WO2021217328A1 - Csi reporting techniques for multi-panel full duplex base stations - Google Patents

Csi reporting techniques for multi-panel full duplex base stations Download PDF

Info

Publication number
WO2021217328A1
WO2021217328A1 PCT/CN2020/087185 CN2020087185W WO2021217328A1 WO 2021217328 A1 WO2021217328 A1 WO 2021217328A1 CN 2020087185 W CN2020087185 W CN 2020087185W WO 2021217328 A1 WO2021217328 A1 WO 2021217328A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
ports
resource
report
resource setting
Prior art date
Application number
PCT/CN2020/087185
Other languages
French (fr)
Inventor
Muhammad Sayed Khairy Abdelghaffar
Yu Zhang
Alexandros MANOLAKOS
Ahmed Attia ABOTABL
Runxin WANG
Krishna Kiran Mukkavilli
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/087185 priority Critical patent/WO2021217328A1/en
Publication of WO2021217328A1 publication Critical patent/WO2021217328A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the technology discussed below relates generally to wireless communication networks, and more particularly, to channel state information (CSI) reporting in wireless communication networks.
  • Some embodiments and techniques enable and provide communication devices, methods, and systems with enhancements in CSI reporting for multi-panel full duplex base stations.
  • an access point e.g., a base station
  • UE user equipment
  • MCS modulation and coding scheme
  • rank rank
  • precoding matrix selected based on an estimate of the channel between the base station and the UE.
  • the base station may transmit one or more reference signals, such as channel state information reference signals (CSI-RS) , to the UE.
  • CSI-RS channel state information reference signals
  • the UE may return a channel state information (CSI) report indicating the quality of the channel to the base station.
  • the CSI may include, for example, a channel quality indicator (CQI) that indicates to the base station an MCS to use for transmissions to the UE, a rank indicator (RI) that indicates to the base station the number of layers to use for transmissions to the UE, a precoding matrix indicator (PMI) that indicates to the base station the precoding matrix to use for transmissions to the UE, and other suitable parameters.
  • CQI channel quality indicator
  • RI rank indicator
  • PMI precoding matrix indicator
  • the base station e.g., gNodeB (gNB)
  • the base station can configure the UE with one or more CSI report configurations.
  • Each CSI report configuration may indicate, for example, the CSI related parameters to be reported (e.g., one or more of the CQI, PMI, RI, etc. ) , the time-domain behavior of CSI reports (e.g., periodic, semi-persistent, or aperiodic) , the frequency granularity for reporting the CQI and PMI (e.g., wideband or sub-band) , codebook configuration, and other suitable parameters.
  • the CSI related parameters to be reported e.g., one or more of the CQI, PMI, RI, etc.
  • the time-domain behavior of CSI reports e.g., periodic, semi-persistent, or aperiodic
  • the frequency granularity for reporting the CQI and PMI e.g., wideband or sub-band
  • Each CSI report configuration may further be associated with a respective CSI-RS resource setting that specifies the resource elements (REs) on which CSI-RSs may be transmitted, along with a set of ports at the gNB from which the CSI-RSs may be transmitted.
  • REs resource elements
  • CSI reporting use cases and deployment scenarios can include multi-panel, full duplex scheduling entities (e.g., base stations) .
  • a scheduled entity e.g., a UE
  • a single CSI report configuration associated with a single CSI-RS resource setting for both single panel and multi-panel CSI reporting.
  • the CSI-RS resource setting may be associated with a multi-panel base station antenna array.
  • the CSI report configuration can signal the scheduled entity to generate single or multiple CSI reports (e.g., two or more CSI reports) .
  • the CSI reports can each include a different respective set of CSI report values for each of a plurality of CSI report parameters (e.g., different values for one or more of the CQI, PMI, RI, LI, L1-RSRP, etc. ) .
  • CSI reports may be generated based on the same single CSI-RS resource setting.
  • the CSI report configuration can indicate a modification of the CSI-RS resource setting to utilize for one of several CSI reports.
  • the modification can include a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting.
  • a scheduled entity is configured with a single CSI report configuration associated with two CSI-RS resource settings.
  • the CSI report configuration can signal the scheduled entity to generate two CSI reports, each including a different respective set of CSI report values for each of a plurality of CSI report parameters (e.g., different values for one or more of the CQI, PMI, RI, LI, L1-RSRP, etc. ) .
  • Each CSI report may be generated based on one of the CSI-RS resource settings. For example, a first CSI report may be generated based on the first CSI-RS resource setting, while a second CSI report may be generated based on the second CSI-RS resource setting.
  • a first CSI-RS resource setting may be associated with a multi-panel CSI report for a multi-panel full duplex base station
  • a second CSI-RS resource setting may be associated with a single panel CSI report for a multi-panel full duplex base station.
  • a method of wireless communication between a scheduling entity and a set of one or more scheduled entities in a wireless communication network includes transmitting to a scheduled entity of the set of one or more scheduled entities a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI report.
  • One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting.
  • the method can further include transmitting the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of CSI-RS ports.
  • the method can further include receiving a first CSI report from the scheduled entity generated based on the CSI-RS resource setting and receiving a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting.
  • a scheduling entity in a wireless communication network.
  • a scheduling entity can house or comprise a number of components, including a wireless transceiver, a memory, and a processor communicatively coupled to the wireless transceiver and the memory.
  • the processor and the memory can be configured to transmit to a scheduled entity a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI report.
  • One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting.
  • the processor and the memory can further be configured to transmit the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of CSI-RS ports.
  • the processor and the memory can further be configured to receive a first CSI report from the scheduled entity generated based on the CSI-RS resource setting and receive a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting.
  • the scheduling entity includes means for transmitting to a scheduled entity a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI report.
  • One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting.
  • the scheduling entity can further include means transmitting the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of CSI-RS ports.
  • the scheduling entity can further include means for receiving a first CSI report from the scheduled entity generated based on the CSI-RS resource setting and means for receiving a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting.
  • Another example provides a non-transitory computer-readable medium including code for causing a scheduling entity to transmit to a scheduled entity a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI report.
  • One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting.
  • the non-transitory computer-readable medium can further include code for causing the scheduling entity to transmit the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of CSI-RS ports.
  • the non-transitory computer-readable medium can further include code for causing the scheduling entity to receive a first CSI report from the scheduled entity generated based on the CSI-RS resource setting and receive a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting.
  • a method of wireless communication between a scheduled entity and a scheduling entity in a wireless communication network includes receiving a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI reports.
  • One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting.
  • the method can further include receiving the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports.
  • the method can further include transmitting a first CSI report to the scheduling entity generated based on the CSI-RS resource setting and transmitting a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting.
  • Another example provides a scheduled entity in a wireless communication network including a wireless transceiver, a memory, and a processor communicatively coupled to the wireless transceiver and the memory.
  • the processor and the memory can be configured to receive a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI reports.
  • One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting.
  • the processor and the memory can further be configured to receive the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports.
  • the processor and the memory can further be configured to transmit a first CSI report to the scheduling entity generated based on the CSI-RS resource setting and transmitting a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting.
  • the scheduled entity includes means for receiving a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI reports.
  • One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting.
  • the scheduled entity can further include means for receiving the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports.
  • the scheduled entity can further include means for transmitting a first CSI report to the scheduling entity generated based on the CSI-RS resource setting and means for transmitting a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting.
  • Another example provides a non-transitory computer-readable medium including code for causing a scheduled entity to receive a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI reports.
  • One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting.
  • the non-transitory computer-readable medium can further include code for causing the scheduled entity to receive the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports.
  • the non-transitory computer-readable medium can further include code for causing the scheduled entity to transmit a first CSI report to the scheduling entity generated based on the CSI-RS resource setting and transmit a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting.
  • first CSI report and the second CSI report each include a different respective set of CSI report values for each of a plurality of CSI report parameters.
  • the modification of the CSI-RS resource setting may include a power offset from the CSI-RS resource setting or at least one of a subset of the set of CSI-RS ports of the CSI-RS resource setting or a subset of the set of frequency resources of the CSI-RS resource setting.
  • the multi-panel antenna array may include a first panel having a first set of antenna elements and a second panel having a second set of antenna elements. The first panel can be physically separated from the second panel.
  • the set of CSI-RS ports includes a first set of CSI-RS ports associated with the first panel and a second set of CSI-RS ports associated with the second panel. The subset of the set of CSI-RS ports can include one of the first set of CSI-RS ports or the second set of CSI-RS ports.
  • the subset of the set of frequency resources include downlink frequency resources allocated for downlink communication from the scheduling entity to the scheduled entity when the scheduling entity is operating in a full duplex mode.
  • the power offset is applicable to each of the CSI-RS ports.
  • the CSI report configuration includes a power offset field. The power offset field can include the power offset when the second CSI report is generated based on the power offset.
  • the CSI report configuration can further include a port subset field indicating whether the second CSI report is generated based on the CSI-RS ports or the subset of the set of CSI-RS ports.
  • the scheduling entity may further be configured to transmit the CSI report configuration and the CSI-RS resource setting to the scheduled entity via radio resource control (RRC) signaling.
  • the scheduling entity may further be configured to transmit a dynamic reconfiguration message to the scheduled entity. They dynamic reconfiguration message can update the modification.
  • the dynamic reconfiguration message includes a medium access control control element (MAC-CE) command or downlink control information (DCI) .
  • MAC-CE medium access control control element
  • DCI downlink control information
  • a method of wireless communication between a scheduling entity and a set of one or more scheduled entities in a wireless communication network includes transmitting to a scheduled entity of the set of one or more scheduled entities a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings.
  • CSI channel state information
  • Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI reports.
  • Each CSI report can correspond to one of the two CSI-RS resource settings.
  • the method can further include transmitting the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings.
  • the method can further include receiving a first CSI report from the scheduled entity generated based on a first CSI-RS resource setting of the two CSI-RS resource settings and receiving a second CSI report from the scheduled entity generated based on a second CSI-RS resource setting of the two CSI-RS resource settings.
  • a scheduling entity in a wireless communication network including a wireless transceiver, a memory, and a processor communicatively coupled to the wireless transceiver and the memory.
  • the processor and the memory can be configured to transmit to a scheduled entity a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings.
  • CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI reports.
  • Each CSI report can correspond to one of the two CSI-RS resource settings.
  • the processor and the memory can further be configured to transmit the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings.
  • the processor and the memory can further be configured to receive a first CSI report from the scheduled entity generated based on a first CSI-RS resource setting of the two CSI-RS resource settings and receive a second CSI report from the scheduled entity generated based on a second CSI-RS resource setting of the two CSI-RS resource settings.
  • the scheduling entity includes means for transmitting to a scheduled entity a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings.
  • CSI channel state information
  • Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI reports.
  • Each CSI report can correspond to one of the two CSI-RS resource settings.
  • the scheduling entity can further include means for transmitting the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings.
  • the scheduled entity can further include means for receiving a first CSI report from the scheduled entity generated based on a first CSI-RS resource setting of the two CSI-RS resource settings and means for receiving a second CSI report from the scheduled entity generated based on a second CSI-RS resource setting of the two CSI-RS resource settings.
  • Another example provides a non-transitory computer-readable medium including code for causing a scheduling entity to transmit to a scheduled entity a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings.
  • CSI channel state information
  • Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI reports.
  • Each CSI report can correspond to one of the two CSI-RS resource settings.
  • the non-transitory computer-readable medium can further include code for causing the scheduling entity to transmit the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings.
  • the non-transitory computer-readable medium can further include code for causing the scheduling entity to receive a first CSI report from the scheduled entity generated based on a first CSI-RS resource setting of the two CSI-RS resource settings and receive a second CSI report from the scheduled entity generated based on a second CSI-RS resource setting of the two CSI-RS resource settings.
  • a method of wireless communication between a scheduled entity and a scheduling entity in a wireless communication network includes receiving a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings.
  • CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI reports.
  • Each CSI report can correspond to one of the two CSI-RS resource settings.
  • the method can further include receiving the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports.
  • the method can further include transmitting a first CSI report to the scheduling entity generated based on a first CSI-RS setting of the two CSI-RS resource settings and transmitting a second CSI report to the scheduling entity generated based on a second CSI-RS setting of the two CSI-RS resource settings.
  • Another example provides a scheduled entity in a wireless communication network including a wireless transceiver, a memory, and a processor communicatively coupled to the wireless transceiver and the memory.
  • the processor and the memory can be configured to receive a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings.
  • CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI reports.
  • Each CSI report can correspond to one of the two CSI-RS resource settings.
  • the processor and the memory can further be configured to receive the at least one CSI-RS from the scheduling entity based on the two CSI-RS resource settings.
  • the processor and the memory can further be configured to transmit a first CSI report to the scheduling entity generated based on a first CSI-RS setting of the two CSI-RS resource settings and transmit a second CSI report to the scheduling entity generated based on a second CSI-RS setting of the two CSI-RS resource settings.
  • the scheduled entity includes means for receiving a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings.
  • CSI channel state information
  • Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI reports.
  • Each CSI report can correspond to one of the two CSI-RS resource settings.
  • the scheduled entity can further include means for receiving the at least one CSI-RS from the scheduling entity based on the two CSI-RS resource settings.
  • the scheduled entity can further include means for transmitting a first CSI report to the scheduling entity generated based on a first CSI-RS setting of the two CSI-RS resource settings and means for transmitting a second CSI report to the scheduling entity generated based on a second CSI-RS setting of the two CSI-RS resource settings.
  • Another example provides a non-transitory computer-readable medium including code for causing a scheduled entity to receive a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings.
  • CSI channel state information
  • Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI reports.
  • Each CSI report can correspond to one of the two CSI-RS resource settings.
  • the non-transitory computer-readable medium can further include code for causing the scheduled entity to receive the at least one CSI-RS from the scheduling entity based on the two CSI-RS resource settings.
  • the non-transitory computer-readable medium can further include code for causing the scheduled entity to transmit a first CSI report to the scheduling entity generated based on a first CSI-RS setting of the two CSI-RS resource settings and transmit a second CSI report to the scheduling entity generated based on a second CSI-RS setting of the two CSI-RS resource settings.
  • first CSI report and the second CSI report each include a different respective set of CSI report values for each of a plurality of CSI report parameters.
  • the second CSI-RS resource setting may include a power offset from the first CSI-RS resource setting or at least one of a subset of the set of CSI-RS ports of the first CSI-RS resource setting or a subset of the set of frequency resources of the first CSI-RS resource setting.
  • the multi-panel antenna array may include a first panel having a first set of antenna elements and a second panel having a second set of antenna elements. The first panel can be physically separated from the second panel.
  • the set of CSI-RS ports may include a first set of CSI-RS ports associated with the first panel and a second set of CSI-RS ports associated with the second panel. The subset of the set of CSI-RS ports can include one of the first set of CSI-RS ports or the second set of CSI-RS ports.
  • the second CSI-RS resource setting may include at least one code division multiplexing (CDM) group associated with the subset of the set of CSI-RS ports.
  • the subset of the set of frequency resources may include downlink frequency resources allocated for downlink communication from the scheduling entity to the scheduled entity when the scheduling entity is operating in a full duplex mode.
  • the power offset may be applicable to each of the CSI-RS ports.
  • FIG. 1 is a schematic illustration of a wireless communication system according to some aspects.
  • FIG. 2 is a conceptual illustration of an example of a radio access network according to some aspects.
  • FIG. 3 is a diagram illustrating an example of a frame structure for use in a wireless communication network according to some aspects.
  • FIG. 4 is a block diagram illustrating a wireless communication system supporting beamforming and/or multiple-input multiple-output (MIMO) communication according to some aspects.
  • MIMO multiple-input multiple-output
  • FIG. 5 is a schematic illustration of an example of a full duplex wireless communication network according to some aspects.
  • FIG. 6 is a diagram illustrating exemplary slot formats that may be utilized in full duplex wireless communication networks according to some aspects.
  • FIG. 7 is a diagram illustrating an example of multi-panel switching and beamforming in full duplex wireless communication networks according to some aspects.
  • FIG. 8 is a diagram illustrating another example of multi-panel switching and beamforming in full duplex wireless communication networks according to some aspects.
  • FIG. 9 is a diagram illustrating an example of CSI-RS resource mapping according to some aspects.
  • FIG. 10 is a diagram illustrating an example of a CSI report configuration mapping to a single CSI-RS resource setting to generate two CSI reports for a multi-panel full duplex base station according to some aspects.
  • FIG. 11 is a signaling diagram illustrating an example of CSI reporting for a multi-panel full duplex base station according to some aspects.
  • FIG. 12 is a signaling diagram illustrating another example of CSI reporting for a multi-panel full duplex base station according to some aspects.
  • FIG. 13 is a diagram illustrating an example of a CSI report configuration mapping to two CSI-RS resource settings to generate two CSI reports for a multi-panel full duplex base station according to some aspects.
  • FIG. 14 is a signaling diagram illustrating another example of CSI reporting for a multi-panel full duplex base station according to some aspects.
  • FIG. 15 is a block diagram illustrating an example of a hardware implementation for a scheduling entity employing a processing system according to some aspects.
  • FIG. 16 is a flow chart of an exemplary method for CSI reporting at a scheduling entity according to some aspects.
  • FIG. 17 is a flow chart of another exemplary method for CSI reporting at a scheduling entity according to some aspects.
  • FIG. 18 is a block diagram illustrating an example of a hardware implementation for a scheduled entity employing a processing system according to some aspects
  • FIG. 19 is a flow chart of an exemplary method for CSI reporting at a scheduled entity according to some aspects.
  • FIG. 20 is a flow chart of another exemplary method for CSI reporting at a scheduled entity according to some aspects.
  • Implementations may range a spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or OEM devices or systems incorporating one or more aspects of the described innovations.
  • devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments.
  • transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antenna, RF-chains, power amplifiers, modulators, buffer, processor (s) , interleaver, adders/summers, etc. ) .
  • innovations described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
  • the various concepts presented throughout this disclosure may be implemented across a broad variety of telecommunication systems, network architectures, and communication standards.
  • the wireless communication system 100 includes three interacting domains: a core network 102, a radio access network (RAN) 104, and a user equipment (UE) 106.
  • the UE 106 may be enabled to carry out data communication with an external data network 110, such as (but not limited to) the Internet.
  • the RAN 104 may implement any suitable wireless communication technology or technologies to provide radio access to the UE 106.
  • the RAN 104 may operate according to 3rd Generation Partnership Project (3GPP) New Radio (NR) specifications, often referred to as 5G.
  • 3GPP 3rd Generation Partnership Project
  • NR New Radio
  • the RAN 104 may operate under a hybrid of 5G NR and Evolved Universal Terrestrial Radio Access Network (eUTRAN) standards, often referred to as LTE.
  • eUTRAN Evolved Universal Terrestrial Radio Access Network
  • the 3GPP refers to this hybrid RAN as a next-generation RAN, or NG-RAN.
  • NG-RAN next-generation RAN
  • a base station is a network element in a radio access network responsible for radio transmission and reception in one or more cells to or from a UE.
  • a base station may variously be referred to by those skilled in the art as a base transceiver station (BTS) , a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , an access point (AP) , a Node B (NB) , an eNode B (eNB) , a gNode B (gNB) , or some other suitable terminology.
  • BTS base transceiver station
  • BSS basic service set
  • ESS extended service set
  • AP access point
  • NB Node B
  • eNB eNode B
  • gNB gNode B
  • the radio access network 104 is further illustrated supporting wireless communication for multiple mobile apparatuses.
  • a mobile apparatus may be referred to as user equipment (UE) in 3GPP standards, but may also be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology.
  • a UE may be an apparatus that provides a user with access to network services.
  • a “mobile” apparatus need not necessarily have a capability to move, and may be stationary.
  • the term mobile apparatus or mobile device broadly refers to a diverse array of devices and technologies.
  • UEs may include a number of hardware structural components sized, shaped, and arranged to help in communication; such components can include antennas, antenna array modules, RF chains, amplifiers, one or more processors, etc. electrically coupled to each other.
  • a mobile apparatus examples include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smartbook, a tablet, a personal digital assistant (PDA) , and a broad array of embedded systems, e.g., corresponding to an “Internet of Things” (IoT) .
  • IoT Internet of Things
  • a mobile apparatus may additionally be an automotive or other transportation vehicle, a remote sensor or actuator, a robot or robotics device, a satellite radio, a global positioning system (GPS) device, an object tracking device, a drone, a multi-copter, a quad-copter, a remote control device, a consumer and/or wearable device, such as eyewear, a wearable camera, a virtual reality device, a smart watch, a health or fitness tracker, a digital audio player (e.g., MP3 player) , a camera, a game console, etc.
  • GPS global positioning system
  • a mobile apparatus may additionally be a digital home or smart home device such as a home audio, video, and/or multimedia device, an appliance, a vending machine, intelligent lighting, a home security system, a smart meter, etc.
  • a mobile apparatus may additionally be a smart energy device, a security device, a solar panel or solar array, a municipal infrastructure device controlling electric power (e.g., a smart grid) , lighting, water, etc.; an industrial automation and enterprise device; a logistics controller; agricultural equipment; military defense equipment, vehicles, aircraft, ships, and weaponry, etc.
  • a mobile apparatus may provide for connected medicine or telemedicine support, i.e., health care at a distance.
  • Telehealth devices may include telehealth monitoring devices and telehealth administration devices, whose communication may be given preferential treatment or prioritized access over other types of information, e.g., in terms of prioritized access for transport of critical service data, and/or relevant QoS for transport of critical service data.
  • Wireless communication between a RAN 104 and a UE 106 may be described as utilizing an air interface.
  • Transmissions over the air interface from a base station (e.g., base station 108) to one or more UEs (e.g., UE 106) may be referred to as downlink (DL) transmission.
  • DL downlink
  • the term downlink may refer to a point-to-multipoint transmission originating at a scheduling entity (described further below; e.g., base station 108) .
  • Another way to describe this scheme may be to use the term broadcast channel multiplexing.
  • Uplink Transmissions from a UE (e.g., UE 106) to a base station (e.g., base station 108) may be referred to as uplink (UL) transmissions.
  • UL uplink
  • the term uplink may refer to a point-to-point transmission originating at a scheduled entity (described further below; e.g., UE 106) .
  • a scheduling entity e.g., a base station 108 allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more scheduled entities. That is, for scheduled communication, UEs 106, which may be scheduled entities, may utilize resources allocated by the scheduling entity 108.
  • Base stations 108 are not the only entities that may function as scheduling entities. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more scheduled entities (e.g., one or more other UEs) . And as discussed more below, UEs may communicate directly with other UEs in peer-to-peer fashion and/or in relay configuration.
  • a scheduling entity 108 may broadcast downlink traffic 112 to one or more scheduled entities 106.
  • the scheduling entity 108 is a node or device responsible for scheduling traffic in a wireless communication network, including the downlink traffic 112 and, in some examples, uplink traffic 116 from one or more scheduled entities 106 to the scheduling entity 108.
  • the scheduled entity 106 is a node or device that receives downlink control information 114, including but not limited to scheduling information (e.g., a grant) , synchronization or timing information, or other control information from another entity in the wireless communication network such as the scheduling entity 108.
  • the uplink and/or downlink control information and/or traffic information may be time-divided into frames, subframes, slots, and/or symbols.
  • a symbol may refer to a unit of time that, in an orthogonal frequency division multiplexed (OFDM) waveform, carries one resource element (RE) per sub-carrier.
  • a slot may carry 7 or 14 OFDM symbols.
  • a subframe may refer to a duration of 1ms. Multiple subframes or slots may be grouped together to form a single frame or radio frame.
  • OFDM orthogonal frequency division multiplexed
  • a slot may carry 7 or 14 OFDM symbols.
  • a subframe may refer to a duration of 1ms. Multiple subframes or slots may be grouped together to form a single frame or radio frame.
  • these definitions are not required, and any suitable scheme for organizing waveforms may be utilized, and various time divisions of the waveform may have any suitable duration.
  • base stations 108 may include a backhaul interface for communication with a backhaul portion 120 of the wireless communication system.
  • the backhaul 120 may provide a link between a base station 108 and the core network 102.
  • a backhaul network may provide interconnection between the respective base stations 108.
  • Various types of backhaul interfaces may be employed, such as a direct physical connection, a virtual network, or the like using any suitable transport network.
  • the core network 102 may be a part of the wireless communication system 100, and may be independent of the radio access technology used in the RAN 104.
  • the core network 102 may be configured according to 5G standards (e.g., 5GC) .
  • the core network 102 may be configured according to a 4G evolved packet core (EPC) , or any other suitable standard or configuration.
  • 5G standards e.g., 5GC
  • EPC 4G evolved packet core
  • FIG. 2 a schematic illustration of a RAN 200 is provided.
  • the RAN 200 may be the same as the RAN 104 described above and illustrated in FIG. 1.
  • the geographic area covered by the RAN 200 may be divided into cellular regions (cells) that can be uniquely identified by a user equipment (UE) based on an identification broadcasted from one access point or base station.
  • FIG. 2 illustrates macrocells 202, 204, and 206, and a small cell 208, each of which may include one or more sectors (not shown) .
  • a sector is a sub-area of a cell. All sectors within one cell are served by the same base station.
  • a radio link within a sector can be identified by a single logical identification belonging to that sector.
  • the multiple sectors within a cell can be formed by groups of antennas with each antenna responsible for communication with UEs in a portion of the cell.
  • FIG. 2 two base stations 210 and 212 are shown in cells 202 and 204; and a third base station 214 is shown controlling a remote radio head (RRH) 216 in cell 206. That is, a base station can have an integrated antenna or can be connected to an antenna or RRH by feeder cables.
  • the cells 202, 204, and 126 may be referred to as macrocells, as the base stations 210, 212, and 214 support cells having a large size.
  • a base station 218 is shown in the small cell 208 (e.g., a microcell, picocell, femtocell, home base station, home Node B, home eNode B, etc.
  • the cell 208 may be referred to as a small cell, as the base station 218 supports a cell having a relatively small size.
  • Cell sizing can be done according to system design as well as component constraints.
  • the radio access network 200 may include any number of wireless base stations and cells. Further, a relay node may be deployed to extend the size or coverage area of a given cell.
  • the base stations 210, 212, 214, 218 provide wireless access points to a core network for any number of mobile apparatuses. In some examples, the base stations 210, 212, 214, and/or 218 may be the same as the base station/scheduling entity 108 described above and illustrated in FIG. 1.
  • the cells may include UEs that may be in communication with one or more sectors of each cell.
  • each base station 210, 212, 214, and 218 may be configured to provide an access point to a core network 102 (see FIG. 1) for all the UEs in the respective cells.
  • UEs 222 and 224 may be in communication with base station 210; UEs 226 and 228 may be in communication with base station 212; UEs 230 and 232 may be in communication with base station 214 by way of RRH 216; and UE 234 may be in communication with base station 218.
  • the UEs 222, 224, 226, 228, 230, 232, 234, 238, 240, and/or 242 may be the same as the UE/scheduled entity 106 described above and illustrated in FIG. 1.
  • an unmanned aerial vehicle (UAV) 220 which may be a drone or quadcopter, can be a mobile network node and may be configured to function as a UE.
  • the UAV 220 may operate within cell 202 by communicating with base station 210.
  • sidelink signals may be used between UEs without necessarily relying on scheduling or control information from a base station.
  • two or more UEs e.g., UEs 226 and 228, may communicate with each other using sidelink signals 227 without relaying that communication through a base station (e.g., base station 212) .
  • the sidelink signals 227 include sidelink traffic and sidelink control.
  • UE 238 is illustrated communicating with UEs 240 and 242.
  • the UE 238 may function as a scheduling entity or a primary/transmitting sidelink device, and UEs 240 and 242 may each function as a scheduled entity or a non-primary (e.g., secondary/receiving) sidelink device.
  • a UE may function as a scheduling entity or scheduled entity in a device-to-device (D2D) , peer-to-peer (P2P) , vehicle-to-vehicle (V2V) network, vehicle-to-everything (V2X) and/or in a mesh network.
  • D2D device-to-device
  • P2P peer-to-peer
  • V2V vehicle-to-vehicle
  • V2X vehicle-to-everything
  • UEs 240 and 242 may optionally communicate directly with one another in addition to communicating with the scheduling entity 238.
  • a scheduling entity and one or more scheduled entities may communicate utilizing the scheduled resources.
  • the air interface in the radio access network 200 may utilize one or more multiplexing and multiple access algorithms to enable simultaneous communication of the various devices.
  • 5G NR specifications provide multiple access for UL transmissions from UEs 222 and 224 to base station 210, and for multiplexing for DL transmissions from base station 210 to one or more UEs 222 and 224, utilizing orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) .
  • OFDM orthogonal frequency division multiplexing
  • CP cyclic prefix
  • 5G NR specifications provide support for discrete Fourier transform-spread-OFDM (DFT-s-OFDM) with a CP (also referred to as single-carrier FDMA (SC-FDMA) ) .
  • DFT-s-OFDM discrete Fourier transform-spread-OFDM
  • SC-FDMA single-carrier FDMA
  • multiplexing and multiple access are not limited to the above schemes, and may be provided utilizing time division multiple access (TDMA) , code division multiple access (CDMA) , frequency division multiple access (FDMA) , sparse code multiple access (SCMA) , resource spread multiple access (RSMA) , or other suitable multiple access schemes.
  • multiplexing DL transmissions from the base station 210 to UEs 222 and 224 may be provided utilizing time division multiplexing (TDM) , code division multiplexing (CDM) , frequency division multiplexing (FDM) , orthogonal frequency division multiplexing (OFDM) , sparse code multiplexing (SCM) , or other suitable multiplexing schemes.
  • the air interface in the radio access network 200 may further utilize one or more duplexing algorithms.
  • Duplex refers to a point-to-point communication link where both endpoints can communicate with one another in both directions.
  • Full duplex means both endpoints can simultaneously communicate with one another.
  • Half duplex means only one endpoint can send information to the other at a time.
  • a full duplex channel generally relies on physical isolation of a transmitter and receiver, and suitable interference cancellation technologies.
  • Full duplex emulation is frequently implemented for wireless links by utilizing frequency division duplex (FDD) or time division duplex (TDD) .
  • FDD frequency division duplex
  • TDD time division duplex
  • transmissions in different directions operate at different carrier frequencies.
  • TDD transmissions in different directions on a given channel are separated from one another using time division multiplexing. That is, at some times the channel is dedicated for transmissions in one direction, while at other times the channel is dedicated for transmissions in the other direction, where the direction may change very rapidly, e.g.,
  • FIG. 3 an expanded view of an exemplary DL subframe 302 is illustrated, showing an OFDM resource grid.
  • time is in the horizontal direction with units of OFDM symbols; and frequency is in the vertical direction with units of subcarriers.
  • the resource grid 304 may be used to schematically represent time–frequency resources for a given antenna port. That is, in a multiple-input-multiple-output (MIMO) implementation with multiple antenna ports available, a corresponding multiple number of resource grids 304 may be available for communication.
  • the resource grid 304 is divided into multiple resource elements (REs) 306.
  • An RE which is 1 subcarrier ⁇ 1 symbol, is the smallest discrete part of the time–frequency grid, and contains a single complex value representing data from a physical channel or signal.
  • each RE may represent one or more bits of information.
  • a block of REs may be referred to as a physical resource block (PRB) or a resource block (RB) 308, which contains any suitable number of consecutive subcarriers in the frequency domain.
  • an RB may include 12 subcarriers, a number independent of the numerology used.
  • an RB may include any suitable number of consecutive OFDM symbols in the time domain.
  • a set of continuous or discontinuous resource blocks may be referred to herein as a Resource Block Group (RBG) , sub-band, or bandwidth part (BWP) .
  • RBG Resource Block Group
  • BWP bandwidth part
  • a set of sub-bands or BWPs may span the entire bandwidth.
  • Scheduling of UEs (scheduled entities) for downlink or uplink transmissions typically involves scheduling one or more resource elements 306 within one or more sub-bands or bandwidth parts (BWPs) .
  • a UE generally utilizes only a subset of the resource grid 304.
  • An RB may be the smallest unit of resources that can be allocated to a UE.
  • the more RBs scheduled for a UE, and the higher the modulation scheme chosen for the air interface the higher the data rate for the UE.
  • the RB 308 is shown as occupying less than the entire bandwidth of the subframe 302, with some subcarriers illustrated above and below the RB 308.
  • the subframe 302 may have a bandwidth corresponding to any number of one or more RBs 308.
  • the RB 308 is shown as occupying less than the entire duration of the subframe 302, although this is merely one possible example.
  • Each 1 ms subframe 302 may consist of one or multiple adjacent slots.
  • one subframe 302 includes four slots 310, as an illustrative example.
  • a slot may be defined according to a specified number of OFDM symbols with a given cyclic prefix (CP) length.
  • CP cyclic prefix
  • a slot may include 7 or 14 OFDM symbols with a nominal CP.
  • Additional examples may include mini- slots, sometimes referred to as shortened transmission time intervals (TTIs) , having a shorter duration (e.g., one to three OFDM symbols) .
  • TTIs shortened transmission time intervals
  • These mini-slots or shortened transmission time intervals (TTIs) may in some cases be transmitted occupying resources scheduled for ongoing slot transmissions for the same or for different UEs. Any number of resource blocks may be utilized within a subframe or slot.
  • An expanded view of one of the slots 310 illustrates the slot 310 including a control region 312 and a data region 314.
  • the control region 312 may carry control channels
  • the data region 314 may carry data channels.
  • a slot may contain all DL, all UL, or at least one DL portion and at least one UL portion.
  • the structure illustrated in FIG. 3 is merely exemplary in nature, and different slot structures may be utilized, and may include one or more of each of the control region (s) and data region (s) .
  • the various REs 306 within a RB 308 may be scheduled to carry one or more physical channels, including control channels, shared channels, data channels, etc.
  • Other REs 306 within the RB 308 may also carry pilots or reference signals, including but not limited to a demodulation reference signal (DMRS) , a control reference signal (CRS) , channel state information reference signal (CSI-RS) , or a sounding reference signal (SRS) .
  • DMRS demodulation reference signal
  • CRS control reference signal
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • the base station may allocate one or more REs 306 (e.g., within a control region 312) to carry DL control information including one or more DL control channels, such as a physical hybrid automatic repeat request (HARQ) indicator channel (PHICH) , a physical downlink control channel (PDCCH) , etc., to one or more scheduled entities.
  • the PDCCH carries downlink control information (DCI) including but not limited to power control commands, scheduling information, a grant, and/or an assignment of REs for DL and UL transmissions.
  • DCI downlink control information
  • the PHICH carries HARQ feedback transmissions such as an acknowledgment (ACK) or negative acknowledgment (NACK) .
  • HARQ is a technique well-known to those of ordinary skill in the art, wherein the integrity of packet transmissions may be checked at the receiving side for accuracy, e.g., utilizing any suitable integrity checking mechanism, such as a checksum or a cyclic redundancy check (CRC) . If the integrity of the transmission confirmed, an ACK may be transmitted, whereas if not confirmed, a NACK may be transmitted. In response to a NACK, the transmitting device may send a HARQ retransmission, which may implement chase combining, incremental redundancy, etc.
  • any suitable integrity checking mechanism such as a checksum or a cyclic redundancy check (CRC) .
  • CRC cyclic redundancy check
  • the base station may further allocate one or more REs 306 to carry other DL signals, such as a DMRS; a phase-tracking reference signal (PT-RS) ; a CSI-RS; a primary synchronization signal (PSS) ; and a secondary synchronization signal (SSS) .
  • a UE may utilize the PSS and SSS to achieve radio frame, subframe, slot, and symbol synchronization in the time domain, identify the center of the channel (system) bandwidth in the frequency domain, and identify the physical cell identity (PCI) of the cell.
  • the synchronization signals PSS and SSS, and in some examples, the PBCH and a PBCH DMRS may be transmitted in a synchronization signal block (SSB) .
  • SSB synchronization signal block
  • the PBCH may further include a master information block (MIB) that includes various system information, along with parameters for decoding a system information block (SIB) .
  • the SIB may be, for example, a SystemInformationType 1 (SIB1) that may include various additional system information.
  • system information transmitted in the MIB may include, but are not limited to, a subcarrier spacing, system frame number, a configuration of a PDCCH control resource set (CORESET) (e.g., PDCCH CORESET0) , and a search space for SIB1.
  • CORESET PDCCH control resource set
  • additional system information transmitted in the SIB1 may include, but are not limited to, a random access search space, downlink configuration information, and uplink configuration information.
  • the MIB and SIB1 together provide the minimum system information (SI) for initial access.
  • the UE may utilize one or more REs 306 to carry UL control information including one or more UL control channels, such as a physical uplink control channel (PUCCH) , to the scheduling entity.
  • UL control information may include a variety of packet types and categories, including pilots, reference signals, and information configured to enable or assist in decoding uplink data transmissions.
  • the control information may include a scheduling request (SR) , i.e., request for the scheduling entity to schedule uplink transmissions.
  • SR scheduling request
  • the scheduling entity may transmit downlink control information that may schedule resources for uplink packet transmissions.
  • UL control information may also include HARQ feedback, channel state feedback (CSF) , or any other suitable UL control information.
  • CSF channel state feedback
  • one or more REs 306 may be allocated for user data traffic. Such traffic may be carried on one or more traffic channels, such as, for a DL transmission, a physical downlink shared channel (PDSCH) ; or for an UL transmission, a physical uplink shared channel (PUSCH) .
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • one or more REs 306 within the data region 314 may be configured to carry SIBs (e.g., SIB1) , carrying information that may enable access to a given cell.
  • Transport channels carry blocks of information called transport blocks (TB) .
  • TBS transport block size
  • MCS modulation and coding scheme
  • channels or carriers described above in connection with FIGs. 1–3 are not necessarily all of the channels or carriers that may be utilized between a scheduling entity and scheduled entities, and those of ordinary skill in the art will recognize that other channels or carriers may be utilized in addition to those illustrated, such as other traffic, control, and feedback channels.
  • the scheduling entity and/or scheduled entity may be configured for beamforming and/or multiple-input multiple-output (MIMO) technology.
  • FIG. 4 illustrates an example of a wireless communication system 400 supporting beamforming and/or MIMO.
  • a transmitter 402 includes multiple transmit antennas 404 (e.g., N transmit antennas) and a receiver 406 includes multiple receive antennas 408 (e.g., M receive antennas) .
  • N transmit antennas e.g., N transmit antennas
  • M receive antennas multiple receive antennas 408
  • the multiple transmit antennas 404 and multiple receive antennas 408 may each be configured in a single panel or multi-panel antenna array.
  • Each of the transmitter 402 and the receiver 406 may be implemented, for example, within a scheduling entity or base station, as illustrated in FIGs. 1 and/or 2, a scheduled entity or UE, as illustrated in FIGs. 1 and/or 2, or any other suitable wireless communication device.
  • Spatial multiplexing may be used to transmit different streams of data, also referred to as layers, simultaneously on the same time-frequency resource.
  • the data streams may be transmitted to a single UE to increase the data rate or to multiple UEs to increase the overall system capacity, the latter being referred to as multi-user MIMO (MU-MIMO) .
  • MU-MIMO multi-user MIMO
  • This is achieved by spatially precoding each data stream (i.e., multiplying the data streams with different weighting and phase shifting) and then transmitting each spatially precoded stream through multiple transmit antennas on the downlink.
  • the spatially precoded data streams arrive at the UE (s) with different spatial signatures, which enables each of the UE (s) to recover the one or more data streams destined for that UE.
  • each UE transmits a spatially precoded data stream, which enables the base station to identify the source of each spatially precoded data stream.
  • the number of data streams or layers corresponds to the rank of the transmission.
  • the rank of the MIMO system 400 is limited by the number of transmit or receive antennas 404 or 408, whichever is lower.
  • the channel conditions at the UE, as well as other considerations, such as the available resources at the base station, may also affect the transmission rank.
  • the rank (and therefore, the number of data streams) assigned to a particular UE on the downlink may be determined based on the rank indicator (RI) transmitted from the UE to the base station.
  • the RI may be determined based on the antenna configuration (e.g., the number of transmit and receive antennas) and a measured signal-to-interference-and-noise ratio (SINR) on each of the receive antennas.
  • SINR signal-to-interference-and-noise ratio
  • the RI may indicate, for example, the number of layers that may be supported under the current channel conditions.
  • the base station may use the RI, along with resource information (e.g., the available resources and amount of data to be scheduled for the UE) , to assign a transmission rank to the UE.
  • resource information e.g., the available resources and amount of data to be scheduled for the UE
  • a rank-2 spatial multiplexing transmission on a 2x2 MIMO antenna configuration will transmit one data stream from each transmit antenna 404.
  • Each data stream reaches each receive antenna 408 along a different signal path 410.
  • the receiver 406 may then reconstruct the data streams using the received signals from each receive antenna 408.
  • Beamforming is a signal processing technique that may be used at the transmitter 402 or receiver 406 to shape or steer an antenna beam (e.g., a transmit/receive beam) along a spatial path between the transmitter 402 and the receiver 406. Beamforming may be achieved by combining the signals communicated via antennas 404 or 408 (e.g., antenna elements of an antenna array) such that some of the signals experience constructive interference while others experience destructive interference. To create the desired constructive/destructive interference, the transmitter 402 or receiver 406 may apply amplitude and/or phase offsets to signals transmitted or received from each of the antennas 404 or 408 associated with the transmitter 402 or receiver 406.
  • antennas 404 or 408 e.g., antenna elements of an antenna array
  • the base station may transmit a reference signal, such as a synchronization signal block (SSB) , a tracking reference signal (TRS) , or a channel state information reference signal (CSI-RS) , on each of a plurality of beams in a beam-sweeping manner.
  • the UE may measure the reference signal received power (RSRP) on each of the beams and transmit a beam measurement report to the base station indicating the Layer 1 (L-1 RSRP) of each of the measured beams.
  • the base station may then select the serving beam (s) for communication with the UE based on the beam measurement report.
