WO2021189417A1 - 波束确定方法、装置和通信设备 - Google Patents
波束确定方法、装置和通信设备 Download PDFInfo
- Publication number
- WO2021189417A1 WO2021189417A1 PCT/CN2020/081659 CN2020081659W WO2021189417A1 WO 2021189417 A1 WO2021189417 A1 WO 2021189417A1 CN 2020081659 W CN2020081659 W CN 2020081659W WO 2021189417 A1 WO2021189417 A1 WO 2021189417A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- downlink
- offset
- scanning
- terminal
- base station
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
Definitions
- This application relates to the field of wireless communication technology, but is not limited to the field of wireless communication technology, and in particular to a beam determination method, device, and communication equipment.
- the transmitting and receiving ends support the large number of steerable antenna element, the fifth generation (5G, 5 th Generation) new radio (NR, New Radio) key features.
- 5G 5 th Generation
- NR New Radio
- a large number of antenna elements can be used for beamforming to reduce the width of a single beam to expand the coverage distance of a single beam.
- the 5G system design introduces the concept of multi-beam.
- the uplink and downlink channels have a certain reciprocity. Therefore, in order to speed up beam selection, 5G NR introduces beams The concept of BC (Beam Correspondence). Specifically, if the terminal has the capability of beam reciprocity, the terminal can directly use the downlink optimal receive beam as the uplink optimal transmit beam; or conversely, the uplink optimal transmit beam as the downlink optimal beam. Optimal receiving beam.
- TDD Time-division Duplex
- BC Beam Correspondence
- the embodiments of the present disclosure provide a beam determination method, device, and communication equipment.
- a beam determination method which is applied to a terminal, and the method includes:
- the scanning beam includes: the first beam, and the offset from the first beam is indicated by the beam offset parameter The second beam within the beam offset range;
- a downlink beam is selected from the scanning beam.
- a beam determination device which is applied to a terminal, and the device includes: a first determination module, a second determination module, a receiving module, and a selection module, wherein,
- the first determining module is configured to determine the first beam for uplink communication with the base station
- the second determining module is configured to determine the scanning beam of the terminal according to a beam offset parameter; wherein, the scanning beam includes: the first beam and an offset from the first beam The second beam within the beam offset range indicated by the beam offset parameter;
- the receiving module is configured to receive a reference signal sent by the base station on the scanning beam
- the selection module is configured to select a downlink beam from the scanning beam according to the reception quality of the reference signal.
- a communication device including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs all When the executable program is described, the steps of the beam determination method described in the first aspect are executed.
- the terminal determines the first beam for uplink communication with the base station; determines the scanning beam of the terminal according to the beam offset parameters; wherein, the scanning beam includes: the first beam, and the distance between the first beam and the first beam The second beam whose offset is within the beam offset range indicated by the beam offset parameter; on the scanning beam, the reference signal sent by the base station is received; according to the reception quality of the reference signal, from the Select the downlink beam in the scanning beam.
- the terminal can determine the downlink beam with the best downlink quality based on the reception of the reference signal of each scanning beam.
- the scanning beam is determined based on the beam offset parameter, instead of scanning all the beams used for downlink data of the base station one by one, reducing the number of scanning beams, thereby reducing the scanning time, and improving the efficiency of determining the downlink beam.
- it reduces the phenomenon of poor signal quality caused by the terminal's use of the best quality traveling beam for downlink transmission. Using the technical solutions provided by the embodiments of the present application can improve the transmission quality, thereby reducing the additional power consumption of the terminal caused by the poor transmission quality and retransmissions.
- Fig. 1 is a schematic structural diagram showing a communication system according to an exemplary embodiment
- Fig. 2 is a schematic diagram showing downlink beam determination according to an exemplary embodiment
- Fig. 3 is a schematic flow chart showing a method for beam determination according to an exemplary embodiment
- Fig. 4 is a schematic diagram showing a downlink beam determination according to an exemplary embodiment
- Fig. 5 is a schematic diagram showing another downlink beam determination according to an exemplary embodiment
- Fig. 6 is a schematic diagram showing yet another downlink beam determination according to an exemplary embodiment
- Fig. 7 is a block diagram showing the structure of a beam determination device according to an exemplary embodiment
- Fig. 8 is a block diagram showing a device for beam determination according to an exemplary embodiment.
- first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
- first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
- word “if” as used herein can be interpreted as "when” or "when” or "in response to determination”.
- FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
- the wireless communication system is a communication system based on cellular mobile communication technology.
- the wireless communication system may include several terminals 11 and several base stations 12.
- the terminal 11 may be a device that provides voice and/or data connectivity to the user.
- the terminal 11 can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
- the terminal 11 can be an Internet of Things terminal, such as a sensor device, a mobile phone (or “cellular” phone), and
- the computer of the Internet of Things terminal for example, may be a fixed, portable, pocket-sized, handheld, built-in computer or vehicle-mounted device.
- station For example, station (Station, STA), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point, remote terminal ( remote terminal), access terminal (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user terminal (user equipment, UE).
- the terminal 11 may also be a device of an unmanned aerial vehicle.
- the terminal 11 may also be an in-vehicle device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected to the trip computer.
- the terminal 11 may also be a roadside device, for example, it may be a street lamp, signal lamp, or other roadside device with a wireless communication function.
- the base station 12 may be a network side device in a wireless communication system.
- the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (LTE) system; or, the wireless communication system may also be a 5G system. Also known as new radio (NR) system or 5G NR system.
- the wireless communication system may also be the next-generation system of the 5G system.
- the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network). Or, MTC system.
- the base station 12 may be an evolved base station (eNB) used in a 4G system.
- the base station 12 may also be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
- eNB evolved base station
- gNB base station
- the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
- the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC media access control
- the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 12.
- a wireless connection can be established between the base station 12 and the terminal 11 through a wireless air interface.
- the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; or, the wireless air interface may also be a wireless air interface based on a 5G-based next-generation mobile communication network technology standard.
- an E2E (End to End) connection may also be established between the terminals 11.
- V2X vehicle-to-everything
- V2V vehicle to vehicle
- V2I vehicle to Infrastructure, vehicle-to-roadside equipment
- V2P vehicle to pedestrian, vehicle-to-person
- the above-mentioned wireless communication system may further include a network management device 13.
- the network management device 13 may be a core network device in a wireless communication system.
- the network management device 13 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
- the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), Policy and Charging Rules function unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
- SGW Serving GateWay
- PGW Public Data Network GateWay
- Policy and Charging Rules function unit Policy and Charging Rules
- Function PCRF
- HSS Home Subscriber Server
- the executive bodies involved in the embodiments of the present disclosure include, but are not limited to: terminals and base stations that use cellular mobile communication technology to communicate.
