WO2021179266A1 - 多输入多输出模式配置方法、装置及存储介质 - Google Patents

多输入多输出模式配置方法、装置及存储介质 Download PDF

Info

Publication number
WO2021179266A1
WO2021179266A1 PCT/CN2020/079050 CN2020079050W WO2021179266A1 WO 2021179266 A1 WO2021179266 A1 WO 2021179266A1 CN 2020079050 W CN2020079050 W CN 2020079050W WO 2021179266 A1 WO2021179266 A1 WO 2021179266A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
terminal
mimo mode
quantization
value
Prior art date
Application number
PCT/CN2020/079050
Other languages
English (en)
French (fr)
Inventor
杜蕾
周珏嘉
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/910,650 priority Critical patent/US20230137584A1/en
Priority to CN202080000529.7A priority patent/CN111480357B/zh
Priority to PCT/CN2020/079050 priority patent/WO2021179266A1/zh
Publication of WO2021179266A1 publication Critical patent/WO2021179266A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/0434Power distribution using multiple eigenmodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a multiple-input multiple-output mode configuration method, device, and storage medium.
  • MIMO Multiple-Input Multiple-Output
  • the terminal needs to report the terminal support capability to the network device, and at the same time, periodically perform channel measurement and report channel quality according to the requirements of the network device, such as a channel quality indicator (CQI).
  • CQI channel quality indicator
  • the network equipment configures the MIMO mode for the terminal according to the capabilities supported by the terminal and the channel measurement result.
  • real-time changes in many factors of the terminal itself affect the signal transmission and reception of the terminal antenna, such as changes in the relative position of components, changes in morphology caused by folding, etc., which actually affect the distance and irrelevance between antennas, thereby affecting the effect of MIMO.
  • the present disclosure provides a multiple-input multiple-output mode configuration method, device and storage medium.
  • a multiple-input multiple-output mode configuration method which is applied to a terminal, and includes:
  • the triggering factor includes the terminal information that triggers the multiple-input multiple-output MIMO mode adjustment; sending a first instruction, the first instruction is used to request the network device to configure the terminal with the MIMO mode matching the triggering factor ; Acquire a second instruction, the second instruction is used to characterize the MIMO mode configured by the network device for the terminal.
  • different states corresponding to the trigger factors have different state quantization values, and different state quantization values correspond to different MIMO modes;
  • the sending the first instruction includes: sending the first instruction when the state quantization value of the current state of the triggering factor meets the state quantization threshold for triggering MIMO mode adjustment.
  • the first instruction includes a MIMO mode that matches the state quantized value of the current state of the triggering factor.
  • the first instruction includes the MIMO mode adjustment order offset.
  • the first instruction includes a state quantified value of the current state of the triggering factor.
  • the state of the triggering factor includes a first quantization state and a second quantization state; the first quantization state corresponds to a plurality of different first quantization state values, wherein a plurality of different first quantization state values
  • the quantized state value represents a plurality of different absolute states of the triggering factor; the second quantized state corresponds to a plurality of different second quantized state values, and the multiple different second quantized state values represent a plurality of different triggering factors Relative status.
  • the state quantized value of the current state of the triggering factor includes a first quantized state value, or a second quantized state value, or is determined based on the first quantized state value and the second quantized state value The first comprehensive quantified state value.
  • the state quantization value of the current state of the triggering factor further includes a second comprehensive quantization state value, and the second comprehensive quantization state value is determined based on the first comprehensive quantization state value and channel measurement information.
  • the triggering factor includes one or more of the relative position information of the terminal device and the terminal form information.
  • the determining trigger includes:
  • the triggering factor is determined based on pre-configuration information; or the triggering factor is determined based on broadcast signaling, radio resource control upper layer configuration signaling, or physical layer control signaling.
  • a multiple-input multiple-output mode configuration method applied to a network device including:
  • a first instruction is received, the first instruction is used to request a network device to configure a multiple-input multiple-output MIMO mode matching a trigger factor for the terminal, the trigger factor includes the information of the terminal that triggers the MIMO mode adjustment; configure and trigger the terminal Factor matching MIMO mode, and send a second instruction, where the second instruction is used to instruct the network device to configure the MIMO mode for the terminal.
  • different states corresponding to the trigger factors have different state quantization values, and different state quantization values correspond to different MIMO modes.
  • the first instruction includes a MIMO mode that matches the state quantization value of the current state of the trigger; and the configuration of the terminal with the MIMO mode that matches the trigger includes:
  • the MIMO mode matching the state quantization value of the current state of the triggering factor is determined as the MIMO mode matching the triggering factor configured by the terminal.
  • the first instruction includes a MIMO mode adjustment order offset
  • the configuring the MIMO mode matching the triggering factor for the terminal includes:
  • the first instruction includes a state quantified value of the current state of the triggering factor
  • the configuring the MIMO mode matching the triggering factor for the terminal includes:
  • the MIMO mode that matches the state quantized value of the current state of the triggering factor; determine the MIMO mode that matches the state quantized value of the current state of the triggering factor as the terminal Configured MIMO mode matching the triggering factor.
  • the state of the triggering factor includes a first quantization state and a second quantization state; the first quantization state corresponds to a plurality of different first quantization state values, wherein a plurality of different first quantization state values
  • the quantized state value represents a plurality of different absolute states of the triggering factor; the second quantized state corresponds to a plurality of different second quantized state values, and the multiple different second quantized state values represent a plurality of different triggering factors Relative status.
  • the state quantized value of the current state of the triggering factor includes a first quantized state value, or a second quantized state value, or determined based on the first quantized state value and the second quantized state value The first comprehensive quantified state value.
  • the state quantization value of the current state of the triggering factor further includes a second comprehensive quantization state value, and the second comprehensive quantization state value is determined based on the first comprehensive quantization state value and channel measurement information.
  • the triggering factor includes one or more of the relative position information of the terminal device and the terminal form information.
  • the multiple-input multiple-output mode configuration method involved in the embodiment of the present disclosure further includes:
  • a multiple-input multiple-output mode configuration device applied to a terminal including:
  • the determining unit is configured to determine a triggering factor, the triggering factor includes terminal information that triggers the adjustment of the multiple-input multiple-output MIMO mode; the sending unit is configured to send a first instruction, the first instruction is used to request the network device to do everything The terminal configures a MIMO mode that matches the trigger factor; the acquiring unit is configured to acquire a second instruction, and the second instruction is used to characterize the MIMO mode configured by the network device for the terminal.
  • different states corresponding to the trigger factors have different state quantization values, and different state quantization values correspond to different MIMO modes;
  • the sending unit is configured to send the first instruction in the following manner: when the state quantization value of the current state of the triggering factor meets the state quantization threshold for triggering MIMO mode adjustment, the first instruction is sent.
  • the first instruction includes a MIMO mode that matches the state quantized value of the current state of the triggering factor.
  • the first instruction includes the MIMO mode adjustment order offset.
  • the first instruction includes a state quantified value of the current state of the triggering factor.
  • the state of the triggering factor includes a first quantization state and a second quantization state; the first quantization state corresponds to a plurality of different first quantization state values, wherein a plurality of different first quantization state values
  • the quantized state value represents a plurality of different absolute states of the triggering factor; the second quantized state corresponds to a plurality of different second quantized state values, and the multiple different second quantized state values represent a plurality of different triggering factors Relative status.
  • the state quantized value of the current state of the triggering factor includes a first quantized state value, or a second quantized state value, or determined based on the first quantized state value and the second quantized state value The first comprehensive quantified state value.
  • the state quantization value of the current state of the triggering factor further includes a second comprehensive quantization state value, and the second comprehensive quantization state value is determined based on the first comprehensive quantization state value and channel measurement information.
  • the triggering factor includes one or more of the relative position information of the terminal device and the terminal form information.
  • the determining unit is configured to determine the triggering factor in the following manner:
  • the triggering factor is determined based on pre-configuration information; or the triggering factor is determined based on broadcast signaling, radio resource control upper layer configuration signaling, or physical layer control signaling.
  • a multiple-input multiple-output mode configuration device applied to network equipment including:
  • the receiving unit is configured to receive a first instruction, the first instruction being used to request the network device to configure a multiple-input multiple-output MIMO mode for the terminal that matches a trigger factor, where the trigger factor includes terminal information that triggers MIMO mode adjustment; processing The unit is configured to configure the MIMO mode in which the terminal configuration matches the triggering factor; the sending unit is configured to send a second instruction, where the second instruction is used to instruct the network device to configure the MIMO mode for the terminal.
  • different states corresponding to the trigger factors have different state quantization values, and different state quantization values correspond to different MIMO modes.
  • the first instruction includes a MIMO mode that matches the state quantized value of the current state of the triggering factor.
  • the processing unit is configured to configure the terminal with a MIMO mode matching the trigger factor in the following manner: determine the MIMO mode that matches the state quantization value of the current state of the trigger factor as the trigger factor configured by the terminal Matching MIMO mode.
  • the first instruction includes a MIMO mode adjustment order offset
  • the processing unit is configured to configure the terminal with a MIMO mode matching the triggering factor in the following manner:
  • the first instruction includes a state quantified value of the current state of the triggering factor
  • the processing unit is configured to configure the terminal with a MIMO mode matching the triggering factor in the following manner:
  • the MIMO mode that matches the state quantized value of the current state of the triggering factor; determine the MIMO mode that matches the state quantized value of the current state of the triggering factor as the terminal Configured MIMO mode matching the triggering factor.
  • the state of the triggering factor includes a first quantization state and a second quantization state; the first quantization state corresponds to a plurality of different first quantization state values, wherein a plurality of different first quantization state values
  • the quantized state value represents a plurality of different absolute states of the triggering factor; the second quantized state corresponds to a plurality of different second quantized state values, and the multiple different second quantized state values represent a plurality of different triggering factors Relative status.
  • the state quantized value of the current state of the triggering factor includes a first quantized state value, or a second quantized state value, or determined based on the first quantized state value and the second quantized state value The first comprehensive quantified state value.
  • the state quantization value of the current state of the triggering factor further includes a second comprehensive quantization state value, and the second comprehensive quantization state value is determined based on the first comprehensive quantization state value and channel measurement information.
  • the triggering factor includes one or more of the relative position information of the terminal device and the terminal form information.
  • the sending unit is further configured to configure the triggering factor based on broadcast signaling, radio resource control upper layer configuration signaling, or physical layer control signaling.
  • the receiving unit is configured to receive the first instruction in the following manner:
  • a multiple-input multiple-output mode configuration device including:
  • Processor a memory used to store executable instructions of the processor
  • the processor is configured to execute the multiple-input multiple-output mode configuration method described in the first aspect or any one of the implementation manners of the first aspect.
  • a multiple-input multiple-output mode configuration device including:
  • Processor a memory used to store executable instructions of the processor
  • the processor is configured to execute the multiple-input multiple-output mode configuration method according to the second aspect or any one of the second aspect.
  • a non-transitory computer-readable storage medium When instructions in the storage medium are executed by a processor of a mobile terminal, the mobile terminal can execute the first aspect or the first aspect.
  • a non-transitory computer-readable storage medium When instructions in the storage medium are executed by a processor of a network device, the network device can execute the second aspect or the second aspect. Any one of the multiple-input multiple-output mode configuration method.
  • the terminal determines the trigger factor that triggers the MIMO mode adjustment, and sends a first instruction to the network device to request the network device to configure the MIMO mode matching the trigger factor for the terminal.
  • the network device configures the terminal with a MIMO mode matching the triggering factor, and sends a second instruction to the terminal to indicate the MIMO mode matching the triggering factor.
  • the terminal obtains the second instruction and determines the MIMO mode that matches the triggering factor configured by the network device for the terminal, which can directly trigger the MIMO mode to adjust when the terminal's own factors change and trigger the MIMO mode adjustment, so as to enable channel measurement and feedback and other behaviors. Corresponding changes, thereby reducing the adjustment time of the MIMO configuration.
  • Fig. 1 is a schematic diagram showing a wireless communication system according to an exemplary embodiment of the present disclosure.
  • Fig. 2 is a schematic diagram showing a communication process in MIMO mode according to an exemplary embodiment of the present disclosure.
  • Fig. 3 is a flowchart showing a method for configuring a MIMO mode according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing a method for configuring a MIMO mode according to an exemplary embodiment.
  • Fig. 5 is a block diagram showing a device for configuring a MIMO mode according to an exemplary embodiment.
  • Fig. 6 is a block diagram showing a device for configuring a MIMO mode according to an exemplary embodiment.
  • Fig. 7 is a block diagram showing a device according to an exemplary embodiment.
  • Fig. 8 is a block diagram showing a device according to an exemplary embodiment.