  • the base station may derive the particular beam (s) to communicate with the UE based on uplink measurements of one or more uplink reference signals, such as a sounding reference signal (SRS) .
  • uplink reference signals such as a sounding reference signal (SRS)
  • beamformed signals may be utilized for downlink channels, including the physical downlink control channel (PDCCH) and physical downlink shared channel (PDSCH) .
  • downlink channels including the physical downlink control channel (PDCCH) and physical downlink shared channel (PDSCH)
  • PDSCH physical downlink shared channel
  • beamformed signals may also be utilized for uplink channels, including the physical uplink control channel (PUCCH) and physical uplink shared channel (PUSCH) .
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • beamformed signals may also be utilized by enhanced mobile broadband (eMBB) gNBs for sub 6 GHz systems.
  • eMBB enhanced mobile broadband
  • Beamforming may be used in both half duplex and full duplex wireless communication networks.
  • full duplex networks downlink and uplink transmissions may occur simultaneously.
  • full duplex networks may utilize sub-band FDD in unpaired spectrum, in which transmissions in different directions are carried in different sub-bands or BWPs of the carrier bandwidth.
  • FIG. 5 is a schematic illustration of an example of a full duplex wireless communication network 500 according to some aspects.
  • the full duplex wireless communication network 500 includes a scheduling entity 502 (e.g., a base station, such as a gNB) in wireless communication with scheduled entities 504a and 504b (e.g., UEs) .
  • the scheduling entity 502 may correspond to any of the scheduling entities or base stations shown in FIGs. 1 and/or 2.
  • the scheduled entities 504a and 504b may correspond to any of the scheduled entities or UEs shown in FIGs. 1 and/or 2.
  • one or more UEs may function as scheduling entities.
  • the scheduling entity 502 may be configured with one or more antennas and/or antenna arrays. As shown in Figure 5’s example, the scheduling entity may include antenna arrays 506a and 506b (two of which are shown for convenience) to generate beams radially distributed in all directions (e.g., 360 degrees) . The scheduling entity 502 may further be configured to generate beams of varying beam widths to accommodate mobility of the scheduled entities 504a and 504b. For example, the scheduling entity 502 may utilize a wide beam for communication with a scheduled entity (e.g., scheduled entity 504a) when the scheduled entity 504a is in motion and a narrow beam for communication with the scheduled entity 504a when the scheduled entity 504a is stationary.
  • a scheduled entity e.g., scheduled entity 504a
  • Each of the antenna arrays 506a and 506b may be a single panel antenna array or a multi-panel antenna array.
  • the antenna arrays 506a and 506b are multi-panel antenna arrays.
  • antenna array 506a includes two antenna panels 508a and 508b
  • antenna array 506b includes two antenna panels 508c and 508d.
  • Each of the antenna arrays 506a and 506b further includes a plurality of antenna elements 510.
  • the antenna elements 510 may be mapped to antenna ports for generation of the beams.
  • the term antenna port refers to a logical port (e.g., a beam) over which a signal (e.g., a data stream or layer) may be transmitted.
  • antenna array 506a may include 128 antenna elements 510 (e.g., within a 16x8 array) that may be mapped to 32 antenna ports by an 8x1 combiner.
  • each layer (or data stream) may be mapped to one of the antenna ports.
  • the scheduling entity 502 may maintain a codebook of precoding matrices and map the different transmission layers to a set of antenna ports on the scheduling entity 502 using a selected precoding matrix.
  • the precoding matrix provides the appropriate weightings to be applied to each layer for generation of the respective beam for each layer.
  • the precoding matrix may be selected based on the PMI fed back from the scheduled entity in the CSI report. For example, using the PMI, the scheduling entity 502 may select a particular precoding matrix from a codebook for a MIMO transmission.
  • codebooks can be Type 1 codebooks (single panel or multi-panel) or Type II codebooks.
  • Type I codebooks include predefined precoding matrices based on the number of layers and antenna ports.
  • Type II codebooks also include precoding matrices based on the number of layers and antenna ports.
  • the scheduling entity 502 uses wideband and sub-band indices fed back from the scheduled entity to calculate the respective weightings applied to each layer for improved beamforming.
  • Codebooks may also have additional features.
  • utilized codebook types can be designed based on 1D/2D discrete Fourier transform (DFT) vectors, and hence assume that a uniform linear or planar antenna array 506a/506b is employed at the scheduling entity 502. Since a wide variety of 2D antenna array dimensions are available, the codebooks may be configurable and scalable. That is, the antenna port layout of an antenna panel 508a or 508b in vertical and horizontal dimensions (N 1 and N 2 , respectively) may be explicitly configured as part of the codebook configuration. For a multi-panel codebook, the number of panels N g is also configured.
  • DFT discrete Fourier transform
  • the scheduling entity 502 may simultaneously transmit a downlink signal 512 (e.g., downlink control information and/or data) to one of the scheduled entities (e.g., scheduled entity 504a) on one or more antenna ports (e.g., based on the selected precoding matrix) and receive an uplink signal 514 (e.g., uplink control information and/or data) from the other scheduled entity (e.g., scheduled entity 504b) on one or more of the antenna ports.
  • a downlink signal 512 e.g., downlink control information and/or data
  • an uplink signal 514 e.g., uplink control information and/or data
  • the scheduling entity 502 may transmit the downlink signal 512 on one or more antenna ports associated with one of the antenna panels (e.g., antenna panel 508a) and receive the uplink signal 514 on one or more antenna ports associated with the other antenna panel (e.g., antenna panel 508b) .
  • Using separate panels 508a and 508b for downlink and uplink transmissions in full duplex mode can facilitate mitigation of self-interference.
  • Such interference may arise from co-existing signals, such as the uplink signal 514 and the downlink signal 512.
  • the panels 508a and 508b may be physically separated from one another by a distance selected to provide improved isolation between the simultaneous transmission (Tx) and reception (Rx) operations, thereby mitigating at least a portion of the self-interference.
  • Further mitigation of self-interference may be achieved by implementing sub-band FDD in unpaired spectrum. With sub-band FDD, the downlink and uplink transmissions are in different portions (e.g., different sub-bands or BWPs) of the carrier bandwidth.
  • a guard band may further be provided between the uplink sub-band (s) and the downlink sub-band (s) to isolate the uplink and downlink transmissions in frequency.
  • Other self-mitigation techniques may further be utilized, such as digital interference cancellation, Rx windowed overlap and add (WOLA) to reduce the adjacent channel leakage ratio (ACLR) leakage to the uplink signal 514, improving the Rx antenna gain control (AGC) state, and other suitable mitigation techniques.
  • each of the scheduled entities 504a and 504b is operating in half duplex mode.
  • one or more of the scheduled entities 504a and 504b may also be operating in full duplex mode to simultaneously transmit information to and receive information from the scheduling entity 502.
  • the scheduling entity 502 may be configured to switch between full duplex mode and half duplex mode to accommodate scheduled entities supporting either eMBB or ultra-reliable low-latency communication (URLLC) use cases.
  • the scheduling entity 502 may implement TDD to perform one of transmission or reception at a time.
  • the scheduling entity 502 may transmit the downlink signal 512 to the scheduled entity 504a using the full antenna array 506a (e.g., both panels 508a and 508b) at a first time and then receive the uplink signal 514 from the scheduled entity 504b using the full antenna array 506a at a second time subsequent to the first time.
  • the scheduling entity may transmit the downlink signal 512 and receive the uplink signal 514 on any of the antenna ports of the full multi-panel antenna array 506a.
  • FIG. 6 is a diagram illustrating exemplary slot formats that may be utilized in full duplex wireless communication networks according to some aspects.
  • time is in the horizontal direction with units of slots 602a–602d, each including a plurality of OFDM symbols; and frequency is in the vertical direction.
  • a carrier bandwidth 604 is illustrated along the frequency axis.
  • the carrier bandwidth 604 may be divided into a number of sub-bands (or BWPs) 606a–606c for sub-band FDD full duplex operation.
  • a scheduling entity 502 may use a first antenna panel (e.g., antenna panel 508a, shown in FIG.
  • the downlink (DL) sub-bands 606a and 606b include a DL burst 608, which may include a physical downlink control channel (PDCCH) carrying DCI, in the initial of beginning portion of the slots 602b and 602c.
  • the DL burst 608 of slot 602b may include control information that may be related to the slot 602b or a previous or subsequent slot.
  • the DL burst 608 may be transmitted by a scheduling entity (e.g., a base station, such as a gNB) towards one or more scheduled entities (e.g., UEs) .
  • a scheduling entity e.g., a base station, such as a gNB
  • scheduled entities e.g., UEs
  • the DCI may include common DCI or UE-specific DCI.
  • the common DCI may include, for example, common control information broadcast to a group of scheduled entities or all scheduled entities in the cell.
  • common control information may include information related to random access.
  • the UE-specific DCI may include, for example, HARQ feedback information (e.g., ACK/NACK) , scheduling information for scheduling a downlink data transmission and/or uplink transmission in the slot 602b or a subsequent slot (e.g., slot 602c and/or 602d) , and other suitable information.
  • slots 602b and 602c each include a DL data portion 610 for transmitting DL data within sub-bands 606a and 606b.
  • the DL data may be transmitted within a PDSCH.
  • the DL data portion 610 may further include DL reference signals (e.g., DMRS) for use in demodulating and decoding the DL data.
  • CSI-RS may be transmitted within the DL burst 608 and/or DL data portion 610 of the DL sub-bands 606a and 606b of slots 602b and 602c.
  • the CSI-RS may be transmitted in bursts of two or four symbols of across one or two slots.
  • the slots 602b and 602c each include an UL data portion 612 for transmitting UL data.
  • the UL data may be transmitted within a PUSCH.
  • the UL sub-band 606c of slots 602b and 602c each include an UL burst 614.
  • the UL burst 614 may include, for example, a physical uplink control channel (PUCCH) including uplink control information (UCI) .
  • the UCI may include, for example, a scheduling request, HARQ feedback information, a CSI report, or any suitable UCI.
  • the UL burst 614 may include one or more UL reference signals, such as the SRS.
  • Guard bands 614 are further provided between the UL sub-band 606c and the DL sub-bands 606a and 606b to mitigate self-interference between simultaneous DL transmissions in the DL sub-bands 606a and 606b and UL transmissions in the UL sub-band 606c.
  • slot formats having other partitions of the carrier bandwidth 604 for sub-band FDD full duplex slots 602b and 602c may be utilized.
  • the guard band 616 may be extended or minimized, the UL sub-band 606c may occupy a larger portion or a smaller portion of the carrier bandwidth 604, the UL sub-band 606c and DL sub-bands 606a and 606c may be reversed such that the UL sub-bands occupy a larger percentage of the carrier bandwidth 604 than the DL sub-band, or the carrier bandwidth 604 may be divided between a single DL sub-band and a single UL sub-band.
  • a single DL sub-band may include a lower frequency range of the carrier bandwidth 604, while a single UL sub-band may include an upper frequency range of the carrier bandwidth 604.
  • a full duplex wireless network may further utilize TDD half duplex slot formats in which transmissions in only one of the directions (downlink or uplink) are allowed at a time.
  • Slots 602a and 602d are examples of TDD slot formats.
  • a DL burst 608 is followed by a DL data portion 610.
  • the DL burst 608 and DL data portion 610 may include DL control information and/or DL data, as discussed above.
  • CSI-RS may be transmitted within the DL burst 608 and/or DL data portion 610 across the entire carrier bandwidth 604 to enable channel estimation of the full channel.
  • Slot 602a may also include a common uplink (UL) burst 614 at the end of slot 602a.
  • the common UL burst 614 may include UCI and other UL signals, as discussed above.
  • the end of the DL data portion 610 may be separated in time from the beginning of the UL burst 614. This time separation 618 may sometimes be referred to as a gap, a guard period, a guard interval, and/or various other suitable terms. This separation may provide time for the scheduling entity and scheduled entity to perform a switch-over between transmitting and receiving, or vice-versa.
  • an UL data portion 612 is followed by an UL burst 614.
  • the UL data portion 612 and UL burst 614 may include UL control information and/or UL data, as discussed above.
  • an SRS may be transmitted within the UL data portion 612 and/or UL burst 614 across the entire carrier bandwidth 604 to enable channel estimation of the full channel.
  • FIG. 7 is a diagram illustrating an example of multi-panel switching and beamforming in full duplex wireless communication networks according to some aspects.
  • FIG. 7 will be described with reference to a plurality of slots 702a–702d having different slot formats over time.
  • the slot formats may correspond, for example, to the slot formats shown in FIG. 6 and include both TDD half duplex slots and sub-band FDD full duplex slots.
  • a scheduling entity e.g., a base station, such as a gNB
  • the multi-panel array may include a first antenna panel 704a and a second antenna panel 704b.
  • the panels may be disposed in a variety of arrangements or layouts, including physically separated (e.g., spaced apart) from one another in the antenna array.
  • the scheduling entity may be configured to simultaneously use both antenna panels 704a and 704b for single direction communication in some slots (e.g., slots 702a and 702d) and to use only one of the antenna panels 704a or 704b for single direction communication in other slots (e.g., slots 702b and 702c) .
  • the antenna panels 704a and 704b each include a plurality of antenna elements that may be mapped to logical antenna ports 706. For example, for MIMO communication with a scheduled entity, each layer may be mapped to a logical antenna port, which may be spread across one or more physical antenna elements, for transmission/reception thereof.
  • the antenna array including panels 704a and 704b may include 128 antenna elements mapped to 32 antenna ports 706 by an 8x1 combiner.
  • the scheduling entity may be configured to use both antenna panels 704a and 704b.
  • both panels can transmit DL control information and/or data on one or more transmit beams 708a, each corresponding to an antenna port 706, within the DL burst and DL data portion of the slot 702a.
  • the scheduling entity may be configured to use both antenna panels 704a and 704b to receive UL control information on one or more receive beams, each corresponding to an antenna port 706, within the UL burst of the slot 702a.
  • the scheduling entity may also be configured to use both antenna panels 704a and 704b to receive UL control information and/or data from one or more scheduled entities on one or more of the receive beams.
  • the scheduling entity may be configured to use different panels for differing purposes.
  • one of the antenna panels 704a may be used for downlink transmissions and the other antenna panel 704b for uplink receptions.
  • the antenna port mapping on antenna panels 704a and 704b is reconfigured, such that each antenna panel 704a and 704b includes the same number of antenna ports 706 as the total number of antenna ports 706 across both antenna panels 704a and 704b used in slot 702a.
  • each antenna panel 704a and 704b can include 64 antenna elements that may be mapped to 32 antenna ports by a 4x1 combiner.
  • each antenna port includes half of the antenna elements (e.g., using a 4x1 combiner instead of an 8x1 combiner)
  • the power per antenna ports 706 in slots 702b and 702c is reduced by half as compared to the power per antenna port 706 in slot 702a.
  • each transmit beam 708b in slots 702b and 702c may be transmitted with half the power.
  • each receive beam 708c in slots 702b and 702c may be received with half the power.
  • FIG. 8 is a diagram illustrating another example of multi-panel switching and beamforming in full duplex wireless communication networks according to some aspects.
  • FIG. 8 will also be described with reference to a plurality of slots 802a–802d having different slot formats over time.
  • the slot formats may correspond, for example, to the slot formats shown in FIG. 6 and include both TDD half duplex slots and sub-band FDD full duplex slots.
  • a scheduling entity e.g., a base station, such as a gNB
  • the array can include, for example, a first antenna panel 804a and a second antenna panel 804b.
  • the scheduling entity may be configured to simultaneously use both antenna panels 804a and 804b for single direction communication in some slots (e.g., slots 802a and 802d) over beams 808a and to use only one of the antenna panels 804a or 804b for single direction communication in other slots (e.g., slots 802b and 802c) over beams 808b and 808c.
  • the antenna panels 804a and 804b may include a plurality of antenna elements that may mapped to logical antenna ports 806.
  • each antenna panel 804a and 804b is configured with one or more antenna ports.
  • each panel may have half the number antenna ports as the total number of antenna ports 806 across both antenna panels 804a and 804b in slot 802a.
  • each antenna panel 704a and 704b is reconfigured to include the same number of antenna ports 706 as the total number of ports across both antenna panels 704a and 704b in slot 702a.
  • each antenna panel 804a and 804b can include 64 antenna elements that may be mapped to 16 antenna ports by an 8x1 combiner.
  • each transmit beam 808b and each receive beam 808c in slots 802b and 802c may be wider than the beams 808a in slot 802a due to the reduced number of antenna ports in each of the panels 804a and 804b.
  • the DL communications can be affected by antenna port changes.
  • the change in the number of antenna ports between slot 802a and slot 802b in FIG. 8 or the change in the power per antenna port between slot 702a and slot 702b in FIG. 7 may affect the DL beamforming between slots 702a and 702b.
  • the beamforming gain may be reduced between slots 702a and 702b or slots 802a and 802b.
  • the transmit beam (s) used in slot 702a/802a may not be the best beam (s) to use in slot 702b/802b due to leakage (e.g., self-interference) between the DL and the UL.
  • the channel quality between the scheduling entity and a scheduled entity may change from slot 702a/802a and slot 702b/802b due to the slot format change and the reduced beam power or reduced number of antenna ports.
  • a scheduled entity can estimate respective channels of both single panel and multi-panel operations. In doing so, the scheduled entity can feedback a respective CSI report to the scheduling entity. This may done for each of the channels to account for the change in beam power and/or number of ports between single panel and multi-panel operations.
  • the channel quality may be estimated using CSI-RS signals broadcast by the scheduling entity in a beam-sweeping manner on each of the antenna ports 706/806.
  • the scheduled entity may measure the SINR of each received CSI-RS in slots 702a and 702b or 802a and 802b, and generate a respective CSI report for the corresponding channel in each of the slots.
  • Each CSI report may include a respective set of CSI report values.
  • each CSI report may include a respective channel quality indicator (CQI) , rank indicator (RI) , precoding matrix indicator (PMI) , and/or layer indicator (LI) .
  • CQI channel quality indicator
  • RI rank indicator
  • PMI precoding matrix indicator
  • LI layer indicator
  • the LI indicates which column of the precoding matrix of the reported PMI corresponds to the strongest layer codeword corresponding to the largest reported wideband CQI.
  • each CSI report may further include the L1-RSRP of each of the measured transmit (DL) beams.
  • a separate beam measurement report may not be sent to the scheduling entity.
  • the scheduling entity may use the CSI reports to update the rank associated with the scheduled entity, select serving DL beam (s) for communication with the scheduled entity, and assign resources (e.g., MCS) for future transmissions to the scheduled entity for each of the slot formats.
  • resources e.g., MCS
  • a scheduled entity can provide reports to a scheduling entity in a variety of manners.
  • the scheduled entity e.g., UE
  • the scheduled entity may measure the channel quality over only the sub-bands (or BWPs) for which the scheduled entity has scheduled data and provide respective CQI values for each scheduled sub-band to the scheduling entity.
  • the CQI may include, for example, a modulation and coding scheme (MCS) index that indicates the highest modulation and code rate at which the block error rate (BLER) of the channel being analyzed does not exceed 10%.
  • MCS modulation and coding scheme
  • the sub-band CQI values may be determined by combining the channel quality measurements (SINR) across layers (e.g., traffic streams in MIMO systems) and resource blocks to derive a total MCS index, which may then be normalized by the number of layers, with the resulting MCS index being fed back to the scheduling entity.
  • SINR channel quality measurements
  • Reporting channel information may be carried out in various approaches.
  • a scheduled entity may be configured with multiple CSI report configurations.
  • the CSI-RSs may be mapped to specific resources and antenna ports.
  • CSI report configuration for slot 802b there may be 16 CSI-RS ports 806, each mapped to a specific CSI resource with the first power.
  • FIG. 9 illustrates an exemplary CSI-RS resource mapping to support different report/measurement configurations.
  • the CSI-RS resource mapping includes CSI-RS resource settings 902, CSI-RS resource sets 906, and CSI-RS resources 908.
  • Each CSI-RS resource setting 902 includes one or more CSI-RS resource sets 906, and each CSI-RS resource set 906 includes one or more CSI-RS resources 908.
  • a single CSI-RS resource setting (e.g., CSI-RS resource setting 0) is illustrated. However, it should be understood that any suitable number of CSI-RS resource settings 902 may be supported.
  • Each CSI-RS resource setting 902 corresponds to a particular CSI report configuration 904.
  • the CSI report configuration 904 indicates, for example, the specific CSI parameters and granularity thereof (e.g., wideband/sub-band CQI, PMI, RI, etc. ) to include in a CSI report, a codebook type (e.g., single-panel or multi-panel Type I or Type II) , and periodicity of the CSI report associated with the CSI-RS resource setting 902.
  • the CSI report configuration 904 may indicate that the report should be generated periodically, aperiodically, or semi-statically.
  • Each CSI report configuration 904 therefore indicates a particular measurement setting for the CSI-RS resource setting 902. For example, if the CSI report configuration 904 indicates that a CSI report should be generated semi-statically, the CSI-RS resource setting 902 indicates that CSI measurements should be performed semi-statically by the scheduled entity utilizing the CSI-RSs.
  • Each CSI-RS resource setting 902 may indicate the resources associated with a CSI report configuration 904.
  • the resources may include, for example, a set of CSI-RS ports, a set of frequency resources (bandwidth) of the CSI-RSs, power on the CSI-RS ports, and other suitable resources.
  • the power may be expressed in terms of a power offset from a maximum power per port.
  • one of the CSI-RS resource settings 902 may be associated with a multi-panel CSI-RS measurement, while one or more other CSI-RS resource settings 902 may be associated with a single panel CSI-RS measurement.
  • the CSI-RS resource setting 902 may identify a complete set of CSI-RS ports (e.g., 32 CSI-RS ports) , a subset of the frequency resources (e.g., a subset of the carrier bandwidth) over which CSI-RSs may be transmitted and measured, and a power offset set to half.
  • the CSI-RS resource setting 902 may identify a subset of CSI-RS ports (e.g., 16 CSI-RS ports) , a subset of the frequency resources (e.g., a subset of the carrier bandwidth corresponding to the allocated downlink bandwidth) over which CSI-RSs may be transmitted and measured, and a power offset set to zero.
  • the CSI-RS resource setting may identify a complete set of CSI-RS ports (e.g., 32 CSI-RS ports) , a complete set of frequency resources (e.g., the full carrier bandwidth) over which CSI-RSs may be transmitted and measured, and a power offset set to zero.
  • a complete set of CSI-RS ports e.g., 32 CSI-RS ports
  • a complete set of frequency resources e.g., the full carrier bandwidth
  • Each CSI-RS resource setting 902 may include one or more CSI-RS resource sets 906, each indicating a particular configuration of the resources associated with the CSI-RS resource setting 902.
  • one of the CSI-RS resource sets may be associated with a particular subset of the CSI-RS ports included in the CSI-RS resource setting, while another CSI-RS resource set may be associated with a particular time–frequency resource location (e.g., OFDM symbol, sub-band, etc. ) in the frequency resources associated with the CSI-RS resource setting.
  • time–frequency resource location e.g., OFDM symbol, sub-band, etc.
  • CSI-RS resource setting 0 includes four CSI-RS resource sets (CSI-RS resource set 0.0, CSI-RS resource set 0.1, CSI-RS resource set 0.2, and CSI-RS resource set 0.3) .
  • the CSI-RS resource setting 902 and CSI-RS resource set (s) 906 selected for a particular scheduled entity may be signaled semi-statically via radio resource control (RRC) signaling.
  • Each CSI-RS resource set 906 may include one or more CSI-RS resources 908, each indicating the particular resource elements (REs) and the particular CSI-RS ports (e.g., a further subset of CSI-RS ports) on which the scheduled entity should measure CSI-RSs, along with multiplexing options.
  • each CSI-RS resource 908 may indicate an RE on which a CSI-RS transmitted from a particular port may be measured.
  • CSI-RS resource set 0.1 includes four CSI-RS resources (CSI-RS resource 0.10, CSI-RS resource 0.11, CSI-RS resource 0.12, and CSI-RS resource 0.13) .
  • Different CSI-RS resources 908 may be available for each of the CSI-RS resource sets 906 to enable CSI-RS pilots to be transmitted in different locations within a slot and/or to be transmitted with different densities in a slot.
  • different CSI-RS resources 908 may be available to enable CSI-RS pilots to be transmitted from one port or set of ports at the beginning of a slot and another port or set of ports at the end of a slot.
  • a particular scheduled entity may be assigned one or more of the CSI-RS resources 908 within a slot.
  • the CSI-RS resource (s) 908 assigned to a particular scheduled entity may be signaled, for example, via downlink control information (DCI) within the PDCCH.
  • DCI downlink control information
  • the scheduled entity may be assigned each of the CSI-RS ports within the set of CSI-RS ports of the CSI-RS resource setting 902 to estimate the channel so that the scheduled entity may receive MIMO traffic streams from the scheduling entity on any those antenna ports at a later time.
  • the scheduled entity may only be assigned a portion of the CSI-RS ports within the set of CSI-RS ports of the CSI-RS resource setting 902.
  • the scheduled entity may not only estimate the channel from the received CSI-RSs on the assigned CSI-RS ports, but also the non-zero-power (NZP) interference from the received CSI-RSs on the non-assigned CSI-RS ports.
  • the NZP interference may be estimated by subtracting the channel estimation from the total received CSI-RS pilot signal.
  • the non-assigned CSI-RS ports may be assigned to another scheduled entity or may be unassigned.
  • a scheduled entity is configured with a single CSI report configuration associated with a single CSI-RS resource setting for both single panel and multi-panel CSI reporting.
  • the CSI-RS resource setting may be associated with a multi-panel base station antenna array.
  • the CSI report configuration can signal the scheduled entity to generate two CSI reports, each including a different respective set of CSI report values for each of a plurality of CSI report parameters (e.g., different values for one or more of the CQI, PMI, RI, LI, L1-RSRP, etc. ) .
  • the two CSI reports may be generated based on the same single CSI-RS resource setting.
  • the CSI report configuration can indicate a modification of the CSI-RS resource setting to utilize for one of the two CSI reports.
  • the modification can include a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting.
  • a scheduled entity is configured with a single CSI report configuration associated with two CSI-RS resource settings.
  • the CSI report configuration can signal the scheduled entity to generate two CSI reports, each including a different respective set of CSI report values for each of a plurality of CSI report parameters (e.g., different values for one or more of the CQI, PMI, RI, LI, L1-RSRP, etc. ) .
  • Each CSI report may be generated based on one of the CSI-RS resource settings. For example, a first CSI report may be generated based on the first CSI-RS resource setting, while a second CSI report may be generated based on the second CSI-RS resource setting.
  • a first CSI-RS resource setting may be associated with a multi-panel CSI report for a multi-panel full duplex base station
  • a second CSI-RS resource setting may be associated with a single panel CSI report for a multi-panel full duplex base station.
  • FIG. 10 is a diagram illustrating an example of a CSI report configuration 1002 mapping to a single CSI-RS resource setting 1020 to generate two CSI reports for a multi-panel full duplex base station (e.g., scheduling entity) according to some aspects.
  • the CSI-RS resource setting 1020 includes a frequency resources field 1022 indicating one or more sub-bands or BWPs of a carrier bandwidth over which the scheduled entity should measure the channel quality.
  • the frequency resources field 1022 indicates the full carrier bandwidth.
  • the CSI-RS resource setting 1020 further includes a CSI-RS ports field 1024 indicating a set of CSI-RS ports (beams) on which CSI-RSs may be received and measured by the scheduled entity to generate the CSI report.
  • the CSI-RS ports field 1024 may include at least one code division multiplexing (CDM) group index of a plurality of CDM group indexes configured on the scheduled entity. Each CDM group index identifies a CDM group associated with a group of CSI-RS ports. For example, there may be two, four, six, or eight CDM groups.
  • the CSI-RS ports field 1024 includes all of the CDM groups.
  • the CSI-RS resource setting 1020 further includes a power field 1026 indicating a power on each of the CSI-RS ports in the set of CSI-RS ports indicated in the CSI-RS ports field 1024.
  • the power field 1026 includes a power offset from a maximum power on the CSI-RS ports.
  • the power field 1026 is set to zero.
  • the fields 1022, 1024, and 1026 shown in FIG. 10 are merely exemplary, and it should be understood that other or alternative fields may be included in the CSI-RS resource setting 1020.
  • the CSI report configuration 1002 includes a first CSI report sub-configuration 1004a for use by a scheduled entity in generating a first CSI report and a second CSI report sub-configuration 1004b for use by the scheduled entity in generating a second CSI report.
  • the first CSI report sub-configuration 1004a can be used to generate a multi-panel CSI report
  • the second CSI report sub-configuration 1004b can be used to generate a single panel CSI report for a multi-panel full duplex base station.
  • Each CSI report sub-configuration 1004a and 1004b can include one or more fields.
  • the fields include a periodicity field 1006 indicating the time-domain behavior of CSI reports (e.g., periodic, semi-persistent, or aperiodic) , a CSI parameters field 1008 indicating the CSI-related parameters to be reported (e.g., one or more of the CQI, PMI, RI, etc.
  • a frequency granularity field 1010 indicating the frequency granularity of the CQI and PMI (e.g., wideband and/or sub-band)
  • a codebook field 1012 indicating codebook type (single panel or multi-panel Type I or Type II) for the CSI report.
  • Each CSI report sub-configuration 1004a and 1004b further includes a power offset field 1014 indicating a power offset to be applied to the CSI-RS resource setting 1020.
  • the power offset field 1014 indicates that the scheduled entity should assume X dB less power on the CSI-RS ports in generating the CSI report.
  • the power offset field 1014 can be a new RRC configuration “ResourcesPowerOffset” of the CSI report configuration 1002.
  • the power offset field 1014 may be set to zero when the CSI report sub-configuration (e.g., the first CSI report sub-configuration 1004a) is associated with a multi-panel CSI report.
  • the power offset field 1014 may be set to one-half when the CSI report sub-configuration (e.g., the second CSI report sub-configuration 1004b) is associated with a single panel CSI report.
  • the first and second CSI report sub-configurations 1004a and 1004b each include a port subset field 1016.
  • the port subset field 1016 can indicate a subset of the CSI-RS ports of the CSI-RS resource setting 1020 for the scheduled entity to use in generating the CSI report.
  • the port subset field 1016 can be a new RRC configuration “CSI-RSportsSubset” of the CSI report configuration 1002.
  • the port subset field 1016 may indicate that the scheduled entity should use all CSI-RS ports included in the CSI-RS resource setting 1020 in generating the CSI report when the CSI report sub-configuration 1004a and/or 1004b is associated with a multi-panel CSI report or a single panel CSI report with the power offset field 1014 set to a value other than zero.
  • the port subset field 1016 may indicate a subset of the ports included in the CSI-RS resource setting 1020 to use in generating the CSI report when the CSI report sub-configuration (e.g., the second CSI report sub-configuration 1004b) is associated with a single panel CSI report and the power offset field 1014 is set to zero.
  • the port subset field 1016 may include a flag that when enabled indicates to the scheduled entity to use half of the CSI-RS ports.
  • the scheduled entity can implicitly determine the subset (half) of CSI-RS ports to use from the CDM group indexes configured on the scheduled entity and included in the CSI-RS resource setting 1020.
  • the scheduled entity may select the first half or the second half of CDM group indexes as the subset of CSI-RS ports.
  • the scheduled entity may select the even or odd CDM group indexes as the subset of CSI-RS ports. If the scheduled entity is also configured with a multi-panel antenna array, the scheduled entity may further implicitly determine to use only a single panel to generate the CSI report when the port subset flag 1016 is enabled.
  • Each CSI report sub-configuration 1004a and 1004b further includes a frequency resource subset field 1018 indicating a subset of the frequency resources of the CSI-RS resource setting 1020 for the scheduled entity to use in generating the CSI report.
  • the subset of the frequency resources include downlink frequency resources allocated for downlink communication when the scheduling entity (e.g., base station) is operating in sub-band full duplex mode (e.g., actively transmitting and receiving on different frequency bands simultaneously) .
  • the subset of frequency resources can include the downlink sub-bands 606a and 606b.
  • the frequency resource subset field 1018 may indicate that the scheduled entity should use all frequency resources of the CSI-RS resource setting 1020 in generating the CSI report when the CSI report sub-configuration 1004a and/or 1004b is associated with a multi-panel CSI report or a single panel CSI report with the power offset field 1014 set to a value other than zero.
  • the frequency resource subset field 1018 may indicate a subset of the frequency resources to use in generating the CSI report when the CSI report sub-configuration (e.g., the second CSI report sub-configuration 1004b) is associated with a single panel CSI report and the power offset field 1014 is set to zero.
  • the port subset field 1016 may indicate to generate the CSI report based on all CSI-RS ports of the CSI-RS resource setting or a subset of the CSI-RS ports.
  • the fields 1006–1018 shown in FIG. 10 are merely exemplary, and it should be understood that other or alternative fields may be included in the CSI report configuration 1002.
  • FIG. 11 is a signaling diagram illustrating an example of CSI reporting for a multi-panel full duplex base station according to some aspects.
  • a scheduling entity 1102 e.g., a multi-panel full duplex base station
  • a scheduled entity 1104 e.g., a UE
  • the scheduling entity 1102 may correspond to any of the scheduling entities or base stations shown in FIGs. 1, 2, and/or 5 that includes a multi-panel antenna array for operating in a full duplex mode.
  • the scheduled entity 1104 may correspond to any of the scheduled entities or UEs shown in FIGs. 1, 2, and/or 5.
  • the scheduling entity 1102 transmits an RRC message including a CSI-RS resource setting to the scheduled entity 1104.
  • the CSI-RS resource setting may include, for example, frequency resources on which CSI-RSs may be measured, a set of ports at the scheduling entity 1102 associated with the CSI-RSs to be measured, and a power on the CSI-RS ports transmitting the measured CSI-RSs.
  • the scheduling entity 1102 transmits an RRC message including a CSI report configuration to the scheduled entity 1104.
  • the CSI report configuration configures the scheduled entity 1104 to transmit two CSI reports, where one of the two CSI reports is based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting.
  • the modification includes a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting.
  • one of the CSI reports is a multi-panel CSI report, while the other is a single panel CSI report.
  • the CSI report configuration and CSI-RS resource setting may be transmitted in the same RRC message.
  • the scheduling entity 1102 transmits a respective CSI-RS on each of the CSI-RS ports indicated in the CSI-RS resource setting to the scheduled entity 1104.
  • Each CSI-RS may be transmitted via a respective channel measurement resource.
  • a channel measurement resource may include non-zero-power (NZP) CSI-RS resource.
  • the CSI-RSs may be transmitted within a PDSCH.
  • the scheduled entity 1104 generates a first CSI report based on the CSI-RS resource setting.
  • the first CSI report is generated without modification of the CSI-RS resource setting.
  • the scheduled entity 1104 may utilize the NZP CSI-RS resources for channel estimation.
  • the channel estimate may include a vector where K is the number of allocated pilots in the channel measurement resource, k is the index of the pilot, and h k is the channel response coefficient at pilot k.
  • the channel response coefficients may be selected from preconfigured values based on one or more estimated parameters, such as the signal-to-noise ratio (SNR) , Doppler, delay spread, and/or other suitable parameters, which may be estimated using a tracking reference signal (TRS) or PDSCH.
  • the scheduled entity 1104 may further utilize one or more interference CSI resources (e.g., CSI-Interference Measurement (IM) resource (s) and/or NZP CSI-RS resource (s) for interference measurement) to measure the interference on the channel.
  • IM CSI-Interference Measurement
  • NZP CSI-RS resource s for interference measurement
  • the scheduled entity 1104 generates a second CSI report based on the modified CSI-RS resource setting. For example, the scheduled entity 1104 may generate the second CSI report assuming a power offset on the CSI-RS ports or at least one of a subset of CSI-RS ports or a subset of the frequency resources, as indicated in the CSI report configuration.
  • the scheduled entity 1104 transmits the first CSI report and the second CSI report to the scheduling entity 1102.
  • FIG. 12 is a signaling diagram illustrating another example of CSI reporting for a multi-panel full duplex base station according to some aspects.
  • a scheduling entity 1202 e.g., a multi-panel full duplex base station
  • a scheduled entity 1204 e.g., a UE
  • the scheduling entity 1202 may correspond to any of the scheduling entities or base stations shown in FIGs. 1, 2, and/or 5 that includes a multi-panel antenna array for operating in a full duplex mode.
  • the scheduled entity 1204 may correspond to any of the scheduled entities or UEs shown in FIGs. 1, 2, and/or 5.
  • the scheduling entity 1202 transmits an RRC message including a CSI-RS resource setting to the scheduled entity 1204.
  • the CSI-RS resource setting may include, for example, frequency resources on which CSI-RSs may be measured, a set of ports at the scheduling entity 1202 associated with the CSI-RSs to be measured, and a power on the CSI-RS ports transmitting the measured CSI-RSs.
  • the scheduling entity 1202 transmits an RRC message including a CSI report configuration to the scheduled entity 1204.
  • the CSI report configuration configures the scheduled entity 1204 to transmit two CSI reports, where one of the two CSI reports is based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting.
  • the modification includes a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting.
  • a first CSI report is a multi-panel CSI report, while a second CSI report is a single panel CSI report.
  • the CSI report configuration and CSI-RS resource setting may be transmitted in the same RRC message.
  • the scheduling entity 1202 transmits a dynamic reconfiguration message to the scheduled entity 1204.
  • the dynamic reconfiguration message may reconfigure the modification (s) to the CSI-RS resource setting indicated in the CSI report configuration.
  • the dynamic reconfiguration message may update at least one of the power offset field or the port subset flag associated with the CSI report configuration for the second CSI report.
  • the dynamic reconfiguration message includes a medium access control control element (MAC-CE) .
  • the dynamic reconfiguration message includes one or more new fields within DCI. For example, one DCI field may be used to indicate the updated power offset, while another DCI field may be used to enable or disable the port subset flag.
  • the scheduling entity 1202 transmits a respective CSI-RS on each of the CSI-RS ports indicated in the CSI-RS resource setting to the scheduled entity 1204.
  • Each CSI-RS may be transmitted via a respective channel measurement resource.
  • a channel measurement resource may include non-zero-power (NZP) CSI-RS resource.
  • the CSI-RSs may be transmitted within a PDSCH.
  • the scheduled entity 1204 generates a first CSI report based on the CSI-RS resource setting.
  • the first CSI report is generated without modification of the CSI-RS resource setting.
  • the scheduled entity 1204 may utilize the NZP CSI-RS resources for channel estimation.
  • the channel estimate may include a vector where K is the number of allocated pilots in the channel measurement resource, k is the index of the pilot, and h k is the channel response coefficient at pilot k.
  • the channel response coefficients may be selected from preconfigured values based on one or more estimated parameters, such as the signal-to-noise ratio (SNR) , Doppler, delay spread, and/or other suitable parameters, which may be estimated using a tracking reference signal (TRS) or PDSCH.
  • the scheduled entity 1204 may further utilize one or more interference CSI resources (e.g., CSI-Interference Measurement (IM) resource (s) and/or NZP CSI-RS resource (s) for interference measurement) to measure the interference on the channel.
  • IM CSI-Interference Measurement
  • NZP CSI-RS resource s for interference measurement
  • the scheduled entity 1204 generates a second CSI report based on the modified CSI-RS resource setting, as updated by the dynamic reconfiguration message. For example, the scheduled entity 1204 may generate the second CSI report assuming a power offset on the CSI-RS ports or at least one of a subset of CSI-RS ports or a subset of the frequency resources.
  • the scheduled entity 1204 transmits the first CSI report and the second CSI report to the scheduling entity 1202.
  • FIG. 13 is a diagram illustrating an example of a CSI report configuration 1302 mapping to two CSI-RS resource settings 1320a and 1320b to generate two CSI reports for a multi-panel full duplex base station according to some aspects.
  • the CSI report configuration 1302 includes a first CSI report sub-configuration 1304a for use by a scheduled entity in generating a first CSI report and a second CSI report sub-configurations 1304b for use by the scheduled entity in generating a second CSI report.
  • Each CSI report sub-configuration 1304a and 1304b can include one or more fields. In the example shown in FIG.
  • the fields include a periodicity field 1304 indicating the time-domain behavior of CSI reports (e.g., periodic, semi-persistent, or aperiodic) , a CSI parameters field 1306 indicating the CSI-related parameters to be reported (e.g., one or more of the CQI, PMI, RI, etc. ) , a frequency granularity field 1308 indicating the frequency granularity of the CQI and PMI (e.g., wideband and/or sub-band) , and a codebook field 1310 indicating codebook type (single panel or multi-panel Type I or Type II) for the CSI report.
  • a periodicity field 1304 indicating the time-domain behavior of CSI reports (e.g., periodic, semi-persistent, or aperiodic)
  • CSI parameters field 1306 indicating the CSI-related parameters to be reported (e.g., one or more of the CQI, PMI, RI, etc. )
  • Each of the first and second CSI report sub-configurations 1304a and 1304b maps to a respective one of the CSI-RS resource settings 1320a and 1320b.
  • Each CSI-RS resource setting 1320a and 1320b includes a frequency resources field 1322 indicating an entire carrier bandwidth or one or more sub-bands or BWPs of the carrier bandwidth over which the scheduled entity should measure the channel quality.
  • the CSI-RS resource settings 1320a and 1320b each further include a CSI-RS ports field 1324 indicating a set of CSI-RS ports (beams) on which CSI-RSs may be received and measured by the scheduled entity to generate the CSI report.
  • the CSI-RS ports field 1324 may include at least one code division multiplexing (CDM) group index of a plurality of CDM group indexes configured on the scheduled entity.
  • CDM group index identifies a CDM group associated with a group of CSI-RS ports. For example, there may be two, four, six, or eight CDM groups.
  • the CSI-RS ports field 1324 may include all or a portion of the CDM groups.
  • the CSI-RS resource settings 1320a and 1320b each further include a power field 1326 indicating a power on each of the CSI-RS ports in the set of CSI-RS ports indicated in the corresponding CSI-RS ports field 1324.
  • the power field 1026 includes a power offset from a maximum power on the CSI-RS ports.
  • the power field 1026 is set to zero or X db (e.g., half) .
  • the fields 1322, 1324, and 1326 shown in FIG. 13 are merely exemplary, and it should be understood that other or alternative fields may be included in the CSI-RS resource setting 1320.
  • one or more of the fields 1322, 1324, and/or 1326 may be configured with different values to result in the generation of a multi-panel CSI report and a single panel CSI report.
  • the first CSI-RS resource setting 1320a is utilized to generate a multi-panel CSI report
  • the second CSI-RS resource setting 1320b is utilized to generate a single panel CSI report for a multi-panel full duplex base station.
  • the frequency resources field 1322 in the second CSI-RS resource setting 1320 may indicate a subset of the frequency resources of the first CSI-RS resource setting 1320a.
  • the CSI-RS ports field 1324 may indicate a subset of the CSI-RS ports of the first CSI-RS resource setting 1320a.
  • the power field 1326 may indicate a power offset with respect to the first CSI-RS resource setting 1320a.
  • FIG. 14 is a signaling diagram illustrating another example of CSI reporting for a multi-panel full duplex base station according to some aspects.
  • a scheduling entity 1402 e.g., a multi-panel full duplex base station
  • a scheduled entity 1404 e.g., a UE
  • the scheduling entity 1402 may correspond to any of the scheduling entities or base stations shown in FIGs. 1, 2, and/or 5 that includes a multi-panel antenna array for operating in a full duplex mode.
  • the scheduled entity 1404 may correspond to any of the scheduled entities or UEs shown in FIGs. 1, 2, and/or 5.
  • the scheduling entity 1402 transmits an RRC message including a first CSI-RS resource setting to the scheduled entity 1404.
  • the scheduling entity 1402 further transmits an RRC message including a second CSI-RS resource setting to the scheduled entity 1404.
  • Each of the first and second CSI-RS resource settings may include, for example, frequency resources on which CSI-RSs may be measured, a set of ports at the scheduling entity 1402 associated with the CSI-RSs to be measured, and a power on the CSI-RS ports transmitting the measured CSI-RSs.
  • the first and second CSI-RS resource settings may have a different configuration of one or more of the frequency resources, the CSI-RS ports, or the power.
  • the scheduling entity 1402 transmits an RRC message including a CSI report configuration to the scheduled entity 1404.
  • the CSI report configuration configures the scheduled entity 1404 to transmit two CSI reports, where a first CSI report is associated with the first CSI-RS resource setting and a second CSI report is associated with the second CSI-RS resource setting.
  • the first CSI report is a multi-panel CSI report
  • the second CSI report is a single panel CSI report.
  • the CSI report configuration and CSI-RS resource settings may be transmitted in the same RRC message.
  • the scheduling entity 1402 transmits a respective CSI-RS on each of the CSI-RS ports indicated in the CSI-RS resource settings to the scheduled entity 1404.
  • the two CSI-RS resource settings include a set of CSI-RS ports and a subset of the set of CSI-RS ports, respectively
  • the CSI-RSs may be transmitted on the set of CSI-RS ports and the scheduled entity 1404 can assume the subset of CSI-RS reports when generating the single panel CSI report.
  • the two CSI-RS resource settings indicate a power (or zero power offset) and a power offset, respectively
  • the CSI-RSs may be transmitted with zero power offset and the scheduled entity 1404 can assume a power offset when generating the single panel report.
  • the two CSI-RS resource settings indicate frequency resources (e.g., a carrier bandwidth) and a subset of the frequency resources (e.g., downlink sub-bands or BWPs) , respectively
  • the CSI-RSs may be transmitted on the frequency resources (e.g., over the entire carrier bandwidth) and the scheduled entity 1404 can assume the subset of the frequency resources when generating the single panel CSI report.
  • Each CSI-RS may be transmitted via a respective channel measurement resource.
  • a channel measurement resource may include non-zero-power (NZP) CSI-RS resource.
  • the CSI-RSs may be transmitted within a PDSCH.
  • the scheduled entity 1404 generates the first CSI report based on the first CSI-RS resource setting.
  • the scheduled entity 1404 may utilize the NZP CSI-RS resources for channel estimation.
  • the channel estimate may include a vector where K is the number of allocated pilots in the channel measurement resource, k is the index of the pilot, and h k is the channel response coefficient at pilot k.
  • the channel response coefficients may be selected from preconfigured values based on one or more estimated parameters, such as the signal-to-noise ratio (SNR) , Doppler, delay spread, and/or other suitable parameters, which may be estimated using a tracking reference signal (TRS) or PDSCH.
  • SNR signal-to-noise ratio
  • TRS tracking reference signal
  • the scheduled entity 1404 may further utilize one or more interference CSI resources (e.g., CSI-Interference Measurement (IM) resource (s) and/or NZP CSI-RS resource (s) for interference measurement) to measure the interference on the channel.
  • IM CSI-Interference Measurement
  • NZP CSI-RS resource s
  • the scheduled entity 1404 may then determine the CQI, PMI, RI, and LI from the channel estimation, maximum rank, and codebook type specified in the CSI report configuration.
