WO2023004703A1 - 数据传输方法及通信装置 - Google Patents

数据传输方法及通信装置 Download PDF

Info

Publication number
WO2023004703A1
WO2023004703A1 PCT/CN2021/109344 CN2021109344W WO2023004703A1 WO 2023004703 A1 WO2023004703 A1 WO 2023004703A1 CN 2021109344 W CN2021109344 W CN 2021109344W WO 2023004703 A1 WO2023004703 A1 WO 2023004703A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
information
data
message
terminal device
Prior art date
Application number
PCT/CN2021/109344
Other languages
English (en)
French (fr)
Inventor
戴振华
常俊仁
高冬雨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/109344 priority Critical patent/WO2023004703A1/zh
Priority to CN202180007111.3A priority patent/CN115885567A/zh
Publication of WO2023004703A1 publication Critical patent/WO2023004703A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of communication technologies, and in particular to a data transmission method and a communication device.
  • the normal uplink (NUL) carrier is used to send service data; when the terminal device is in the far point area of the cell, the uplink coverage is limited , using a supplementary uplink (supplementary uplink, SUL) carrier to send service data.
  • NUL normal uplink
  • SUL supplementary uplink
  • the channels of the terminal equipment are all used to send NUL carriers, and the terminal equipment moves from the near-point area to the far-point area, even if the terminal equipment supports the uplink and downlink decoupling technology, the uplink out-of-sync will cause call drop, which will affect the business continuity.
  • the present application provides a data transmission method and a communication device, which can ensure service continuity.
  • an embodiment of the present application provides a data transmission method, and the method is applied to a terminal device configured with at least two uplink radio frequency channels.
  • the method includes: a terminal device sends first data on a first carrier.
  • the first carrier includes at least one common uplink NUL carrier, and the first carrier occupies all of the at least two channels.
  • the terminal device determines that the signal quality has deteriorated, and initiates random access on the second carrier.
  • the second carrier belongs to the supplementary uplink SUL carrier and occupies at least one of the at least two channels.
  • the terminal device receives the first message on the downlink carrier.
  • the first message indicates at least one of the following: reduce the number of the first carrier, or reduce the number of MIMO layers supported by the first carrier.
  • the terminal device sends the second data on the second carrier.
  • the second data is data sent after the first data.
  • the terminal device can also send SUL carriers on at least one uplink radio frequency channel when it is determined that the signal quality is degraded, so as to initiate a random access on the SUL carrier. input, so that the uplink synchronization between the terminal equipment and the network equipment is realized.
  • the terminal device receives the first message from the network device to instruct the terminal device to reduce the uplink radio frequency channel used for sending the NUL carrier. In this way, the terminal device can have an idle uplink radio frequency channel to continue sending service data, thereby avoiding the phenomenon of call drop due to uplink out-of-sync, so as to maintain service continuity.
  • the first message includes first information.
  • the first information indicates to modify the configuration of the primary cell, and the configuration indicated by the first information is used to reduce the number of MIMO layers supported by the NUL carrier of the primary cell.
  • the first carrier includes the NUL carrier of the primary cell. Since the number of MIMO layers supported by the NUL carrier of the primary cell in the first carrier decreases, correspondingly, the number of uplink radio frequency channels occupied by the first carrier decreases. In this way, some uplink radio frequency channels are idle, and the terminal device can use the idle uplink radio frequency channels to send uplink service data.
  • the first information is carried in the field of modifying the configuration of the primary cell in the first message.
  • the first message includes the second information.
  • the second information indicates to modify the configuration of the secondary cell
  • the configuration indicated by the second information is used to reduce the number of MIMO layers supported by the NUL carrier of the secondary cell
  • the first carrier includes the NUL carrier of the secondary cell. Since the number of MIMO layers supported by the NUL carrier of the secondary cell in the first carrier is reduced, correspondingly, the number of uplink radio frequency channels occupied by the first carrier is reduced. In this way, some uplink radio frequency channels are idle, and the terminal device can use the idle uplink radio frequency channels to send uplink service data.
  • the second information is carried in the modified secondary cell configuration field of the first message.
  • the first message includes third information.
  • the third information indicates to delete the configuration of the secondary cell, and the configuration indicated by the third information is used to delete the NUL carrier of the secondary cell, and the first carrier includes the NUL carrier of the secondary cell. Since the number of NUL carriers in the first carrier decreases, correspondingly, the number of uplink radio frequency channels occupied by the first carrier decreases. In this way, some uplink radio frequency channels are idle, and the terminal device can use the idle uplink radio frequency channels to send uplink service data.
  • the third information is carried in the configuration field of deleting the secondary cell in the first message.
  • the first message is a radio resource control RRC reconfiguration message, so that the network device instructs the terminal device to reduce the number of uplink radio frequency channels used for sending NUL carriers through the RRC reconfiguration message.
  • the second carrier belongs to the SUL carrier of the primary cell.
  • the data transmission method in the embodiment of the present application further includes: the terminal device sends the third data on the third carrier.
  • the sum of the number of channels occupied by the third carrier and the number of channels occupied by the second carrier is less than or equal to the number of channels occupied by the first carrier.
  • the third data is data transmitted after the first data.
  • the terminal device can send uplink service data on a carrier other than the second carrier, such as the third carrier, so as to improve throughput.
  • the third carrier includes at least one of the following: a NUL carrier of the primary cell, or a SUL carrier of the secondary cell.
  • the first message further includes configuration information of the SUL carrier.
  • the configuration information of the SUL carrier is used for the terminal device to send the second data.
  • the configuration information carried in the first message is dedicated configuration information of the SUL carrier.
  • the network device not only provides the terminal device with dedicated configuration information of the SUL carrier through a message, but also instructs the terminal device to reduce the number of uplink radio frequency channels used for the NUL carrier, so as to save signaling overhead.
  • the embodiment of the present application provides a data transmission method, and the method is applied to a network device.
  • the method includes: a network device receiving first data on a first carrier.
  • the first carrier includes at least one common uplink NUL carrier.
  • the network device performs random access on the second carrier.
  • the second carrier belongs to the supplementary uplink SUL carrier.
  • the network device sends the first message on the downlink carrier.
  • the first message indicates at least one of the following: reduce the number of the first carrier, or reduce the number of MIMO layers supported by the first carrier.
  • the network device receives second data on a second carrier. Wherein, the second data is data received after the first data.
  • the first message includes first information.
  • the first information indicates to modify the configuration of the primary cell, and the configuration indicated by the first information is used to reduce the number of MIMO layers supported by the NUL carrier of the primary cell.
  • the first carrier includes the NUL carrier of the primary cell.
  • the first information is carried in the field of modifying the configuration of the primary cell in the first message.
  • the first message includes the second information.
  • the second information indicates to modify the configuration of the secondary cell, and the configuration indicated by the second information is used to reduce the number of MIMO layers supported by the NUL carrier of the secondary cell.
  • the first carrier includes a NUL carrier of the secondary cell.
  • the second information is carried in the modified secondary cell configuration field of the first message.
  • the first message includes third information.
  • the third information indicates the configuration of deleting the secondary cell, and the configuration indicated by the third information is used to delete the NUL carrier of the secondary cell.
  • the first carrier includes a NUL carrier of the secondary cell.
  • the third information is carried in the configuration field of deleting the secondary cell in the first message.
  • the first message is a radio resource control RRC reconfiguration message.
  • the second carrier belongs to the SUL carrier of the primary cell.
  • the data transmission method in this embodiment of the present application further includes: the network device receives third data on a third carrier.
  • the sum of the number of channels occupied by the third carrier and the number of channels occupied by the second carrier is less than or equal to the number of channels occupied by the first carrier.
  • the third data is data received after the first data.
  • the third carrier includes at least one of the following: a NUL carrier of the primary cell, or a SUL carrier of the secondary cell.
  • the first message further includes configuration information of the SUL carrier.
  • the configuration information of the SUL carrier is used for the terminal device to send the second data.
  • the embodiment of the present application provides a communication device, which can be the terminal device in the above first aspect or any possible design of the first aspect, or a chip that realizes the functions of the above terminal device; the communication
  • the device includes corresponding modules, units, or means (means) for realizing the above methods, and the modules, units, or means can be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a receiving unit and a sending unit.
  • the sending unit is used for sending the first data on the first carrier.
  • the first carrier includes at least one common uplink NUL carrier, and the first carrier occupies all of the at least two channels.
  • the sending unit is also used for initiating random access on the second carrier.
  • the second carrier belongs to the supplementary uplink SUL carrier and occupies at least one of the at least two channels.
  • the receiving unit is used for receiving the first message on the downlink carrier.
  • the first message indicates at least one of the following: reduce the number of the first carrier, or reduce the number of MIMO layers supported by the first carrier.
  • the sending unit is also used for sending second data on the second carrier. Wherein, the second data is data sent after the first data.
  • the first message includes first information.
  • the first information indicates to modify the configuration of the primary cell, and the configuration indicated by the first information is used to reduce the number of MIMO layers supported by the NUL carrier of the primary cell.
  • the first carrier includes the NUL carrier of the primary cell.
  • the first information is carried in the field of modifying the configuration of the primary cell in the first message.
  • the first message includes the second information.
  • the second information indicates to modify the configuration of the secondary cell, and the configuration indicated by the second information is used to reduce the number of MIMO layers supported by the NUL carrier of the secondary cell.
  • the first carrier includes a NUL carrier of the secondary cell.
  • the second information is carried in the modified secondary cell configuration field of the first message.
  • the first message includes third information.
  • the third information indicates to delete the configuration of the secondary cell, and the configuration indicated by the third information is used to delete the NUL carrier of the secondary cell, and the first carrier includes the NUL carrier of the secondary cell.
  • the third information is carried in the configuration field of deleting the secondary cell in the first message.
  • the first message is a radio resource control RRC reconfiguration message.
  • the second carrier belongs to the SUL carrier of the primary cell.
  • the sending unit is further configured to send third data on a third carrier.
  • the sum of the number of channels occupied by the third carrier and the number of channels occupied by the second carrier is less than or equal to the number of channels occupied by the first carrier.
  • the third data is data transmitted after the first data.
  • the third carrier includes at least one of the following: a NUL carrier of the primary cell, or a SUL carrier of the secondary cell.
  • the first message further includes configuration information of the SUL carrier.
  • the configuration information of the SUL carrier is used for the communication device to send the second data.
  • the embodiment of the present application provides a communication device, which may be a network device in any possible design of the above-mentioned second aspect or the second aspect, or a chip that realizes the functions of the above-mentioned network device; the communication
  • the device includes corresponding modules, units, or means (means) for realizing the above methods, and the modules, units, or means can be implemented by hardware, software, or by executing corresponding software on hardware.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a receiving unit and a sending unit.
  • the receiving unit is used for receiving the first data on the first carrier.
  • the first carrier includes at least one common uplink NUL carrier.
  • the receiving unit is also used for receiving a random access request on the second carrier.
  • the second carrier belongs to the supplementary uplink SUL carrier.
  • the sending unit is used for sending the first message on the downlink carrier.
  • the first message indicates at least one of the following: reduce the number of the first carrier, or reduce the number of MIMO layers supported by the first carrier.
  • the receiving unit is also used for receiving second data on the second carrier. Wherein, the second data is data received after the first data.
  • the first message includes first information.
  • the first information indicates to modify the configuration of the primary cell, and the configuration indicated by the first information is used to reduce the number of MIMO layers supported by the NUL carrier of the primary cell.
  • the first carrier includes the NUL carrier of the primary cell.
  • the first information is carried in the field of modifying the configuration of the primary cell in the first message.
  • the first message includes the second information.