  • the multiple-input multiple-output mode configuration method provided by the embodiments of the present disclosure can be applied to the wireless communication system shown in FIG. 1.
  • the wireless communication system includes network equipment and terminals.
  • the terminal is connected to the network equipment through wireless resources and performs data transmission.
  • the wireless communication system shown in FIG. 1 is only for schematic illustration, and the wireless communication system may also include other network equipment, such as core network equipment, wireless relay equipment, and wireless backhaul equipment. Not shown in Figure 1.
  • the embodiments of the present disclosure do not limit the number of network devices and the number of terminals included in the wireless communication system.
  • the wireless communication system in the embodiments of the present disclosure is a network that provides wireless communication functions.
  • the wireless communication system can use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (TDMA) , Frequency Division Multiple Access (FDMA), Orthogonal Frequency-Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (Single Carrier FDMA, SC-FDMA), Carrier Sense Multiple access/conflict avoidance (Carrier Sense Multiple Access with Collision Avoidance).
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • Single Carrier Frequency Division Multiple Access Single Carrier Frequency Division Multiple Access
  • SC-FDMA SC-FDMA
  • Carrier Sense Multiple access/conflict avoidance Carrier Sense Multiple Access with Collision Avoidance
  • the network can be divided into 2G (English: generation) network, 3G network, 4G network or future evolution network, such as 5G network, 5G network can also be called a new wireless network ( New Radio, NR).
  • 2G International: generation
  • 3G network 4G network or future evolution network, such as 5G network
  • 5G network can also be called a new wireless network ( New Radio, NR).
  • New Radio New Radio
  • the wireless communication network is sometimes referred to simply as a network in this disclosure.
  • the wireless access network equipment can be: base station, evolved base station (evolved node B, base station), home base station, access point (AP) in wireless fidelity (WIFI) system, wireless relay Node, wireless backhaul node, transmission point (transmission point, TP), or transmission and reception point (transmission and reception point, TRP), etc., can also be the gNB in the NR system, or can also be a component or part of the equipment constituting the base station Wait. It should be understood that, in the embodiments of the present disclosure, the specific technology and specific device form adopted by the network device are not limited.
  • a network device can provide communication coverage for a specific geographic area, and can communicate with terminals located in the coverage area (cell).
  • the network device may also be a vehicle-mounted device.
  • the terminal involved in the present disclosure may also be referred to as terminal equipment, user equipment (UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), etc., which are A device that provides voice and/or data connectivity.
  • the terminal may be a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminals are: smart phones (Mobile Phone), pocket computers (Pocket Personal Computer, PPC), handheld computers, personal digital assistants (Personal Digital Assistant, PDA), notebook computers, tablet computers, wearable devices, or Vehicle equipment, etc.
  • V2X vehicle-to-vehicle
  • the terminal device can also be a vehicle-mounted device. It should be understood that the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal.
  • MIMO technology is used to increase the data transmission rate and increase the data throughput and signal-to-noise ratio.
  • MIMO refers to the use of multiple transmitting antennas and receiving antennas at the transmitting end and the receiving end, so that the signal is transmitted and received through multiple antennas at the transmitting end and the receiving end, which improves data throughput and signal-to-noise ratio, thereby improving system performance and communication quality . It can make full use of space resources and achieve multiple transmissions and multiple receptions through multiple antennas. Without increasing the spectrum resources and antenna transmission power, the system channel capacity can be doubled.
  • MIMO technology is increasingly being applied to a variety of high data rate technologies, including WiFi, 4G Long Term Evolution (LTE), and 5G NR.
  • the MIMO system is the parallel transmission of multiple signal streams in the air.
  • the data stream input at the transmitting end becomes several parallel symbol streams, which are respectively transmitted from Nt antennas at the same time; the receiving end receives the signal from Nr receiving antennas and restores the original signal, as shown in Figure 2.
  • multiple signal streams can be different data streams or different versions of the same data stream.
  • Different data streams can be understood as different information being transmitted at the same time, which improves the efficiency of information transmission and improves the efficiency of wireless communication.
  • Different versions of the same data stream (same information, different expressions) are transmitted in parallel to ensure the accuracy of the information received by the receiving end and improve the reliability of information transmission.
  • the working mode that improves the efficiency of information transmission is called the multiplexing mode of MIMO.
  • the working mode that improves the reliability of information transmission is called the diversity mode of MIMO.
  • the space division multiplexing technology is to use the difference of signal transmission in space to obtain different information from different multipath transmissions, or to enhance the same information transmitted.
  • the reception and transmission under the multipath effect are closely related to the antenna layout of the terminal. For example, if the layout of the two antennas is too close and the correlation is too large, their receiving and transmitting characteristics are very similar, which is not conducive to reflecting the application effect of MIMO.
  • the terminal needs to report its own support capabilities to the network device, and at the same time, periodically or according to the requirements of the network device, perform channel measurement and report channel quality, such as CQI.
  • the configuration of the MIMO mode of the terminal is configured based on measurement, and the MIMO mode is changed when the channel condition changes.
  • the real-time changes of many factors of the terminal have an impact on the antenna, such as the relative position change of the terminal's components, the change of the terminal shape caused by folding, etc., which will actually affect the distance and irrelevance between the antennas, thereby affecting the MIMO effect. How to quickly respond to the influence of the form on the MIMO when the form of the terminal changes is a problem to be optimized in the embodiment of the present disclosure.
  • the present disclosure provides a MIMO mode configuration method, which directly triggers the MIMO mode to adjust when the terminal's own factors change and triggers the MIMO mode adjustment, so that behaviors such as channel measurement and feedback are changed accordingly, thereby reducing the adjustment time of the MIMO configuration.
  • Fig. 3 is a flowchart showing a MIMO mode configuration method according to an exemplary embodiment. As shown in Fig. 3, the MIMO mode adjustment method is used in a terminal and includes the following steps.
  • step S11 a trigger factor is determined, and the trigger factor includes terminal information that triggers the MIMO mode adjustment.
  • the triggering factor refers to terminal information that can trigger the MIMO mode adjustment.
  • the triggering factor includes one or more of the relative position information of the terminal device and the terminal morphology information.
  • the relative position information of the terminal device can be understood as the relative position information of the component devices of the terminal, and this factor will affect the shielding condition of the MIMO antenna device.
  • the shielding situation of the nearby MIMO antenna will be different when retracting and extending.
  • the terminal shape information can be understood as the shape of the terminal. For example, the terminal is in an unfolded state or a folded state, and different folding angles will affect the distance, angle, and relative position between the MIMO antennas, thereby affecting the antenna isolation.
  • the triggering factor of the terminal can be determined based on pre-configuration information on the one hand. Or on the other hand, the triggering factor of the terminal may also be determined based on broadcast signaling, radio resource control (Radio Resource Control, RRC) upper layer configuration signaling, or physical layer control signaling.
  • RRC Radio Resource Control
  • step S12 a first instruction is sent, and the first instruction is used to request the network device to configure the terminal with a MIMO mode that matches the trigger factor.
  • the terminal after determining the trigger factor that triggers the MIMO mode adjustment, the terminal sends a first instruction to the network device to request the network device to configure the MIMO mode matching the trigger factor for the terminal.
  • the trigger factor that triggers the MIMO mode adjustment may be carried in the uplink control signaling or the uplink RRC configuration signaling, and the terminal sends the first instruction based on the uplink control signaling or the uplink RRC configuration signaling.
  • step S13 a second instruction is obtained, and the second instruction is used to characterize the MIMO mode configured by the network device for the terminal.
  • the network device receives the first instruction, configures the MIMO mode matching the trigger factor for the terminal, and sends a second instruction for instructing the configuration of the MIMO mode to indicate the MIMO mode matching the trigger factor to the terminal.
  • Fig. 4 is a flowchart showing a MIMO mode configuration method according to an exemplary embodiment. As shown in Fig. 4, the MIMO mode adjustment method is used in a network device and includes the following steps.
  • step S21 a first instruction is received, where the first instruction is used to request the network device to configure the terminal with a MIMO mode matching the triggering factor, and the triggering factor includes information of the terminal that triggers the adjustment of the MIMO mode.
  • step S22 the terminal is configured with a MIMO mode matching the triggering factor.
  • step S23 a second instruction is sent, and the second instruction is used to instruct the network device to configure the MIMO mode for the terminal.
  • the terminal determines the trigger factor that triggers the MIMO mode adjustment, and sends a first instruction to the network device to request the network device to configure the terminal with a MIMO mode that matches the trigger factor.
  • the network device configures the terminal with a MIMO mode matching the triggering factor, and sends a second instruction to the terminal to indicate the MIMO mode matching the triggering factor.
  • the terminal obtains the second instruction and determines the MIMO mode matching the triggering factor configured by the network device for the terminal. Compared with the MIMO mode adjustment based on the measurement, the time for the MIMO mode adjustment can be reduced.
  • a trigger condition for the terminal to send the first instruction is set, and the first instruction is sent when the trigger factor determined by the terminal satisfies the trigger condition.
  • the embodiment of the present disclosure sets the corresponding relationship between the trigger factor and the MIMO mode. After the terminal determines the trigger factor, the network device determines the MIMO mode matching the trigger factor according to the corresponding relationship between the trigger factor and the MIMO mode.
  • the trigger factors in the embodiments of the present disclosure have different states.
  • the trigger factor is a terminal form
  • different terminal forms correspond to different states.
  • the terminal being in the expanded state corresponds to the first state
  • the terminal being in the folded state corresponds to the second state.
  • the trigger factor is the relative position information of the terminal device
  • different positions of the terminal device correspond to different states.
  • the terminal retractable camera corresponds to the third state when retracted
  • the terminal retractable camera corresponds to the fourth state when popped up.
  • different states corresponding to trigger factors are quantized, so that different states correspond to different state quantized values, and different state quantized values correspond to different MIMO modes.
  • the quantization is performed based on the absolute state of the triggering factor in the embodiment of the present disclosure.
  • the quantized state of the absolute state of the triggering factor is referred to as the first quantization state.
  • the first quantitative state represents the absolute state of the triggering factor, and may also be called the Bayer state.
  • the first quantization state may be the extended state and the retracted state of the telescopic camera of the terminal, and whether the terminal is in the folded state.
  • the first quantization state corresponds to a plurality of different first quantization state values, wherein the plurality of different first quantization state values represent a plurality of different absolute states of the triggering factor.
  • a 1-bit different bit value (0 and 1) is used to characterize whether the terminal retractable camera pops up, or whether the terminal is in a folded state.
  • two different bit values (00, 01, 10, 11) may be used to characterize the four different morphological states of the terminal.
  • the quantification is performed based on the relative state of the triggering factor in the embodiment of the present disclosure.
  • the quantized state of the relative state of the triggering factor is referred to as the second quantization state.
  • the second quantitative state represents the relative state of the triggering factor.
  • the second quantization state may be a quantity that can be quantized, such as morphological information of the terminal.
  • the second quantization state corresponds to a plurality of different second quantization state values, and the plurality of different second quantization state values represent a plurality of different relative states of the triggering factor.
  • the folding angle of a folding screen mobile phone can be quantified as a different second quantified state value.
  • the state quantized value of the current state of the triggering factor includes the first quantized state value, or the second quantized state value, or the first comprehensive quantized state value determined based on the first quantized state value and the second quantized state value.
  • the first comprehensive quantization state value determined based on the first quantization state value and the second quantization state value may be a value obtained by performing an operation between the first quantization state value and the second quantization state value.
  • the first comprehensive quantization state value the first quantization state value*the second quantization state value
  • the first comprehensive quantization state value the first quantization state value*a+the second quantization state value*b.
  • a and b are designated coefficients.
  • the state quantized value of the current state of the triggering factor in the embodiment of the present disclosure further includes a second comprehensive quantized state value.
  • the second comprehensive quantization state value is determined based on the first comprehensive quantization state value and channel measurement information.
  • the second comprehensive quantization state value can also be understood as a comprehensive value after the first quantization state value, the second quantization state value, the first comprehensive quantization state value and the channel measurement information are calculated.
  • the second comprehensive quantization state value f (the first comprehensive quantization state value, channel measurement information).
  • the second comprehensive quantized state value may be an additional influence of terminal information on channel measurement information.
  • the state quantized values of different states of the triggering factor correspond to different MIMO modes.
  • the state quantization value "0" corresponding to the pop-up state of the telescopic camera of the terminal is 2*2 corresponding to the MIMO mode.
  • the state quantization value "1" corresponding to the state where the telescopic camera of the terminal does not pop up is 4*4.
  • the state quantization value "00" corresponding to the state where the folding screen of a terminal with a folding screen is fully unfolded is 4*4 corresponding to the MIMO mode.
  • the state quantization value "11" corresponding to the fully folded state of the terminal with the folding screen, the corresponding MIMO mode is a higher-order MIMO mode, such as an 8x4 MIMO mode, or at least higher than the previous MIMO mode. It can be understood that the MIMO mode corresponding to the state quantization value of the state of the triggering factor is set according to the actual situation.
  • the camera module of the terminal retractable camera has a millimeter wave antenna module, which can support 4*4 MIMO mode when it is ejected, but it cannot support MIMO when it is not ejected.