  • the scheduled entity 1404 generates the second CSI report based on the second CSI-RS resource setting. For example, the scheduled entity 1404 may generate the second CSI report with a power offset on the CSI-RS ports or at least one of a subset of CSI-RS ports or a subset of the frequency resources as compared to the first CSI-RS resource setting.
  • the scheduled entity 1404 transmits the first CSI report and the second CSI report to the scheduling entity 1402.
  • FIG. 15 is a conceptual diagram illustrating an example of a hardware implementation for an exemplary scheduling entity 1500 employing a processing system 1514.
  • the scheduling entity 1500 may be a base station (e.g., gNB) or other scheduling entity as illustrated in any one or more of FIGs. 1, 2, 5, 11, 12 and/or 14.
  • the scheduling entity 1500 may be implemented with a processing system 1514 that includes one or more processors 1504.
  • processors 1504 include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • PLDs programmable logic devices
  • state machines gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • the scheduling entity 1500 may be configured to perform any one or more of the functions described herein. That is, the processor1504, as utilized in a scheduling entity 1500, may be used to implement any one or more of the processes described below.
  • the processor 1504 may in some instances be implemented via a baseband or modem chip and in other implementations, the processor 1504 may itself comprise a number of devices distinct and different from a baseband or modem chip (e.g., in such scenarios is may work in concert to achieve embodiments discussed herein) . And as mentioned above, various hardware arrangements and components outside of a baseband modem processor can be used in implementations, including RF-chains, power amplifiers, modulators, buffers, interleavers, adders/summers, etc.
  • the processing system 1514 may be implemented with a bus architecture, represented generally by the bus 1502.
  • the bus 1502 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1514 and the overall design constraints.
  • the bus 1502 communicatively couples together various circuits including one or more processors (represented generally by the processor 1504) , a memory 1505, and computer-readable media (represented generally by the computer-readable medium 1506) .
  • the bus 1502 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.
  • a bus interface 1508 provides an interface between the bus 1502 and a transceiver 1510.
  • the transceiver 1510 provides a means for communicating with various other apparatus over a transmission medium (e.g., air interface) .
  • a user interface 1512 e.g., keypad, display, touchscreen, speaker, microphone, control knobs, etc.
  • a user interface 1512 is optional, and may be omitted in some examples.
  • the processor 1504 is responsible for managing the bus 1502 and general processing, including the execution of software stored on the computer-readable medium 1506.
  • the software when executed by the processor 1504, causes the processing system 1514 to perform the various functions described below for any particular apparatus.
  • the computer-readable medium 1506 and the memory 1505 may also be used for storing data that is manipulated by the processor 1504 when executing software.
  • One or more processors 1504 in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the software may reside on a computer-readable medium 1506.
  • the computer-readable medium 1506 may be a non-transitory computer-readable medium.
  • a non-transitory computer-readable medium includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., a compact disc (CD) or a digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., a card, a stick, or a key drive) , a random access memory (RAM) , a read only memory (ROM) , a programmable ROM (PROM) , an erasable PROM (EPROM) , an electrically erasable PROM (EEPROM) , a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer.
  • a magnetic storage device e.g., hard disk, floppy disk, magnetic strip
  • an optical disk e.g.
  • the computer-readable medium may also include, by way of example, a carrier wave, a transmission line, and any other suitable medium for transmitting software and/or instructions that may be accessed and read by a computer.
  • the computer-readable medium 1506 may reside in the processing system 1514, external to the processing system 1514, or distributed across multiple entities including the processing system 1514.
  • the computer-readable medium 1506 may be embodied in a computer program product.
  • the computer-readable medium 1506 may be part of the memory 1505.
  • a computer program product may include a computer-readable medium in packaging materials.
  • the processor 1504 may include circuitry configured for various functions.
  • the processor 1504 may include resource assignment and scheduling circuitry 1542, configured to generate, schedule, and modify a resource assignment or grant of time–frequency resources.
  • the resource assignment and scheduling circuitry 1542 may schedule time–frequency resources within a plurality of sub-bands or BWPs of one or more TDD half duplex and/or FDD full duplex subframes or slots to carry user data traffic and/or control information to and/or from multiple scheduled entities.
  • the resource assignment and scheduling circuitry 1542 may be configured to identify a CSI report configuration 1516 and one or more CSI-RS resource settings 1518 configured for a scheduled entity.
  • the CSI report configuration 1516 and CSI-RS resource setting (s) 1518 may be stored, for example, in memory 1505.
  • the combination of the CSI-RS report configuration 1516 and CSI-RS resource setting (s) 1518 may indicate a set of CSI-RS ports and a set of downlink resource elements (REs) on which CSI-RSs may be transmitted to the scheduled entity.
  • REs downlink resource elements
  • the resource assignment and scheduling circuitry 1542 may further be configured to schedule CSI-RS pilots to be transmitted to the scheduled entity on the set of downlink resource elements (REs) and set of ports indicated in the CSI report configuration 1516 and CSI-RS resource setting (s) 1518. In addition, the resource assignment and scheduling circuitry 1542 may further schedule uplink REs on which the scheduled entity may transmit two CSI reports in response to receiving and measuring the CSI-RS pilots.
  • the resource assignment and scheduling circuitry 1542 may further be configured to execute resource assignment and scheduling software 1552 stored in the computer-readable medium 1506 to implement one or more of the functions described herein.
  • the processor 1504 may further include communication and processing circuitry 1544 configured to communicate with the multiple scheduled entities over a carrier frequency.
  • the communication and processing circuitry 1544 may include one or more hardware components that provide the physical structure that performs processes related to wireless communication (e.g., signal reception and/or signal transmission) and signal processing (e.g., processing a received signal and/or processing a signal for transmission) .
  • the communication and processing circuitry 1544 may be configured to transmit the CSI report configuration 1516 and corresponding CSI-RS resource setting (s) 1518 to the scheduled entity via, for example, semi-static RRC signaling.
  • the communication and processing circuitry 1544 may further be configured to generate and transmit a dynamic reconfiguration message including at least one update to the CSI report configuration 1516 to the scheduled entity.
  • the dynamic reconfiguration message may include a MAC-CE or DCI.
  • the communication and processing circuitry 1544 may further be configured to generate and transmit CSI-RSs (e.g., each including a plurality of CSI-RS pilots) to the scheduled entity on the set of CSI-RS ports and REs scheduled by the resource assignment and scheduling circuitry 1542.
  • CSI-RSs e.g., each including a plurality of CSI-RS pilots
  • the communication and processing circuitry 1544 may be configured to generate and transmit each CSI-RS on a respective beam corresponding to the respective CSI-RS port via the transceiver 1510 and an antenna array 1520.
  • the antenna array 1520 may include a plurality of multi-panel antenna array.
  • the communication and processing circuitry 1544 may further be configured to receive and process the two CSI reports from the scheduled entity.
  • one of the CSI reports is a multi-panel CSI report that may be used in scheduling of downlink transmissions to the scheduled entity within sub-band FDD full duplex slots.
  • the other CSI report is a single panel CSI report that may be used in scheduling downlink transmissions to the scheduled entity within TDD half duplex slots.
  • the CSI reports received from the scheduled entity may include respective CSI report quantities for a plurality of CSI report parameters (e.g., CQI, PMI, RI, LI, and/or L1-RSRP) .
  • the CQI may include a wideband CQI value and/or multiple sub-band CQI values, each including modulation and coding scheme (MCS) information (e.g., an MCS index) .
  • MCS modulation and coding scheme
  • the communication and processing circuitry 1544 may further be configured to determine a respective rank, MCS, precoding matrix, and serving beam (s) for downlink transmissions to the scheduled entity in each of TDD half duplex slots and sub-band FDD full duplex slots based on the two CSI reports.
  • the resource assignment and scheduling circuitry 1542 may then utilize the respective rank, MCS, precoding matrix, and serving beam (s) to schedule time–frequency resources (e.g., REs) within one or more sub-bands of a subframe or slot for the scheduled entity.
  • the resource assignment and scheduling circuitry 1542 may schedule a number of traffic streams (corresponding to the rank) to be spatially multiplexed to the scheduled entity in one or more sub-bands of a subframe or slot.
  • the communication and processing circuitry 1544 may further be configured to execute communication and processing software 1554 stored in the computer-readable medium 1506 to implement one or more of the functions described herein.
  • the processor 1504 may further include CSI report management circuitry 1546, configured to configure the CSI report configuration 1516 and CSI-RS resource setting (s) 1518 for the scheduled entity. It should be understood that the CSI report management circuitry 1546 may configure respective CSI report configurations 1516 and corresponding CSI-RS resource settings 1518 for each scheduled entity served by the scheduling entity 1500.
  • the CSI report management circuitry 1546 may be configured to configure a single CSI report configuration 1516 and a corresponding single CSI-RS resource setting 1518 for the scheduled entity.
  • the CSI report configuration 1516 can configure the scheduled entity to transmit two CSI reports, where one of the two CSI reports is based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting.
  • the modification includes a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting.
  • one of the CSI reports is a multi-panel CSI report, while the other is a single panel CSI report.
  • the CSI report management circuitry 1546 may further be configured to update the modification (e.g., the power offset or subset of CSI-RS ports) and provide the modification update to the communication and processing circuitry 1544 for generation of the dynamic reconfiguration message.
  • the single CSI-RS resource setting 1518 indicates frequency resources (e.g., one or more sub-bands or BWPs of a carrier bandwidth over) which the scheduled entity should measure the channel quality, a set of CSI-RS ports (beams) on which CSI-RSs may be received and measured by the scheduled entity, and a power on each of the CSI-RS ports in the set of CSI-RS ports.
  • the frequency resources may include the entire carrier bandwidth.
  • the set of CSI-RS ports may be indicated using CDM group indexes of CDM groups.
  • the CSI-RS resource setting 1518 may include all of the CDM groups corresponding to all of the CSI-RS ports.
  • the power may be expressed as a power offset from a maximum power on the CSI-RS ports.
  • the power offset in the CSI-RS resource setting 1518 may be set to zero.
  • the CSI report configuration 1516 includes two CSI report sub-configurations, each for use by the scheduled entity in generating a respective CSI report.
  • a first CSI report sub-configuration can be used to generate a multi-panel CSI report
  • a second CSI report sub-configuration can be used to generate a single panel CSI report for a multi-panel full duplex base station.
  • Each of the two CSI report sub-configurations may indicate the periodicity of the respective CSI report, the respective CSI parameters to be reported (e.g., one or more of the CQI, PMI, RI, etc.
  • the respective frequency granularity of the CQI and PMI e.g., wideband and/or sub-band
  • a respective codebook type for each CSI report e.g., the CSI parameters to be reported may be the same between the two CSI report sub-configurations.
  • the periodicity, frequency granularity, and/or codebook types may be the same between the two CSI report sub-configurations.
  • Each of the two CSI report sub-configurations may further include a power offset to be applied to the power indicated in the CSI-RS resource setting 1518 for use by the scheduled entity in generating the respective CSI report, a subset of the CSI-RS ports of the CSI-RS resource setting 1518 for use by the scheduled entity in generating the respective CSI report, and a subset of the frequency resources of the CSI-RS resource setting 1518 for use by the scheduled entity in generating the respective CSI report.
  • the power offset may indicate that the scheduled entity should assume X dB less power (one-half of the power) on the CSI-RS ports when generating the single panel CSI report.
  • the subset of the ports may indicate that the scheduled entity should assume half of the CSI-RS ports are used to transmit CSI-RS when generating the single panel CSI report.
  • the subset of frequency resources may indicate that the scheduled entity should utilize the CSI-RS pilots transmitted on downlink frequency resources allocated for downlink communication when generating the single panel CSI report.
  • the CSI report management circuitry 1546 may be configured to configure a single CSI report configuration 1516 and two corresponding CSI-RS resource settings 1518 for the scheduled entity.
  • the CSI report configuration 1516 can again configure the scheduled entity to transmit two CSI reports each including a different respective set of CSI report values for each of a plurality of CSI report parameters (e.g., different values for one or more of the CQI, PMI, RI, LI, L1-RSRP, etc. ) .
  • each CSI report is associated with one of the CSI-RS resource settings 1518. For example, a first CSI report may be generated based on the first CSI-RS resource setting, while a second CSI report may be generated based on the second CSI-RS resource setting.
  • a first CSI-RS resource setting 1518 may be associated with a multi-panel CSI report for a multi-panel full duplex base station, while a second CSI-RS resource setting 1518 may be associated with a single panel CSI report for a multi-panel full duplex base station.
  • the CSI report configuration 1516 includes two CSI report sub-configurations, each for use by the scheduled entity in generating a respective CSI report.
  • a first CSI report sub-configuration can be used to generate a multi-panel CSI report
  • a second CSI report sub-configuration can be used to generate a single panel CSI report for a multi-panel full duplex base station.
  • Each of the two CSI report configurations may indicate the periodicity of the respective CSI report, the respective CSI parameters to be reported (e.g., one or more of the CQI, PMI, RI, etc.
  • the respective frequency granularity of the CQI and PMI e.g., wideband and/or sub-band
  • a respective codebook type for each CSI report e.g., the CSI parameters to be reported may be the same between the two CSI report sub-configurations.
  • the periodicity, frequency granularity, and/or codebook types may be the same between the two CSI report sub-configurations.
  • Each of the first and second CSI report sub-configurations maps to a respective one of the two CSI-RS resource settings 1518.
  • Each CSI-RS resource setting 1518 indicates frequency resources (e.g., an entire carrier bandwidth or one or more sub-bands or BWPs of the carrier bandwidth) over which the scheduled entity should measure the channel quality, a set of CSI-RS ports (beams) on which CSI-RSs may be received and measured by the scheduled entity, and a power on each of the CSI-RS ports.
  • each CSI-RS resource setting 1518 may be configured with different values to result in the generation of a multi-panel CSI report and a single panel CSI report.
  • the second CSI-RS resource setting 1518 may indicate a subset of the frequency resources of the first CSI-RS resource setting 1518.
  • the second CSI-RS resource setting 1518 may indicate a subset of the CSI-RS ports of the first CSI-RS resource setting 1518.
  • the second CSI-RS resource setting 1518 may indicate a power offset with respect to the first CSI-RS resource setting 1518.
  • the CSI report management circuitry 1546 may further be configured to execute CSI report management software 1556 stored in the computer-readable medium 1506 to implement one or more of the functions described herein.
  • FIG. 16 is a flow chart 1600 of a method for CSI reporting at a scheduling entity according to some aspects. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all embodiments. In some examples, the method may be performed by the scheduling entity 1500, as described above and illustrated in FIG. 15, by a processor or processing system, or by any suitable means for carrying out the described functions.
  • the scheduling entity may transmit to a scheduled entity a CSI report configuration associated with a CSI-RS resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration signals the scheduled entity to transmit two CSI reports, one of which is based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting.
  • the modification of the CSI-RS resource setting includes a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting.
  • the multi-panel antenna array includes a first panel having a first set of antenna elements and a second panel having a second set of antenna elements, where the first panel is physically separated from the second panel.
  • the set of CSI-RS ports can include a first set of CSI-RS ports associated with the first panel and a second set of CSI-RS ports associated with the second panel.
  • the subset of the CSI-RS ports includes one of the first set of CSI-RS ports or the second set of CSI-RS ports.
  • the subset of the frequency resources include downlink frequency resources allocated for downlink communication from the scheduling entity to the scheduled entity when the scheduling entity is operating in a sub-band full duplex mode.
  • the power offset is applicable to each of the CSI-RS ports.
  • the CSI report configuration includes a power offset field.
  • the power offset field includes the power offset when the second CSI report is generated based on the power offset.
  • the CSI report configuration further comprises a port subset field indicating whether the second CSI report is generated based on the CSI-RS ports or the subset of the CSI-RS ports.
  • the scheduling entity may transmit the CSI report configuration and the CSI-RS resource setting to the scheduled entity via radio resource control (RRC) signaling.
  • the scheduling entity may transmit a dynamic reconfiguration message to the scheduled entity that updates the modification.
  • the dynamic reconfiguration message can include a MAC-CE or DCI.
  • the CSI report management circuitry 1546, together with the communication and processing circuitry 1544 and transceiver 1510, shown and described above in connection with FIG. 15 may configure the scheduled entity with the CSI report configuration and CSI-RS resource setting.
  • the scheduling entity may transmit the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of ports indicated in the CSI-RS resource setting.
  • the communication and processing circuitry 1544, together with the resource assignment and scheduling circuitry 1542 and the transceiver 1510, shown and described above in connection with FIG. 15 may transmit the at least one CSI-RS to the scheduled entity.
  • the scheduling entity may receive a first CSI report from the scheduled entity generated based on the CSI-RS resource setting.
  • the scheduling entity may further receive a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting.
  • the first and second CSI reports each include a different respective set of CSI report values for each of a plurality of CSI report parameters.
  • the communication and processing circuitry 1544, together with the transceiver 1510, shown and described above in connection with FIG. 15 may receive the first and second CSI reports.
  • a scheduling entity (e.g., a base station) 1500 includes means for transmitting to a scheduled entity a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI report.
  • One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting.
  • the scheduling entity can further include means transmitting the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of CSI-RS ports.
  • the scheduling entity can further include means for receiving a first CSI report from the scheduled entity generated based on the CSI-RS resource setting and means for receiving a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting.
  • the aforementioned means for transmitting to the scheduled entity the CSI report configuration associated with the CSI-RS resource setting, means for transmitting the at least one CSI-RS on the set of frequency resources and the set of CSI-RS ports, means for receiving the first CSI report, and the means for receiving the second CSI report may be the processor (s) 1504 shown in FIG. 15 configured to perform the functions recited by the aforementioned means.
  • the aforementioned means for transmitting to the scheduled entity the CSI report configuration associated with the CSI-RS resource setting may include the CSI report management circuitry 1546, the communication and processing circuitry 1544, and the transceiver 1510 shown in FIG. 15.
  • the aforementioned means for transmitting the at least one CSI-RS on the set of frequency resources and the set of CSI-RS ports may include the communication and processing circuitry 1544, the resource assignment and scheduling circuitry 1542, and the transceiver 1510 shown in FIG. 15.
  • the aforementioned means for receiving the first CSI report and the means for receiving the second CSI report may include the communication and processing circuitry 1544 and the transceiver 1510 shown in FIG. 15.
  • the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
  • FIG. 17 is a flow chart 1700 of another method for CSI reporting at a scheduling entity according to some aspects. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all embodiments. In some examples, the method may be performed by the scheduling entity 1500, as described above and illustrated in FIG. 15, by a processor or processing system, or by any suitable means for carrying out the described functions.
  • the scheduling entity may transmit to a scheduled entity a CSI report configuration associated with two CSI-RS resource settings.
  • Each of the two CSI-RS resource settings identifies a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration signals the scheduled entity to transmit two CSI reports, each corresponding to one of the two CSI-RS resource settings.
  • the second CSI-RS resource setting includes a power offset from the first CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the first CSI-RS resource setting or a subset of the frequency resources of the first CSI-RS resource setting.
  • the multi-panel antenna array includes a first panel having a first set of antenna elements and a second panel having a second set of antenna elements, where the first panel is physically separated from the second panel.
  • the set of CSI-RS ports can include a first set of CSI-RS ports associated with the first panel and a second set of CSI-RS ports associated with the second panel.
  • the subset of the CSI-RS ports includes one of the first set of CSI-RS ports or the second set of CSI-RS ports.
  • the second CSI-RS resource setting includes at least one CDM group associated with the subset of CSI-RS ports.
  • the subset of the frequency resources include downlink frequency resources allocated for downlink communication from the scheduling entity to the scheduled entity when the scheduling entity is operating in a sub-band full duplex mode.
  • the power offset is applicable to each of the CSI-RS ports.
  • the CSI report management circuitry 1546, together with the communication and processing circuitry 1544 and transceiver 1510, shown and described above in connection with FIG. 15 may configure the scheduled entity with the CSI report configuration and two CSI-RS resource settings.
  • the scheduling entity may transmit the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings.
  • the communication and processing circuitry 1544, together with the resource assignment and scheduling circuitry 1542 and the transceiver 1510, shown and described above in connection with FIG. 15 may transmit the at least one CSI-RS to the scheduled entity.
  • the scheduling entity may receive a first CSI report from the scheduled entity generated based on the first CSI-RS resource setting.
  • the scheduling entity may further receive a second CSI report from the scheduled entity generated based on the second CSI-RS resource setting.
  • the first and second CSI reports each include a different respective set of CSI report values for each of a plurality of CSI report parameters.
  • the communication and processing circuitry 1544, together with the transceiver 1510, shown and described above in connection with FIG. 15 may receive the first and second CSI reports.
  • a scheduling entity e.g., a base station 1500 includes means for transmitting to a scheduled entity a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings.
  • CSI channel state information
  • Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI reports.
  • Each CSI report can correspond to one of the two CSI-RS resource settings.
  • the scheduling entity can further include means for transmitting the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings.
  • the scheduled entity can further include means for receiving a first CSI report from the scheduled entity generated based on a first CSI-RS resource setting of the two CSI-RS resource settings and means for receiving a second CSI report from the scheduled entity generated based on a second CSI-RS resource setting of the two CSI-RS resource settings.
  • the aforementioned means for transmitting to the scheduled entity the CSI report configuration associated with two CSI-RS resource settings, means for transmitting the at least one CSI-RS based on the two CSI-RS resource settings, means for receiving the first CSI report, and the means for receiving the second CSI report may be the processor (s) 1504 shown in FIG. 15 configured to perform the functions recited by the aforementioned means.
  • the aforementioned means for transmitting to the scheduled entity the CSI report configuration associated with two CSI-RS resource settings may include the CSI report management circuitry 1546, the communication and processing circuitry 1544, and the transceiver 1510 shown in FIG. 15.
  • the aforementioned means for transmitting the at least one CSI-RS based on the two CSI-RS resource settings may include the communication and processing circuitry 1544, the resource assignment and scheduling circuitry 1542, and the transceiver 1510 shown in FIG. 15.
  • the aforementioned means for receiving the first CSI report and the means for receiving the second CSI report may include the communication and processing circuitry 1544 and the transceiver 1510 shown in FIG. 15.
  • the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
  • FIG. 18 is a block diagram illustrating an example of a hardware implementation for a scheduled entity 1800 employing a processing system 1814.
  • the scheduled entity 1800 may correspond to any of the UEs or scheduled entities shown and described above in reference to FIGs. 1, 2, 5, 11, 12 and/or 14.
  • an element, or any portion of an element, or any combination of elements may be implemented with a processing system 1814 that includes one or more processors 1804.
  • the processing system 1814 may be substantially the same as the processing system 1514 illustrated in FIG. 15, including a bus interface 1808, a bus 1802, memory 1805, a processor 1804, and a computer-readable medium 1806.
  • the scheduled entity 1800 may include a user interface 1812 and a transceiver 1810 substantially similar to those described above in FIG. 15. That is, the processor 1804, as utilized in a scheduled entity 1800, may be used to implement any one or more of the processes described below.
  • the processor 1804 may include circuitry configured for various functions.
  • the processor 1804 may include communication and processing circuitry 1842 configured to communicate with a scheduling entity (e.g., a base station, such as a gNB) via the transceiver 1810.
  • the communication and processing circuitry 1842 may include one or more hardware components that provide the physical structure that performs processes related to wireless communication (e.g., signal reception and/or signal transmission) and signal processing (e.g., processing a received signal and/or processing a signal for transmission) .
  • the communication and processing circuitry 1842 may be configured to exchange control information and data with the scheduling entity via one or more subframes, slots, and/or mini-slots.
  • the communication and processing circuitry 1842 may be configured to receive CSI report configuration 1816 and corresponding CSI-RS resource setting (s) 1818 from the scheduling entity via, for example, semi-static RRC signaling.
  • the communication and processing circuitry 1842 may further be configured to store the CSI report configuration 1816 and corresponding CSI-RS resource setting (s) 1818 within the memory 1805.
  • the communication and processing circuitry 1842 may further be configured to receive a dynamic reconfiguration message including at least one update to the CSI report configuration 1816 from the scheduling entity.
  • the dynamic reconfiguration message may include a MAC-CE or DCI.
  • the CSI report configuration 1816 configures the scheduled entity to transmit two CSI reports when the scheduling entity is a multi-panel full duplex base station.
  • one of the CSI reports may be a multi-panel CSI report and the other CSI report may be a single panel CSI report.
  • the communication and processing circuitry 1842 may further be configured to receive CSI-RSs (e.g., each including a plurality of CSI-RS pilots) from the scheduling entity on a set of CSI-RS ports and REs indicated CSI report configuration 1816 and CSI-RS resource setting (s) 1818.
  • CSI-RSs e.g., each including a plurality of CSI-RS pilots
  • the communication and processing circuitry 1842 may be configured to receive each CSI-RS on a respective beam corresponding to the respective scheduling entity CSI-RS port via the transceiver 1810 and an antenna array 1820.
  • the antenna array 1820 may include a multi-panel antenna array.
  • the communication and processing circuitry 1842 may further be configured to generate and transmit the two CSI reports to the scheduling entity.
  • a first CSI reports may be the multi-panel CSI report that may be used in scheduling of downlink transmissions to the scheduled entity within sub-band FDD full duplex slots.
  • a second CSI report may be the single panel CSI report that may be used in scheduling downlink transmissions to the scheduled entity within TDD half duplex slots.
  • the CSI reports may each include respective CSI report quantities for a plurality of CSI report parameters (e.g., CQI, PMI, RI, LI, and/or L1-RSRP) .
  • the CQI may include a wideband CQI value and/or multiple sub-band CQI values, each including modulation and coding scheme (MCS) information (e.g., an MCS index) .
  • MCS modulation and coding scheme
  • the communication and processing circuitry 1842 may further be configured to execute communication and processing software 1852 stored in the computer-readable medium 1806 to implement one or more of the functions described herein.
  • the processor 1804 may further include CSI report generation circuitry 1844, configured to estimate a channel between the scheduled entity 1800 and the scheduling entity by measuring the SINR on each of a plurality of CSI-RSs received in accordance with the CSI-RS resource setting (s) 1818.
  • the CSI report generation circuitry 1844 may be configured to estimate the channel as a vector of channel response coefficients, each corresponding to a pilot within a CSI-RS channel measurement resource received via the communication and processing circuitry 1842 and the transceiver 1810.
  • the CSI report generation circuitry 1844 may be configured to obtain two channel estimates, one for each of the CSI reports.
  • a first channel estimate may be based on the CSI-RS resource setting 1818, while a second channel estimate may be based on a modified CSI-RS resource setting 1818.
  • the modified CSI-RS resource setting utilizes at least one modification included in the CSI report configuration 1816.
  • the modification can include a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting.
  • the CSI report generation circuitry 1844 may obtain the second channel estimate using only a single panel of the multi-panel antenna array 1820.
  • the first channel estimate may be based on a first CSI-RS resource setting 1818
  • the second channel estimate may be based on a second CSI-RS resource setting.
  • the second CSI-RS resource setting may include a power offset from the first CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the first CSI-RS resource setting or a subset of the frequency resources of the first CSI-RS resource setting.
  • the CSI report generation circuitry 1844 may obtain the second channel estimate using only a single panel of the multi-panel antenna array 1820.
  • the CSI report configuration 1816 is associated with a single CSI-RS resource setting 1818 for the scheduled entity.
  • the single CSI-RS resource setting 1818 indicates frequency resources (e.g., one or more sub-bands or BWPs of a carrier bandwidth over) which the scheduled entity should measure the channel quality, a set of CSI-RS ports (beams) on which CSI-RSs may be received and measured by the scheduled entity, and a power on each of the CSI-RS ports in the set of CSI-RS ports.
  • the frequency resources may include the entire carrier bandwidth.
  • the set of CSI-RS ports may be indicated using CDM group indexes of CDM groups.
  • the CSI-RS resource setting 1818 may include all of the CDM groups corresponding to all of the CSI-RS ports.
  • the power may be expressed as a power offset from a maximum power on the CSI-RS ports.
  • the power offset in the CSI-RS resource setting 1818 may be set to zero.
  • the CSI report configuration 1816 includes two CSI report sub-configurations, each for use by the CSI report generation circuitry 1844 in generating a respective CSI report.
  • a first CSI report sub-configuration can be used to generate the multi-panel CSI report
  • a second CSI report sub-configuration can be used to generate the single panel CSI report.
  • Each of the two CSI report sub-configurations may indicate the periodicity of the respective CSI report, the respective CSI parameters to be reported (e.g., one or more of the CQI, PMI, RI, etc.
  • the respective frequency granularity of the CQI and PMI e.g., wideband and/or sub-band
  • a respective codebook type for each CSI report e.g., the CSI parameters to be reported may be the same between the two CSI report sub-configurations.
  • the periodicity, frequency granularity, and/or codebook types may be the same between the two CSI report sub-configurations.
  • Each of the two CSI report sub-configurations may further include a power offset to be applied to the power indicated in the CSI-RS resource setting 1818 for use by the CSI report generation circuitry 1844 in estimating the channel for the respective CSI report, a subset of the CSI-RS ports of the CSI-RS resource setting 1818 for use by the CSI report generation circuitry 1844 in estimating the channel for the respective CSI report, and a subset of the frequency resources of the CSI-RS resource setting 1818 for use by the scheduled entity in estimating the channel for the respective CSI report.
  • the power offset may indicate that the CSI report generation circuitry 1844 should assume X dB less power (one-half of the power) on the CSI-RS ports when estimating the channel for the single panel CSI report.
  • the subset of the ports may indicate that the CSI report generation circuitry 1844 should assume half of the CSI-RS ports are used to transmit CSI-RS when estimating the channel for the single panel CSI report.
  • the subset of frequency resources may indicate that the CSI report generation circuitry 1844 should utilize the CSI-RS pilots transmitted on downlink frequency resources allocated for downlink communication when estimating the channel for the single panel CSI report.
  • the CSI report configuration 1816 is associated with two CSI-RS resource settings 1818, each for use by the CSI report generation circuitry 1844 in generating a respective CSI report.
  • a first CSI-RS resource setting 1818 may be associated with a multi-panel CSI report for a multi-panel full duplex base station
  • a second CSI-RS resource setting 1818 may be associated with a single panel CSI report for a multi-panel full duplex base station.
  • the CSI report configuration 1816 may include two CSI report sub-configurations, each for use by the scheduled entity in generating a respective CSI report.
  • a first CSI report sub-configuration can be used to generate the multi-panel CSI report
  • a second CSI report sub-configuration can be used to generate the single panel CSI report for a multi-panel full duplex base station.
  • Each of the two CSI report sub-configurations may indicate the periodicity of the respective CSI report, the respective CSI parameters to be reported (e.g., one or more of the CQI, PMI, RI, etc. ) , the respective frequency granularity of the CQI and PMI (e.g., wideband and/or sub-band) in each CSI report, and a respective codebook type for each CSI report.
  • the CSI parameters to be reported may be the same between the two CSI report sub-configurations.
  • the periodicity, frequency granularity, and/or codebook types may be the same between the two CSI report sub-configurations.
  • Each of the first and second CSI report sub-configurations maps to a respective one of the two CSI-RS resource settings 1818.
  • Each CSI-RS resource setting 1818 indicates frequency resources (e.g., an entire carrier bandwidth or one or more sub-bands or BWPs of the carrier bandwidth) over which the CSI report generation circuitry 1844 should measure the channel quality, a set of CSI-RS ports (beams) on which CSI-RSs may be received and measured by the CSI report generation circuitry 1844, and a power on each of the CSI-RS ports.
  • each CSI-RS resource setting 1818 may be configured with different values to result in the generation of a multi-panel CSI report and a single panel CSI report.
  • the second CSI-RS resource setting 1818 may indicate a subset of the frequency resources of the first CSI-RS resource setting 1818.
  • the second CSI-RS resource setting 1818 may indicate a subset of the CSI-RS ports of the first CSI-RS resource setting 1818.
  • the second CSI-RS resource setting 1818 may indicate a power offset with respect to the first CSI-RS resource setting 1818.
  • the CSI report generation circuitry 1844 may further be configured to generate the two CSI reports, each including respective CSI report values for each of a plurality of CSI report parameters, as indicated in the CSI report configuration 1816.
  • each CSI report may include a respective CQI, PMI, RI, LI, and/or L1-RSRP values.
  • the CSI report generation circuitry 1844 may further be configured to execute CSI report generation software 1854 stored in the computer-readable medium 1806 to implement one or more of the functions described herein.
  • FIG. 19 is a flow chart 1900 of a method for CSI reporting at a scheduled entity according to some aspects. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all embodiments. In some examples, the method may be performed by the scheduled entity 1800, as described above and illustrated in FIG. 18, by a processor or processing system, or by any suitable means for carrying out the described functions.
  • the scheduled entity may receive a CSI report configuration associated with a CSI-RS resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of a scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration signals the scheduled entity to transmit two CSI reports, one of which is based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting.
  • the modification of the CSI-RS resource setting includes a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting.
  • the set of CSI-RS ports can include a first set of CSI-RS ports associated with a first panel of the multi-panel antenna array and a second set of CSI-RS ports associated with a second panel of the multi-panel antenna array.
  • the subset of the CSI-RS ports can include one of the first set of CSI-RS ports or the second set of CSI-RS ports.
  • the subset of the frequency resources include downlink frequency resources allocated for downlink communication from the scheduling entity to the scheduled entity when the scheduling entity is operating in a sub-band full duplex mode.
  • the power offset is applicable to each of the CSI-RS ports.
  • the scheduled entity may receive the CSI report configuration and the CSI-RS resource setting from the scheduling entity via radio resource control (RRC) signaling.
  • the scheduled entity may further receive a dynamic reconfiguration message from the scheduling entity that updates the modification.
  • the dynamic reconfiguration message can include a MAC-CE or DCI.
  • the communication and processing circuitry 1842, together with the transceiver 1810, shown and described above in connection with FIG. 18 may receive the CSI report configuration and CSI-RS resource setting.
  • the scheduled entity may receive the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of ports indicated in the CSI-RS resource setting.
  • the communication and processing circuitry 1842, together with the transceiver 1810, shown and described above in connection with FIG. 18 may receive the at least one CSI-RS from the scheduling entity.
  • the scheduled entity may transmit a first CSI report to the scheduling entity generated based on the CSI-RS resource setting.
  • the scheduled entity may further transmit a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting.
  • the first and second CSI reports each include a different respective set of CSI report values for each of a plurality of CSI report parameters.
  • the CSI report configuration includes a power offset field.
  • the scheduled entity may generate the second CSI report based on the power offset when the power offset field includes the power offset.
  • the CSI report configuration further includes a port subset flag and the scheduled entity may generate the second CSI report based on the subset of CSI-RS ports when the port subset flag is enabled.
  • the scheduled entity may identify the subset of CSI-RS ports from a respective code division multiplexing (CDM) group index of a plurality of CDM groups indexes associated with each of the CSI-RS ports. For example, the scheduled entity may divide the plurality of CDM group indexes numerically into a first half and a second half and selecting the first half or the second half of the plurality of CDM group indexes as the subset of the CSI-RS ports. As another example, the scheduled entity may select odd CDM group indexes or even CDM group indexes of the plurality of CDM group indexes as the subset of the CSI-RS ports.
  • the CSI report generation circuitry 1844 together with the communication and processing circuitry 1842 and the transceiver 1810, shown and described above in connection with FIG. 18 may transmit the first and second CSI reports.
  • a scheduled entity (e.g., a UE) 1800 includes means for receiving a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI reports. One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting.
  • the scheduled entity can further include means for receiving the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports.
  • the scheduled entity can further include means for transmitting a first CSI report to the scheduling entity generated based on the CSI-RS resource setting and means for transmitting a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting.
  • the aforementioned means for receiving the CSI report configuration associated with the CSI-RS resource setting, means for receiving the at least one CSI-RS on the set of frequency resources and the set of CSI-RS ports, means for transmitting the first CSI report, and the means for transmitting the second CSI report may be the processor (s) 1804 shown in FIG. 18 configured to perform the functions recited by the aforementioned means.
  • the aforementioned means for receiving the CSI report configuration associated with the CSI-RS resource setting may include the communication and processing circuitry 1842 and the transceiver 1810 shown in FIG. 18.
  • the aforementioned means for receiving the at least one CSI-RS on the set of frequency resources and the set of CSI-RS ports may include the communication and processing circuitry 1842 and the transceiver 1810 shown in FIG. 18.
  • the aforementioned means for transmitting the first CSI report and the means for transmitting the second CSI report may include the CSI report generation circuitry 1844, the communication and processing circuitry 1842, and the transceiver 1810 shown in FIG. 18.
  • the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
  • FIG. 20 is a flow chart 2000 of another method for CSI reporting at a scheduled entity according to some aspects. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all embodiments. In some examples, the method may be performed by the scheduled entity 1800, as described above and illustrated in FIG. 18, by a processor or processing system, or by any suitable means for carrying out the described functions.
  • the scheduled entity may receive a CSI report configuration associated with two CSI-RS resource settings.
  • Each of the two CSI-RS resource settings identifies a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of a scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration signals the scheduled entity to transmit two CSI reports, each corresponding to one of the two CSI-RS resource settings.
  • the second CSI-RS resource setting includes a power offset from the first CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the first CSI-RS resource setting or a subset of the frequency resources of the first CSI-RS resource setting.
  • the set of CSI-RS ports can include a first set of CSI-RS ports associated with a first panel of the multi-panel antenna array and a second set of CSI-RS ports associated with a second panel of the multi-panel antenna array.
  • the subset of the CSI-RS ports can include one of the first set of CSI-RS ports or the second set of CSI-RS ports.
  • the second CSI-RS resource setting includes at least one CDM group associated with the subset of CSI-RS ports.
  • the subset of the frequency resources include downlink frequency resources allocated for downlink communication from the scheduling entity to the scheduled entity when the scheduling entity is operating in a sub-band full duplex mode.
  • the power offset is applicable to each of the CSI-RS ports.
  • the communication and processing circuitry 1842, together with the transceiver 1810, shown and described above in connection with FIG. 18 may receive the CSI report configuration and two CSI-RS resource settings.
  • the scheduled entity may receive the at least one CSI-RS from the scheduling entity based on the two CSI-RS resource settings.
  • the communication and processing circuitry 1842, together with the transceiver 1810, shown and described above in connection with FIG. 18 may receive the at least one CSI-RS from the scheduling entity.
  • the scheduled entity may transmit a first CSI report from the scheduled entity generated based on the first CSI-RS resource setting.
  • the scheduled entity may further transmit a second CSI report from the scheduled entity generated based on the second CSI-RS resource setting.
  • the first and second CSI reports each include a different respective set of CSI report values for each of a plurality of CSI report parameters.
  • the second CSI report may be generated using a single panel of an additional multi-panel antenna array on the scheduled entity.
  • the communication and processing circuitry 1842, together with the transceiver 1810, shown and described above in connection with FIG. 18 may receive the first and second CSI reports.
  • a scheduled entity (e.g., a UE) 1800 includes means for receiving a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings.
  • CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission.
  • the CSI report configuration can signal the scheduled entity to transmit two CSI reports.
  • Each CSI report can correspond to one of the two CSI-RS resource settings.
  • the scheduled entity can further include means for receiving the at least one CSI-RS from the scheduling entity based on the two CSI-RS resource settings.
  • the scheduled entity can further include means for transmitting a first CSI report to the scheduling entity generated based on a first CSI-RS setting of the two CSI-RS resource settings and means for transmitting a second CSI report to the scheduling entity generated based on a second CSI-RS setting of the two CSI-RS resource settings.
  • the aforementioned means for receiving the CSI report configuration associated with the two CSI-RS resource setting, means for receiving the at least one CSI-RS based on the two CSI-RS resource settings, means for transmitting the first CSI report, and the means for transmitting the second CSI report may be the processor (s) 1804 shown in FIG. 18 configured to perform the functions recited by the aforementioned means.
  • the aforementioned means for receiving the CSI report configuration associated with the two CSI-RS resource settings may include the communication and processing circuitry 1842 and the transceiver 1810 shown in FIG. 18.
  • the aforementioned means for receiving the at least one CSI-RS based on the two CSI-RS resource settings may include the communication and processing circuitry 1842 and the transceiver 1810 shown in FIG. 18.
  • the aforementioned means for transmitting the first CSI report and the means for transmitting the second CSI report may include the CSI report generation circuitry 1844, the communication and processing circuitry 1842, and the transceiver 1810 shown in FIG. 18.
  • the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
  • various aspects may be implemented within other systems defined by 3GPP, such as Long-Term Evolution (LTE) , the Evolved Packet System (EPS) , the Universal Mobile Telecommunication System (UMTS) , and/or the Global System for Mobile (GSM) .
  • LTE Long-Term Evolution
  • EPS Evolved Packet System
  • UMTS Universal Mobile Telecommunication System
  • GSM Global System for Mobile
  • Various aspects may also be extended to systems defined by the 3rd Generation Partnership Project 2 (3GPP2) , such as CDMA2000 and/or Evolution-Data Optimized (EV-DO) .
  • 3GPP2 3rd Generation Partnership Project 2
  • EV-DO Evolution-Data Optimized
  • Other examples may be implemented within systems employing IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Ultra-Wideband (UWB) , Bluetooth, and/or other suitable systems.
  • Wi-Fi IEEE 802.11
  • WiMAX IEEE 8
  • the word “exemplary” is used to mean “serving as an example, instance, or illustration. ” Any implementation or aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation.
  • the term “coupled” is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another-even if they do not directly physically touch each other. For instance, a first object may be coupled to a second object even though the first object is never directly physically in contact with the second object.
  • circuit and “circuitry” are used broadly, and intended to include both hardware implementations of electrical devices and conductors that, when connected and configured, enable the performance of the functions described in the present disclosure, without limitation as to the type of electronic circuits, as well as software implementations of information and instructions that, when executed by a processor, enable the performance of the functions described in the present disclosure.
  • FIGs. 1–20 may be rearranged and/or combined into a single component, step, feature or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein.
  • the apparatus, devices, and/or components illustrated in FIGs. 1, 2, 4, 5, 11, 12, 14, 15, and 18 may be configured to perform one or more of the methods, features, or steps described herein.
  • the novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.
  • “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b, and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.