  • the second information indicates to modify the configuration of the secondary cell, and the configuration indicated by the second information is used to reduce the number of MIMO layers supported by the NUL carrier of the secondary cell.
  • the first carrier includes a NUL carrier of the secondary cell.
  • the second information is carried in the modified secondary cell configuration field of the first message.
  • the first message includes third information.
  • the third information indicates the configuration of deleting the secondary cell, and the configuration indicated by the third information is used to delete the NUL carrier of the secondary cell.
  • the first carrier includes a NUL carrier of the secondary cell.
  • the third information is carried in the configuration field of deleting the secondary cell in the first message.
  • the first message is a radio resource control RRC reconfiguration message.
  • the second carrier belongs to the SUL carrier of the primary cell.
  • the receiving unit is further configured to receive third data on a third carrier.
  • the sum of the number of channels occupied by the third carrier and the number of channels occupied by the second carrier is less than or equal to the number of channels occupied by the first carrier.
  • the third data is data received after the first data.
  • the third carrier includes at least one of the following: a NUL carrier of the primary cell, or a SUL carrier of the secondary cell.
  • the first message further includes configuration information of the SUL carrier.
  • the configuration information of the SUL carrier is used for the terminal device to send the second data.
  • the embodiment of the present application provides a communication device, including: a processor and a memory.
  • the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the method executed by the terminal device in any possible design of any aspect or any aspect above.
  • the communication device may be the terminal device in the first aspect or any possible design of the first aspect, or a chip that implements the functions of the terminal device.
  • an embodiment of the present application provides a communication device, including: a processor; the processor is coupled to a memory, and is used to read and execute instructions in the memory, so that the communication device performs any of the above aspects Or a method executed by a terminal device in any possible design of any aspect.
  • the communication device may be the terminal device in the first aspect or any possible design of the first aspect, or a chip that implements the functions of the terminal device.
  • the embodiment of the present application provides a chip, including a logic circuit and an input/output interface.
  • the input and output interface is used to communicate with modules other than the chip, for example, the chip may be a chip that implements the function of the terminal device in the above first aspect or any possible design of the first aspect.
  • the logic circuit is used to run computer programs or instructions to implement the method in the above first aspect or any possible design of the first aspect.
  • the embodiment of the present application provides a communication device, including: a processor and a memory.
  • the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the method performed by the network device in any one of the above-mentioned aspects or any possible design of any aspect.
  • the communication device may be the network device in the above-mentioned second aspect or any possible design of the second aspect, or a chip that implements the functions of the above-mentioned network device.
  • an embodiment of the present application provides a communication device, including: a processor; the processor is coupled to a memory, and is used to read and execute instructions in the memory, so that the communication device performs any of the above aspects Or a method executed by a network device in any possible design of any aspect.
  • the communication device may be the network device in the above-mentioned second aspect or any possible design of the second aspect, or a chip that implements the functions of the above-mentioned network device.
  • the embodiment of the present application provides a chip, including a logic circuit and an input/output interface.
  • the input and output interface is used to communicate with modules other than the chip, for example, the chip may be a chip that implements the network device function in the second aspect or any possible design of the second aspect.
  • the logic circuit is used to run computer programs or instructions to implement the method in the above second aspect or any possible design of the second aspect.
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores instructions, and when it is run on a computer, the computer can execute any one of the above-mentioned aspects. method.
  • the embodiment of the present application provides a computer program product including instructions, which, when run on a computer, enables the computer to execute the method in any one of the above aspects.
  • the embodiment of the present application provides a circuit system, the circuit system includes a processing circuit, and the processing circuit is configured to execute the method according to any one of the foregoing aspects.
  • the embodiment of the present application provides a communication system, where the communication system includes the terminal device and the network device in any one of the foregoing aspects.
  • FIG. 1a is a schematic diagram of the principle of an uplink and downlink decoupling technology provided by an embodiment of the present application
  • FIG. 1b is a schematic flow diagram of a random access provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a communication scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic flow diagram of a data transmission method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a mobile phone provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a network device provided in an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another data transmission method provided by the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • first and second in the specification and drawings of the present application are used to distinguish different objects, or to distinguish different processes for the same object, rather than to describe a specific sequence of objects.
  • the terms “including” and “having” mentioned in the description of the present application and any variations thereof are intended to cover non-exclusive inclusion.
  • a process, method, system, product or device comprising a series of steps or units is not limited to the listed steps or units, but optionally also includes other unlisted steps or units, or optionally also includes Other steps or elements inherent to the process, method, product or apparatus are included.
  • “multiple" includes two or more.
  • words such as “exemplary” or “for example” are used as examples, illustrations or descriptions. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • CA Carrier aggregation
  • Carrier aggregation is to aggregate two or more component carriers (CCs) together to support larger transmission bandwidth, thereby improving the throughput of terminal devices.
  • each carrier unit corresponds to an independent cell.
  • one carrier component can be equivalent to one cell.
  • PCell Primary cell
  • SCell secondary cell
  • the primary cell is the cell where the terminal device performs initial connection establishment, or the cell that performs radio resource control (radio resource control, RRC) connection reestablishment, or the primary cell designated during the handover (handover) process.
  • the primary cell is mainly responsible for the RRC communication with the terminal equipment.
  • the carrier component corresponding to the primary cell may be referred to as a primary component carrier (PCC), and this embodiment of the present application uses the primary component carrier as an example for description.
  • the secondary cell is added during RRC reconfiguration to provide additional radio resources. There is no RRC communication between the secondary cell and the terminal equipment.
  • the carrier component corresponding to the secondary cell may be called a secondary component carrier (SCC).
  • SCC secondary component carrier
  • the embodiment of the present application uses the secondary component carrier as an example for description.
  • step 1 the network device performs step 1 and step 2:
  • Step 1 The network device sends an RRC reconfiguration (RRC Reconfiguration) message to the terminal device.
  • the terminal device receives the RRC Reconfiguration message from the network device.
  • the RRC Reconfiguration message carries the information of adding the configuration of the secondary cell, for example, the information of adding the configuration of the secondary cell includes a secondary cell addition list (SCell To Add Mod List). SCell To Add Mod List indicates the index of the secondary cell to be added.
  • SCell To Add Mod List indicates the index of the secondary cell to be added.
  • Step 2 the terminal device sends an RRC reconfiguration complete (RRC Reconfiguration Complete) message to the network device.
  • the network device receives the RRC Reconfiguration Complete message from the terminal device.
  • the RRC Reconfiguration Complete message indicates that the secondary cell configuration has been added.
  • the serving cell is a cell that provides services for terminal equipment. If the terminal equipment is in the RRC connected state but CA is not configured, the terminal equipment has only one serving cell, that is, the primary cell. If the terminal device is in the RRC connection state and CA is configured, the serving cell set of the terminal device includes the primary cell and all secondary cells.
  • the uplink carrier and the downlink carrier in the same frequency band need to be bound and paired, that is, one uplink carrier corresponds to one downlink carrier, and the uplink and downlink are coupled.
  • LTE long term evolution
  • the uplink coverage in NR frequency band networking may be smaller than the downlink coverage, for example, the uplink coverage of 3.5G time-division duplex (TDD) is 10dB to 15dB lower than the downlink coverage . Therefore, NR breaks the design of uplink and downlink coupling in traditional communication systems, and introduces the design of uplink and downlink decoupling.
  • NR supports configuring multiple uplink carriers in one cell.
  • the carrier of the NR system may be called a normal uplink (NUL) carrier, and the added uplink carrier may be called a supplementary uplink (SUL) carrier.
  • NUL normal uplink
  • SUL supplementary uplink
  • the SUL carrier can be flexibly configured, which can be a carrier in the existing LTE system or a separate uplink carrier.
  • FIG. 1a shows an example in which a 1.8GHz LTE carrier is configured as a SUL carrier of a 3.5GHz NR carrier.
  • the frequency of the 1.8GHz SUL carrier is lower than that of 3.5GHz, and the propagation loss (also (called path loss) is also smaller, which can effectively improve NR uplink coverage, and utilize the existing LTE carrier, saving the operator's overhead.
  • the random access procedure is used to establish a connection between a terminal device and a network device and obtain uplink synchronization.
  • Figure 1b shows the process of a terminal device initiating random access, which specifically includes the following steps:
  • the network device sends a system message to the terminal device.
  • the terminal device receives the system message from the network device.
  • the system message includes public configuration information of the SUL carrier.
  • the public configuration information of the SUL carrier includes frequency point information of the SUL carrier, time alignment timer (time alignment timer, TAT) information, partial bandwidth (bandwidth part, BWP) initial configuration information, and the like.
  • BWP initial configuration information includes basic configuration information of random access channel (random access channel, RACH), physical uplink control channel (physical uplink control channel, PUCCH), physical uplink shared channel (physical uplink shared channel, PUSCH).
  • the basic configuration information of RACH includes root sequence number and physical random access channel (physical random access channel, PRACH) time-frequency information. Wherein, the root sequence number is used to determine the random access preamble.
  • the PRACH time-frequency information is used to indicate the time-frequency resources occupied by the PRACH.
  • the public configuration information of the SUL carrier can also be described as the general configuration information of the SUL carrier. In the embodiment of the present application, the public configuration information of the SUL carrier is taken as an example for introduction.
  • the terminal device sends message 1 (Msg1) to the network device.
  • the network device receives message 1 from the terminal device.
  • Msg1 includes a preamble.
  • the preamble may also be called a random access preamble, a physical random access channel (physical random access channel, PRACH) preamble (PRACH preamble), a random access preamble, a preamble, and the like.
  • the preamble is determined according to the root sequence number in the basic configuration information of the RACH, and is transmitted on the time-frequency resource indicated by the time-frequency information of the PRACH.
  • the terminal device in the process of executing S101, if the terminal device is in the near point area, random access is performed using the PRACH on the NUL carrier. In this case, the terminal device can initiate random access on the PCell NUL carrier. If the terminal equipment is in the remote area, it uses the PRACH on the SUL carrier to perform random access. In this case, the terminal device initiates random access on the PCell SUL carrier.
  • Msg1 can tell the network device that there is a random access request, and at the same time make the network device estimate the transmission delay between itself and the terminal device, and use the transmission delay to determine a timing advance (TA).
  • TA timing advance
  • contention-based and non-contention-based there are two types of random access: contention-based and non-contention-based.
  • the contention-based random access process the time-frequency resource and preamble occupied by PRACH are selected by the terminal equipment, and different terminal equipment may select the same PRACH time-frequency resource and the same preamble at the same time, resulting in conflicts.
  • a conflict resolution mechanism ie S103 and S104 is needed to solve this problem. That is to say, the contention-based random access procedure includes S101 to S104.
  • the terminal equipment already has the unique cell-radio network temporary identifier (C-RNTI) in the accessed cell, and the time-frequency resource and preamble occupied by the PRACH
  • C-RNTI unique cell-radio network temporary identifier
  • the code is specified by the network device, so as to ensure that it will not conflict with other terminal devices, and there is no need for a conflict resolution mechanism (that is, no need for S103 and S104). That is to say, the non-contention based random access procedure includes S101 and S102.
  • the network device sends a message 2 (Msg2) to the terminal device.
  • the terminal device receives message 2 from the network device.
  • Msg2 may be a random access response (random access response, RAR).
  • Msg2 may include TA, which is the TA calculated by the network device for the terminal device according to Msg1.
  • the terminal device sends a message 3 (Msg3) to the network device.
  • the network device receives message 3 from the terminal device.
  • the terminal device may use the TA in Msg2 to send Msg3 to the network device.
  • Msg3 includes an important information: the contention resolution identity of the terminal equipment (UE contention resolution identity), which will be used for conflict resolution in S104.
