WO2020164638A1 - 一种天线参数调整的方法以及相关装置 - Google Patents

一种天线参数调整的方法以及相关装置 Download PDF

Info

Publication number
WO2020164638A1
WO2020164638A1 PCT/CN2020/075581 CN2020075581W WO2020164638A1 WO 2020164638 A1 WO2020164638 A1 WO 2020164638A1 CN 2020075581 W CN2020075581 W CN 2020075581W WO 2020164638 A1 WO2020164638 A1 WO 2020164638A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
terminal device
uplink reference
indication information
signaling
Prior art date
Application number
PCT/CN2020/075581
Other languages
English (en)
French (fr)
Inventor
薛祎凡
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020164638A1 publication Critical patent/WO2020164638A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • This application relates to the field of communications, and in particular to a method for adjusting antenna parameters and related devices.
  • the 3GPP standards group formulated the next generation system network architecture at the end of 2016. It is the fifth generation (5rd generation, 5G) network architecture, also known as the 5g new communication protocol (5g new radio, 5g NR or NR).
  • This architecture not only supports the wireless technology defined by the 3GPP standard group to access the 5G core network (5G core network), but also supports the non-3GPP (non-3GPP) access technology to access the 5G core network, such as the fixed network access to the 5G core network.
  • a terminal equipment When a terminal equipment (user equipment, UE) sends a signal, after generating a baseband signal in the baseband, it generates a radio frequency signal through a radio frequency link, and then sends it out through an antenna.
  • a terminal device When a terminal device receives a signal, it also has a corresponding radio frequency receiving link.
  • MIMO multiple input multiple output
  • both network equipment and UE can improve communication performance through multiple input multiple output (MIMO) technology, also known as multiple antenna technology.
  • MIMO multiple input multiple output
  • the channel state used for transmission is estimated in NR, and the network device can select appropriate transmission parameters according to the channel estimation result. This process is called channel estimation.
  • the UE can use channel state information reference signal (CSI-RS) and sounding reference signal (Sounding reference signal, SRS) for channel estimation.
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • terminal equipment uses multiple antennas for transmission, which will cause high power consumption.
  • a solution for reducing power consumption of terminal equipment is now proposed: reducing the number of antennas used by terminal equipment to transmit data, or adjusting antenna parameters, to achieve the purpose of reducing power consumption of terminal equipment.
  • the network equipment needs to perform channel estimation after adjusting the antenna parameters of the terminal equipment.
  • Network equipment needs to select appropriate transmission parameters according to the channel estimation results to ensure the success rate of data transmission.
  • the terminal device can perform the operation of adjusting antenna parameters (that is, turning off part of the antenna) to reduce power consumption.
  • the network device still uses the original antenna parameters.
  • the channel estimation result for data transmission does not match the channel estimation result under the current antenna parameter conditions, which increases the probability of data transmission failure.
  • the embodiment of the application provides a method and related device for antenna parameter adjustment.
  • a network device instructs a terminal device to adjust antenna parameters through a first signaling.
  • the first signaling is also used to instruct the terminal device to perform channel estimation so that the network device can timely Obtain the channel estimation result, and perform data transmission according to the channel estimation result to reduce the probability of transmission failure.
  • the embodiments of this application provide a method for adjusting antenna parameters.
  • the terminal device receives the first signaling sent by the network device.
  • the first signaling may be carried in the downlink control information (DCI), reference Signal (reference signals, RS), media access control address control element (media access control control element, MAC CE), or radio resource control (radio resource control, RRC), where the first signaling includes the first Indication information and second indication information.
  • DCI downlink control information
  • RS reference Signal
  • media access control address control element media access control control element
  • RRC radio resource control
  • the first indication information is used to instruct the terminal equipment to adjust antenna parameters
  • the second indication information is used to instruct the terminal equipment to send or receive additional reference signals
  • the additional reference signals are used to perform antenna parameter adjustments.
  • the terminal device adjusts the antenna parameters according to the first indication information in the first signaling, and adjusts the antenna parameters to turn on or off the port corresponding to the antenna. For example, when the adjustment is the transmit antenna parameter, the terminal device turns on or off the transmit antenna port. When adjusting the receiving antenna parameters, the terminal device opens or closes the receiving antenna port.
  • the first indication information is used when the terminal equipment adjusts the receiving antenna parameters, and the second indication information indicates that the terminal equipment receives additional downlink reference signals; or when the first indication information instructs the terminal equipment to adjust the transmitting antenna parameters, the second indication information indicates The terminal device sends an additional uplink reference signal; or when the first indication information instructs the terminal device to adjust the receiving antenna parameter and adjust the transmit antenna parameter, the second indication information instructs the terminal device to receive the additional downlink reference signal and send the additional uplink reference signal.
  • the embodiments of the present application have the following advantages: the terminal device adjusts antenna parameters according to the first signaling sent by the network device, and the first signaling is also used to instruct the terminal device to perform channel estimation , So that the network equipment can obtain the channel estimation result in time, and perform data transmission according to the channel estimation result to reduce the probability of transmission failure.
  • the first signaling can be carried in multiple signaling, which improves the implementation flexibility of the solution.
  • the terminal device before the terminal device receives the first signaling sent by the network device, the terminal device receives the first configuration information sent by the network device, where the first configuration information is used to configure the reference signal resource
  • the reference signal resource may be an uplink reference signal resource or a downlink reference signal resource.
  • the first configuration information can either individually configure the uplink reference signal resource or the downlink reference signal resource, or simultaneously configure the uplink reference signal resource and the downlink reference signal resource;
  • the terminal device uses the reference signal resource to send or receive additional reference signals.
  • the terminal device uses the uplink reference signal resource to send the additional uplink reference signal.
  • the terminal device uses the downlink reference signal resource to receive the additional downlink reference signal.
  • the terminal device uses the uplink reference signal resource to send the additional uplink reference signal and uses the downlink reference signal resource to receive the additional downlink reference signal.
  • the uplink reference signal resource is a sounding reference signal (sounding reference signal, SRS) resource
  • the additional uplink reference signal is an SRS
  • the terminal device uses the SRS resource to send the SRS to the network device.
  • the downlink reference signal resource is a channel state information reference signal (CSI-RS) resource
  • the additional downlink reference signal is a CSI-RS
  • the terminal device uses the CSI-RS resource to receive the CSI-RS sent by the network device .
  • the uplink reference signal resource and the downlink reference signal resource may also be other reference signal resources, which are not limited here.
  • the first configuration information used to configure the reference signal resource in the terminal device can be configured to separately configure the uplink reference signal resource or the downlink reference signal resource, or configure the uplink reference signal resource and the downlink reference signal resource at the same time, which improves the implementation flexibility of the solution .
  • the first signaling is carried in the DCI or RS
  • the terminal device transmits or receives additional reference signals on the first time domain resource
  • the first time domain resource receives the first signal on the terminal device. After signaling.
  • the terminal device sends or receives additional reference signals to ensure that the terminal device can correctly learn the content of the first signaling.
  • the network equipment obtains the correct channel estimation result and reduces the probability of transmission failure.
  • the first signaling is carried in MAC CE or RRC.
  • the terminal device After the terminal device receives the first signaling sent by the network device, before the terminal device adjusts the antenna parameters according to the first signaling, The terminal device sends a hybrid automatic repeat request-acknowledge (HARQ-ACK) to the network device. The network device will feed back a HARQ-ACK confirmation message to the terminal device according to the HARQ-ACK. After the terminal device receives the HARQ-ACK confirmation information, the terminal device adjusts the antenna parameters according to the first indication information. The terminal device sends or receives the additional reference signal in the second time domain resource, and the second time domain resource is after the terminal device receives the HARQ-ACK confirmation information.
  • HARQ-ACK hybrid automatic repeat request-acknowledge
  • the terminal device when the first signaling is carried on the MAC CE, the terminal device sends or receives additional reference signals in the second time domain resource, and the second time domain resource is related to the time domain used by the terminal device to receive the HARQ-ACK confirmation information
  • the resource interval is greater than 0, and the time domain resource interval is usually 3 milliseconds.
  • the terminal device When the first signaling is carried by MAC CE or RRC, after the terminal device receives the first signaling, the terminal device first sends HARQ-ACK to the network device. The network device feeds back the HARQ-ACK confirmation information to the terminal device according to the HARQ-ACK. After the terminal device receives the HARQ-ACK confirmation information, the terminal device sends or receives additional reference signals to ensure that the terminal device can correctly learn the content of the first signaling, which ensures that the network device obtains the correct channel estimation result and reduces The probability of transmission failure.
  • the terminal device determines the downlink reference signal report message according to the additional downlink reference signal
  • the terminal device sends the downlink reference signal report message to the network device through the physical uplink control channel (PUCCH) or the physical uplink shared channel (PUSCH), where the downlink reference signal report message includes the downlink channel estimation result.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the terminal device after receiving the additional downlink reference signal, the terminal device sends a downlink reference signal report message to the network device through the first PUCCH or the first PUSCH in the time-frequency resources occupied by the first PUCCH or the first PUSCH; Or, after receiving the downlink reference signal, the terminal device sends the downlink reference signal report message to the network device through the pre-configured PUCCH or the pre-configured PUSCH in the pre-configured PUCCH or the pre-configured PUSCH time-frequency resource, the pre-configured PUCCH Or the pre-configured PUSCH is a channel pre-configured by the network equipment to the terminal equipment; or, the first signaling is also used to indicate PUCCH or PUSCH resources, and the first signaling contains the index value of the PUCCH or PUSCH resource ( index), after receiving the downlink reference signal, the terminal device sends a downlink reference signal report message to the network device through the PUCCH or the indicated PUSCH resource indicated by the first signaling. After the terminal device receive
  • the embodiments of the present application provide a method for adjusting antenna parameters.
  • a network device sends a first signaling to a terminal device.
  • the first signaling may be carried in downlink control information (DCI) and reference signals. (reference signals, RS), media access control address control element (MAC CE), or radio resource control (radio resource control, RRC), where the first signaling includes the first indication Information and second indication information, the first indication information is used to instruct the terminal equipment to adjust the antenna parameters, the second indication information is used to instruct the terminal equipment to send or receive additional reference signals, and the additional reference signals are used to perform channel adjustments after the antenna parameters are adjusted estimate;
  • DCI downlink control information
  • RS reference signals
  • MAC CE media access control address control element
  • RRC radio resource control
  • the terminal device adjusts the antenna parameters according to the first indication information in the first signaling, and adjusts the antenna parameters to turn on or off the port corresponding to the antenna. For example, when the adjustment is the transmit antenna parameter, the terminal device turns on or off the transmit antenna port. When adjusting the receiving antenna parameters, the terminal device opens or closes the receiving antenna port.
  • the first indication information is used when the terminal equipment adjusts the receiving antenna parameters, and the second indication information indicates that the terminal equipment receives additional downlink reference signals; or when the first indication information instructs the terminal equipment to adjust the transmitting antenna parameters, the second indication information indicates The terminal device sends an additional uplink reference signal; or when the first indication information instructs the terminal device to adjust the receiving antenna parameter and adjust the transmit antenna parameter, the second indication information instructs the terminal device to receive the additional downlink reference signal and send the additional uplink reference signal.
  • the embodiments of the present application have the following advantages: the network device sends the first signaling to the terminal device, the terminal device adjusts the antenna parameters according to the first signaling, and the first signaling also It is used to instruct the terminal device to perform channel estimation so that the network device can obtain the channel estimation result in time, and perform data transmission according to the channel estimation result to reduce the probability of transmission failure.
  • the first signaling can be carried in multiple signaling, which improves the implementation flexibility of the solution.
  • the network device before the network device sends the first signaling to the terminal device, the network device sends first configuration information to the terminal device, where the first configuration information is used to configure reference signal resources, and
  • the reference signal resource may be an uplink reference signal resource or a downlink reference signal resource.
  • the first configuration information can either individually configure the uplink reference signal resource or the downlink reference signal resource, or simultaneously configure the uplink reference signal resource and the downlink reference signal resource;
  • the terminal device uses the reference signal resource to send or receive additional reference signals.
  • the network device receives that the terminal device uses the uplink reference signal resource to send the additional uplink reference signal.
  • the network device sends an additional downlink reference signal to the terminal device, and the terminal device uses the downlink reference signal resource to receive the additional downlink reference signal.
  • the network device receives that the terminal device uses the uplink reference signal resource to send the additional uplink reference signal, and the network device sends the additional downlink reference signal to the terminal device.
  • the uplink reference signal resource is a sounding reference signal (SRS) resource
  • the additional uplink reference signal is an SRS
  • the terminal device uses the SRS resource to send the SRS to the network device, and the network device receives the SRS.
  • the downlink reference signal resource is a channel state information reference signal (CSI-RS) resource
  • the additional downlink reference signal is a CSI-RS
  • the terminal device uses the CSI-RS resource to receive the CSI-RS sent by the network device .
  • the uplink reference signal resource and the downlink reference signal resource may also be other reference signal resources, which are not limited here.
  • the first configuration information used to configure the reference signal resource in the terminal device can be configured to separately configure the uplink reference signal resource or the downlink reference signal resource, or configure the uplink reference signal resource and the downlink reference signal resource at the same time, which improves the implementation flexibility of the solution .
  • the first signaling is carried in the DCI or RS
  • the network device receives or sends the additional reference signal in the first time domain resource
  • the first time domain resource receives the first signal in the terminal device. After signaling.
  • the network device receives or sends additional reference signals to ensure that the terminal device can correctly learn the content of the first signaling, which ensures that The network equipment obtains the correct channel estimation result and reduces the probability of transmission failure.
  • the first signaling is carried by MAC CE or RRC.
  • the network device After the network device sends the first signaling to the terminal device, the network device receives or sends the additional reference signal before the network device Receive the hybrid automatic repeat request-acknowledge (HARQ-ACK) sent by the terminal device.
  • the network device will feed back a HARQ-ACK confirmation message to the terminal device according to the HARQ-ACK.
  • the terminal device After the terminal device receives the HARQ-ACK confirmation information sent by the network device, the terminal device adjusts the antenna parameters according to the first indication information.
  • the network device receives or sends the additional reference signal in the second time domain resource, and the second time domain resource is after the terminal device receives the HARQ-ACK confirmation information.
  • the network device when the first signaling is carried on the MAC CE, the network device receives or sends additional reference signals in the second time domain resource, and the second time domain resource and the time domain used by the terminal device to receive the HARQ-ACK confirmation information
  • the resource interval is greater than 0, and the time domain resource interval is usually 3 milliseconds.
  • the terminal device When the first signaling is carried by MAC CE or RRC, after the network device sends the first signaling to the terminal device, the terminal device first sends the HARQ-ACK to the network device. The network device feeds back the HARQ-ACK confirmation information to the terminal device according to the HARQ-ACK. After the terminal device receives the HARQ-ACK confirmation information, the terminal device adjusts the antenna parameters according to the first indication information, and the network device receives or sends additional reference signals in the second time domain resource. To ensure that the terminal device can correctly learn the content of the first signaling, it is ensured that the network device obtains the correct channel estimation result, and the probability of transmission failure is reduced.
  • the network device after the network device sends the additional downlink reference signal, the network device receives the downlink reference signal report message sent by the terminal device;
  • the network device receives the downlink reference signal report message sent by the terminal device through the physical uplink control channel (PUCCH) or the physical uplink shared channel (PUSCH), where the downlink reference signal report message includes downlink channel estimation the result of.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the network device sends the additional downlink reference signal to the terminal device, in the time-frequency resources occupied by the first PUCCH or the first PUSCH, the downlink reference signal sent by the terminal device is received through the first PUCCH or the first PUSCH Signal report message; or, after the network device sends an additional downlink reference signal to the terminal device, among the time-frequency resources of the pre-configured PUCCH or the pre-configured PUSCH, the downlink sent by the terminal device is received through the pre-configured PUCCH or the pre-configured PUSCH
  • the pre-configured PUCCH or the pre-configured PUSCH is a channel pre-configured by the network device to the terminal device; or, the first signaling is also used to indicate PUCCH or PUSCH resources, and in this case, the first signaling
  • the index value (index) of the resource containing the PUCCH or PUSCH after receiving the downlink reference signal, the terminal device sends a downlink reference signal report message to the network
  • an embodiment of the present application provides a method for adjusting antenna parameters. After receiving the first signaling issued by the network device, the terminal device adjusts the antenna parameters according to the first indication information in the first signaling. When the first indication information in the first signaling indicates to adjust the transmit antenna parameters, the terminal device correspondingly turns on or turns off the transmit antenna port.
  • the embodiments of the present application have the following advantages: the terminal device can adjust the antenna parameters according to the first indication information in the first signaling to reduce power consumption.
  • the first indication information is specifically used to indicate that the maximum number of transmit antennas of the terminal device is N, where N is a positive integer,
  • the terminal device Before the terminal device receives the first indication information sent by the network device, the terminal device receives the first configuration information sent by the network device, where the first configuration information is used to configure the first uplink reference signal resource, and the terminal device uses the uplink reference signal resource to send uplink Reference signal.
  • the uplink reference signal is used for uplink channel estimation.
  • the number of transmit antenna ports of the uplink reference signal is M, where M is a positive integer and M is greater than N.
  • the terminal device When the terminal device is also configured with a second uplink reference signal resource with a transmission port number of K, the terminal device uses the second uplink reference signal resource to send the uplink reference signal and does not use the first uplink reference signal resource to send the uplink signal, K is a positive integer , K is less than M;
  • the terminal device uses N transmit antenna ports in any M of the first uplink reference signal resources to transmit the uplink reference signal.
  • the one with the larger port number can be disabled.
  • the terminal device It is determined whether the terminal device is also configured with a third uplink reference signal resource whose number of transmit antenna ports is less than or equal to N. If the third uplink reference signal resource is configured, the terminal device uses the third uplink reference signal resource to send the uplink reference signal; if the third uplink reference signal resource is not configured, the terminal device uses the first uplink reference signal resource to send the uplink reference signal, where The terminal device uses N transmit antenna ports of any M in the first uplink reference signal resource to transmit the uplink reference signal, or the terminal device closes the transmit antenna port greater than N in the first uplink reference signal resource and then uses the first uplink reference signal
  • the signal resource sends the uplink reference signal. Specifically, you can close the port with a larger port number and reserve the port with a smaller port number; or close the port with a smaller port number and reserve the port with a larger port number.
  • the terminal equipment can use a variety of methods to adjust the transmit antenna parameters to reduce power consumption while ensuring the accuracy of transmission. Improved the flexibility of the solution.
  • an embodiment of the present application provides a method for adjusting antenna parameters. After the network device sends the first signaling to the terminal device, the terminal device adjusts the antenna parameter according to the first indication information in the first signaling. When the first indication information in the first signaling indicates to adjust the transmit antenna parameters, the terminal device correspondingly turns on or turns off the transmit antenna port.
  • the network device can send the first signaling to the terminal device to instruct the terminal device to adjust according to the first indication information in the first signaling Antenna parameters to reduce the power consumption of terminal equipment.
  • the first indication information is specifically used to indicate that the maximum number of transmit antennas of the terminal device is N, where N is a positive integer,
  • the network device Before the network device sends the first indication information to the terminal device, the network device sends first configuration information to the terminal device, where the first configuration information is used to configure the first uplink reference signal resource, and the terminal device uses the uplink reference signal resource to send the uplink reference signal ,
  • the uplink reference signal is used for uplink channel estimation, and the number of transmit antenna ports of the uplink reference signal is M, where M is a positive integer, and M is greater than N.
  • the network device receives the uplink reference signal sent by the terminal device using the second uplink reference signal resource, K is a positive integer, and K is less than M;
  • the network device receives the uplink reference signal sent by the terminal device using any M transmit antenna ports in the first uplink reference signal resource.
  • the port can be closed Keep the port with the smaller port number for the larger port number; or close the port with the smaller port number and reserve the port with the larger port number;
  • the terminal device determines whether a third uplink reference signal resource whose number of transmit antenna ports is less than or equal to N is also configured in the terminal device. If the third uplink reference signal resource is configured, the network device receives the uplink reference signal sent by the terminal device using the third uplink reference signal resource; if the third uplink reference signal resource is not configured, the network device receives the terminal device using the first uplink reference signal The uplink reference signal sent by the resource, where the terminal device uses any M transmit antenna ports in the first uplink reference signal resource to transmit the uplink reference signal, or the terminal device turns off the transmit antenna greater than N in the first uplink reference signal resource After the port, the network device receives the uplink reference signal sent by the terminal device using the first uplink reference signal resource. Specifically, the port with the larger port number can be closed, and the port with the smaller port number can be reserved; or the port with the smaller port number can be closed. Reserve the port with the larger port number.
  • the terminal equipment can use a variety of methods to adjust the transmit antenna parameters to reduce power consumption while ensuring the accuracy of transmission. Improved the flexibility of the solution.
  • a terminal device which is used to execute the first aspect or the method in any possible implementation manner of the first aspect.
  • the terminal device includes a module for executing the foregoing first aspect or any one of the possible implementation manners of the first aspect.
  • a network device which is used to execute the second aspect or the method in any possible implementation manner of the second aspect.
  • the resource indicating device includes a module for executing the above-mentioned second aspect or any one of the possible implementation manners of the second aspect.
  • a terminal device which is used to execute the third aspect or the method in any possible implementation manner of the third aspect.
  • the terminal device includes a module for executing the third aspect or the method in any one of the possible implementation manners of the third aspect.
  • a network device which is used to execute the fourth aspect or the method in any possible implementation manner of the fourth aspect.
  • the resource indicating device includes a module for executing the fourth aspect or the method in any one of the possible implementation manners of the fourth aspect.
  • a communication device in a ninth aspect, has the function of realizing the behavior of the terminal device or the network device or the core network device in the above method, and it includes means for executing the steps or functions described in the above method.
  • This step or function can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the aforementioned communication device includes one or more processors and communication units.
  • the one or more processors are configured to support the communication device to perform the corresponding functions of the terminal device in the foregoing method.
  • the uplink information is sent to the network device.
  • the communication unit is used to support the communication device to communicate with other devices, and realize the receiving and/or sending functions. For example, receiving reference signal indication information.
  • the communication device may also include one or more memories, which are used for coupling with the processor and store program instructions and/or data necessary for the communication device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the communication device may be a smart terminal or a wearable device, etc.
  • the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or interface.
  • the communication device may also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the aforementioned communication device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the communication device executes the first aspect or any one of the first aspect This is the method that the network device completes in a possible implementation.
  • the aforementioned communication device includes one or more processors and communication units.
  • the one or more processors are configured to support the communication device to perform the corresponding functions of the network device in the foregoing method. For example, generating reference signal indication information.
  • the communication unit is used to support the communication device to communicate with other devices, and realize the receiving and/or sending functions. For example, sending reference signal indication information.
  • the communication device may also include one or more memories, which are used for coupling with the processor and store necessary program instructions and/or data for the network device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the communication device may be a base station, and the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or interface.
  • the communication device may also be a communication chip.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device executes the first aspect or any one of the first aspect. The method that the terminal device completes in the implementation mode.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device executes any one of the second aspect or the second aspect. The method that the terminal device completes in the implementation mode.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device executes any one of the third aspect or the third aspect. The method that the terminal device completes in the implementation mode.
  • the above device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the device can execute any one of the fourth aspect or the fourth aspect. The method that the terminal device completes in the implementation mode.
  • a system which includes the aforementioned network equipment, terminal equipment, and communication device.
  • a computer-readable storage medium for storing a computer program, and the computer program includes a possible implementation manner for executing any of the first to fourth aspects, and the fifth to tenth aspects The instructions in the method.
  • a computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the first to fourth aspects and the fifth to The method in any possible implementation of the tenth aspect.
  • this application provides a chip device that includes a processor for supporting network equipment to implement the functions involved in the above aspects, for example, sending or processing the data and/or involved in the above methods. Or information.
  • the chip device further includes a memory, which is used to store necessary program instructions and data of the network device.
  • the chip device may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip device that includes a processor for supporting terminal equipment to implement the functions involved in the above aspects, for example, sending or processing the data and/or involved in the above methods. Or information.
  • the chip device further includes a memory for storing necessary program instructions and data of the terminal device.
  • the chip device may be composed of chips, or may include chips and other discrete devices.
  • the network device instructs the terminal device to adjust antenna parameters through the first signaling.
  • the first signaling is also used to instruct the terminal device to perform channel estimation so that the network device can obtain the channel estimation result in time, and perform data transmission according to the channel estimation result to reduce transmission failure The probability.
  • Fig. 1 is a schematic diagram of a wireless communication network topology in an embodiment of the application
  • Figure 2 is a schematic diagram of a radio frequency link in an embodiment of the application
  • FIG. 3 is a schematic diagram of a transmitting antenna of a terminal device in an embodiment of the application
  • FIG. 4 is a schematic diagram of an embodiment of a method for adjusting antenna parameters in an embodiment of this application.
  • FIG. 5a is a schematic flowchart of a method for adjusting antenna parameters in an embodiment of this application.
  • FIG. 5b is a schematic flowchart of another method for adjusting antenna parameters in an embodiment of this application.
  • FIG. 6a is a schematic flowchart of another method for adjusting antenna parameters in an embodiment of this application.
  • FIG. 6b is a schematic flowchart of another method for adjusting antenna parameters in an embodiment of this application.
  • FIG. 7a is a schematic flowchart of another method for adjusting antenna parameters in an embodiment of this application.
  • FIG. 7b is a schematic flowchart of another method for adjusting antenna parameters in an embodiment of this application.
  • FIG. 8 is a schematic flowchart of another method for adjusting antenna parameters in an embodiment of this application.
  • FIG. 9 is a schematic flowchart of another method for adjusting antenna parameters in an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another structure of a network device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another structure of a network device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another terminal device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another network device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the embodiment of the application provides a method and related device for antenna parameter adjustment.
  • a network device instructs a terminal device to adjust antenna parameters through a first signaling.
  • the first signaling is also used to instruct the terminal device to perform channel estimation so that the network device can timely Obtain the channel estimation result, and perform data transmission according to the channel estimation result to reduce the probability of transmission failure.
  • FIG. 1 is a schematic diagram of a wireless communication network topology in an embodiment of the application.
  • the wireless communication network 100 includes network devices 102-106 and terminal devices 108-122.