- An application scenario of the embodiments of the present disclosure is that due to the complexity and limitations of terminal design, it is difficult for the uplink beam and the downlink beam to ensure complete reciprocity.
- the beam selected by the terminal through beam reciprocity is often not the best beam, and even a poorer beam is selected.
- the downlink beam 2 selected by the terminal through the uplink beam reciprocity is not the best beam Direction, and beam 1 is the best direction beam. In this way, not only the quality of communication cannot be guaranteed, but also unnecessary power consumption of the terminal.
- this exemplary embodiment provides a beam determination method, which can be applied to a wireless communication terminal, and the beam determination method may include:
- Step 301 Determine the first beam for uplink communication with the base station
- Step 302 Determine the scanning beam of the terminal according to the beam offset parameter; where the scanning beam includes: the first beam, and the first beam whose offset from the first beam is within the beam offset range indicated by the beam offset parameter Two beams
- Step 303 On the scanning beam, receive the reference signal sent by the base station;
- Step 304 Select a downlink beam from the scanning beams according to the reception quality of the reference signal.
- wireless communication may be cellular mobile communication using Time-division Duplex (TDD) technology, or cellular mobile communication using Frequency-division Duplex (FDD) technology.
- TDD Time-division Duplex
- FDD Frequency-division Duplex
- the terminal may be a terminal that supports beam reciprocity (BC, Beam Correspondence) technology, or a terminal that does not support beam reciprocity technology.
- the terminal may support the use of beamforming to generate beams for communication, and the base station may support the use of beamforming to generate beams for communication.
- the first beam can be the uplink beam for the current uplink communication between the base station and the terminal, or it can be a beam predetermined by both the base station and the terminal; or it can also be the best signal quality selected by the base station based on reference signals sent by the terminal in multiple beams Beam.
- the scanning beam may be a candidate downlink beam selected by the terminal from all downlink beams of the base station.
- the scanning beam may include a first beam and a second beam.
- the scanning beam may be more than one beam generated by beamforming during the communication between the terminal and the base station.
- the different beams included in the scanning beam have different beam directions.
- the number of scanning beams may be less than or equal to all the beams used by the base station for downlink data.
- the second beam may be determined based on the beam offset parameter based on the first beam.
- the beam offset parameter can be agreed through a communication protocol, or can be determined by the terminal according to its own antenna characteristics. There can be one or more scanning beams.
- the beam offset parameter may be used to indicate the beam offset range of the second beam relative to the first beam, for example, the offset angle.
- the beam offset range indicated by the beam offset parameter may be an offset angle. Taking the offset angle of 30 degrees as an example, the scanning beam includes the first beam and within 30 degrees on both sides of the first beam The second beam.
- the base station can send reference signals on all beams used for downlink data for the terminal to receive.
- the terminal can separately receive the reference signal sent by the base station on each scanning beam.
- the terminal can determine that the reference signal is received on each scanning beam, and according to the signal quality of the received reference signal, determine the downlink beam for the terminal to subsequently receive downlink data.
- the terminal may compare the bit error rate of the reference signal of each scanning beam, and use the scanning beam with the smallest bit error rate as the downlink beam.
- the terminal can determine the downlink beam with the best downlink quality based on the reception of the reference signal of each scanning beam.
- the scanning beam is determined based on the beam offset parameter, instead of scanning all the beams used for downlink data of the base station one by one, reducing the number of scanning beams, thereby reducing the scanning time, and improving the efficiency of determining the downlink beam.
- it reduces the phenomenon of poor signal quality caused by the terminal's use of the best quality traveling beam for downlink transmission. Using the technical solutions provided by the embodiments of the present application can improve the transmission quality, thereby reducing the additional power consumption of the terminal caused by the poor transmission quality and retransmissions.
- the beam offset parameter includes: a beam number offset; the second beam is: a beam whose offset between the beam number and the beam number of the first beam is less than or equal to the beam number offset.
- the beams formed by the terminal through beamforming have corresponding beam numbers
- the beam number offset may be the number of second beams that are adjacent to the first beam and are consecutively numbered.
- the beam offset range indicated by the beam offset parameter may be the beam number offset.
- the scanning beam includes the first beam and two second beams on both sides of the first beam. Two beams.
- the scanning beam is determined by the beam number offset, which can reduce the number of scanning beams of the terminal, thereby reducing the scanning time and improving the efficiency of determining the downlink beam.
- the second beam is located on the first side and/or the second side of the first beam, wherein the first side is different from the second side.
- the second beam may be located on one side or on both sides of the first beam.
- the second beam is located on the first side and the second side of the first beam
- beam i is the first beam
- the beam number offset is X
- the beams with the offset of the beam numbers on both sides of beam i within X are regarded as scanning beams.
- X can be a positive integer such as 0 or 1, 2, 3.
- the beam numbers of the four beams of beam i-2, beam i-1, beam i+1, and beam i+2 are within the range of X with respect to the beam offset of beam i. Therefore, the beam i-2, beam i-1, beam i+1, and beam i+2 are determined as the second beam.
- the second beam is located on the first side of the first beam
- beam i is the first beam
- the beam number offset is X, that is, the terminal and the base station can place beam i and beam i first.
- the beam whose side beam number offset is within X is regarded as the scanning beam.
- X can be a positive integer such as 0 or 1, 2, 3.
- the beam numbers of the two beams of beam i-2 and beam i-1 are within the range of X with respect to the beam offset of beam i. Therefore, beam i-2 and beam i-1 can be determined as The second beam.
- the second beam is located on the second side of the first beam
- beam i is the first beam
- the beam number offset is X
- the terminal and the base station can second the beam i and the beam i
- the beam whose side beam number offset is within X is regarded as the scanning beam.
- X can be a positive integer such as 0 or 1, 2, 3.
- the beam numbers of the two beams of beam i+2 and beam i+1 are within the range of X with respect to the beam offset of beam i. Therefore, beam i+2 and beam i+1 can be determined as The second beam.
- the beam offset range indicated by the beam offset parameter is determined based on the uplink maximum gain direction and the downlink maximum gain direction of the terminal's antenna.
- the optimal downlink beam direction is not completely consistent with the direction of the uplink beam.
- the number of beams between the uplink maximum gain direction and the downlink maximum gain direction can be determined based on the uplink maximum gain direction and the downlink maximum gain direction, and the beam offset range indicated by the beam offset parameter can be determined based on the number.
- the beam offset parameter indicates that the number of beam offsets is 2.
- Taking the difference between the uplink maximum gain direction and the downlink maximum gain direction of the terminal's antenna as a basis for determining the beam offset range can improve the accuracy of the beam offset range estimation, thereby reducing the range of the scanning beam.