  • Msg1 is sent through the PCell NUL carrier
  • Msg3 is also sent through the PCell NUL carrier.
  • Msg1 is sent through the PCell SUL carrier
  • Msg3 is also sent through the PCell SUL carrier.
  • the network device sends a message 4 (Msg4) to the terminal device.
  • the terminal device receives message 4 from the network device.
  • message 4 indicates the competition result of the random access of the terminal equipment.
  • Msg4 carries the conflict resolution identifier of the terminal device to designate the terminal device that succeeds in conflict resolution, and other terminal devices that do not succeed in conflict resolution will re-initiate random access.
  • the terminal device and the network device can realize uplink synchronization with the network device through the above random access process.
  • the network device may also perform S105:
  • the network device sends an RRC reconfiguration message to the terminal device.
  • the terminal device receives the RRC reconfiguration message from the network device.
  • the RRC reconfiguration message includes dedicated configuration information of the SUL carrier.
  • the dedicated configuration information of the SUL carrier includes the specific configuration of the PUCCH, PUSCH, and sounding reference signal (SRS) of the SUL, such as different format configurations of the PUCCH, scrambling codes, pilots, and codebooks of the PUSCH, etc. SRS configuration, etc.
  • the public configuration information of the SUL carrier can be used by the terminal device to initiate random access, see the introduction of S100 and S101 for details.
  • the public configuration information of the SUL carrier and the dedicated configuration information of the SUL carrier can be used by the terminal device to transmit uplink service data.
  • the public configuration information of the SUL carrier and the dedicated configuration information of the SUL carrier are indispensable. Only when the terminal device obtains the public configuration information and the dedicated configuration information of the SUL carrier, can it send service data on the SUL carrier.
  • the NUL carrier is used to initiate random access.
  • the network device considers that the terminal device is in the proximity area, and does not configure the SUL-specific configuration for the terminal device.
  • the specific process is shown in S100 to S104 in FIG. 1b.
  • the SUL carrier is used to initiate random access.
  • the network device thinks that the terminal device is in the remote area, and the network device configures the SUL-specific configuration for the terminal device.
  • the specific process is shown in S100 to S105 in Figure 1b, and will not be described here.
  • the terminal device performs the following steps:
  • the terminal device performs cell search to implement downlink synchronization.
  • the terminal device initiates a random access procedure on the SUL carrier.
  • the terminal device executes the random access procedure shown in FIG. 1b above, so as to realize uplink synchronization with the network device. After realizing uplink synchronization, the terminal device executes S303:
  • the terminal device sends an RRC re-establishment request to the network device.
  • the network device receives the RRC re-establishment request from the terminal device.
  • the RRC re-establishment request is used to request to re-establish the RRC connection between the terminal device and the network device.
  • the network device sends an RRC re-establishment message to the terminal device.
  • the terminal device receives the RRC re-establishment message from the network device.
  • the RRC re-establishment message is used to confirm the re-establishment of the RRC connection between the terminal device and the network device, in response to the RRC re-establishment request.
  • the network device executes S305:
  • the network device sends an RRC reconfiguration message to the terminal device.
  • the terminal device receives the RRC reconfiguration message from the network device.
  • the RRC reconfiguration message includes dedicated configuration information of the SUL carrier, for details, please refer to the introduction of S105, which will not be repeated here.
  • the terminal device implements uplink data transmission based on the public configuration information of the SUL carrier in the system message and the dedicated configuration information of the SUL carrier in the RRC reconfiguration message transmitted in S305.
  • the RRC connection between the terminal device and the network device is broken, and the RRC connection is re-established to continue to transmit service data. That is to say, service data transmission is interrupted, and service continuity cannot be guaranteed.
  • FIG. 4 is a schematic structural diagram of a communication system applicable to the data transmission method of the embodiment of the present application.
  • the communication system may include a terminal device 40 and a network device 41 . Wherein, the terminal device 40 is wirelessly connected to the network device 41 .
  • the number of terminal devices 40 may be one or more, and the number of network devices 41 may also be one or more.
  • Figure 4 shows only one network device and two terminal devices. In FIG. 4, one ellipse represents one cell.
  • FIG. 4 is only a schematic diagram, and does not constitute a limitation on applicable scenarios of the data transmission method in the embodiment of the present application.
  • the network device 41 may be a base station or a base station controller for wireless communication.
  • the base station may include various types of base stations, such as micro base stations (also called small stations), macro base stations, relay stations, access points, etc., which are not specifically limited in this embodiment of the present application.
  • the base station may be a base station in a 5G mobile communication network or a future evolved public land mobile network (PLMN), which is not limited in this embodiment of the present application.
  • PLMN public land mobile network
  • the device for realizing the function of the network device may be a network device, or may be a device capable of supporting the network device to realize the function, such as a chip system.
  • the technical solution provided by the embodiment of the present application is described by taking the network device as an example for realizing the function of the network device.
  • the network equipment mentioned in this application such as a base station, generally includes a baseband unit (baseband unit, BBU), a remote radio unit (remote radio unit, RRU), an antenna, and a feeder for connecting the RRU and the antenna.
  • BBU baseband unit
  • RRU remote radio unit
  • the BBU is responsible for signal modulation.
  • the RRU is responsible for radio frequency processing.
  • the antenna is responsible for the conversion between the guided wave on the cable and the space wave in the air.
  • the distributed base station greatly shortens the length of the feeder between the RRU and the antenna, which can reduce signal loss and reduce the cost of the feeder.
  • the RRU plus antenna is relatively small and can be installed anywhere, making network planning more flexible.
  • all BBUs can be centralized and placed in the central office (CO). Through this centralized method, the number of base station equipment rooms can be greatly reduced, and supporting equipment, especially air conditioners, can be reduced. Energy consumption can reduce a lot of carbon emissions.
  • the scattered BBUs after the scattered BBUs are centralized into a BBU baseband pool, they can be managed and scheduled in a unified manner, making resource allocation more flexible. In this mode, all physical base stations evolve into virtual base stations. All virtual base stations share user data transmission and reception, channel quality and other information in the BBU baseband pool, and cooperate with each other to realize joint scheduling.
  • a base station may include a centralized unit (CU) and a distributed unit (DU).
  • the base station may also include an active antenna unit (active antenna unit, AAU).
  • the CU implements some functions of the base station, and the DU implements some functions of the base station.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of radio link control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this framework, high-level signaling, such as RRC layer signaling or PDCP layer signaling, can also be It is considered to be sent by DU, or sent by DU+AAU. It can be understood that the network device may be a device including one or more items of CU, DU, and AAU. In addition, the CU can be divided into network devices in the RAN, and the CU can also be divided into network devices in a core network (core network, CN), which is not limited here.
  • core network core network
  • the terminal device 40 is a device with a wireless transceiver function.
  • Terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal equipment may be user equipment (user equipment, UE).
  • the UE includes a handheld device, a vehicle device, a wearable device or a computing device with a wireless communication function.
  • the UE may be a mobile phone (mobile phone), a tablet computer or a computer with a wireless transceiver function.
  • the terminal device can also be a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, a smart Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the device for realizing the function of the terminal device may be the terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the terminal device in this embodiment may be a mobile phone 500 .
  • the mobile phone 500 is taken as an example below to describe the embodiment in detail.
  • the illustrated mobile phone 500 is only an example of a terminal device supporting uplink and downlink decoupling technology, and the mobile phone 500 may have more or fewer components than those shown in the figure, and may combine two or more components, or may have a different configuration of components.
  • the various components shown in Figure 5 may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the mobile phone 500 includes: a processor 510, a system-on-chip device 520, a display controller 530, a codec (CODEC) 540, a manager 550, a memory 560, an input device 570, a modem 580, a transceiver 590 and Power 591 etc.
  • a processor 510 a system-on-chip device 520
  • a display controller 530 a codec (CODEC) 540
  • a manager 550 a memory 560
  • an input device 570 a modem 580
  • transceiver 590 a transceiver 590 and Power 591 etc.
  • the structure of the mobile phone shown in FIG. 5 is not limited to the mobile phone, and may include more or less components than shown in the figure, or combine some components, or arrange different components.
  • the mobile phone 500 may further include a SIM card interface 551 .
  • the SIM card interface 551 is used to communicate with the SIM card 552 .
  • the SIM card interface 551 may be a SIM card connector, which includes a main body with a SIM card receiving space, and a plurality of Unicom slots for receiving conductive terminals of a received SIM card. Electrical signaling contact with the SIM card can be made through the conductive terminals and the slot.
  • Example interfaces may include serial or parallel (eg, 6-pin or 8-pin) connections.
  • multiple SIM card sizes may be provided (eg, full-size SIM, mini-SIM, or micro-SIM).
  • handset 500 may not include multiple SIM card interfaces when multiple subscriptions are associated with a common identity module (eg, universal SIM).
  • the manager 550 is used to manage the SIM card 552 .
  • the handset 500 may also include a speaker 541 and a microphone 542 coupled to a CODEC 540.
  • FIG. 5 also indicates that manager 550 may be coupled to processor 510 and to modem 580 in communication with transceiver 590 .
  • the transceiver 590 is connected with one or more antennas. An example of only one antenna is shown in FIG. 5 .
  • the transceiver 590 is coupled to multiple antennas and the modem 580 supports diversity, wherein one of the multiple antennas is a primary antenna and the other antenna is a secondary antenna.
  • the transceiver 590 can be an RF circuit, which can be used for sending and receiving information or receiving and sending signals during a call. After receiving the downlink information of the base station, it can be processed by the processor 510; in addition, the data related to the uplink can be sent to the base station.
  • RF circuits include, but are not limited to, antennas, at least one amplifier, transceivers, couplers, low noise amplifiers, duplexers, and the like. In addition, RF circuits can also communicate with the network and other mobile devices through wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to Global System for Mobile Communications, General Packet Radio Service, Code Division Multiple Access, Wideband Code Division Multiple Access, Long Term Evolution, Email, Short Message Service, etc.
  • the transceiver 590 shown in FIG. 5 may include one radio frequency Rx channel and two radio frequency Tx channels (radio frequency Tx1 channel, radio frequency Tx2 channel and radio frequency Rx1 channel shown in FIG. 5 ).
  • the number of radio frequency Rx channels and radio frequency Tx channels in the transceiver 590 may have other values, such as two radio frequency Rx channels and three radio frequency Tx channels, which are not limited in this embodiment of the present application.
  • the letter T represents an uplink radio frequency channel.
  • 1T refers to an uplink radio frequency channel, such as a radio frequency Tx1 channel or a radio frequency Tx2 channel.
  • 2T refers to two uplink radio frequency channels, such as radio frequency Tx1 channel and radio frequency Tx2 channel.
  • the memory 560 can be used to store software programs and data.
  • the processor 510 executes various functions and data processing of the mobile phone 500 by running software programs and data stored in the memory 560 .
  • an instruction 561 is stored in the memory 560 .
  • Instructions 561 may be executed by processor 510 .
  • instructions 561 include instructions executable by processor 510 to receive communication data associated with SIM card 552 at an input of modem 580 .
  • memory 560 can mainly comprise storage program area and storage data area, wherein, storage program area can store operating system, the application program (such as sound playback function, image playback function) etc. required by at least one function; The data created by the use of the mobile phone 500 (such as audio data, phone book) and the like.
  • the memory 560 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage devices.
  • the memory 560 stores an operating system that enables the mobile phone 500 to run, such as an operating system developed by Apple Inc. operating system, developed by Google Open source operating system, developed by Microsoft Corporation operating system, etc.