Abstract

Aspects relate to enhancements in CSI reporting for multi-panel full duplex scheduling entities (e.g., base stations). A scheduled entity (e.g., a UE) can be configured with a single CSI report configuration associated with a single CSI-RS resource setting for both single panel and multi-panel CSI reporting. The CSI report configuration can indicate a modification of the CSI-RS resource setting to utilize for one of the two CSI reports. The scheduled entity can further be configured with a single CSI report configuration associated with two CSI-RS resource settings, each associated with one of the CSI reports. Other aspects and features are also claimed and described.

Description

CSI REPORTING TECHNIQUES FOR MULTI-PANEL FULL DUPLEX BASE STATIONS TECHNICAL FIELD
The technology discussed below relates generally to wireless communication networks, and more particularly, to channel state information (CSI) reporting in wireless communication networks. Some embodiments and techniques enable and provide communication devices, methods, and systems with enhancements in CSI reporting for multi-panel full duplex base stations.
INTRODUCTION
In wireless communication systems, such as those specified under standards for 5G New Radio (NR) , an access point (e.g., a base station) may communicate with a user equipment (UE) (e.g., a smartphone) . The communication can utilize a modulation and coding scheme (MCS) , rank, and precoding matrix selected based on an estimate of the channel between the base station and the UE. To assist the UE in estimating the channel, the base station may transmit one or more reference signals, such as channel state information reference signals (CSI-RS) , to the UE.
After channel estimation, the UE may return a channel state information (CSI) report indicating the quality of the channel to the base station. The CSI may include, for example, a channel quality indicator (CQI) that indicates to the base station an MCS to use for transmissions to the UE, a rank indicator (RI) that indicates to the base station the number of layers to use for transmissions to the UE, a precoding matrix indicator (PMI) that indicates to the base station the precoding matrix to use for transmissions to the UE, and other suitable parameters.
The base station (e.g., gNodeB (gNB) ) can configure the UE with one or more CSI report configurations. Each CSI report configuration may indicate, for example, the CSI related parameters to be reported (e.g., one or more of the CQI, PMI, RI, etc. ) , the time-domain behavior of CSI reports (e.g., periodic, semi-persistent, or aperiodic) , the frequency granularity for reporting the CQI and PMI (e.g., wideband or sub-band) , codebook configuration, and other suitable parameters. Each CSI report configuration may further be associated with a respective CSI-RS resource setting that specifies the resource elements (REs) on which CSI-RSs may be transmitted, along with a set of ports at the gNB from which the CSI-RSs may be transmitted.
BRIEF SUMMARY OF SOME EXAMPLES
The following presents a summary of one or more aspects of the present disclosure, in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated features of the disclosure and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in a form as a prelude to the more detailed description that is presented later.
Various aspects of the disclosure relate to enhancements in CSI reporting. CSI reporting use cases and deployment scenarios can include multi-panel, full duplex scheduling entities (e.g., base stations) . In some examples, a scheduled entity (e.g., a UE) is configured with a single CSI report configuration associated with a single CSI-RS resource setting for both single panel and multi-panel CSI reporting. For example, the CSI-RS resource setting may be associated with a multi-panel base station antenna array. The CSI report configuration can signal the scheduled entity to generate single or multiple CSI reports (e.g., two or more CSI reports) . The CSI reports can each include a different respective set of CSI report values for each of a plurality of CSI report parameters (e.g., different values for one or more of the CQI, PMI, RI, LI, L1-RSRP, etc. ) . CSI reports may be generated based on the same single CSI-RS resource setting. The CSI report configuration can indicate a modification of the CSI-RS resource setting to utilize for one of several CSI reports. For example, the modification can include a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting.
In some examples, a scheduled entity is configured with a single CSI report configuration associated with two CSI-RS resource settings. The CSI report configuration can signal the scheduled entity to generate two CSI reports, each including a different respective set of CSI report values for each of a plurality of CSI report parameters (e.g., different values for one or more of the CQI, PMI, RI, LI, L1-RSRP, etc. ) . Each CSI report may be generated based on one of the CSI-RS resource settings. For example, a first CSI report may be generated based on the first CSI-RS resource setting, while a second CSI report may be generated based on the second CSI-RS resource setting. For example, a first CSI-RS resource setting may be associated  with a multi-panel CSI report for a multi-panel full duplex base station, while a second CSI-RS resource setting may be associated with a single panel CSI report for a multi-panel full duplex base station.
In one example, a method of wireless communication between a scheduling entity and a set of one or more scheduled entities in a wireless communication network is disclosed. The method includes transmitting to a scheduled entity of the set of one or more scheduled entities a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI report. One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting. The method can further include transmitting the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of CSI-RS ports. The method can further include receiving a first CSI report from the scheduled entity generated based on the CSI-RS resource setting and receiving a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting.
Another example provides a scheduling entity in a wireless communication network. A scheduling entity can house or comprise a number of components, including a wireless transceiver, a memory, and a processor communicatively coupled to the wireless transceiver and the memory. The processor and the memory can be configured to transmit to a scheduled entity a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI report. One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting. The processor and the memory can further be configured to transmit the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of CSI-RS ports. The processor and the memory can further be configured to receive a first CSI report from the scheduled entity generated based on the CSI-RS resource setting and receive a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting.
Another example provides a scheduling entity in a wireless communication network. The scheduling entity includes means for transmitting to a scheduled entity a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI report. One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting. The scheduling entity can further include means transmitting the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of CSI-RS ports. The scheduling entity can further include means for receiving a first CSI report from the scheduled entity generated based on the CSI-RS resource setting and means for receiving a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting.
Another example provides a non-transitory computer-readable medium including code for causing a scheduling entity to transmit to a scheduled entity a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI report. One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting. The non-transitory computer-readable medium can further include code for causing the scheduling entity to transmit the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of CSI-RS ports. The non-transitory computer-readable medium can further include code for causing the scheduling entity to receive a first CSI report from the scheduled entity generated based on the CSI-RS resource setting and receive a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting.
In another example, a method of wireless communication between a scheduled entity and a scheduling entity in a wireless communication network is disclosed. The method includes receiving a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of the  scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI reports. One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting. The method can further include receiving the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports. The method can further include transmitting a first CSI report to the scheduling entity generated based on the CSI-RS resource setting and transmitting a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting.
Another example provides a scheduled entity in a wireless communication network including a wireless transceiver, a memory, and a processor communicatively coupled to the wireless transceiver and the memory. The processor and the memory can be configured to receive a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI reports. One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting. The processor and the memory can further be configured to receive the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports. The processor and the memory can further be configured to transmit a first CSI report to the scheduling entity generated based on the CSI-RS resource setting and transmitting a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting.
Another example provides a scheduled entity in a wireless communication network. The scheduled entity includes means for receiving a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI reports. One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting. The scheduled entity can further include means for receiving the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports. The  scheduled entity can further include means for transmitting a first CSI report to the scheduling entity generated based on the CSI-RS resource setting and means for transmitting a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting.
Another example provides a non-transitory computer-readable medium including code for causing a scheduled entity to receive a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI reports. One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting. The non-transitory computer-readable medium can further include code for causing the scheduled entity to receive the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports. The non-transitory computer-readable medium can further include code for causing the scheduled entity to transmit a first CSI report to the scheduling entity generated based on the CSI-RS resource setting and transmit a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting.
Various method, system, device, and apparatus embodiments may also include additional features. For example, the first CSI report and the second CSI report each include a different respective set of CSI report values for each of a plurality of CSI report parameters.
In some examples, the modification of the CSI-RS resource setting may include a power offset from the CSI-RS resource setting or at least one of a subset of the set of CSI-RS ports of the CSI-RS resource setting or a subset of the set of frequency resources of the CSI-RS resource setting. In some examples, the multi-panel antenna array may include a first panel having a first set of antenna elements and a second panel having a second set of antenna elements. The first panel can be physically separated from the second panel. In some examples, the set of CSI-RS ports includes a first set of CSI-RS ports associated with the first panel and a second set of CSI-RS ports associated with the second panel. The subset of the set of CSI-RS ports can include one of the first set of CSI-RS ports or the second set of CSI-RS ports.
In some examples, the subset of the set of frequency resources include downlink frequency resources allocated for downlink communication from the scheduling entity to the scheduled entity when the scheduling entity is operating in a full duplex mode. In some examples, the power offset is applicable to each of the CSI-RS ports. In some examples, the CSI report configuration includes a power offset field. The power offset field can include the power offset when the second CSI report is generated based on the power offset. In some examples, the CSI report configuration can further include a port subset field indicating whether the second CSI report is generated based on the CSI-RS ports or the subset of the set of CSI-RS ports.
In some examples, the scheduling entity may further be configured to transmit the CSI report configuration and the CSI-RS resource setting to the scheduled entity via radio resource control (RRC) signaling. In some examples, the scheduling entity may further be configured to transmit a dynamic reconfiguration message to the scheduled entity. They dynamic reconfiguration message can update the modification. In some examples, the dynamic reconfiguration message includes a medium access control control element (MAC-CE) command or downlink control information (DCI) .
In another example, a method of wireless communication between a scheduling entity and a set of one or more scheduled entities in a wireless communication network is disclosed. The method includes transmitting to a scheduled entity of the set of one or more scheduled entities a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings. Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI reports. Each CSI report can correspond to one of the two CSI-RS resource settings. The method can further include transmitting the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings. The method can further include receiving a first CSI report from the scheduled entity generated based on a first CSI-RS resource setting of the two CSI-RS resource settings and receiving a second CSI report from the scheduled entity generated based on a second CSI-RS resource setting of the two CSI-RS resource settings.
Another example provides a scheduling entity in a wireless communication network including a wireless transceiver, a memory, and a processor communicatively coupled to the wireless transceiver and the memory. The processor and the memory can  be configured to transmit to a scheduled entity a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings. Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI reports. Each CSI report can correspond to one of the two CSI-RS resource settings. The processor and the memory can further be configured to transmit the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings. The processor and the memory can further be configured to receive a first CSI report from the scheduled entity generated based on a first CSI-RS resource setting of the two CSI-RS resource settings and receive a second CSI report from the scheduled entity generated based on a second CSI-RS resource setting of the two CSI-RS resource settings.
Another example provides a scheduling entity in a wireless communication network. The scheduling entity includes means for transmitting to a scheduled entity a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings. Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI reports. Each CSI report can correspond to one of the two CSI-RS resource settings. The scheduling entity can further include means for transmitting the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings. The scheduled entity can further include means for receiving a first CSI report from the scheduled entity generated based on a first CSI-RS resource setting of the two CSI-RS resource settings and means for receiving a second CSI report from the scheduled entity generated based on a second CSI-RS resource setting of the two CSI-RS resource settings.
Another example provides a non-transitory computer-readable medium including code for causing a scheduling entity to transmit to a scheduled entity a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings. Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is  configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI reports. Each CSI report can correspond to one of the two CSI-RS resource settings. The non-transitory computer-readable medium can further include code for causing the scheduling entity to transmit the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings. The non-transitory computer-readable medium can further include code for causing the scheduling entity to receive a first CSI report from the scheduled entity generated based on a first CSI-RS resource setting of the two CSI-RS resource settings and receive a second CSI report from the scheduled entity generated based on a second CSI-RS resource setting of the two CSI-RS resource settings.
In another example, a method of wireless communication between a scheduled entity and a scheduling entity in a wireless communication network is disclosed. The method includes receiving a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings. Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI reports. Each CSI report can correspond to one of the two CSI-RS resource settings. The method can further include receiving the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports. The method can further include transmitting a first CSI report to the scheduling entity generated based on a first CSI-RS setting of the two CSI-RS resource settings and transmitting a second CSI report to the scheduling entity generated based on a second CSI-RS setting of the two CSI-RS resource settings.
Another example provides a scheduled entity in a wireless communication network including a wireless transceiver, a memory, and a processor communicatively coupled to the wireless transceiver and the memory. The processor and the memory can be configured to receive a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings. Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI reports. Each CSI report can correspond to one of the two CSI-RS resource settings. The processor and the memory  can further be configured to receive the at least one CSI-RS from the scheduling entity based on the two CSI-RS resource settings. The processor and the memory can further be configured to transmit a first CSI report to the scheduling entity generated based on a first CSI-RS setting of the two CSI-RS resource settings and transmit a second CSI report to the scheduling entity generated based on a second CSI-RS setting of the two CSI-RS resource settings.
Another example provides a scheduled entity in a wireless communication network. The scheduled entity includes means for receiving a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings. Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI reports. Each CSI report can correspond to one of the two CSI-RS resource settings. The scheduled entity can further include means for receiving the at least one CSI-RS from the scheduling entity based on the two CSI-RS resource settings. The scheduled entity can further include means for transmitting a first CSI report to the scheduling entity generated based on a first CSI-RS setting of the two CSI-RS resource settings and means for transmitting a second CSI report to the scheduling entity generated based on a second CSI-RS setting of the two CSI-RS resource settings.
Another example provides a non-transitory computer-readable medium including code for causing a scheduled entity to receive a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings. Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI reports. Each CSI report can correspond to one of the two CSI-RS resource settings. The non-transitory computer-readable medium can further include code for causing the scheduled entity to receive the at least one CSI-RS from the scheduling entity based on the two CSI-RS resource settings. The non-transitory computer-readable medium can further include code for causing the scheduled entity to transmit a first CSI report to the scheduling entity generated based on a first CSI-RS setting of the two CSI-RS resource  settings and transmit a second CSI report to the scheduling entity generated based on a second CSI-RS setting of the two CSI-RS resource settings.
Various method, system, device, and apparatus embodiments may also include additional features. For example, the first CSI report and the second CSI report each include a different respective set of CSI report values for each of a plurality of CSI report parameters.
In some examples, the second CSI-RS resource setting may include a power offset from the first CSI-RS resource setting or at least one of a subset of the set of CSI-RS ports of the first CSI-RS resource setting or a subset of the set of frequency resources of the first CSI-RS resource setting. In some examples, the multi-panel antenna array may include a first panel having a first set of antenna elements and a second panel having a second set of antenna elements. The first panel can be physically separated from the second panel. In some examples, the set of CSI-RS ports may include a first set of CSI-RS ports associated with the first panel and a second set of CSI-RS ports associated with the second panel. The subset of the set of CSI-RS ports can include one of the first set of CSI-RS ports or the second set of CSI-RS ports.
In some examples, the second CSI-RS resource setting may include at least one code division multiplexing (CDM) group associated with the subset of the set of CSI-RS ports. In some examples, the subset of the set of frequency resources may include downlink frequency resources allocated for downlink communication from the scheduling entity to the scheduled entity when the scheduling entity is operating in a full duplex mode. In some examples, the power offset may be applicable to each of the CSI-RS ports.
These and other aspects will become more fully understood upon a review of the detailed description, which follows. Other aspects, features, and embodiments will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary embodiments of in conjunction with the accompanying figures. While features may be discussed relative to certain embodiments and figures below, all embodiments can include one or more of the advantageous features discussed herein. In other words, while one or more embodiments may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various embodiments discussed herein. In similar fashion, while exemplary embodiments may be discussed below as device, system, or  method embodiments such exemplary embodiments can be implemented in various devices, systems, and methods.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic illustration of a wireless communication system according to some aspects.
FIG. 2 is a conceptual illustration of an example of a radio access network according to some aspects.
FIG. 3 is a diagram illustrating an example of a frame structure for use in a wireless communication network according to some aspects.
FIG. 4 is a block diagram illustrating a wireless communication system supporting beamforming and/or multiple-input multiple-output (MIMO) communication according to some aspects.
FIG. 5 is a schematic illustration of an example of a full duplex wireless communication network according to some aspects.
FIG. 6 is a diagram illustrating exemplary slot formats that may be utilized in full duplex wireless communication networks according to some aspects.
FIG. 7 is a diagram illustrating an example of multi-panel switching and beamforming in full duplex wireless communication networks according to some aspects.
FIG. 8 is a diagram illustrating another example of multi-panel switching and beamforming in full duplex wireless communication networks according to some aspects.
FIG. 9 is a diagram illustrating an example of CSI-RS resource mapping according to some aspects.
FIG. 10 is a diagram illustrating an example of a CSI report configuration mapping to a single CSI-RS resource setting to generate two CSI reports for a multi-panel full duplex base station according to some aspects.
FIG. 11 is a signaling diagram illustrating an example of CSI reporting for a multi-panel full duplex base station according to some aspects.
FIG. 12 is a signaling diagram illustrating another example of CSI reporting for a multi-panel full duplex base station according to some aspects.
FIG. 13 is a diagram illustrating an example of a CSI report configuration mapping to two CSI-RS resource settings to generate two CSI reports for a multi-panel full duplex base station according to some aspects.
FIG. 14 is a signaling diagram illustrating another example of CSI reporting for a multi-panel full duplex base station according to some aspects.
FIG. 15 is a block diagram illustrating an example of a hardware implementation for a scheduling entity employing a processing system according to some aspects.
FIG. 16 is a flow chart of an exemplary method for CSI reporting at a scheduling entity according to some aspects.
FIG. 17 is a flow chart of another exemplary method for CSI reporting at a scheduling entity according to some aspects.
FIG. 18 is a block diagram illustrating an example of a hardware implementation for a scheduled entity employing a processing system according to some aspects
FIG. 19 is a flow chart of an exemplary method for CSI reporting at a scheduled entity according to some aspects.
FIG. 20 is a flow chart of another exemplary method for CSI reporting at a scheduled entity according to some aspects.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
While aspects and embodiments are described in this application by illustration to some examples, those skilled in the art will understand that additional implementations and use cases may come about in many different arrangements and scenarios. Innovations described herein may be implemented across many differing platform types, devices, systems, shapes, sizes, packaging arrangements. For example, embodiments and/or uses may come about via integrated chip embodiments and other non-module-component based devices (e.g., end-user devices, vehicles, communication  devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, AI-enabled devices, etc. ) . While some examples may or may not be specifically directed to use cases or applications, a wide assortment of applicability of described innovations may occur. Implementations may range a spectrum from chip-level or modular components to non-modular, non-chip-level implementations and further to aggregate, distributed, or OEM devices or systems incorporating one or more aspects of the described innovations. In some practical settings, devices incorporating described aspects and features may also necessarily include additional components and features for implementation and practice of claimed and described embodiments. For example, transmission and reception of wireless signals necessarily includes a number of components for analog and digital purposes (e.g., hardware components including antenna, RF-chains, power amplifiers, modulators, buffer, processor (s) , interleaver, adders/summers, etc. ) . It is intended that innovations described herein may be practiced in a wide variety of devices, chip-level components, systems, distributed arrangements, end-user devices, etc. of varying sizes, shapes, and constitution.
The various concepts presented throughout this disclosure may be implemented across a broad variety of telecommunication systems, network architectures, and communication standards. Referring now to FIG. 1, as an illustrative example without limitation, various aspects of the present disclosure are illustrated with reference to a wireless communication system 100. The wireless communication system 100 includes three interacting domains: a core network 102, a radio access network (RAN) 104, and a user equipment (UE) 106. By virtue of the wireless communication system 100, the UE 106 may be enabled to carry out data communication with an external data network 110, such as (but not limited to) the Internet.
The RAN 104 may implement any suitable wireless communication technology or technologies to provide radio access to the UE 106. As one example, the RAN 104 may operate according to 3rd Generation Partnership Project (3GPP) New Radio (NR) specifications, often referred to as 5G. As another example, the RAN 104 may operate under a hybrid of 5G NR and Evolved Universal Terrestrial Radio Access Network (eUTRAN) standards, often referred to as LTE. The 3GPP refers to this hybrid RAN as a next-generation RAN, or NG-RAN. Of course, many other examples may be utilized within the scope of the present disclosure.
As illustrated, the RAN 104 includes a plurality of base stations 108. Broadly, a base station is a network element in a radio access network responsible for radio  transmission and reception in one or more cells to or from a UE. In different technologies, standards, or contexts, a base station may variously be referred to by those skilled in the art as a base transceiver station (BTS) , a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , an access point (AP) , a Node B (NB) , an eNode B (eNB) , a gNode B (gNB) , or some other suitable terminology.
The radio access network 104 is further illustrated supporting wireless communication for multiple mobile apparatuses. A mobile apparatus may be referred to as user equipment (UE) in 3GPP standards, but may also be referred to by those skilled in the art as a mobile station (MS) , a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT) , a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology. A UE may be an apparatus that provides a user with access to network services.
Within the present document, a “mobile” apparatus need not necessarily have a capability to move, and may be stationary. The term mobile apparatus or mobile device broadly refers to a diverse array of devices and technologies. UEs may include a number of hardware structural components sized, shaped, and arranged to help in communication; such components can include antennas, antenna array modules, RF chains, amplifiers, one or more processors, etc. electrically coupled to each other. For example, some non-limiting examples of a mobile apparatus include a mobile, a cellular (cell) phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal computer (PC) , a notebook, a netbook, a smartbook, a tablet, a personal digital assistant (PDA) , and a broad array of embedded systems, e.g., corresponding to an “Internet of Things” (IoT) . A mobile apparatus may additionally be an automotive or other transportation vehicle, a remote sensor or actuator, a robot or robotics device, a satellite radio, a global positioning system (GPS) device, an object tracking device, a drone, a multi-copter, a quad-copter, a remote control device, a consumer and/or wearable device, such as eyewear, a wearable camera, a virtual reality device, a smart watch, a health or fitness tracker, a digital audio player (e.g., MP3 player) , a camera, a game console, etc. A mobile apparatus may additionally be a digital home or smart home device such as a home audio, video, and/or multimedia device, an appliance, a vending machine, intelligent lighting, a home security system, a smart meter, etc. A  mobile apparatus may additionally be a smart energy device, a security device, a solar panel or solar array, a municipal infrastructure device controlling electric power (e.g., a smart grid) , lighting, water, etc.; an industrial automation and enterprise device; a logistics controller; agricultural equipment; military defense equipment, vehicles, aircraft, ships, and weaponry, etc. Still further, a mobile apparatus may provide for connected medicine or telemedicine support, i.e., health care at a distance. Telehealth devices may include telehealth monitoring devices and telehealth administration devices, whose communication may be given preferential treatment or prioritized access over other types of information, e.g., in terms of prioritized access for transport of critical service data, and/or relevant QoS for transport of critical service data.
Wireless communication between a RAN 104 and a UE 106 may be described as utilizing an air interface. Transmissions over the air interface from a base station (e.g., base station 108) to one or more UEs (e.g., UE 106) may be referred to as downlink (DL) transmission. In accordance with certain aspects of the present disclosure, the term downlink may refer to a point-to-multipoint transmission originating at a scheduling entity (described further below; e.g., base station 108) . Another way to describe this scheme may be to use the term broadcast channel multiplexing. Transmissions from a UE (e.g., UE 106) to a base station (e.g., base station 108) may be referred to as uplink (UL) transmissions. In accordance with further aspects of the present disclosure, the term uplink may refer to a point-to-point transmission originating at a scheduled entity (described further below; e.g., UE 106) .
In some examples, access to the air interface may be scheduled, wherein a scheduling entity (e.g., a base station 108) allocates resources for communication among some or all devices and equipment within its service area or cell. Within the present disclosure, as discussed further below, the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more scheduled entities. That is, for scheduled communication, UEs 106, which may be scheduled entities, may utilize resources allocated by the scheduling entity 108.
Base stations 108 are not the only entities that may function as scheduling entities. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more scheduled entities (e.g., one or more other UEs) . And as discussed more below, UEs may communicate directly with other UEs in peer-to-peer fashion and/or in relay configuration.
As illustrated in FIG. 1, a scheduling entity 108 may broadcast downlink traffic 112 to one or more scheduled entities 106. Broadly, the scheduling entity 108 is a node or device responsible for scheduling traffic in a wireless communication network, including the downlink traffic 112 and, in some examples, uplink traffic 116 from one or more scheduled entities 106 to the scheduling entity 108. On the other hand, the scheduled entity 106 is a node or device that receives downlink control information 114, including but not limited to scheduling information (e.g., a grant) , synchronization or timing information, or other control information from another entity in the wireless communication network such as the scheduling entity 108.
In addition, the uplink and/or downlink control information and/or traffic information may be time-divided into frames, subframes, slots, and/or symbols. As used herein, a symbol may refer to a unit of time that, in an orthogonal frequency division multiplexed (OFDM) waveform, carries one resource element (RE) per sub-carrier. A slot may carry 7 or 14 OFDM symbols. A subframe may refer to a duration of 1ms. Multiple subframes or slots may be grouped together to form a single frame or radio frame. Of course, these definitions are not required, and any suitable scheme for organizing waveforms may be utilized, and various time divisions of the waveform may have any suitable duration.
In general, base stations 108 may include a backhaul interface for communication with a backhaul portion 120 of the wireless communication system. The backhaul 120 may provide a link between a base station 108 and the core network 102. Further, in some examples, a backhaul network may provide interconnection between the respective base stations 108. Various types of backhaul interfaces may be employed, such as a direct physical connection, a virtual network, or the like using any suitable transport network.
The core network 102 may be a part of the wireless communication system 100, and may be independent of the radio access technology used in the RAN 104. In some examples, the core network 102 may be configured according to 5G standards (e.g., 5GC) . In other examples, the core network 102 may be configured according to a 4G evolved packet core (EPC) , or any other suitable standard or configuration.
Referring now to FIG. 2, by way of example and without limitation, a schematic illustration of a RAN 200 is provided. In some examples, the RAN 200 may be the same as the RAN 104 described above and illustrated in FIG. 1. The geographic area covered by the RAN 200 may be divided into cellular regions (cells) that can be uniquely  identified by a user equipment (UE) based on an identification broadcasted from one access point or base station. FIG. 2 illustrates  macrocells  202, 204, and 206, and a small cell 208, each of which may include one or more sectors (not shown) . A sector is a sub-area of a cell. All sectors within one cell are served by the same base station. A radio link within a sector can be identified by a single logical identification belonging to that sector. In a cell that is divided into sectors, the multiple sectors within a cell can be formed by groups of antennas with each antenna responsible for communication with UEs in a portion of the cell.
Various base station arrangements can be utilized. For example, in FIG. 2, two base stations 210 and 212 are shown in  cells  202 and 204; and a third base station 214 is shown controlling a remote radio head (RRH) 216 in cell 206. That is, a base station can have an integrated antenna or can be connected to an antenna or RRH by feeder cables. In the illustrated example, the  cells  202, 204, and 126 may be referred to as macrocells, as the  base stations  210, 212, and 214 support cells having a large size. Further, a base station 218 is shown in the small cell 208 (e.g., a microcell, picocell, femtocell, home base station, home Node B, home eNode B, etc. ) which may overlap with one or more macrocells. In this example, the cell 208 may be referred to as a small cell, as the base station 218 supports a cell having a relatively small size. Cell sizing can be done according to system design as well as component constraints.
It is to be understood that the radio access network 200 may include any number of wireless base stations and cells. Further, a relay node may be deployed to extend the size or coverage area of a given cell. The  base stations  210, 212, 214, 218 provide wireless access points to a core network for any number of mobile apparatuses. In some examples, the  base stations  210, 212, 214, and/or 218 may be the same as the base station/scheduling entity 108 described above and illustrated in FIG. 1.
Within the RAN 200, the cells may include UEs that may be in communication with one or more sectors of each cell. Further, each  base station  210, 212, 214, and 218 may be configured to provide an access point to a core network 102 (see FIG. 1) for all the UEs in the respective cells. For example, UEs 222 and 224 may be in communication with base station 210;  UEs  226 and 228 may be in communication with base station 212;  UEs  230 and 232 may be in communication with base station 214 by way of RRH 216; and UE 234 may be in communication with base station 218. In some examples, the  UEs  222, 224, 226, 228, 230, 232, 234, 238, 240, and/or 242 may be the same as the UE/scheduled entity 106 described above and illustrated in FIG. 1.
In some examples, an unmanned aerial vehicle (UAV) 220, which may be a drone or quadcopter, can be a mobile network node and may be configured to function as a UE. For example, the UAV 220 may operate within cell 202 by communicating with base station 210.
In a further aspect of the RAN 200, sidelink signals may be used between UEs without necessarily relying on scheduling or control information from a base station. For example, two or more UEs (e.g., UEs 226 and 228) may communicate with each other using sidelink signals 227 without relaying that communication through a base station (e.g., base station 212) . In some examples, the sidelink signals 227 include sidelink traffic and sidelink control. In a further example, UE 238 is illustrated communicating with  UEs  240 and 242. Here, the UE 238 may function as a scheduling entity or a primary/transmitting sidelink device, and  UEs  240 and 242 may each function as a scheduled entity or a non-primary (e.g., secondary/receiving) sidelink device. For example, a UE may function as a scheduling entity or scheduled entity in a device-to-device (D2D) , peer-to-peer (P2P) , vehicle-to-vehicle (V2V) network, vehicle-to-everything (V2X) and/or in a mesh network. In a mesh network example,  UEs  240 and 242 may optionally communicate directly with one another in addition to communicating with the scheduling entity 238. Thus, in a wireless communication system with scheduled access to time–frequency resources and having a cellular configuration, a P2P/D2D configuration, or a mesh configuration, a scheduling entity and one or more scheduled entities may communicate utilizing the scheduled resources.
The air interface in the radio access network 200 may utilize one or more multiplexing and multiple access algorithms to enable simultaneous communication of the various devices. For example, 5G NR specifications provide multiple access for UL transmissions from UEs 222 and 224 to base station 210, and for multiplexing for DL transmissions from base station 210 to one or more UEs 222 and 224, utilizing orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) . In addition, for UL transmissions, 5G NR specifications provide support for discrete Fourier transform-spread-OFDM (DFT-s-OFDM) with a CP (also referred to as single-carrier FDMA (SC-FDMA) ) . However, within the scope of the present disclosure, multiplexing and multiple access are not limited to the above schemes, and may be provided utilizing time division multiple access (TDMA) , code division multiple access (CDMA) , frequency division multiple access (FDMA) , sparse code multiple access (SCMA) , resource spread multiple access (RSMA) , or other suitable multiple access  schemes. Further, multiplexing DL transmissions from the base station 210 to UEs 222 and 224 may be provided utilizing time division multiplexing (TDM) , code division multiplexing (CDM) , frequency division multiplexing (FDM) , orthogonal frequency division multiplexing (OFDM) , sparse code multiplexing (SCM) , or other suitable multiplexing schemes.
The air interface in the radio access network 200 may further utilize one or more duplexing algorithms. Duplex refers to a point-to-point communication link where both endpoints can communicate with one another in both directions. Full duplex means both endpoints can simultaneously communicate with one another. Half duplex means only one endpoint can send information to the other at a time. In a wireless link, a full duplex channel generally relies on physical isolation of a transmitter and receiver, and suitable interference cancellation technologies. Full duplex emulation is frequently implemented for wireless links by utilizing frequency division duplex (FDD) or time division duplex (TDD) . In FDD, transmissions in different directions operate at different carrier frequencies. In TDD, transmissions in different directions on a given channel are separated from one another using time division multiplexing. That is, at some times the channel is dedicated for transmissions in one direction, while at other times the channel is dedicated for transmissions in the other direction, where the direction may change very rapidly, e.g., several times per slot.