- step 301 may include: receiving uplink beam indication information sent by the base station, and determining the first beam according to the uplink beam indication information.
- the uplink beam may be determined by the base station, and the base station may scan multiple candidate uplink beams generated by the terminal through beamforming.
- the candidate uplink beam with the best received signal may be determined as the uplink beam used for communication with the terminal, and the uplink beam is indicated to the terminal by sending downlink beam indication information.
- the terminal determines the uplink beam selected by the base station according to the received uplink beam indication information, and uses the uplink beam to uplink data to the base station.
- step 304 may include at least one of the following:
- CSI-RS Channel State information Reference signal
- the scanning beam with the strongest signal strength of the synchronization signal block (SSB) signal is determined as the downlink beam.
- SSB synchronization signal block
- the downlink beam can be determined by the upper terminal from multiple scanning beams.
- the terminal can scan the SSB sent by each base station through each scanning beam, and determine the best scanning beam for downlink reception as the downlink beam.
- the method for determining the best scanning beam for downlink reception may include: measuring the signal reception strength of each candidate downlink beam SSB, and determining the scanning beam with the strongest SSB signal reception strength as the downlink beam.
- the received strength may be Reference Signal Receiving Power (RSRP, Reference Signal Receiving Power).
- the terminal can also scan the CSI-RS sent by each base station through each scanning beam, and determine the best scanning beam for downlink reception as the downlink beam.
- the method for determining the best scanning beam for downlink reception may include: measuring the CSI-RS signal reception strength of each scanning beam, and determining the scanning beam with the strongest CSI-RS signal reception strength as the downlink beam.
- the reception strength may be RSRP.
- the beam determination method may include: sending downlink beam indication information for indicating a downlink beam.
- the terminal may indicate the determined downlink beam to the base station through the downlink beam indication information.
- the base station determines the downlink beam selected by the terminal according to the received downlink beam indication information, and uses the downlink beam to downlink data to the terminal.
- the terminal scans the CSI-RS and/or SSB sent from the base station on possible beams, regardless of whether the terminal supports beam correspondence
- the beam corresponding to the largest RSRP is determined as the downlink beam. As shown in Figure 3.
- the possible beams include: beams within a range of X deviation from the uplink beam.
- the uplink beam is beam i
- the possible beam refers to the beam in the range from beam i-X to beam i+X.
- X is the beam deviation of the uplink beam caused by the terminal design. This value can be given by the terminal according to the test situation.
- the beam deviation amount X of the uplink beam caused by the terminal design may be different due to different frequency bands or frequency points.
- the terminal When a terminal with beam reciprocity capability performs the downlink beam adjustment process, if the uplink beam of the terminal is beam i at this time, the terminal only needs to scan the CSI-RS and/or SS block signals sent by the base station on the possible beams, and select the channel The best quality beam is the downlink beam.
- the possible beam refers to the beam in the range from beam i-X to beam i+X. Where X is the maximum deviation of the upstream beam due to the terminal design. This value can be given by the terminal according to the test situation, and the specific test can be determined according to the maximum deviation on the same beam in the uplink and downlink.
- the details are shown in Figure 4.
- the maximum deviation X of the uplink beam caused by the terminal design may vary depending on the frequency band or frequency point.
- the method proposed in this embodiment can still be used. Only scan the CSI-RS and/or SSblock signals sent by the base station on the possible beams, and select the beam with the best channel quality as the downlink beam.
- the possible beam refers to the beam in the range from beam i-X to beam i+X, where i is the same as the beam number of the terminal's uplink beam. Where X is the maximum deviation of the uplink beam due to the terminal design.
- This value can be given by the terminal according to the test situation, and the specific test can be determined according to the maximum deviation on the same beam in the uplink and downlink.
- the details are shown in Figure 4.
- the maximum deviation X of the uplink beam caused by the terminal design may vary depending on the frequency band or frequency point.
- the maximum deviation X of the uplink beam caused by the terminal design is a positive deviation on all beams, that is, the uplink beam is beam i, and the beam used for scanning is selected as beam j, such as j-i ⁇ 0. Or it is negative deviation on all beams, that is, the uplink beam is beam i, and the beam selected for scanning is beam j, such as j-i ⁇ 0.
- the possible beams if they are all positive deviations, the possible beams are: beam i to beam i+X. On the contrary, if they are all negative deviations, the possible beams are: beam i-X to beam i.
- the above method can be used not only in TDD systems, but also in FDD systems.
- FIG. 8 is a schematic diagram of the composition structure of the beam determining device 100 provided by an embodiment of the present invention; as shown in FIG. 8, the device 100 includes: : The first determining module 110, the second determining module 120, the receiving module 130, and the selecting module 140, where
- the first determining module 110 is configured to determine the first beam for uplink communication with the base station;
- the second determining module 120 is configured to determine the scanning beam of the terminal according to the beam offset parameter; wherein the scanning beam includes: the first beam, and the offset from the first beam is within the beam offset indicated by the beam offset parameter The second beam within the shift range;
- the receiving module 130 is configured to receive the reference signal sent by the base station on the scanning beam;
- the selection module 140 is configured to select a downlink beam from the scanning beam according to the reception quality of the reference signal.
- the beam offset parameters include: beam number offset;
- the second beam is a beam whose offset between the beam number and the beam number of the first beam is less than or equal to the offset of the beam number.
- the second beam is located on the first side and/or the second side of the first beam, wherein the first side is different from the second side.
- the beam offset range indicated by the beam offset parameter is determined based on the uplink maximum gain direction and the downlink maximum gain direction of the terminal's antenna.
- the first determining module 110 includes:
- the receiving submodule 111 is configured to receive uplink beam indication information sent by the base station,
- the determining submodule 112 is configured to determine the first beam according to the uplink beam indication information.
- the selection module 140 includes at least one of the following:
- the first selection submodule 141 is configured to determine the scanning beam with the strongest CSI-RS signal strength as the downlink beam;
- the second selection submodule 142 is configured to determine the scanning beam with the strongest signal strength of the SSB signal as the downlink beam.
- the apparatus 100 further includes:
- the sending module 150 is configured to send downlink beam indication information used to indicate a downlink beam.
- the first determining module 110, the second determining module 120, the receiving module 130, the selecting module 140, the sending module 150, etc. may be processed by one or more central processing units (CPU, Central Processing Unit), graphics processing Processor (GPU, Graphics Processing Unit), baseband processor (BP, baseband processor), application specific integrated circuit (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), complex programmable logic Devices (CPLD, Complex Programmable Logic Device), Field-Programmable Gate Array (FPGA, Field-Programmable Gate Array), general-purpose processors, controllers, microcontrollers (MCU, Micro Controller Unit), microprocessors (Microprocessor), Or other electronic components are used to implement the aforementioned method.