  • the input device 570 (such as a touch screen) can be used to receive input digital or character information, and generate signal input related to user settings and function control of the mobile phone 500 .
  • the input device 570 may include a touch panel arranged on the front of the mobile phone 500, which can collect touch operations of the user on or near it (for example, the user uses any suitable object or accessory such as a finger or a stylus on the touch panel or Operation near the touch panel), and drive the corresponding connection device according to the preset program.
  • the touch panel may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and sends it to the to the processor 510, and can receive instructions from the processor 510 and execute them.
  • various types of touch panels such as resistive, capacitive, infrared, and surface acoustic wave, can be used to realize the touch panel.
  • the display 531 (ie, the display screen) can be used to display information input by the user or information provided to the user and a graphical user interface (graphical user interface, GUI) of various menus of the mobile phone 500 .
  • the display 531 may include a display panel disposed on the front of the mobile phone 500 .
  • the display panel may be configured in the form of a liquid crystal display, a light emitting diode, or the like.
  • the touch panel After the touch panel detects a touch operation on or near it, the touch panel transmits the information to the processor 510 to determine the touch event, and then the processor 510 provides corresponding visual output on the display panel according to the type of the touch event.
  • the touch panel and the display panel are used as two independent components to realize the input and input functions of the mobile phone 500, in some embodiments, the touch panel and the display panel can be integrated to realize the mobile phone 500. input and output functions, the integrated touch panel and display panel can be referred to simply as a touch display.
  • the above-mentioned touch panel can also be provided with a pressure-sensitive sensor, so that when the user performs a touch operation on the above-mentioned touch panel, the touch panel can also detect the pressure of the touch operation, and then the mobile phone 500 can This touch operation is detected more accurately.
  • Cell phone 500 may also include at least one sensor 543, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor can include an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel according to the brightness of the ambient light, and the proximity light sensor is arranged on the front of the mobile phone 500.
  • the mobile phone 500 When the mobile phone 500 is moved to the ear , according to the detection of the proximity light sensor, the mobile phone 500 turns off the power supply of the display panel, so that the mobile phone 500 can further save power.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when it is stationary, and can be used for applications that recognize the posture of mobile phones (such as horizontal and vertical screen conversion, related Games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; as for other sensors such as gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc. Let me repeat.
  • CODEC 540, loudspeaker 541, and microphone 542 can provide the audio interface between the user and the mobile phone 500.
  • the CODEC 540 can transmit the electrical signal converted from the received audio data to the speaker 541, and the speaker 541 converts it into an audio signal output; on the other hand, the microphone 542 converts the collected audio signal into an electrical signal, which is received by the CODEC 540 converted into audio data, and then output the audio data to the processor 510 for further processing by the processor 510 , such as storing in the memory 560 .
  • the processor 510 is the control center of the mobile phone 500. It uses various interfaces and lines to connect the various parts of the entire mobile phone. By running or executing software programs stored in the memory 560 and calling data stored in the memory 560, the processes of the mobile phone 500 are executed. Various functions and processing data, so as to monitor the mobile phone as a whole.
  • the processor 510 may include one or more processing units; the processor 510 may also integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface and application programs, etc. , the modem processor mainly handles wireless communications. It can be understood that the foregoing modem processor may not be integrated into the processor 510 .
  • the above mobile phone 500 may also include a Bluetooth module and a Wi-Fi module.
  • the Bluetooth module is used to exchange information with other devices through Bluetooth, a short-distance communication protocol.
  • the mobile phone 500 can establish a Bluetooth connection with a wearable electronic device (such as a smart watch) that also has a Bluetooth module through the Bluetooth module, so as to perform data interaction.
  • Wi-Fi is a short-distance wireless transmission technology.
  • the mobile phone 500 can help users send and receive emails, browse web pages, and access streaming media through the Wi-Fi module. It provides users with wireless broadband Internet access.
  • the handset 500 also includes a power source 591 (such as a battery) for powering various components.
  • the power supply can be logically connected to the processor 510 through the power management system, so that functions such as charging, discharging, and power consumption can be managed through the power management system. It can be understood that, in the following embodiments, the power supply 591 can be used to supply power to the display panel and the touch panel.
  • the methods in the following embodiments can all be implemented in the mobile phone 500 having the above hardware structure.
  • the embodiment of the present application provides a schematic structural diagram of a network device.
  • the network device 600 may include one or more radio frequency units, such as an RRU 610 and one or more BBUs (also referred to as digital units (digital unit, DU)) 620 .
  • the RRU 610 may be called a transceiver unit.
  • the transceiver unit 610 may also be called a transceiver, a transceiver circuit, a transceiver, a transmitter and a receiver, etc., and may include at least one antenna 611 and an RF circuit 612 .
  • the transceiver unit 610 may include a receiving unit and a sending unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the sending unit may correspond to a transmitter (or transmitter, transmitting circuit).
  • the RRU 610 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending a first message to a terminal device.
  • the BBU 620 part is mainly used for baseband processing, controlling network equipment, and the like.
  • the RRU 610 and the BBU 620 can be physically set together, or physically separated, that is, a distributed base station.
  • the BBU 620 is the control center of the network equipment, and can also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum and so on.
  • the BBU 620 can be used to control network devices to execute the methods involved in this application.
  • the BBU 620 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network of a single access standard (such as a 5G network), or can separately support wireless access networks of different access standards. Wireless access network (such as 5G network or other networks).
  • the BBU 620 also includes a memory 621 and a processor 622.
  • the memory 621 is used to store necessary instructions and data.
  • the processor 622 is used to control the network device to perform necessary actions, for example, to control the network device to execute the method involved in this application.
  • the processor 622 may refer to one or more processors.
  • the memory 621 and the processor 622 may serve one or more single boards. That is to say, memory and processors can be set independently on each single board. It may also be that multiple single boards share the same memory and processor. In addition, necessary circuits can also be set on each single board.
  • the network device is not limited to the above-mentioned forms, and may also be in other forms: for example: including a BBU and an adaptive radio unit (adaptive radio unit, ARU), or a BBU and an active antenna unit (active antenna unit, AAU); it may also be Customer premises equipment (CPE) may also be in other forms, which are not limited in this application.
  • ARU adaptive radio unit
  • AAU active antenna unit
  • CPE Customer premises equipment
  • the data transmission method 700 includes the following steps:
  • the terminal device sends first data to the network device on a first carrier.
  • the network device receives the first data from the terminal device on the first carrier.
  • the introduction of the first carrier includes the following two key points:
  • the first carrier occupies all of at least two uplink radio frequency channels. That is to say, the first carrier occupies all uplink radio frequency channels of the terminal device. In other words, during the execution of S701, there is no idle uplink radio frequency channel in the terminal device.
  • all the uplink radio frequency channels of the terminal equipment include the radio frequency Tx1 channel and the radio frequency Tx2 channel, and the first carrier occupies the radio frequency Tx1 channel and the radio frequency Tx2 channel.
  • the first carrier includes at least one NUL carrier.
  • NUL carrier At least one NUL carrier.
  • the first carrier includes a NUL carrier.
  • the first carrier is recorded as PCell NUL carrier 1.
  • the number of multiple-input multiple-output (MIMO) layers supported by PCell NUL carrier 1 is two or more.
  • PCell NUL carrier 1 occupies all uplink radio frequency channels of the terminal equipment. Exemplarily, still taking FIG. 5 as an example, all uplink radio frequency channels of the terminal equipment include 2T, that is, radio frequency Tx1 channel and radio frequency Tx2 channel.
  • PCell NUL carrier 1 occupies 2T, that is, radio frequency Tx1 channel and radio frequency Tx2 channel.
  • the first carrier includes two NUL carriers, and the two NUL carriers are PCell NUL carrier 1 and SCell NUL carrier 1 respectively.
  • the two NUL carriers are PCell NUL carrier 1 and SCell NUL carrier 1 respectively.
  • one NUL carrier occupies one radio frequency channel, and different NUL carriers occupy different radio frequency channels.
  • all uplink radio frequency channels of the terminal equipment include 2T, that is, radio frequency Tx1 channel and radio frequency Tx2 channel.
  • PCell NUL carrier 1 occupies 1T, such as radio frequency Tx1 channel.
  • SCell NUL carrier 1 occupies 1T, such as radio frequency Tx2 channel.
  • the first carrier includes three NUL carriers, and the three NUL carriers are PCell NUL carrier 1, SCell NUL carrier 1, and SCell NUL carrier 2.
  • the three NUL carriers are PCell NUL carrier 1, SCell NUL carrier 1, and SCell NUL carrier 2.
  • one NUL carrier occupies one radio frequency channel, and different NUL carriers occupy different radio frequency channels.
  • all uplink radio frequency channels of the terminal device include 3T, that is, a radio frequency Tx1 channel, a radio frequency Tx2 channel, and a radio frequency Tx3 channel.
  • PCell NUL carrier 1 occupies 1T, such as radio frequency Tx1 channel.
  • SCell NUL carrier 1 occupies 1T, such as radio frequency Tx2 channel.
  • SCell NUL carrier 2 occupies 1T, such as radio frequency Tx3 channel.
  • the first carrier includes two NUL carriers, and the two NUL carriers are PCell NUL carrier 1 and SCell NUL carrier 1 respectively.
  • all uplink radio frequency channels of the terminal device include 3T, that is, a radio frequency Tx1 channel, a radio frequency Tx2 channel, and a radio frequency Tx3 channel.
  • PCell NUL carrier 1 occupies 1T, such as occupying the radio frequency Tx1 channel.
  • SCell NUL carrier 1 occupies 2T, such as occupying radio frequency Tx2 channel and radio frequency Tx3 channel.
  • the first carrier may also include more cases, such as the first carrier includes a PCell NUL carrier and three SCell NUL carriers Carriers, PCell NUL carriers occupy two uplink RF channels, and three SCell NUL carriers each occupy one uplink RF channel. Other conditions of the first carrier are not listed here.
  • the terminal device executes S701 in the near point area. Due to the influence of other factors (such as the movement of the terminal device, entering the far point area from the near point area), the terminal device determines that the signal quality has deteriorated, such as the downlink reference signal receiving power (reference signal receiving power, RSRP) measured by the terminal device is less than the preset value, the terminal device determines to switch from the NUL carrier to the SUL carrier.
  • RSRP downlink reference signal receiving power
  • the terminal device initiates a random access procedure to the network device on the second carrier.
  • the introduction of the second carrier includes the following two key points:
  • the second carrier is a SUL carrier.
  • the second carrier is a PCell NUL carrier.
  • the second carrier occupies at least one uplink radio frequency channel among all uplink radio frequency channels of the terminal device.
  • the second carrier (such as a PCell NUL carrier) may occupy an uplink radio frequency channel.
  • the second carrier may occupy two or more uplink radio frequency channels.
  • the number of MIMO layers supported by the second carrier may be equal to the number of uplink radio frequency channels occupied by the second carrier.
  • the random access process may refer to the introduction in FIG. 1b, for example, the terminal device sends Msg1 to the network device on the second carrier. If the terminal device adopts the contention-based random access procedure, the terminal device still sends Msg3 to the network device on the second carrier. Correspondingly, the network device receives Msg3 from the terminal device on the second carrier.
  • the terminal device may send the second carrier through at least one radio frequency channel in all uplink radio frequency channels. After the above random access process, the terminal device and the network device can realize uplink synchronization.
  • the network device After receiving the random access request on the SUL carrier, the network device determines that the terminal device is in the remote area. In addition, the network device determines that all uplink radio frequency channels of the terminal device are configured to transmit NUL carriers in combination with the capability information reported by the terminal device. Wherein, the capability information indicates the number of uplink radio frequency channels in the terminal equipment. In this case, the network device executes S703:
  • the network device sends the first message to the terminal device on the downlink carrier.