  • the network devices 102-106 can communicate with each other through backhaul links (such as the network devices 102-106 with each other).
  • the backhaul link can be a wired backhaul link (for example, optical fiber, copper cable), or a wireless backhaul link (for example, microwave).
  • the terminal devices 108-122 can communicate with the corresponding network devices 102-106 through wireless links (as shown by the broken lines between the network devices 102-106 and the terminal devices 108-122), and the network devices 102-106 can also be called base stations .
  • the network devices 102-106 are usually used as access devices to provide wireless access services for the terminal devices 108-122 that are usually user equipments.
  • each network device corresponds to a service coverage area (also called a cellular, as shown in each elliptical area in Figure 1), and terminal devices entering this area can communicate with the network device through wireless signals to Accept wireless access services provided by network equipment.
  • the terminal device in the overlapping area can receive wireless signals from multiple network devices, so these network devices can cooperate with each other to provide the terminal device service.
  • multiple network devices may use coordinated multipoint (CoMP) technology to provide services for terminal devices in the above-mentioned overlapping area.
  • CoMP coordinated multipoint
  • the service coverage area of the network device 102 and the network device 104 overlaps, and the terminal device 112 is within the overlapped area. Therefore, the terminal device 112 can receive data from the network device 102 and the network device 104.
  • the network device 102 and the network device 104 can cooperate with each other to provide services for the terminal device 112.
  • the service coverage areas of the network device 102, the network device 104, and the network device 106 have a common overlapping area, and the terminal device 120 is within the overlapping area, so the terminal device 120 can receive Upon receiving wireless signals from the network devices 102, 104, and 106, the network devices 102, 104, and 106 can cooperate with each other to provide services for the terminal device 120.
  • network equipment may also be called NodeB (NodeB), evolved node B (evolved nodeb, eNodeB), access point (access point, AP), etc.
  • NodeB NodeB
  • evolved node B evolved node B
  • eNodeB evolved node B
  • access point access point
  • AP access point
  • network equipment can be divided into macro network equipment for providing macro cells, micro network equipment for providing pico cells, and micro network equipment for providing micro cells. Femto cell (femto cell) network equipment, etc.
  • future network devices may also adopt other names.
  • the terminal devices 108 to 122 may be various wireless communication devices with wireless communication functions, such as but not limited to mobile cellular phones, cordless phones, personal digital assistants (PDAs), smart phones, notebook computers, tablet computers, wireless Data card, wireless modem (modulator demodulator, Modem), or wearable devices such as smart watches.
  • PDAs personal digital assistants
  • V2X vehicle-to-everything
  • This type of equipment is equipped with a wireless communication unit and has a wireless communication function, so it also belongs to the category of wireless communication equipment.
  • the terminal devices 108 to 122 may also be referred to as mobile stations, mobile devices, mobile terminals, wireless terminals, handheld devices, clients, and so on.
  • the network devices 102 to 106 and the terminal devices 108 to 122 may be configured with multiple antennas to support multiple input multiple output (MIMO) technology. Furthermore, the network equipment 102-106 and the terminal equipment 108-122 can support both single-user MIMO (single-user mimo, SU-MIMO) technology and multi-user MIMO (multi-user mimo, MU-MIMO). Among them, MU-MIMO can be implemented based on space division multiple access (SDMA) technology.
  • SDMA space division multiple access
  • the network equipment 102-106 and terminal equipment 108-122 can also flexibly support single input single output (SISO) technology, single input multiple output (SIMO) and multiple Multiple input single output (MISO) technology to achieve various diversity (such as but not limited to transmit diversity and receive diversity) and multiplexing technology.
  • the diversity technology can include, for example, but not limited to transmit diversity (TD). ) Technology and receive diversity (receive diversity, RD) technology.
  • the multiplexing technology may be a spatial multiplexing (spatial multiplexing) technology.
  • the above-mentioned various technologies may also include multiple implementation solutions.
  • transmit diversity technologies may include, for example, but not limited to, space-time transmit diversity (STTD), space-frequency transmit diversity (SFTD) ), Time Switched Transmit Diversity (TSTD), Frequency Switched Transmit Diversity (FSTD), Orthogonal Transmit Diversity (OTD), Cyclic Delay Diversity (CDD)
  • STTD space-time transmit diversity
  • SFTD space-frequency transmit diversity
  • TSTD Time Switched Transmit Diversity
  • FSTD Frequency Switched Transmit Diversity
  • OTD Orthogonal Transmit Diversity
  • CDD Cyclic Delay Diversity
  • LTE long term evolution
  • STBC space time block coding
  • SFBC space frequency block coding
  • CDD Cyclic Delay Diversity
  • transmit diversity also includes other multiple implementations. Therefore, the above introduction should not be understood as a limitation to the technical solution of the present invention, and the technical solution of the present invention should be understood as being applicable to various possible transmit diversity solutions.
  • the network equipment 102-106 and the terminal equipment 108-122 can communicate with various wireless communication technologies, such as but not limited to time division multiple access (TDMA) technology, frequency division multiple access , FDMA) technology, code division multiple access (CDMA) technology, time division-synchronous code division multiple access (TD-SCDMA), orthogonal frequency division multiple access (orthogonal fdma, OFDMA) technology, single carrier frequency division multiple access (single carrier fdma, SC-FDMA) technology, space division multiple access (space division multiple access, SDMA) technology, as well as the evolution and derivative technologies of these technologies.
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • CDMA code division multiple access
  • TD-SCDMA time division-synchronous code division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • SDMA space division multiple access
  • the above-mentioned wireless communication technology has been adopted by many wireless communication standards as radio access technology (RAT), thereby constructing various wireless communication systems (or networks) that are widely known today, including but not limited to WiFi, worldwide interoperability for microwave access (WiMAX), long term evolution (LTE), LTE advanced (LTE-A) and these wireless communication systems defined in the 802.22 series of standards
  • RAT radio access technology
  • WiMAX worldwide interoperability for microwave access
  • LTE long term evolution
  • LTE-A LTE advanced
  • 5G new radio 5G new radio
  • the technical solutions provided by the embodiments of the present invention can be applied to the foregoing various wireless communication technologies and wireless communication systems.
  • the terms "system” and "network” can be replaced with each other.
  • the wireless communication network 100 shown in FIG. 1 is only used for example, and is not used to limit the technical solution of the present invention. Those skilled in the art should understand that in a specific implementation process, the wireless communication network 100 may also include other devices, and the number of network devices and terminal devices may also be configured according to specific needs.
  • Multi-antenna technology that is, multiple-input multiple-output (MIMO) technology refers to the use of multiple transmitting antennas and receiving antennas at the transmitting end and the receiving end respectively, so that the signal is transmitted and combined through multiple antennas at the transmitting end and the receiving end. Receive, thereby improving communication quality. It can make full use of space resources and achieve multiple transmissions and multiple receipts through multiple antennas. Without increasing spectrum resources and antenna transmission power, it can double the system channel capacity, showing obvious advantages and being regarded as the next generation of mobile The core technology of communication. In new radio communication (NR), both network equipment and terminal equipment can improve communication performance through MIMO technology.
  • NR new radio communication
  • FIG. 2 is a schematic diagram of a radio frequency link in an embodiment of the application.
  • a terminal device sending a signal to a network device
  • the baseband signal is first generated in the baseband, and then processed by the radio frequency link.
  • the radio frequency link generally includes a three-stage radio frequency integrated circuit and a power amplifier.
  • the duplexer/filter the baseband signal is processed to generate a radio frequency signal, and then the radio frequency signal is sent out through the antenna.
  • the process of receiving a signal by the terminal device is similar to the process of sending a signal, and will not be repeated here.
  • network equipment does not know exactly how many radio frequency links the terminal equipment has, but uses the term antenna port to describe it.
  • the terminal device when the terminal device actually has two transmitting radio frequency links, the terminal device supports up to two antenna ports for uplink communication with the network device at the same time. If the terminal device uses two antenna ports to communicate with the network device, in fact, each radio frequency link corresponds to one antenna port. If the terminal device uses one antenna port to communicate with the network device, the terminal device can use any uplink radio link to correspond to this antenna port, or use two radio links simultaneously to simulate an antenna port, depending on the terminal device The specific implementation is transparent to the network equipment. The network device only needs to schedule which antenna port or antenna ports the terminal device should transmit data on.
  • one terminal device supports one transmit radio frequency link (transmit, T), and two receive radio frequency links (receive, R) are called 1T2R.
  • a terminal device supporting 2 transmitting RF links and 4 receiving RF links is called 2T4R.
  • the number of receiving RF links in the terminal equipment will be greater than or equal to the number of transmitting RF links, and each receiving RF link is connected to an antenna (ie, electromagnetic wave radiation unit), so 1T2R can also be understood as this
  • 1T2R can also be understood as this
  • 2T4R can also be understood as having two transmitting radio frequency links and four antennas in the terminal equipment.
  • the antenna has the ability to transmit electromagnetic waves and receive electromagnetic waves. Therefore, the antenna, the transmitting antenna, and the receiving antenna in the embodiment of the present application can be regarded as the same thing.
  • the terminal device sends an additional (additional) uplink signal to the network device through the uplink channel, and the terminal device receives the additional downlink signal sent by the network device through the downlink channel.
  • the channel state is estimated in NR. This process Called channel estimation, the network device selects appropriate transmission parameters according to the channel estimation results.
  • the transmission parameters include modulation and coding scheme index values (modulation and coding scheme, MCS), precoding matrix (precoding matrix, PM), etc.
  • the terminal device can specifically send a sounding reference signal (SRS) to the network device for channel estimation of the uplink channel.
  • the terminal device receives the channel state information reference signal (CSI-RS) sent by the network device, and sends a channel state information report (channel state information report, CSI report) to the network device for channel estimation of the downlink channel.
  • CSI-RS channel state information reference signal
  • CSI report channel state information report
  • TDD time division duplexing
  • a terminal device sends a sounding reference signal to a network device, and the network device performs channel estimation of the downlink channel through the reciprocity of the uplink and downlink channels.
  • TDD time division duplexing
  • the terminal device can also use other reference signals for channel estimation.
  • the terminal device When other downlink reference signals are used for channel estimation, the terminal device sends a corresponding downlink reference signal report message to the network device to complete the channel estimation.
  • SRS and CSI-RS are only taken as examples for description, and are not limited. The SRS and CSI-RS are described separately below.
  • the network device configures the CSI-RS resource to the terminal device.
  • the network device uses the configured CSI-RS resource to send the CSI-RS to the terminal device through the downlink channel.
  • the terminal device receives the CSI-RS and processes the CSI-RS to estimate the current downlink channel state.
  • the terminal device generates a channel state information report (CSI-RS report) after processing, where the channel state information report includes one or more of the following types of information, such as rank indication (RI), precoding Matrix indication (precoding matrix indication, PMI), channel quality indication (channel quality indication, CQI), channel state information reference signal resource indicator (CSI-RS resource indicator, CRI), synchronization signal/broadcast channel block resource indication (synchronous signal/ physical broadcast channel block resource indicator, SS/PBCH BRI), layer indicator (layer indicator, LI) and layer 1 reference signal received power (layer 1 reference signal revceived power, L1-RSRP).
  • RI rank indication
  • precoding matrix indication precoding matrix indication
  • CQI channel quality indication
  • CQI channel state information reference signal resource indicator
  • CSI-RS resource indicator CRI
  • synchronization signal/broadcast channel block resource indication synchronous signal/ physical broadcast channel block resource indicator, SS/PBCH BRI
  • layer indicator layer indicator, LI
  • layer 1 reference signal received power layer 1 reference signal revceived power
  • the terminal device sends the channel state information report to the network device. This allows the network equipment to learn the current channel estimation result of the downlink channel and adjust the transmission parameters.
  • CSI-RS resources can be divided into the following three types: periodic CSI-RS resources, semi-persistent CSI-RS resources, and aperiodic CSI-RS resources. They are described separately below.
  • Periodic CSI-RS resource The network device configures the periodic CSI-RS resource to the terminal device through RRC signaling. When the configuration is completed, the network device will periodically send the CSI-RS, and the terminal device can periodically receive the CSI-RS.
  • Semi-persistent CSI-RS resources The network equipment configures the terminal equipment with semi-persistent CSI-RS resources through RRC signaling. At this time, the network equipment will not send CSI-RS immediately.
  • the network device also needs to send the DCI for activating the semi-persistent CSI-RS resource to the terminal device before the network device periodically sends the CSI-RS.
  • the network device may also send the DCI to the terminal device to deactivate the semi-persistent CSI-RS resource to deactivate the semi-persistent CSI-RS in the terminal device -RS resources.
  • Aperiodic CSI-RS resource The network device configures aperiodic CSI-RS resource to the terminal device through RRC signaling, but it will not send the CSI-RS immediately.
  • the network device also needs to send the DCI to trigger the aperiodic CSI-RS resource to the terminal device before the network device sends the CSI-RS once. It should be noted that, before each CSI-RS is sent by the network device, the DCI used to trigger the aperiodic CSI-RS resource needs to be sent to the terminal device.
  • the network device configures SRS resources to the terminal device, and the terminal device uses the SRS resource to send the SRS to the network device. After receiving the SRS, the network equipment analyzes and measures it to obtain the current channel estimation result of the uplink channel and adjust the transmission parameters.
  • SRS resources can be divided into the following two types: periodic SRS resources and aperiodic SRS resources. They are described separately below.
  • Periodic SRS resources Network equipment configures periodic SRS resources to terminal equipment through RRC signaling. When the configuration is completed, the terminal device will periodically send the SRS, and the network device can periodically receive the SRS.
  • Aperiodic SRS resource The network device configures the aperiodic SRS resource to the terminal device through RRC signaling, but the terminal device does not immediately send the SRS.
  • the network device also needs to send the DCI to trigger the aperiodic SRS resource to the terminal device before the terminal device sends the SRS once. It should be noted that, before the terminal device sends the SRS each time, the network device needs to send the DCI to the terminal device to trigger the aperiodic SRS resource.
  • TDD time division duplexing
  • the SRS resource configuration information configured by the network device to the terminal device also indicates the number of transmitting antenna ports used by the terminal device to send SRS to the network device, and the terminal device transmits the SRS to the network device according to the transmitting antenna port indicated by the SRS resource.
  • FIG. 3 is a schematic diagram of a transmitting antenna of a terminal device in an embodiment of this application.
  • the terminal device is equipped with a radio frequency transmitting circuit and four transmitting antennas, and the radio frequency transmitting circuit can be connected to any transmitting antenna to send electromagnetic waves to the network device.
  • the terminal device uses different transmitting antennas to send electromagnetic waves to the network device, the channel state between the different transmitting antennas and the network device may be different.
  • an antenna rotation mechanism is introduced, specifically: the radio frequency circuit in the terminal device switches between different transmitting antennas, and the terminal device continuously sends multiple SRSs, which are sent to the network device through different transmitting antennas. . After the network device receives these SRS, it can determine which transmitting antenna has a better channel status with the network device according to the signal quality of the SRS. When the network device schedules the terminal device to receive downlink data, it will use the antenna with the better channel status The priority is increased so that the terminal device preferentially uses an antenna with a better channel state to receive downlink data.
  • the antenna rotation capabilities of the terminal devices are also different.
  • the SRS antenna rotation capability is specified as follows: 1T2R, 1T4R, 2T4R, 1T4R-2T4R, 1T1R, 2T2R or 4T4T, etc.
  • 1T2R is a terminal device with a transmitting radio frequency link and two antennas.
  • the terminal device can use a single port to transmit one SRS at a time. To complete the round transmission, it needs to transmit twice, that is, the first time the SRS is transmitted, the first SRS is used.
  • 2T4R is a terminal device with two transmitting RF links and four antennas. At this time, the terminal device can use dual ports to send one SRS at a time. To complete the round transmission, it needs to send twice, that is, the first time the SRS is sent using the first RF link With the second radio frequency and the first antenna and the second antenna, the second transmission of SRS uses the first radio frequency link and the second radio frequency link, the third antenna and the fourth antenna.
  • 1T4R-2T4R is that the terminal device supports both 1T4R SRS antenna rotation and 2T4R SRS antenna rotation.
  • terminal equipment can also guarantee the communication quality with network equipment in the case of multiple antennas.
  • the more antennas of the network equipment and terminal equipment the better the communication performance.
  • the power consumption of the terminal equipment also increases.
  • large power consumption brings about the problem of large heat generation, which affects the performance of the terminal equipment. Therefore, in order to reduce the power consumption of the terminal device, in the existing solution, the antenna parameters can be adjusted by reducing the number of antennas to achieve the purpose of reducing power consumption.
  • the terminal device may encounter two problems.
  • the first problem is that the channel estimation result obtained before adjusting the antenna parameters does not match the channel used for actual data transmission after the antenna parameters are adjusted.
  • the second problem is that the actual number of available antenna ports after adjusting the antenna parameters does not match the number of transmitting antenna ports used when transmitting the SRS indicated by the SRS resource, which is configured before the antenna parameter is adjusted. Below are examples of these two issues.
  • the terminal equipment is 1T4R as an example. Before the terminal equipment adjusts the antenna parameters, it reports to the network equipment that the terminal equipment can use four antennas to receive CSI-RS. Therefore, before adjusting the antenna parameters, the channel estimation result obtained by the network device is based on the channel established by the four antennas. When the terminal device adjusts the antenna parameters, for example, turn off any two of the antennas. At this time, the terminal device can only use two antennas to receive CSI-RS, and the network device still performs processing according to the 4 layer data supported by the four antennas. Transmission scheduling, therefore, the terminal equipment cannot correctly receive the data sent by the network equipment.
  • the data transmitted in the sub-channel corresponding to an antenna is called layer 1 data, and the layer 1 data does not interfere with the data transmitted in other sub-channels.
  • the 4-layer data here is the data transmitted in the four sub-channels corresponding to the four antennas.
  • the terminal device can use diversity gain to support higher modulation and coding scheme (MCS) levels.
  • Diversity gain means that the terminal device uses more than one antenna to receive the same piece of data to improve the reliability of data transmission.
  • a 1T4R terminal device uses the first antenna and the second antenna to receive the first data, and the third antenna and the fourth antenna to receive the second data.
  • the terminal device is equivalent to using multiple antennas to transmit the same piece of data.
  • the channel estimation result used by the network equipment to schedule the data at this time is still the channel estimation result when the terminal equipment uses four antennas , And the two sub-channels corresponding to the current two antennas do not match, which increases the probability of transmission failure.
  • the network device When the terminal device sends SRS to the network device to complete the uplink channel estimation, which antennas the terminal device has turned off is unknown to the network device. Therefore, the network device does not know the port corresponding to the antenna turned off by the terminal device, and the network device also Unable to know the current channel status.
  • the terminal device is 1T2R as an example. Before adjusting the antenna parameters, the terminal device reports to the network device that its uplink transmission capability is 2 antennas. After the network device learns the uplink transmission capability of the terminal device, configure the terminal device with 2 ports and/or The 1-port SRS resource, so that the terminal device sends the SRS to the network device through the 2-port and/or the 1-port according to the SRS resource. After adjusting the antenna parameters, the terminal device turns off any one of the antennas. At this time, the terminal device cannot use the 2-port to send SRS.
  • the embodiments of this application propose a solution to improve the success rate of data transmission between the terminal device and the network device after the terminal device adjusts the antenna parameters, and to solve the problem of the terminal device after the terminal device adjusts the antenna parameters. How to choose an antenna port to transmit SRS.
  • FIG. 4 is a schematic diagram of an embodiment of a method for adjusting antenna parameters in an embodiment of the present application.
  • the method for adjusting antenna parameters provided by an embodiment of the present application includes ;
  • the network device sends first configuration information to the terminal device.
  • the network device sends first configuration information to the terminal device, and the first configuration information is used to configure the reference signal resource in the terminal device.
  • the terminal device may use the configured uplink reference signal resource to send an additional uplink reference signal to the network device.
  • the terminal device may use the configured downlink reference signal resource to accept the network device to send additional downlink reference signals.
  • the first configuration information sent by the network device to the terminal device can also be used to configure both uplink reference signal resources and downlink reference signal resources in the terminal device, so that the terminal device can send additional uplink reference to the network device. Signal, it can also receive additional downlink reference signals sent by network equipment.
  • the additional uplink reference signal is used for uplink channel estimation
  • the additional downlink reference signal is used for downlink channel estimation.
  • the terminal device when the uplink reference signal resource configured by the first configuration information is an SRS resource, the terminal device can use the SRS resource to send the SRS to the network device.
  • the terminal device can use the CSI-RS resource to receive the CSI-RS sent by the network device.
  • the network device sends the first signaling to the terminal device.
  • the network device sends first signaling to the terminal device.
  • the first signaling includes first indication information and second indication information.
  • the first indication information is used to instruct the terminal device to adjust antenna parameters
  • the second indication information is used for To instruct the terminal device to send or receive additional reference signals, the additional reference signals are used for channel estimation after the antenna parameters are adjusted.
  • the first indication information instructs the terminal equipment to adjust the receiving antenna parameters
  • the second indication information instructs the terminal equipment to receive additional downlink reference signals
  • the first indication information instructs the terminal equipment to adjust the transmitting antenna parameters
  • the second indication information instructs the terminal equipment to send Additional uplink reference signal
  • the first indication information instructs the terminal device to adjust the receiving antenna parameter and adjust the transmit antenna parameter
  • the second indication information instructs the terminal device to receive the additional downlink reference signal and send the additional uplink reference signal.
  • step 403 When the first indication information instructs the terminal equipment to adjust the receiving antenna parameters, and the second indication information instructs the terminal equipment to receive additional downlink reference signals, after step 403 is performed, step 405 is performed, and step 404 is not performed; when the first indication information instructs the terminal When the device adjusts the transmit antenna parameters, and the second instruction information instructs the terminal device to send additional uplink reference signals, after step 403 is performed, step 404 is executed without step 405; when the first instruction information instructs the terminal device to adjust the receive antenna parameters and adjust Transmit antenna parameters, the second indication information indicates that when the terminal device receives the additional downlink reference signal and sends the additional uplink reference signal, after step 403 is performed, step 404 and step 405 need to be performed.
  • step 404 and step 405 are not performed The order is limited. For example, step 404 may be performed first, and then step 405 may be performed. It is also possible to perform step 405 first, and then perform step 404. Step 404 and step 405 can also be performed at the same time.
  • step 404 and/or step 405 are not executed after step 403 is executed.
  • the first signaling can be carried in downlink control information (downlink control information, DCI), reference signals (RS), media access control address control element (media access control control element, MAC CE), or radio resource control (radio resource) control, RRC).
  • DCI downlink control information
  • RS reference signals
  • media access control address control element media access control control element
  • RRC radio resource control
  • the terminal device when the first signaling is carried in MAC CE or RRC, before adjusting the antenna parameters, the terminal device also needs to send a hybrid automatic repeat request-acknowledge (HARQ-) to the network device.
  • HARQ- hybrid automatic repeat request-acknowledge
  • the network device will feed back a HARQ-ACK confirmation message to the terminal device according to the HARQ-ACK.
  • the terminal device After the terminal device receives the HARQ-ACK confirmation information, the terminal device adjusts the antenna parameters according to the first indication information.
  • the terminal device adjusts antenna parameters according to the first signaling.
  • the terminal device after receiving the first signaling, the terminal device adjusts the antenna parameters according to the first indication information.
  • the terminal device When the first indication information in the first signaling indicates to adjust the receiving antenna parameter, the terminal device correspondingly opens or closes the receiving antenna port.
  • the terminal device When the first indication information in the first signaling indicates to adjust the transmit antenna parameters, the terminal device correspondingly turns on or turns off the transmit antenna port.
  • the first indication information is used to indicate that there are multiple solutions for adjusting the transmit antenna parameters, which are described below with examples.
  • the terminal device uses the second uplink reference signal resource to send the uplink reference signal and does not use the first uplink reference Signal resources send uplink signals.
  • the terminal device uses any N number of transmit antenna ports among the M in the first uplink reference signal resource to send the uplink signal.
  • the first indication information is specifically used to indicate that the maximum number of transmit antennas of the terminal device is N, where N is a positive integer
  • the first uplink reference signal resource is configured in the terminal device, its additional uplink
  • the number of transmit antenna ports of the reference signal is M, where M is a positive integer, and M is greater than N.
  • the terminal device determines whether a third uplink reference signal resource with the number of transmit antenna ports less than or equal to N is also configured, and if the third uplink reference signal resource is configured, the terminal device uses the third uplink reference signal resource to send additional uplink reference signals; If the third uplink reference signal resource is not configured, the terminal device uses the first uplink reference signal resource to send additional uplink reference signals, where the terminal device uses N transmit antenna ports of any M in the first uplink reference signal resource to send additional uplink reference signal resources. Or after the terminal device turns off transmit antenna ports larger than N in the first uplink reference signal resource, the first uplink reference signal resource is used to send the additional uplink reference signal.
  • the terminal device sends an additional reference signal to the network device.
  • the terminal device after the terminal device adjusts the transmit antenna parameters according to the first indication information, the terminal device sends an additional uplink reference signal, such as an SRS, to the network device.
  • an additional uplink reference signal such as an SRS
  • the terminal device when the first signaling is carried in DCI or RS, after receiving the first signaling, the terminal device can send an additional uplink reference signal to the network device, and the time domain used to send the additional uplink reference signal at this time
  • the resource is called the first time domain resource.
  • the terminal device When the first signaling is carried in the MAC CE or RRC, the terminal device also needs to receive HARQ-ACK confirmation information, which is generated by the network device according to the HARQ-ACK sent by the terminal device. After the terminal device receives the HARQ-ACK confirmation information, the terminal device sends an additional uplink reference signal to the network device. At this time, the time domain resource used for sending the additional uplink reference signal is called the second time domain resource.
  • the network device sends an additional reference signal to the terminal device.
  • the network device sends an additional downlink reference signal, such as CSI-RS, to the terminal device.
  • the terminal device determines the downlink reference signal report message according to the additional downlink reference signal.
  • the terminal device sends the downlink reference signal report message to the network device through the physical uplink control channel (PUCCH) or the physical uplink shared channel (PUSCH), where the downlink reference signal report message includes the downlink channel estimation
  • the attached downlink reference signal is a CSI-RS
  • the downlink reference signal report message is a channel state information report (CSI-RS report).
  • the terminal device after receiving the additional downlink reference signal, the terminal device sends the downlink reference signal report message to the network device through the first PUCCH or the first PUSCH in the time-frequency resource used by the first PUCCH or the first PUSCH; Or, after receiving the downlink reference signal, the terminal device sends the downlink reference signal report message to the network device through the pre-configured PUCCH or the pre-configured PUSCH in the pre-configured PUCCH or the pre-configured PUSCH time-frequency resource, the pre-configured PUCCH Or the pre-configured PUSCH is a channel pre-configured by the network equipment to the terminal equipment; or, the first signaling is also used to indicate PUCCH or PUSCH resources, and the first signaling contains the index value of the PUCCH or PUSCH resource ( index), after receiving the downlink reference signal, the terminal device sends a downlink reference signal report message to the network device through the PUCCH or the indicated PUSCH resource indicated by the first signaling.
  • the network device instructs the terminal device to adjust antenna parameters through the first signaling.
  • the first signaling is also used to instruct the terminal device to perform channel estimation, so that the network device can obtain the channel estimation result in time, and perform processing based on the channel estimation result.
  • Data transmission reduces the probability of transmission failure.
  • the additional uplink reference signal in the embodiment of the present application takes SRS as an example
  • the additional downlink reference signal takes CSI-RS as an example.
  • the additional uplink reference signal and the additional downlink reference signal can also be passed through Other reference signals, data or control instructions and other carriers achieve the same technical effect, which is not limited here.
  • the process of receiving the CSI-RS by the terminal device and sending the CSI-RS report information to the network device triggered by the first signaling belongs to aperiodic CSI-RS transmission.
  • the process of sending the SRS by the terminal device to the network device triggered by the first signaling belongs to aperiodic SRS transmission.
  • FIG. 5a is a schematic flowchart of a method for adjusting antenna parameters in an embodiment of the application.
  • the terminal device shown in FIG. 5a is configured with 4 receiving antennas.
  • the unit of the abscissa is time, and the square in the figure is the time domain resource used by the current action.
  • the terminal equipment is pre-configured with periodic or semi-persistent CSI-RS resources, as shown in the figure, counting from left to right, the first block (vertical grid filling), the second block (vertical grid filling), and the fifth block (Vertical grid filling) and the sixth block (vertical grid filling) are time domain resources used by the terminal device to receive CSI-RS using periodic or semi-persistent CSI-RS resources.
  • the third square (filled by horizontal lines) is the time domain resource used by the terminal device to receive the first signaling.
  • the first indication information in the first signaling is used to instruct the terminal device to change the number of receiving antennas from 4 receiving antennas, adjusted to 2 receiving antennas, that is, turn off any 2 receiving antennas.