- CPU Central Processing Unit
- GPU Graphics Processing Unit
- BP baseband processor
- ASIC Application Specific Integrated Circuit
- DSP digital signal processor
- PLD programmable logic device
- CPLD Complex Programmable Logic Device
- FPGA Field-Programmable
- Fig. 8 is a block diagram showing an apparatus 3000 for beam determination according to an exemplary embodiment.
- the device 3000 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
- the device 3000 may include one or more of the following components: a processing component 3002, a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
- a processing component 3002 a memory 3004, a power supply component 3006, a multimedia component 3008, an audio component 3010, an input/output (I/O) interface 3012, a sensor component 3014, And the communication component 3016.
- the processing component 3002 generally controls the overall operations of the device 3000, such as operations associated with display, phone calls, beam determination, camera operations, and recording operations.
- the processing component 3002 may include one or more processors 3020 to execute instructions to complete all or part of the steps of the foregoing method.
- the processing component 3002 may include one or more modules to facilitate the interaction between the processing component 3002 and other components.
- the processing component 3002 may include a multimedia module to facilitate the interaction between the multimedia component 3008 and the processing component 3002.
- the memory 3004 is configured to store various types of data to support the operation of the device 3000. Examples of such data include instructions for any application or method operating on the device 3000, contact data, phone book data, messages, pictures, videos, etc.
- the memory 3004 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
- SRAM static random access memory
- EEPROM electrically erasable programmable read-only memory
- EPROM erasable Programmable Read Only Memory
- PROM Programmable Read Only Memory
- ROM Read Only Memory
- Magnetic Memory Flash Memory
- Magnetic Disk Magnetic Disk or Optical Disk.
- the power supply component 3006 provides power for various components of the device 3000.
- the power supply component 3006 may include a power management system, one or more power supplies, and other components associated with the generation, management, and distribution of power for the device 3000.
- the multimedia component 3008 includes a screen that provides an output interface between the device 3000 and the user.
- the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
- the touch panel includes one or more touch sensors to sense touch, sliding, and gestures on the touch panel. The touch sensor can not only sense the boundary of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
- the multimedia component 3008 includes a front camera and/or a rear camera. When the device 3000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
- the audio component 3010 is configured to output and/or input audio signals.
- the audio component 3010 includes a microphone (MIC), and when the device 3000 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode, the microphone is configured to receive external audio signals.
- the received audio signal may be further stored in the memory 3004 or transmitted via the communication component 3016.
- the audio component 3010 further includes a speaker for outputting audio signals.
- the I/O interface 3012 provides an interface between the processing component 3002 and a peripheral interface module.
- the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: home button, volume button, start button, and lock button.
- the sensor assembly 3014 includes one or more sensors for providing the device 3000 with various aspects of status assessment.
- the sensor component 3014 can detect the on/off status of the device 3000 and the relative positioning of components, such as the display and keypad of the device 3000.
- the sensor component 3014 can also detect the position change of the device 3000 or a component of the device 3000. The presence or absence of contact with the device 3000, the orientation or acceleration/deceleration of the device 3000, and the temperature change of the device 3000.