Various aspects of the present disclosure will be described with reference to an OFDM waveform, schematically illustrated in FIG. 3. It should be understood by those of ordinary skill in the art that the various aspects of the present disclosure may be applied to an SC-FDMA waveform in substantially the same way as described herein below. That is, while some examples of the present disclosure may focus on an OFDM link for clarity, it should be understood that the same principles may be applied as well to SC-FDMA waveforms.
Referring now to FIG. 3, an expanded view of an exemplary DL subframe 302 is illustrated, showing an OFDM resource grid. However, as those skilled in the art will readily appreciate, the PHY transmission structure for any particular application may vary from the example described here, depending on any number of factors. Here, time is in the horizontal direction with units of OFDM symbols; and frequency is in the vertical direction with units of subcarriers.
The resource grid 304 may be used to schematically represent time–frequency resources for a given antenna port. That is, in a multiple-input-multiple-output (MIMO)  implementation with multiple antenna ports available, a corresponding multiple number of resource grids 304 may be available for communication. The resource grid 304 is divided into multiple resource elements (REs) 306. An RE, which is 1 subcarrier × 1 symbol, is the smallest discrete part of the time–frequency grid, and contains a single complex value representing data from a physical channel or signal. Depending on the modulation utilized in a particular implementation, each RE may represent one or more bits of information. In some examples, a block of REs may be referred to as a physical resource block (PRB) or a resource block (RB) 308, which contains any suitable number of consecutive subcarriers in the frequency domain. In one example, an RB may include 12 subcarriers, a number independent of the numerology used. In some examples, depending on the numerology, an RB may include any suitable number of consecutive OFDM symbols in the time domain. Within the present disclosure, it is assumed that a single RB such as the RB 308 entirely corresponds to a single direction of communication (either transmission or reception for a given device) .
A set of continuous or discontinuous resource blocks may be referred to herein as a Resource Block Group (RBG) , sub-band, or bandwidth part (BWP) . A set of sub-bands or BWPs may span the entire bandwidth. Scheduling of UEs (scheduled entities) for downlink or uplink transmissions typically involves scheduling one or more resource elements 306 within one or more sub-bands or bandwidth parts (BWPs) . Thus, a UE generally utilizes only a subset of the resource grid 304. An RB may be the smallest unit of resources that can be allocated to a UE. Thus, the more RBs scheduled for a UE, and the higher the modulation scheme chosen for the air interface, the higher the data rate for the UE.
In this illustration, the RB 308 is shown as occupying less than the entire bandwidth of the subframe 302, with some subcarriers illustrated above and below the RB 308. In a given implementation, the subframe 302 may have a bandwidth corresponding to any number of one or more RBs 308. Further, in this illustration, the RB 308 is shown as occupying less than the entire duration of the subframe 302, although this is merely one possible example.
Each 1 ms subframe 302 may consist of one or multiple adjacent slots. In the example shown in FIG. 3, one subframe 302 includes four slots 310, as an illustrative example. In some examples, a slot may be defined according to a specified number of OFDM symbols with a given cyclic prefix (CP) length. For example, a slot may include 7 or 14 OFDM symbols with a nominal CP. Additional examples may include mini- slots, sometimes referred to as shortened transmission time intervals (TTIs) , having a shorter duration (e.g., one to three OFDM symbols) . These mini-slots or shortened transmission time intervals (TTIs) may in some cases be transmitted occupying resources scheduled for ongoing slot transmissions for the same or for different UEs. Any number of resource blocks may be utilized within a subframe or slot.
An expanded view of one of the slots 310 illustrates the slot 310 including a control region 312 and a data region 314. In general, the control region 312 may carry control channels, and the data region 314 may carry data channels. Of course, a slot may contain all DL, all UL, or at least one DL portion and at least one UL portion. The structure illustrated in FIG. 3 is merely exemplary in nature, and different slot structures may be utilized, and may include one or more of each of the control region (s) and data region (s) .
Although not illustrated in FIG. 3, the various REs 306 within a RB 308 may be scheduled to carry one or more physical channels, including control channels, shared channels, data channels, etc. Other REs 306 within the RB 308 may also carry pilots or reference signals, including but not limited to a demodulation reference signal (DMRS) , a control reference signal (CRS) , channel state information reference signal (CSI-RS) , or a sounding reference signal (SRS) . These pilots or reference signals may provide for a receiving device to perform channel estimation of the corresponding channel, which may enable coherent demodulation/detection of the control and/or data channels within the RB 308.
In a DL transmission, the base station may allocate one or more REs 306 (e.g., within a control region 312) to carry DL control information including one or more DL control channels, such as a physical hybrid automatic repeat request (HARQ) indicator channel (PHICH) , a physical downlink control channel (PDCCH) , etc., to one or more scheduled entities. The PDCCH carries downlink control information (DCI) including but not limited to power control commands, scheduling information, a grant, and/or an assignment of REs for DL and UL transmissions. The PHICH carries HARQ feedback transmissions such as an acknowledgment (ACK) or negative acknowledgment (NACK) . HARQ is a technique well-known to those of ordinary skill in the art, wherein the integrity of packet transmissions may be checked at the receiving side for accuracy, e.g., utilizing any suitable integrity checking mechanism, such as a checksum or a cyclic redundancy check (CRC) . If the integrity of the transmission confirmed, an ACK may be transmitted, whereas if not confirmed, a NACK may be transmitted. In response to a  NACK, the transmitting device may send a HARQ retransmission, which may implement chase combining, incremental redundancy, etc.
The base station may further allocate one or more REs 306 to carry other DL signals, such as a DMRS; a phase-tracking reference signal (PT-RS) ; a CSI-RS; a primary synchronization signal (PSS) ; and a secondary synchronization signal (SSS) . A UE may utilize the PSS and SSS to achieve radio frame, subframe, slot, and symbol synchronization in the time domain, identify the center of the channel (system) bandwidth in the frequency domain, and identify the physical cell identity (PCI) of the cell. The synchronization signals PSS and SSS, and in some examples, the PBCH and a PBCH DMRS, may be transmitted in a synchronization signal block (SSB) . The PBCH may further include a master information block (MIB) that includes various system information, along with parameters for decoding a system information block (SIB) . The SIB may be, for example, a SystemInformationType 1 (SIB1) that may include various additional system information. Examples of system information transmitted in the MIB may include, but are not limited to, a subcarrier spacing, system frame number, a configuration of a PDCCH control resource set (CORESET) (e.g., PDCCH CORESET0) , and a search space for SIB1. Examples of additional system information transmitted in the SIB1 may include, but are not limited to, a random access search space, downlink configuration information, and uplink configuration information. The MIB and SIB1 together provide the minimum system information (SI) for initial access.
In an UL transmission, the UE may utilize one or more REs 306 to carry UL control information including one or more UL control channels, such as a physical uplink control channel (PUCCH) , to the scheduling entity. UL control information may include a variety of packet types and categories, including pilots, reference signals, and information configured to enable or assist in decoding uplink data transmissions. In some examples, the control information may include a scheduling request (SR) , i.e., request for the scheduling entity to schedule uplink transmissions. Here, in response to the SR transmitted on the control channel, the scheduling entity may transmit downlink control information that may schedule resources for uplink packet transmissions. UL control information may also include HARQ feedback, channel state feedback (CSF) , or any other suitable UL control information.
In addition to control information, one or more REs 306 (e.g., within the data region 314) may be allocated for user data traffic. Such traffic may be carried on one or more traffic channels, such as, for a DL transmission, a physical downlink shared  channel (PDSCH) ; or for an UL transmission, a physical uplink shared channel (PUSCH) . In some examples, one or more REs 306 within the data region 314 may be configured to carry SIBs (e.g., SIB1) , carrying information that may enable access to a given cell.
These physical channels described above are generally multiplexed and mapped to transport channels for handling at the medium access control (MAC) layer. Transport channels carry blocks of information called transport blocks (TB) . The transport block size (TBS) , which may correspond to a number of bits of information, may be a controlled parameter, based on the modulation and coding scheme (MCS) and the number of RBs in a given transmission.
The channels or carriers described above in connection with FIGs. 1–3 are not necessarily all of the channels or carriers that may be utilized between a scheduling entity and scheduled entities, and those of ordinary skill in the art will recognize that other channels or carriers may be utilized in addition to those illustrated, such as other traffic, control, and feedback channels.
In some aspects of the disclosure, the scheduling entity and/or scheduled entity may be configured for beamforming and/or multiple-input multiple-output (MIMO) technology. FIG. 4 illustrates an example of a wireless communication system 400 supporting beamforming and/or MIMO. In a MIMO system, a transmitter 402 includes multiple transmit antennas 404 (e.g., N transmit antennas) and a receiver 406 includes multiple receive antennas 408 (e.g., M receive antennas) . Thus, there are N × M signal paths 410 from the transmit antennas 404 to the receive antennas 408. The multiple transmit antennas 404 and multiple receive antennas 408 may each be configured in a single panel or multi-panel antenna array. Each of the transmitter 402 and the receiver 406 may be implemented, for example, within a scheduling entity or base station, as illustrated in FIGs. 1 and/or 2, a scheduled entity or UE, as illustrated in FIGs. 1 and/or 2, or any other suitable wireless communication device.
The use of such multiple antenna technology enables the wireless communication system to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity. Spatial multiplexing may be used to transmit different streams of data, also referred to as layers, simultaneously on the same time-frequency resource. The data streams may be transmitted to a single UE to increase the data rate or to multiple UEs to increase the overall system capacity, the latter being referred to as multi-user MIMO (MU-MIMO) . This is achieved by spatially precoding  each data stream (i.e., multiplying the data streams with different weighting and phase shifting) and then transmitting each spatially precoded stream through multiple transmit antennas on the downlink. The spatially precoded data streams arrive at the UE (s) with different spatial signatures, which enables each of the UE (s) to recover the one or more data streams destined for that UE. On the uplink, each UE transmits a spatially precoded data stream, which enables the base station to identify the source of each spatially precoded data stream.
The number of data streams or layers corresponds to the rank of the transmission. In general, the rank of the MIMO system 400 is limited by the number of transmit or receive  antennas  404 or 408, whichever is lower. In addition, the channel conditions at the UE, as well as other considerations, such as the available resources at the base station, may also affect the transmission rank. For example, the rank (and therefore, the number of data streams) assigned to a particular UE on the downlink may be determined based on the rank indicator (RI) transmitted from the UE to the base station. The RI may be determined based on the antenna configuration (e.g., the number of transmit and receive antennas) and a measured signal-to-interference-and-noise ratio (SINR) on each of the receive antennas. The RI may indicate, for example, the number of layers that may be supported under the current channel conditions. The base station may use the RI, along with resource information (e.g., the available resources and amount of data to be scheduled for the UE) , to assign a transmission rank to the UE.
In one example, as shown in FIG. 4, a rank-2 spatial multiplexing transmission on a 2x2 MIMO antenna configuration will transmit one data stream from each transmit antenna 404. Each data stream reaches each receive antenna 408 along a different signal path 410. The receiver 406 may then reconstruct the data streams using the received signals from each receive antenna 408.
Beamforming is a signal processing technique that may be used at the transmitter 402 or receiver 406 to shape or steer an antenna beam (e.g., a transmit/receive beam) along a spatial path between the transmitter 402 and the receiver 406. Beamforming may be achieved by combining the signals communicated via antennas 404 or 408 (e.g., antenna elements of an antenna array) such that some of the signals experience constructive interference while others experience destructive interference. To create the desired constructive/destructive interference, the transmitter 402 or receiver 406 may apply amplitude and/or phase offsets to signals transmitted or  received from each of the  antennas  404 or 408 associated with the transmitter 402 or receiver 406.
In some examples, to select one or more serving beams for communication with a UE, the base station may transmit a reference signal, such as a synchronization signal block (SSB) , a tracking reference signal (TRS) , or a channel state information reference signal (CSI-RS) , on each of a plurality of beams in a beam-sweeping manner. The UE may measure the reference signal received power (RSRP) on each of the beams and transmit a beam measurement report to the base station indicating the Layer 1 (L-1 RSRP) of each of the measured beams. The base station may then select the serving beam (s) for communication with the UE based on the beam measurement report. In other examples, when the channel is reciprocal, the base station may derive the particular beam (s) to communicate with the UE based on uplink measurements of one or more uplink reference signals, such as a sounding reference signal (SRS) .
In 5G New Radio (NR) systems, particularly for above 6 GHz or millimeter wave (mmWave) systems, beamformed signals may be utilized for downlink channels, including the physical downlink control channel (PDCCH) and physical downlink shared channel (PDSCH) . In addition, for UEs configured with beamforming antenna array modules, beamformed signals may also be utilized for uplink channels, including the physical uplink control channel (PUCCH) and physical uplink shared channel (PUSCH) . However, it should be understood that beamformed signals may also be utilized by enhanced mobile broadband (eMBB) gNBs for sub 6 GHz systems.
Beamforming may be used in both half duplex and full duplex wireless communication networks. In full duplex networks, downlink and uplink transmissions may occur simultaneously. In some examples, full duplex networks may utilize sub-band FDD in unpaired spectrum, in which transmissions in different directions are carried in different sub-bands or BWPs of the carrier bandwidth.
FIG. 5 is a schematic illustration of an example of a full duplex wireless communication network 500 according to some aspects. In the example shown in FIG. 5, the full duplex wireless communication network 500 includes a scheduling entity 502 (e.g., a base station, such as a gNB) in wireless communication with scheduled  entities  504a and 504b (e.g., UEs) . The scheduling entity 502 may correspond to any of the scheduling entities or base stations shown in FIGs. 1 and/or 2. The scheduled  entities  504a and 504b may correspond to any of the scheduled entities or UEs shown in FIGs. 1 and/or 2. In some scenarios, one or more UEs may function as scheduling entities.
The scheduling entity 502 may be configured with one or more antennas and/or antenna arrays. As shown in Figure 5’s example, the scheduling entity may include  antenna arrays  506a and 506b (two of which are shown for convenience) to generate beams radially distributed in all directions (e.g., 360 degrees) . The scheduling entity 502 may further be configured to generate beams of varying beam widths to accommodate mobility of the scheduled  entities  504a and 504b. For example, the scheduling entity 502 may utilize a wide beam for communication with a scheduled entity (e.g., scheduled entity 504a) when the scheduled entity 504a is in motion and a narrow beam for communication with the scheduled entity 504a when the scheduled entity 504a is stationary.
Each of the  antenna arrays  506a and 506b may be a single panel antenna array or a multi-panel antenna array. In the example shown in FIG. 5, the  antenna arrays  506a and 506b are multi-panel antenna arrays. For example, antenna array 506a includes two  antenna panels  508a and 508b, and antenna array 506b includes two  antenna panels  508c and 508d. Each of the  antenna arrays  506a and 506b further includes a plurality of antenna elements 510. The antenna elements 510 may be mapped to antenna ports for generation of the beams. Here, the term antenna port refers to a logical port (e.g., a beam) over which a signal (e.g., a data stream or layer) may be transmitted. In an example, antenna array 506a may include 128 antenna elements 510 (e.g., within a 16x8 array) that may be mapped to 32 antenna ports by an 8x1 combiner.
For MIMO transmissions, each layer (or data stream) may be mapped to one of the antenna ports. For example, the scheduling entity 502 may maintain a codebook of precoding matrices and map the different transmission layers to a set of antenna ports on the scheduling entity 502 using a selected precoding matrix. The precoding matrix provides the appropriate weightings to be applied to each layer for generation of the respective beam for each layer. The precoding matrix may be selected based on the PMI fed back from the scheduled entity in the CSI report. For example, using the PMI, the scheduling entity 502 may select a particular precoding matrix from a codebook for a MIMO transmission.
Many different codebooks may be used. In some scenarios, codebooks can be Type 1 codebooks (single panel or multi-panel) or Type II codebooks. Type I codebooks include predefined precoding matrices based on the number of layers and antenna ports. Type II codebooks also include precoding matrices based on the number of layers and antenna ports. However, with Type II codebooks, the scheduling entity  502 uses wideband and sub-band indices fed back from the scheduled entity to calculate the respective weightings applied to each layer for improved beamforming.
Codebooks may also have additional features. For example, utilized codebook types can be designed based on 1D/2D discrete Fourier transform (DFT) vectors, and hence assume that a uniform linear or planar antenna array 506a/506b is employed at the scheduling entity 502. Since a wide variety of 2D antenna array dimensions are available, the codebooks may be configurable and scalable. That is, the antenna port layout of an  antenna panel  508a or 508b in vertical and horizontal dimensions (N 1 and N 2, respectively) may be explicitly configured as part of the codebook configuration. For a multi-panel codebook, the number of panels N g is also configured. Assuming that dual-polarized  antenna arrays  506a and 506b are used, the total number of antenna ports (P) used by the codebook may be represented as P = 2N gN 1N 2, where N g = 1 for single panel and Type II codebooks.
When operating in full duplex mode, the scheduling entity 502 may simultaneously transmit a downlink signal 512 (e.g., downlink control information and/or data) to one of the scheduled entities (e.g., scheduled entity 504a) on one or more antenna ports (e.g., based on the selected precoding matrix) and receive an uplink signal 514 (e.g., uplink control information and/or data) from the other scheduled entity (e.g., scheduled entity 504b) on one or more of the antenna ports. In some examples, the scheduling entity 502 may transmit the downlink signal 512 on one or more antenna ports associated with one of the antenna panels (e.g., antenna panel 508a) and receive the uplink signal 514 on one or more antenna ports associated with the other antenna panel (e.g., antenna panel 508b) .
Using  separate panels  508a and 508b for downlink and uplink transmissions in full duplex mode can facilitate mitigation of self-interference. Such interference may arise from co-existing signals, such as the uplink signal 514 and the downlink signal 512. In one example, the  panels  508a and 508b may be physically separated from one another by a distance selected to provide improved isolation between the simultaneous transmission (Tx) and reception (Rx) operations, thereby mitigating at least a portion of the self-interference. Further mitigation of self-interference may be achieved by implementing sub-band FDD in unpaired spectrum. With sub-band FDD, the downlink and uplink transmissions are in different portions (e.g., different sub-bands or BWPs) of the carrier bandwidth. A guard band may further be provided between the uplink sub-band (s) and the downlink sub-band (s) to isolate the uplink and downlink transmissions  in frequency. Other self-mitigation techniques may further be utilized, such as digital interference cancellation, Rx windowed overlap and add (WOLA) to reduce the adjacent channel leakage ratio (ACLR) leakage to the uplink signal 514, improving the Rx antenna gain control (AGC) state, and other suitable mitigation techniques.
In the example shown in FIG. 5, each of the scheduled  entities  504a and 504b is operating in half duplex mode. In other examples, one or more of the scheduled  entities  504a and 504b may also be operating in full duplex mode to simultaneously transmit information to and receive information from the scheduling entity 502. In addition, the scheduling entity 502 may be configured to switch between full duplex mode and half duplex mode to accommodate scheduled entities supporting either eMBB or ultra-reliable low-latency communication (URLLC) use cases. When operating in half duplex mode, the scheduling entity 502 may implement TDD to perform one of transmission or reception at a time. For example, the scheduling entity 502 may transmit the downlink signal 512 to the scheduled entity 504a using the full antenna array 506a (e.g., both  panels  508a and 508b) at a first time and then receive the uplink signal 514 from the scheduled entity 504b using the full antenna array 506a at a second time subsequent to the first time. In this example, the scheduling entity may transmit the downlink signal 512 and receive the uplink signal 514 on any of the antenna ports of the full multi-panel antenna array 506a.
FIG. 6 is a diagram illustrating exemplary slot formats that may be utilized in full duplex wireless communication networks according to some aspects. In the example shown in FIG. 6, time is in the horizontal direction with units of slots 602a–602d, each including a plurality of OFDM symbols; and frequency is in the vertical direction. Here, a carrier bandwidth 604 is illustrated along the frequency axis. The carrier bandwidth 604 may be divided into a number of sub-bands (or BWPs) 606a–606c for sub-band FDD full duplex operation.
An example of a sub-band FDD full duplex operation is shown in  slots  602b and 602c. In  slots  602b and 602c, the carrier bandwidth 604 is partitioned between uplink transmissions and downlink transmissions. For example, sub-bands 606a and 606b are allocated for downlink transmissions, while sub-band 606b is allocated for uplink transmissions. In an example operation of the sub-band full duplex configuration shown in FIG. 5, a scheduling entity 502 may use a first antenna panel (e.g., antenna panel 508a, shown in FIG. 5) for downlink transmission at both edges (e.g., sub-bands 606a and 606b) of the carrier bandwidth 604 and a second antenna panel (e.g., antenna panel  508b, shown in FIG. 5) for uplink reception in the middle (e.g., sub-band 606c) of the carrier bandwidth 604.
In each of the sub-band FDD  full duplex slots  602b and 602c, the downlink (DL) sub-bands 606a and 606b include a DL burst 608, which may include a physical downlink control channel (PDCCH) carrying DCI, in the initial of beginning portion of the  slots  602b and 602c. For example, the DL burst 608 of slot 602b may include control information that may be related to the slot 602b or a previous or subsequent slot. The DL burst 608 may be transmitted by a scheduling entity (e.g., a base station, such as a gNB) towards one or more scheduled entities (e.g., UEs) . In an example, the DCI may include common DCI or UE-specific DCI. The common DCI may include, for example, common control information broadcast to a group of scheduled entities or all scheduled entities in the cell. For example, common control information may include information related to random access. The UE-specific DCI may include, for example, HARQ feedback information (e.g., ACK/NACK) , scheduling information for scheduling a downlink data transmission and/or uplink transmission in the slot 602b or a subsequent slot (e.g., slot 602c and/or 602d) , and other suitable information.
Following the DL burst 608,  slots  602b and 602c each include a DL data portion 610 for transmitting DL data within sub-bands 606a and 606b. For example, the DL data may be transmitted within a PDSCH. In addition to the DL data, the DL data portion 610 may further include DL reference signals (e.g., DMRS) for use in demodulating and decoding the DL data. Furthermore, CSI-RS may be transmitted within the DL burst 608 and/or DL data portion 610 of the DL sub-bands 606a and 606b of  slots  602b and 602c. For example, the CSI-RS may be transmitted in bursts of two or four symbols of across one or two slots.
In the uplink (UL) sub-band 606c, the  slots  602b and 602c each include an UL data portion 612 for transmitting UL data. For example, the UL data may be transmitted within a PUSCH. Following the UL data portion 612, the UL sub-band 606c of  slots  602b and 602c each include an UL burst 614. The UL burst 614 may include, for example, a physical uplink control channel (PUCCH) including uplink control information (UCI) . The UCI may include, for example, a scheduling request, HARQ feedback information, a CSI report, or any suitable UCI. In addition, the UL burst 614 may include one or more UL reference signals, such as the SRS. Guard bands 614 are further provided between the UL sub-band 606c and the DL sub-bands 606a and 606b  to mitigate self-interference between simultaneous DL transmissions in the DL sub-bands 606a and 606b and UL transmissions in the UL sub-band 606c.
Subject to interference alignment with other scheduling entities and network operators, slot formats having other partitions of the carrier bandwidth 604 for sub-band FDD  full duplex slots  602b and 602c may be utilized. For example, the guard band 616 may be extended or minimized, the UL sub-band 606c may occupy a larger portion or a smaller portion of the carrier bandwidth 604, the UL sub-band 606c and DL sub-bands 606a and 606c may be reversed such that the UL sub-bands occupy a larger percentage of the carrier bandwidth 604 than the DL sub-band, or the carrier bandwidth 604 may be divided between a single DL sub-band and a single UL sub-band. In an example, a single DL sub-band may include a lower frequency range of the carrier bandwidth 604, while a single UL sub-band may include an upper frequency range of the carrier bandwidth 604.
In addition to other configurations of sub-band FDD slot formats, a full duplex wireless network may further utilize TDD half duplex slot formats in which transmissions in only one of the directions (downlink or uplink) are allowed at a time.  Slots  602a and 602d are examples of TDD slot formats. In slot 602a, a DL burst 608 is followed by a DL data portion 610. The DL burst 608 and DL data portion 610 may include DL control information and/or DL data, as discussed above. In addition, CSI-RS may be transmitted within the DL burst 608 and/or DL data portion 610 across the entire carrier bandwidth 604 to enable channel estimation of the full channel.
Slot 602a may also include a common uplink (UL) burst 614 at the end of slot 602a. The common UL burst 614 may include UCI and other UL signals, as discussed above. As illustrated in FIG. 6, the end of the DL data portion 610 may be separated in time from the beginning of the UL burst 614. This time separation 618 may sometimes be referred to as a gap, a guard period, a guard interval, and/or various other suitable terms. This separation may provide time for the scheduling entity and scheduled entity to perform a switch-over between transmitting and receiving, or vice-versa.
In slot 602d, an UL data portion 612 is followed by an UL burst 614. The UL data portion 612 and UL burst 614 may include UL control information and/or UL data, as discussed above. In some examples, an SRS may be transmitted within the UL data portion 612 and/or UL burst 614 across the entire carrier bandwidth 604 to enable channel estimation of the full channel.
FIG. 7 is a diagram illustrating an example of multi-panel switching and beamforming in full duplex wireless communication networks according to some aspects. FIG. 7 will be described with reference to a plurality of slots 702a–702d having different slot formats over time. The slot formats may correspond, for example, to the slot formats shown in FIG. 6 and include both TDD half duplex slots and sub-band FDD full duplex slots.
In the example shown in FIG. 7, a scheduling entity (e.g., a base station, such as a gNB) includes a multi-panel antenna array. The multi-panel array may include a first antenna panel 704a and a second antenna panel 704b. The panels may be disposed in a variety of arrangements or layouts, including physically separated (e.g., spaced apart) from one another in the antenna array. The scheduling entity may be configured to simultaneously use both  antenna panels  704a and 704b for single direction communication in some slots (e.g.,  slots  702a and 702d) and to use only one of the  antenna panels  704a or 704b for single direction communication in other slots (e.g.,  slots  702b and 702c) . The  antenna panels  704a and 704b each include a plurality of antenna elements that may be mapped to logical antenna ports 706. For example, for MIMO communication with a scheduled entity, each layer may be mapped to a logical antenna port, which may be spread across one or more physical antenna elements, for transmission/reception thereof. In an example, as mentioned above, the antenna  array including panels  704a and 704b may include 128 antenna elements mapped to 32 antenna ports 706 by an 8x1 combiner.
In the first slot 702a (e.g., a TDD half duplex slot) , the scheduling entity may be configured to use both  antenna panels  704a and 704b. As an example, both panels can transmit DL control information and/or data on one or more transmit beams 708a, each corresponding to an antenna port 706, within the DL burst and DL data portion of the slot 702a. Similarly, although not shown in FIG. 7, in the UL burst of the slot 702a, the scheduling entity may be configured to use both  antenna panels  704a and 704b to receive UL control information on one or more receive beams, each corresponding to an antenna port 706, within the UL burst of the slot 702a. In the last slot 702d (e.g., a TDD half duplex slot) , the scheduling entity may also be configured to use both  antenna panels  704a and 704b to receive UL control information and/or data from one or more scheduled entities on one or more of the receive beams.
In the second slot 702b and third slot 702c (e.g., sub-band FDD full duplex slots) , the scheduling entity may be configured to use different panels for differing  purposes. As one example, one of the antenna panels 704a may be used for downlink transmissions and the other antenna panel 704b for uplink receptions. In the example shown in FIG. 7, in  slots  702b and 702c, the antenna port mapping on  antenna panels  704a and 704b is reconfigured, such that each  antenna panel  704a and 704b includes the same number of antenna ports 706 as the total number of antenna ports 706 across both  antenna panels  704a and 704b used in slot 702a. In an example, each  antenna panel  704a and 704b can include 64 antenna elements that may be mapped to 32 antenna ports by a 4x1 combiner. However, since each antenna port includes half of the antenna elements (e.g., using a 4x1 combiner instead of an 8x1 combiner) , the power per antenna ports 706 in  slots  702b and 702c is reduced by half as compared to the power per antenna port 706 in slot 702a. Thus, each transmit beam 708b in  slots  702b and 702c may be transmitted with half the power. Similarly, each receive beam 708c in  slots  702b and 702c may be received with half the power.
FIG. 8 is a diagram illustrating another example of multi-panel switching and beamforming in full duplex wireless communication networks according to some aspects. FIG. 8 will also be described with reference to a plurality of slots 802a–802d having different slot formats over time. The slot formats may correspond, for example, to the slot formats shown in FIG. 6 and include both TDD half duplex slots and sub-band FDD full duplex slots.
Similar to the example shown in FIG. 7, in the example shown in FIG. 8, a scheduling entity (e.g., a base station, such as a gNB) includes a multi-panel antenna array. The array can include, for example, a first antenna panel 804a and a second antenna panel 804b. The scheduling entity may be configured to simultaneously use both  antenna panels  804a and 804b for single direction communication in some slots (e.g.,  slots  802a and 802d) over beams 808a and to use only one of the  antenna panels  804a or 804b for single direction communication in other slots (e.g.,  slots  802b and 802c) over  beams  808b and 808c. The  antenna panels  804a and 804b may include a plurality of antenna elements that may mapped to logical antenna ports 806.
In the example shown in FIG. 8, for the sub-band FDD  full duplex slots  802b and 802c, each  antenna panel  804a and 804b is configured with one or more antenna ports. In the illustrated example, each panel may have half the number antenna ports as the total number of antenna ports 806 across both  antenna panels  804a and 804b in slot 802a. This is in contrast to the example shown in FIG. 7 in which each  antenna panel  704a and 704b is reconfigured to include the same number of antenna ports 706 as the  total number of ports across both  antenna panels  704a and 704b in slot 702a. In an example, each  antenna panel  804a and 804b can include 64 antenna elements that may be mapped to 16 antenna ports by an 8x1 combiner. In this example, each transmit beam 808b and each receive beam 808c in  slots  802b and 802c may be wider than the beams 808a in slot 802a due to the reduced number of antenna ports in each of the  panels  804a and 804b.
DL communications can be affected by antenna port changes. For example, the change in the number of antenna ports between slot 802a and slot 802b in FIG. 8 or the change in the power per antenna port between slot 702a and slot 702b in FIG. 7 may affect the DL beamforming between  slots  702a and 702b. For example, the beamforming gain may be reduced between  slots  702a and 702b or  slots  802a and 802b. In addition, the transmit beam (s) used in slot 702a/802a may not be the best beam (s) to use in slot 702b/802b due to leakage (e.g., self-interference) between the DL and the UL. Thus, the channel quality between the scheduling entity and a scheduled entity may change from slot 702a/802a and slot 702b/802b due to the slot format change and the reduced beam power or reduced number of antenna ports.
A scheduled entity can estimate respective channels of both single panel and multi-panel operations. In doing so, the scheduled entity can feedback a respective CSI report to the scheduling entity. This may done for each of the channels to account for the change in beam power and/or number of ports between single panel and multi-panel operations. The channel quality may be estimated using CSI-RS signals broadcast by the scheduling entity in a beam-sweeping manner on each of the antenna ports 706/806. For example, the scheduled entity may measure the SINR of each received CSI-RS in  slots  702a and 702b or 802a and 802b, and generate a respective CSI report for the corresponding channel in each of the slots. Each CSI report may include a respective set of CSI report values. For example, each CSI report may include a respective channel quality indicator (CQI) , rank indicator (RI) , precoding matrix indicator (PMI) , and/or layer indicator (LI) . Here, the LI indicates which column of the precoding matrix of the reported PMI corresponds to the strongest layer codeword corresponding to the largest reported wideband CQI. In some examples, each CSI report may further include the L1-RSRP of each of the measured transmit (DL) beams. In this example, a separate beam measurement report may not be sent to the scheduling entity. The scheduling entity may use the CSI reports to update the rank associated with the scheduled entity, select  serving DL beam (s) for communication with the scheduled entity, and assign resources (e.g., MCS) for future transmissions to the scheduled entity for each of the slot formats.
A scheduled entity can provide reports to a scheduling entity in a variety of manners. In some examples, the scheduled entity (e.g., UE) may measure the channel quality over the entire downlink bandwidth (e.g., the entire carrier bandwidth or the allocated downlink bandwidth) and provide a wideband CQI to the scheduling entity. In other examples, the scheduled entity may measure the channel quality over only the sub-bands (or BWPs) for which the scheduled entity has scheduled data and provide respective CQI values for each scheduled sub-band to the scheduling entity. The CQI may include, for example, a modulation and coding scheme (MCS) index that indicates the highest modulation and code rate at which the block error rate (BLER) of the channel being analyzed does not exceed 10%. In some examples, the sub-band CQI values may be determined by combining the channel quality measurements (SINR) across layers (e.g., traffic streams in MIMO systems) and resource blocks to derive a total MCS index, which may then be normalized by the number of layers, with the resulting MCS index being fed back to the scheduling entity.
Reporting channel information may be carried out in various approaches. To accommodate the different antenna panel configurations (e.g., multi-panel or single panel) and different measurement configurations (e.g., wideband and/or sub-band) , a scheduled entity may be configured with multiple CSI report configurations. For each CSI report configuration, the CSI-RSs may be mapped to specific resources and antenna ports. For example, in a CSI report configuration for  slot  702a or 802a, there may be 32 CSI-RS ports 706, each mapped to a specific CSI resource (e.g., REs) at a first power. As another example, in a CSI report configuration for slot 702b, there may be 32 CSI-RS ports 706, each mapped to a specific CSI resource with a second power that is half that of the first power. As another example, in a CSI report configuration for slot 802b, there may be 16 CSI-RS ports 806, each mapped to a specific CSI resource with the first power.
FIG. 9 illustrates an exemplary CSI-RS resource mapping to support different report/measurement configurations. The CSI-RS resource mapping includes CSI-RS resource settings 902, CSI-RS resource sets 906, and CSI-RS resources 908. Each CSI-RS resource setting 902 includes one or more CSI-RS resource sets 906, and each CSI-RS resource set 906 includes one or more CSI-RS resources 908. In the example shown in FIG. 9, a single CSI-RS resource setting (e.g., CSI-RS resource setting 0) is  illustrated. However, it should be understood that any suitable number of CSI-RS resource settings 902 may be supported.
Each CSI-RS resource setting 902 corresponds to a particular CSI report configuration 904. The CSI report configuration 904 indicates, for example, the specific CSI parameters and granularity thereof (e.g., wideband/sub-band CQI, PMI, RI, etc. ) to include in a CSI report, a codebook type (e.g., single-panel or multi-panel Type I or Type II) , and periodicity of the CSI report associated with the CSI-RS resource setting 902. For example, the CSI report configuration 904 may indicate that the report should be generated periodically, aperiodically, or semi-statically. Each CSI report configuration 904 therefore indicates a particular measurement setting for the CSI-RS resource setting 902. For example, if the CSI report configuration 904 indicates that a CSI report should be generated semi-statically, the CSI-RS resource setting 902 indicates that CSI measurements should be performed semi-statically by the scheduled entity utilizing the CSI-RSs.
Each CSI-RS resource setting 902 may indicate the resources associated with a CSI report configuration 904. The resources may include, for example, a set of CSI-RS ports, a set of frequency resources (bandwidth) of the CSI-RSs, power on the CSI-RS ports, and other suitable resources. In some examples, the power may be expressed in terms of a power offset from a maximum power per port. In an example, one of the CSI-RS resource settings 902 may be associated with a multi-panel CSI-RS measurement, while one or more other CSI-RS resource settings 902 may be associated with a single panel CSI-RS measurement.
In an example of a CSI-RS resource setting 902 associated with a single panel CSI-RS measurement based on the antenna port configuration shown in FIG. 7 for slot 702b, the CSI-RS resource setting 902 may identify a complete set of CSI-RS ports (e.g., 32 CSI-RS ports) , a subset of the frequency resources (e.g., a subset of the carrier bandwidth) over which CSI-RSs may be transmitted and measured, and a power offset set to half. In another example of a CSI-RS resource setting 902 associated with a single panel CSI-RS measurement based on the antenna port configuration shown in FIG. 8 for slot 802b, the CSI-RS resource setting 902 may identify a subset of CSI-RS ports (e.g., 16 CSI-RS ports) , a subset of the frequency resources (e.g., a subset of the carrier bandwidth corresponding to the allocated downlink bandwidth) over which CSI-RSs may be transmitted and measured, and a power offset set to zero. In an example in which the CSI-RS resource setting is associated with a multi-panel CSI-RS  measurement, the CSI-RS resource setting may identify a complete set of CSI-RS ports (e.g., 32 CSI-RS ports) , a complete set of frequency resources (e.g., the full carrier bandwidth) over which CSI-RSs may be transmitted and measured, and a power offset set to zero.