  • the terminal device adjusts the antenna parameters according to the first indication information.
  • the terminal device completes the process of adjusting the antenna parameters from 4 receiving antennas to 2 receiving antennas.
  • the terminal device uses the pre-configured aperiodic CSI-RS resource according to the second indication information in the first signaling to receive CSI-RS sent by network equipment.
  • the terminal equipment estimates the current channel state according to the received CSI-RS.
  • the terminal device After the terminal device completes the channel estimation, it sends a CSI report message to the network device, and sends the time domain resource location used by the CSI report message. Specifically, there are the following situations:
  • the terminal device uses the time-frequency resource of the first PUCCH or the first PUSCH to send a CSI report message to the network device through the first PUCCH or the first PUSCH; or, the terminal
  • the terminal device uses the pre-configured PUCCH or pre-configured PUSCH time-frequency resources of the network device to send a CSI report message to the network device through the pre-configured PUCCH or pre-configured PUSCH; or, the first message
  • the command is also used to indicate PUCCH or PUSCH resources.
  • the first signaling contains the index value of the PUCCH or PUSCH resource.
  • the terminal device receives the aperiodic CSI-RS, it is indicated by the first signaling
  • the PUCCH or the indicated PUSCH resource sends a CSI report message to the network device.
  • the first periodic CSI-RS or the semi-persistent CSI-RS that has been activated after the terminal equipment adjusts the antenna parameters (that is, the fifth CSI-RS from left to right in Figure 5a)
  • the CSI-RS can be received and the channel can be measured within the time domain resources used, which will cause a relatively large delay.
  • the network equipment can only use the terminal equipment to use the channel estimation results obtained by the 4 receiving antennas before adjusting the antenna parameters. Transmission scheduling does not match the current channel of the terminal device (2 receiving antennas), which may cause transmission failure.
  • the aperiodic CSI-RS triggered by the first signaling introduced in the technical solution of the present application enables the terminal device to quickly estimate the channel and perform feedback. In this way, the network device can quickly obtain the channel status so as to adjust the transmission parameters.
  • FIG. 5b is a schematic flowchart of another method for adjusting antenna parameters in an embodiment of this application.
  • the terminal device shown in FIG. 5b is configured with two transmitting antennas.
  • the unit of the abscissa is time, and the square in the figure is the time domain resource used by the current action.
  • Periodic SRS resources are pre-configured in the terminal equipment, as shown in the figure, counting from left to right, the first square (vertical grid filling), the second square (vertical grid filling), and the fifth square (vertical grid filling) And the sixth square (vertical grid filling) is the time domain resource used by the terminal device to periodically send the SRS.
  • the third square filled by horizontal lines
  • the first indication information in the first signaling is used to instruct the terminal device to change the number of transmit antennas from 2 transmitting antennas, adjust to 1 transmitting antenna, that is, turn off any one of the transmitting antennas.
  • the terminal device adjusts the antenna parameters according to the first indication information.
  • the terminal device completes the process of adjusting the antenna parameters from two transmitting antennas to one transmitting antenna.
  • the terminal device uses the pre-configured aperiodic SRS resource to send the network device to the network device according to the second indication information in the first signaling.
  • Send SRS The network device estimates the current channel state according to the received SRS.
  • the terminal device can transmit the SRS within the time domain resource used by the first periodic SRS (that is, the fifth square from left to right in Figure 5b) after adjusting the antenna parameters. And measure the channel, this will cause a relatively large delay.
  • the network equipment can only use the terminal equipment to use the channel estimation results obtained by the 2 transmitting antennas before adjusting the antenna parameters. Transmission scheduling does not match the current channel of the terminal device (1 transmitting antenna), which may cause transmission failure.
  • the aperiodic SRS triggered by the first signaling introduced in the technical solution of the present application enables the terminal device to quickly send the SRS, so that the network device can quickly obtain the channel state, so as to adjust the transmission parameters.
  • the first signaling can be carried in downlink control information (DCI), reference signals (RS), media access control address control element (MAC CE) or wireless Any one of resource control (radio resource control, RRC).
  • DCI downlink control information
  • RS reference signals
  • MAC CE media access control address control element
  • RRC radio resource control
  • FIG. 6a is a schematic diagram of another flow chart of the method for adjusting antenna parameters in an embodiment of this application
  • FIG. 6b is a schematic diagram of another flow chart of the method for adjusting antenna parameters in an embodiment of this application.
  • the first signaling is carried by physical layer signaling such as DCI or RS
  • the time domain resources used by the terminal equipment for aperiodic CSI-RS transmission and/or aperiodic SRS transmission are all in
  • the time domain resource is called the first time domain resource.
  • Figure 7a is another flow diagram of the antenna parameter adjustment method in an embodiment of this application
  • Figure 7b is Another schematic flow chart of the antenna parameter adjustment method in the application embodiment.
  • the network device since the first signaling is carried by high-level signaling such as MAC CE or RRC, the network device transmits to the terminal device through the physical downlink shared channel (PDSCH).
  • the terminal equipment first needs to decode the PDSCH in the physical layer.
  • the terminal device After the terminal device successfully decodes the PDSCH, the terminal device sends a HARQ-ACK to the network device to notify the network device that the terminal device decodes the PDSCH successfully.
  • the network device After receiving the HARQ-ACK, the network device feedbacks the HARQ-ACK confirmation information to the terminal device.
  • the HARQ-ACK confirmation information may also be referred to as HARQ feedback.
  • the terminal device After the terminal device receives the HARQ-ACK confirmation information, it also needs to pass the data packet obtained after successful PDSCH decoding to the higher layer of the terminal device for further analysis. After the further analysis is successful, the terminal device can learn the correct content of the first signaling in the data packet.
  • the time domain resources used by the terminal device for aperiodic CSI-RS transmission and/or aperiodic SRS transmission are all after the terminal device receives HARQ feedback, and after the terminal device adjusts the antenna parameters, the time domain resource is called The second time domain resource.
  • the time domain resources corresponding to the third square are used for aperiodic CSI-RS transmission and/or aperiodic SRS for terminal equipment.
  • the second square (filling diamond grid) is the time domain resource used by the terminal device to receive the HARQ-ACK confirmation information.
  • the time interval between the third square and the second square is called the first time interval.
  • the first time interval may be 3 milliseconds. It should be noted that the first time interval is determined according to the actual resolution capability of the terminal device, the rate at which the terminal device adjusts antenna parameters, and the type of signaling carried by the first signaling, which is not limited here.
  • the aperiodic CSI-RS transmission triggered by the first signaling and/or the second used for aperiodic SRS transmission A time domain resource, after the terminal device receives the time domain resource used by the first signaling.
  • the first signaling is carried in high-level signaling such as MAC CE or RRC
  • the second time domain resources used for aperiodic CSI-RS transmission and/or aperiodic SRS transmission triggered by the first signaling are After the terminal device receives the HARQ-ACK confirmation information sent by the network device.
  • the terminal device can correctly learn the content of the first signaling and perform channel estimation after adjusting the antenna parameters. It ensures that the network equipment obtains the correct channel estimation result and reduces the probability of transmission failure.
  • the first indication information is used to indicate that there are multiple solutions for adjusting the parameters of the transmitting antenna.
  • the following description is combined with the accompanying drawings.
  • FIG. 8 is a schematic diagram of another flow chart of a method for adjusting antenna parameters in an embodiment of this application.
  • the terminal device uses 2 transmit antennas to transmit uplink signals. From left to right, each square is the time domain resource used to send an SRS.
  • the terminal device shown in FIG. 8 is configured with two sets of periodic SRS resources.
  • the periodic SRS resources used to send SRS in the first block (horizontal line filling) and the third block (horizontal line filling) are dual-port SRS resources, and the terminal equipment is in the time domain resources corresponding to the first and third blocks , Use two transmit antenna ports to send SRS.
  • the periodic SRS resources used for sending SRS in the second block (filling vertical lines) are single-port SRS resources, and the terminal device uses one transmitting antenna port to transmit the SRS in the time domain resources corresponding to the second block.
  • the vertical dashed line in Figure 8 is the corresponding moment when the terminal device adjusts the transmit antenna parameters.
  • the terminal device uses single port Send SRS. If the transmit antenna parameters are not adjusted, the terminal device uses the dual-port SRS resource to send SRS in the time domain resources corresponding to the fifth square (without padding) and the seventh square (without padding) from left to right.
  • the terminal devices in the time domain resources corresponding to the fifth and seventh blocks no longer use dual-port SRS resources to send SRS, and only reserve single-port SRS resources to send SRS, namely, the fourth and sixth blocks.
  • the terminal device uses the single-port SRS resource to send the SRS.
  • the terminal device adjusts the parameters of the transmitting antenna, it is adjusted from 2 transmitting antennas to 1 transmitting antenna, and the maximum number of transmitting antennas of the terminal device is limited to 1 transmitting antenna. If the terminal device is also pre-configured with SRS resources whose number of transmit antenna ports is less than or equal to the maximum number of transmit antennas, that is, single-port SRS resources, the terminal device only uses the single-port SRS resource to transmit SRS, further reducing the power consumption of the terminal device . At the same time, time domain resources used by dual-port SRS resources are freed.
  • FIG. 9 is a schematic diagram of another flow chart of a method for adjusting antenna parameters in an embodiment of the application.
  • the terminal device uses 2 transmit antennas to transmit uplink signals. From left to right, each square is the time domain resource used to send an SRS.
  • the terminal device shown in FIG. 9 is configured with a group of periodic SRS resources.
  • the periodic SRS resources used to send SRS in the first block (filled by horizontal lines) and the second block (filled by horizontal lines) are dual-port SRS resources, and the terminal equipment is in the time domain resources corresponding to the first and second blocks , Use two transmit antenna ports to send SRS.
  • the vertical dashed line in Figure 9 is the corresponding moment when the terminal device adjusts the transmit antenna parameters.
  • the terminal device After the terminal device adjusts the transmit antenna parameters, that is, after the maximum number of transmit antenna ports of the terminal device is switched from dual port to single port, the terminal device selects the current dual Any port in the port SRS resource sends SRS and closes the remaining port. Specifically, the port with the larger port number can be closed and the port with the smaller port number can be reserved; or the port with the smaller port number can be closed and the port with the larger port number can be reserved, which is not limited here.
  • the SRS configured by the network device for the terminal device is used to assist antenna selection.
  • the terminal device reports its ability to support 2T4R to the network device.
  • the network device configures the corresponding SRS resource to the terminal device as shown in Figure 9.
  • the first block and the second block are a dual-port SRS resource, which is sent twice. You can complete one round.
  • the maximum number of uplink transmission ports of the terminal equipment is switched from dual ports to single ports, only a single port can be used to transmit SRS on the previously configured time domain resources.
  • the capability of the terminal equipment is degraded to 1T2R, that is, one single-port SRS is sent each time, and one round of transmission can be completed after two transmissions.
  • the terminal device adjusts the parameters of the transmitting antenna, it is adjusted from 2 transmitting antennas to 1 transmitting antenna, and the maximum number of transmitting antennas of the terminal device is limited to 1 transmitting antenna. If the terminal device is configured with only one set of SRS resources whose number of transmit antenna ports is greater than the maximum number of transmit antennas, that is, dual-port SRS resources, the terminal device uses any port in the dual-port SRS resource to send SRS, and closes the remaining others. One port further reduces the power consumption of terminal equipment.
  • an embodiment of the present application further provides a terminal device 500, including:
  • the transceiver module 501 is configured to receive first signaling sent by a network device, where the first signaling includes first indication information and second indication information, and the first indication information is used to instruct the terminal device to adjust the antenna Parameter, the second indication information is used to instruct the terminal device to send or receive an additional reference signal, and the additional reference signal is used to perform channel estimation after the antenna parameter is adjusted;
  • the adjustment module 502 is configured to adjust the antenna parameters according to the first indication information.
  • the first indication information instructs the terminal device to adjust receiving antenna parameters
  • the second indication information instructs the terminal device to receive an additional downlink reference signal
  • the first indication information instructs the terminal device to adjust transmit antenna parameters
  • the second indication information instructs the terminal device to send an additional uplink reference signal
  • the first indication information instructs the terminal equipment to adjust the receiving antenna parameters and adjust the transmit antenna parameters
  • the second indication information instructs the terminal equipment to receive the additional downlink reference signal and send the additional An uplink reference signal
  • the additional uplink reference signal is used for uplink channel estimation
  • the additional downlink reference signal is used for downlink channel estimation
  • the transceiver module 501 is further configured to receive first configuration information sent by the network device, where the first configuration information is used to configure reference signal resources;
  • the transceiver module 501 is further configured to use the reference signal resource to send or receive the additional reference signal.
  • the first signaling is carried in any one of downlink control information DCI, reference signal RS, medium access control address control element MAC CE, or radio resource control RRC.
  • the first signaling is carried on the DCI or the RS
  • the transceiver module 501 is further configured to send or receive the additional reference signal in a first time domain resource, where the first time domain resource is after the terminal device receives the first signaling.
  • the first signaling is carried on the MAC CE or the RRC
  • the transceiver module 501 is further configured to send HARQ-ACK to the network device to confirm the hybrid automatic repeat request;
  • the transceiver module 501 is further configured to receive the HARQ-ACK confirmation information sent by the network device.
  • the first signaling is carried on the MAC CE or the RRC
  • the transceiver module 501 is further configured to send or receive the additional reference signal in a second time domain resource, where the second time domain resource is after the terminal device receives the HARQ-ACK confirmation information.
  • the first signaling is carried on the MAC CE
  • the transceiver module 501 is also used to send or receive the additional reference signal, including:
  • the transceiver module 501 is further configured to send or receive the additional reference signal in the second time domain resource, the second time domain resource and the time domain used by the terminal device to receive the HARQ-ACK confirmation information
  • the resource interval is greater than 0.
  • the terminal device 500 further includes: a determining module 503,
  • the determining module 503 is configured to determine a downlink reference signal report message according to the additional downlink reference signal
  • the transceiver module 501 is further configured to send the downlink reference signal report message to the network device, where the downlink reference signal report message includes the result of the downlink channel estimation.
  • the transceiver module 501 is specifically configured to send the downlink reference signal report message to the network device through the physical uplink control channel PUCCH or the physical uplink shared channel PUSCH.
  • the transceiver module 501 is specifically configured to pass the first PUCCH or the time-frequency resources used by the first PUSCH after receiving the additional downlink reference signal.
  • PUCCH or the first PUSCH sends the downlink reference signal report message to the network device; or,
  • the downlink reference signal report is sent to the network device through the pre-configured PUCCH or the pre-configured PUSCH News; or,
  • the first signaling is also used to indicate PUCCH or PUSCH resources
  • the network device After receiving the downlink reference signal, send the PUCCH or PUSCH resources indicated by the first signaling to the network device Sending the downlink reference signal report message.
  • the downlink reference signal is a channel state information reference signal CSI-RS
  • the uplink reference signal is a sounding reference signal SRS.
  • an embodiment of the present application also provides a network device 600, including:
  • the transceiver module 601 is configured to send first signaling to a terminal device, where the first signaling includes first indication information and second indication information, and the first indication information is used to instruct the terminal device to adjust antenna parameters ,
  • the second indication information is used to instruct the terminal device to send or receive an additional reference signal, and the additional reference signal is used to perform channel estimation after the antenna parameter is adjusted;
  • the transceiver module 601 is also used for the network device to receive or send the additional reference signal.
  • the first indication information instructs the terminal device to adjust receiving antenna parameters
  • the second indication information instructs the terminal device to receive an additional downlink reference signal
  • the first indication information instructs the terminal device to adjust transmit antenna parameters
  • the second indication information instructs the terminal device to send an additional uplink reference signal
  • the first indication information instructs the terminal equipment to adjust the receiving antenna parameters and the adjusting transmission antenna parameters
  • the second indication information instructs the terminal equipment to receive the additional downlink reference signal and send the additional An uplink reference signal
  • the additional uplink reference signal is used for uplink channel estimation
  • the additional downlink reference signal is used for downlink channel estimation.
  • the transceiver module 601 is further configured to send first configuration information to the terminal device, where the first configuration information is used to configure reference signal resources so that the terminal device uses all The reference signal resource sends or receives the additional reference signal.
  • the first signaling is carried in any one of downlink control information DCI, reference signal RS, medium access control address control element MAC CE, or radio resource control RRC
  • the first signaling is carried on the DCI or the RS
  • the transceiver module 601 is further configured to receive or send the additional reference signal in a first time domain resource, where the first time domain resource is after the terminal device receives the first signaling.
  • the first signaling is carried on the MAC CE or the RRC
  • the transceiver module 601 is further configured to receive the HARQ-ACK of the hybrid automatic repeat request confirmation message sent by the terminal device;
  • the transceiver module 601 is also used to send HARQ-ACK confirmation information to the terminal device.
  • the first signaling is carried on the MAC CE or the RRC
  • the transceiver module 601 is specifically configured to receive or send the additional reference signal on a second time domain resource, which is after the terminal device receives the HARQ-ACK confirmation information.
  • the first signaling is carried on the MAC CE
  • the transceiver module 601 is specifically configured to receive or send the additional reference signal in the second time domain resource, the second time domain resource and the time domain used by the terminal device to receive the HARQ-ACK confirmation information
  • the resource interval is greater than 0.
  • the transceiver module 601 is further configured to receive a downlink reference signal report message, where the downlink reference signal report message is determined by the terminal device according to the additional downlink reference signal, and the downlink reference signal The reference signal report message contains the result of the downlink channel estimation.
  • the transceiver module 601 is specifically configured to receive the downlink reference signal report message sent by the terminal device through the physical uplink control channel PUCCH or the physical uplink shared channel PUSCH.
  • the transceiver module 601 is specifically used for the time-frequency resource used on the first PUCCH or the first PUSCH after the network device sends the additional downlink reference signal to the terminal device , Receiving the downlink reference signal report message sent by the terminal device through the first PUCCH or the first PUSCH; or,
  • the terminal device After the additional downlink reference signal is sent to the terminal device, among the time-frequency resources of the pre-configured PUCCH or the pre-configured PUSCH, the terminal device is sent through the pre-configured PUCCH or the pre-configured PUSCH.
  • the network device receives the downlink reference signal report message sent by the terminal device.
  • the downlink reference signal is a channel state information reference signal CSI-RS
  • the uplink reference signal is a sounding reference signal SRS.
  • an embodiment of the present application further provides a terminal device 700, including:
  • the receiving module 701 is configured to receive first indication information sent by a network device, where the first indication information is used to instruct the terminal device to adjust transmit antenna parameters;
  • the adjustment module 702 is configured to adjust transmit antenna parameters according to the first indication information.
  • the first indication information is specifically used to indicate that the maximum number of transmit antennas of the terminal device is N, where N is a positive integer,
  • the receiving module 701 is further configured to receive first configuration information sent by the network device, where the first configuration information is used to configure a first uplink reference signal resource, and the terminal device uses the uplink reference signal resource to send In the uplink reference signal, the uplink reference signal is used for uplink channel estimation, and the number of transmit antenna ports of the uplink reference signal is M, where the M is a positive integer, and the M is greater than the N.
  • the sending module 703 is configured to use the second uplink reference signal resource when the terminal device is also configured with a second uplink reference signal resource with K transmission ports Sending the uplink reference signal and not using the first uplink reference signal resource to send the uplink signal, the K is a positive integer, and the K is less than the M.
  • the sending module 703 is further configured to use the N transmit antenna ports of any of the M in the first uplink reference signal resource to send the uplink reference signal.
  • the terminal device 700 further includes:
  • the determining module 704 is configured to determine whether the terminal device is further configured with a third uplink reference signal resource whose number of transmit antenna ports is less than or equal to the N;
  • the sending module 703 is further configured to send the uplink reference signal by using the third uplink reference signal resource if the third uplink reference signal resource is configured;
  • the sending module 703 is specifically configured to send the uplink reference signal using the first uplink reference signal resource if the third uplink reference signal resource is not configured, wherein the terminal device uses the first uplink reference signal resource Any of the M of the N transmit antenna ports transmit the uplink reference signal,
  • the terminal device uses the first uplink reference signal resource to send the uplink reference signal.
  • an embodiment of the present application also provides a network device 800, including:
  • the sending module 801 is configured to send first indication information to a terminal device, where the first indication information is used to instruct the terminal device to adjust transmit antenna parameters.
  • the first indication information is specifically used to indicate that the maximum number of transmit antennas of the terminal device is N, where N is a positive integer,
  • the sending module 801 is further configured to send first configuration information to the terminal device, where the first configuration information is used to configure a first uplink reference signal resource, so that the terminal device uses the uplink reference signal resource to send
  • the uplink reference signal, the uplink reference signal is used for uplink channel estimation, and the number of transmit antenna ports of the uplink reference signal is M, where the M is a positive integer, and the M is greater than the N.
  • the network device 800 further includes a receiving module 802,
  • the receiving module 802 is configured to: when the terminal device is also configured with a second uplink reference signal resource with a transmission port number of K, the network device receives the terminal device using the second uplink reference signal resource to send For the uplink reference signal, the K is a positive integer, and the K is less than the M.
  • the receiving module 802 is further configured to receive all the N transmit antenna ports sent by the terminal device using any of the M of the first uplink reference signal resources.
  • the uplink reference signal is further configured to receive all the N transmit antenna ports sent by the terminal device using any of the M of the first uplink reference signal resources.
  • the network device 800 further includes a determining module 803,
  • the determining module 803 is configured to determine whether the terminal device is further configured with a third uplink reference signal resource whose number of transmit antenna ports is less than or equal to the N;
  • the receiving module 802 is further configured to, if the third uplink reference signal resource is configured, receive the uplink reference signal sent by the terminal device using the third uplink reference signal resource;
  • the receiving module 802 is further configured to, if the third uplink reference signal resource is not configured, receive the uplink reference signal sent by the terminal device using the first uplink reference signal resource, wherein the terminal device uses all Sending the uplink reference signal by the N transmitting antenna ports of any of the M in the first uplink reference signal resource,
  • the network device receives the terminal device using the first uplink reference signal resource to send the Uplink reference signal.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device can be applied to the system shown in FIG. 1 to perform the functions of the terminal device in the foregoing method embodiment.
  • FIG. 14 only shows the main components of the terminal device.
  • the terminal device 90 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the above method embodiments, such as Adjusting the antenna parameter according to the first indication information.
  • the memory is mainly used to store software programs and data, for example, to store the reference signal resources described in the above embodiments.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 14 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and/or a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to control the entire terminal device. , Execute the software program, and process the data of the software program.
  • the processor in FIG. 14 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as buses.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiving function can be regarded as the transceiving unit 901 of the terminal device 90, for example, for supporting the terminal device to perform the aforementioned receiving function and sending function.
  • the chip with processing function is regarded as the processor 902 of the terminal device 90.
  • the terminal device 90 includes a transceiver unit 901 and a processor 902.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the device for implementing the receiving function in the transceiver unit 901 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 901 can be regarded as the sending unit. That is, the transceiver unit 901 includes a receiving unit and a sending unit. It can also be called a receiver, an input port, a receiving circuit, etc., and a sending unit can be called a transmitter, a transmitter, or a transmitting circuit.
  • the processor 902 may be used to execute instructions stored in the memory to control the transceiver unit 901 to receive signals and/or send signals, so as to complete the functions of the terminal device in the foregoing method embodiment.
  • the function of the transceiver unit 901 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • FIG. 15 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station. As shown in FIG. 15, the base station can be applied to the system shown in FIG. 1 to perform the functions of the network device in the above method embodiment.
  • the base station 100 may include one or more radio frequency units, such as a remote radio unit (RRU) 1001 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 1002.
  • RRU 1001 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 10011 and a radio frequency unit 10012.
  • the RRU 1001 part is mainly used to transmit and receive radio frequency signals and to convert radio frequency signals to baseband signals, for example, to send a first wake-up signal to a terminal device in an idle state.
  • the 1002 part of the BBU is mainly used for baseband processing and control of the base station.
  • the RRU 1001 and the BBU 1002 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1002 is the control center of the base station, and can also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing unit) 1002 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU 1002 can be composed of one or more single boards, and multiple single boards can jointly support a radio access network (such as an LTE network) with a single access indication, or can respectively support radio access of different access standards. Access to the network (such as LTE network, 5G network or other networks).
  • the BBU 1002 also includes a memory 10021 and a processor 10022.
  • the memory 10021 is used to store necessary instructions and data.
  • the memory 10021 stores the updated configuration information in the above-mentioned embodiment.
  • the processor 10022 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 10021 and the processor 10022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, each board can also be equipped with necessary circuits
  • FIG. 16 shows a schematic structural diagram of a communication device 1100.
  • the communication device 1100 may be used to implement the method described in the foregoing method embodiment, and reference may be made to the description in the foregoing method embodiment.
  • the communication device 1100 may be a chip, a network device (such as a base station), a terminal device or a core network device, or other network devices.
  • the communication device 1100 includes one or more processors 1101.
  • the processor 1101 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, terminals, or chips, etc.), execute software programs, and process software program data.
  • the communication device may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the communication device may be a chip, and the transceiver unit may be an input and/or output circuit of the chip, or a communication interface. Chips can be used in terminals or base stations or other network equipment.
  • the communication device may be a terminal or a base station or other network equipment, and the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the communication apparatus 1100 includes one or more processors 1101, and the one or more processors 1101 can implement the method of the network device or the terminal device in the foregoing embodiment.
  • the communication apparatus 1100 includes a first resource configured to configure a terminal device, and the first resource is a pre-configured resource.
  • the function of configuring the first resource for the terminal device may be implemented by one or more processors.
  • the first resource may be obtained through one or more processors, and the first resource may be sent through an interface of a transceiver, or an input/output circuit, or a chip.
  • the first resource refer to the related description in the foregoing method embodiment.
  • the communication device 1100 includes a first wake-up signal for determining.
  • a first wake-up signal for determining.
  • the first wake-up signal refer to the relevant description in the above method embodiment.
  • one or more processors determine the first wake-up signal.
  • the communication device 1100 may be used to send a first wake-up signal to a terminal device in an idle state.
  • the first wake-up signal can be sent through the transceiver, or the input/output circuit, or the interface of the chip.
  • processor 1101 may also implement other functions.
  • the processor 1101 may execute instructions to make the communication device 1100 execute the method described in the foregoing method embodiment.
  • the instructions can be stored in whole or in part in the processor, such as the instruction 1103, or in the memory 1102 coupled with the processor, such as the instruction 1104, or the communication device 1100 can be executed by the instructions 1103 and 1104 together. The method described in the examples.
  • the communication device 1100 may also include a circuit, and the circuit may implement the function of the network device or the terminal device in the foregoing method embodiment.
  • the communication device 1100 may include one or more memories 1102, on which instructions 1104 are stored, and the instructions may be executed on the processor, so that the communication device 1100 executes the methods described in the above method embodiments .
  • data may also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • one or more memories 1102 may store the first wake-up signal described in the above embodiment, etc.
  • the processor and memory can be set separately or integrated together.
  • the communication device 1100 may further include a transceiver unit 1105 and an antenna 1106.
  • the processor 1101 may be called a processing unit, and controls a communication device (terminal or base station).
  • the transceiver unit 1105 may be called a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the communication device through the antenna 1106.
  • the present application also provides a communication system, which includes the aforementioned one or more network devices, and, one or more terminal devices.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了天线参数调整的方法以及相关装置。其中,本申请实施例提供的一种天线参数调整的方法包括:终端设备接收网络设备发送的第一信令,其中,第一信令包含第一指示信息和第二指示信息,第一指示信息用于指示终端设备调整天线参数,第二指示信息用于指示终端设备发送或接收附加的参考信号,附加的参考信号用于在天线参数调整后进行信道估计;终端设备根据第一指示信息调整天线参数。网络设备通过第一信令指示终端设备调整天线参数,该第一信令还用于指示终端设备进行信道估计,以便网络设备及时获取信道估计结果,根据该信道估计结果进行数据传输,降低传输失败的概率。