- the sensor assembly 3014 may include a proximity sensor configured to detect the presence of nearby objects when there is no physical contact.
- the sensor component 3014 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
- the sensor component 3014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
- the communication component 3016 is configured to facilitate wired or wireless communication between the device 3000 and other devices.
- the device 3000 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
- the communication component 3016 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
- the communication component 3016 also includes a near field communication (NFC) module to facilitate short-range communication.
- the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
- RFID radio frequency identification
- IrDA infrared data association
- UWB ultra-wideband
- Bluetooth Bluetooth
- the device 3000 may be implemented by one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
- ASIC application specific integrated circuits
- DSP digital signal processors
- DSPD digital signal processing devices
- PLD programmable logic devices
- FPGA field programmable A gate array
- controller microcontroller, microprocessor, or other electronic components are implemented to implement the above methods.
- non-transitory computer-readable storage medium including instructions, such as the memory 3004 including instructions, and the foregoing instructions may be executed by the processor 3020 of the device 3000 to complete the foregoing method.
- the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and so on.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开实施例是关于波束确定方法、装置和通信设备。确定与基站进行上行通信的第一波束;根据波束偏移参数,确定所述终端的扫描波束;其中,所述扫描波束包括:所述第一波束,及与所述第一波束之间的偏移量在所述波束偏移参数指示的波束偏移范围内的第二波束;在所述扫描波束上,接收所述基站发送的参考信号;根据所述参考信号的接收质量,从所述扫描波束中选择下行波束。
Description
本申请涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及波束确定方法、装置和通信设备。
在发射端和接收端支持数量众多、方向可控的天线单元,是第五代(5G,5
th Generation)新无线(NR,New Radio)的关键特性。在高频段,大数量的天线单元能被用于波束赋形,以减小单个波束的宽度来扩大单个波束的覆盖距离。同时为了增加覆盖角度,如覆盖整个小区,5G系统设计引入了多波束的概念。
对于基于多波束的小区,考虑到高频段主要是时分双工模式(TDD,Time-division Duplex)模式工作,上下行信道的具有一定的互易性,因此为了加快波束选择,5G NR中引入波束互易(BC,Beam Correspondence)的概念。具体地,如果终端具有波束互易性的能力,则终端可以直接把下行的最优接收波束作为上行链路的最优发送波束;或者相反,把上行的最优发送波束作为下行链路的最优接收波束。
发明内容
有鉴于此,本公开实施例提供了一种波束确定方法、装置和通信设备。
根据本公开实施例的第一方面,提供一种波束确定方法,其中,应用于终端,所述方法包括:
确定与基站进行上行通信的第一波束;
根据波束偏移参数,确定所述终端的扫描波束;其中,所述扫描波束 包括:所述第一波束,及与所述第一波束之间的偏移量在所述波束偏移参数指示的波束偏移范围内的第二波束;
在所述扫描波束上,接收所述基站发送的参考信号;
根据所述参考信号的接收质量,从所述扫描波束中选择下行波束。
根据本公开实施例的第二方面,提供一种波束确定装置,其中,应用于终端,所述装置包括:第一确定模块、第二确定模块、接收模块和选择模块,其中,
所述第一确定模块,配置为确定与基站进行上行通信的第一波束;
所述第二确定模块,配置为根据波束偏移参数,确定所述终端的扫描波束;其中,所述扫描波束包括:所述第一波束,及与所述第一波束之间的偏移量在所述波束偏移参数指示的波束偏移范围内的第二波束;
所述接收模块,配置为在所述扫描波束上,接收所述基站发送的参考信号;
所述选择模块,配置为根据所述参考信号的接收质量,从所述扫描波束中选择下行波束。
根据本公开实施例的第三方面,提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如第一方面所述波束确定方法的步骤。
本公开实施例提供的波束确定方法、装置和通信设备。终端确定与基站进行上行通信的第一波束;根据波束偏移参数,确定所述终端的扫描波束;其中,所述扫描波束包括:所述第一波束,及与所述第一波束之间的偏移量在所述波束偏移参数指示的波束偏移范围内的第二波束;在所述扫描波束上,接收所述基站发送的参考信号;根据所述参考信号的接收质量,从所述扫描波束中选择下行波束。如此,由终端基于每个扫描波束的参考 信号的接收情况,可以确定下行质量最优的下行波束。一方面,基于波束偏移参数确定扫描波束,不再逐个扫描基站的所有的用于下行数据的波束,减少扫描波束的数量,进而减少扫描时间,提高确定下行波束的效率。另一方面,减少终端采用以为的质量最优的行波束进行下行传输导致的信号质量差的现象。采用本申请实施例提供的技术方案可以提高传输质量,进而减小终端由于传输质量差,产生重传等情况引起的额外电量消耗。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种通信系统的结构示意图;
图2是根据一示例性实施例示出的下行波束确定示意图;
图3是根据一示例性实施例示出的一种波束确定方法的流程示意图;
图4是根据一示例性实施例示出的一种下行波束确定示意图;
图5是根据一示例性实施例示出的另一种下行波束确定示意图;
图6是根据一示例性实施例示出的又一种下行波束确定示意图;
图7是根据一示例性实施例示出的一种波束确定装置组成结构框图;
图8是根据一示例性实施例示出的一种用于波束确定的装置的框图。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述 的、本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端11以及若干个基站12。
其中,终端11可以是指向用户提供语音和/或数据连通性的设备。终端11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(user equipment,UE)。或者,终端11也可以是无人飞行器的设备。或者,终端11也可以是 车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和终端11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
本公开实施例涉及的执行主体包括但不限于:采用蜂窝移动通信技术进行通信的终端以及基站等。
本公开实施例的一种应用场景为,由于终端设计的复杂性和局限性,上行波束和下行波束很难保证完全的互易。在实际应用中,终端通过波束互易选择的波束往往并非最佳波束,甚至选择了比较差的波束,如图2中所示,终端通过上行波束互易性选择的下行波束2并非最佳波束方向,而波束1为最佳方向的波束。这样,不仅通信的质量无法保证,而且会造成终端不必要的耗电。
如图3所示,本示例性实施例提供一种波束确定方法,可以应用于无线通信的终端中,波束确定方法可以包括:
步骤301:确定与基站进行上行通信的第一波束;