  • the terminal device receives the first message from the network device on the downlink carrier.
  • the first message may be implemented as an RRC reconfiguration message.
  • the first message may also have other names, which are not limited in this embodiment of the present application.
  • the first message indicates at least one of the following:
  • the first item is to reduce the number of MIMO layers supported by the first carrier.
  • the first carrier includes a PCell NUL carrier, as in example 1 in S701
  • the first message includes first information.
  • the first information indicates to modify the configuration of the primary cell, and the configuration indicated by the first information is used to reduce the number of MIMO layers supported by the PCell NUL carrier.
  • the first information may be recorded as modified primary cell configuration (PCell config), and the first information may be carried in the modified primary cell configuration field of the first message.
  • the first message carries PCell config.
  • the first message includes the second information.
  • the second information indicates to modify the configuration of the secondary cell, and the configuration indicated by the second information is used to reduce the number of MIMO layers supported by the SCell NUL carrier.
  • the second information may be recorded as a secondary cell addition list (SCellToAddModList), and the second information may be carried in the modified secondary cell configuration field of the first message.
  • the first message carries SCellToAddModList.
  • SCellToAddModList includes the index of the SCell to indicate to modify the configuration of the SCell corresponding to the index, such as reducing the number of MIMO layers supported by the NUL carrier of the SCell corresponding to the index in SCellToAddModList.
  • the second item reduces the number of first carriers.
  • the first carrier includes the SCell NUL carrier, as in Example 2, Example 3 or Example 4 in S701
  • the first message includes the third information.
  • the third information indicates to delete the configuration of the secondary cell, and the configuration indicated by the third information is used to delete the SCell NUL carrier.
  • the third information may be recorded as a secondary cell deletion list (SCellToReleaseList), and the third information may be carried in the configuration field of deleting the secondary cell in the first message.
  • the first message carries SCellToReleaseList.
  • the SCellToReleaseList includes the index of the SCell to indicate to delete the configuration of the SCell corresponding to the index, for example, delete the configuration of the SCell corresponding to the index in the SCellToReleaseList.
  • the terminal device reduces the number of MIMO layers supported by the first carrier. Since the number of MIMO layers supported by the first carrier decreases, correspondingly, the number of uplink radio frequency channels occupied by the first carrier decreases.
  • the terminal device reduces the number of NUL carriers in the first carrier. Since the number of NUL carriers in the first carrier decreases, correspondingly, the number of uplink radio frequency channels occupied by the first carrier decreases.
  • the terminal device may receive the dedicated configuration information of the SUL carrier from the network device, and refer to the introduction of S105 for details.
  • the terminal device first executes S105, and then executes S703, or may execute S703 first, and then execute S105, or may execute S105 and S703 at the same time, which is not limited in this embodiment of the present application.
  • the dedicated configuration information of the SUL carrier may also be carried in the first message. That is, a message not only provides the terminal device with dedicated configuration information of the SUL carrier, but also instructs the terminal device to reduce the number of uplink radio frequency channels used for the NUL carrier, so as to save signaling overhead.
  • the terminal device does not need to send an RRC re-establishment request to the network device, nor does it need to receive an RRC re-establishment message from the network device.
  • the terminal device determines that the signal quality has deteriorated after executing S701
  • the RRC connection between the terminal device and the network device is not broken, and there is no need to perform an RRC connection re-establishment process.
  • the network device Based on the configuration during the execution of S701, the network device sends the first message to the terminal device to instruct the terminal device to reduce the number of uplink radio frequency channels for sending NUL carriers, so the terminal device also has idle uplink radio frequency channels for sending the second data , to ensure business continuity.
  • the terminal device executes S703, it can execute S704:
  • the terminal device sends the second data to the network device on the second carrier.
  • the network device receives the second data from the terminal device on the second carrier.
  • the second data is data sent after the first data, so as to ensure service continuity.
  • the terminal device may also send the second data to the network device on the second carrier.
  • the terminal device executes S701 and before executing S704, the RRC connection between the terminal device and the network device has not been broken, so the configuration of the PCell NUL carrier remains, and at least one channel in the uplink radio frequency channel is used to send the PCell NUL carrier. Therefore, the number of uplink radio frequency channels occupied by the second carrier is smaller than the number of all uplink radio frequency channels of the terminal device.
  • the terminal device can also use at least The SUL carrier is sent on an uplink radio frequency channel, so as to initiate random access on the SUL carrier, so as to realize uplink synchronization between the terminal device and the network device.
  • the terminal device receives the first message from the network device, so that the terminal device reduces the uplink radio frequency channel used for sending the NUL carrier. In this way, the terminal device can have an idle uplink radio frequency channel to continue sending service data, thereby avoiding the phenomenon of call drop due to uplink out-of-sync, so as to maintain service continuity.
  • the data transmission method in the embodiment of the present application further includes S705:
  • the terminal device sends third data to the network device on the third carrier.
  • the network device receives third data from the terminal device on the third carrier.
  • the third data is data sent after the first data and is different from the second data.
  • the third carrier is a carrier used to send uplink service data except the second carrier.
  • the third carrier may be one carrier, or may be multiple carriers.
  • the third carrier may include a NUL carrier or a SUL carrier.
  • the third carrier includes at least one of the following:
  • the first item is the NUL carrier of the primary cell, that is, the PCell NUL carrier.
  • the configuration of the PCell NUL carrier is still retained.
  • the signal quality of the PCell NUL carrier has a certain degree of attenuation, but the PCell NUL carrier can still send uplink service data
  • the terminal device can still send the third data on the PCell NUL carrier, that is, the third carrier includes the PCell NUL carrier , to increase data throughput.
  • the second item is the SUL carrier of the primary cell, that is, the PCell SUL carrier.
  • the terminal device may send the second carrier on the radio frequency Tx2 channel, and send the third carrier, that is, the PCell SUL carrier on the radio frequency Tx3 channel. That is to say, there can be two PCell SUL carriers. Among them, one PCell SUL carrier is used to send Msg1, that is, as the second carrier. Another PCell SUL carrier is used to send third data, that is, as a third carrier. It should be understood that the number of PCell SUL carriers is only an example, and should not be construed as a limitation on the PCell SUL carriers. For example, in the case that the terminal device has four uplink radio frequency channels, there may be three PCell SUL carriers, which is not limited in this embodiment of the present application.
  • the third item is the SUL carrier of the secondary cell, that is, the SCell SUL carrier.
  • the terminal device may send the second carrier on the radio frequency Tx2 channel, and send the third carrier, that is, the SCell SUL carrier, on the radio frequency Tx3 channel. That is to say, there can be one PCell SUL carrier, and one SCell SUL carrier. Among them, one PCell SUL carrier is used to send Msg1, that is, as the second carrier. The SCell SUL carrier is used to send third data, that is, as a third carrier.
  • SCell SUL carriers and PCell SUL carriers are only an example, and should not be interpreted as a limitation on the SCell SUL carriers and PCell SUL carriers.
  • SCell SUL carriers when a terminal device has four uplink radio frequency channels, there can be one PCell SUL carrier, occupying one uplink radio frequency channel.
  • SCell SUL carriers There may be two SCell SUL carriers, and each SCell SUL carrier occupies one uplink radio frequency channel, which is not limited in this embodiment of the present application.
  • the terminal device can still send uplink service data on more carriers, so as to improve data throughput.
  • the carriers used to send the uplink service data include the second carrier and the third carrier.
  • the sum of the number of uplink radio frequency channels occupied by the third carrier and the number of uplink radio frequency channels occupied by the second carrier is less than or equal to the number of uplink radio frequency channels occupied by the first carrier. It should be understood that during the process of executing S701 to S704 by the terminal device, the configuration of the PCell NUL carrier is still reserved.
  • the terminal device may execute S704 first, and then execute S705, or execute S705 first, and then execute S704, or execute S704 and S705 at the same time, which is not limited in this embodiment of the present application.
  • the terminal device includes hardware structures and/or software modules corresponding to each function.
  • the embodiments of this application can be implemented in hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the technical solutions of the embodiments of the present application.
  • the functional modules of the communication device may be divided according to the above method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • the communication device includes a processing unit 801 , a sending unit 802 and a receiving unit 803 .
  • the processing unit 801 is configured to support the terminal device to perform S702 in FIG. 7 , etc., and/or other processing operations that the terminal device needs to perform in the embodiment of the present application.
  • the sending unit 802 is configured to support the terminal device to perform S701, S704, S705, etc. in FIG. 7, and/or other sending operations that the terminal device needs to perform in the embodiment of the present application.
  • the receiving unit 803 is configured to support the terminal device to perform S703 in FIG. 7 , etc., and/or other receiving operations that the terminal device needs to perform in the embodiment of the present application.
  • the processing unit 801 in FIG. 8 may be implemented by the processor 510 in FIG. 5
  • the sending unit 802 and the receiving unit 803 in FIG. 8 may be implemented by the transceiver 350 in FIG. 5 .
  • the receiving unit 803 is configured to support the network device to perform S701, S704, S705, etc. in FIG. 7, and/or other receiving operations that the network device needs to perform in the embodiment of the present application.
  • the sending unit 802 is configured to support the network device to perform S703 in FIG. 7 , etc., and/or other sending operations that the network device needs to perform in the embodiment of the present application.
  • the processing unit 801 is configured to support the network device to perform other processing operations that need to be performed.
  • the processing unit 801 in FIG. 8 may be implemented by the processor 621 in FIG. 5
  • the sending unit 802 and the receiving unit 803 in FIG. 8 may be implemented by the RRU 610 in FIG. 6 .
  • the embodiments of the present application also provide a computer program product carrying computer instructions, and when the computer instructions are run on the computer, the computer is made to execute the data transmission method provided by the foregoing method embodiments.
  • the embodiment of the present application further provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and when the computer instructions are run on the computer, the computer executes the data provided by the foregoing method embodiments. transfer method.
  • an embodiment of the present application further provides a chip, including: a processing circuit and a transceiver pin, and the processing circuit and the transceiver pin are used to implement the data transmission method provided in the foregoing method embodiments.
  • the processing circuit is used to execute the processing action in the corresponding method
  • the transceiving pin is used to execute the receiving/sending action in the corresponding method.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, a magnetic tape), an optical medium (such as a digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (such as a solid state disk (Solid State Disk, SSD)) wait.