Description

一种天线参数调整的方法以及相关装置 技术领域
本申请涉及通信领域,尤其涉及一种天线参数调整的方法以及相关装置。
背景技术
为了应对无线宽带技术的挑战,保持第三代合作伙伴计划(3rd generation partnership project,3GPP)网络的领先优势,3GPP标准组在2016年底制定了下一代移动通信系统(next generation system)网络架构,称为第五代(5rd generation,5G)网络架构,还称为5g新通信协议(5g new radio,5g NR或NR)。该架构不但支持3GPP标准组定义的无线技术接入5G核心网络(5G core network),而且支持非3GPP(non-3GPP)接入技术接入5G核心网络,比如支持固网接入5G核心网络。
终端设备(user equipment,UE)在发送信号的时候,在基带生成基带信号后,会经过射频链路生成射频信号,然后经过天线发送出去。终端设备在接收信号的时候,也会有对应的射频接收链路。在NR中,网络设备和UE都可以通过多输入多输出(multiple input multiple output,MIMO)技术提升通信性能,又称为多天线技术。为了更好的调度数据传输,NR中会对传输使用的信道状态进行估计,并且网络设备根据信道估计结果可以选择合适的传输参数,该过程称为信道估计(channel estimation)。在NR中,UE可以使用信道状态信息参考信号(channel state information reference signal,CSI-RS)和探测参考信号(sounding reference signal,SRS)进行信道估计。MIMO技术的引入,虽然提升了通信性能,但是终端设备使用多个天线进行传输,又会引起功耗大的问题。现在提出了一种降低终端设备功耗的方案:减少终端设备用于传输数据的天线数,或称为调整天线参数,以达到减少终端设备功耗的目的。
由于网络设备在调整终端设备的天线参数后,均需要进行信道估计。网络设备需要根据信道估计结果选择合适的传输参数以保证数据传输的成功率。现有技术中,出于降低终端设备功耗的目的,终端设备可以执行调整天线参数(即关闭部分天线)的操作已达到降低功耗的目的,此时网络设备仍使用原有天线参数条件下信道估计结果进行数据传输,与当前天线参数条件下信道估计结果不匹配,增加了数据传输的失败概率。
发明内容
本申请实施例提供了一种天线参数调整的方法以及相关装置,网络设备通过第一信令指示终端设备调整天线参数,该第一信令还用于指示终端设备进行信道估计,以便网络设备及时获取信道估计结果,根据该信道估计结果进行数据传输,降低传输失败的概率。
第一方面,本申请实施例提供了一种天线参数调整的方法,终端设备接收网络设备发送的第一信令,该第一信令可以承载于下行控制信息(downlink control information,DCI)、参考信号(reference signals,RS)、媒体访问控制地址控制元素(media access control control element,MAC CE)或无线资源控制(radio resource control,RRC)中的任意一种,其中,第一信令包含第一指示信息和第二指示信息,第一指示信息用于指示终端设备调整天线参数,第二指示信息用于指示终端设备发送或接收附加的参考信号,附加的参考信号用于在天线参数调整后进行信道估计;
终端设备根据第一信令中的第一指示信息调整天线参数,调整天线参数为开启或关闭天线所对应的 端口,例如当调整的为发射天线参数时,终端设备开启或关闭发射天线端口,当调整的为接收天线参数时,终端设备开启或关闭接收天线端口。
具体的,第一指示信息用于终端设备调整接收天线参数时,第二指示信息指示终端设备接收附加的下行参考信号;或者第一指示信息指示终端设备调整发射天线参数时,第二指示信息指示终端设备发送附加的上行参考信号;或者第一指示信息指示终端设备调整接收天线参数且调整发射天线参数时,第二指示信息指示终端设备接收附加的下行参考信号且发送附加的上行参考信号。
从上述第一方面中的技术方案可以看出,本申请实施例具有以下优点:终端设备根据网络设备发送的第一信令调整天线参数,该第一信令还用于指示终端设备进行信道估计,以便网络设备及时获取信道估计结果,根据该信道估计结果进行数据传输,降低传输失败的概率。第一信令可以承载于多种信令中,提升了方案的实现灵活性。
结合第一方面,在第一方面实施例中,终端设备接收网络设备发送的第一信令之前,终端设备接收网络设备发送的第一配置信息,其中,第一配置信息用于配置参考信号资源,该参考信号资源可以为上行参考信号资源,也可以为下行参考信号资源。第一配置信息既可以单独配置上行参考信号资源或下行参考信号资源,也可同时配置上行参考信号资源和下行参考信号资源;
终端设备使用参考信号资源发送或接收附加的参考信号。当第一配置信息配置上行参考信号资源时,终端设备使用上行参考信号资源发送附加的上行参考信号。当第一配置信息配置下行参考信号资源时,终端设备使用下行参考信号资源接收附加的下行参考信号。当第一配置信息同时配置上行参考信号资源以及下行参考信号资源时,终端设备使用上行参考信号资源发送附加的上行参考信号且使用下行参考信号资源接收附加的下行参考信号。
需要说明的是,当上行参考信号资源为探测参考信号(sounding reference signal,SRS)资源时,附加的上行参考信号为SRS,终端设备使用SRS资源向网络设备发送SRS。当下行参考信号资源为信道状态信息参考信号(channel state information reference signal,CSI-RS)资源时,附加的下行参考信号为CSI-RS,终端设备使用CSI-RS资源接收网络设备发送的CSI-RS。上行参考信号资源与下行参考信号资源还可以为其它的参考信号资源,此处不作限定。用于在终端设备中配置参考信号资源的第一配置信息,可以单独配置上行参考信号资源或下行参考信号资源,也可以同时配置上行参考信号资源和下行参考信号资源,提升了方案的实现灵活性。
结合第一方面,在第一方面实施例中,第一信令承载于DCI或RS,终端设备在第一时域资源发送或接收附加的参考信号,第一时域资源在终端设备接收第一信令之后。当第一信令承载于DCI或RS时,终端设备在接收到第一信令之后,终端设备发送或接收附加的参考信号,以保证终端设备能够正确地获知第一信令的内容,保证了网络设备获取正确的信道估计结果,降低传输失败的概率。
结合第一方面,在第一方面实施例中,第一信令承载于MAC CE或RRC,在终端设备接收网络设备发送的第一信令之后,终端设备根据第一信令调整天线参数之前,终端设备向网络设备发送混合自动重传请求确认信息(hybrid automatic repeat request-acknowledge,HARQ-ACK)。网络设备根据该HARQ-ACK会向终端设备反馈一个HARQ-ACK的确认信息。当终端设备接收到该HARQ-ACK的确认信息后,终端设备再根据第一指示信息调整天线参数。终端设备在第二时域资源发送或接收附加的参考信号,第二时域资源在终端设备接收HARQ-ACK的确认信息之后。
示例性的,当第一信令承载于MAC CE时,终端设备在第二时域资源发送或接收附加的参考信号,第二时域资源与终端设备接收HARQ-ACK的确认信息使用的时域资源间隔大于0,该时域资源间隔通常为3毫秒。
当第一信令承载于MAC CE或RRC时,终端设备在接收到第一信令之后,终端设备首先向网络设备发送HARQ-ACK。网络设备根据该HARQ-ACK向终端设备反馈该HARQ-ACK的确认信息。终端设备接收到该HARQ-ACK的确认信息后,终端设备发送或接收附加的参考信号,以保证终端设备能够正确地获知第一信令的内容,保证了网络设备获取正确的信道估计结果,降低传输失败的概率。
结合第一方面,在第一方面实施例中,终端设备接收附加的下行参考信号之后,终端设备根据附加的下行参考信号确定下行参考信号报告消息;
终端设备通过物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)向网络设备发送下行参考信号报告消息,其中,下行参考信号报告消息包含下行信道估计的结果。
具体的,终端设备接收附加的下行参考信号之后,在第一个PUCCH或第一个PUSCH占用的时频资源中,通过第一个PUCCH或第一个PUSCH向网络设备发送下行参考信号报告消息;或者,终端设备接收下行参考信号之后,预先配置的PUCCH或预先配置的PUSCH的时频资源中,通过预先配置的PUCCH或预先配置的PUSCH向网络设备发送下行参考信号报告消息,该预先配置的PUCCH或该预先配置的PUSCH为网络设备向终端设备预先配置的信道;或者,第一信令还用于指示PUCCH或PUSCH的资源,此时第一信令中包含PUCCH或PUSCH的资源的索引值(index),终端设备接收下行参考信号之后,通过第一信令所指示的PUCCH或所指示的PUSCH的资源,向网络设备发送下行参考信号报告消息。终端设备接收附加的下行参考信号之后,终端设备可以通过多种PUCCH或PUSCH向网络设备发送下行参考信号报告消息,提升了方案的实现灵活性。
第二方面,本申请实施例提供了一种天线参数调整的方法,网络设备向终端设备发送第一信令,该第一信令可以承载于下行控制信息(downlink control information,DCI)、参考信号(reference signals,RS)、媒体访问控制地址控制元素(media access control control element,MAC CE)或无线资源控制(radio resource control,RRC)中的任意一种,其中,第一信令包含第一指示信息和第二指示信息,第一指示信息用于指示终端设备调整天线参数,第二指示信息用于指示终端设备发送或接收附加的参考信号,附加的参考信号用于在天线参数调整后进行信道估计;
终端设备根据第一信令中的第一指示信息调整天线参数,调整天线参数为开启或关闭天线所对应的端口,例如当调整的为发射天线参数时,终端设备开启或关闭发射天线端口,当调整的为接收天线参数时,终端设备开启或关闭接收天线端口。
具体的,第一指示信息用于终端设备调整接收天线参数时,第二指示信息指示终端设备接收附加的下行参考信号;或者第一指示信息指示终端设备调整发射天线参数时,第二指示信息指示终端设备发送附加的上行参考信号;或者第一指示信息指示终端设备调整接收天线参数且调整发射天线参数时,第二指示信息指示终端设备接收附加的下行参考信号且发送附加的上行参考信号。
从上述第二方面中的技术方案可以看出,本申请实施例具有以下优点:网络设备向终端设备发送第一信令,终端设备根据该第一信令调整天线参数,该第一信令还用于指示终端设备进行信道估计,以便网络设备及时获取信道估计结果,根据该信道估计结果进行数据传输,降低传输失败的概率。第一信令可以承载于多种信令中,提升了方案的实现灵活性。
结合第二方面,在第二方面实施例中,网络设备向终端设备发送第一信令之前,网络设备向终端设备发送第一配置信息,其中,第一配置信息用于配置参考信号资源,该参考信号资源可以为上行参考信号资源,也可以为下行参考信号资源。第一配置信息既可以单独配置上行参考信号资源或下行参考信号资源,也可同时配置上行参考信号资源和下行参考信号资源;
终端设备使用参考信号资源发送或接收附加的参考信号。当第一配置信息配置上行参考信号资源时,网络设备接收终端设备使用上行参考信号资源发送附加的上行参考信号。当第一配置信息配置下行参考信号资源时,网络设备向终端设备发送附加的下行参考信号,终端设备使用下行参考信号资源接收附加的下行参考信号。当第一配置信息同时配置上行参考信号资源以及下行参考信号资源时,网络设备接收终端设备使用上行参考信号资源发送附加的上行参考信号且网络设备向终端设备发送附加的下行参考信号。
需要说明的是,当上行参考信号资源为探测参考信号(sounding reference signal,SRS)资源时,附加的上行参考信号为SRS,终端设备使用SRS资源向网络设备发送SRS,网络设备接收SRS。当下行参考信号资源为信道状态信息参考信号(channel state information reference signal,CSI-RS)资源时,附加的下行参考信号为CSI-RS,终端设备使用CSI-RS资源接收网络设备发送的CSI-RS。上行参考信号资源与下行参考信号资源还可以为其它的参考信号资源,此处不作限定。用于在终端设备中配置参考信号资源的第一配置信息,可以单独配置上行参考信号资源或下行参考信号资源,也可以同时配置上行参考信号资源和下行参考信号资源,提升了方案的实现灵活性。
结合第二方面,在第二方面实施例中,第一信令承载于DCI或RS,网络设备在第一时域资源接收或发送附加的参考信号,第一时域资源在终端设备接收第一信令之后。当第一信令承载于DCI或RS时,终端设备在接收到第一信令之后,网络设备接收或发送附加的参考信号,以保证终端设备能够正确地获知第一信令的内容,保证了网络设备获取正确的信道估计结果,降低传输失败的概率。
结合第二方面,在第二方面实施例中,第一信令承载于MAC CE或RRC,在网络设备向终端设备发送第一信令之后,网络设备接收或发送附加的参考信号之前,网络设备接收终端设备发送的混合自动重传请求确认信息(hybrid automatic repeat request-acknowledge,HARQ-ACK)。网络设备根据该HARQ-ACK会向终端设备反馈一个HARQ-ACK的确认信息。当终端设备接收到网络设备发送的该HARQ-ACK的确认信息后,终端设备再根据第一指示信息调整天线参数。网络设备在第二时域资源接收或发送附加的参考信号,第二时域资源在终端设备接收HARQ-ACK的确认信息之后。
示例性的,当第一信令承载于MAC CE时,网络设备在第二时域资源接收或发送附加的参考信号,第二时域资源与终端设备接收HARQ-ACK的确认信息使用的时域资源间隔大于0,该时域资源间隔通常为3毫秒。
当第一信令承载于MAC CE或RRC时,网络设备向终端设备发送第一信令之后,终端设备首先向网络设备发送HARQ-ACK。网络设备根据该HARQ-ACK向终端设备反馈该HARQ-ACK的确认信息。终端设备接收到该HARQ-ACK的确认信息后,终端设备再根据第一指示信息调整天线参数,网络设备在第二时域资源接收或发送附加的参考信号。以保证终端设备能够正确地获知第一信令的内容,保证了网络设备获取正确的信道估计结果,降低传输失败的概率。
结合第二方面,在第二方面实施例中,网络设备发送附加的下行参考信号之后,网络设备接收终端设备发送的下行参考信号报告消息;
网络设备通过物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)接收终端设备发送的下行参考信号报告消息,其中,下行参考信号报告消息包含下行信道估计的结果。
具体的,网络设备向终端设备发送附加的下行参考信号之后,在第一个PUCCH或第一个PUSCH占用的时频资源中,通过第一个PUCCH或第一个PUSCH接收终端设备发送的下行参考信号报告消息;或者,网络设备向终端设备发送附加的下行参考信号之后,预先配置的PUCCH或预先配置的PUSCH的时频资源 中,通过预先配置的PUCCH或预先配置的PUSCH接收终端设备发送的下行参考信号报告消息,该预先配置的PUCCH或该预先配置的PUSCH为网络设备向终端设备预先配置的信道;或者,第一信令还用于指示PUCCH或PUSCH的资源,此时第一信令中包含PUCCH或PUSCH的资源的索引值(index),终端设备接收下行参考信号之后,通过第一信令所指示的PUCCH或所指示的PUSCH的资源,向网络设备发送下行参考信号报告消息。网络设备向终端设备发送附加的下行参考信号之后,网络设备可以通过多种PUCCH或PUSCH接收终端设备发送的下行参考信号报告消息,提升了方案的实现灵活性。
第三方面,本申请实施例提供了一种天线参数调整的方法,终端设备接收到网络设备下发的第一信令后,根据第一信令中的第一指示信息调整天线参数。当第一信令中的第一指示信息为指示调整发射天线参数时,终端设备对应的开启或关闭发射天线端口。
从上述第三方面中的技术方案可以看出,本申请实施例具有以下优点:终端设备可根据第一信令中的第一指示信息调整天线参数,以降低功耗。
结合第三方面,在第三方面实施例中,第一指示信息具体用于指示终端设备的最大发射天线数为N,其中,N为正整数,
终端设备接收网络设备发送的第一指示信息之前,终端设备接收网络设备发送的第一配置信息,其中,第一配置信息用于配置第一上行参考信号资源,终端设备使用上行参考信号资源发送上行参考信号,上行参考信号用于上行信道估计,上行参考信号的发射天线端口数为M,其中,M为正整数,M大于N。
当终端设备还配置有发射端口数为K的第二上行参考信号资源时,终端设备使用第二上行参考信号资源发送上行参考信号且不使用第一上行参考信号资源发送上行信号,K为正整数,K小于M;
当终端设备中仅配置有第一上行参考信号资源时,终端设备使用第一上行参考信号资源中任意M个中的N个发射天线端口发送上行参考信号,具体的,可以关闭端口号较大的端口,保留端口号较小的端口;或者关闭端口号较小的端口,保留端口号较大的端口;
确定终端设备是否还配置有发射天线端口数小于或等于N的第三上行参考信号资源。若配置第三上行参考信号资源,则终端设备使用第三上行参考信号资源发送上行参考信号;若没有配置第三上行参考信号资源,则终端设备使用第一上行参考信号资源发送上行参考信号,其中终端设备使用第一上行参考信号资源中任意M个中的N个发射天线端口发送上行参考信号,或者终端设备关闭第一上行参考信号资源中的大于N的发射天线端口后,使用第一上行参考信号资源发送上行参考信号,具体的,可以关闭端口号较大的端口,保留端口号较小的端口;或者关闭端口号较小的端口,保留端口号较大的端口。
终端设备可使用多种方法调整发射天线参数,在降低功耗的同时,保证传输的准确性。提升了方案的实现灵活性。
第四方面,本申请实施例提供了一种天线参数调整的方法,网络设备向终端设备发送第一信令后,终端设备根据第一信令中的第一指示信息调整天线参数。当第一信令中的第一指示信息为指示调整发射天线参数时,终端设备对应的开启或关闭发射天线端口。
从上述第四方面中的技术方案可以看出,本申请实施例具有以下优点:网络设备可以通过向终端设备发送第一信令,以指示终端设备根据第一信令中的第一指示信息调整天线参数,以降低终端设备的功耗。
结合第四方面,在第四方面实施例中,第一指示信息具体用于指示终端设备的最大发射天线数为N,其中,N为正整数,
网络设备向终端设备发送第一指示信息之前,网络设备向终端设备发送第一配置信息,其中,第一配置信息用于配置第一上行参考信号资源,终端设备使用上行参考信号资源发送上行参考信号,上行参 考信号用于上行信道估计,上行参考信号的发射天线端口数为M,其中,M为正整数,M大于N。
当终端设备还配置有发射端口数为K的第二上行参考信号资源时,网络设备接收终端设备使用第二上行参考信号资源发送的上行参考信号,K为正整数,K小于M;
当终端设备中仅配置有第一上行参考信号资源时,网络设备接收终端设备使用第一上行参考信号资源中任意M个中的N个发射天线端口发送的上行参考信号,具体的,可以关闭端口号较大的端口,保留端口号较小的端口;或者关闭端口号较小的端口,保留端口号较大的端口;
终端设备确定终端设备中是否还配置有发射天线端口数小于或等于N的第三上行参考信号资源。若配置第三上行参考信号资源,则网络设备接收终端设备使用第三上行参考信号资源发送的上行参考信号;若没有配置第三上行参考信号资源,则网络设备接收终端设备使用第一上行参考信号资源发送的上行参考信号,其中终端设备使用第一上行参考信号资源中任意M个中的N个发射天线端口发送上行参考信号,或者终端设备关闭第一上行参考信号资源中的大于N的发射天线端口后,网络设备接收终端设备使用第一上行参考信号资源发送的上行参考信号,具体的,可以关闭端口号较大的端口,保留端口号较小的端口;或者关闭端口号较小的端口,保留端口号较大的端口。
终端设备可使用多种方法调整发射天线参数,在降低功耗的同时,保证传输的准确性。提升了方案的实现灵活性。
第五方面,提供了一种终端设备,用于执行第一方面或第一方面任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任一种可能的实现方式中的方法的模块。
第六方面,提供了一种网络设备,用于执行第二方面或第二方面任意可能的实现方式中的方法。具体地,该资源指示装置包括用于执行上述第二方面或第二方面的任一种可能的实现方式中的方法的模块。
第七方面,提供了一种终端设备,用于执行第三方面或第三方面任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第三方面或第三方面的任一种可能的实现方式中的方法的模块。
第八方面,提供了一种网络设备,用于执行第四方面或第四方面任意可能的实现方式中的方法。具体地,该资源指示装置包括用于执行上述第四方面或第四方面的任一种可能的实现方式中的方法的模块。
第九方面,提供了一种通信装置。本申请提供的通信装置具有实现上述方法方面中终端设备或网络设备或核心网设备行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。该步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述通信装置包括一个或多个处理器和通信单元。该一个或多个处理器被配置为支持该通信装置执行上述方法中终端设备相应的功能。例如,根据参考信号指示信息,向网络设备发送上行信息。该通信单元用于支持该通信装置与其他设备通信,实现接收和/或发送功能。例如,接收参考信号指示信息。
该通信装置还可以包括一个或多个存储器,该存储器用于与处理器耦合,其保存通信装置必要的程序指令和/或数据。该一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
该通信装置可以为智能终端或者可穿戴设备等,该通信单元可以是收发器,或收发电路。可选的,该收发器也可以为输入/输出电路或者接口。
该通信装置还可以为通信芯片。该通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该通信装置执行第一方面或第一方面中任一种可能实现方式中网络设备完成的方法。
在一种可能的设计中,上述通信装置包括一个或多个处理器和通信单元。该一个或多个处理器被配置为支持该通信装置执行上述方法中网络设备相应的功能。例如,生成参考信号指示信息。该通信单元用于支持该通信装置与其他设备通信,实现接收和/或发送功能。例如,发送参考信号指示信息。
该通信装置还可以包括一个或多个存储器,该存储器用于与处理器耦合,其保存网络设备必要的程序指令和/或数据。该一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
该通信装置可以为基站,该通信单元可以是收发器,或收发电路。可选的,该收发器也可以为输入/输出电路或者接口。
该通信装置还可以为通信芯片。该通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第一方面或第一方面中任一种可能实现方式中终端设备完成的方法。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第二方面或第二方面中任一种可能实现方式中终端设备完成的方法。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第三方面或第三方面中任一种可能实现方式中终端设备完成的方法。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行存储器中的计算机程序,使得该装置执行第四方面或第四方面中任一种可能实现方式中终端设备完成的方法。
第十方面,提供了一种系统,该系统包括上述网络设备、终端设备以及通信装置。
第十一方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面至第四方面、第五方面至第十方面中任一种可能实现方式中的方法的指令。
第十二方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行上述第一方面至第四方面、第五方面至第十方面中任一种可能实现方式中的方法。
第十三方面,本申请提供了一种芯片装置,该芯片装置包括处理器,用于支持网络设备实现上述方面中所涉及的功能,例如,例如发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片装置还包括存储器,该存储器,用于保存网络设备必要的程序指令和数据。该芯片装置,可以由芯片构成,也可以包括芯片和其他分立器件。
第十四方面,本申请提供了一种芯片装置,该芯片装置包括处理器,用于支持终端设备实现上述方面中所涉及的功能,例如,例如发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,该芯片装置还包括存储器,该存储器,用于保存终端设备必要的程序指令和数据。该芯片装置,可以由芯片构成,也可以包括芯片和其他分立器件。
从以上技术方案可以看出,本申请实施例具有以下优点:
网络设备通过第一信令指示终端设备调整天线参数,该第一信令还用于指示终端设备进行信道估计,以便网络设备及时获取信道估计结果,根据该信道估计结果进行数据传输,降低传输失败的概率。
附图说明
图1为本申请实施例中的无线通信网络拓扑示意图;
图2为本申请实施例中射频链路示意图;
图3为本申请实施例中终端设备发射天线示意图;
图4为本申请实施例中天线参数调整的方法的一种实施例示意图;
图5a为本申请实施例中天线参数调整的方法的一种流程示意图;
图5b为本申请实施例中天线参数调整的方法的另一种流程示意图;
图6a为本申请实施例中天线参数调整的方法的另一种流程示意图;
图6b为本申请实施例中天线参数调整的方法的另一种流程示意图;
图7a为本申请实施例中天线参数调整的方法的另一种流程示意图;
图7b为本申请实施例中天线参数调整的方法的另一种流程示意图;
图8为本申请实施例中天线参数调整的方法的另一种流程示意图;
图9为本申请实施例中天线参数调整的方法的另一种流程示意图;
图10是本申请实施例提供的网络设备的一种结构示意图;
图11是本申请实施例提供的网络设备的另一种结构示意图;
图12是本申请实施例提供的终端设备的一种结构示意图;
图13是本申请实施例提供的网络设备的另一种结构示意图;
图14是本申请实施例提供的另一种终端设备的结构示意图;
图15是本申请实施例提供的另一种网络设备的结构示意图;
图16是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
本申请实施例提供了一种天线参数调整的方法以及相关装置,网络设备通过第一信令指示终端设备调整天线参数,该第一信令还用于指示终端设备进行信道估计,以便网络设备及时获取信道估计结果,根据该信道估计结果进行数据传输,降低传输失败的概率。
在介绍本实施例之前,首先介绍本实施例中可能出现的几个概念。应理解的是,以下的概念解释可能会因为本实施例的具体情况有所限制,但并不代表本申请仅能局限于该具体情况,以下概念的解释伴随不同实施例的具体情况可能也会存在差异。
图1为本申请实施例中的无线通信网络拓扑示意图。如图1所示,无线通信网络100包括网络设备102~106和终端设备108~122,其中,网络设备102~106彼此之间可通过回程(backhaul)链路(如网络设备102~106彼此之间的直线所示)进行通信,该回程链路可以是有线回程链路(例如光纤、铜缆),也可以是无线回程链路(例如微波)。终端设备108~122可通过无线链路(如网络设备102~106与终端设备108~122之间的折线所示)与对应的网络设备102~106通信,网络设备102~106还可以称为基站。
网络设备102~106通常作为接入设备来为通常作为用户设备的终端设备108~122提供无线接入服务。具体来说,每个网络设备都对应一个服务覆盖区域(又可称为蜂窝,如图1中各椭圆区域所示),进入该区域的终端设备可通过无线信号与网络设备通信,以此来接受网络设备提供的无线接入服务。网络设备的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个网络设备的无线信号,因此这些网络设备可以进行相互协同,以此来为该终端设备提供服务。例如,多个网络设备可以采用多点协作(coordinated multipoint,CoMP)技术为处于上述交叠区域的终端设备提供服务。例如,如图1所示,网络设备102与网络设备104的服务覆盖区域存在交叠,终端设备112便处于该交叠区域 之内,因此终端设备112可以收到来自网络设备102和网络设备104的无线信号,网络设备102和网络设备104可以进行相互协同,来为终端设备112提供服务。又例如,如图1所示,网络设备102、网络设备104和网络设备106的服务覆盖区域存在一个共同的交叠区域,终端设备120便处于该交叠区域之内,因此终端设备120可以收到来自网络设备102、104和106的无线信号,网络设备102、104和106可以进行相互协同,来为终端设备120提供服务。
依赖于所使用的无线通信技术,网络设备又可称为节点B(NodeB),演进节点B(evolved nodeb,eNodeB)以及接入点(access point,AP)等。此外,根据所提供的服务覆盖区域的大小,网络设备又可分为用于提供宏蜂窝(macro cell)的宏网络设备、用于提供微蜂窝(pico cell)的微网络设备和用于提供毫微微蜂窝(femto cell)的毫微微网络设备等。随着无线通信技术的不断演进,未来的网络设备也可以采用其他的名称。