步骤302:根据波束偏移参数,确定终端的扫描波束;其中,扫描波束包括:第一波束,及与第一波束之间的偏移量在波束偏移参数指示的波束 偏移范围内的第二波束;
步骤303:在扫描波束上,接收基站发送的参考信号;
步骤304:根据参考信号的接收质量,从扫描波束中选择下行波束。
这里,无线通信可以是采用时分双工模式(TDD,Time-division Duplex)技术的蜂窝移动通信,也可以是采用频分双工模式(FDD,Frequency-division Duplex)技术的蜂窝移动通信。
终端可以是支持波束互易(BC,Beam Correspondence)技术的终端,也可以是不支持波束互易技术的终端。终端可以支持采用波束赋形产生波束进行通信,基站可以支持采用波束赋形产生波束进行通信。
第一波束可以是基站与终端当前进行上行通信的上行波束,或者,也可以是基站与终端双方预定的波束;或者还可以是基站基于终端在多个波束发送的参考信号选择的最佳信号质量的波束。
扫描波束可以是终端从基站的所有下行波束中选择的备选下行波束。扫描波束可以包括第一波束和第二波束。扫描波束可以是终端在和基站在通信过程中,通过波束赋形产生的一个以上的波束。扫描波束包含的不同的波束,具有不同的波束方向。扫描波束的数量可以小于或等于基站所有的用于下行数据的波束。
第二波束可以以第一波束为基准,根据波束偏移参数来确定。波束偏移参数可以通过通信协议约定,也可以由终端更具自身天线特性确定。扫描波束可以有一个或多个。波束偏移参数可以用于指示第二波束相对第一波束的波束偏移范围,例如,偏移的角度等。
示例性的,波束偏移参数指示的波束偏移范围可以是偏移的角度,以偏移的角度是30度为例,扫描波束包括第一波束以及在第一波束两侧各30度范围内第二波束。
基站可以在所有的用于下行数据的波束上发送参考信号供终端接收。 终端可以在每个扫描波束上,分别接收基站发送的参考信号。终端可以确定的每个扫描波束上接收参考信号,并根据接收的参考信号的信号质量,确定终端后续接收下行数据的下行波束。
示例性的,终端可以比较各扫描波束的参考信号的误码率,将误码率最小的扫描波束作为下行波束。
如此,由终端基于每个扫描波束的参考信号的接收情况,可以确定下行质量最优的下行波束。一方面,基于波束偏移参数确定扫描波束,不再逐个扫描基站的所有的用于下行数据的波束,减少扫描波束的数量,进而减少扫描时间,提高确定下行波束的效率。另一方面,减少终端采用以为的质量最优的行波束进行下行传输导致的信号质量差的现象。采用本申请实施例提供的技术方案可以提高传输质量,进而减小终端由于传输质量差,产生重传等情况引起的额外电量消耗。
在一个实施例中,波束偏移参数包括:波束编号偏移量;第二波束为:波束编号与第一波束的波束编号之间偏移量小于或等于波束编号偏移量的波束。
这里,终端通过波束赋形的波束都具有对应的波束编号,波束编号偏移量可以是与第一波束相邻,并且编号连续的第二波束的数量。
示例性的,波束偏移参数指示的波束偏移范围可以是波束编号偏移量,以波束编号偏移量是2为例,扫描波束包括第一波束以及在第一波束两侧各两个第二波束。
通过波束编号偏移量确定扫描波束,可以减少终端扫描波束的数量,进而减少扫描时间,提高确定下行波束的效率。
在一个实施例中,第二波束位于第一波束的第一侧和/或第二侧,其中,第一侧不同于第二侧。
第二波束可以位于第一波束的单侧或两侧。
示例性的,如图4所示,第二波束位于第一波束的第一侧和第二侧,波束i为第一波束,波束编号偏移量为X,即终端和基站可以将波束i以及波束i两侧波束编号偏移量在X以内的波束作为扫描波束。其中,X可以是0或1、2、3等正整数。以X=2为例,波束i-2、波束i-1、波束i+1和波束i+2四个波束的波束编号相对波束i的波束偏移量在X范围内,因此,可以将波束i-2、波束i-1、波束i+1和波束i+2确定为第二波束。
示例性的,如图5所示,第二波束位于第一波束的第一侧,波束i为第一波束,波束编号偏移量为X,即终端和基站可以将波束i以及波束i第一侧波束编号偏移量在X以内的波束作为扫描波束。其中,X可以是0或1、2、3等正整数。以X=2为例,波束i-2和波束i-1两个波束的波束编号相对波束i的波束偏移量在X范围内,因此,可以将波束i-2和波束i-1确定为第二波束。
示例性的,如图6所示,第二波束位于第一波束的第二侧,波束i为第一波束,波束编号偏移量为X,即终端和基站可以将波束i以及波束i第二侧波束编号偏移量在X以内的波束作为扫描波束。其中,X可以是0或1、2、3等正整数。以X=2为例,波束i+2和波束i+1两个波束的波束编号相对波束i的波束偏移量在X范围内,因此,可以将波束i+2和波束i+1确定为第二波束。
在一个实施例中,波束偏移参数指示的波束偏移范围,是基于终端的天线的上行最大增益方向和下行最大增益方向确定的。
由于终端的天线在上行最大增益方向和下行最大增益方向上具有差异,因此,基于上行波束确定下行波束时,最优的下行波束方向与上行波束的方向不完全一致。
可以基于上行最大增益方向和下行最大增益方向,确定在上行最大增益方向和下行最大增益方向之间具有波束的数量,基于该数量确定波束偏 移参数指示的波束偏移范围。
示例性的,上行最大增益方向和下行最大增益方向之间可以具有两个波束,因此,可以确定波束偏移参数指示波束偏移数量为2。
以终端的天线的上行最大增益方向和下行最大增益方向的差异作为确定波束偏移范围的依据,可以提高波束偏移范围估计的准确性,进而缩小扫描波束的范围。
在一个实施例中,步骤301可以包括:接收基站发送的上行波束指示信息,根据上行波束指示信息,确定第一波束。
这里,上行波束可以由基站确定,基站可以扫描终端通过波束赋形产生的多个备选的上行波束。可以将接收信号最佳的备选上行波束确定为用于与终端通信的上行波束,并通过发送下行波束指示信息向终端指示该上行波束。
终端根据接收到上行波束指示信息确定基站选择的上行行波束,并通过该上行行波束向基站上行数据。
在一个实施例中,步骤304可以包括至少以下之一:
将信道状态信息参考信号(CSI-RS,Channel State information Reference signal)的信号强度最强的扫描波束,确定为下行波束;
将同步信号块(SSB,Synchronization Signal Block)信号的信号强度最强的扫描波束,确定为下行波束。
这里,下行波束可以上终端从多个扫描波束中确定的。
终端可以扫描各基站通过各扫描波束发送的SSB,确定下行接收的最佳的扫描波束作为下行波束。这里,确定下行接收的最佳的扫描波束的方法可以包括:测量各备选下行波束SSB的信号接收强度,将SSB信号接收强度最强的扫描波束确定为下行波束。这里,接收强度可以是参考信号接收强度(RSRP,Reference Signal Receiving Power)。
终端还可以扫描各基站通过各扫描波束发送的CSI-RS,确定下行接收的最佳的扫描波束作为下行波束。这里,确定下行接收的最佳的扫描波束的方法可以包括:测量各扫描波束CSI-RS的信号接收强度,将CSI-RS信号接收强度最强的扫描波束确定为下行波束。这里,接收强度可以是RSRP。
在一个实施例中,波束确定方法可以包括:发送用于指示下行波束的下行波束指示信息。
终端确定下行波束后,可以通过下行波束指示信息向基站指示该确定的下行波束。
基站根据接收到下行波束指示信息确定终端选择的下行波束,并通过该下行波束向终端下行数据。
本具体示例提供的波束确定方法的具体步骤如下:
终端在下行波束调整(Down Link Beam Adjustment)过程中,无论终端是否支持波束互易(beam correspondence),终端在可能的波束(Beam)上扫描基站发过来的CSI-RS和/或SSB,可以将最大RSRP对应的波束确定为下行波束。如图3所示。
这里,可能的波束包括:与上行波束偏差X范围内的波束。例如上行波束为波束i,则可能的波束指的是波束i-X到波束i+X范围内的波束。其中X为由于终端设计导致的上行波束的波束偏差量。该值可由终端根据测试情况给出。终端设计导致的上行波束的波束偏差量X可由于频带或者频点的不同而不同。
例1:
一个具有波束互易能力的终端在执行下行波束调整过程时,假如此时终端上行波束为波束i,终端只需在可能波束上扫描基站发过来的CSI-RS和/或SS block信号,选择信道质量最好的波束为下行波束。可能的波束指的是波束i-X到波束i+X范围内的波束。其中X为由于终端设计导致的上 行波束的最大偏差。该值可由终端根据测试情况给出,具体测试可根据上下行同一条波束上最大偏差来确定。例如X=2,则可能的波束为:波束i-2,波束i-1,波束i,波束i+1,波束i+2。具体如图4所示。终端设计导致的上行波束的最大偏差X可依据频段或者频点的不同而不同。
例2:
一个不具有波束互易能力的终端在执行下行波束调整过程时,假如此时终端上行波束为波束i,虽然该终端不具有波束互易能力能力,但是依然可利用本实施例提出的方法,终端只在可能波束上扫描基站发过来的CSI-RS和/或SSblock信号,选择信道质量最好的波束为下行波束。可能的波束指的是波束i-X到波束i+X范围内的波束,其中i与终端上行波束的波束号一致。其中X为由于终端设计导致的上行波束的最大偏差。该值可由终端根据测试情况给出,具体测试可根据上下行同一条波束上最大偏差来确定。例如X=2,则可能的波束为:波束i-2,波束i-1,波束i,波束i+1,波束i+2。具体如图4所示。终端设计导致的上行波束的最大偏差X可依据频段或者频点的不同而不同。
例3:
在另一个实施例中,如果终端设计导致的上行波束的最大偏差X,在所有的波束上都是正偏差,即上行波束为波束i,选择用于扫描的波束为波束j,如j-i≥0。或者在所有的波束上都是负偏差,即:即上行波束为波束i,选择用于扫描的波束为波束j,如j-i≤0。确定可能的波束时,如果是都是正偏差,则可能的波束为:波束i到波束i+X。相反,如果都是负偏差,则可能的波束为:波束i-X到波束i。
上述方法不仅可以用在TDD系统中,在FDD系统中也同样适用。