  • the network device or the terminal may determine the MIMO mode that needs to be configured based on the state quantization value of the current state of the terminal triggering factor.
  • the trigger condition for the terminal to send the first instruction to the network device may be the state quantization threshold value of the MIMO mode adjustment.
  • the state quantization value of the current state of the triggering factor meets the state quantization threshold value for triggering the MIMO mode adjustment, the first instruction is sent instruction.
  • the terminal when the terminal requests the network device to configure the MIMO mode that matches the state quantized value of the current state, it may directly request the network device to request the MIMO mode that matches the state quantized value of the current state of the triggering factor, or it may be The terminal sends the state quantized value of the current state of the triggering factor to the network device, and the network device determines the MIMO mode that matches the state quantized value of the current state of the triggering factor.
  • the first instruction sent by the terminal to the network device includes a MIMO mode that matches the state quantization value of the current state of the triggering factor.
  • the network device determines the MIMO mode matching the state quantization value of the current state of the triggering factor as the MIMO mode matching the triggering factor configured by the terminal. For example, when the telescopic camera pops up, it falls back to the 2*2MIMO mode, and the first instruction includes the 2*2MIMO mode. Or, when the folding angle of the folding screen exceeds 90 degrees, the 4*4 MIMO mode is rolled back to the 2*2 MIMO mode, and the first instruction includes the 2*2 MIMO mode. Or when the retractable camera is retracted and the folding angle of the folding screen exceeds 90 degrees, the 4*4 MIMO mode is returned to the 2*2 MIMO mode, and the first instruction includes the 2*2 MIMO mode.
  • the first instruction sent by the terminal to the network device includes the state quantified value of the current state of the triggering factor.
  • the network device determines the MIMO mode that matches the quantized value of the current state of the triggering factor based on the quantized value of the current state of the triggering factor, and determines the MIMO mode that matches the quantized value of the current state of the triggering factor as the AND configured for the terminal MIMO mode with matching trigger factors.
  • the first instruction includes one or more of the first quantized state value, the second quantized state value, the first integrated quantized value, and the second integrated quantized value.
  • the network device determines whether to change the MIMO mode based on the state quantization value of the current state included in the first instruction, and determines the configured MIMO mode to be sent to the terminal.
  • the terminal may send the MIMO mode adjustment order offset to the network device, and the network device Determine the MIMO mode that matches the state quantization value of the current state of the triggering factor. That is, the first instruction includes the MIMO mode adjustment order offset.
  • the network device configures the terminal with a MIMO mode that matches the triggering factor, it adjusts the order offset and the current order of the MIMO mode based on the MIMO mode, and determines the MIMO mode that matches the triggering factor configured for the terminal. For example, if the state quantized value of the terminal triggering factor includes "00, 01, 10, 11", the first instruction may include information for instructing the state quantized value of the terminal triggering factor to change from "00" to "01".
  • the default MIMO mode can be set on the terminal, and then when the terminal's own factors change, the corresponding trigger factor is determined according to the current form of the terminal, and the MIMO mode is adjusted, for example Step by step adjustments to the MIMO mode, etc.
  • the MIMO mode configuration method provided by the embodiments of the present disclosure directly triggers the MIMO mode to be adjusted when the terminal's own factors change and triggers the MIMO mode adjustment, so that behaviors such as channel measurement and feedback are changed accordingly, thereby reducing the adjustment time of the MIMO configuration.
  • the embodiment of the present disclosure also provides a multiple-input multiple-output mode configuration device.
  • the multiple-input multiple-output mode configuration device includes hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 5 is a block diagram showing a device for configuring a multiple input multiple output mode according to an exemplary embodiment. 5, the multiple input multiple output mode configuration device 100 is applied to a terminal, and includes a determining unit 101, a sending unit 102, and an acquiring unit 103.
  • the determining unit 101 is configured to determine a triggering factor, where the triggering factor includes terminal information that triggers the adjustment of the MIMO mode.
  • the sending unit 102 is configured to send a first instruction, where the first instruction is used to request the network device to configure the terminal with a MIMO mode matching the triggering factor.
  • the obtaining unit 103 is configured to obtain a second instruction, where the second instruction is used to characterize the MIMO mode configured by the network device for the terminal.
  • different states corresponding to the trigger factors have different state quantization values, and different state quantization values correspond to different MIMO modes.
  • the sending unit 102 is configured to send the first instruction in the following manner: when the state quantization value of the current state of the triggering factor meets the state quantization threshold for triggering the MIMO mode adjustment, the first instruction is sent.
  • the first instruction includes a MIMO mode that matches the state quantized value of the current state of the triggering factor.
  • the first instruction includes the MIMO mode adjustment order offset.
  • the first instruction includes the state quantified value of the current state of the triggering factor.
  • the state of the triggering factor includes a first quantization state and a second quantization state.
  • the first quantization state corresponds to a plurality of different first quantization state values, wherein the plurality of different first quantization state values represent a plurality of different absolute states of the triggering factor.
  • the second quantization state corresponds to a plurality of different second quantization state values, and the plurality of different second quantization state values represent a plurality of different relative states of the triggering factor.
  • the state quantization value of the current state of the triggering factor includes a first quantization state value, or a second quantization state value, or a first comprehensive quantization state value determined based on the first quantization state value and the second quantization state value .
  • the state quantization value of the current state of the triggering factor further includes a second comprehensive quantization state value, and the second comprehensive quantization state value is determined based on the first comprehensive quantization state value and channel measurement information.
  • the triggering factor includes one or more of the relative position information of the terminal device and the terminal shape information.
  • the determining unit 101 is configured to determine the triggering factor in the following manner:
  • the trigger is determined. Or based on broadcast signaling, radio resource control upper layer configuration signaling, or physical layer control signaling, the triggering factor is determined.
  • Fig. 6 is a block diagram showing a device for configuring a multiple input multiple output mode according to an exemplary embodiment.
  • the MIMO mode configuration device 200 is applied to a network device, and includes a receiving unit 201, a processing unit 202, and a sending unit 203.
  • the receiving unit 201 is configured to receive a first instruction, where the first instruction is used to request the network device to configure a multiple-input multiple-output MIMO mode matching a trigger factor for the terminal, and the trigger factor includes terminal information that triggers the MIMO mode adjustment.
  • the processing unit 202 is configured to configure the terminal to configure a MIMO mode matching the triggering factor.
  • the sending unit 203 is configured to send a second instruction, where the second instruction is used to instruct the network device to configure the MIMO mode for the terminal.
  • different states corresponding to the trigger factors have different state quantization values, and different state quantization values correspond to different MIMO modes.
  • the first instruction includes a MIMO mode that matches the state quantized value of the current state of the triggering factor.
  • the processing unit is configured to configure the terminal with a MIMO mode matching the triggering factor in the following manner: the MIMO mode matching the state quantization value of the current state of the triggering factor is determined as the MIMO mode configured for the terminal matching the triggering factor.
  • the first instruction includes the MIMO mode adjustment order offset.
  • the processing unit 202 is configured to configure the terminal with a MIMO mode matching the triggering factor in the following manner:
  • the first instruction includes the state quantified value of the current state of the triggering factor.
  • the processing unit 202 is configured to configure the terminal with a MIMO mode matching the triggering factor in the following manner:
  • a MIMO mode that matches the state quantized value of the current state of the triggering factor is determined.
  • the MIMO mode that matches the state quantization value of the current state of the trigger is determined as the MIMO mode configured for the terminal that matches the trigger.
  • the state of the triggering factor includes a first quantization state and a second quantization state.
  • the first quantization state corresponds to a plurality of different first quantization state values, wherein the plurality of different first quantization state values represent a plurality of different absolute states of the triggering factor.
  • the second quantization state corresponds to a plurality of different second quantization state values, and the plurality of different second quantization state values represent a plurality of different relative states of the triggering factor.
  • the state quantization value of the current state of the triggering factor includes a first quantization state value, or a second quantization state value, or a first comprehensive quantization state value determined based on the first quantization state value and the second quantization state value .
  • the state quantization value of the current state of the triggering factor further includes a second comprehensive quantization state value, and the second comprehensive quantization state value is determined based on the first comprehensive quantization state value and channel measurement information.
  • the triggering factor includes one or more of the relative position information of the terminal device and the terminal shape information.
  • the sending unit 203 in the embodiment of the present disclosure is further configured to:
  • Configure trigger factors based on broadcast signaling, radio resource control upper layer configuration signaling or physical layer control signaling.
  • the receiving unit 201 is configured to send the first instruction in the following manner: receiving the first instruction based on uplink control signaling or uplink radio resource control configuration signaling.
  • Fig. 7 is a block diagram showing a device 300 for multiple-input multiple-output mode configuration according to an exemplary embodiment.
  • the device 300 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 300 may include one or more of the following components: a processing component 302, a memory 304, a power component 306, a multimedia component 308, an audio component 310, an input/output (I/O) interface 312, a sensor component 314, And the communication component 316.
  • the processing component 302 generally controls the overall operations of the device 300, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 302 may include one or more processors 320 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 302 may include one or more modules to facilitate the interaction between the processing component 302 and other components.
  • the processing component 302 may include a multimedia module to facilitate the interaction between the multimedia component 308 and the processing component 302.
  • the memory 304 is configured to store various types of data to support the operation of the device 300. Examples of these data include instructions for any application or method operating on the device 300, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 304 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power component 306 provides power to various components of the device 300.
  • the power component 306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 300.
  • the multimedia component 308 includes a screen that provides an output interface between the device 300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure related to the touch or slide operation.
  • the multimedia component 308 includes a front camera and/or a rear camera. When the device 300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 310 is configured to output and/or input audio signals.
  • the audio component 310 includes a microphone (MIC), and when the device 300 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the memory 304 or sent via the communication component 316.
  • the audio component 310 further includes a speaker for outputting audio signals.
  • the I/O interface 312 provides an interface between the processing component 302 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
  • the sensor component 314 includes one or more sensors for providing the device 300 with various aspects of status assessment.
  • the sensor component 314 can detect the on/off status of the device 300 and the relative positioning of components.
  • the component is the display and the keypad of the device 300.
  • the sensor component 314 can also detect the position change of the device 300 or a component of the device 300. , The presence or absence of contact between the user and the device 300, the orientation or acceleration/deceleration of the device 300, and the temperature change of the device 300.
  • the sensor assembly 314 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
  • the sensor component 314 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 316 is configured to facilitate wired or wireless communication between the apparatus 300 and other devices.
  • the device 300 can access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 316 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 316 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 300 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing equipment (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing equipment
  • PLD programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
  • non-transitory computer-readable storage medium including instructions, such as the memory 304 including instructions, which may be executed by the processor 320 of the device 300 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • Fig. 8 is a block diagram showing a device 400 for multiple-input multiple-output mode configuration according to an exemplary embodiment.
  • the device 400 may be provided as a server.
  • the apparatus 400 includes a processing component 422, which further includes one or more processors, and a memory resource represented by the memory 432, for storing instructions that can be executed by the processing component 422, such as an application program.
  • the application program stored in the memory 432 may include one or more modules each corresponding to a set of instructions.
  • the processing component 422 is configured to execute instructions to perform the above-mentioned methods.
  • the device 400 may also include a power supply component 426 configured to perform power management of the device 400, a wired or wireless network interface 450 configured to connect the device 400 to a network, and an input output (I/O) interface 458.
  • the device 400 can operate based on an operating system stored in the memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • non-transitory computer-readable storage medium including instructions, such as the memory 432 including instructions, which may be executed by the processing component 422 of the device 400 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • plural refers to two or more than two, and other quantifiers are similar.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the singular forms “a”, “said” and “the” are also intended to include plural forms, unless the context clearly indicates other meanings.
  • first, second, etc. are used to describe various information, but the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other, and do not indicate a specific order or degree of importance. In fact, expressions such as “first” and “second” can be used interchangeably.
  • first information may also be referred to as second information
  • second information may also be referred to as first information.