终端设备108~122可以是具备无线通信功能的各种无线通信设备,例如但不限于移动蜂窝电话、无绳电话、个人数字助理(personal digital assistant,PDA)、智能电话、笔记本电脑、平板电脑、无线数据卡、无线调制解调器(modulator demodulator,Modem)或者可穿戴设备如智能手表等。随着物联网(internet of things,IOT)技术和车联网(vehicle-to-everything,V2X)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。此外,终端设备108~122还可以称为移动台、移动设备、移动终端、无线终端、手持设备、客户端等。
网络设备102~106,和终端设备108~122均可配置有多根天线,以支持多入多出(multiple input multiple output,MIMO)技术。进一步的说,网络设备102~106和终端设备108~122既可以支持单用户MIMO(single-user mimo,SU-MIMO)技术,也可以支持多用户MIMO(multi-user mimo,MU-MIMO),其中MU-MIMO可以基于空分多址(space division multiple access,SDMA)技术来实现。由于配置有多根天线,网络设备102~106和终端设备108~122还可灵活支持单入单出(single input single output,SISO)技术、单入多出(single input multiple output,SIMO)和多入单出(multiple input single output,MISO)技术,以实现各种分集(例如但不限于发射分集和接收分集)和复用技术,其中分集技术可以包括例如但不限于发射分集(transmit diversity,TD)技术和接收分集(receive diversity,RD)技术,复用技术可以是空间复用(spatial multiplexing)技术。而且上述各种技术还可以包括多种实现方案,例如发射分集技术可以包括,例如但不限于,空时发射分集(space-timetransmit diversity,STTD)、空频发射分集(space-frequency transmit diversity,SFTD)、时间切换发射分集(time switched transmit diversity,TSTD)、频率切换发射分集(frequency switch transmit diversity,FSTD)、正交发射分集(orthogonal transmit diversity,OTD)、循环延迟分集(cyclic delay diversity,CDD)等分集方式,以及上述各种分集方式经过衍生、演进以及组合后获得的分集方式。例如,目前长期演进(long term evolution,LTE)标准便采用了空时块编码(space time block coding,STBC)、空频块编码(space frequency block coding,SFBC)和CDD等发射分集方式。上文以举例的方式对发射分集进行了的概括性的描述。本领域技术人员应当明白,除上述实例外,发射分集还包括其他多种实现方式。因此,上述介绍不应理解为对本发明技术方案的限制,本发明技术方案应理解为适用于各种可能的发射分集方案。
此外,网络设备102~106和终端设备108~122可采用各种无线通信技术进行通信,例如但不限于,时分多址(time division multiple access,TDMA)技术、频分多址(frequency division multiple  access,FDMA)技术、码分多址(code division multiple access,CDMA)技术、时分同步码分多址(time division-synchronous code division multiple access,TD-SCDMA)、正交频分多址(orthogonal fdma,OFDMA)技术、单载波频分多址(single carrier fdma,SC-FDMA)技术、空分多址(space division multiple access,SDMA)技术以及这些技术的演进及衍生技术等。上述无线通信技术作为无线接入技术(radio access technology,RAT)被众多无线通信标准所采纳,从而构建出了在今天广为人们所熟知的各种无线通信系统(或者网络),包括但不限于由802.22系列标准中定义的WiFi、全球互通微波存取(worldwide interoperability for microwave access,WiMAX)、长期演进(long term evolution,LTE)、LTE升级版(lte advanced,LTE-A)以及这些无线通信系统的演进系统,例如5G新空口技术(5G new radio,5G NR)等。如无特别说明,本发明实施例提供的技术方案可应用于上述各种无线通信技术和无线通信系统。此外,术语“系统”和“网络”可以相互替换。
应注意,图1所示的无线通信网络100仅用于举例,并非用于限制本发明的技术方案。本领域的技术人员应当明白,在具体实现过程中,无线通信网络100还可能包括其他设备,同时也可根据具体需要来配置网络设备和终端设备的数量。
下面对MIMO技术进行说明。多天线技术,即多输入多输出(multiple-input multiple-output,MIMO)技术指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量,显示出明显的优势、被视为下一代移动通信的核心技术。在新无线电通信(new radio,NR)中,网络设备与终端设备都可以通过MIMO技术提升通信性能。
为了便于理解终端设备与网络设备之间信号交互的过程,请参见图2,图2为本申请实施例中射频链路示意图。以终端设备向网络设备发送信号为例,终端设备在向网络设备发送信号,首先在基带生成基带信号后,会经过射频链路处理,其中,射频链路一般包含三级射频集成电路、功率放大器以及双工器/滤波器,基带信号经过处理后生成射频信号,然后射频信号经过天线发送出去。终端设备接收信号的过程与发送信号的过程类似,此处不再赘述。
在现有标准中,网络设备并不明确知道终端设备有多少射频链路,而是采用天线端口这一术语进行描述。比如当终端设备实际有两个发射射频链路的时候,该终端设备最多支持同时使用2个天线端口与网络设备进行上行通信。如果终端设备使用2个天线端口与网络设备进行通信,则在实际上每个射频链路会对应一个天线端口。如果终端设备使用1个天线端口与网络设备进行通信,终端设备可以使用任意一个上行射频链路对应到这个天线端口,也可以同时使用两个射频链路模拟成一个天线端口,这取决于终端设备的具体实现,对网络设备而言是透明的。网络设备只需要调度终端设备在哪个或哪些天线端口上发送数据即可。下面为了简化描述,将一个终端设备支持一个发射射频链路(transmit,T),两个接收射频链路(receive,R)称为1T2R。以此类推,一个终端设备支持2个发射射频链路和4个接收射频链路称为2T4R。通常情况下,终端设备中的接收射频链路数量会大于或等于发射射频链路数量,并且每一个接收射频链路与一根天线(即电磁波的辐射单元)连接,因此1T2R也可以理解为该终端设备中有一个发射射频链路与两根天线。以此类推,2T4R也可以理解为该终端设备中有两个发射射频链路与四根天线。该天线具有发射电磁波与接收电磁波的能力,因此本申请实施例中的天线、发射天线以及接收天线可视为同一事物。
终端设备通过上行信道向网络设备发送附加的(additional)上行信号,终端设备通过下行信道接收网络设备发送的附加的下行信号,为了保证数据传输的质量,NR中会对信道状态进行估计,这个过 程称为信道估计,网络设备根据信道估计结果选择合适的传输参数,该传输参数包括调制和编码方案索引值(modulation and coding scheme,MCS),预编码矩阵(precoding matrix,PM)等。
在NR中,终端设备具体可以向网络设备发送探测参考信号(sounding reference signal,SRS)进行上行信道的信道估计。终端设备通过接收网络设备发送的信道状态信息参考信号(channel state information reference signal,CSI-RS),并向网络设备发送信道状态信息报告(channel state information report,CSI report)进行下行信道的信道估计。或者在时分双工(time division duplexing,TDD)系统中终端设备向网络设备发送探测参考信号,网络设备通过上下行信道的互易性进行下行信道的信道估计。需要说明的是,终端设备还可以使用其它的参考信号进行信道估计,当使用其它的下行参考信号进行信道估计时,终端设备向网络设备发送对应的下行参考信号报告消息以完成信道估计,此处仅以SRS与CSI-RS为例进行说明,不作限定。下面对SRS与CSI-RS分别进行描述。
(1)、CSI-RS。
网络设备向终端设备配置CSI-RS资源,当网络设备需要获知终端设备下行信道的信道状态时,网络设备通过下行信道使用配置的CSI-RS资源向终端设备发送CSI-RS。终端设备接收该CSI-RS,并对该CSI-RS进行处理,以对当前下行信道进行状态估计。终端设备处理结束后生成信道状态信息报告(CSI-RS report),其中,信道状态信息报告中包括下列多种信息中的一种或多种,例如:秩指示(rank indication,RI)、预编码矩阵指示(precoding matrix indication,PMI)、信道质量指示(channel quality indication,CQI)、信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI)、同步信号/广播信道块资源指示(synchronous signal/physical broadcast channel block resource indicator,SS/PBCH BRI)、层指示(layer indicator,LI)以及层1参考信号接收功率(layer 1reference signal revceived power,L1-RSRP),需要说明的是,该层1参考信号接收功率所指的层1为物理层。
终端设备向网络设备发送该信道状态信息报告。以使得网络设备获知当前的下行信道的信道估计结果并调整传输参数。
其中,CSI-RS资源可分为下列三种:周期性CSI-RS资源、半持续性CSI-RS资源以及非周期性CSI-RS资源。下面分别进行描述。
周期性CSI-RS资源:网络设备通过RRC信令向终端设备配置周期性CSI-RS资源。当配置完成后,网络设备就会周期性发送CSI-RS,终端设备可以周期性接收CSI-RS。
半持续性CSI-RS资源:网络设备通过RRC信令向终端设备配置半持续性CSI-RS资源,此时网络设备不会立刻发送CSI-RS。网络设备还需要向终端设备发送用以激活(activate)该半持续性CSI-RS资源的DCI后,网络设备才会周期性发送该CSI-RS。当网络设备不再发送该CSI-RS时,网络设备还可以通过向终端设备发送去激活(deactivate)该半持续性CSI-RS资源的DCI,以去激活的终端设备中的该半持续性CSI-RS资源。
非周期性CSI-RS资源:网络设备通过RRC信令向终端设备配置非周期性CSI-RS资源,但是不会立刻发送CSI-RS。网络设备还需要向终端设备发送用以触发(trigger)该非周期性CSI-RS资源的DCI后,网络设备才会发送一次该CSI-RS。需要说明的是,网络设备在每一次发送CSI-RS之前,都需要向终端设备发送用以触发该非周期性CSI-RS资源的DCI。
(2)、SRS。
网络设备向终端设备配置SRS资源,终端设备使用SRS资源向网络设备发送SRS。网络设备接收该SRS后对其进行分析测量,以获知当前的上行信道的信道估计结果并调整传输参数。
其中,SRS资源可分为下列两种:周期性SRS资源以及非周期性SRS资源。下面分别进行描述。
周期性SRS资源:网络设备通过RRC信令向终端设备配置周期性SRS资源。当配置完成后,终端设备就会周期性发送SRS,网络设备可以周期性接收SRS。
非周期性SRS资源:网络设备通过RRC信令向终端设备配置非周期性SRS资源,但是终端设备不会立刻发送SRS。网络设备还需要向终端设备发送用以触发(trigger)该非周期性SRS资源的DCI后,终端设备才会发送一次该SRS。需要说明的是,终端设备在每一次发送SRS之前,网络设备都需要向终端设备发送用以触发该非周期性SRS资源的DCI。
需要说明的是,在时分双工(time division duplexing,TDD)系统中,由于终端设备上行传输与下行传输使用相同的频域资源,因此可以认为上行信道与下行信道的信道状态非常相似,该信道状态包括有功率衰减、相位移动等,这个特性称为信道互异性。利用TDD系统中的信道互异性,仅通过配置SRS资源并进行信道估计,即可获得上行信道与下行信道的信道估计结果。
网络设备向终端设备配置的SRS资源配置信息中,还指示了终端设备向网络设备发送SRS时所采用的发送天线端口数,终端设备按照SRS资源所指示的发送天线端口向网络设备发送SRS。下面对上述过程进行详细描述。请参阅图3,图3为本申请实施例中终端设备发射天线示意图。图3中该终端设备中配置有一个发射射频电路与四根发射天线,该发射射频电路可以与任意一根发射天线连接以向网络设备发送电磁波。当终端设备使用不同的发射天线向网络设备发送电磁波时,不同的发射天线与网络设备之间的信道状态有可能是不同的,这种情况出现的原因是例如:当用户握持终端设备时,有可能遮挡住某一根发射天线,造成该发射天线发送至网络设备的电磁波衰减较大,影响通信质量。因此为了提升通信质量,引入了天线轮发机制,具体为:终端设备中射频电路在不同的发射天线之间进行切换,终端设备连续发送多个SRS,这些SRS通过不同的发射天线向网络设备发送。网络设备接收到这些SRS之后,可根据SRS的信号质量,确定哪一根发射天线与网络设备之间的信道状态较好,网络设备在调度终端设备接收下行数据时,将信道状态较好的天线优先级升高,以使得终端设备优先使用信道状态较好的天线接收下行数据。
由于不同的终端设备硬件配置不相同,基于硬件配置,终端设备的天线轮发能力也是不一样的。在NR中规定SRS天线轮发能力如下:1T2R、1T4R、2T4R、1T4R-2T4R、1T1R、2T2R或4T4T等。下面举例说明,1T2R为终端设备中有一个发射射频链路与两根天线,此时终端设备每次可以使用单端口发送一个SRS,完成轮发需要发送两次,即第一次发送SRS使用第一射频链路与第一天线,第二次发送SRS使用第一射频链路与第二天线。2T4R为终端设备有两个发射射频链路与四根天线,此时终端设备每次可以使用双端口发送一个SRS,完成轮发需要发送两次,即第一次发送SRS使用第一射频链路与第二射频拦路以及第一天线与第二天线,第二次发送SRS使用第一射频链路与第二射频链路以及第三天线与第四天线。1T4R-2T4R为该终端设备既支持1T4R的SRS天线轮发也支持2T4R的SRS天线轮发。
通过引入MIMO技术以及信道估计,终端设备在多天线的情况下也可以保障与网络设备的通信质量,同时,网络设备与终端设备的天线数越多,通信性能越好。但是随着天线数的增加,终端设备的功耗也随之增大,同时大功耗带来了发热量大的问题,发热量大影响终端设备的性能。因此出于降低终端设备功耗的考虑,现有方案中可通过减少天线数即调整天线参数,以达到降低功耗的目的。但是调整天线参数后,终端设备可能会遇到两个问题,第一个问题是调整天线参数前得到的信道估计结果,与调整天线参数后实际传输数据所使用的信道不匹配。第二个问题是调整天线参数后实际可用天线端口数,与SRS资源所指示的发送SRS时所采用的发送天线端口数不匹配,该SRS资源为调整天线参数前所配置的。下面对这两个问题举例说明。
第一个问题:终端设备为1T4R为例,当终端设备在调整天线参数前,向网络设备上报终端设备可 以使用四根天线接收CSI-RS。因此,在调整天线参数前,网络设备获取到的信道估计结果是基于四根天线建立的信道。当终端设备调整天线参数后,例如关闭其中的任意两根天线,此时终端设备仅可以使用两根天线接收CSI-RS,而网络设备仍然依照四根天线所支持的4层(layer)数据进行传输调度,因此,终端设备无法正确接收网络设备发送的数据,一根天线所对应的子信道内传输的数据称为1层数据,该1层数据与其它子信道内传输的数据互不干扰,这里的4层数据为四根天线所对应的四个子信道内传输的数据。
另外,在调整天线参数前,终端设备可以采用分集增益,从而支持较高的调制与编码策略(modulation and coding scheme,MCS)等级。分集增益为终端设备使用一根以上的天线接收相同的一份数据,以提升数据传输的可靠性。例如1T4R的终端设备,使用第一天线与第二天线接收第一数据,第三天线与第四天线接收第二数据,此时终端设备相当于使用多根天线传输相同的一份数据。当终端设备采用分集传输时,调整天线参数后,即使网络设备不是按照4层数据进行传输调度,此时网络设备调度数据所使用的信道估计结果,还是终端设备使用四根天线时的信道估计结果,与当前两根天线所对应的两个子信道不匹配,增加了传输失败的概率。
当终端设备向网络设备发送SRS以完成上行信道估计时,终端设备关闭了哪些天线对于网络设备来说是未知的,因此,网络设备并不知道终端设备关闭的天线所对应的端口,网络设备同样无法知道当前的信道状态。
第二个问题:终端设备为1T2R为例,调整天线参数之前,终端设备向网络设备上报其上行发送能力为2天线,网络设备获知终端设备的上行发送能力后为终端设备配置2端口和/或1端口的SRS资源,以使得终端设备根据该SRS资源,向网络设备通过2端口和/或1端口发送SRS。调整天线参数后,终端设备关闭其中任意一根天线,此时终端设备无法使用2端口发送SRS。
基于上述两个问题,本申请实施例提出了一种方案,在终端设备调整天线参数后,提升终端设备与网络设备之间数据传输的成功率,以及在终端设备调整天线参数后,解决终端设备如何选择天线端口用以发送SRS的问题。
下面结合附图对本申请实施例进行描述,请参阅图4,图4为本申请实施例中天线参数调整的方法的一种实施例示意图,本申请实施例提供的一种天线参数调整的方法包括;
401、网络设备向终端设备发送第一配置信息。
本实施例中,网络设备向终端设备发送第一配置信息,该第一配置信息用于在终端设备中配置参考信号资源。当第一配置信息在终端设备中配置的是上行参考信号资源时,终端设备可以使用配置的上行参考信号资源向网络设备发送附加的上行参考信号。当第一配置信息在终端设备中配置的是下行参考信号资源时,终端设备可以使用配置的下行参考信号资源接受网络设备发送附加的下行参考信号。需要说明的是,网络设备向终端设备发送的第一配置信息,还可以用于在终端设备中同时配置上行参考信号资源与下行参考信号资源,以使得终端设备可以向网络设备发送附加的上行参考信号,也可以接收网络设备发送的附加的下行参考信号。附加的上行参考信号用于上行信道估计,附加的下行参考信号用于下行信道估计。
其中,当第一配置信息配置的上行参考信号资源为SRS资源时,终端设备可以使用该SRS资源向网络设备发送SRS。当第一配置信息配置的是下行参考信号资源为CSI-RS资源时,终端设备可以使用该CSI-RS资源接收网络设备发送的CSI-RS。
402、网络设备向终端设备发送第一信令。
本实施例中,网络设备向终端设备发送第一信令,第一信令中包含第一指示信息和第二指示信息, 第一指示信息用于指示终端设备调整天线参数,第二指示信息用于指示终端设备发送或接收附加的参考信号,附加的参考信号用于在天线参数调整后进行信道估计。
具体的,第一指示信息指示终端设备调整接收天线参数,第二指示信息指示终端设备接收附加的下行参考信号;或者第一指示信息指示终端设备调整发射天线参数,第二指示信息指示终端设备发送附加的上行参考信号;或者第一指示信息指示终端设备调整接收天线参数且调整发射天线参数,第二指示信息指示终端设备接收附加的下行参考信号且发送附加的上行参考信号。
当第一指示信息指示终端设备调整接收天线参数,第二指示信息指示终端设备接收附加的下行参考信号时,执行完步骤403后,执行步骤405,不执行步骤404;当第一指示信息指示终端设备调整发射天线参数,第二指示信息指示终端设备发送附加的上行参考信号时,执行完步骤403后,执行步骤404,不执行步骤405;当第一指示信息指示终端设备调整接收天线参数且调整发射天线参数,第二指示信息指示终端设备接收附加的下行参考信号且发送附加的上行参考信号时,执行完步骤403后,需要执行步骤404以及步骤405,此时不对步骤404以及步骤405的执行顺序进行限定。例如:既可以先执行步骤404,再执行步骤405。也可以先执行步骤405,再执行步骤404。还可以同时执行步骤404以及步骤405。
当第一信令中仅包含第一指示信息,不包含第二指示信息时,执行步骤403后不再执行步骤404和/或步骤405。
第一信令可以承载于下行控制信息(downlink control information,DCI)、参考信号(reference signals,RS)、媒体访问控制地址控制元素(media access control control element,MAC CE)或无线资源控制(radio resource control,RRC)中的任意一种。
需要说明的是,当第一信令承载于MAC CE或RRC中时,在调整天线参数之前,终端设备还需要向网络设备发送混合自动重传请求确认信息(hybrid automatic repeat request-acknowledge,HARQ-ACK),网络设备根据该HARQ-ACK会向终端设备反馈一个HARQ-ACK的确认信息。当终端设备接收到该HARQ-ACK的确认信息后,终端设备再根据第一指示信息调整天线参数。
403、终端设备根据第一信令调整天线参数。
本实施例中,终端设备接收到第一信令后,根据第一指示信息调整天线参数。当第一信令中的第一指示信息为指示调整接收天线参数时,终端设备对应的开启或关闭接收天线端口。当第一信令中的第一指示信息为指示调整发射天线参数时,终端设备对应的开启或关闭发射天线端口。
第一指示信息用于指示调整发射天线参数存在多种方案,下面进行举例描述。
例如:
一、当第一指示信息具体用于指示终端设备的最大发射天线数为N,其中,N为正整数,在步骤402之前,终端设备中若配置的第一上行参考信号资源,其附加的上行参考信号的发射天线端口数为M,其中,M为正整数,M大于N。若终端设备还配置有发射天线端口数为K的第二上行参考信号资源时,K为正整数,K小于M,终端设备使用第二上行参考信号资源发送上行参考信号且不使用第一上行参考信号资源发送上行信号。
二、当第一指示信息具体用于指示终端设备的最大发射天线数为N,其中,N为正整数,在步骤402之前,终端设备中仅配置的第一上行参考信号资源,其附加的上行参考信号的发射天线端口数为M,其中,M为正整数,M大于N。此时终端设备使用第一上行参考信号资源中M个中的任意N个发射天线端口数发送上行信号。
三、当第一指示信息具体用于指示终端设备的最大发射天线数为N,其中,N为正整数,在步骤402之前,终端设备中若配置的第一上行参考信号资源,其附加的上行参考信号的发射天线端口数为M,其 中,M为正整数,M大于N。则终端设备确定是否还配置有发射天线端口数小于或等于N的第三上行参考信号资源,若配置第三上行参考信号资源,则终端设备使用第三上行参考信号资源发送附加的上行参考信号;若没有配置第三上行参考信号资源,则终端设备使用第一上行参考信号资源发送附加的上行参考信号,其中终端设备使用第一上行参考信号资源中任意M个中的N个发射天线端口发送附加的上行参考信号,或者终端设备关闭第一上行参考信号资源中的大于N的发射天线端口后,使用第一上行参考信号资源发送附加的上行参考信号。
404、终端设备向网络设备发送附加的参考信号。
本实施例中,终端设备根据第一指示信息在调整了发射天线参数后,终端设备向网络设备发送附加的上行参考信号,例如SRS。根据第一信令承载的不同,终端设备向网络设备发送附加的上行参考信号所使用的时域资源不一致。
例如:当第一信令承载于DCI或RS中,终端设备在接收到第一信令后,即可向网络设备发送附加的上行参考信号,此时发送附加的上行参考信号所使用的时域资源称为第一时域资源。
当第一信令承载于MAC CE或RRC中,终端设备还需要接收HARQ-ACK的确认信息,该HARQ-ACK的确认信息为网络设备根据终端设备发送的HARQ-ACK生成。在终端设备接收HARQ-ACK的确认信息之后,终端设备向网络设备发送附加的上行参考信号,此时发送附加的上行参考信号所使用的时域资源称为第二时域资源。
405、网络设备向终端设备发送附加的参考信号。
本实施例中,终端设备根据第一指示信息在调整了接收天线参数后,网络设备向终端设备发送附加的下行参考信号,例如CSI-RS。终端设备在接收到附加的下行参考信号之后,终端设备根据附加的下行参考信号确定下行参考信号报告消息。终端设备通过物理上行控制信道(physical uplink control channel,PUCCH)或物理上行共享信道(physical uplink shared channel,PUSCH)向网络设备发送下行参考信号报告消息,其中,下行参考信号报告消息包含下行信道估计的结果,当附加的下行参考信号为CSI-RS时,该下行参考信号报告消息为信道状态信息报告(CSI-RS report)。
具体的,终端设备接收附加的下行参考信号之后,在第一个PUCCH或第一个PUSCH使用的时频资源中,通过第一个PUCCH或第一个PUSCH向网络设备发送下行参考信号报告消息;或者,终端设备接收下行参考信号之后,预先配置的PUCCH或预先配置的PUSCH的时频资源中,通过预先配置的PUCCH或预先配置的PUSCH向网络设备发送下行参考信号报告消息,该预先配置的PUCCH或该预先配置的PUSCH为网络设备向终端设备预先配置的信道;或者,第一信令还用于指示PUCCH或PUSCH的资源,此时第一信令中包含PUCCH或PUSCH的资源的索引值(index),终端设备接收下行参考信号之后,通过第一信令所指示的PUCCH或所指示的PUSCH的资源,向网络设备发送下行参考信号报告消息。
本申请实施例中,网络设备通过第一信令指示终端设备调整天线参数,该第一信令还用于指示终端设备进行信道估计,以便网络设备及时获取信道估计结果,根据该信道估计结果进行数据传输,降低传输失败的概率。
为了使本技术领域的人员更好地理解本申请技术方案,下面将结合本申请实施例中的附图,对本申请技术方案做进一步的说明。为了便于理解,本申请实施例中附加的上行参考信号以SRS为例,附加的下行参考信号以CSI-RS为例,需要说明的是,附加的上行参考信号以及附加的下行参考信号还可以通过其它的参考信号、数据或控制指令等载体实现相同的技术效果,此处不作限定。由第一信令触发的终端设备接收CSI-RS以及终端设备向网络设备发送CSI-RS报告信息的过程属于非周期性CSI-RS传输。由第一信令触发的终端设备向网络设备发送SRS的过程属于非周期性SRS传输。
请参阅图5a,图5a为本申请实施例中天线参数调整的方法的一种流程示意图。
本实施例中,图5a所示意的终端设备中配置有4根接收天线。横坐标的单位为时间,图中的方块为当前动作所使用的时域资源。终端设备中预先配置周期性或半持续性CSI-RS资源,如图所示,从左往右数,第1方块(垂直网格填充)、第2方块(垂直网格填充)、第5方块(垂直网格填充)以及第6方块(垂直网格填充)为终端设备使用周期性或半持续性CSI-RS资源接收CSI-RS所使用的时域资源。从左往右数,第3方块(横线填充)为终端设备接收第一信令所使用的时域资源,该第一信令中的第一指示信息用于指示终端设备将接收天线数从4根接收天线,调整为2根接收天线,即关闭其中任意2根接收天线。终端设备根据该第一指示信息调整天线参数,在图5a中纵向实线所指示的时刻,终端设备完成从4根接收天线调整至2根接收天线的调整天线参数过程。在从左往右数第4方块(竖线填充)所指示的时域资源中,终端设备根据该第一信令中的第二指示信息,使用预先配置的非周期性CSI-RS资源,接收网络设备发送的CSI-RS。终端设备根据接收到的该CSI-RS估计当前信道状态。终端设备完成信道估计后,向网络设备发送CSI报告消息,发送该CSI报告消息所使用的时域资源位置,具体有下面这几种情况:
具体的,终端设备接收非周期性CSI-RS之后,使用第一个PUCCH或第一个PUSCH的时频资源,通过第一个PUCCH或第一个PUSCH向网络设备发送CSI报告消息;或者,终端设备接收非周期性CSI-RS之后,使用网络设备预先配置的PUCCH或预先配置的PUSCH的时频资源,通过预先配置的PUCCH或预先配置的PUSCH向网络设备发送CSI报告消息;或者,第一信令还用于指示PUCCH或PUSCH的资源,此时第一信令中包含PUCCH或PUSCH的资源的索引值(index),终端设备接收非周期性CSI-RS之后,通过第一信令所指示的PUCCH或所指示的PUSCH的资源,向网络设备发送CSI报告消息。