  • a magnetic medium such as a floppy disk, a hard disk, a magnetic tape
  • an optical medium such as a digital video disc (Digital Video Disc, DVD)
  • a semiconductor medium such as a solid state disk (Solid State Disk, SSD)
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple devices. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each functional unit may exist independently, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware, or in the form of hardware plus software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种数据传输方法及通信装置,涉及通信技术领域,能够保证业务连续性。方法应用于配置有至少两条上行射频通道的终端设备。方法包括:在第一载波上发送第一数据。其中,第一载波包括至少一个普通上行NUL载波,且第一载波占用至少两条通道中的全部通道。然后,由于其他因素影响,终端设备确定信号质量变差,在第二载波上发起随机接入。其中,第二载波属于补充上行SUL载波,且占用至少两条通道中的至少一条通道。在下行载波上接收第一消息。其中,第一消息指示以下至少一项:减少第一载波的数量,或减少第一载波支持的多输入多输出MIMO层数。之后,在第二载波上发送第二数据,第二数据是第一数据之后发送的数据。

Description

数据传输方法及通信装置 技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及通信装置。
背景技术
在上下行解耦技术中,当终端设备处于小区近点区域,上行覆盖良好时,使用普通上行(normal uplink,NUL)载波发送业务数据;当终端设备处于小区远点区域,上行覆盖受限时,使用补充上行(supplementary uplink,SUL)载波发送业务数据。
然而,若终端设备的通道全部用于发送NUL载波,且终端设备移动,从近点区域进入远点区域,即使终端设备支持上下行解耦技术,也由于上行失步而产生掉话,影响业务连续性。
发明内容
本申请提供一种数据传输方法及通信装置,能够保证业务连续性。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种数据传输方法,该方法应用于配置有至少两条上行射频通道的终端设备。该方法包括:终端设备在第一载波上发送第一数据。其中,第一载波包括至少一个普通上行NUL载波,且第一载波占用至少两条通道中的全部通道。然后,由于其他因素影响,终端设备确定信号质量变差,在第二载波上发起随机接入。其中,第二载波属于补充上行SUL载波,且占用至少两条通道中的至少一条通道。终端设备在下行载波上接收第一消息。其中,第一消息指示以下至少一项:减少第一载波的数量,或减少第一载波支持的多输入多输出MIMO层数。之后,终端设备在第二载波上发送第二数据。其中,第二数据是第一数据之后发送的数据。
如此,即使终端设备中的上行射频通道全部用于发送NUL载波,在确定信号质量变差的情况下,终端设备也可以在至少一条上行射频通道上发送SUL载波,从而在SUL载波上发起随机接入,以使得终端设备与网络设备之间实现上行同步。终端设备接收来自网络设备的第一消息,以指示终端设备减少用于发送NUL载波的上行射频通道。如此,终端设备即可有空闲的上行射频通道来继续发送业务数据,从而避免由于上行失步而发生掉话的现象,以保持业务连续性。
在一种可能的设计中,第一消息包括第一信息。其中,第一信息指示修改主小区的配置,且第一信息指示的配置用于减少主小区的NUL载波支持的MIMO层数。第一载波包括主小区的NUL载波。由于第一载波中主小区的NUL载波支持的MIMO层数减少,相应的,第一载波占用的上行射频通道数量减少。如此,部分上行射频通道空闲,终端设备即可采用空闲的上行射频通道发送上行业务数据。
在一种可能的设计中,第一信息承载于第一消息的修改主小区的配置字段。
在一种可能的设计中,第一消息包括第二信息。其中,第二信息指示修改辅小区的配置,且第二信息指示的配置用于减少辅小区的NUL载波支持的MIMO层数,第一载波包括辅小区的NUL载波。由于第一载波中辅小区的NUL载波支持的MIMO层数减少,相应的,第一载波占用的上行射频通道数量减少。如此,部分上行射频通道空闲, 终端设备即可采用空闲的上行射频通道发送上行业务数据。
在一种可能的设计中,第二信息承载于第一消息的修改辅小区的配置字段。
在一种可能的设计中,第一消息包括第三信息。其中,第三信息指示删除辅小区的配置,且第三信息指示的配置用于删除辅小区的NUL载波,第一载波包括辅小区的NUL载波。由于第一载波中NUL载波的数量减少,相应的,第一载波占用的上行射频通道数量减少。如此,部分上行射频通道空闲,终端设备即可采用空闲的上行射频通道发送上行业务数据。
在一种可能的设计中,第三信息承载于第一消息的删除辅小区的配置字段。
在一种可能的设计中,第一消息为无线资源控制RRC重配置消息,以使网络设备通过RRC重配置消息指示终端设备减少用于发送NUL载波的上行射频通道数量。
在一种可能的设计中,第二载波属于主小区的SUL载波。
在一种可能的设计中,本申请实施例数据传输方法还包括:终端设备在第三载波上发送第三数据。其中,第三载波占用的通道数量和第二载波占用的通道数量之和小于或等于第一载波占用的通道数量。第三数据是第一数据之后发送的数据。
也就是说,终端设备可以在除第二载波之外的其他载波,如第三载波上,发送上行业务数据,以提升吞吐量。
在一种可能的设计中,第三载波包括以下至少一项:主小区的NUL载波,或辅小区的SUL载波。
在一种可能的设计中,第一消息还包括SUL载波的配置信息。其中,SUL载波的配置信息用于终端设备发送第二数据。示例性的,第一消息中携带的配置信息为SUL载波的专用配置信息。
如此,网络设备通过一条消息,既为终端设备提供SUL载波的专用配置信息,又指示了终端设备减少用于NUL载波的上行射频通道数量,以节省信令开销。
第二方面,本申请实施例提供一种数据传输方法,该方法应用于网络设备。该方法包括:网络设备在第一载波上接收第一数据。其中,第一载波包括至少一个普通上行NUL载波。然后,网络设备在第二载波上执行随机接入。其中,第二载波属于补充上行SUL载波。网络设备在下行载波上发送第一消息。其中,第一消息指示以下至少一项:减少第一载波的数量,或减少第一载波支持的多输入多输出MIMO层数。网络设备在第二载波上接收第二数据。其中,第二数据是第一数据之后接收的数据。
在一种可能的设计中,第一消息包括第一信息。其中,第一信息指示修改主小区的配置,且第一信息指示的配置用于减少主小区的NUL载波支持的MIMO层数。第一载波包括主小区的NUL载波。
在一种可能的设计中,第一信息承载于第一消息的修改主小区的配置字段。
在一种可能的设计中,第一消息包括第二信息。其中,第二信息指示修改辅小区的配置,且第二信息指示的配置用于减少辅小区的NUL载波支持的MIMO层数。第一载波包括辅小区的NUL载波。
在一种可能的设计中,第二信息承载于第一消息的修改辅小区的配置字段。
在一种可能的设计中,第一消息包括第三信息。其中,第三信息指示删除辅小区的配置,且第三信息指示的配置用于删除辅小区的NUL载波。第一载波包括辅小区的 NUL载波。
在一种可能的设计中,第三信息承载于第一消息的删除辅小区的配置字段。
在一种可能的设计中,第一消息为无线资源控制RRC重配置消息。
在一种可能的设计中,第二载波属于主小区的SUL载波。
在一种可能的设计中,本申请实施例数据传输方法还包括:网络设备在第三载波上接收第三数据。其中,第三载波占用的通道数量和第二载波占用的通道数量之和小于或等于第一载波占用的通道数量。第三数据是第一数据之后接收的数据。
在一种可能的设计中,第三载波包括以下至少一项:主小区的NUL载波,或辅小区的SUL载波。
在一种可能的设计中,第一消息还包括SUL载波的配置信息。其中,SUL载波的配置信息用于终端设备发送第二数据。
第三方面,本申请实施例提供一种通信装置,该通信装置可以为上述第一方面或第一方面任一种可能的设计中的终端设备,或者实现上述终端设备功能的芯片;所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该通信装置包括接收单元和发送单元。其中,发送单元用于在第一载波上发送第一数据。其中,第一载波包括至少一个普通上行NUL载波,且第一载波占用至少两条通道中的全部通道。发送单元还用于在第二载波上发起随机接入。其中,第二载波属于补充上行SUL载波,且占用至少两条通道中的至少一条通道。接收单元用于在下行载波上接收第一消息。其中,第一消息指示以下至少一项:减少第一载波的数量,或减少第一载波支持的多输入多输出MIMO层数。发送单元还用于在第二载波上发送第二数据。其中,第二数据是第一数据之后发送的数据。
在一种可能的设计中,第一消息包括第一信息。其中,第一信息指示修改主小区的配置,且第一信息指示的配置用于减少主小区的NUL载波支持的MIMO层数。第一载波包括主小区的NUL载波。
在一种可能的设计中,第一信息承载于第一消息的修改主小区的配置字段。
在一种可能的设计中,第一消息包括第二信息。其中,第二信息指示修改辅小区的配置,且第二信息指示的配置用于减少辅小区的NUL载波支持的MIMO层数。第一载波包括辅小区的NUL载波。
在一种可能的设计中,第二信息承载于第一消息的修改辅小区的配置字段。
在一种可能的设计中,第一消息包括第三信息。其中,第三信息指示删除辅小区的配置,且第三信息指示的配置用于删除辅小区的NUL载波,第一载波包括辅小区的NUL载波。
在一种可能的设计中,第三信息承载于第一消息的删除辅小区的配置字段。
在一种可能的设计中,第一消息为无线资源控制RRC重配置消息。
在一种可能的设计中,第二载波属于主小区的SUL载波。
在一种可能的设计中,发送单元还用于在第三载波上发送第三数据。其中,第三载波占用的通道数量和第二载波占用的通道数量之和小于或等于第一载波占用的通道 数量。第三数据是第一数据之后发送的数据。
在一种可能的设计中,第三载波包括以下至少一项:主小区的NUL载波,或辅小区的SUL载波。
在一种可能的设计中,第一消息还包括SUL载波的配置信息。其中,SUL载波的配置信息用于通信装置发送第二数据。
第四方面,本申请实施例提供一种通信装置,该通信装置可以为上述第二方面或第二方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片;所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
该通信装置包括接收单元和发送单元。其中,接收单元用于在第一载波上接收第一数据。其中,第一载波包括至少一个普通上行NUL载波。接收单元还用于在第二载波上接收随机接入请求。其中,第二载波属于补充上行SUL载波。发送单元用于在下行载波上发送第一消息。其中,第一消息指示以下至少一项:减少第一载波的数量,或减少第一载波支持的多输入多输出MIMO层数。接收单元还用于在第二载波上接收第二数据。其中,第二数据是第一数据之后接收的数据。
在一种可能的设计中,第一消息包括第一信息。其中,第一信息指示修改主小区的配置,且第一信息指示的配置用于减少主小区的NUL载波支持的MIMO层数。第一载波包括主小区的NUL载波。
在一种可能的设计中,第一信息承载于第一消息的修改主小区的配置字段。
在一种可能的设计中,第一消息包括第二信息。其中,第二信息指示修改辅小区的配置,且第二信息指示的配置用于减少辅小区的NUL载波支持的MIMO层数。第一载波包括辅小区的NUL载波。
在一种可能的设计中,第二信息承载于第一消息的修改辅小区的配置字段。
在一种可能的设计中,第一消息包括第三信息。其中,第三信息指示删除辅小区的配置,且第三信息指示的配置用于删除辅小区的NUL载波。第一载波包括辅小区的NUL载波。
在一种可能的设计中,第三信息承载于第一消息的删除辅小区的配置字段。
在一种可能的设计中,第一消息为无线资源控制RRC重配置消息。
在一种可能的设计中,第二载波属于主小区的SUL载波。
在一种可能的设计中,接收单元还用于在第三载波上接收第三数据。其中,第三载波占用的通道数量和第二载波占用的通道数量之和小于或等于第一载波占用的通道数量。第三数据是第一数据之后接收的数据。
在一种可能的设计中,第三载波包括以下至少一项:主小区的NUL载波,或辅小区的SUL载波。
在一种可能的设计中,第一消息还包括SUL载波的配置信息。其中,SUL载波的配置信息用于终端设备发送第二数据。
第五方面,本申请实施例提供了一种通信装置,包括:处理器和存储器。其中,存储器用于存储计算机指令,当该处理器执行该指令时,使得该通信装置执行上述任 一方面或任一方面任一种可能的设计中终端设备所执行的方法。该通信装置可以为上述第一方面或第一方面任一种可能的设计中的终端设备,或者实现上述终端设备功能的芯片。
第六方面,本申请实施例提供了一种通信装置,包括:处理器;所述处理器与存储器耦合,用于读取存储器中的指令并执行,以使该通信装置执行如上述任一方面或任一方面任一种可能的设计中的终端设备所执行的方法。该通信装置可以为上述第一方面或第一方面任一种可能的设计中的终端设备,或者实现上述终端设备功能的芯片。
第七方面,本申请实施例提供一种芯片,包括逻辑电路和输入输出接口。其中,输入输出接口用于与芯片之外的模块通信,例如,该芯片可以为实现上述第一方面或第一方面任一种可能的设计中的终端设备功能的芯片。逻辑电路用于运行计算机程序或指令,以实现以上第一方面或第一方面任一种可能的设计中的方法。