Abstract

一种多输入多输出模式配置方法、装置及存储介质。多输入多输出模式配置方法,应用于终端,包括:确定触发因素,所述触发因素包括触发多输入多输出MIMO模式调整的终端信息(S11);发送第一指令,所述第一指令用于请求网络设备为所述终端配置与所述触发因素匹配的MIMO模式(S12);获取第二指令,所述第二指令用于表征所述网络设备为所述终端配置的MIMO模式(S13)。通过上述方法能够在触发多输入多输出MIMO模式调整的终端信息发生变化时,使终端快速调整MIMO模式为与触发因素匹配的MIMO模式,避免通信延迟。

Description

多输入多输出模式配置方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及多输入多输出模式配置方法、装置及存储介质。
背景技术
多输入多输出(Multiple-Input Multiple-Output,MIMO)技术能够提高数据吞吐量和信噪比,并能提高系统性能改善通信质量。
相关技术中,终端需要向网络设备上报终端支持能力,同时周期性根据网络设备的要求进行信道测量并上报信道质量,例如信道质量指示(Channel quality indicator,CQI)等。网络设备根据终端支持的能力以及信道测量结果,为终端配置MIMO模式。然而,终端自身的众多因素实时的变化对终端天线信号收发造成影响,例如元器件相对位置改变,折叠造成形态改变等等,实际会影响天线间的距离和不相关性,从而影响MIMO效果。
发明内容
为克服相关技术中存在的问题,本公开提供一种多输入多输出模式配置方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种多输入多输出模式配置方法,应用于终端,包括:
确定触发因素,所述触发因素包括触发多输入多输出MIMO模式调整的终端信息;发送第一指令,所述第一指令用于请求网络设备为所述终端配置与所述触发因素匹配的MIMO模式;获取第二指令,所述第二指令用于表征所述网络设备为所述终端配置的MIMO模式。
一种实施方式中,所述触发因素对应的不同状态具有不同的状态量化值,且不同状态量化值对应不同的MIMO模式;
所述发送第一指令,包括:在所述触发因素当前状态的状态量化值满足触发MIMO模式调整的状态量化阈值时,发送所述第一指令。
另一种实施方式中,所述第一指令中包括与所述触发因素当前状态的状态量化值匹配的MIMO模式。
又一种实施方式中,所述第一指令中包括MIMO模式调整阶数偏移量。
又一种实施方式中,所述第一指令中包括所述触发因素当前状态的状态量化值。
又一种实施方式中,所述触发因素的状态包括第一量化状态和第二量化状态;所述第 一量化状态对应有多个不同的第一量化状态值,其中,多个不同的第一量化状态值表征所述触发因素多个不同的绝对状态;所述第二量化状态对应有多个不同的第二量化状态值,多个不同的第二量化状态值表征所述触发因素多个不同的相对状态。
又一种实施方式中,所述触发因素当前状态的状态量化值包括第一量化状态值,或者第二量化状态值,或者基于所述第一量化状态值和所述第二量化状态值确定的第一综合量化状态值。
又一种实施方式中,所述触发因素当前状态的状态量化值还包括第二综合量化状态值,所述第二综合量化状态值基于所述第一综合量化状态值和信道测量信息确定。
又一种实施方式中,所述触发因素包括终端器件相对位置信息和终端形态信息中的一种或多种。
又一种实施方式中,所述确定触发因素,包括:
基于预配置信息,确定所述触发因素;或者基于广播信令、无线资源控制上层配置信令或者物理层控制信令,确定所述触发因素。
根据本公开实施例的第二方面,提供一种多输入多输出模式配置方法,应用于网络设备,包括:
接收第一指令,所述第一指令用于请求网络设备为终端配置与触发因素匹配的多输入多输出MIMO模式,所述触发因素包括触发MIMO模式调整的终端信息;为所述终端配置与触发因素匹配的MIMO模式,并发送第二指令,所述第二指令用于指示所述网络设备为所述终端配置的MIMO模式。
一种实施方式中,所述触发因素对应的不同状态具有不同的状态量化值,且不同状态量化值对应不同的MIMO模式。
另一种实施方式中,所述第一指令中包括与所述触发因素当前状态的状态量化值匹配的MIMO模式;所述为所述终端配置与触发因素匹配的MIMO模式,包括:
将与所述触发因素当前状态的状态量化值匹配的MIMO模式,确定为所述终端配置的与触发因素匹配的MIMO模式。
又一种实施方式中,所述第一指令中包括MIMO模式调整阶数偏移量;
所述为所述终端配置与触发因素匹配的MIMO模式,包括:
基于所述MIMO模式调整阶数偏移量和MIMO模式当前阶数,确定为所述终端配置的与触发因素匹配的MIMO模式。
又一种实施方式中,所述第一指令中包括所述触发因素当前状态的状态量化值;
所述为所述终端配置与触发因素匹配的MIMO模式,包括:
基于触发因素当前状态的状态量化值,确定与所述触发因素当前状态的状态量化值匹配的MIMO模式;将与所述触发因素当前状态的状态量化值匹配的MIMO模式,确定为为所述终端配置的与触发因素匹配的MIMO模式。
又一种实施方式中,所述触发因素的状态包括第一量化状态和第二量化状态;所述第一量化状态对应有多个不同的第一量化状态值,其中,多个不同的第一量化状态值表征所述触发因素多个不同的绝对状态;所述第二量化状态对应有多个不同的第二量化状态值,多个不同的第二量化状态值表征所述触发因素多个不同的相对状态。
又一种实施方式中,所述触发因素当前状态的状态量化值包括第一量化状态值,或者第二量化状态值,或者基于所述第一量化状态值和所述第二量化状态值确定的第一综合量化状态值。
又一种实施方式中,所述触发因素当前状态的状态量化值还包括第二综合量化状态值,所述第二综合量化状态值基于所述第一综合量化状态值和信道测量信息确定。
又一种实施方式中,所述触发因素包括终端器件相对位置信息和终端形态信息中的一种或多种。
又一种实施方式中,本公开实施例涉及的多输入多输出模式配置方法还包括:
基于广播信令、无线资源控制上层配置信令或者物理层控制信令,配置所述触发因素。
根据本公开实施例第三方面,提供一种多输入多输出模式配置装置,应用于终端,包括:
确定单元,被配置为确定触发因素,所述触发因素包括触发多输入多输出MIMO模式调整的终端信息;发送单元,被配置为发送第一指令,所述第一指令用于请求网络设备为所述终端配置与所述触发因素匹配的MIMO模式;获取单元,被配置为获取第二指令,所述第二指令用于表征所述网络设备为所述终端配置的MIMO模式。
一种实施方式中,所述触发因素对应的不同状态具有不同的状态量化值,且不同状态量化值对应不同的MIMO模式;
所述发送单元被配置为采用如下方式发送第一指令:在所述触发因素当前状态的状态量化值满足触发MIMO模式调整的状态量化阈值时,发送所述第一指令。
另一种实施方式中,所述第一指令中包括与所述触发因素当前状态的状态量化值匹配的MIMO模式。
又一种实施方式中,所述第一指令中包括MIMO模式调整阶数偏移量。
又一种实施方式中,所述第一指令中包括所述触发因素当前状态的状态量化值。
又一种实施方式中,所述触发因素的状态包括第一量化状态和第二量化状态;所述第一量化状态对应有多个不同的第一量化状态值,其中,多个不同的第一量化状态值表征所述触发因素多个不同的绝对状态;所述第二量化状态对应有多个不同的第二量化状态值,多个不同的第二量化状态值表征所述触发因素多个不同的相对状态。
又一种实施方式中,所述触发因素当前状态的状态量化值包括第一量化状态值,或者第二量化状态值,或者基于所述第一量化状态值和所述第二量化状态值确定的第一综合量化状态值。
又一种实施方式中,所述触发因素当前状态的状态量化值还包括第二综合量化状态值,所述第二综合量化状态值基于所述第一综合量化状态值和信道测量信息确定。
又一种实施方式中,所述触发因素包括终端器件相对位置信息和终端形态信息中的一种或多种。
又一种实施方式中,所述确定单元被配置为采用如下方式确定触发因素:
基于预配置信息,确定所述触发因素;或者基于广播信令、无线资源控制上层配置信令或者物理层控制信令,确定所述触发因素。
根据本公开实施例第四方面,提供一种多输入多输出模式配置装置,应用于网络设备,包括:
接收单元,被配置为接收第一指令,所述第一指令用于请求网络设备为终端配置与触发因素匹配的多输入多输出MIMO模式,所述触发因素包括触发MIMO模式调整的终端信息;处理单元,被配置为所述终端配置与触发因素匹配的MIMO模式;发送单元,被配置为发送第二指令,所述第二指令用于指示所述网络设备为所述终端配置的MIMO模式。
一种实施方式中,所述触发因素对应的不同状态具有不同的状态量化值,且不同状态量化值对应不同的MIMO模式。
另一种实施方式中,所述第一指令中包括与所述触发因素当前状态的状态量化值匹配的MIMO模式。所述处理单元被配置为采用如下方式为所述终端配置与触发因素匹配的MIMO模式:将与所述触发因素当前状态的状态量化值匹配的MIMO模式,确定为所述终端配置的与触发因素匹配的MIMO模式。
又一种实施方式中,所述第一指令中包括MIMO模式调整阶数偏移量;
所述处理单元被配置为采用如下方式为所述终端配置与触发因素匹配的MIMO模式:
基于所述MIMO模式调整阶数偏移量和MIMO模式当前阶数,确定为所述终端配置 的与触发因素匹配的MIMO模式。
又一种实施方式中,所述第一指令中包括所述触发因素当前状态的状态量化值;
所述处理单元被配置为采用如下方式为所述终端配置与触发因素匹配的MIMO模式:
基于触发因素当前状态的状态量化值,确定与所述触发因素当前状态的状态量化值匹配的MIMO模式;将与所述触发因素当前状态的状态量化值匹配的MIMO模式,确定为为所述终端配置的与触发因素匹配的MIMO模式。
又一种实施方式中,所述触发因素的状态包括第一量化状态和第二量化状态;所述第一量化状态对应有多个不同的第一量化状态值,其中,多个不同的第一量化状态值表征所述触发因素多个不同的绝对状态;所述第二量化状态对应有多个不同的第二量化状态值,多个不同的第二量化状态值表征所述触发因素多个不同的相对状态。
又一种实施方式中,所述触发因素当前状态的状态量化值包括第一量化状态值,或者第二量化状态值,或者基于所述第一量化状态值和所述第二量化状态值确定的第一综合量化状态值。
又一种实施方式中,所述触发因素当前状态的状态量化值还包括第二综合量化状态值,所述第二综合量化状态值基于所述第一综合量化状态值和信道测量信息确定。
又一种实施方式中,所述触发因素包括终端器件相对位置信息和终端形态信息中的一种或多种。
又一种实施方式中,发送单元还被配置为:基于广播信令、无线资源控制上层配置信令或者物理层控制信令,配置所述触发因素。
又一种实施方式中,所述接收单元被配置为采用如下方式接收第一指令:
基于上行控制信令或者上行无线资源控制配置信令,接收所述第一指令。
根据本公开实施例第五方面,提供一种多输入多输出模式配置装置,包括:
处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第一方面或者第一方面任意一种实施方式中所述的多输入多输出模式配置方法。
根据本公开实施例第六方面,提供一种多输入多输出模式配置装置,包括:
处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第二方面或者第二方面任意一项所述的多输入多输出模式配置方法。