本申请实施例中,现有技术中,终端设备在调整天线参数后的第一个周期性CSI-RS或者已经被激活的半持续性CSI-RS(即图5a中从左向右数第5方块)所使用的时域资源内才能够接收CSI-RS并测量信道,这样会造成比较大的延迟。而在纵向实线指示的调整天线参数所使用的时刻至第5方块所使用的时域资源之间,网络设备只能利用终端设备在调整天线参数之前,使用4接收天线得到的信道估计结果进行传输调度,与终端设备当前信道不匹配(2接收天线),可能导致传输失败。而本申请技术方案引入的,由第一信令触发的非周期性CSI-RS,使得终端设备可以快速估计信道,并且进行反馈。这样网络设备就可以快速获取信道状态,以便于调整传输参数。
请参阅图5b,图5b为本申请实施例中天线参数调整的方法的另一种流程示意图。
本实施例中,图5b所示意的终端设备中配置有2根发射天线。横坐标的单位为时间,图中的方块为当前动作所使用的时域资源。终端设备中预先配置周期性SRS资源,如图所示,从左往右数,第1方块(垂直网格填充)、第2方块(垂直网格填充)、第5方块(垂直网格填充)以及第6方块(垂直网格填充)为终端设备使用周期性发送SRS所使用的时域资源。从左往右数,第3方块(横线填充)为终端设备接收第一信令所使用的时域资源,该第一信令中的第一指示信息用于指示终端设备将发射天线数从2根发射天线,调整为1根发射天线,即关闭其中任意1根发射天线。终端设备根据该第一指示信息调整天线参数,在图5b中纵向实线所指示的时刻,终端设备完成从2根发射天线调整至1根发射天线的调整天线参数过程。在从左往右数第4方块(竖线填充)所指示的时域资源中,终端设备根据该第一信令中的第二指示信息,使用预先配置的非周期性SRS资源,向网络设备发送SRS。网络设备根据接收到的该SRS估计当前信道状态。
本申请实施例中,现有技术中,终端设备在调整天线参数后的第一个周期性SRS(即图5b中从左向右数第5方块)所使用的时域资源内才能够发送SRS并测量信道,这样会造成比较大的延迟。而在纵 向实线指示的调整天线参数所使用的时刻至第5方块所使用的时域资源之间,网络设备只能利用终端设备在调整天线参数之前,使用2发射天线得到的信道估计结果进行传输调度,与终端设备当前信道不匹配(1发射天线),可能导致传输失败。而本申请技术方案引入的,由第一信令触发的非周期性SRS,使得终端设备可以快速发送SRS,这样网络设备就可以快速获取信道状态,以便于调整传输参数。
上文中提到,第一信令可以承载于下行控制信息(downlink control information,DCI)、参考信号(reference signals,RS)、媒体访问控制地址控制元素(media access control control element,MAC CE)或无线资源控制(radio resource control,RRC)中的任意一种。对于第一信令所承载的信令不同,其触发非周期性CSI-RS传输或非周期性SRS传输所使用的时域资源不同,下面结合附图详细说明。
请参阅图6a以及图6b,图6a为本申请实施例中天线参数调整的方法的另一种流程示意图,图6b为本申请实施例中天线参数调整的方法的另一种流程示意图。本实施例中,当第一信令承载于DCI或RS这类物理层信令时,终端设备进行非周期性CSI-RS传输和/或非周期性SRS传输所使用的时域资源,均在终端设备接收第一信令之后,并且在终端设备调整完天线参数之后,该时域资源称为第一时域资源。
当第一信令承载于MAC CE或RRC这类高层信令时,请参阅图7a以及图7b,图7a为本申请实施例中天线参数调整的方法的另一种流程示意图,图7b为本申请实施例中天线参数调整的方法的另一种流程示意图。
本实施例中,由于第一信令承载于MAC CE或RRC这类高层信令,网络设备通过物理下行共享信道(physical downlink shared channel,PDSCH)向终端设备发送。终端设备首先需要在物理层中对PDSCH进行解码。当终端设备对PDSCH解码成功后,终端设备向网络设备发送HARQ-ACK,用以通知网络设备终端设备对PDSCH解码成功。网络设备对接收到HARQ-ACK后,向终端设备反馈HARQ-ACK的确认信息,该HARQ-ACK的确认信息还可以称为HARQ反馈。终端设备接收到HARQ-ACK的确认信息之后,还需要对PDSCH解码成功后获得的数据包传递至终端设备的高层中做进一步解析。进一步解析成功后终端设备才可以获知该数据包中第一信令的正确内容。终端设备进行非周期性CSI-RS传输和/或非周期性SRS传输所使用的时域资源,均在终端设备接收HARQ反馈之后,并且在终端设备调整完天线参数之后,该时域资源称为第二时域资源。
因此如图7a以及图7b所示,图中从左向右数第3方块(竖线填充)所对应的时域资源,为终端设备进行非周期性CSI-RS传输和/或非周期性SRS传输所使用的时域资源。第2方块(菱形网格填充)为终端设备接收HARQ-ACK的确认信息所使用的时域资源。第3方块与第2方块之间的时间间隔称为第一时间间隔。当第一信令承载于MAC CE中时,该第一时间间隔可以为3毫秒。需要说明的是,该第一时间间隔根据终端设备实际解析能力、终端设备调整天线参数的速率以及第一信令所承载的信令类型决定,此处不作限定。
本申请实施例中,当第一信令承载于DCI或RS这类物理层信令时,第一信令所触发的非周期性CSI-RS传输和/或非周期性SRS传输所使用的第一时域资源,在终端设备接收第一信令所使用的时域资源之后。当第一信令承载于MAC CE或RRC这类高层信令时,第一信令所触发的非周期性CSI-RS传输和/或非周期性SRS传输所使用的第二时域资源,在终端设备接收网络设备发送的HARQ-ACK的确认信息之后。通过限定非周期性CSI-RS传输和/或非周期性SRS传输所使用的时域资源,终端设备可以正确获知第一信令的内容,并且在调整天线参数后进行信道估计。保证了网络设备获取正确的信道估计结果,降低传输失败的概率。
上文中提到,第一指示信息用于指示调整发射天线参数存在多种方案,为了便于理解,下面结合附 图进行说明。
请参阅图8,图8为本申请实施例中天线参数调整的方法的另一种流程示意图。
本实施例中,在调整发射天线参数之前,终端设备使用2发射天线发送上行信号。从左到右,每一个方块为发送一次SRS所使用的时域资源。图8所示的终端设备中配置有两组周期性SRS资源。第1方块(横线填充)与第3方块(横线填充)中发送SRS所使用的周期性SRS资源为双端口SRS资源,终端设备在第1方块与第3方块所对应的时域资源中,使用两个发射天线端口发送SRS。第2方块(竖线填充)中发送SRS所使用的周期性SRS资源为单端口SRS资源,终端设备在第2方块所对应的时域资源中,使用一个发射天线端口发送SRS。图8中纵向虚线为终端设备调整发射天线参数时所对应的时刻,当终端设备调整发射天线参数后,即终端设备的最大发射天线端口数从双端口切换为单端口后,终端设备使用单端口发送SRS。若发射天线参数未作调整,则从左往右数第5方块(无填充)与第7方块(无填充)所对应的时域资源中,终端设备使用双端口SRS资源发送SRS。而调整发射天线参数后,第5方块与第7方块所对应的时域资源中终端设备不再使用双端口SRS资源发送SRS,仅保留单端口SRS资源发送SRS,即第4方块与第6方块所对应的时域资源中,终端设备使用单端口SRS资源发送SRS。
本申请实施例中,终端设备在调整发射天线参数后,由2发射天线调整至1发射天线,终端设备的最大发射天线数被限制为1发射天线。若终端设备中还预配置有发射天线端口数小于或等于最大发射天线数的SRS资源时,即单端口SRS资源时,终端设备仅使用该单端口SRS资源发送SRS,进一步降低终端设备的功耗。同时,空闲出双端口SRS资源所使用的时域资源。
请参阅图9,图9为本申请实施例中天线参数调整的方法的另一种流程示意图。
本实施例中,在调整发射天线参数之前,终端设备使用2发射天线发送上行信号。从左到右,每一个方块为发送一次SRS所使用的时域资源。图9所示的终端设备中配置有一组周期性SRS资源。第1方块(横线填充)与第2方块(横线填充)中发送SRS所使用的周期性SRS资源为双端口SRS资源,终端设备在第1方块与第2方块所对应的时域资源中,使用两个发射天线端口发送SRS。图9中纵向虚线为终端设备调整发射天线参数时所对应的时刻,当终端设备调整发射天线参数后,即终端设备的最大发射天线端口数从双端口切换为单端口后,终端设备选择当前双端口SRS资源中的任一端口发送SRS,并关闭剩余的一个端口。具体的,可以关闭端口号较大的端口,保留端口号较小的端口;或者关闭端口号较小的端口,保留端口号较大的端口,此处不作限定。
网络设备为终端设备配置的SRS是用于辅助天线选择的。比如终端设备向网络设备上报自己支持2T4R的能力,此时网络设备向终端设备配置相应的SRS资源如图9所示,第1方块以及第2方块分别为一个双端口SRS资源,经过两次发送可以完成一次轮发。当终端设备上行发送最大端口数由双端口切换为单端口后,在之前配置的时域资源上,只能采用单端口发射SRS。此时终端设备的能力退化为1T2R,即每次发送一个单端口SRS,经过两次发送可以完成一次轮发。
本申请实施例中,终端设备在调整发射天线参数后,由2发射天线调整至1发射天线,终端设备的最大发射天线数被限制为1发射天线。若终端设备中仅配置有一组发射天线端口数大于最大发射天线数的SRS资源时,即双端口SRS资源时,终端设备使用该双端口SRS资源中的任一端口发送SRS,并关闭剩余的另一个端口,进一步降低终端设备的功耗。
接下来,请参阅图10所示,本申请实施例还提供一种终端设备500,包括:
收发模块501,用于接收网络设备发送的第一信令,其中,所述第一信令包含第一指示信息和第二指示信息,所述第一指示信息用于指示所述终端设备调整天线参数,所述第二指示信息用于指示所述终端设备发送或接收附加的参考信号,所述附加的参考信号用于在所述天线参数调整后进行信道估计;
调整模块502,用于根据所述第一指示信息调整所述天线参数。
在本申请的一些实施例中,所述第一指示信息指示所述终端设备调整接收天线参数,所述第二指示信息指示所述终端设备接收附加的下行参考信号;或者
所述第一指示信息指示所述终端设备调整发射天线参数,所述第二指示信息指示所述终端设备发送附加的上行参考信号;或者
所述第一指示信息指示所述终端设备调整所述接收天线参数且调整所述发射天线参数,所述第二指示信息指示所述终端设备接收所述附加的下行参考信号且发送所述附加的上行参考信号,所述附加的上行参考信号用于上行信道估计,所述附加的下行参考信号用于下行信道估计。
在本申请的一些实施例中,收发模块501,还用于接收所述网络设备发送的第一配置信息,其中,所述第一配置信息用于配置参考信号资源;
收发模块501,还用于使用所述参考信号资源发送或接收所述附加的参考信号。
在本申请的一些实施例中,所述第一信令承载于下行控制信息DCI、参考信号RS、媒体访问控制地址控制元素MAC CE或无线资源控制RRC中的任意一种。
在本申请的一些实施例中,所述第一信令承载于所述DCI或所述RS,
收发模块501,还用于在第一时域资源发送或接收所述附加的参考信号,所述第一时域资源在所述终端设备接收所述第一信令之后。
在本申请的一些实施例中,所述第一信令承载于所述MAC CE或所述RRC,
收发模块501,还用于向所述网络设备发送混合自动重传请求确认信息HARQ-ACK;
收发模块501,还用于接收所述网络设备发送的所述HARQ-ACK的确认信息。
在本申请的一些实施例中,所述第一信令承载于所述MAC CE或所述RRC,
收发模块501,还用于在第二时域资源发送或接收所述附加的参考信号,所述第二时域资源在所述终端设备接收所述HARQ-ACK的确认信息之后。
在本申请的一些实施例中,所述第一信令承载于所述MAC CE,
收发模块501,还用于发送或接收所述附加的参考信号,包括:
收发模块501,还用于在所述第二时域资源发送或接收所述附加的参考信号,所述第二时域资源与所述终端设备接收所述HARQ-ACK的确认信息使用的时域资源间隔大于0。
在本申请的一些实施例中,终端设备500还包括:确定模块503,
确定模块503,用于根据所述附加的下行参考信号确定下行参考信号报告消息;
收发模块501,还用于向所述网络设备发送所述下行参考信号报告消息,其中,所述下行参考信号报告消息包含所述下行信道估计的结果。
在本申请的一些实施例中,收发模块501,具体用于通过物理上行控制信道PUCCH或物理上行共享信道PUSCH向所述网络设备发送所述下行参考信号报告消息。
在本申请的一些实施例中,收发模块501,具体用于在接收所述附加的下行参考信号之后,在第一个PUCCH或第一个PUSCH使用的时频资源中,通过所述第一个PUCCH或所述第一个PUSCH向所述网络设备发送所述下行参考信号报告消息;或者,
在接收所述下行参考信号之后,预先配置的PUCCH或预先配置的PUSCH的时频资源中,通过所述预先配置的PUCCH或所述预先配置的PUSCH向所述网络设备发送所述下行参考信号报告消息;或者,
所述第一信令还用于指示PUCCH或PUSCH的资源时,在接收所述下行参考信号之后,通过所述第一信令所指示的PUCCH或所指示的PUSCH的资源,向所述网络设备发送所述下行参考信号报告消息。
在本申请的一些实施例中,所述下行参考信号为信道状态信息参考信号CSI-RS,所述上行参考信号为探测参考信号SRS。
需要说明的是,上述装置各模块之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
接下来,请参阅图11所示,本申请实施例还提供一种网络设备600,包括:
收发模块601,用于向终端设备发送第一信令,其中,所述第一信令包含第一指示信息和第二指示信息,所述第一指示信息用于指示所述终端设备调整天线参数,所述第二指示信息用于指示所述终端设备发送或接收附加的参考信号,所述附加的参考信号用于在所述天线参数调整后进行信道估计;
收发模块601,还用于所述网络设备接收或发送所述附加的参考信号。
在本申请的一些实施例中,所述第一指示信息指示所述终端设备调整接收天线参数,所述第二指示信息指示所述终端设备接收附加的下行参考信号;或者
所述第一指示信息指示所述终端设备调整发射天线参数,所述第二指示信息指示所述终端设备发送附加的上行参考信号;或者
所述第一指示信息指示所述终端设备调整所述接收天线参数且所述调整发射天线参数,所述第二指示信息指示所述终端设备接收所述附加的下行参考信号且发送所述附加的上行参考信号,所述附加的上行参考信号用于上行信道估计,所述附加的下行参考信号用于下行信道估计。
在本申请的一些实施例中,收发模块601,还用于向所述终端设备发送第一配置信息,其中,所述第一配置信息用于配置参考信号资源,以使得所述终端设备使用所述参考信号资源发送或接收所述附加的参考信号。
在本申请的一些实施例中,所述第一信令承载于下行控制信息DCI、参考信号RS、媒体访问控制地址控制元素MAC CE或无线资源控制RRC中的任意一种
在本申请的一些实施例中,所述第一信令承载于所述DCI或所述RS,
收发模块601,还用于在第一时域资源接收或发送的所述附加的参考信号,所述第一时域资源在所述终端设备接收所述第一信令之后。
在本申请的一些实施例中,所述第一信令承载于所述MAC CE或所述RRC,
收发模块601,还用于接收所述终端设备发送的混合自动重传请求确认信息HARQ-ACK;
收发模块601,还用于向所述终端设备发送HARQ-ACK的确认信息。
在本申请的一些实施例中,所述第一信令承载于所述MAC CE或所述RRC,
收发模块601,具体用于在第二时域资源接收或发送所述附加的参考信号,所述第二时域资源在所述终端设备接收所述HARQ-ACK的确认信息之后。
在本申请的一些实施例中,所述第一信令承载于所述MAC CE,
收发模块601,具体用于在所述第二时域资源接收或发送所述附加的参考信号,所述第二时域资源与所述终端设备接收所述HARQ-ACK的确认信息使用的时域资源间隔大于0。
在本申请的一些实施例中,收发模块601,还用于接收下行参考信号报告消息,其中,所述下行参考信号报告消息由所述终端设备根据所述附加的下行参考信号确定,所述下行参考信号报告消息包含所述下行信道估计的结果。
在本申请的一些实施例中,收发模块601,具体用于通过物理上行控制信道PUCCH或物理上行共享 信道PUSCH接收所述终端设备发送的所述下行参考信号报告消息。
在本申请的一些实施例中,收发模块601,具体用于所述网络设备向所述终端设备发送所述附加的下行参考信号之后,在第一个PUCCH或第一个PUSCH使用的时频资源中,通过所述第一个PUCCH或所述第一个PUSCH接收所述终端设备发送的所述下行参考信号报告消息;或者,
向所述终端设备发送所述附加的下行参考信号之后,预先配置的PUCCH或预先配置的PUSCH的时频资源中,通过所述预先配置的PUCCH或所述预先配置的PUSCH接收所述终端设备发送的所述下行参考信号报告消息;或者,
当所述第一信令还用于指示PUCCH或PUSCH的资源时,向所述终端设备发送所述附加的下行参考信号之后,根据所述第一信令通过所指示的PUCCH或所指示的PUSCH的资源,所述网络设备接收所述终端设备发送的所述下行参考信号报告消息。
在本申请的一些实施例中,所述下行参考信号为信道状态信息参考信号CSI-RS,所述上行参考信号为探测参考信号SRS。
需要说明的是,上述装置各模块之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
接下来,请参阅图12所示,本申请实施例还提供一种终端设备700,包括:
接收模块701,用于接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备调整发射天线参数;
调整模块702,用于根据所述第一指示信息调整发射天线参数。
在本申请的一些实施例中,所述第一指示信息具体用于指示所述终端设备的最大发射天线数为N,其中,所述N为正整数,
接收模块701,还用于接收所述网络设备发送的第一配置信息,其中,所述第一配置信息用于配置第一上行参考信号资源,所述终端设备使用所述上行参考信号资源发送所述上行参考信号,所述上行参考信号用于上行信道估计,所述上行参考信号的发射天线端口数为M,其中,所述M为正整数,所述M大于所述N。
在本申请的一些实施例中,发送模块703,用于当所述终端设备还配置有发射端口数为K的第二上行参考信号资源时,所述终端设备使用所述第二上行参考信号资源发送所述上行参考信号且不使用所述第一上行参考信号资源发送所述上行信号,所述K为正整数,所述K小于所述M。
在本申请的一些实施例中,发送模块703,还用于使用所述第一上行参考信号资源中任意所述M个中的所述N个所述发射天线端口发送所述上行参考信号。
在本申请的一些实施例中,终端设备700还包括:
确定模块704,用于确定所述终端设备是否还配置有所述发射天线端口数小于或等于所述N的第三上行参考信号资源;
发送模块703,还用于若配置所述第三上行参考信号资源,则使用所述第三上行参考信号资源发送所述上行参考信号;
发送模块703,具体用于若没有配置所述第三上行参考信号资源,则使用所述第一上行参考信号资源发送所述上行参考信号,其中所述终端设备使用所述第一上行参考信号资源中任意所述M个中的所述N个所述发射天线端口发送所述上行参考信号,
或者所述终端设备关闭所述第一上行参考信号资源中的大于所述N的所述发射天线端口后,使用所 述第一上行参考信号资源发送所述上行参考信号。
需要说明的是,上述装置各模块之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
接下来,请参阅图13所示,本申请实施例还提供一种网络设备800,包括:
发送模块801,用于向终端设备发送第一指示信息,所述第一指示信息用于指示所述终端设备调整发射天线参数。
在本申请的一些实施例中,所述第一指示信息具体用于指示所述终端设备的最大发射天线数为N,其中,所述N为正整数,
发送模块801,还用于向所述终端设备发送第一配置信息,其中,所述第一配置信息用于配置第一上行参考信号资源,以使得所述终端设备使用所述上行参考信号资源发送所述上行参考信号,所述上行参考信号用于上行信道估计,所述上行参考信号的发射天线端口数为M,其中,所述M为正整数,所述M大于所述N。
在本申请的一些实施例中,网络设备800还包括接收模块802,
接收模块802,用于当所述终端设备还配置有发射端口数为K的第二上行参考信号资源时,所述网络设备接收所述终端设备使用所述第二上行参考信号资源发送的所述上行参考信号,所述K为正整数,所述K小于所述M。
在本申请的一些实施例中,接收模块802,还用于接收所述终端设备使用所述第一上行参考信号资源中任意所述M个中的所述N个所述发射天线端口发送的所述上行参考信号。
在本申请的一些实施例中,网络设备800还包括确定模块803,
确定模块803,用于所述终端设备确定所述终端设备中是否还配置有所述发射天线端口数小于或等于所述N的第三上行参考信号资源;
接收模块802,还用于若配置所述第三上行参考信号资源,则接收所述终端设备使用所述第三上行参考信号资源发送的所述上行参考信号;
接收模块802,还用于若没有配置所述第三上行参考信号资源,则接收所述终端设备使用所述第一上行参考信号资源发送的所述上行参考信号,其中,所述终端设备使用所述第一上行参考信号资源中任意所述M个中的所述N个所述发射天线端口发送所述上行参考信号,
或者所述终端设备关闭所述第一上行参考信号资源中的大于所述N的所述发射天线端口后,所述网络设备接收所述终端设备使用所述第一上行参考信号资源发送的所述上行参考信号。
需要说明的是,上述装置各模块之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
图14是本申请实施例提供的一种终端设备的结构示意图。该终端设备可适用于图1所示出的系统中,执行上述方法实施例中终端设备的功能。为了便于说明,图14仅示出了终端设备的主要部件。如图14所示,终端设备90包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作,如根据所述第一指示信息调整所述天线参数。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的参考信号资源等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器, 主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图14仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和/或中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图14中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。基带处理器也可以表述为基带处理电路或者基带处理芯片。中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备90的收发单元901,例如,用于支持终端设备执行前述的接收功能和发送功能。将具有处理功能的芯片视为终端设备90的处理器902。如图14所示,终端设备90包括收发单元901和处理器902。收发单元也可以称为收发器、收发机、收发装置等。例如,可以将收发单元901中用于实现接收功能的器件视为接收单元,将收发单元901中用于实现发送功能的器件视为发送单元,即收发单元901包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器902可用于执行该存储器存储的指令,以控制收发单元901接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元901的功能可以考虑通过收发电路或者收发的专用芯片实现。
图15是本申请实施例提供的一种网络设备的结构示意图,如可以为基站的结构示意图。如图15所示,该基站可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。基站100可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1001和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1002。RRU 1001可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线10011和射频单元10012。RRU 1001部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向处于空闲态的终端设备发送第一唤醒信号。BBU 1002部分主要用于进行基带处理,对基站进行控制等。RRU 1001与BBU 1002可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
BBU 1002为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如BBU(处理单元)1002可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实例中,BBU 1002可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。BBU1002还包括存储器10021和处理器10022,存储器10021用于存储必要的指令和数据。例如存储器10021存储上述实施例中更新配置信息等。处理器10022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。存储器10021和处理器10022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路
图16给出了一种通信装置1100的结构示意图。通信装置1100可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。通信装置1100可以是芯片,网络设备(如基站),终端设备或者核心网设备,或者其他网络设备等。
通信装置1100包括一个或多个处理器1101。处理器1101可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,通信装置可以为芯片,收发单元可以是芯片的输入和/或输出电路,或者通信接口。芯片可以用于终端或基站或其他网络设备。又如,通信装置可以为终端或基站或其他网络设备,收发单元可以为收发器,射频芯片等。
通信装置1100包括一个或多个处理器1101,一个或多个处理器1101可实现前述实施例中网络设备或者终端设备的方法。
在一种可能的设计中,通信装置1100包括用于为终端设备配置第一资源,第一资源为预先配置资源。可以通过一个或多个处理器来实现为终端设备配置第一资源的功能。例如可以通过一个或多个处理器获取第一资源,通过收发器、或输入/输出电路、或芯片的接口发送第一资源。第一资源可以参见上述方法实施例中的相关描述。
在一种可能的设计中,通信装置1100包括用于确定第一唤醒信号。第一唤醒信号,可以参见上述方法实施例中的相关描述。例如通过一个或多个处理器确定第一唤醒信号。
在一种可能的设计中,通信装置1100可以用于向处于空闲态的终端设备发送第一唤醒信号。可以通过收发器、或输入/输出电路、或芯片的接口发送第一唤醒信号。
处理器1101除了实现图4所示的实施例的方法,还可以实现其他功能。
在一种设计中,处理器1101可以执行指令,使得通信装置1100执行上述方法实施例中描述的方法。指令可以全部或部分存储在处理器内,如指令1103,也可以全部或部分存储在与处理器耦合的存储器1102中,如指令1104,也可以通过指令1103和1104共同使得通信装置1100执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置1100也可以包括电路,电路可以实现前述方法实施例中网络设备或终端设备的功能。
在又一种可能的设计中通信装置1100中可以包括一个或多个存储器1102,其上存有指令1104,指令可在处理器上被运行,使得通信装置1100执行上述方法实施例中描述的方法。可选的,存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,一个或多个存储器1102可以存储上述实施例中所描述的第一唤醒信号等。处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,通信装置1100还可以包括收发单元1105以及天线1106。处理器1101可以称为处理单元,对通信装置(终端或者基站)进行控制。收发单元1105可以称为收发机、收发电路、 或者收发器等,用于通过天线1106实现通信装置的收发功能。
本申请还提供一种通信系统,其包括前述的一个或多个网络设备,和,一个或多个终端设备。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。在本申请中出现的对步骤进行的命名或者编号,并不意味着必须按照命名或者编号所指示的时间/逻辑先后顺序执行方法流程中的步骤,已经命名或者编号的流程步骤可以根据要实现的技术目的变更执行次序,只要能达到相同或者相类似的技术效果即可。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (67)

