summary of Remaining UL SRS Related Issues and Way Forward", 3GPP RAN1#53 R1-081909, 9 May 2008 (2008-05-09), XP008145121, DOI: 20200522090747A *
SONY: "Discussion and Proposal to UE Overheat Issue for NR", 3GPP TSG RAN WG2 MEETING #99 R2-1709515, 25 August 2017 (2017-08-25), XP051319239, DOI: 20200522090944A *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022642A1 (en) * 2021-08-20 2023-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Reporting of predicted ue overheating
WO2024037291A1 (zh) * 2022-08-17 2024-02-22 深圳市广和通无线股份有限公司 一种射频装置的控制方法、射频装置及电子设备
WO2024094624A1 (en) * 2022-11-03 2024-05-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods by wireless device and network node regarding adaptive multi-chain rx activity

Also Published As

Publication number Publication date
CN110049563A (zh) 2019-07-23
CN110049563B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
WO2020187192A1 (zh) 一种过热指示方法以及相关设备
JP6926281B2 (ja) 無線通信システムにおけるチャネル状態情報を報告するための方法及びそのための装置
JP7135073B2 (ja) 無線通信システムにおいてコードブックに基づいて上向きリンク信号を送信する方法及びこのための装置
JP7061619B2 (ja) 信号送信方法、装置、およびシステム
JP6263827B2 (ja) 時分割複信(tdd)キャリアアグリゲーションシステムのための周期的チャネル状態情報レポート
JP6466515B2 (ja) 協調マルチポイント(CoMP)システムのための周期的チャネル状態情報レポート
WO2020164638A1 (zh) 一种天线参数调整的方法以及相关装置
JP2020516193A (ja) 無線通信システムにおいてチャネル状態情報を報告するための方法及びそのための装置
CN110831198A (zh) 带宽资源切换方法、指示带宽资源切换方法、终端和网络设备
US11464020B2 (en) Resource configuration method and device
EP3669484B1 (en) Wireless communication method, user equipment, and base station
WO2021146613A1 (en) Serving cell with distinct pci index per rrh for dl tci state, spatial relation, and ul tci state
US20210409086A1 (en) Ue recommended csi settings
CN114270757A (zh) 指示控制信息的方法和装置
US20230361975A1 (en) Method of sharing srs resources between srs resource sets of different usages, and corresponding ue
US10998956B1 (en) Optimized receive beam selection
WO2021194926A1 (en) Ue split architecture with distributed tx/rx chains
WO2022077402A1 (zh) 确定传输参数的方法及相关装置和设备、可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772588

Country of ref document: EP

Kind code of ref document: A1