Each CSI-RS resource setting 902 may include one or more CSI-RS resource sets 906, each indicating a particular configuration of the resources associated with the CSI-RS resource setting 902. For example, one of the CSI-RS resource sets may be associated with a particular subset of the CSI-RS ports included in the CSI-RS resource setting, while another CSI-RS resource set may be associated with a particular time–frequency resource location (e.g., OFDM symbol, sub-band, etc. ) in the frequency resources associated with the CSI-RS resource setting. In the example shown in FIG. 9, CSI-RS resource setting 0 includes four CSI-RS resource sets (CSI-RS resource set 0.0, CSI-RS resource set 0.1, CSI-RS resource set 0.2, and CSI-RS resource set 0.3) . In some examples, the CSI-RS resource setting 902 and CSI-RS resource set (s) 906 selected for a particular scheduled entity may be signaled semi-statically via radio resource control (RRC) signaling. Each CSI-RS resource set 906 may include one or more CSI-RS resources 908, each indicating the particular resource elements (REs) and the particular CSI-RS ports (e.g., a further subset of CSI-RS ports) on which the scheduled entity should measure CSI-RSs, along with multiplexing options. For example, each CSI-RS resource 908 may indicate an RE on which a CSI-RS transmitted from a particular port may be measured. In the example shown in FIG. 9, CSI-RS resource set 0.1 includes four CSI-RS resources (CSI-RS resource 0.10, CSI-RS resource 0.11, CSI-RS resource 0.12, and CSI-RS resource 0.13) .
Different CSI-RS resources 908 may be available for each of the CSI-RS resource sets 906 to enable CSI-RS pilots to be transmitted in different locations within a slot and/or to be transmitted with different densities in a slot. In addition, different CSI-RS resources 908 may be available to enable CSI-RS pilots to be transmitted from one port or set of ports at the beginning of a slot and another port or set of ports at the end of a slot. In some examples, a particular scheduled entity may be assigned one or more of the CSI-RS resources 908 within a slot. The CSI-RS resource (s) 908 assigned to a particular scheduled entity may be signaled, for example, via downlink control information (DCI) within the PDCCH.
In some examples, the scheduled entity may be assigned each of the CSI-RS ports within the set of CSI-RS ports of the CSI-RS resource setting 902 to estimate the  channel so that the scheduled entity may receive MIMO traffic streams from the scheduling entity on any those antenna ports at a later time. However, in other examples, the scheduled entity may only be assigned a portion of the CSI-RS ports within the set of CSI-RS ports of the CSI-RS resource setting 902. In this example, the scheduled entity may not only estimate the channel from the received CSI-RSs on the assigned CSI-RS ports, but also the non-zero-power (NZP) interference from the received CSI-RSs on the non-assigned CSI-RS ports. In some examples, the NZP interference may be estimated by subtracting the channel estimation from the total received CSI-RS pilot signal. The non-assigned CSI-RS ports may be assigned to another scheduled entity or may be unassigned.
Various aspects of the disclosure provide enhancements in CSI reporting for multi-panel full duplex scheduling entities (e.g., base stations) . In some examples, a scheduled entity is configured with a single CSI report configuration associated with a single CSI-RS resource setting for both single panel and multi-panel CSI reporting. Here, the CSI-RS resource setting may be associated with a multi-panel base station antenna array. The CSI report configuration can signal the scheduled entity to generate two CSI reports, each including a different respective set of CSI report values for each of a plurality of CSI report parameters (e.g., different values for one or more of the CQI, PMI, RI, LI, L1-RSRP, etc. ) . The two CSI reports may be generated based on the same single CSI-RS resource setting. However, the CSI report configuration can indicate a modification of the CSI-RS resource setting to utilize for one of the two CSI reports. For example, the modification can include a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting.
In some examples, a scheduled entity is configured with a single CSI report configuration associated with two CSI-RS resource settings. The CSI report configuration can signal the scheduled entity to generate two CSI reports, each including a different respective set of CSI report values for each of a plurality of CSI report parameters (e.g., different values for one or more of the CQI, PMI, RI, LI, L1-RSRP, etc. ) . Each CSI report may be generated based on one of the CSI-RS resource settings. For example, a first CSI report may be generated based on the first CSI-RS resource setting, while a second CSI report may be generated based on the second CSI-RS resource setting. Here, a first CSI-RS resource setting may be associated with a multi-panel CSI report for a multi-panel full duplex base station, while a second CSI-RS  resource setting may be associated with a single panel CSI report for a multi-panel full duplex base station.
FIG. 10 is a diagram illustrating an example of a CSI report configuration 1002 mapping to a single CSI-RS resource setting 1020 to generate two CSI reports for a multi-panel full duplex base station (e.g., scheduling entity) according to some aspects. The CSI-RS resource setting 1020 includes a frequency resources field 1022 indicating one or more sub-bands or BWPs of a carrier bandwidth over which the scheduled entity should measure the channel quality. In an example, the frequency resources field 1022 indicates the full carrier bandwidth.
The CSI-RS resource setting 1020 further includes a CSI-RS ports field 1024 indicating a set of CSI-RS ports (beams) on which CSI-RSs may be received and measured by the scheduled entity to generate the CSI report. In some examples, the CSI-RS ports field 1024 may include at least one code division multiplexing (CDM) group index of a plurality of CDM group indexes configured on the scheduled entity. Each CDM group index identifies a CDM group associated with a group of CSI-RS ports. For example, there may be two, four, six, or eight CDM groups. In an example, the CSI-RS ports field 1024 includes all of the CDM groups.
The CSI-RS resource setting 1020 further includes a power field 1026 indicating a power on each of the CSI-RS ports in the set of CSI-RS ports indicated in the CSI-RS ports field 1024. In some examples, the power field 1026 includes a power offset from a maximum power on the CSI-RS ports. In an example, the power field 1026 is set to zero. The  fields  1022, 1024, and 1026 shown in FIG. 10 are merely exemplary, and it should be understood that other or alternative fields may be included in the CSI-RS resource setting 1020.
The CSI report configuration 1002 includes a first CSI report sub-configuration 1004a for use by a scheduled entity in generating a first CSI report and a second CSI report sub-configuration 1004b for use by the scheduled entity in generating a second CSI report. In an example, the first CSI report sub-configuration 1004a can be used to generate a multi-panel CSI report, while the second CSI report sub-configuration 1004b can be used to generate a single panel CSI report for a multi-panel full duplex base station.
Each  CSI report sub-configuration  1004a and 1004b can include one or more fields. In the example shown in FIG. 10, the fields include a periodicity field 1006 indicating the time-domain behavior of CSI reports (e.g., periodic, semi-persistent, or  aperiodic) , a CSI parameters field 1008 indicating the CSI-related parameters to be reported (e.g., one or more of the CQI, PMI, RI, etc. ) , a frequency granularity field 1010 indicating the frequency granularity of the CQI and PMI (e.g., wideband and/or sub-band) , and a codebook field 1012 indicating codebook type (single panel or multi-panel Type I or Type II) for the CSI report.
Each  CSI report sub-configuration  1004a and 1004b further includes a power offset field 1014 indicating a power offset to be applied to the CSI-RS resource setting 1020. In particular, the power offset field 1014 indicates that the scheduled entity should assume X dB less power on the CSI-RS ports in generating the CSI report. In an example, the power offset field 1014 can be a new RRC configuration “ResourcesPowerOffset” of the CSI report configuration 1002. In some examples, the power offset field 1014 may be set to zero when the CSI report sub-configuration (e.g., the first CSI report sub-configuration 1004a) is associated with a multi-panel CSI report. In other examples, the power offset field 1014 may be set to one-half when the CSI report sub-configuration (e.g., the second CSI report sub-configuration 1004b) is associated with a single panel CSI report.
In addition to the power offset field 1014, the first and second CSI report sub-configurations 1004a and 1004b each include a port subset field 1016. The port subset field 1016 can indicate a subset of the CSI-RS ports of the CSI-RS resource setting 1020 for the scheduled entity to use in generating the CSI report. In an example, the port subset field 1016 can be a new RRC configuration “CSI-RSportsSubset” of the CSI report configuration 1002. In some examples, the port subset field 1016 may indicate that the scheduled entity should use all CSI-RS ports included in the CSI-RS resource setting 1020 in generating the CSI report when the CSI report sub-configuration 1004a and/or 1004b is associated with a multi-panel CSI report or a single panel CSI report with the power offset field 1014 set to a value other than zero. In other examples, the port subset field 1016 may indicate a subset of the ports included in the CSI-RS resource setting 1020 to use in generating the CSI report when the CSI report sub-configuration (e.g., the second CSI report sub-configuration 1004b) is associated with a single panel CSI report and the power offset field 1014 is set to zero.
In an example, the port subset field 1016 may include a flag that when enabled indicates to the scheduled entity to use half of the CSI-RS ports. The scheduled entity can implicitly determine the subset (half) of CSI-RS ports to use from the CDM group indexes configured on the scheduled entity and included in the CSI-RS resource setting  1020. In some examples, the scheduled entity may select the first half or the second half of CDM group indexes as the subset of CSI-RS ports. As another example, the scheduled entity may select the even or odd CDM group indexes as the subset of CSI-RS ports. If the scheduled entity is also configured with a multi-panel antenna array, the scheduled entity may further implicitly determine to use only a single panel to generate the CSI report when the port subset flag 1016 is enabled.
Each  CSI report sub-configuration  1004a and 1004b further includes a frequency resource subset field 1018 indicating a subset of the frequency resources of the CSI-RS resource setting 1020 for the scheduled entity to use in generating the CSI report. In an example, the subset of the frequency resources include downlink frequency resources allocated for downlink communication when the scheduling entity (e.g., base station) is operating in sub-band full duplex mode (e.g., actively transmitting and receiving on different frequency bands simultaneously) . Using the example of FIG. 6, the subset of frequency resources can include the downlink sub-bands 606a and 606b.
In some examples, the frequency resource subset field 1018 may indicate that the scheduled entity should use all frequency resources of the CSI-RS resource setting 1020 in generating the CSI report when the CSI report sub-configuration 1004a and/or 1004b is associated with a multi-panel CSI report or a single panel CSI report with the power offset field 1014 set to a value other than zero. In other examples, the frequency resource subset field 1018 may indicate a subset of the frequency resources to use in generating the CSI report when the CSI report sub-configuration (e.g., the second CSI report sub-configuration 1004b) is associated with a single panel CSI report and the power offset field 1014 is set to zero. In this example, the port subset field 1016 may indicate to generate the CSI report based on all CSI-RS ports of the CSI-RS resource setting or a subset of the CSI-RS ports. The fields 1006–1018 shown in FIG. 10 are merely exemplary, and it should be understood that other or alternative fields may be included in the CSI report configuration 1002.
FIG. 11 is a signaling diagram illustrating an example of CSI reporting for a multi-panel full duplex base station according to some aspects. In the example shown in FIG. 11, a scheduling entity 1102 (e.g., a multi-panel full duplex base station) is in wireless communication with a scheduled entity 1104 (e.g., a UE) . The scheduling entity 1102 may correspond to any of the scheduling entities or base stations shown in FIGs. 1, 2, and/or 5 that includes a multi-panel antenna array for operating in a full  duplex mode. The scheduled entity 1104 may correspond to any of the scheduled entities or UEs shown in FIGs. 1, 2, and/or 5.
At 1106, the scheduling entity 1102 transmits an RRC message including a CSI-RS resource setting to the scheduled entity 1104. The CSI-RS resource setting may include, for example, frequency resources on which CSI-RSs may be measured, a set of ports at the scheduling entity 1102 associated with the CSI-RSs to be measured, and a power on the CSI-RS ports transmitting the measured CSI-RSs.
At 1108, the scheduling entity 1102 transmits an RRC message including a CSI report configuration to the scheduled entity 1104. The CSI report configuration configures the scheduled entity 1104 to transmit two CSI reports, where one of the two CSI reports is based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting. In some examples, the modification includes a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting. In some examples, one of the CSI reports is a multi-panel CSI report, while the other is a single panel CSI report. In some examples, the CSI report configuration and CSI-RS resource setting may be transmitted in the same RRC message.
At 1110, the scheduling entity 1102 transmits a respective CSI-RS on each of the CSI-RS ports indicated in the CSI-RS resource setting to the scheduled entity 1104. Each CSI-RS may be transmitted via a respective channel measurement resource. For example, a channel measurement resource may include non-zero-power (NZP) CSI-RS resource. In some examples, the CSI-RSs may be transmitted within a PDSCH.
At 1112, the scheduled entity 1104 generates a first CSI report based on the CSI-RS resource setting. Thus, the first CSI report is generated without modification of the CSI-RS resource setting. In some examples, the scheduled entity 1104 may utilize the NZP CSI-RS resources for channel estimation. For example, the channel estimate may include a vector
Figure PCTCN2020087185-appb-000001
where K is the number of allocated pilots in the channel measurement resource, k is the index of the pilot, and h k is the channel response coefficient at pilot k. In some examples, the channel response coefficients may be selected from preconfigured values based on one or more estimated parameters, such as the signal-to-noise ratio (SNR) , Doppler, delay spread, and/or other suitable parameters, which may be estimated using a tracking reference signal (TRS) or PDSCH. The scheduled entity 1104 may further utilize one or more interference CSI resources (e.g.,  CSI-Interference Measurement (IM) resource (s) and/or NZP CSI-RS resource (s) for interference measurement) to measure the interference on the channel. The scheduled entity 1104 may then determine the CQI, PMI, RI, and LI from the channel estimation, maximum rank, and codebook type specified in the CSI report configuration.
At 1114, the scheduled entity 1104 generates a second CSI report based on the modified CSI-RS resource setting. For example, the scheduled entity 1104 may generate the second CSI report assuming a power offset on the CSI-RS ports or at least one of a subset of CSI-RS ports or a subset of the frequency resources, as indicated in the CSI report configuration. At 1116, the scheduled entity 1104 transmits the first CSI report and the second CSI report to the scheduling entity 1102.
FIG. 12 is a signaling diagram illustrating another example of CSI reporting for a multi-panel full duplex base station according to some aspects. In the example shown in FIG. 12, a scheduling entity 1202 (e.g., a multi-panel full duplex base station) is in wireless communication with a scheduled entity 1204 (e.g., a UE) . The scheduling entity 1202 may correspond to any of the scheduling entities or base stations shown in FIGs. 1, 2, and/or 5 that includes a multi-panel antenna array for operating in a full duplex mode. The scheduled entity 1204 may correspond to any of the scheduled entities or UEs shown in FIGs. 1, 2, and/or 5.
At 1206, the scheduling entity 1202 transmits an RRC message including a CSI-RS resource setting to the scheduled entity 1204. The CSI-RS resource setting may include, for example, frequency resources on which CSI-RSs may be measured, a set of ports at the scheduling entity 1202 associated with the CSI-RSs to be measured, and a power on the CSI-RS ports transmitting the measured CSI-RSs.
At 1208, the scheduling entity 1202 transmits an RRC message including a CSI report configuration to the scheduled entity 1204. The CSI report configuration configures the scheduled entity 1204 to transmit two CSI reports, where one of the two CSI reports is based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting. In some examples, the modification includes a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting. In some examples, a first CSI report is a multi-panel CSI report, while a second CSI report is a single panel CSI report. In some examples, the CSI report configuration and CSI-RS resource setting may be transmitted in the same RRC message.
At 1210, the scheduling entity 1202 transmits a dynamic reconfiguration message to the scheduled entity 1204. The dynamic reconfiguration message may reconfigure the modification (s) to the CSI-RS resource setting indicated in the CSI report configuration. For example, the dynamic reconfiguration message may update at least one of the power offset field or the port subset flag associated with the CSI report configuration for the second CSI report. In an example, the dynamic reconfiguration message includes a medium access control control element (MAC-CE) . In another example, the dynamic reconfiguration message includes one or more new fields within DCI. For example, one DCI field may be used to indicate the updated power offset, while another DCI field may be used to enable or disable the port subset flag.
At 1212, the scheduling entity 1202 transmits a respective CSI-RS on each of the CSI-RS ports indicated in the CSI-RS resource setting to the scheduled entity 1204. Each CSI-RS may be transmitted via a respective channel measurement resource. For example, a channel measurement resource may include non-zero-power (NZP) CSI-RS resource. In some examples, the CSI-RSs may be transmitted within a PDSCH.
At 1214, the scheduled entity 1204 generates a first CSI report based on the CSI-RS resource setting. Thus, the first CSI report is generated without modification of the CSI-RS resource setting. In some examples, the scheduled entity 1204 may utilize the NZP CSI-RS resources for channel estimation. For example, the channel estimate may include a vector
Figure PCTCN2020087185-appb-000002
where K is the number of allocated pilots in the channel measurement resource, k is the index of the pilot, and h k is the channel response coefficient at pilot k. In some examples, the channel response coefficients may be selected from preconfigured values based on one or more estimated parameters, such as the signal-to-noise ratio (SNR) , Doppler, delay spread, and/or other suitable parameters, which may be estimated using a tracking reference signal (TRS) or PDSCH. The scheduled entity 1204 may further utilize one or more interference CSI resources (e.g., CSI-Interference Measurement (IM) resource (s) and/or NZP CSI-RS resource (s) for interference measurement) to measure the interference on the channel. The scheduled entity 1204 may then determine the CQI, PMI, RI, and LI from the channel estimation, maximum rank, and codebook type specified in the CSI report configuration.
At 1216, the scheduled entity 1204 generates a second CSI report based on the modified CSI-RS resource setting, as updated by the dynamic reconfiguration message. For example, the scheduled entity 1204 may generate the second CSI report assuming a power offset on the CSI-RS ports or at least one of a subset of CSI-RS ports or a subset  of the frequency resources. At 1218, the scheduled entity 1204 transmits the first CSI report and the second CSI report to the scheduling entity 1202.
FIG. 13 is a diagram illustrating an example of a CSI report configuration 1302 mapping to two CSI- RS resource settings  1320a and 1320b to generate two CSI reports for a multi-panel full duplex base station according to some aspects. The CSI report configuration 1302 includes a first CSI report sub-configuration 1304a for use by a scheduled entity in generating a first CSI report and a second CSI report sub-configurations 1304b for use by the scheduled entity in generating a second CSI report. Each  CSI report sub-configuration  1304a and 1304b can include one or more fields. In the example shown in FIG. 13, the fields include a periodicity field 1304 indicating the time-domain behavior of CSI reports (e.g., periodic, semi-persistent, or aperiodic) , a CSI parameters field 1306 indicating the CSI-related parameters to be reported (e.g., one or more of the CQI, PMI, RI, etc. ) , a frequency granularity field 1308 indicating the frequency granularity of the CQI and PMI (e.g., wideband and/or sub-band) , and a codebook field 1310 indicating codebook type (single panel or multi-panel Type I or Type II) for the CSI report.
Each of the first and second CSI report sub-configurations 1304a and 1304b maps to a respective one of the CSI- RS resource settings  1320a and 1320b. Each CSI-RS resource setting 1320a and 1320b includes a frequency resources field 1322 indicating an entire carrier bandwidth or one or more sub-bands or BWPs of the carrier bandwidth over which the scheduled entity should measure the channel quality. The CSI- RS resource settings  1320a and 1320b each further include a CSI-RS ports field 1324 indicating a set of CSI-RS ports (beams) on which CSI-RSs may be received and measured by the scheduled entity to generate the CSI report. In some examples, the CSI-RS ports field 1324 may include at least one code division multiplexing (CDM) group index of a plurality of CDM group indexes configured on the scheduled entity. Each CDM group index identifies a CDM group associated with a group of CSI-RS ports. For example, there may be two, four, six, or eight CDM groups. In an example, the CSI-RS ports field 1324 may include all or a portion of the CDM groups.
The CSI- RS resource settings  1320a and 1320b each further include a power field 1326 indicating a power on each of the CSI-RS ports in the set of CSI-RS ports indicated in the corresponding CSI-RS ports field 1324. In some examples, the power field 1026 includes a power offset from a maximum power on the CSI-RS ports. In an example, the power field 1026 is set to zero or X db (e.g., half) . The  fields  1322, 1324,  and 1326 shown in FIG. 13 are merely exemplary, and it should be understood that other or alternative fields may be included in the CSI-RS resource setting 1320.
In some examples, one or more of the  fields  1322, 1324, and/or 1326 may be configured with different values to result in the generation of a multi-panel CSI report and a single panel CSI report. In an example, the first CSI-RS resource setting 1320a is utilized to generate a multi-panel CSI report, while the second CSI-RS resource setting 1320b is utilized to generate a single panel CSI report for a multi-panel full duplex base station. In this example, the frequency resources field 1322 in the second CSI-RS resource setting 1320 may indicate a subset of the frequency resources of the first CSI-RS resource setting 1320a. In addition, the CSI-RS ports field 1324 may indicate a subset of the CSI-RS ports of the first CSI-RS resource setting 1320a. When the number of ports and frequency resources are the same in both CSI- RS resource settings  1320a and 1320b, the power field 1326 may indicate a power offset with respect to the first CSI-RS resource setting 1320a.
FIG. 14 is a signaling diagram illustrating another example of CSI reporting for a multi-panel full duplex base station according to some aspects. In the example shown in FIG. 14, a scheduling entity 1402 (e.g., a multi-panel full duplex base station) is in wireless communication with a scheduled entity 1404 (e.g., a UE) . The scheduling entity 1402 may correspond to any of the scheduling entities or base stations shown in FIGs. 1, 2, and/or 5 that includes a multi-panel antenna array for operating in a full duplex mode. The scheduled entity 1404 may correspond to any of the scheduled entities or UEs shown in FIGs. 1, 2, and/or 5.
At 1406, the scheduling entity 1402 transmits an RRC message including a first CSI-RS resource setting to the scheduled entity 1404. At 1408, the scheduling entity 1402 further transmits an RRC message including a second CSI-RS resource setting to the scheduled entity 1404. Each of the first and second CSI-RS resource settings may include, for example, frequency resources on which CSI-RSs may be measured, a set of ports at the scheduling entity 1402 associated with the CSI-RSs to be measured, and a power on the CSI-RS ports transmitting the measured CSI-RSs. In some examples, the first and second CSI-RS resource settings may have a different configuration of one or more of the frequency resources, the CSI-RS ports, or the power.
At 1410, the scheduling entity 1402 transmits an RRC message including a CSI report configuration to the scheduled entity 1404. The CSI report configuration configures the scheduled entity 1404 to transmit two CSI reports, where a first CSI  report is associated with the first CSI-RS resource setting and a second CSI report is associated with the second CSI-RS resource setting. In some examples, the first CSI report is a multi-panel CSI report, while the second CSI report is a single panel CSI report. In some examples, the CSI report configuration and CSI-RS resource settings may be transmitted in the same RRC message.
At 1412, the scheduling entity 1402 transmits a respective CSI-RS on each of the CSI-RS ports indicated in the CSI-RS resource settings to the scheduled entity 1404. In examples in which the two CSI-RS resource settings include a set of CSI-RS ports and a subset of the set of CSI-RS ports, respectively, the CSI-RSs may be transmitted on the set of CSI-RS ports and the scheduled entity 1404 can assume the subset of CSI-RS reports when generating the single panel CSI report. In addition, in examples in which the two CSI-RS resource settings indicate a power (or zero power offset) and a power offset, respectively, the CSI-RSs may be transmitted with zero power offset and the scheduled entity 1404 can assume a power offset when generating the single panel report. Furthermore, in examples in which the two CSI-RS resource settings indicate frequency resources (e.g., a carrier bandwidth) and a subset of the frequency resources (e.g., downlink sub-bands or BWPs) , respectively, the CSI-RSs may be transmitted on the frequency resources (e.g., over the entire carrier bandwidth) and the scheduled entity 1404 can assume the subset of the frequency resources when generating the single panel CSI report. Each CSI-RS may be transmitted via a respective channel measurement resource. For example, a channel measurement resource may include non-zero-power (NZP) CSI-RS resource. In some examples, the CSI-RSs may be transmitted within a PDSCH.
At 1414, the scheduled entity 1404 generates the first CSI report based on the first CSI-RS resource setting. In some examples, the scheduled entity 1404 may utilize the NZP CSI-RS resources for channel estimation. For example, the channel estimate may include a vector
Figure PCTCN2020087185-appb-000003
where K is the number of allocated pilots in the channel measurement resource, k is the index of the pilot, and h k is the channel response coefficient at pilot k. In some examples, the channel response coefficients may be selected from preconfigured values based on one or more estimated parameters, such as the signal-to-noise ratio (SNR) , Doppler, delay spread, and/or other suitable parameters, which may be estimated using a tracking reference signal (TRS) or PDSCH. The scheduled entity 1404 may further utilize one or more interference CSI resources (e.g., CSI-Interference Measurement (IM) resource (s) and/or NZP CSI-RS resource (s) for  interference measurement) to measure the interference on the channel. The scheduled entity 1404 may then determine the CQI, PMI, RI, and LI from the channel estimation, maximum rank, and codebook type specified in the CSI report configuration.
At 1416, the scheduled entity 1404 generates the second CSI report based on the second CSI-RS resource setting. For example, the scheduled entity 1404 may generate the second CSI report with a power offset on the CSI-RS ports or at least one of a subset of CSI-RS ports or a subset of the frequency resources as compared to the first CSI-RS resource setting. At 1418, the scheduled entity 1404 transmits the first CSI report and the second CSI report to the scheduling entity 1402.
FIG. 15 is a conceptual diagram illustrating an example of a hardware implementation for an exemplary scheduling entity 1500 employing a processing system 1514. For example, the scheduling entity 1500 may be a base station (e.g., gNB) or other scheduling entity as illustrated in any one or more of FIGs. 1, 2, 5, 11, 12 and/or 14.
The scheduling entity 1500 may be implemented with a processing system 1514 that includes one or more processors 1504. Examples of processors 1504 include microprocessors, microcontrollers, digital signal processors (DSPs) , field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. In various examples, the scheduling entity 1500 may be configured to perform any one or more of the functions described herein. That is, the processor1504, as utilized in a scheduling entity 1500, may be used to implement any one or more of the processes described below. The processor 1504 may in some instances be implemented via a baseband or modem chip and in other implementations, the processor 1504 may itself comprise a number of devices distinct and different from a baseband or modem chip (e.g., in such scenarios is may work in concert to achieve embodiments discussed herein) . And as mentioned above, various hardware arrangements and components outside of a baseband modem processor can be used in implementations, including RF-chains, power amplifiers, modulators, buffers, interleavers, adders/summers, etc.
In this example, the processing system 1514 may be implemented with a bus architecture, represented generally by the bus 1502. The bus 1502 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1514 and the overall design constraints. The bus 1502  communicatively couples together various circuits including one or more processors (represented generally by the processor 1504) , a memory 1505, and computer-readable media (represented generally by the computer-readable medium 1506) . The bus 1502 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further. A bus interface 1508 provides an interface between the bus 1502 and a transceiver 1510. The transceiver 1510 provides a means for communicating with various other apparatus over a transmission medium (e.g., air interface) . A user interface 1512 (e.g., keypad, display, touchscreen, speaker, microphone, control knobs, etc. ) may also be provided. Of course, such a user interface 1512 is optional, and may be omitted in some examples.
The processor 1504 is responsible for managing the bus 1502 and general processing, including the execution of software stored on the computer-readable medium 1506. The software, when executed by the processor 1504, causes the processing system 1514 to perform the various functions described below for any particular apparatus. The computer-readable medium 1506 and the memory 1505 may also be used for storing data that is manipulated by the processor 1504 when executing software.
One or more processors 1504 in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. The software may reside on a computer-readable medium 1506.
The computer-readable medium 1506 may be a non-transitory computer-readable medium. A non-transitory computer-readable medium includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip) , an optical disk (e.g., a compact disc (CD) or a digital versatile disc (DVD) ) , a smart card, a flash memory device (e.g., a card, a stick, or a key drive) , a random access memory (RAM) , a read only memory (ROM) , a programmable ROM (PROM) , an erasable PROM (EPROM) , an electrically erasable PROM (EEPROM) , a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer. The computer-readable medium may also include, by  way of example, a carrier wave, a transmission line, and any other suitable medium for transmitting software and/or instructions that may be accessed and read by a computer. The computer-readable medium 1506 may reside in the processing system 1514, external to the processing system 1514, or distributed across multiple entities including the processing system 1514. The computer-readable medium 1506 may be embodied in a computer program product. In some examples, the computer-readable medium 1506 may be part of the memory 1505. By way of example, a computer program product may include a computer-readable medium in packaging materials. Those skilled in the art will recognize how best to implement the described functionality presented throughout this disclosure depending on the particular application and the overall design constraints imposed on the overall system.
In some aspects of the disclosure, the processor 1504 may include circuitry configured for various functions. For example, the processor 1504 may include resource assignment and scheduling circuitry 1542, configured to generate, schedule, and modify a resource assignment or grant of time–frequency resources. For example, the resource assignment and scheduling circuitry 1542 may schedule time–frequency resources within a plurality of sub-bands or BWPs of one or more TDD half duplex and/or FDD full duplex subframes or slots to carry user data traffic and/or control information to and/or from multiple scheduled entities.
In various aspects of the present disclosure, the resource assignment and scheduling circuitry 1542 may be configured to identify a CSI report configuration 1516 and one or more CSI-RS resource settings 1518 configured for a scheduled entity. The CSI report configuration 1516 and CSI-RS resource setting (s) 1518 may be stored, for example, in memory 1505. The combination of the CSI-RS report configuration 1516 and CSI-RS resource setting (s) 1518 may indicate a set of CSI-RS ports and a set of downlink resource elements (REs) on which CSI-RSs may be transmitted to the scheduled entity. The resource assignment and scheduling circuitry 1542 may further be configured to schedule CSI-RS pilots to be transmitted to the scheduled entity on the set of downlink resource elements (REs) and set of ports indicated in the CSI report configuration 1516 and CSI-RS resource setting (s) 1518. In addition, the resource assignment and scheduling circuitry 1542 may further schedule uplink REs on which the scheduled entity may transmit two CSI reports in response to receiving and measuring the CSI-RS pilots. The resource assignment and scheduling circuitry 1542 may further be configured to execute resource assignment and scheduling software 1552  stored in the computer-readable medium 1506 to implement one or more of the functions described herein.
The processor 1504 may further include communication and processing circuitry 1544 configured to communicate with the multiple scheduled entities over a carrier frequency. In some examples, the communication and processing circuitry 1544 may include one or more hardware components that provide the physical structure that performs processes related to wireless communication (e.g., signal reception and/or signal transmission) and signal processing (e.g., processing a received signal and/or processing a signal for transmission) .
In some examples, the communication and processing circuitry 1544 may be configured to transmit the CSI report configuration 1516 and corresponding CSI-RS resource setting (s) 1518 to the scheduled entity via, for example, semi-static RRC signaling. The communication and processing circuitry 1544 may further be configured to generate and transmit a dynamic reconfiguration message including at least one update to the CSI report configuration 1516 to the scheduled entity. For example, the dynamic reconfiguration message may include a MAC-CE or DCI.
The communication and processing circuitry 1544 may further be configured to generate and transmit CSI-RSs (e.g., each including a plurality of CSI-RS pilots) to the scheduled entity on the set of CSI-RS ports and REs scheduled by the resource assignment and scheduling circuitry 1542. For example, the communication and processing circuitry 1544 may be configured to generate and transmit each CSI-RS on a respective beam corresponding to the respective CSI-RS port via the transceiver 1510 and an antenna array 1520. In some example, the antenna array 1520 may include a plurality of multi-panel antenna array. The communication and processing circuitry 1544 may further be configured to receive and process the two CSI reports from the scheduled entity. Here, one of the CSI reports is a multi-panel CSI report that may be used in scheduling of downlink transmissions to the scheduled entity within sub-band FDD full duplex slots. The other CSI report is a single panel CSI report that may be used in scheduling downlink transmissions to the scheduled entity within TDD half duplex slots. In some examples, the CSI reports received from the scheduled entity may include respective CSI report quantities for a plurality of CSI report parameters (e.g., CQI, PMI, RI, LI, and/or L1-RSRP) . The CQI may include a wideband CQI value and/or multiple sub-band CQI values, each including modulation and coding scheme (MCS) information (e.g., an MCS index) .
The communication and processing circuitry 1544 may further be configured to determine a respective rank, MCS, precoding matrix, and serving beam (s) for downlink transmissions to the scheduled entity in each of TDD half duplex slots and sub-band FDD full duplex slots based on the two CSI reports. The resource assignment and scheduling circuitry 1542 may then utilize the respective rank, MCS, precoding matrix, and serving beam (s) to schedule time–frequency resources (e.g., REs) within one or more sub-bands of a subframe or slot for the scheduled entity. In some examples, the resource assignment and scheduling circuitry 1542 may schedule a number of traffic streams (corresponding to the rank) to be spatially multiplexed to the scheduled entity in one or more sub-bands of a subframe or slot. The communication and processing circuitry 1544 may further be configured to execute communication and processing software 1554 stored in the computer-readable medium 1506 to implement one or more of the functions described herein.
The processor 1504 may further include CSI report management circuitry 1546, configured to configure the CSI report configuration 1516 and CSI-RS resource setting (s) 1518 for the scheduled entity. It should be understood that the CSI report management circuitry 1546 may configure respective CSI report configurations 1516 and corresponding CSI-RS resource settings 1518 for each scheduled entity served by the scheduling entity 1500.
In some examples, the CSI report management circuitry 1546 may be configured to configure a single CSI report configuration 1516 and a corresponding single CSI-RS resource setting 1518 for the scheduled entity. The CSI report configuration 1516 can configure the scheduled entity to transmit two CSI reports, where one of the two CSI reports is based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting. In some examples, the modification includes a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting. In some examples, one of the CSI reports is a multi-panel CSI report, while the other is a single panel CSI report. The CSI report management circuitry 1546 may further be configured to update the modification (e.g., the power offset or subset of CSI-RS ports) and provide the modification update to the communication and processing circuitry 1544 for generation of the dynamic reconfiguration message.
In an example, the single CSI-RS resource setting 1518 indicates frequency resources (e.g., one or more sub-bands or BWPs of a carrier bandwidth over) which the  scheduled entity should measure the channel quality, a set of CSI-RS ports (beams) on which CSI-RSs may be received and measured by the scheduled entity, and a power on each of the CSI-RS ports in the set of CSI-RS ports. In some examples, the frequency resources may include the entire carrier bandwidth. In some examples, the set of CSI-RS ports may be indicated using CDM group indexes of CDM groups. For example, the CSI-RS resource setting 1518 may include all of the CDM groups corresponding to all of the CSI-RS ports. In some examples, the power may be expressed as a power offset from a maximum power on the CSI-RS ports. For example, the power offset in the CSI-RS resource setting 1518 may be set to zero.
In an example, the CSI report configuration 1516 includes two CSI report sub-configurations, each for use by the scheduled entity in generating a respective CSI report. In an example, a first CSI report sub-configuration can be used to generate a multi-panel CSI report, while a second CSI report sub-configuration can be used to generate a single panel CSI report for a multi-panel full duplex base station. Each of the two CSI report sub-configurations may indicate the periodicity of the respective CSI report, the respective CSI parameters to be reported (e.g., one or more of the CQI, PMI, RI, etc. ) , the respective frequency granularity of the CQI and PMI (e.g., wideband and/or sub-band) in each CSI report, and a respective codebook type for each CSI report. Here, the CSI parameters to be reported may be the same between the two CSI report sub-configurations. In addition, the periodicity, frequency granularity, and/or codebook types may be the same between the two CSI report sub-configurations.