根据本公开实施例第七方面,提供一种非临时性计算机可读存储介质,当所述存储介 质中的指令由移动终端的处理器执行时,使得移动终端能够执行第一方面或者第一方面任意一种实施方式中所述的多输入多输出模式配置方法。
根据本公开实施例第八方面,提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行第二方面或者第二方面任意一项所述的多输入多输出模式配置方法。
本公开的实施例提供的技术方案可以包括以下有益效果:终端确定触发MIMO模式调整的触发因素,并向网络设备发送第一指令请求网络设备为终端配置与触发因素匹配的MIMO模式。网络设备为终端配置与触发因素匹配的MIMO模式,并向终端发送第二指令以指示与触发因素匹配的MIMO模式。终端获取第二指令并确定网络设备为终端配置的与触发因素匹配的MIMO模式,能够实现在终端自身因素发生改变并触发MIMO模式调整时,直接触发MIMO模式进行调整,使信道测量与反馈等行为相应改变,进而降低MIMO配置的调整时间。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据本公开示例性实施例示出的一种无线通信系统示意图。
图2是根据本公开示例性实施例示出的一种MIMO模式通信过程示意图。
图3是根据一示例性实施例示出的一种MIMO模式配置方法的流程图。
图4是根据一示例性实施例示出的一种MIMO模式配置方法的流程图。
图5是根据一示例性实施例示出的一种MIMO模式配置装置的框图。
图6是根据一示例性实施例示出的一种MIMO模式配置装置的框图。
图7是根据一示例性实施例示出的一种装置的框图。
图8是根据一示例性实施例示出的一种装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例提供的多输入多输出模式配置方法可应用于图1所示的无线通信系统中。参阅图1所示,该无线通信系统中包括网络设备和终端。终端通过无线资源与网络设备相连接,并进行数据传输。
可以理解的是,图1所示的无线通信系统仅是进行示意性说明,无线通信系统中还可包括其它网络设备,例如还可以包括核心网设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统中包括网络设备数量和终端数量不做限定。
进一步可以理解的是,本公开实施例无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备也可以称为无线接入网设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,基站)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。在本公开中,网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端进行通信。此外,当为车联网(V2X)通信系统时,网络设备还可以是车载设备。
进一步的,本公开中涉及的终端,也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信 系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
相关技术中,采用MIMO技术以提高数据传输速率,并提高数据吞吐量和信噪比。MIMO是指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,提高数据吞吐量和信噪比,从而提高系统性能改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量。
MIMO技术正越来越多地被应用于多种高数据速率技术,包括WiFi,4G长期演进(Long Term Evolution,LTE)以及5G NR。MIMO系统就是多个信号流在空中的并行传输。在发射端输入的数据流变成几路并行的符号流,分别从Nt个天线同时发射出去;接收端从Nr个接收天线将信号接收下来,恢复原始信号,如图2所示。
MIMO技术中,多个信号流可以是不同的数据流,也可以是同一个数据流的不同版本。不同的数据流可以理解为是不同的信息同时发射,使信息传送效率提升,提高了无线通信的效率。同一个数据流的不同版本(同样的信息,不同的表达方式)并行发射,确保接收端收到信息的准确,提高信息传送的可靠性。其中,提高信息传送效率的工作模式,称为MIMO的复用模式。提高信息传送可靠性的工作模式,称为MIMO的分集模式。
MIMO系统的一个重要特性就是可以通过空分复用技术来提高数据传输率。而空分复用技术,就是利用空间中信号传输的差异性,从不同的多径传输中获取不同的信息,或者增强所传输的同一个信息。而多径效应下的接收和发送,与终端的天线布局有密切的关系。例如,如果两根天线布局过于接近,相关性过大,则其接收和发送的特性非常相似,则不利于体现MIMO的应用效果。
此外,为了实现MIMO,终端需要向网络设备上报自身的支持能力,同时周期性或者根据网络设备的要求进行信道测量并上报信道质量,例如CQI等。终端MIMO模式的配置是基于测量进行配置的,在信道条件发生改变是进行MIMO模式的改变。但是终端的众多因素实时变化对天线都有影响,例如终端的元器件相对位置改变,折叠造成的终端形态改变等等,实际会影响天线间的距离和不相关性,从而影响MIMO效果。如何能在终端形态变化的情况下,快速应对形态对MIMO的影响,是本公开实施例要优化的问题。
本公开提供一种MIMO模式配置方法,在终端自身因素发生改变并触发MIMO模式调整时,直接触发MIMO模式进行调整,使信道测量与反馈等行为相应改变,进而降低MIMO配置的调整时间。
图3是根据一示例性实施例示出的一种MIMO模式配置方法的流程图,如图3所示,MIMO模式调整方法用于终端中,包括以下步骤。
在步骤S11中,确定触发因素,触发因素包括触发MIMO模式调整的终端信息。
本公开实施例中,触发因素是指能够触发MIMO模式调整的终端信息,例如触发因素包括终端器件相对位置信息和终端形态信息中的一种或多种。其中,终端器件相对位置信息可以理解为是终端的组成器件的相对位置信息,此因素会影响MIMO天线器件的遮挡条件。例如但不限于伸缩式摄像头的弹出情况,在缩回和伸出时对附近MIMO天线的遮挡情况会不同。终端形态信息可以理解为是终端的形态,例如,终端处于展开状态或是折叠状态,不同的折叠角度会影响MIMO天线间的距离、角度和相对位置,从而对天线隔离度产生影响。
其中,终端的触发因素一方面可以基于预配置信息确定的。或者另一方面,终端的触发因素也可以基于广播信令、无线资源控制(Radio Resource Control,RRC)上层配置信令或者物理层控制信令确定。
在步骤S12中,发送第一指令,第一指令用于请求网络设备为终端配置与触发因素匹配的MIMO模式。
本公开实施例中,终端确定了触发MIMO模式调整的触发因素后,向网络设备发送第一指令,以请求网络设备为终端配置与触发因素匹配的MIMO模式。
其中,触发MIMO模式调整的触发因素可以承载在上行控制信令或者上行RRC配置信令,终端基于上行控制信令或者上行RRC配置信令,发送第一指令。
在步骤S13中,获取第二指令,第二指令用于表征网络设备为终端配置的MIMO模式。
本公开实施例中网络设备接收第一指令,并为终端配置与触发因素匹配的MIMO模式,发送用于指示配置MIMO模式的第二指令,以向终端指示与触发因素匹配的MIMO模式。
图4是根据一示例性实施例示出的一种MIMO模式配置方法的流程图,如图4所示,MIMO模式调整方法用于网络设备中,包括以下步骤。
在步骤S21中,接收第一指令,第一指令用于请求网络设备为终端配置与触发因素匹配的MIMO模式,触发因素包括触发MIMO模式调整的终端信息。
在步骤S22中,为终端配置与触发因素匹配的MIMO模式。
在步骤S23中,发送第二指令,第二指令用于指示网络设备为终端配置的MIMO模式。
本公开实施例中,终端确定触发MIMO模式调整的触发因素,并向网络设备发送第一 指令请求网络设备为终端配置与触发因素匹配的MIMO模式。网络设备为终端配置与触发因素匹配的MIMO模式,并向终端发送第二指令以指示与触发因素匹配的MIMO模式。终端获取第二指令并确定网络设备为终端配置的与触发因素匹配的MIMO模式,相对基于测量进行MIMO模式调整,能够降低MIMO模式调整的时间。
本公开实施例以下结合实际应用对上述实施例涉及的MIMO模式配置方式进行说明。
一种实施方式中,本公开实施例中设置终端发送第一指令的触发条件,在终端确定的触发因素满足触发条件时,发送第一指令。
进一步的,本公开实施例设置触发因素与MIMO模式的对应关系,终端确定了触发因素后,网络设备依据触发因素与MIMO模式的对应关系确定与触发因素匹配的MIMO模式。
本公开实施例中触发因素具有不同状态,例如,触发因素为终端形态时,不同终端形态对应不同的状态。比如,终端处于展开状态对应第一状态,终端处于折叠状态对应第二状态。触发因素为终端器件相对位置信息时,终端器件不同位置对应不同的状态。比如,终端伸缩式摄像头在缩回时对应第三状态,终端伸缩式摄像头在弹出时对应第四状态。
本公开一实施方式中,针对触发因素对应的不同状态进行量化,使不同状态对应不同的状态量化值,且不同状态量化值对应不同的MIMO模式。
本公开实施例中针对触发因素对应的不同状态进行量化时,可以根据不同触发因素设置不同的量化状态。一示例中,本公开实施例中基于触发因素的绝对状态进行量化,以下将触发因素的绝对状态进行量化后的状态称为第一量化状态。其中,第一量化状态表征触发因素的绝对状态,也可称为拜耳状态。例如,第一量化状态可以是终端伸缩式摄像头的伸出状态和缩回状态,终端是否处于折叠状态。一种实施方式中,第一量化状态对应有多个不同的第一量化状态值,其中,多个不同的第一量化状态值表征触发因素多个不同的绝对状态。例如,用1比特的不同比特值(0和1)表征终端伸缩式摄像头弹出与否,或者终端处于折叠状态与否。再或者用2比特的不同比特值(00、01、10、11)表征终端的4个不同的形态状态。
另一示例中,本公开实施例中基于触发因素的相对状态进行量化,以下将触发因素的相对状态进行量化后的状态称为第二量化状态。其中,第二量化状态表征触发因素的相对状态。例如,第二量化状态可以是终端的形态信息等可以进行量化的量。本公开实施例中,第二量化状态对应有多个不同的第二量化状态值,多个不同的第二量化状态值表征触发因素多个不同的相对状态。比如,折叠屏手机的折叠角度可以量化为不同的第二量化状态值。
本公开实施例中,触发因素当前状态的状态量化值包括第一量化状态值,或者第二量化状态值,或者基于第一量化状态值和第二量化状态值确定的第一综合量化状态值。
一示例中,基于第一量化状态值和第二量化状态值确定的第一综合量化状态值可以是第一量化状态值和第二量化状态值进行运算后得到的数值。比如,第一综合量化状态值=第一量化状态值*第二量化状态值,或者第一综合量化状态值=第一量化状态值*a+第二量化状态值*b。其中,a和b为指定系数。