第八方面,本申请实施例提供了一种通信装置,包括:处理器和存储器。其中,存储器用于存储计算机指令,当该处理器执行该指令时,使得该通信装置执行上述任一方面或任一方面任一种可能的设计中网络设备所执行的方法。该通信装置可以为上述第二方面或第二方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片。
第九方面,本申请实施例提供了一种通信装置,包括:处理器;所述处理器与存储器耦合,用于读取存储器中的指令并执行,以使该通信装置执行如上述任一方面或任一方面任一种可能的设计中的网络设备所执行的方法。该通信装置可以为上述第二方面或第二方面任一种可能的设计中的网络设备,或者实现上述网络设备功能的芯片。
第十方面,本申请实施例提供一种芯片,包括逻辑电路和输入输出接口。其中,输入输出接口用于与芯片之外的模块通信,例如,该芯片可以为实现上述第二方面或第二方面任一种可能的设计中的网络设备功能的芯片。逻辑电路用于运行计算机程序或指令,以实现以上第二方面或第二方面任一种可能的设计中的方法。
第十一方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的方法。
第十二方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的方法。
第十三方面,本申请实施例提供一种电路系统,电路系统包括处理电路,处理电路被配置为执行如上述任一方面中任一项的方法。
第十四方面,本申请实施例提供一种通信系统,该通信系统包括上述各个方面中任一项中的终端设备和网络设备。
其中,第二方面至第十四方面中任一种设计所带来的技术效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1a为本申请实施例提供的一种上下行解耦技术的原理示意图;
图1b为本申请实施例提供的一种随机接入的流程示意图;
图2为本申请实施例提供的一种通信场景示意图;
图3为本申请实施例提供的一种数据传输方法的流程示意图;
图4为本申请实施例提供的一种通信系统的示意图;
图5为本申请实施例提供的一种手机的结构示意图;
图6为本申请实施例提供的一种网络设备的结构示意图;
图7为本申请实施例提供的再一种数据传输方法的流程示意图;
图8为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。本申请实施例中,“多个”包括两个或两个以上。本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
首先,介绍本申请中所涉及的技术术语:
1、载波聚合(carrier aggregation,CA)
载波聚合是将两个或两个以上的载波单元(component carrier,CC)聚合在一起以支持更大的传输带宽,从而提升终端设备的吞吐量。实际上,每个载波单元对应一个独立的小区。通常,可以将一个载波单元等同于一个小区。
2、主小区(primary cell,PCell)和辅小区(secondary cell,SCell)
主小区,是终端设备进行初始连接建立的小区,或进行无线资源控制(radio resource control,RRC)连接重建的小区,或是在切换(handover)过程中指定的主小区。主小区主要负责与终端设备之间的RRC通信。主小区对应的载波单元,可以称为主载波单元(primary component carrier,PCC),本申请实施例以主小区为例进行描述。
辅小区,是在RRC重配置时添加的,用于提供额外的无线资源。辅小区与终端设备之间不存在任何RRC通信。辅小区对应的载波单元,可以成为称为辅载波单元(secondary component carrier,SCC),本申请实施例以辅小区为例进行描述。
示例性的,终端设备发起随机接入之后,网络设备执行步骤1和步骤2:
步骤1、网络设备向终端设备发送RRC重配置(RRC Reconfiguration)消息。相应的,终端设备接收来自网络设备的RRC Reconfiguration消息。
其中,RRC Reconfiguration消息携带添加辅小区配置的信息,如添加辅小区配置的信息包括辅小区添加列表(SCell To Add Mod List)。SCell To Add Mod List指示待添加辅小区的索引。
步骤2、终端设备向网络设备发送RRC重配置完成(RRC Reconfiguration Complete)消息。相应的,网络设备接收来自终端设备的RRC Reconfiguration Complete消息。
其中,RRC Reconfiguration Complete消息指示已添加辅小区配置。
3、服务小区(serving cell)
服务小区,是为终端设备提供服务的小区。如果终端设备处于RRC连接态但并未配置CA,则该终端设备只有一个服务小区,即主小区。如果终端设备处于RRC连接态且配置了CA,则该终端设备的服务小区集合包括主小区和所有的辅小区。
4、上下行解耦技术
在传统的通信系统中,例如,长期演进(long term evolution,LTE)系统中,同一频段中的上行载波和下行载波需要绑定和配对使用,即一个上行载波对应一个下行载波,上行和下行是耦合的。
在新无线(new radio,NR)中,NR频段组网中上行覆盖可能比下行覆盖范围小,例如,3.5G时分双工(time-division duplex,TDD)的上行覆盖比下行覆盖低10dB至15dB。因此,NR打破传统通信系统中上行和下行耦合的设计,引入了上行和下行解耦的设计。通过上下行解耦,NR支持在一个小区中配置多个上行载波。其中,NR系统的载波可以称为普通上行(normal uplink,NUL)载波,增加的上行载波可以称为增补上行(supplementary uplink,SUL)载波。通过在NR上行覆盖受限地方,增加SUL,可以提高NR系统的上行吞吐量。SUL载波可以灵活配置,既可以是现有LTE系统中的载波,也可以是一个单独的上行载波。
示例性的,图1a给出了一个1.8GHz的LTE载波配置为3.5GHz的NR载波的SUL载波的例子,该例子中,1.8GHz的SUL载波的频率相对于3.5GHz更低,传播损耗(也称路径损耗)也更小,可以有效提升NR上行覆盖,并且利用了LTE现有载波,节约了运营商的开销。
5、随机接入机制
随机接入流程用于终端设备与网络设备建立连接并获得上行同步。图1b示出了终端设备发起随机接入的过程,具体包括如下步骤:
S100、网络设备向终端设备发送系统消息。相应的,终端设备接收来自网络设备的系统消息。
其中,系统消息包括SUL载波的公共配置信息。SUL载波的公共配置信息包括SUL载波的频点信息、时间对齐定时器(time alignment timer,TAT)信息、部分带宽(bandwidth part,BWP)初始配置信息等。BWP初始配置信息包括随机接入信道(random access channel,RACH)、物理上行控制信道(physical uplink contol channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)的基本配置信息。RACH的基本配置信息包括根序列号和物理随机接入信道(physical random access channel,PRACH)时频信息。其中,根序列号用于确定随机接入前导码。PRACH时频信息用于指示PRACH占用的时频资源。SUL载波的公共配置信息,也可以描述为SUL载波的常规配置信息。在本申请实施例中,以SUL载波的公共配置信息为例进行介绍。
S101、终端设备向网络设备发送消息1(Msg1)。相应的,网络设备接收来自终端设备的消息1。
其中,Msg1包括前导码。前导码也可以称为随机接入前导码、物理随机接入信道(physical random access channel,PRACH)前导码(PRACH前导码)、随机接入前导序列、前导序列等。前导码是根据RACH的基本配置信息中的根序列号确定的,并在PRACH时 频信息指示的时频资源上传输。
应理解,在执行S101的过程中,若终端设备处于近点区域,则在NUL载波上使用PRACH进行随机接入。此种情况下,终端设备可以在PCell NUL载波上发起随机接入。若终端设备处于远点区域,则在SUL载波上使用PRACH进行随机接入。此种情况下,终端设备在PCell SUL载波上发起随机接入。
Msg1可以告诉网络设备有一个随机接入请求,同时使得网络设备估计其与终端设备之间的传输时延,并以传输时延来确定时间提前量(timing advance,TA)。
其中,随机接入的种类分为两种:基于竞争和基于非竞争。基于竞争的随机接入过程中,PRACH占用的时频资源和前导码是由终端设备选择的,不同的终端设备可能同时选择同一个PRACH时频资源和同一个前导码,从而导致冲突的出现,这时就需要一个冲突解决机制(即S103和S104)来解决这个问题。也就是说,基于竞争的随机接入流程包括S101至S104。
基于非竞争的随机接入过程中,终端设备已经拥有在接入的小区内的唯一标识小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI),且PRACH占用的时频资源和前导码是由网络设备指定的,从而保证不会与其它终端设备发生冲突,也就不需要冲突解决机制(即不需要S103和S104)。也就是说,基于非竞争的随机接入流程包括S101和S102。
S102、网络设备向终端设备发送消息2(Msg2)。相应的,终端设备接收来自网络设备的消息2。
其中,Msg2可以是随机接入响应(random access response,RAR)。
其中,Msg2可以包括TA,该TA为网络设备根据Msg1为终端设备计算的TA。
S103、终端设备向网络设备发送消息3(Msg3)。相应的,网络设备接收来自终端设备的消息3。
在S103中,终端设备可以采用Msg2中的TA向网络设备发送Msg3。Msg3包括一个重要信息:终端设备的冲突解决标识(UE contention resolution identity),该标识将用于S104的冲突解决。
应理解,在Msg1通过PCell NUL载波发送的情况下,Msg3也通过PCell NUL载波发送。在Msg1通过PCell SUL载波发送的情况下,Msg3也通过PCell SUL载波发送。
S104、网络设备向终端设备发送消息4(Msg4)。相应的,终端设备接收来自网络设备的消息4。
其中,消息4指示终端设备随机接入的竞争结果。
其中,网络设备在冲突解决机制中,Msg4中携带终端设备的冲突解决标识以指定在冲突解决中成功的终端设备,其它没有在冲突解决中成功的终端设备将重新发起随机接入。
通过上述S101至S104,终端设备与网络设备通过上述随机接入过程,即可与网络设备实现上行同步。
在一些实施例中,如终端设备在PCell SUL载波上发起随机接入的情况下,网络设备还可以执行S105:
S105、网络设备向终端设备发送RRC重配置消息。相应的,终端设备接收来自网络设备的RRC重配置消息。
其中,RRC重配置消息包括SUL载波的专用配置信息。SUL载波的专用配置信息包括SUL的PUCCH、PUSCH、探测参考信号(sounding reference signal,SRS)等的具体配置,比如PUCCH不同的格式(format)配置、PUSCH的扰码、导频、码本等,SRS的配置等。
需要说明的是,SUL载波的公共配置信息可以用于终端设备发起随机接入,详见S100和S101的介绍。SUL载波的公共配置信息和SUL载波的专用配置信息可以用于终端设备进行上行业务数据传输。在上行业务数据传输过程中,SUL载波的公共配置信息和SUL载波的专用配置信息是必不可少的。终端设备只有获取到SUL载波的公共配置信息和专用配置信息,才能够在SUL载波上发送业务数据。
如图2所示,在上下行解耦技术中,当终端设备处于小区近点区域,上行覆盖良好时,使用NUL载波发起随机接入。网络设备认为终端设备处于近点区域,不给终端设备配置SUL专用配置,具体过程如图1b中的S100至S104所示。当终端设备处于小区远点区域,上行覆盖受限时,使用SUL载波发起随机接入。网络设备认为终端设备处于远点区域,网络设备给终端设备配置SUL专用配置,具体过程如图1b中的S100至S105所示,此处不再赘述。
然而,若终端设备的上行射频通道全部用于发送NUL载波,且终端设备移动,从近点区域进入远点区域,即使终端设备支持上下行解耦技术,终端设备与网络设备之间的RRC连接断裂,产生掉话,影响业务连续性。示例性的,处于远点区域的终端设备,确定信号质量变差,导致终端设备的上行失步。如图3所示,终端设备执行如下步骤:
S301、终端设备执行小区搜索,实现下行同步。
S302、终端设备在SUL载波上发起随机接入过程。
其中,终端设备执行上述图1b所示的随机接入过程,以与网络设备实现上行同步。在实现上行同步之后,终端设备执行S303:
S303、终端设备向网络设备发送RRC重建立请求。相应的,网络设备接收来自终端设备的RRC重建立请求。
其中,RRC重建立请求用于请求重新建立终端设备与网络设备之间的RRC连接。
S304、网络设备向终端设备发送RRC重建立消息。相应的,终端设备接收来自网络设备的RRC重建立消息。
其中,RRC重建立消息用于确认重新建立终端设备与网络设备之间的RRC连接,以响应RRC重建立请求。
在终端设备与网络设备之间的RRC连接重建立完成之后,网络设备执行S305:
S305、网络设备向终端设备发送RRC重配置消息。相应的,终端设备接收来自网络设备的RRC重配置消息。
其中,RRC重配置消息包括SUL载波的专用配置信息,具体可以参见S105的介绍,此处不再赘述。然后,终端设备基于系统消息中的SUL载波的公共配置信息,以及S305传输的RRC重配置消息中SUL载波的专用配置信息,实现上行数据传输。
由此可知,在终端设备从近点区域进入远点区域之后,终端设备与网络设备之间的RRC连接断裂,且通过重新建立RRC连接的方式,来继续传输业务数据。也就是说,业务数据传输出现中断,业务连续性无法得到保证。