Each of the two CSI report sub-configurations may further include a power offset to be applied to the power indicated in the CSI-RS resource setting 1518 for use by the scheduled entity in generating the respective CSI report, a subset of the CSI-RS ports of the CSI-RS resource setting 1518 for use by the scheduled entity in generating the respective CSI report, and a subset of the frequency resources of the CSI-RS resource setting 1518 for use by the scheduled entity in generating the respective CSI report. For example, the power offset may indicate that the scheduled entity should assume X dB less power (one-half of the power) on the CSI-RS ports when generating the single panel CSI report. As another example, the subset of the ports may indicate that the scheduled entity should assume half of the CSI-RS ports are used to transmit CSI-RS when generating the single panel CSI report. As yet another example, the subset of frequency resources may indicate that the scheduled entity should utilize the CSI-RS  pilots transmitted on downlink frequency resources allocated for downlink communication when generating the single panel CSI report.
In some examples, the CSI report management circuitry 1546 may be configured to configure a single CSI report configuration 1516 and two corresponding CSI-RS resource settings 1518 for the scheduled entity. The CSI report configuration 1516 can again configure the scheduled entity to transmit two CSI reports each including a different respective set of CSI report values for each of a plurality of CSI report parameters (e.g., different values for one or more of the CQI, PMI, RI, LI, L1-RSRP, etc. ) . However, each CSI report is associated with one of the CSI-RS resource settings 1518. For example, a first CSI report may be generated based on the first CSI-RS resource setting, while a second CSI report may be generated based on the second CSI-RS resource setting. Here, a first CSI-RS resource setting 1518 may be associated with a multi-panel CSI report for a multi-panel full duplex base station, while a second CSI-RS resource setting 1518 may be associated with a single panel CSI report for a multi-panel full duplex base station.
For example, the CSI report configuration 1516 includes two CSI report sub-configurations, each for use by the scheduled entity in generating a respective CSI report. In an example, a first CSI report sub-configuration can be used to generate a multi-panel CSI report, while a second CSI report sub-configuration can be used to generate a single panel CSI report for a multi-panel full duplex base station. Each of the two CSI report configurations may indicate the periodicity of the respective CSI report, the respective CSI parameters to be reported (e.g., one or more of the CQI, PMI, RI, etc. ) , the respective frequency granularity of the CQI and PMI (e.g., wideband and/or sub-band) in each CSI report, and a respective codebook type for each CSI report. Here, the CSI parameters to be reported may be the same between the two CSI report sub-configurations. In addition, the periodicity, frequency granularity, and/or codebook types may be the same between the two CSI report sub-configurations.
Each of the first and second CSI report sub-configurations maps to a respective one of the two CSI-RS resource settings 1518. Each CSI-RS resource setting 1518 indicates frequency resources (e.g., an entire carrier bandwidth or one or more sub-bands or BWPs of the carrier bandwidth) over which the scheduled entity should measure the channel quality, a set of CSI-RS ports (beams) on which CSI-RSs may be received and measured by the scheduled entity, and a power on each of the CSI-RS ports. In an example, each CSI-RS resource setting 1518 may be configured with  different values to result in the generation of a multi-panel CSI report and a single panel CSI report. In an example, the second CSI-RS resource setting 1518 may indicate a subset of the frequency resources of the first CSI-RS resource setting 1518. In addition, the second CSI-RS resource setting 1518 may indicate a subset of the CSI-RS ports of the first CSI-RS resource setting 1518. When the number of ports and frequency resources are the same in both CSI-RS resource settings 1518, the second CSI-RS resource setting 1518 may indicate a power offset with respect to the first CSI-RS resource setting 1518. The CSI report management circuitry 1546 may further be configured to execute CSI report management software 1556 stored in the computer-readable medium 1506 to implement one or more of the functions described herein.
FIG. 16 is a flow chart 1600 of a method for CSI reporting at a scheduling entity according to some aspects. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all embodiments. In some examples, the method may be performed by the scheduling entity 1500, as described above and illustrated in FIG. 15, by a processor or processing system, or by any suitable means for carrying out the described functions.
At block 1602, the scheduling entity may transmit to a scheduled entity a CSI report configuration associated with a CSI-RS resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission. The CSI report configuration signals the scheduled entity to transmit two CSI reports, one of which is based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting. In some examples, the modification of the CSI-RS resource setting includes a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting.
In an example, the multi-panel antenna array includes a first panel having a first set of antenna elements and a second panel having a second set of antenna elements, where the first panel is physically separated from the second panel. In this example, the set of CSI-RS ports can include a first set of CSI-RS ports associated with the first panel and a second set of CSI-RS ports associated with the second panel. In addition, the subset of the CSI-RS ports includes one of the first set of CSI-RS ports or the second set of CSI-RS ports. In an example, the subset of the frequency resources include downlink  frequency resources allocated for downlink communication from the scheduling entity to the scheduled entity when the scheduling entity is operating in a sub-band full duplex mode. In an example, the power offset is applicable to each of the CSI-RS ports.
In some examples, the CSI report configuration includes a power offset field. Here, the power offset field includes the power offset when the second CSI report is generated based on the power offset. In some examples, the CSI report configuration further comprises a port subset field indicating whether the second CSI report is generated based on the CSI-RS ports or the subset of the CSI-RS ports.
In some examples, the scheduling entity may transmit the CSI report configuration and the CSI-RS resource setting to the scheduled entity via radio resource control (RRC) signaling. In some examples, the scheduling entity may transmit a dynamic reconfiguration message to the scheduled entity that updates the modification. The dynamic reconfiguration message can include a MAC-CE or DCI. For example, the CSI report management circuitry 1546, together with the communication and processing circuitry 1544 and transceiver 1510, shown and described above in connection with FIG. 15 may configure the scheduled entity with the CSI report configuration and CSI-RS resource setting.
At block 1604, the scheduling entity may transmit the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of ports indicated in the CSI-RS resource setting. For example, the communication and processing circuitry 1544, together with the resource assignment and scheduling circuitry 1542 and the transceiver 1510, shown and described above in connection with FIG. 15 may transmit the at least one CSI-RS to the scheduled entity.
At block 1606, the scheduling entity may receive a first CSI report from the scheduled entity generated based on the CSI-RS resource setting. At block 1608, the scheduling entity may further receive a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting. In some examples, the first and second CSI reports each include a different respective set of CSI report values for each of a plurality of CSI report parameters. For example, the communication and processing circuitry 1544, together with the transceiver 1510, shown and described above in connection with FIG. 15 may receive the first and second CSI reports.
In one configuration, a scheduling entity (e.g., a base station) 1500 includes means for transmitting to a scheduled entity a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting  identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI report. One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting. The scheduling entity can further include means transmitting the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of CSI-RS ports. The scheduling entity can further include means for receiving a first CSI report from the scheduled entity generated based on the CSI-RS resource setting and means for receiving a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting.
In one aspect, the aforementioned means for transmitting to the scheduled entity the CSI report configuration associated with the CSI-RS resource setting, means for transmitting the at least one CSI-RS on the set of frequency resources and the set of CSI-RS ports, means for receiving the first CSI report, and the means for receiving the second CSI report may be the processor (s) 1504 shown in FIG. 15 configured to perform the functions recited by the aforementioned means. For example, the aforementioned means for transmitting to the scheduled entity the CSI report configuration associated with the CSI-RS resource setting may include the CSI report management circuitry 1546, the communication and processing circuitry 1544, and the transceiver 1510 shown in FIG. 15. As another example, the aforementioned means for transmitting the at least one CSI-RS on the set of frequency resources and the set of CSI-RS ports may include the communication and processing circuitry 1544, the resource assignment and scheduling circuitry 1542, and the transceiver 1510 shown in FIG. 15. As another example, the aforementioned means for receiving the first CSI report and the means for receiving the second CSI report may include the communication and processing circuitry 1544 and the transceiver 1510 shown in FIG. 15.In another aspect, the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
FIG. 17 is a flow chart 1700 of another method for CSI reporting at a scheduling entity according to some aspects. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all embodiments. In some examples, the method may be performed by the scheduling  entity 1500, as described above and illustrated in FIG. 15, by a processor or processing system, or by any suitable means for carrying out the described functions.
At block 1702, the scheduling entity may transmit to a scheduled entity a CSI report configuration associated with two CSI-RS resource settings. Each of the two CSI-RS resource settings identifies a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission. The CSI report configuration signals the scheduled entity to transmit two CSI reports, each corresponding to one of the two CSI-RS resource settings. In some examples, the second CSI-RS resource setting includes a power offset from the first CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the first CSI-RS resource setting or a subset of the frequency resources of the first CSI-RS resource setting.
In an example, the multi-panel antenna array includes a first panel having a first set of antenna elements and a second panel having a second set of antenna elements, where the first panel is physically separated from the second panel. In this example, the set of CSI-RS ports can include a first set of CSI-RS ports associated with the first panel and a second set of CSI-RS ports associated with the second panel. In addition, the subset of the CSI-RS ports includes one of the first set of CSI-RS ports or the second set of CSI-RS ports. In some examples, the second CSI-RS resource setting includes at least one CDM group associated with the subset of CSI-RS ports. In an example, the subset of the frequency resources include downlink frequency resources allocated for downlink communication from the scheduling entity to the scheduled entity when the scheduling entity is operating in a sub-band full duplex mode. In an example, the power offset is applicable to each of the CSI-RS ports. For example, the CSI report management circuitry 1546, together with the communication and processing circuitry 1544 and transceiver 1510, shown and described above in connection with FIG. 15 may configure the scheduled entity with the CSI report configuration and two CSI-RS resource settings.
At block 1704, the scheduling entity may transmit the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings. For example, the communication and processing circuitry 1544, together with the resource assignment and scheduling circuitry 1542 and the transceiver 1510, shown and described above in connection with FIG. 15 may transmit the at least one CSI-RS to the scheduled entity.
At block 1706, the scheduling entity may receive a first CSI report from the scheduled entity generated based on the first CSI-RS resource setting. At block 1708, the scheduling entity may further receive a second CSI report from the scheduled entity generated based on the second CSI-RS resource setting. In some examples, the first and second CSI reports each include a different respective set of CSI report values for each of a plurality of CSI report parameters. For example, the communication and processing circuitry 1544, together with the transceiver 1510, shown and described above in connection with FIG. 15 may receive the first and second CSI reports.
In one configuration, a scheduling entity (e.g., a base station) 1500 includes means for transmitting to a scheduled entity a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings. Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI reports. Each CSI report can correspond to one of the two CSI-RS resource settings. The scheduling entity can further include means for transmitting the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings. The scheduled entity can further include means for receiving a first CSI report from the scheduled entity generated based on a first CSI-RS resource setting of the two CSI-RS resource settings and means for receiving a second CSI report from the scheduled entity generated based on a second CSI-RS resource setting of the two CSI-RS resource settings.
In one aspect, the aforementioned means for transmitting to the scheduled entity the CSI report configuration associated with two CSI-RS resource settings, means for transmitting the at least one CSI-RS based on the two CSI-RS resource settings, means for receiving the first CSI report, and the means for receiving the second CSI report may be the processor (s) 1504 shown in FIG. 15 configured to perform the functions recited by the aforementioned means. For example, the aforementioned means for transmitting to the scheduled entity the CSI report configuration associated with two CSI-RS resource settings may include the CSI report management circuitry 1546, the communication and processing circuitry 1544, and the transceiver 1510 shown in FIG. 15. As another example, the aforementioned means for transmitting the at least one CSI-RS based on the two CSI-RS resource settings may include the communication and processing circuitry 1544, the resource assignment and scheduling circuitry 1542, and  the transceiver 1510 shown in FIG. 15. As another example, the aforementioned means for receiving the first CSI report and the means for receiving the second CSI report may include the communication and processing circuitry 1544 and the transceiver 1510 shown in FIG. 15. In another aspect, the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
FIG. 18 is a block diagram illustrating an example of a hardware implementation for a scheduled entity 1800 employing a processing system 1814. For example, the scheduled entity 1800 may correspond to any of the UEs or scheduled entities shown and described above in reference to FIGs. 1, 2, 5, 11, 12 and/or 14.
In accordance with various aspects of the disclosure, an element, or any portion of an element, or any combination of elements may be implemented with a processing system 1814 that includes one or more processors 1804. The processing system 1814 may be substantially the same as the processing system 1514 illustrated in FIG. 15, including a bus interface 1808, a bus 1802, memory 1805, a processor 1804, and a computer-readable medium 1806. Furthermore, the scheduled entity 1800 may include a user interface 1812 and a transceiver 1810 substantially similar to those described above in FIG. 15. That is, the processor 1804, as utilized in a scheduled entity 1800, may be used to implement any one or more of the processes described below.
In some aspects of the disclosure, the processor 1804 may include circuitry configured for various functions. For example, the processor 1804 may include communication and processing circuitry 1842 configured to communicate with a scheduling entity (e.g., a base station, such as a gNB) via the transceiver 1810. The communication and processing circuitry 1842 may include one or more hardware components that provide the physical structure that performs processes related to wireless communication (e.g., signal reception and/or signal transmission) and signal processing (e.g., processing a received signal and/or processing a signal for transmission) . For example, the communication and processing circuitry 1842 may be configured to exchange control information and data with the scheduling entity via one or more subframes, slots, and/or mini-slots.
In some examples, the communication and processing circuitry 1842 may be configured to receive CSI report configuration 1816 and corresponding CSI-RS resource setting (s) 1818 from the scheduling entity via, for example, semi-static RRC signaling. The communication and processing circuitry 1842 may further be configured to store the CSI report configuration 1816 and corresponding CSI-RS resource setting (s)  1818 within the memory 1805. The communication and processing circuitry 1842 may further be configured to receive a dynamic reconfiguration message including at least one update to the CSI report configuration 1816 from the scheduling entity. For example, the dynamic reconfiguration message may include a MAC-CE or DCI. The CSI report configuration 1816 configures the scheduled entity to transmit two CSI reports when the scheduling entity is a multi-panel full duplex base station. Here, one of the CSI reports may be a multi-panel CSI report and the other CSI report may be a single panel CSI report.
The communication and processing circuitry 1842 may further be configured to receive CSI-RSs (e.g., each including a plurality of CSI-RS pilots) from the scheduling entity on a set of CSI-RS ports and REs indicated CSI report configuration 1816 and CSI-RS resource setting (s) 1818. For example, the communication and processing circuitry 1842 may be configured to receive each CSI-RS on a respective beam corresponding to the respective scheduling entity CSI-RS port via the transceiver 1810 and an antenna array 1820. In some example, the antenna array 1820 may include a multi-panel antenna array.
The communication and processing circuitry 1842 may further be configured to generate and transmit the two CSI reports to the scheduling entity. For example, a first CSI reports may be the multi-panel CSI report that may be used in scheduling of downlink transmissions to the scheduled entity within sub-band FDD full duplex slots. A second CSI report may be the single panel CSI report that may be used in scheduling downlink transmissions to the scheduled entity within TDD half duplex slots. In some examples, the CSI reports may each include respective CSI report quantities for a plurality of CSI report parameters (e.g., CQI, PMI, RI, LI, and/or L1-RSRP) . The CQI may include a wideband CQI value and/or multiple sub-band CQI values, each including modulation and coding scheme (MCS) information (e.g., an MCS index) . The communication and processing circuitry 1842 may further be configured to execute communication and processing software 1852 stored in the computer-readable medium 1806 to implement one or more of the functions described herein.
The processor 1804 may further include CSI report generation circuitry 1844, configured to estimate a channel between the scheduled entity 1800 and the scheduling entity by measuring the SINR on each of a plurality of CSI-RSs received in accordance with the CSI-RS resource setting (s) 1818. In some examples, the CSI report generation circuitry 1844 may be configured to estimate the channel as a vector of channel  response coefficients, each corresponding to a pilot within a CSI-RS channel measurement resource received via the communication and processing circuitry 1842 and the transceiver 1810. In an example, the CSI report generation circuitry 1844 may be configured to obtain two channel estimates, one for each of the CSI reports.
For example, a first channel estimate may be based on the CSI-RS resource setting 1818, while a second channel estimate may be based on a modified CSI-RS resource setting 1818. Here, the modified CSI-RS resource setting utilizes at least one modification included in the CSI report configuration 1816. For example, the modification can include a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting. In examples in which the modification includes a subset of CSI-RS ports and the antenna array 1820 is a multi-panel antenna array, the CSI report generation circuitry 1844 may obtain the second channel estimate using only a single panel of the multi-panel antenna array 1820. As another example, the first channel estimate may be based on a first CSI-RS resource setting 1818, while the second channel estimate may be based on a second CSI-RS resource setting. For example, the second CSI-RS resource setting may include a power offset from the first CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the first CSI-RS resource setting or a subset of the frequency resources of the first CSI-RS resource setting. Again, when the second CSI-RS resource setting includes a subset of CSI-RS ports and the antenna array 1820 is a multi-panel antenna array, the CSI report generation circuitry 1844 may obtain the second channel estimate using only a single panel of the multi-panel antenna array 1820.
More specifically, in some examples, the CSI report configuration 1816 is associated with a single CSI-RS resource setting 1818 for the scheduled entity. In an example, the single CSI-RS resource setting 1818 indicates frequency resources (e.g., one or more sub-bands or BWPs of a carrier bandwidth over) which the scheduled entity should measure the channel quality, a set of CSI-RS ports (beams) on which CSI-RSs may be received and measured by the scheduled entity, and a power on each of the CSI-RS ports in the set of CSI-RS ports. In some examples, the frequency resources may include the entire carrier bandwidth. In some examples, the set of CSI-RS ports may be indicated using CDM group indexes of CDM groups. For example, the CSI-RS resource setting 1818 may include all of the CDM groups corresponding to all of the CSI-RS ports. In some examples, the power may be expressed as a power offset from a  maximum power on the CSI-RS ports. For example, the power offset in the CSI-RS resource setting 1818 may be set to zero.
In this example, the CSI report configuration 1816 includes two CSI report sub-configurations, each for use by the CSI report generation circuitry 1844 in generating a respective CSI report. In an example, a first CSI report sub-configuration can be used to generate the multi-panel CSI report, while a second CSI report sub-configuration can be used to generate the single panel CSI report. Each of the two CSI report sub-configurations may indicate the periodicity of the respective CSI report, the respective CSI parameters to be reported (e.g., one or more of the CQI, PMI, RI, etc. ) , the respective frequency granularity of the CQI and PMI (e.g., wideband and/or sub-band) in each CSI report, and a respective codebook type for each CSI report. Here, the CSI parameters to be reported may be the same between the two CSI report sub-configurations. In addition, the periodicity, frequency granularity, and/or codebook types may be the same between the two CSI report sub-configurations.
Each of the two CSI report sub-configurations may further include a power offset to be applied to the power indicated in the CSI-RS resource setting 1818 for use by the CSI report generation circuitry 1844 in estimating the channel for the respective CSI report, a subset of the CSI-RS ports of the CSI-RS resource setting 1818 for use by the CSI report generation circuitry 1844 in estimating the channel for the respective CSI report, and a subset of the frequency resources of the CSI-RS resource setting 1818 for use by the scheduled entity in estimating the channel for the respective CSI report. For example, the power offset may indicate that the CSI report generation circuitry 1844 should assume X dB less power (one-half of the power) on the CSI-RS ports when estimating the channel for the single panel CSI report. As another example, the subset of the ports may indicate that the CSI report generation circuitry 1844 should assume half of the CSI-RS ports are used to transmit CSI-RS when estimating the channel for the single panel CSI report. As yet another example, the subset of frequency resources may indicate that the CSI report generation circuitry 1844 should utilize the CSI-RS pilots transmitted on downlink frequency resources allocated for downlink communication when estimating the channel for the single panel CSI report.
In some examples, the CSI report configuration 1816 is associated with two CSI-RS resource settings 1818, each for use by the CSI report generation circuitry 1844 in generating a respective CSI report. Here, a first CSI-RS resource setting 1818 may be associated with a multi-panel CSI report for a multi-panel full duplex base station, while  a second CSI-RS resource setting 1818 may be associated with a single panel CSI report for a multi-panel full duplex base station. The CSI report configuration 1816 may include two CSI report sub-configurations, each for use by the scheduled entity in generating a respective CSI report. In an example, a first CSI report sub-configuration can be used to generate the multi-panel CSI report, while a second CSI report sub-configuration can be used to generate the single panel CSI report for a multi-panel full duplex base station. Each of the two CSI report sub-configurations may indicate the periodicity of the respective CSI report, the respective CSI parameters to be reported (e.g., one or more of the CQI, PMI, RI, etc. ) , the respective frequency granularity of the CQI and PMI (e.g., wideband and/or sub-band) in each CSI report, and a respective codebook type for each CSI report. Here, the CSI parameters to be reported may be the same between the two CSI report sub-configurations. In addition, the periodicity, frequency granularity, and/or codebook types may be the same between the two CSI report sub-configurations.
Each of the first and second CSI report sub-configurations maps to a respective one of the two CSI-RS resource settings 1818. Each CSI-RS resource setting 1818 indicates frequency resources (e.g., an entire carrier bandwidth or one or more sub-bands or BWPs of the carrier bandwidth) over which the CSI report generation circuitry 1844 should measure the channel quality, a set of CSI-RS ports (beams) on which CSI-RSs may be received and measured by the CSI report generation circuitry 1844, and a power on each of the CSI-RS ports. In an example, each CSI-RS resource setting 1818 may be configured with different values to result in the generation of a multi-panel CSI report and a single panel CSI report. In an example, the second CSI-RS resource setting 1818 may indicate a subset of the frequency resources of the first CSI-RS resource setting 1818. In addition, the second CSI-RS resource setting 1818 may indicate a subset of the CSI-RS ports of the first CSI-RS resource setting 1818. When the number of ports and frequency resources are the same in both CSI-RS resource settings 1818, the second CSI-RS resource setting 1818 may indicate a power offset with respect to the first CSI-RS resource setting 1818.
The CSI report generation circuitry 1844 may further be configured to generate the two CSI reports, each including respective CSI report values for each of a plurality of CSI report parameters, as indicated in the CSI report configuration 1816. For example, each CSI report may include a respective CQI, PMI, RI, LI, and/or L1-RSRP values. The CSI report generation circuitry 1844 may further be configured to execute  CSI report generation software 1854 stored in the computer-readable medium 1806 to implement one or more of the functions described herein.
FIG. 19 is a flow chart 1900 of a method for CSI reporting at a scheduled entity according to some aspects. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all embodiments. In some examples, the method may be performed by the scheduled entity 1800, as described above and illustrated in FIG. 18, by a processor or processing system, or by any suitable means for carrying out the described functions.
At block 1902, the scheduled entity may receive a CSI report configuration associated with a CSI-RS resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of a scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration signals the scheduled entity to transmit two CSI reports, one of which is based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting. In some examples, the modification of the CSI-RS resource setting includes a power offset from the CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the CSI-RS resource setting or a subset of the frequency resources of the CSI-RS resource setting.
In an example, the set of CSI-RS ports can include a first set of CSI-RS ports associated with a first panel of the multi-panel antenna array and a second set of CSI-RS ports associated with a second panel of the multi-panel antenna array. In addition, the subset of the CSI-RS ports can include one of the first set of CSI-RS ports or the second set of CSI-RS ports. In an example, the subset of the frequency resources include downlink frequency resources allocated for downlink communication from the scheduling entity to the scheduled entity when the scheduling entity is operating in a sub-band full duplex mode. In an example, the power offset is applicable to each of the CSI-RS ports.
In some examples, the scheduled entity may receive the CSI report configuration and the CSI-RS resource setting from the scheduling entity via radio resource control (RRC) signaling. In some examples, the scheduled entity may further receive a dynamic reconfiguration message from the scheduling entity that updates the modification. The dynamic reconfiguration message can include a MAC-CE or DCI. For example, the communication and processing circuitry 1842, together with the transceiver 1810,  shown and described above in connection with FIG. 18 may receive the CSI report configuration and CSI-RS resource setting.
At block 1904, the scheduled entity may receive the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of ports indicated in the CSI-RS resource setting. For example, the communication and processing circuitry 1842, together with the transceiver 1810, shown and described above in connection with FIG. 18 may receive the at least one CSI-RS from the scheduling entity.
At block 1906, the scheduled entity may transmit a first CSI report to the scheduling entity generated based on the CSI-RS resource setting. At block 1908, the scheduled entity may further transmit a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting. In some examples, the first and second CSI reports each include a different respective set of CSI report values for each of a plurality of CSI report parameters. In some examples, the CSI report configuration includes a power offset field. Here, the scheduled entity may generate the second CSI report based on the power offset when the power offset field includes the power offset. In some examples, the CSI report configuration further includes a port subset flag and the scheduled entity may generate the second CSI report based on the subset of CSI-RS ports when the port subset flag is enabled.
In some examples, the scheduled entity may identify the subset of CSI-RS ports from a respective code division multiplexing (CDM) group index of a plurality of CDM groups indexes associated with each of the CSI-RS ports. For example, the scheduled entity may divide the plurality of CDM group indexes numerically into a first half and a second half and selecting the first half or the second half of the plurality of CDM group indexes as the subset of the CSI-RS ports. As another example, the scheduled entity may select odd CDM group indexes or even CDM group indexes of the plurality of CDM group indexes as the subset of the CSI-RS ports. For example, the CSI report generation circuitry 1844, together with the communication and processing circuitry 1842 and the transceiver 1810, shown and described above in connection with FIG. 18 may transmit the first and second CSI reports.
In one configuration, a scheduled entity (e.g., a UE) 1800 includes means for receiving a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration can  signal the scheduled entity to transmit two CSI reports. One of the two CSI reports can be based on a modified CSI-RS resource setting including a modification of the CSI-RS resource setting. The scheduled entity can further include means for receiving the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports. The scheduled entity can further include means for transmitting a first CSI report to the scheduling entity generated based on the CSI-RS resource setting and means for transmitting a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting.
In one aspect, the aforementioned means for receiving the CSI report configuration associated with the CSI-RS resource setting, means for receiving the at least one CSI-RS on the set of frequency resources and the set of CSI-RS ports, means for transmitting the first CSI report, and the means for transmitting the second CSI report may be the processor (s) 1804 shown in FIG. 18 configured to perform the functions recited by the aforementioned means. For example, the aforementioned means for receiving the CSI report configuration associated with the CSI-RS resource setting may include the communication and processing circuitry 1842 and the transceiver 1810 shown in FIG. 18. As another example, the aforementioned means for receiving the at least one CSI-RS on the set of frequency resources and the set of CSI-RS ports may include the communication and processing circuitry 1842 and the transceiver 1810 shown in FIG. 18. As another example, the aforementioned means for transmitting the first CSI report and the means for transmitting the second CSI report may include the CSI report generation circuitry 1844, the communication and processing circuitry 1842, and the transceiver 1810 shown in FIG. 18. In another aspect, the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
FIG. 20 is a flow chart 2000 of another method for CSI reporting at a scheduled entity according to some aspects. As described below, some or all illustrated features may be omitted in a particular implementation within the scope of the present disclosure, and some illustrated features may not be required for implementation of all embodiments. In some examples, the method may be performed by the scheduled entity 1800, as described above and illustrated in FIG. 18, by a processor or processing system, or by any suitable means for carrying out the described functions.
At block 2002, the scheduled entity may receive a CSI report configuration associated with two CSI-RS resource settings. Each of the two CSI-RS resource settings  identifies a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of a scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration signals the scheduled entity to transmit two CSI reports, each corresponding to one of the two CSI-RS resource settings. In some examples, the second CSI-RS resource setting includes a power offset from the first CSI-RS resource setting or at least one of a subset of the CSI-RS ports of the first CSI-RS resource setting or a subset of the frequency resources of the first CSI-RS resource setting.
In an example, the set of CSI-RS ports can include a first set of CSI-RS ports associated with a first panel of the multi-panel antenna array and a second set of CSI-RS ports associated with a second panel of the multi-panel antenna array. In addition, the subset of the CSI-RS ports can include one of the first set of CSI-RS ports or the second set of CSI-RS ports. In some examples, the second CSI-RS resource setting includes at least one CDM group associated with the subset of CSI-RS ports. In an example, the subset of the frequency resources include downlink frequency resources allocated for downlink communication from the scheduling entity to the scheduled entity when the scheduling entity is operating in a sub-band full duplex mode. In an example, the power offset is applicable to each of the CSI-RS ports. For example, the communication and processing circuitry 1842, together with the transceiver 1810, shown and described above in connection with FIG. 18 may receive the CSI report configuration and two CSI-RS resource settings.
At block 2004, the scheduled entity may receive the at least one CSI-RS from the scheduling entity based on the two CSI-RS resource settings. For example, the communication and processing circuitry 1842, together with the transceiver 1810, shown and described above in connection with FIG. 18 may receive the at least one CSI-RS from the scheduling entity.
At block 2006, the scheduled entity may transmit a first CSI report from the scheduled entity generated based on the first CSI-RS resource setting. At block 2008, the scheduled entity may further transmit a second CSI report from the scheduled entity generated based on the second CSI-RS resource setting. In some examples, the first and second CSI reports each include a different respective set of CSI report values for each of a plurality of CSI report parameters. In some examples, the second CSI report may be generated using a single panel of an additional multi-panel antenna array on the scheduled entity. For example, the communication and processing circuitry 1842,  together with the transceiver 1810, shown and described above in connection with FIG. 18 may receive the first and second CSI reports.
In one configuration, a scheduled entity (e.g., a UE) 1800 includes means for receiving a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings. Each of the two CSI-RS resource settings can identify a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission. The CSI report configuration can signal the scheduled entity to transmit two CSI reports. Each CSI report can correspond to one of the two CSI-RS resource settings. The scheduled entity can further include means for receiving the at least one CSI-RS from the scheduling entity based on the two CSI-RS resource settings. The scheduled entity can further include means for transmitting a first CSI report to the scheduling entity generated based on a first CSI-RS setting of the two CSI-RS resource settings and means for transmitting a second CSI report to the scheduling entity generated based on a second CSI-RS setting of the two CSI-RS resource settings.
In one aspect, the aforementioned means for receiving the CSI report configuration associated with the two CSI-RS resource setting, means for receiving the at least one CSI-RS based on the two CSI-RS resource settings, means for transmitting the first CSI report, and the means for transmitting the second CSI report may be the processor (s) 1804 shown in FIG. 18 configured to perform the functions recited by the aforementioned means. For example, the aforementioned means for receiving the CSI report configuration associated with the two CSI-RS resource settings may include the communication and processing circuitry 1842 and the transceiver 1810 shown in FIG. 18. As another example, the aforementioned means for receiving the at least one CSI-RS based on the two CSI-RS resource settings may include the communication and processing circuitry 1842 and the transceiver 1810 shown in FIG. 18. As another example, the aforementioned means for transmitting the first CSI report and the means for transmitting the second CSI report may include the CSI report generation circuitry 1844, the communication and processing circuitry 1842, and the transceiver 1810 shown in FIG. 18. In another aspect, the aforementioned means may be a circuit or any apparatus configured to perform the functions recited by the aforementioned means.
Several aspects of a wireless communication network have been presented with reference to an exemplary implementation. As those skilled in the art will readily  appreciate, various aspects described throughout this disclosure may be extended to other telecommunication systems, network architectures and communication standards.
By way of example, various aspects may be implemented within other systems defined by 3GPP, such as Long-Term Evolution (LTE) , the Evolved Packet System (EPS) , the Universal Mobile Telecommunication System (UMTS) , and/or the Global System for Mobile (GSM) . Various aspects may also be extended to systems defined by the 3rd Generation Partnership Project 2 (3GPP2) , such as CDMA2000 and/or Evolution-Data Optimized (EV-DO) . Other examples may be implemented within systems employing IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Ultra-Wideband (UWB) , Bluetooth, and/or other suitable systems. The actual telecommunication standard, network architecture, and/or communication standard employed will depend on the specific application and the overall design constraints imposed on the system.
Within the present disclosure, the word “exemplary” is used to mean “serving as an example, instance, or illustration. ” Any implementation or aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation. The term “coupled” is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another-even if they do not directly physically touch each other. For instance, a first object may be coupled to a second object even though the first object is never directly physically in contact with the second object. The terms “circuit” and “circuitry” are used broadly, and intended to include both hardware implementations of electrical devices and conductors that, when connected and configured, enable the performance of the functions described in the present disclosure, without limitation as to the type of electronic circuits, as well as software implementations of information and instructions that, when executed by a processor, enable the performance of the functions described in the present disclosure.
One or more of the components, steps, features and/or functions illustrated in FIGs. 1–20 may be rearranged and/or combined into a single component, step, feature or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein. The apparatus, devices, and/or components illustrated in FIGs.  1, 2, 4, 5, 11, 12, 14, 15, and 18 may be configured to perform one or more of the methods, features, or steps described herein. The novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.
It is to be understood that the specific order or hierarchy of steps in the methods disclosed is an illustration of exemplary processes. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the methods may be rearranged. The accompanying method claims present elements of the various steps in a sample order and are not meant to be limited to the specific order or hierarchy presented unless specifically recited therein.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b, and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.