  1. 一种天线参数调整的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一信令,其中,所述第一信令包含第一指示信息和第二指示信息,所述第一指示信息用于指示所述终端设备调整天线参数,所述第二指示信息用于指示所述终端设备发送或接收附加的参考信号,所述附加的参考信号用于在所述天线参数调整后进行信道估计;
    所述终端设备根据所述第一指示信息调整所述天线参数。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一指示信息指示所述终端设备调整接收天线参数,所述第二指示信息指示所述终端设备接收附加的下行参考信号;或者
    所述第一指示信息指示所述终端设备调整发射天线参数,所述第二指示信息指示所述终端设备发送附加的上行参考信号;或者
    所述第一指示信息指示所述终端设备调整所述接收天线参数且调整所述发射天线参数,所述第二指示信息指示所述终端设备接收所述附加的下行参考信号且发送所述附加的上行参考信号,所述附加的上行参考信号用于上行信道估计,所述附加的下行参考信号用于下行信道估计。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备接收所述网络设备发送的所述第一信令之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的第一配置信息,其中,所述第一配置信息用于配置参考信号资源;
    所述终端设备使用所述参考信号资源发送或接收所述附加的参考信号。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一信令承载于下行控制信息DCI、参考信号RS、媒体访问控制地址控制元素MAC CE或无线资源控制RRC中的任意一种。
  5. 根据权利要求4所述的方法,其特征在于,所述第一信令承载于所述DCI或所述RS,所述方法还包括:
    所述终端设备在第一时域资源发送或接收所述附加的参考信号,所述第一时域资源在所述终端设备接收所述第一信令之后。
  6. 根据权利要求4所述的方法,其特征在于,所述第一信令承载于所述MAC CE或所述RRC,在所述终端设备接收所述网络设备发送的所述第一信令之后,所述终端设备根据所述第一信令调整所述天线参数之前,所述方法还包括:
    所述终端设备向所述网络设备发送混合自动重传请求确认信息HARQ-ACK;
    所述终端设备接收所述网络设备发送的所述HARQ-ACK的确认信息。
  7. 根据权利要求6所述的方法,其特征在于,所述第一信令承载于所述MAC CE或所述RRC,
    所述终端设备发送或接收所述附加的参考信号,包括:所述终端设备在第二时域资源发送或接收所述附加的参考信号,所述第二时域资源在所述终端设备接收所述HARQ-ACK的确认信息之后。
  8. 根据权利要求5-7中任一项所述的方法,其特征在于,所述附加的参考信号为所述附加的下行参考信号,所述终端设备接收所述附加的下行参考信号之后,所述方法还包括:
    所述终端设备根据所述附加的下行参考信号确定下行参考信号报告消息;
    所述终端设备向所述网络设备发送所述下行参考信号报告消息,其中,所述下行参考信号报告消息包含所述下行信道估计的结果。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备向所述网络设备发送所述下行参考信号报告消息,包括:
    所述终端设备通过物理上行控制信道PUCCH或物理上行共享信道PUSCH向网络设备发送下行参考信号报告消息。
  10. 一种天线参数调整的方法,其特征在于,包括:
    网络设备向终端设备发送第一信令,其中,所述第一信令包含第一指示信息和第二指示信息,所述第一指示信息用于指示所述终端设备调整天线参数,所述第二指示信息用于指示所述终端设备发送或接收附加的参考信号,所述附加的参考信号用于在所述天线参数调整后进行信道估计;
    所述网络设备接收或发送所述附加的参考信号。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第一指示信息指示所述终端设备调整接收天线参数,所述第二指示信息指示所述终端设备接收附加的下行参考信号;或者
    所述第一指示信息指示所述终端设备调整发射天线参数,所述第二指示信息指示所述终端设备发送附加的上行参考信号;或者
    所述第一指示信息指示所述终端设备调整所述接收天线参数且所述调整发射天线参数,所述第二指示信息指示所述终端设备接收所述附加的下行参考信号且发送所述附加的上行参考信号,所述附加的上行参考信号用于上行信道估计,所述附加的下行参考信号用于下行信道估计。
  12. 根据权利要求10-11中任一项所述的方法,其特征在于,所述网络设备发送的所述第一信令之前,所述方法还包括:
    所述网络设备向所述终端设备发送第一配置信息,其中,所述第一配置信息用于配置参考信号资源,以使得所述终端设备使用所述参考信号资源发送或接收所述附加的参考信号。
  13. 根据权利要求10-12中任一项所述的方法,其特征在于,所述第一信令承载于下行控制信息DCI、参考信号RS、媒体访问控制地址控制元素MAC CE或无线资源控制RRC中的任意一种。
  14. 根据权利要求13所述的方法,其特征在于,所述第一信令承载于所述DCI或所述RS,所述方法还包括:
    所述网络设备在第一时域资源接收或发送的所述附加的参考信号,所述第一时域资源在所述终端设备接收所述第一信令之后。
  15. 根据权利要求13所述的方法,其特征在于,所述第一信令承载于所述MAC CE或所述RRC,所述网络设备向所述终端设备发送所述第一信令之后,所述网络设备接收或发送所述附加的参考信号之前,所述方法还包括:
    所述网络设备接收所述终端设备发送的混合自动重传请求确认信息HARQ-ACK;
    所述网络设备向所述终端设备发送HARQ-ACK的确认信息。
  16. 根据权利要求15所述的方法,其特征在于,所述第一信令承载于所述MAC CE或所述RRC,所述网络设备接收或发送所述附加的参考信号,包括:
    所述网络设备在第二时域资源接收或发送所述附加的参考信号,所述第二时域资源在所述终端设备接收所述HARQ-ACK的确认信息之后。
  17. 根据权利要求13-16中任一项所述的方法,其特征在于,所述附加的参考信号为所述附加的下行参考信号,所述网络设备发送所述附加的下行参考信号之后,所述方法还包括:
    所述网络设备接收下行参考信号报告消息,其中,所述下行参考信号报告消息由所述终端设 备根据所述附加的下行参考信号确定,所述下行参考信号报告消息包含所述下行信道估计的结果。
  18. 根据权利要求17所述的方法,其特征在于,所述网络设备接收下行参考信号报告消息,包括:
    网络设备接收终端设备通过物理上行控制信道PUCCH或物理上行共享信道PUSCH向网络设备发送的下行参考信号报告消息。
  19. 一种天线参数调整的方法,其特征在于,包括:
    终端设备接收到网络设备下发的第一信令;
    所述终端设备根据第一信令中的第一指示信息调整天线参数,其中,当第一信令中的第一指示信息为指示调整发射天线参数时,终端设备对应的开启或关闭发射天线端口。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第一指示信息具体用于指示终端设备的最大发射天线数为N,其中,N为正整数。
  21. 根据权利要求20所述的方法,其特征在于,还包括:
    所述终端设备接收网络设备发送的第一指示信息之前,接收网络设备发送的第一配置信息,其中,第一配置信息用于配置第一上行参考信号资源,终端设备使用上行参考信号资源发送上行参考信号,上行参考信号用于上行信道估计,上行参考信号的发射天线端口数为M,其中,M为正整数,M大于N。
  22. 根据权利要求21所述的方法,其特征在于,所述终端设备根据第一信令中的第一指示信息调整天线参数包括:
    当所述终端设备还配置有发射端口数为K的第二上行参考信号资源时,所述终端设备使用第二上行参考信号资源发送上行参考信号且不使用第一上行参考信号资源发送上行信号,K为正整数,K小于M;
    当所述终端设备中仅配置有第一上行参考信号资源时,所述终端设备使用第一上行参考信号资源中任意M个中的N个发射天线端口发送上行参考信号。
  23. 根据权利要求20所述的方法,其特征在于,所述终端设备根据第一信令中的第一指示信息调整天线参数包括:
    所述终端设备确定终端设备是否还配置有发射天线端口数小于或等于N的第三上行参考信号资源;
    若配置第三上行参考信号资源,则所述终端设备使用第三上行参考信号资源发送上行参考信号;或者,
    若没有配置第三上行参考信号资源,则所述终端设备使用第一上行参考信号资源发送上行参考信号。
  24. 根据权利要求20所述的方法,其特征在于,所述终端设备使用第一上行参考信号资源发送上行参考信号,包括:
    所述终端设备使用第一上行参考信号资源中任意M个中的N个发射天线端口发送上行参考信号;或者,
    所述终端设备关闭第一上行参考信号资源中的大于N的发射天线端口后,使用第一上行参考信号资源发送上行参考信号。
  25. 一种天线参数调整的方法,其特征在于,包括:
    网络设备向终端设备发送第一信令,所述第一信令的第一指示信息用于指示终端设备调整天 线参数,其中,终端设备调整天线参数包括终端设备对应的开启或关闭发射天线端口。
  26. 根据权利要求25所述的方法,其特征在于,
    所述第一指示信息具体用于指示终端设备的最大发射天线数为N,其中,N为正整数。
  27. 根据权利要求26所述的方法,其特征在于,还包括:
    在向终端设备发送第一指示信息之前,所述网络设备向终端设备发送第一配置信息,其中,第一配置信息用于配置第一上行参考信号资源,所述第一上行参考信号资源用于终端设备发送上行参考信号,上行参考信号用于上行信道估计,上行参考信号的发射天线端口数为M,其中,M为正整数,M大于N。
  28. 根据权利要求27所述的方法,其特征在于,还包括:
    当终端设备还配置有发射端口数为K的第二上行参考信号资源时,网络设备接收终端设备使用第二上行参考信号资源发送的上行参考信号,K为正整数,K小于M;
    当终端设备中仅配置有第一上行参考信号资源时,网络设备接收终端设备使用第一上行参考信号资源中任意M个中的N个发射天线端口发送的上行参考信号。
  29. 根据权利要求25所述的方法,其特征在于,还包括:
    若终端设备配置有发射天线端口数小于或等于N的第三上行参考信号资源,则网络设备接收终端设备使用第三上行参考信号资源发送的上行参考信号;
    若没有配置所述第三上行参考信号资源,则网络设备接收终端设备使用第一上行参考信号资源发送的上行参考信号。
  30. 根据权利要求29所述的方法,其特征在于,网络设备接收终端设备使用第一上行参考信号资源发送的上行参考信号,包括:
    所述网络设备接收终端设备使用第一上行参考信号资源中任意M个中的N个发射天线端口发送上行参考信号;或者,
    所述网络设备接收终端设备关闭第一上行参考信号资源中的大于N的发射天线端口后,使用第一上行参考信号资源发送的上行参考信号。
  31. 一种通信装置,其特征在于,包括:
    用于接收网络设备发送的第一信令的装置,其中,所述第一信令包含第一指示信息和第二指示信息,所述第一指示信息用于指示所述通信装置调整天线参数,所述第二指示信息用于指示所述通信装置发送或接收附加的参考信号,所述附加的参考信号用于在所述天线参数调整后进行信道估计;
    用于根据所述第一指示信息调整所述天线参数的装置。
  32. 根据权利要求31所述的通信装置,其特征在于,
    所述第一指示信息指示所述通信装置调整接收天线参数,所述第二指示信息指示所述通信装置接收附加的下行参考信号;或者
    所述第一指示信息指示所述通信装置调整发射天线参数,所述第二指示信息指示所述通信装置发送附加的上行参考信号;或者
    所述第一指示信息指示所述通信装置调整所述接收天线参数且调整所述发射天线参数,所述第二指示信息指示所述通信装置接收所述附加的下行参考信号且发送所述附加的上行参考信号,所述附加的上行参考信号用于上行信道估计,所述附加的下行参考信号用于下行信道估计。
  33. 根据权利要求31或32所述的通信装置,其特征在于,还包括:
    用于接收所述网络设备发送的第一配置信息的装置,其中,所述第一配置信息用于配置参考信号资源;
    用于使用所述参考信号资源发送或接收所述附加的参考信号的装置。
  34. 根据权利要求31-33中任一项所述的通信装置,其特征在于,所述第一信令承载于下行控制信息DCI、参考信号RS、媒体访问控制地址控制元素MAC CE或无线资源控制RRC中的任意一种。
  35. 根据权利要求34所述的通信装置,其特征在于,还包括:
    用于在第一时域资源发送或接收所述附加的参考信号的装置,所述第一时域资源在接收所述第一信令之后。
  36. 根据权利要求34所述的通信装置,其特征在于,所述第一信令承载于所述MAC CE或所述RRC,所述通信装置还包括:
    用于在接收所述网络设备发送的所述第一信令之后,且在根据所述第一信令调整所述天线参数之前,向所述网络设备发送混合自动重传请求确认信息HARQ-ACK;
    用于接收所述网络设备发送的所述HARQ-ACK的确认信息。
  37. 根据权利要求36所述的通信装置,其特征在于,所述第一信令承载于所述MAC CE或所述RRC,所述通信装置还包括:用于在第二时域资源发送或接收所述附加的参考信号的装置,所述第二时域资源在接收所述HARQ-ACK的确认信息之后。
  38. 根据权利要求35-37中任一项所述的通信装置,其特征在于,所述附加的参考信号为所述附加的下行参考信号,所述通信装置还包括:
    用于在接收所述附加的下行参考信号之后,根据所述附加的下行参考信号确定下行参考信号报告消息的装置;
    用于向所述网络设备发送所述下行参考信号报告消息的装置,其中,所述下行参考信号报告消息包含所述下行信道估计的结果。
  39. 根据权利要求38所述的通信装置,其特征在于,还包括:
    用于通过物理上行控制信道PUCCH或物理上行共享信道PUSCH向网络设备发送下行参考信号报告消息。
  40. 一种通信装置,其特征在于,包括:
    用于向终端设备发送第一信令的装置,其中,所述第一信令包含第一指示信息和第二指示信息,所述第一指示信息用于指示所述终端设备调整天线参数,所述第二指示信息用于指示所述终端设备发送或接收附加的参考信号,所述附加的参考信号用于在所述天线参数调整后进行信道估计;
    用于接收或发送所述附加的参考信号的装置。
  41. 根据权利要求40所述的通信装置,其特征在于,
    所述第一指示信息指示所述终端设备调整接收天线参数,所述第二指示信息指示所述终端设备接收附加的下行参考信号;或者
    所述第一指示信息指示所述终端设备调整发射天线参数,所述第二指示信息指示所述终端设备发送附加的上行参考信号;或者
    所述第一指示信息指示所述终端设备调整所述接收天线参数且所述调整发射天线参数,所述第二指示信息指示所述终端设备接收所述附加的下行参考信号且发送所述附加的上行参考信号, 所述附加的上行参考信号用于上行信道估计,所述附加的下行参考信号用于下行信道估计。
  42. 根据权利要求40-41中任一项所述的通信装置,其特征在于,还包括:
    所述用于在发送所述第一信令之前,向所述终端设备发送第一配置信息的装置,其中,所述第一配置信息用于配置参考信号资源,以使得所述终端设备使用所述参考信号资源发送或接收所述附加的参考信号。
  43. 根据权利要求40-42中任一项所述的通信装置,其特征在于,所述第一信令承载于下行控制信息DCI、参考信号RS、媒体访问控制地址控制元素MAC CE或无线资源控制RRC中的任意一种。
  44. 根据权利要求43所述的通信装置,其特征在于,所述第一信令承载于所述DCI或所述RS,所述通信装置还包括:
    用于在第一时域资源接收或发送的所述附加的参考信号的装置,所述第一时域资源在所述终端设备接收所述第一信令之后。
  45. 根据权利要求43所述的通信装置,其特征在于,所述通信装置还包括:
    用于在向所述终端设备发送所述第一信令之后,且在接收或发送所述附加的参考信号之前,接收所述终端设备发送的混合自动重传请求确认信息HARQ-ACK的装置;
    用于向所述终端设备发送HARQ-ACK的确认信息的装置。
  46. 根据权利要求45所述的通信装置,其特征在于,还包括:
    用于在第二时域资源接收或发送所述附加的参考信号的装置,所述第二时域资源在所述终端设备接收所述HARQ-ACK的确认信息之后。
  47. 根据权利要求43-46中任一项所述的通信装置,其特征在于,所述附加的参考信号为所述附加的下行参考信号,所述通信装置还包括:
    用于在发送所述附加的下行参考信号之后,接收下行参考信号报告消息的装置,其中,所述下行参考信号报告消息由所述终端设备根据所述附加的下行参考信号确定,所述下行参考信号报告消息包含所述下行信道估计的结果。
  48. 根据权利要求47所述的通信装置,其特征在于,还包括:
    用于接收终端设备通过物理上行控制信道PUCCH或物理上行共享信道PUSCH向用于发送的下行参考信号报告消息的装置。
  49. 一种通信装置,其特征在于,包括:
    用于接收到网络设备下发的第一信令的装置;
    用于根据第一信令中的第一指示信息调整天线参数的装置,其中,当第一信令中的第一指示信息为指示调整发射天线参数时,通信装置应的开启或关闭发射天线端口。
  50. 根据权利要求49所述的通信装置,其特征在于,
    所述第一指示信息具体用于指示通信装置的最大发射天线数为N,其中,N为正整数。
  51. 根据权利要求50所述的通信装置,其特征在于,还包括:
    用于接收网络设备发送的第一指示信息之前,接收网络设备发送的第一配置信息的装置,其中,第一配置信息用于配置第一上行参考信号资源,通信装置使用上行参考信号资源发送上行参考信号,上行参考信号用于上行信道估计,上行参考信号的发射天线端口数为M,其中,M为正整数,M大于N。
  52. 根据权利要求51所述的通信装置,其特征在于,还包括:
    用于当通信装置还配置有发射端口数为K的第二上行参考信号资源时,使用第二上行参考信号资源发送上行参考信号且不使用第一上行参考信号资源发送上行信号的装置,K为正整数,K小于M;
    用于当通信装置中仅配置有第一上行参考信号资源时,使用第一上行参考信号资源中任意M个中的N个发射天线端口发送上行参考信号的装置。
  53. 根据权利要求50所述的通信装置,其特征在于,还包括:
    用于确定是否还配置有发射天线端口数小于或等于N的第三上行参考信号资源的装置;
    用于在配置有第三上行参考信号资源的情况下,使用第三上行参考信号资源发送上行参考信号的装置;或者,
    用于在没有配置第三上行参考信号资源的情况下,使用第一上行参考信号资源发送上行参考信号的装置。
  54. 根据权利要求50所述的通信装置,其特征在于,还包括:
    用于使用第一上行参考信号资源中任意M个中的N个发射天线端口发送上行参考信号的装置;或者,
    用于关闭第一上行参考信号资源中的大于N的发射天线端口后,使用第一上行参考信号资源发送上行参考信号的装置。
  55. 一种通信装置,其特征在于,包括:
    用于向终端设备发送第一信令的装置,所述第一信令的第一指示信息用于指示终端设备调整天线参数,其中,终端设备调整天线参数包括终端设备对应的开启或关闭发射天线端口。
  56. 根据权利要求55所述的通信装置,其特征在于,
    所述第一指示信息具体用于指示终端设备的最大发射天线数为N,其中,N为正整数。
  57. 根据权利要求56所述的通信装置,其特征在于,还包括:
    用于在向终端设备发送第一指示信息之前,向终端设备发送第一配置信息的装置,其中,第一配置信息用于配置第一上行参考信号资源,所述第一上行参考信号资源用于终端设备发送上行参考信号,上行参考信号用于上行信道估计,上行参考信号的发射天线端口数为M,其中,M为正整数,M大于N。
  58. 根据权利要求57所述的通信装置,其特征在于,还包括:
    用于当终端设备还配置有发射端口数为K的第二上行参考信号资源时,接收终端设备使用第二上行参考信号资源发送的上行参考信号的装置,K为正整数,K小于M;
    用于当终端设备中仅配置有第一上行参考信号资源时,接收终端设备使用第一上行参考信号资源中任意M个中的N个发射天线端口发送的上行参考信号的装置。
  59. 根据权利要求55所述的通信装置,其特征在于,还包括:
    用于当终端设备配置有发射天线端口数小于或等于N的第三上行参考信号资源时,接收终端设备使用第三上行参考信号资源发送的上行参考信号的装置;
    用于当终端设备没有配置所述第三上行参考信号资源时,接收终端设备使用第一上行参考信号资源发送的上行参考信号的装置。
  60. 根据权利要求59所述的通信装置,其特征在于,还包括:
    用于接收终端设备使用第一上行参考信号资源中任意M个中的N个发射天线端口发送上行参考信号的装置;或者,
    用于接收终端设备关闭第一上行参考信号资源中的大于N的发射天线端口后,使用第一上行参考信号资源发送的上行参考信号的装置。
  61. 一种通信设备,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时,实现如权利要求1至9中任一项所述的方法,或实现如权利要求10至18中任一项所述的方法,或实现如权利要求19所述的方法,或实现如权利要求20至22中任一项所述的方法。
  62. 一种装置,其特征在于,所述装置包括处理器,所述处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行如权利要求1至9中任一项所述的方法,或根据所述指令执行如权利要求10至18中任一项所述的方法,或根据所述指令执行如权利要求19至24中任一项所述的方法,或根据所述指令执行如权利要求25至30中任一项所述的方法。
  63. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至9中任一项所述的方法,或执行如权利要求10至18中任一项所述的方法,或执行如权利要求19至24中任一项所述的方法,或执行如权利要求25至30中任一项所述的方法。
  64. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至9中任一项所述的方法,或使得计算机执行如权利要求10至18中任一项所述的方法,或使得计算机执行如权利要求19至24中任一项所述的方法,或使得计算机执行如权利要求25至30中任一项所述的方法。
  65. 一种芯片,其特征在于,与存储器相连或者包括存储器,用于读取并执行所述存储器中存储的软件程序,以实现如权利要求1至9中任一项所述的方法,或以实现如权利要求10至18中任一项所述的方法,或以实现如权利要求19至24中任一项所述的方法,或以实现如权利要求25至30中任一项所述的方法。
  66. 一种通信系统,包括:网络设备与终端设备;
    网络设备向终端设备发送第一信令,
    其中,所述第一信令包含第一指示信息和第二指示信息,所述第一指示信息用于指示所述终端设备调整天线参数,所述第二指示信息用于指示所述终端设备发送或接收附加的参考信号,所述附加的参考信号用于在所述天线参数调整后进行信道估计;接收或发送所述附加的参考信号;
    终端设备接收网络设备发送的第一信令;根据所述第一指示信息调整所述天线参数。
  67. 一种通信系统,包括:网络设备与终端设备;
    网络设备向终端设备发送第一信令,所述第一信令的第一指示信息用于指示终端设备调整天线参数;
    终端设备接收到网络设备下发的第一信令;根据第一信令中的第一指示信息调整天线参数,其中,当第一信令中的第一指示信息为指示调整发射天线参数时,终端设备对应的开启或关闭发射天线端口。
PCT/CN2020/075581 2019-02-15 2020-02-17 一种天线参数调整的方法以及相关装置 WO2020164638A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910118863.1 2019-02-15
CN201910118863.1A CN111586874B (zh) 2019-02-15 2019-02-15 一种天线参数调整的方法以及相关装置