本公开实施例中触发因素当前状态的状态量化值还包括第二综合量化状态值。其中,第二综合量化状态值基于第一综合量化状态值和信道测量信息确定。第二综合量化状态值也可以理解为是第一量化状态值、第二量化状态值、第一综合量化状态值与信道测量信息进行运算后的综合值。例如,本公开实施例中,第二综合量化状态值=f(第一综合量化状态值,信道测量信息)。其中,f函数可以是线性加权,例如第二综合量化状态值=c*第一综合量化状态值+d*信道测量信息,其中,c和d为指定系数。或者f函数可以是对信道测量信息进行加权偏移,例如第二综合量化状态值=第一综合量化状态值*信道测量信息。总之,第二综合量化状态值可以是表征终端信息对信道测量信息的一种额外影响。
本公开实施例中触发因素不同状态的状态量化值对应不同的MIMO模式。比如终端的伸缩式摄像头弹出状态对应的状态量化值“0”,对应MIMO模式为2*2。终端的伸缩式摄像头未弹出状态对应的状态量化值“1”,对应MIMO模式为4*4。再比如,具有折叠屏的终端折叠屏完全展开的状态对应的状态量化值“00”,对应MIMO模式为4*4。具有折叠屏的终端折叠屏完全折叠的状态对应的状态量化值“11”,对应MIMO模式为更高阶的MIMO模式,例如8x4的MIMO模式,或者至少高于上一个MIMO模式。可以理解的是触发因素状态的状态量化值对应的MIMO模式根据实际情况进行设定。比如,终端伸缩式摄像头弹出的摄像头模组带有毫米波天线模块,弹出后能够支持4*4MIMO模式,而未弹出时反而不能支持MIMO。
本公开实施例中,网络设备或终端可以基于终端触发因素当前状态的状态量化值确定需要配置的MIMO模式。
本公开实施例中终端向网络设备发送第一指令的触发条件,可以是MIMO模式调整的状态量化阈值,在触发因素当前状态的状态量化值满足触发MIMO模式调整的状态量化阈值时,发送第一指令。
进一步的,本公开实施例中终端请求网络设备配置与当前状态的状态量化值匹配的MIMO模式时,可以是直接向网络设备请求与触发因素当前状态的状态量化值匹配的 MIMO模式,也可以是终端向网络设备发送触发因素当前状态的状态量化值,由网络设备确定与触发因素当前状态的状态量化值匹配的MIMO模式。
一种实施方式中,终端向网络设备发送的第一指令中包括与触发因素当前状态的状态量化值匹配的MIMO模式。网络设备接收到第一指令后,将与触发因素当前状态的状态量化值匹配的MIMO模式,确定为终端配置的与触发因素匹配的MIMO模式。比如,当伸缩式摄像头弹出时,回退到2*2MIMO模式,第一指令中包括2*2MIMO模式。或者,当折叠屏折叠角度超过90度后,由4*4MIMO模式回退到2*2MIMO模式,第一指令中包括2*2MIMO模式。或者当伸缩式摄像头缩回,且折叠屏折叠角度超过90度时,由4*4MIMO模式回退到2*2MIMO模式,第一指令中包括2*2MIMO模式。
另一种实施方式中,终端向网络设备发送的第一指令中包括触发因素当前状态的状态量化值。网络设备基于触发因素当前状态的状态量化值,确定与触发因素当前状态的状态量化值匹配的MIMO模式,并将与触发因素当前状态的状态量化值匹配的MIMO模式,确定为为终端配置的与触发因素匹配的MIMO模式。例如,第一指令中包括第一量化状态值、第二量化状态值、第一综合量化值和第二综合量化值中的一个或多个。网络设备基于第一指令中包括的当前状态的状态量化值,确定是否进行MIMO模式改变,并确定配置的MIMO模式发送给终端。
本公开实施例又一种实施方式中,触发因素当前状态的状态量化值与MIMO模式调整阶数之间具有对应关系,则终端可以向网络设备发送MIMO模式调整阶数偏移量,由网络设备确定与触发因素当前状态的状态量化值匹配的MIMO模式。即,第一指令中包括MIMO模式调整阶数偏移量。网络设备为终端配置与触发因素匹配的MIMO模式时,基于MIMO模式调整阶数偏移量和MIMO模式当前阶数,确定为终端配置的与触发因素匹配的MIMO模式。比如,终端触发因素的状态量化值包括“00、01、10、11”,则第一指令中可以包括用于指示终端触发因素的状态量化值由“00”变为“01”的信息。
应用本公开实施例提供的MIMO模式配置方法,可以在终端上设置默认的MIMO模式,然后在终端自身因素发生改变时,依据终端的当前形态确定对应的触发因素,并进行MIMO模式的调整,例如对MIMO模式逐级调整等。
本公开实施例提供的MIMO模式配置方法,在终端自身因素发生改变并触发MIMO模式调整时,直接触发MIMO模式进行调整,使信道测量与反馈等行为相应改变,进而降低MIMO配置的调整时间。
基于相同的构思,本公开实施例还提供一种多输入多输出模式配置装置。
可以理解的是,本公开实施例提供的多输入多输出模式配置装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图5是根据一示例性实施例示出的一种多输入多输出模式配置装置框图。参照图5,多输入多输出模式配置装置100应用于终端,包括确定单元101、发送单元102和获取单元103。
确定单元101,被配置为确定触发因素,触发因素包括触发MIMO模式调整的终端信息。发送单元102,被配置为发送第一指令,第一指令用于请求网络设备为终端配置与触发因素匹配的MIMO模式。获取单元103,被配置为获取第二指令,第二指令用于表征网络设备为终端配置的MIMO模式。
一种实施方式中,触发因素对应的不同状态具有不同的状态量化值,且不同状态量化值对应不同的MIMO模式。
发送单元102被配置为采用如下方式发送第一指令:在触发因素当前状态的状态量化值满足触发MIMO模式调整的状态量化阈值时,发送第一指令。
另一种实施方式中,第一指令中包括与触发因素当前状态的状态量化值匹配的MIMO模式。
又一种实施方式中,第一指令中包括MIMO模式调整阶数偏移量。
又一种实施方式中,第一指令中包括触发因素当前状态的状态量化值。
又一种实施方式中,触发因素的状态包括第一量化状态和第二量化状态。第一量化状态对应有多个不同的第一量化状态值,其中,多个不同的第一量化状态值表征触发因素多个不同的绝对状态。第二量化状态对应有多个不同的第二量化状态值,多个不同的第二量化状态值表征触发因素多个不同的相对状态。
又一种实施方式中,触发因素当前状态的状态量化值包括第一量化状态值,或者第二量化状态值,或者基于第一量化状态值和第二量化状态值确定的第一综合量化状态值。
又一种实施方式中,触发因素当前状态的状态量化值还包括第二综合量化状态值,第二综合量化状态值基于第一综合量化状态值和信道测量信息确定。
又一种实施方式中,触发因素包括终端器件相对位置信息和终端形态信息中的一种或 多种。
又一种实施方式中,确定单元101被配置为采用如下方式确定触发因素:
基于预配置信息,确定触发因素。或者基于广播信令、无线资源控制上层配置信令或者物理层控制信令,确定触发因素。
图6是根据一示例性实施例示出的一种多输入多输出模式配置装置框图。参照图6,多输入多输出模式配置装置200应用于网络设备,包括接收单元201、处理单元202和发送单元203。
接收单元201,被配置为接收第一指令,第一指令用于请求网络设备为终端配置与触发因素匹配的多输入多输出MIMO模式,触发因素包括触发MIMO模式调整的终端信息。处理单元202,被配置为终端配置与触发因素匹配的MIMO模式。发送单元203,被配置为发送第二指令,第二指令用于指示网络设备为终端配置的MIMO模式。
一种实施方式中,触发因素对应的不同状态具有不同的状态量化值,且不同状态量化值对应不同的MIMO模式。
另一种实施方式中,第一指令中包括与触发因素当前状态的状态量化值匹配的MIMO模式。处理单元被配置为采用如下方式为终端配置与触发因素匹配的MIMO模式:将与触发因素当前状态的状态量化值匹配的MIMO模式,确定为终端配置的与触发因素匹配的MIMO模式。
又一种实施方式中,第一指令中包括MIMO模式调整阶数偏移量。
处理单元202被配置为采用如下方式为终端配置与触发因素匹配的MIMO模式:
基于MIMO模式调整阶数偏移量和MIMO模式当前阶数,确定为终端配置的与触发因素匹配的MIMO模式。
又一种实施方式中,第一指令中包括触发因素当前状态的状态量化值。
处理单元202被配置为采用如下方式为终端配置与触发因素匹配的MIMO模式:
基于触发因素当前状态的状态量化值,确定与触发因素当前状态的状态量化值匹配的MIMO模式。将与触发因素当前状态的状态量化值匹配的MIMO模式,确定为为终端配置的与触发因素匹配的MIMO模式。
又一种实施方式中,触发因素的状态包括第一量化状态和第二量化状态。第一量化状态对应有多个不同的第一量化状态值,其中,多个不同的第一量化状态值表征触发因素多个不同的绝对状态。第二量化状态对应有多个不同的第二量化状态值,多个不同的第二量化状态值表征触发因素多个不同的相对状态。
又一种实施方式中,触发因素当前状态的状态量化值包括第一量化状态值,或者第二量化状态值,或者基于第一量化状态值和第二量化状态值确定的第一综合量化状态值。
又一种实施方式中,触发因素当前状态的状态量化值还包括第二综合量化状态值,第二综合量化状态值基于第一综合量化状态值和信道测量信息确定。
又一种实施方式中,触发因素包括终端器件相对位置信息和终端形态信息中的一种或多种。
又一种实施方式中,本公开实施例中发送单元203还被配置为:
基于广播信令、无线资源控制上层配置信令或者物理层控制信令,配置触发因素。
又一种实施方式中,接收单元201被配置为采用如下方式发送第一指令:基于上行控制信令或者上行无线资源控制配置信令,接收第一指令。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图7是根据一示例性实施例示出的一种用于多输入多输出模式配置的装置300的框图。例如,装置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)的接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在设备300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理系统, 一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当设备300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到设备300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图8是根据一示例性实施例示出的一种用于多输入多输出模式配置的装置400的框图。例如,装置400可以被提供为一服务器。参照图8,装置400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422的执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法.
装置400还可以包括一个电源组件426被配置为执行装置400的电源管理,一个有线或无线网络接口450被配置为将装置400连接到网络,和一个输入输出(I/O)接口458。装置400可以操作基于存储在存储器432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器432,上述指令可由装置400的处理组件422执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信 息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (26)