Claims (55)

  1. A method of wireless communication between a scheduling entity and a set of one or more scheduled entities in a wireless communication network, the method comprising, at the scheduling entity:
    transmitting to a scheduled entity of the set of one or more scheduled entities a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, wherein one of the two CSI reports is based on a modified CSI-RS resource setting comprising a modification of the CSI-RS resource setting;
    transmitting the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of CSI-RS ports;
    receiving a first CSI report from the scheduled entity generated based on the CSI-RS resource setting; and
    receiving a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting.
  2. The method of claim 1, wherein the modification of the CSI-RS resource setting comprises a power offset from the CSI-RS resource setting or at least one of a subset of the set of CSI-RS ports of the CSI-RS resource setting or a subset of the set of frequency resources of the CSI-RS resource setting.
  3. The method of claim 2, wherein the multi-panel antenna array comprises a first panel comprising a first set of antenna elements and a second panel comprising a second set of antenna elements, wherein the first panel is physically separated from the second panel.
  4. The method of claim 3, wherein the set of CSI-RS ports comprises a first set of CSI-RS ports associated with the first panel and a second set of CSI-RS ports associated with the second panel, and wherein the subset of the set of CSI-RS ports comprises one of the first set of CSI-RS ports or the second set of CSI-RS ports.
  5. The method of claim 2, wherein the subset of the set of frequency resources comprise downlink frequency resources allocated for downlink communication from the scheduling entity to the scheduled entity when the scheduling entity is operating in a full duplex mode.
  6. The method of claim 2, wherein the power offset is applicable to each CSI-RS port of the set of CSI-RS ports.
  7. The method of claim 2, wherein the CSI report configuration comprises a power offset field, wherein the power offset field comprises the power offset when the second CSI report is generated based on the power offset.
  8. The method of claim 2, wherein the CSI report configuration further comprises a port subset field indicating whether the second CSI report is generated based on the set of CSI-RS ports or the subset of the set of CSI-RS ports.
  9. The method of claim 1, wherein transmitting to the scheduled entity the CSI report configuration further comprises:
    transmitting the CSI report configuration and the CSI-RS resource setting to the scheduled entity via radio resource control (RRC) signaling.
  10. The method of claim 9, further comprising:
    transmitting a dynamic reconfiguration message to the scheduled entity, wherein the dynamic reconfiguration message updates the modification.
  11. The method of claim 10, wherein the dynamic reconfiguration message comprises a medium access control control element (MAC-CE) command or downlink control information (DCI) .
  12. The method of claim 1, wherein the first CSI report and the second CSI report each comprise a different respective set of CSI report values for each of a plurality of CSI report parameters.
  13. A method of wireless communication between a scheduled entity and a scheduling entity in a wireless communication network, the method comprising, at the scheduled entity:
    receiving a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, wherein one of the two CSI reports is based on a modified CSI-RS resource setting comprising a modification of the CSI-RS resource setting;
    receiving the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports;
    transmitting a first CSI report to the scheduling entity generated based on the CSI-RS resource setting; and
    transmitting a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting.
  14. The method of claim 13, wherein the modification of the CSI-RS resource setting comprises a power offset from the CSI-RS resource setting or at least one of a subset of the set of CSI-RS ports of the CSI-RS resource setting or a subset of the set of frequency resources of the CSI-RS resource setting.
  15. The method of claim 14, wherein the set of CSI-RS ports comprises a first set of CSI-RS ports associated with a first panel of the multi-panel antenna array and a second set of CSI-RS ports associated with a second panel of the multi-panel antenna array, and wherein the subset of the set of CSI-RS ports comprises one of the first set of CSI-RS ports or the second set of CSI-RS ports.
  16. The method of claim 14, wherein the subset of the set of frequency resources comprise downlink frequency resources allocated for downlink communication from the scheduling entity to the scheduled entity when the scheduling entity is operating in a full duplex mode.
  17. The method of claim 14, further comprising:
    applying the power offset to each CSI-RS port of the set of CSI-RS ports to generate the second CSI report.
  18. The method of claim 14, wherein the CSI report configuration comprises a power offset field, and further comprising:
    generating the second CSI report based on the power offset when the power offset field comprises the power offset.
  19. The method of claim 14, wherein the CSI report configuration comprises a port subset flag, and further comprising:
    generating the second CSI report based on the subset of the set of CSI-RS ports when the port subset flag is enabled.
  20. The method of claim 19, further comprising:
    identifying the subset of the set of CSI-RS ports from a respective code division multiplexing (CDM) group index of a plurality of CDM groups indexes associated with each CSI-RS port of the set of CSI-RS ports.
  21. The method of claim 20, wherein identifying the subset of CSI-RS ports further comprises:
    dividing the plurality of CDM group indexes numerically into a first half and a second half; and
    selecting the first half or the second half of the plurality of CDM group indexes as the subset of the set of CSI-RS ports.
  22. The method of claim 20, wherein identifying the subset of the set of CSI-RS ports further comprises:
    selecting odd CDM group indexes or even CDM group indexes of the plurality of CDM group indexes as the subset of the set of CSI-RS ports.
  23. The method of claim 13, wherein receiving the CSI report configuration further comprises:
    receiving the CSI report configuration and the CSI-RS resource setting from the scheduling entity via radio resource control (RRC) signaling.
  24. The method of claim 23, further comprising:
    receiving a dynamic reconfiguration message from the scheduling entity, wherein the dynamic reconfiguration message updates the modification.
  25. The method of claim 24, wherein the dynamic reconfiguration message comprises a medium access control control element (MAC-CE) command or downlink control information (DCI) .
  26. The method of claim 13, wherein the first CSI report and the second CSI report each comprise a different respective set of CSI report values for each of a plurality of CSI report parameters.
  27. The method of claim 13, further comprising:
    generating the second CSI report using a single panel of an additional multi-panel antenna array on the scheduled entity.
  28. A method of wireless communication between a scheduling entity and a set of one or more scheduled entities in a wireless communication network, the method comprising, at the scheduling entity:
    transmitting to a scheduled entity of the set of one or more scheduled entities a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings, each of the two CSI-RS resource settings identifying a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, each corresponding to one of the two CSI-RS resource settings;
    transmitting the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings;
    receiving a first CSI report from the scheduled entity generated based on a first CSI-RS resource setting of the two CSI-RS resource settings; and
    receiving a second CSI report from the scheduled entity generated based on a second CSI-RS resource setting of the two CSI-RS resource settings.
  29. The method of claim 28, wherein the second CSI-RS resource setting comprises a power offset from the first CSI-RS resource setting or at least one of a subset of the set of CSI-RS ports of the first CSI-RS resource setting or a subset of the set of frequency resources of the first CSI-RS resource setting.
  30. The method of claim 29, wherein the multi-panel antenna array comprises a first panel comprising a first set of antenna elements and a second panel comprising a second set of antenna elements, wherein the first panel is physically separated from the second panel.
  31. The method of claim 30, wherein the set of CSI-RS ports comprises a first set of CSI-RS ports associated with the first panel and a second set of CSI-RS ports associated with the second panel, and wherein the subset of the set of CSI-RS ports comprises one of the first set of CSI-RS ports or the second set of CSI-RS ports.
  32. The method of claim 29, wherein the second CSI-RS resource setting comprises at least one code division multiplexing (CDM) group associated with the subset of the set of CSI-RS ports.
  33. The method of claim 29, wherein the subset of the set of frequency resources comprise downlink frequency resources allocated for downlink communication from the scheduling entity to the scheduled entity when the scheduling entity is operating in a full duplex mode.
  34. The method of claim 29, wherein the power offset is applicable to each CSI-RS port of the set of CSI-RS ports.
  35. The method of claim 28, wherein the first CSI report and the second CSI report each comprise a different respective set of CSI report values for each of a plurality of CSI report parameters.
  36. A method of wireless communication between a scheduled entity and a scheduling entity in a wireless communication network, the method comprising, at the scheduled entity:
    receiving a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings, each of the two CSI-RS resource settings identifying a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, each corresponding to one of the two CSI-RS resource settings;
    receiving the at least one CSI-RS from the scheduling entity based on the two CSI-RS resource settings;
    transmitting a first CSI report to the scheduling entity generated based on a first CSI-RS setting of the two CSI-RS resource settings; and
    transmitting a second CSI report to the scheduling entity generated based on a second CSI-RS setting of the two CSI-RS resource settings.
  37. The method of claim 36, wherein the second CSI-RS resource setting comprises a power offset from the first CSI-RS resource setting or at least one of a subset of the set of CSI-RS ports of the first CSI-RS resource setting or a subset of the set of frequency resources of the first CSI-RS resource setting.
  38. The method of claim 36, wherein the set of CSI-RS ports comprises a first set of CSI-RS ports associated with a first panel of the multi-panel antenna array and a second set of CSI-RS ports associated with a second panel of the multi-panel antenna array, and wherein the subset of the set of CSI-RS ports comprises one of the first set of CSI-RS ports or the second set of CSI-RS ports.
  39. The method of claim 37, wherein the second CSI-RS resource setting comprises at least one code division multiplexing (CDM) group associated with the subset of the set of CSI-RS ports.
  40. The method of claim 37, wherein the subset of the set of frequency resources comprise downlink frequency resources allocated for downlink communication from the  scheduling entity to the scheduled entity when the scheduling entity is operating in a full duplex mode.
  41. The method of claim 37, further comprising:
    applying the power offset to each CSI-RS port of the set of CSI-RS ports to generate the second CSI report.
  42. The method of claim 36, wherein the first CSI report and the second CSI report each comprise a different respective set of CSI report values for each of a plurality of CSI report parameters.
  43. The method of claim 36, further comprising:
    generating the second CSI report using a single panel of an additional multi-panel antenna array on the scheduled entity.
  44. A scheduling entity in a wireless communication network, comprising:
    a wireless transceiver;
    a memory; and
    a processor communicatively coupled to the wireless transceiver and the memory, wherein the processor and the memory are configured to:
    transmit to a scheduled entity a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, wherein one of the two CSI reports is based on a modified CSI-RS resource setting comprising a modification of the CSI-RS resource setting;
    transmit the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of CSI-RS ports via the wireless transceiver;
    receive a first CSI report from the scheduled entity generated based on the CSI-RS resource setting via the wireless transceiver; and
    receive a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting.
  45. A scheduling entity in a wireless communication network, comprising:
    means for transmitting to a scheduled entity a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, wherein one of the two CSI reports is based on a modified CSI-RS resource setting comprising a modification of the CSI-RS resource setting;
    means for transmitting the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of CSI-RS ports;
    means for receiving a first CSI report from the scheduled entity generated based on the CSI-RS resource setting; and
    means for receiving a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting.
  46. A computer-readable medium having stored therein instructions executable by one or more processors of a scheduling entity to:
    transmit to a scheduled entity a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, wherein one of the two CSI reports is based on a modified CSI-RS resource setting comprising a modification of the CSI-RS resource setting;
    transmit the at least one CSI-RS to the scheduled entity on the set of frequency resources and the set of CSI-RS ports;
    receive a first CSI report from the scheduled entity generated based on the CSI-RS resource setting; and
    receive a second CSI report from the scheduled entity generated based on the modified CSI-RS resource setting.
  47. A scheduling entity in a wireless communication network, comprising:
    a wireless transceiver;
    a memory; and
    a processor communicatively coupled to the wireless transceiver and the memory, wherein the processor and the memory are configured to:
    transmit to a scheduled entity a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings, each of the two CSI-RS resource settings identifying a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, each corresponding to one of the two CSI-RS resource settings;
    transmit the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings via the wireless transceiver;
    receive a first CSI report from the scheduled entity generated based on a first CSI-RS resource setting of the two CSI-RS resource settings via the wireless transceiver; and
    receive a second CSI report from the scheduled entity generated based on a second CSI-RS resource setting of the two CSI-RS resource settings via the wireless transceiver.
  48. A scheduling entity in a wireless communication network, comprising:
    means for transmitting to a scheduled entity a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings, each of the two CSI-RS resource settings identifying a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, each corresponding to one of the two CSI-RS resource settings;
    means for transmitting the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings;
    means for receiving a first CSI report from the scheduled entity generated based on a first CSI-RS resource setting of the two CSI-RS resource settings; and
    means for receiving a second CSI report from the scheduled entity generated based on a second CSI-RS resource setting of the two CSI-RS resource settings.
  49. A computer-readable medium having stored therein instructions executable by one or more processors of a scheduling entity to:
    transmit to a scheduled entity a channel state information (CSI) report configuration associated with two CSI –reference signal (CSI-RS) resource settings, each of the two CSI-RS resource settings identifying a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of the scheduling entity on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, each corresponding to one of the two CSI-RS resource settings;
    transmit the at least one CSI-RS to the scheduled entity based on the two CSI-RS resource settings;
    receive a first CSI report from the scheduled entity generated based on a first CSI-RS resource setting of the two CSI-RS resource settings; and
    receive a second CSI report from the scheduled entity generated based on a second CSI-RS resource setting of the two CSI-RS resource settings.
  50. A scheduled entity in a wireless communication network, comprising:
    a wireless transceiver;
    a memory; and
    a processor communicatively coupled to the wireless transceiver and the memory, wherein the processor and the memory are configured to:
    receive a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of a scheduling entity on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, wherein one of the two CSI reports is based on a modified CSI-RS resource setting comprising a modification of the CSI-RS resource setting;
    receive the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports via the wireless transceiver;
    transmit a first CSI report to the scheduling entity generated based on the CSI-RS resource setting via the wireless transceiver; and
    transmit a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting via the wireless transceiver.
  51. A scheduled entity in a wireless communication network, comprising:
    means for receiving a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of a scheduling entity on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, wherein one of the two CSI reports is based on a modified CSI-RS resource setting comprising a modification of the CSI-RS resource setting;
    means for receiving the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports;
    means for transmitting a first CSI report to the scheduling entity generated based on the CSI-RS resource setting; and
    means for transmitting a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting.
  52. A computer-readable medium having stored therein instructions executable by one or more processors of a scheduled entity to:
    receive a channel state information (CSI) report configuration associated with a CSI reference signal (CSI-RS) resource setting identifying a set of frequency resources and a set of CSI-RS ports of a multi-panel antenna array of a scheduling entity on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, wherein one of the two CSI reports is based on a modified CSI-RS resource setting comprising a modification of the CSI-RS resource setting;
    receive the at least one CSI-RS from the scheduling entity on the set of frequency resources and the set of CSI-RS ports;
    transmit a first CSI report to the scheduling entity generated based on the CSI-RS resource setting; and
    transmit a second CSI report to the scheduling entity generated based on the modified CSI-RS resource setting.
  53. A scheduled entity in a wireless communication network, comprising:
    a wireless transceiver;
    a memory; and
    a processor communicatively coupled to the wireless transceiver and the memory, wherein the processor and the memory are configured to:
    receive a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings via the wireless transceiver, each of the two CSI-RS resource settings identifying a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of a scheduling entity on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, each corresponding to one of the two CSI-RS resource settings;
    receive the at least one CSI-RS from the scheduling entity based on the two CSI-RS resource settings via the wireless transceiver;
    transmit a first CSI report to the scheduling entity generated based on a first CSI-RS setting of the two CSI-RS resource settings via the wireless transceiver; and
    transmit a second CSI report to the scheduling entity generated based on a second CSI-RS setting of the two CSI-RS resource settings via the wireless transceiver.
  54. A scheduled entity in a wireless communication network, comprising:
    means for receiving a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings, each of the two CSI-RS resource settings identifying a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of a scheduling entity on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, each corresponding to one of the two CSI-RS resource settings;
    means for receiving the at least one CSI-RS from the scheduling entity based on the two CSI-RS resource settings;
    means for transmitting a first CSI report to the scheduling entity generated based on a first CSI-RS setting of the two CSI-RS resource settings; and
    means for transmitting a second CSI report to the scheduling entity generated based on a second CSI-RS setting of the two CSI-RS resource settings.
  55. A computer-readable medium having stored therein instructions executable by one or more processors of a scheduled entity to:
    receive a channel state information (CSI) report configuration associated with two CSI reference signal (CSI-RS) resource settings, each of the two CSI-RS resource settings identifying a respective set of frequency resources and a respective set of CSI-RS ports of a multi-panel antenna array of a scheduling entity on which at least one CSI-RS is configured for transmission, wherein the CSI report configuration signals the scheduled entity to transmit two CSI reports, each corresponding to one of the two CSI-RS resource settings;
    receive the at least one CSI-RS from the scheduling entity based on the two CSI-RS resource settings;
    transmitting a first CSI report to the scheduling entity generated based on a first CSI-RS setting of the two CSI-RS resource settings; and
    transmit a second CSI report to the scheduling entity generated based on a second CSI-RS setting of the two CSI-RS resource settings.
PCT/CN2020/087185 2020-04-27 2020-04-27 Csi reporting techniques for multi-panel full duplex base stations WO2021217328A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087185 WO2021217328A1 (en) 2020-04-27 2020-04-27 Csi reporting techniques for multi-panel full duplex base stations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/087185 WO2021217328A1 (en) 2020-04-27 2020-04-27 Csi reporting techniques for multi-panel full duplex base stations

Publications (1)

Publication Number Publication Date
WO2021217328A1 true WO2021217328A1 (en) 2021-11-04

Family

ID=78373871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087185 WO2021217328A1 (en) 2020-04-27 2020-04-27 Csi reporting techniques for multi-panel full duplex base stations

Country Status (1)

Country Link
WO (1) WO2021217328A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023158943A1 (en) * 2022-02-17 2023-08-24 Qualcomm Incorporated Channel state information reporting for half-duplex and full-duplex modes
WO2024001665A1 (en) * 2022-06-28 2024-01-04 Mediatek Singapore Pte. Ltd. Methods for reverse ue-ue cli measurement in non-overlapping subband-fullduplex deployment
WO2024026641A1 (en) * 2022-08-01 2024-02-08 Nec Corporation Methods, terminal devices and computer readable medium for communication
WO2024035673A1 (en) * 2022-08-08 2024-02-15 Interdigital Patent Holdings, Inc. Operating in a network with variable power
GB2621572A (en) * 2022-08-12 2024-02-21 Nec Corp Communication system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103391576A (en) * 2012-05-11 2013-11-13 华为技术有限公司 Reporting method and device for reference signal receiving power
US20150043450A1 (en) * 2013-08-07 2015-02-12 Broadcom Corporation Receiver-Aided Multi-User MIMO and Coordinated Beamforming
WO2018201908A1 (en) * 2017-05-02 2018-11-08 Qualcomm Incorporated Port group indication and port subsets in a csi-rs resource for new radio (nr)
US20190116585A1 (en) * 2017-10-12 2019-04-18 Qualcomm Incorporated Accelerated cell activation in wireless communication
US20190158319A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Method for a ue for requesting a channel state information reference signal (csi-rs) or a sounding reference signal (srs)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103391576A (en) * 2012-05-11 2013-11-13 华为技术有限公司 Reporting method and device for reference signal receiving power
US20150043450A1 (en) * 2013-08-07 2015-02-12 Broadcom Corporation Receiver-Aided Multi-User MIMO and Coordinated Beamforming
WO2018201908A1 (en) * 2017-05-02 2018-11-08 Qualcomm Incorporated Port group indication and port subsets in a csi-rs resource for new radio (nr)
US20190116585A1 (en) * 2017-10-12 2019-04-18 Qualcomm Incorporated Accelerated cell activation in wireless communication
US20190158319A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Method for a ue for requesting a channel state information reference signal (csi-rs) or a sounding reference signal (srs)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On Dynamic Signalling for Aperiodic and Semi-Persistent CSI-RS", 3GPP DRAFT; R1-1700761 ON DYNAMIC SIGNALING FOR APERIODIC AND SEMI-PERSISTENT CSI-RS, vol. RAN WG1, 16 January 2017 (2017-01-16), Spokane, WA, USA, pages 1 - 6, XP051208285 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023158943A1 (en) * 2022-02-17 2023-08-24 Qualcomm Incorporated Channel state information reporting for half-duplex and full-duplex modes
WO2024001665A1 (en) * 2022-06-28 2024-01-04 Mediatek Singapore Pte. Ltd. Methods for reverse ue-ue cli measurement in non-overlapping subband-fullduplex deployment
WO2024026641A1 (en) * 2022-08-01 2024-02-08 Nec Corporation Methods, terminal devices and computer readable medium for communication
WO2024035673A1 (en) * 2022-08-08 2024-02-15 Interdigital Patent Holdings, Inc. Operating in a network with variable power
GB2621572A (en) * 2022-08-12 2024-02-21 Nec Corp Communication system

Similar Documents

Publication Publication Date Title
CN110622547B (en) Method and apparatus for port group indication and port subset in new radio CSI-RS resources
WO2021217328A1 (en) Csi reporting techniques for multi-panel full duplex base stations
CN110612694B (en) Precoder resource group allocation method for MIMO communication
US11575424B2 (en) UE recommended CSI settings
US20220116801A1 (en) Beam report for multi-stream communication
WO2021227057A1 (en) Uplink transmission configuration supporting multiple antenna panels transmission
US20220407581A1 (en) Beam quality measurements in wireless networks
CN114982142A (en) Precoding matrix indicator feedback for multiple transmission hypotheses
WO2021258401A1 (en) Port grouping for a channel state information-reference signal (csi-rs) resource
US11856436B2 (en) Transient compact measurement reports via alternative beam indexing
EP4032213B1 (en) Spectral efficiency (spef) to channel quality indicator (cqi) mapping adaptation
WO2021249531A1 (en) Channel state information report based on reference signal and hypothesis in full duplex
WO2022027625A1 (en) Frequency domain precoding for fdd reciprocity
US10998956B1 (en) Optimized receive beam selection
WO2021223180A1 (en) Activating multiple transmission configuration indicator states for a single coreset carrying downlink control channel repetitions
WO2022047717A1 (en) Group common downlink control information enhancements for partial frequency sounding of multiple ues
WO2021203404A1 (en) Uplink transmission configuration indicator and power control parameter update
WO2022169513A1 (en) Iterative precoder computation and coordination for improved sidelink and uplink coverages
WO2021097589A1 (en) Optimization of channel state feedback (csf) report
US20230179380A1 (en) Interference rank indication by a victim node in full duplex
WO2023206393A1 (en) Uplink parameters prediction and indication in wireless communication
WO2023000195A9 (en) Transmission configuration indicator state mapping for multiple transport block transmission
WO2023028742A1 (en) Csi report with time domain channel information
WO2022006523A9 (en) Shared common beam update across multiple component carriers
CN116830704A (en) Indication of uplink control channel repetition in wireless communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20933917

Country of ref document: EP

Kind code of ref document: A1