本发明实施例还提供了一种波束确定装置,应用于无线通信的终端,图8为本发明实施例提供的波束确定装置100的组成结构示意图;如图8 所示,装置100包括:装置包括:第一确定模块110、第二确定模块120、接收模块130和选择模块140,其中,
第一确定模块110,配置为确定与基站进行上行通信的第一波束;
第二确定模块120,配置为根据波束偏移参数,确定终端的扫描波束;其中,扫描波束包括:第一波束,及与第一波束之间的偏移量在波束偏移参数指示的波束偏移范围内的第二波束;
接收模块130,配置为在扫描波束上,接收基站发送的参考信号;
选择模块140,配置为根据参考信号的接收质量,从扫描波束中选择下行波束。
在一个实施例中,波束偏移参数包括:波束编号偏移量;
第二波束为:波束编号与第一波束的波束编号之间偏移量小于或等于波束编号偏移量的波束。
在一个实施例中,第二波束位于第一波束的第一侧和/或第二侧,其中,第一侧不同于第二侧。
在一个实施例中,波束偏移参数指示的波束偏移范围,是基于终端的天线的上行最大增益方向和下行最大增益方向确定的。
在一个实施例中,第一确定模块110,包括:
接收子模块111,配置为接收基站发送的上行波束指示信息,
确定子模块112,配置为根据上行波束指示信息,确定第一波束。
在一个实施例中,选择模块140,包括至少以下之一:
第一选择子模块141,配置为将CSI-RS的信号强度最强的扫描波束,确定为下行波束;
第二选择子模块142,配置为将SSB信号的信号强度最强的扫描波束,确定为下行波束。
在一个实施例中,装置100还包括:
发送模块150,配置为发送用于指示下行波束的下行波束指示信息。
在示例性实施例中,第一确定模块110、第二确定模块120、接收模块130、选择模块140和发送模块150等可以被一个或多个中央处理器(CPU,Central Processing Unit)、图形处理器(GPU,Graphics Processing Unit)、基带处理器(BP,baseband processor)、应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。
图8是根据一示例性实施例示出的一种用于波束确定装置3000的框图。例如,装置3000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,装置3000可以包括以下一个或多个组件:处理组件3002,存储器3004,电源组件3006,多媒体组件3008,音频组件3010,输入/输出(I/O)的接口3012,传感器组件3014,以及通信组件3016。
处理组件3002通常控制装置3000的整体操作,诸如与显示,电话呼叫,波束确定,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件3008和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在设备3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由 任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件3006为装置3000的各种组件提供电力。电源组件3006可以包括电源管理系统,一个或多个电源,及其他与为装置3000生成、管理和分配电力相关联的组件。
多媒体组件3008包括在装置3000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件3008包括一个前置摄像头和/或后置摄像头。当设备3000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件3010被配置为输出和/或输入音频信号。例如,音频组件3010包括一个麦克风(MIC),当装置3000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器3004或经由通信组件3016发送。在一些实施例中,音频组件3010还包括一个扬声器,用于输出音频信号。
I/O接口3012为处理组件3002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件3014包括一个或多个传感器,用于为装置3000提供各个方面的状态评估。例如,传感器组件3014可以检测到设备3000的打开/关闭状态,组件的相对定位,例如组件为装置3000的显示器和小键盘,传感器组件3014还可以检测装置3000或装置3000一个组件的位置改变,用户与装置3000接触的存在或不存在,装置3000方位或加速/减速和装置3000的温度变化。传感器组件3014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件3014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件3014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件3016被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件3016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件3016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器3004,上述指令可由装置3000的处理器3020执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设 备等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明实施例的其它实施方案。本申请旨在涵盖本发明实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明实施例的一般性原理并包括本公开实施例未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明实施例的范围仅由所附的权利要求来限制。
Claims (15)
- 一种波束确定方法,其中,应用于终端,所述方法包括:确定与基站进行上行通信的第一波束;根据波束偏移参数,确定所述终端的扫描波束;其中,所述扫描波束包括:所述第一波束,及与所述第一波束之间的偏移量在所述波束偏移参数指示的波束偏移范围内的第二波束;在所述扫描波束上,接收所述基站发送的参考信号;根据所述参考信号的接收质量,从所述扫描波束中选择下行波束。
- 根据权利要求1所述的方法,其中,所述波束偏移参数包括:波束编号偏移量;所述第二波束为:波束编号与所述第一波束的波束编号之间偏移量小于或等于所述波束编号偏移量的波束。
- 根据权利要求2所述的方法,其中,所述第二波束位于所述第一波束的第一侧和/或第二侧,其中,所述第一侧不同于所述第二侧。
- 根据权利要求1至3任一项所述的方法,其中,所述波束偏移参数指示的波束偏移范围,是基于所述终端的天线的上行最大增益方向和下行最大增益方向确定的。
- 根据权利要求1至3任一项所述的方法,其中,所述确定与基站进行上行通信的第一波束,包括:接收所述基站发送的上行波束指示信息,根据所述上行波束指示信息,确定所述第一波束。
- 根据权利要求1至3任一项所述的方法,其中,根据所述参考信号的接收质量,从所述扫描波束中选择下行波束,包括至少以下之一:将信道状态信息参考信号CSI-RS的信号强度最强的所述扫描波束,确定为所述下行波束;将同步信号块SSB信号的信号强度最强的所述扫描波束,确定为所述下行波束。
- 根据权利要求1至3任一项所述的方法,其中,所述方法还包括:发送用于指示所述下行波束的下行波束指示信息。
- 一种波束确定装置,其中,应用于终端,所述装置包括:第一确定模块、第二确定模块、接收模块和选择模块,其中,所述第一确定模块,配置为确定与基站进行上行通信的第一波束;所述第二确定模块,配置为根据波束偏移参数,确定所述终端的扫描波束;其中,所述扫描波束包括:所述第一波束,及与所述第一波束之间的偏移量在所述波束偏移参数指示的波束偏移范围内的第二波束;所述接收模块,配置为在所述扫描波束上,接收所述基站发送的参考信号;所述选择模块,配置为根据所述参考信号的接收质量,从所述扫描波束中选择下行波束。
- 根据权利要求8所述的装置,其中,所述波束偏移参数包括:波束编号偏移量;所述第二波束为:波束编号与所述第一波束的波束编号之间偏移量小于或等于所述波束编号偏移量的波束。
- 根据权利要求9所述的装置,其中,所述第二波束位于所述第一波束的第一侧和/或第二侧,其中,所述第一侧不同于所述第二侧。
- 根据权利要求8至10任一项所述的装置,其中,所述波束偏移参数指示的波束偏移范围,是基于所述终端的天线的上行最大增益方向和下行最大增益方向确定的。
- 根据权利要求8至10任一项所述的装置,其中,所述第一确定模块,包括:接收子模块,配置为接收所述基站发送的上行波束指示信息,确定子模块,配置为根据所述上行波束指示信息,确定所述第一波束。
- 根据权利要求8至10任一项所述的装置,其中,所述选择模块,包括至少以下之一:第一选择子模块,配置为将信道状态信息参考信号CSI-RS的信号强度最强的所述扫描波束,确定为所述下行波束;第二选择子模块,配置为将同步信号块SSB信号的信号强度最强的所述扫描波束,确定为所述下行波束。
- 根据权利要求8至10任一项所述的装置,其中,所述装置还包括:发送模块,配置为发送用于指示所述下行波束的下行波束指示信息。
- 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至7任一项所述波束确定方法的步骤。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/081659 WO2021189417A1 (zh) | 2020-03-27 | 2020-03-27 | 波束确定方法、装置和通信设备 |