Publications (1)

Publication Number Publication Date
WO2020164638A1 true WO2020164638A1 (zh) 2020-08-20

Family

ID=72044559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075581 WO2020164638A1 (zh) 2019-02-15 2020-02-17 一种天线参数调整的方法以及相关装置

Country Status (2)

Country Link
CN (1) CN111586874B (zh)
WO (1) WO2020164638A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022256759A1 (en) * 2021-06-03 2022-12-08 Qualcomm Incorporated Indicating blockage events as a cause for changes in rank information or channel quality information
WO2023122983A1 (zh) * 2021-12-28 2023-07-06 北京小米移动软件有限公司 一种上报天线切换配置的方法、装置及存储介质
WO2024082100A1 (en) * 2022-10-17 2024-04-25 Qualcomm Incorporated 8 tx pusch fallback to less tx pusch transmissions

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4195558A4 (en) * 2020-08-31 2024-01-03 Huawei Technologies Co., Ltd. SIGNAL PROCESSING METHOD AND APPARATUS
CN114389651B (zh) * 2020-10-21 2023-06-23 华为技术有限公司 调度数据传输的方法和通信装置
CN116506084A (zh) * 2022-01-18 2023-07-28 维沃移动通信有限公司 编码方法、设备及可读存储介质
CN116743283A (zh) * 2022-03-04 2023-09-12 华为技术有限公司 一种通信方法、装置及系统
CN115811452A (zh) * 2022-11-23 2023-03-17 哲库科技(北京)有限公司 下行控制信道的信道估计方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185642A (zh) * 2011-05-12 2011-09-14 电信科学技术研究院 发送配置信息和选择发射天线的方法、系统及设备
CN106817156A (zh) * 2015-11-27 2017-06-09 中兴通讯股份有限公司 天线选择信息的指示方法及装置
CN108260217A (zh) * 2018-03-05 2018-07-06 中兴通讯股份有限公司 一种信息传输的方法、装置和通信节点
WO2018201904A1 (zh) * 2017-05-05 2018-11-08 中兴通讯股份有限公司 上行传输参数的确定方法及配置信息的发送方法、装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102300303A (zh) * 2010-06-24 2011-12-28 夏普株式会社 上行多输入多输出信道的功率控制方法
CN102438312B (zh) * 2010-09-29 2015-06-03 中兴通讯股份有限公司 一种移动通信系统及其信道状态指示参考信号的配置方法
CN103067927B (zh) * 2013-01-09 2015-08-19 上海大唐移动通信设备有限公司 一种小区间干扰的优化方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185642A (zh) * 2011-05-12 2011-09-14 电信科学技术研究院 发送配置信息和选择发射天线的方法、系统及设备
CN106817156A (zh) * 2015-11-27 2017-06-09 中兴通讯股份有限公司 天线选择信息的指示方法及装置
WO2018201904A1 (zh) * 2017-05-05 2018-11-08 中兴通讯股份有限公司 上行传输参数的确定方法及配置信息的发送方法、装置
CN108260217A (zh) * 2018-03-05 2018-07-06 中兴通讯股份有限公司 一种信息传输的方法、装置和通信节点

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022256759A1 (en) * 2021-06-03 2022-12-08 Qualcomm Incorporated Indicating blockage events as a cause for changes in rank information or channel quality information
WO2023122983A1 (zh) * 2021-12-28 2023-07-06 北京小米移动软件有限公司 一种上报天线切换配置的方法、装置及存储介质
WO2024082100A1 (en) * 2022-10-17 2024-04-25 Qualcomm Incorporated 8 tx pusch fallback to less tx pusch transmissions

Also Published As

Publication number Publication date
CN111586874A (zh) 2020-08-25
CN111586874B (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
WO2020187192A1 (zh) 一种过热指示方法以及相关设备
WO2020164638A1 (zh) 一种天线参数调整的方法以及相关装置
US11019522B2 (en) Periodic channel state information reporting for time division duplex (TDD) carrier aggregation systems
JP6466515B2 (ja) 協調マルチポイント(CoMP)システムのための周期的チャネル状態情報レポート
KR101997459B1 (ko) 무선 통신 시스템에서 상향링크 다중 안테나 전송 방법 및 이를 위한 장치
KR20150031242A (ko) Tdd 협력 다중-포인트 및 캐리어 집성 시나리오를 위한 공간 피드백(pmi/ri)없이 cqi 피드백하기 위한 방법
CN108400848B (zh) 一种指示方法及装置
US11575424B2 (en) UE recommended CSI settings
CN110226304A (zh) 下一代无线通信系统中执行子带单元下行链路调度的方法及其装置
WO2021217328A1 (en) Csi reporting techniques for multi-panel full duplex base stations
JP2020523855A (ja) 無線通信システムにおいてアップリンクチャネルを送受信する方法及びそのための装置
EP3618299B1 (en) Method for measuring interference in next generation communication system and apparatus therefor
WO2020233500A1 (zh) 一种通信方法及通信装置
US10998956B1 (en) Optimized receive beam selection
WO2021097589A1 (en) Optimization of channel state feedback (csf) report
EP4005106A1 (en) Minimizing block error rate (bler) associated with a beam switch
WO2024007245A1 (en) Method and apparatus of dynamic adaption of spatial elements
WO2023000195A9 (en) Transmission configuration indicator state mapping for multiple transport block transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20756474

Country of ref document: EP

Kind code of ref document: A1