  1. 一种多输入多输出模式配置方法,其特征在于,应用于终端,包括:
    确定触发因素,所述触发因素包括触发多输入多输出MIMO模式调整的终端信息;
    发送第一指令,所述第一指令用于请求网络设备为所述终端配置与所述触发因素匹配的MIMO模式;
    获取第二指令,所述第二指令用于表征所述网络设备为所述终端配置的MIMO模式。
  2. 根据权利要求1所述的方法,其特征在于,所述触发因素对应的不同状态具有不同的状态量化值,且不同状态量化值对应不同的MIMO模式;
    所述发送第一指令,包括:
    在所述触发因素当前状态的状态量化值满足触发MIMO模式调整的状态量化阈值时,发送所述第一指令。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指令中包括与所述触发因素当前状态的状态量化值匹配的MIMO模式。
  4. 根据权利要求2所述的方法,其特征在于,所述第一指令中包括MIMO模式调整阶数偏移量。
  5. 根据权利要求2所述的方法,其特征在于,所述第一指令中包括所述触发因素当前状态的状态量化值。
  6. 根据权利要求2所述的方法,其特征在于,所述触发因素的状态包括第一量化状态和第二量化状态;
    所述第一量化状态对应有多个不同的第一量化状态值,其中,多个不同的第一量化状态值表征所述触发因素多个不同的绝对状态;
    所述第二量化状态对应有多个不同的第二量化状态值,多个不同的第二量化状态值表征所述触发因素多个不同的相对状态。
  7. 根据权利要求6所述的方法,其特征在于,所述触发因素当前状态的状态量化值包括第一量化状态值,或者第二量化状态值,或者基于所述第一量化状态值和所述第二量化状态值确定的第一综合量化状态值。
  8. 根据权利要求7所述的方法,其特征在于,所述触发因素当前状态的状态量化值还包括第二综合量化状态值,所述第二综合量化状态值基于所述第一综合量化状态值和信道测量信息确定。
  9. 根据权利要求1至8中任意一项所述的方法,其特征在于,所述触发因素包括终 端器件相对位置信息和终端形态信息中的一种或多种。
  10. 根据权利要求1所述的多输入多输出模式配置方法,其特征在于,所述确定触发因素,包括:
    基于预配置信息,确定所述触发因素;或者
    基于广播信令、无线资源控制上层配置信令或者物理层控制信令,确定所述触发因素。
  11. 一种多输入多输出模式配置方法,其特征在于,应用于网络设备,包括:
    接收第一指令,所述第一指令用于请求网络设备为终端配置与触发因素匹配的多输入多输出MIMO模式,所述触发因素包括触发MIMO模式调整的终端信息;
    为所述终端配置与触发因素匹配的MIMO模式,并发送第二指令,所述第二指令用于指示所述网络设备为所述终端配置的MIMO模式。
  12. 根据权利要求11所述的方法,其特征在于,所述触发因素对应的不同状态具有不同的状态量化值,且不同状态量化值对应不同的MIMO模式。
  13. 根据权利要求12所述的方法,其特征在于,所述第一指令中包括与所述触发因素当前状态的状态量化值匹配的MIMO模式;
    所述为所述终端配置与触发因素匹配的MIMO模式,包括:
    将与所述触发因素当前状态的状态量化值匹配的MIMO模式,确定为所述终端配置的与触发因素匹配的MIMO模式。
  14. 根据权利要求12所述的方法,其特征在于,所述第一指令中包括MIMO模式调整阶数偏移量;
    所述为所述终端配置与触发因素匹配的MIMO模式,包括:
    基于所述MIMO模式调整阶数偏移量和MIMO模式当前阶数,确定为所述终端配置的与触发因素匹配的MIMO模式。
  15. 根据权利要求12所述的方法,其特征在于,所述第一指令中包括所述触发因素当前状态的状态量化值;
    所述为所述终端配置与触发因素匹配的MIMO模式,包括:
    基于触发因素当前状态的状态量化值,确定与所述触发因素当前状态的状态量化值匹配的MIMO模式;
    将与所述触发因素当前状态的状态量化值匹配的MIMO模式,确定为为所述终端配置的与触发因素匹配的MIMO模式。
  16. 根据权利要求12所述的方法,其特征在于,所述触发因素的状态包括第一量化 状态和第二量化状态;
    所述第一量化状态对应有多个不同的第一量化状态值,其中,多个不同的第一量化状态值表征所述触发因素多个不同的绝对状态;
    所述第二量化状态对应有多个不同的第二量化状态值,多个不同的第二量化状态值表征所述触发因素多个不同的相对状态。
  17. 根据权利要求16所述的方法,其特征在于,所述触发因素当前状态的状态量化值包括第一量化状态值,或者第二量化状态值,或者基于所述第一量化状态值和所述第二量化状态值确定的第一综合量化状态值。
  18. 根据权利要求17所述的方法,其特征在于,所述触发因素当前状态的状态量化值还包括第二综合量化状态值,所述第二综合量化状态值基于所述第一综合量化状态值和信道测量信息确定。
  19. 根据权利要求11至18中任意一项所述的方法,其特征在于,所述触发因素包括终端器件相对位置信息和终端形态信息中的一种或多种。
  20. 根据权利要求11所述的多输入多输出模式配置方法,其特征在于,所述方法还包括:
    基于广播信令、无线资源控制上层配置信令或者物理层控制信令,配置所述触发因素。
  21. 一种多输入多输出模式配置装置,其特征在于,应用于终端,包括:
    确定单元,被配置为确定触发因素,所述触发因素包括触发多输入多输出MIMO模式调整的终端信息;
    发送单元,被配置为发送第一指令,所述第一指令用于请求网络设备为所述终端配置与所述触发因素匹配的MIMO模式;
    获取单元,被配置为获取第二指令,所述第二指令用于表征所述网络设备为所述终端配置的MIMO模式。
  22. 一种多输入多输出模式配置装置,其特征在于,应用于网络设备,包括:
    接收单元,被配置为接收第一指令,所述第一指令用于请求网络设备为终端配置与触发因素匹配的多输入多输出MIMO模式,所述触发因素包括触发MIMO模式调整的终端信息;
    处理单元,被配置为所述终端配置与触发因素匹配的MIMO模式;
    发送单元,被配置为发送第二指令,所述第二指令用于指示所述网络设备为所述终端配置的MIMO模式。
  23. 一种多输入多输出模式配置装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至11中任意一项所述的多输入多输出模式配置方法。
  24. 一种多输入多输出模式配置装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求11至20中任意一项所述的多输入多输出模式配置方法。
  25. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行权利要求1至10中任意一项所述的多输入多输出模式配置方法。
  26. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行权利要求11至20中任意一项所述的多输入多输出模式配置方法。
PCT/CN2020/079050 2020-03-12 2020-03-12 多输入多输出模式配置方法、装置及存储介质 WO2021179266A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/910,650 US20230137584A1 (en) 2020-03-12 2020-03-12 Multiple-input multiple-output mode configuration method and apparatus, and storage medium
CN202080000529.7A CN111480357B (zh) 2020-03-12 2020-03-12 多输入多输出模式配置方法、装置及存储介质
PCT/CN2020/079050 WO2021179266A1 (zh) 2020-03-12 2020-03-12 多输入多输出模式配置方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079050 WO2021179266A1 (zh) 2020-03-12 2020-03-12 多输入多输出模式配置方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2021179266A1 true WO2021179266A1 (zh) 2021-09-16