CN202080000603.5A CN113748617B (zh) | 2020-03-27 | 2020-03-27 | 波束确定方法、装置和通信设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/081659 WO2021189417A1 (zh) | 2020-03-27 | 2020-03-27 | 波束确定方法、装置和通信设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021189417A1 true WO2021189417A1 (zh) | 2021-09-30 |
Family
ID=77889862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/081659 WO2021189417A1 (zh) | 2020-03-27 | 2020-03-27 | 波束确定方法、装置和通信设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113748617B (zh) |
WO (1) | WO2021189417A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108476045A (zh) * | 2016-01-14 | 2018-08-31 | 三星电子株式会社 | 基于波束形成的系统中的波束追踪和波束反馈操作的系统、方法和装置 |
US20180288757A1 (en) * | 2017-04-03 | 2018-10-04 | Qualcomm Incorporated | Timer based ue side beam sweeping for quick link blockage recovery |
CN110419174A (zh) * | 2017-03-22 | 2019-11-05 | 瑞典爱立信有限公司 | 用于在采用波束成形时进行波束跟踪的方法、网络节点和无线终端 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108633006B (zh) * | 2017-03-17 | 2021-03-19 | 电信科学技术研究院 | 一种上行发送波束确定方法和装置 |
WO2018204340A1 (en) * | 2017-05-03 | 2018-11-08 | Idac Holding, Inc. | Flexible srs-based uplink beam management |
US20220132325A1 (en) * | 2019-02-02 | 2022-04-28 | Beijing Xiaomi Mobile Software Co., Ltd. | Beam correspondence method and apparatus, user equipment and base station |
-
2020
- 2020-03-27 WO PCT/CN2020/081659 patent/WO2021189417A1/zh active Application Filing
- 2020-03-27 CN CN202080000603.5A patent/CN113748617B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108476045A (zh) * | 2016-01-14 | 2018-08-31 | 三星电子株式会社 | 基于波束形成的系统中的波束追踪和波束反馈操作的系统、方法和装置 |
CN110419174A (zh) * | 2017-03-22 | 2019-11-05 | 瑞典爱立信有限公司 | 用于在采用波束成形时进行波束跟踪的方法、网络节点和无线终端 |
US20180288757A1 (en) * | 2017-04-03 | 2018-10-04 | Qualcomm Incorporated | Timer based ue side beam sweeping for quick link blockage recovery |
Non-Patent Citations (2)
Title |
---|
INTERDIGITAL, INC.: "Remaining Issues on Beam Management", 3GPP DRAFT; R1-1800734 BEAM MANAGEMENT_FINAL, vol. RAN WG1, 13 January 2018 (2018-01-13), Vancouver, Canada, pages 1 - 6, XP051385049 * |
INTERDIGITAL, INC.: "Remaining Issues on Beam Management", 3GPP DRAFT; R1-1807014 BM_FINAL, vol. RAN WG1, 12 May 2018 (2018-05-12), Busan, Korea, pages 1 - 6, XP051462840 * |
Also Published As
Publication number | Publication date |
---|---|
CN113748617B (zh) | 2024-01-30 |
CN113748617A (zh) | 2021-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111095857B (zh) | 无线通信方法、装置及存储介质 | |
US20240007248A1 (en) | Method for information transmission and method for parameter determination, communication device, and non-transitory computer-readable storage medium | |
EP4145864A1 (en) | Prs configuration processing method and apparatus, and communication device and storage medium | |
WO2021184217A1 (zh) | 信道状态信息测量方法、装置及计算机存储介质 | |
CN112236977B (zh) | 参数配置方法、装置、通信设备和存储介质 | |
CN113455076B (zh) | 资源配置方法、装置、通信设备和存储介质 | |
WO2021243723A1 (zh) | 位置确定方法、装置、通信设备及存储介质 | |
WO2022027473A1 (zh) | 小区测量处理方法、装置、通信设备及存储介质 | |
WO2021174510A1 (zh) | 无线网络接入方法、装置、通信设备及存储介质 | |
WO2021163852A1 (zh) | 波束确定方法、装置和通信设备 | |
CN114258700B (zh) | 信息传输方法、装置、通信设备和存储介质 | |
WO2022011577A1 (zh) | 信息传输方法、装置、通信设备和存储介质 | |
WO2022061717A1 (zh) | 生效时间确定方法、装置、通信设备和存储介质 | |
EP4181578A1 (en) | Information transmission method and apparatus, communication device, and storage medium | |
WO2021142662A1 (zh) | 资源配置方法、装置、通信设备及存储介质 | |
US20230009059A1 (en) | Communication processing method and device, and computer storage medium | |
US20230075773A1 (en) | Information transmission method and apparatus, and communication device and storage medium | |
WO2023050039A1 (zh) | 信息传输方法、装置、通信设备和存储介质 | |
WO2022151387A1 (zh) | 信息动态指示方法及装置、网络设备、用户设备及存储介质 | |
WO2021189417A1 (zh) | 波束确定方法、装置和通信设备 | |
WO2021223235A1 (zh) | 数据传输处理方法、装置、通信设备及存储介质 | |
US20220408469A1 (en) | Downlink control information configuration method and apparatus, and communication device and storage medium | |
WO2023197329A1 (zh) | 定位方法、装置、通信设备和存储介质 | |
WO2022147726A1 (zh) | 波束扫描的方法、装置、通信设备及存储介质 | |
CN114450901B (zh) | 通信方法、装置、通信设备和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20927665 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20927665 Country of ref document: EP Kind code of ref document: A1 |