Family

ID=71764027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079050 WO2021179266A1 (zh) 2020-03-12 2020-03-12 多输入多输出模式配置方法、装置及存储介质

Country Status (3)

Country Link
US (1) US20230137584A1 (zh)
CN (1) CN111480357B (zh)
WO (1) WO2021179266A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117692918A (zh) * 2022-08-29 2024-03-12 中兴通讯股份有限公司 多输入多输出的控制方法、WiFi设备、计算机可读介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969369A (zh) * 2009-07-27 2011-02-09 中兴通讯股份有限公司 一种多输入多输出传输模式的切换方法、系统及装置
US20140140424A1 (en) * 2012-11-21 2014-05-22 Thorsten Clevorn Communication devices and methods for receiving data
CN104486042A (zh) * 2014-12-17 2015-04-01 京信通信系统(中国)有限公司 Lte系统多入多出模式的切换方法及系统
CN110049563A (zh) * 2019-03-15 2019-07-23 华为技术有限公司 一种过热指示方法以及相关设备
CN110099151A (zh) * 2019-05-27 2019-08-06 维沃移动通信有限公司 一种天线控制方法及移动终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107804B2 (ja) * 2008-06-19 2012-12-26 シャープ株式会社 無線通信端末
US20110026420A1 (en) * 2009-07-31 2011-02-03 Qualcomm Incorporated Layer shifting for uplink mimo
US9503231B2 (en) * 2010-11-09 2016-11-22 Qualcomm Incorporated Method and apparatus for improving uplink transmission mode configuration
CN102055567B (zh) * 2011-01-26 2014-04-02 上海华为技术有限公司 多输入多输出模式切换方法和终端设备
CN110012549B (zh) * 2018-01-04 2020-09-22 维沃移动通信有限公司 一种信息传输方法、终端及网络设备
WO2020034128A1 (zh) * 2018-08-15 2020-02-20 Oppo广东移动通信有限公司 无线通信方法、终端设备发射上行信号的方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969369A (zh) * 2009-07-27 2011-02-09 中兴通讯股份有限公司 一种多输入多输出传输模式的切换方法、系统及装置
US20140140424A1 (en) * 2012-11-21 2014-05-22 Thorsten Clevorn Communication devices and methods for receiving data
CN104486042A (zh) * 2014-12-17 2015-04-01 京信通信系统(中国)有限公司 Lte系统多入多出模式的切换方法及系统
CN110049563A (zh) * 2019-03-15 2019-07-23 华为技术有限公司 一种过热指示方法以及相关设备
CN110099151A (zh) * 2019-05-27 2019-08-06 维沃移动通信有限公司 一种天线控制方法及移动终端

Also Published As

Publication number Publication date
CN111480357B (zh) 2023-10-03
CN111480357A (zh) 2020-07-31
US20230137584A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
WO2021248371A1 (zh) 一种接入方法、接入装置及存储介质
WO2021051408A1 (zh) 通信方法、装置及存储介质
WO2021114276A1 (zh) 波束测量方法及波束测量装置
WO2021007787A1 (zh) 资源分配方法、装置及存储介质
WO2021114274A1 (zh) 无线通信方法、装置及存储介质
WO2020258041A1 (zh) 数据传输方法、装置、系统及存储介质
WO2022094882A1 (zh) 通信处理方法、装置、通信设备及存储介质
WO2021155511A1 (zh) 一种通信方法及装置
CN110268646B (zh) 天线通道的控制方法、装置、系统及存储介质
WO2021179266A1 (zh) 多输入多输出模式配置方法、装置及存储介质
WO2023201730A1 (zh) 一种传输用户设备能力的方法、装置及可读存储介质
WO2021179126A1 (zh) 控制信令检测方法、控制信令检测装置及存储介质
CN113728723A (zh) 辅助配置方法及其装置
WO2023225922A1 (zh) 一种传输频段信息的方法、装置及可读存储介质
WO2024087118A1 (zh) 幅度系数的上报方法、装置及存储介质
WO2022236502A1 (zh) 通信方法、通信装置及存储介质
WO2023178489A1 (zh) 一种传输能力信息的方法、装置及存储介质
WO2024077495A1 (zh) 一种传输能力信息的方法、装置以及可读存储介质
WO2023130469A1 (zh) 一个确定信道接入方式的方法、装置及存储介质
WO2023206239A1 (zh) 一种传输保护时间间隔信息的方法、装置及可读存储介质
WO2023044686A1 (zh) 一种用于天线切换配置的srs发送方法、装置及存储介质
WO2024082315A1 (zh) 一种信道状态信息反馈方法、装置、设备及存储介质
WO2023097523A1 (zh) 一种小区测量方法、装置及可读存储介质
WO2021189417A1 (zh) 波束确定方法、装置和通信设备
WO2021253178A1 (zh) 一种随机接入方法、随机接入装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923774

Country of ref document: EP

Kind code of ref document: A1