有鉴于此,本申请实施例提供一种数据传输方法,本申请实施例数据传输方法适用于各种通信系统。本申请实施例提供的数据传输方法可以应用于第五代(fifth-generation,5G)通信网络,或者其他类似的网络中,或者未来的其它网络中。图4为可适用于本申请实施例数据传输方法的通信系统的架构示意图,该通信系统可以包括终端设备40和网络设备41。其中,终端设备40与网络设备41之间无线连接。终端设备40的数量可以为一个或多个,网络设备41也可以为一个或多个。图4中仅示出了一个网络设备和两个终端设备。在图4中,一个椭圆表示一个小区。图4仅为示意图,并不构成对本申请实施例数据传输方法的适用场景的限定。
网络设备41,可以是无线通信的基站或基站控制器等。例如,所述基站可以包括各种类型的基站,例如:微基站(也称为小站),宏基站,中继站,接入点等,本申请实施例对此不作具体限定。在本申请实施例中,所述基站可以是5G移动通信网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,本申请实施例对此不作任何限制。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。在本申请实施例中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请所说的网络设备,例如基站,通常包括基带单元(baseband unit,BBU)、射频拉远单元(remote radio unit,RRU)、天线、以及用于连接RRU和天线的馈线。其中,BBU用于负责信号调制。RRU用于负责射频处理。天线用于负责线缆上导行波和空气中空间波之间的转换。一方面,分布式基站大大缩短了RRU和天线之间馈线的长度,可以减少信号损耗,也可以降低馈线的成本。另一方面,RRU加天线比较小,可以随地安装,让网络规划更加灵活。除了RRU拉远之外,还可以把BBU全部都集中起来放置在中心机房(central office,CO),通过这种集中化的方式,可以极大减少基站机房数量,减少配套设备,特别是空调的能耗,可以减少大量的碳排放。此外,分散的BBU集中起来变成BBU基带池之后,可以统一管理和调度,资源调配更加灵活。这种模式下,所有的实体基站演变成了虚拟基站。所有的虚拟基站在BBU基带池中共享用户的数据收发、信道质量等信息,相互协作,使得联合调度得以实现。
在一些部署中,基站可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。基站还可以包括有源天线单元(active antenna unit,AAU)。CU实现基站的部分功能,DU实现基站的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PDCP层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU、DU、AAU中一项或多项的设备。此外,CU可以划分为RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不做限制。
终端设备40,是一种具有无线收发功能的设备。终端设备可以被部署在陆地上,包括 室内或室外、手持或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备设备可以是用户设备(user equipment,UE)。其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
以下实施例以手机作为例来说明终端设备如何实现实施例中的具体技术方案。如图5所示,本实施例中的终端设备可以为手机500。下面以手机500为例对实施例进行具体说明。
应该理解的是,图示手机500仅仅是支持上下行解耦技术的终端设备的一个范例,并且手机500可以具有比图中所示出的更过的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。图5中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
如图5所示,手机500包括:处理器510、片上系统设备520、显示控制器530、编解码器(CODEC)540、管理器550、存储器560、输入设备570、调制解调器580、收发器590和电源591等。
本领域技术人员可以理解,图5中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图5所示,手机500中还可以包括SIM卡接口551。SIM卡接口551用于与SIM卡552通信。例如,SIM卡接口551可以为SIM卡连接器,其包括具有SIM卡收容空间的主体,以及用于对接收的SIM卡的导电端子进行接收的多个联通插槽。可以通过导电端子和插槽进行与SIM卡的电信令联系。示例接口可以包括串行或并行(例如,6针或8针)连接。此外,可以提供多种SIM卡尺寸(例如,全尺寸SIM、迷你SIM或者微型SIM)。在其他实施例中,当多种签约与通用身份模块相关联(例如,通用SIM)时,手机500可以不包括多个SIM卡接口。管理器550用于管理SIM卡552。
如图5所示,手机500还可以包括耦合到编解码器CODEC 540的扬声器541和麦克风542。图5还指明了管理器550可以耦合到处理器510,且耦合到与收发器590进行通信的调制解调器580。其中,收发器590与一个或多个天线连接。图5中仅示出了一个天线的实例。
在特定的实施例中,收发器590与多个天线连接,调制解调器580支持分集,其中多个天线中的一个天线是主天线,另外的天线是辅天线。
收发器590可以为RF电路,该RF电路可用于收发信息或通话过程中,信号的接收和发送,可以将基站的下行信息接收后,给处理器510处理;另外,将涉及上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等器件。此外,RF电路还可以通过无线通信与网络和其他移动设备通信。 所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统、通用分组无线服务、码分多址、宽带码分多址、长期演进、电子邮件、短消息服务等。在本申请实施例中,图5所示的收发器590中可以包括一路射频Rx通道和两路射频Tx通道(图5所示的射频Tx1通道、射频Tx2通道和射频Rx1通道)。当然,收发器590中射频Rx通道和射频Tx通道的数量可以有其他取值,如两路射频Rx通道和三路射频Tx通道,本申请实施例对此不作限定。在本申请实施例中,字母T,表示上行射频通道。示例性的,1T是指,一条上行射频通道,如射频Tx1通道,或射频Tx2通道。2T是指,两条上行射频通道,如射频Tx1通道,以及射频Tx2通道。
其中,存储器560可用于存储软件程序及数据。处理器510通过运行存储在存储器560的软件程序及数据,从而执行手机500的各种功能以及数据处理。例如,如图5所示,存储器560中保存有指令561。指令561可以由处理器510执行。例如,指令561包括可由处理器510执行,以在调制解调器580的输入端接收与SIM卡552相关通信数据的指令。
上述存储器560可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能)等;存储数据区可存储根据手机500的使用所创建的数据(比如音频数据、电话本)等。此外,存储器560可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。在以下实施例中,存储器560存储有使得手机500能运行的操作系统,例如苹果公司所开发的
Figure PCTCN2021109344-appb-000001
操作系统,谷歌公司所开发的
Figure PCTCN2021109344-appb-000002
开源操作系统,微软公司所开发的
Figure PCTCN2021109344-appb-000003
操作系统等。
输入设备570(如触摸屏)可用于接收输入的数字或字符信息,以及产生与手机500的用户设置以及功能控制有关的信号输入。具体地,输入设备570可以包括设置在手机500正面的触控面板,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板上或在触控面板附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器510,并能接收处理器510发来的指令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板。
显示器531(即显示屏)可用于显示由用户输入的信息或提供给用户的信息以及手机500的各种菜单的图形用户界面(graphical user inter face,GUI)。显示器531可包括设置在手机500正面的显示面板。其中,显示面板可以采用液晶显示器、发光二极管等形式来配置。
当触控面板检测到在其上或附近的触摸操作后,传送给处理器510以确定触摸事件,随后处理器510根据触摸事件的类型在显示面板上提供相应的视觉输出。虽然在图5中,触控面板与显示面板是作为两个独立的部件来实现手机500的输入和输入功能,但是在某些实施例中,可以将触控面板与显示面板集成而实现手机500的输入和输出功能,集成后的触控面板与显示面板可以简称为触摸显示屏。
在另外的一些实施例中,上述触控面板还可以设置有压力感应传感器,这样用户在上述触控面板上进行触摸操作时,触控面板还能检测到该触摸操作的压力,进而手机500能 够更准确地检测该触摸操作。
手机500还可以包括至少一种传感器543,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板的亮度,接近光传感器设置在手机500的正面,当在手机500移动到耳边时,根据接近光传感器的检测,手机500关闭显示面板的电源,这样手机500可以进一步节省电量。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏转化、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机500还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
CODEC 540、扬声器541,麦克风542可提供用户与手机500之间的音频接口。CODEC 540可将接收到的音频数据转换后的电信号,传输到扬声器541,由扬声器541转换为声音信号输出;另一方面,麦克风542将收集的声音信号转换为电信号,由CODEC 540接收后转换为音频数据,再将音频数据输出至处理器510,以由处理器510作进一步处理,如存储至存储器560。
处理器510是手机500的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器560内的软件程序,以及调用存储在存储器560内的数据,执行手机500的各种功能和处理数据,从而对手机进行整体监控。在一些实施例中,处理器510可包括一个或多个处理单元;处理器510还可以集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
上述手机500还可以包括蓝牙模块和Wi-Fi模块。蓝牙模块用于通过蓝牙这种短距离通讯协议来与其他设备进行信息交互。例如,手机500可以通过蓝牙模块与同样具备蓝牙模块的可穿戴电子设备(例如智能手表)建立蓝牙连接,从而进行数据交互。Wi-Fi属于短距离无线传输技术,手机500可以通过Wi-Fi模块帮助用户收发电子邮件、浏览网页和访问流媒体等,它为用户提供了无线的宽带互联网访问。
手机500还包括给各个部件供电的电源591(比如电池)。电源可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。可以理解的是,在以下实施例中,电源591可以用于给显示面板及触控面板供电。以下实施例中的方法均可以在具有上述硬件结构的手机500中实现。
如图6所示,本申请实施例提供了一种网络设备的结构示意图。该网络设备600可以包括一个或多个射频单元,如RRU610和一个或多个BBU(也可称为数字单元(digital unit,DU))620。所述RRU 610可以称为收发单元。可选地,该收发单元610还可以称为收发机、收发电路、收发器、发射机和接收机等等,其可以包括至少一个天线611和RF电路612。可选地,收发单元610可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 610部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送第一消息。所述BBU 620部分主要用于进行基带处理,对网络设备进行控制等。所述RRU 610与BBU 620可以是物理上设置在一起,也可以物理上分离设置的,即分布 式基站。
所述BBU 620为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU 620可以用于控制网络设备执行本申请涉及的方法。
在一个示例中,所述BBU 620可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如5G网或其他网)。所述BBU 620还包括存储器621和处理器622。所述存储器621用以存储必要的指令和数据。所述处理器622用于控制网络设备进行必要的动作,例如用于控制网络设备执行本申请涉及的方法。本申请中处理器622可以指一个或多个处理器。所述存储器621和处理器622可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
另外,网络设备不限于上述形态,也可以是其它形态:例如:包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU和有源天线单元(active antenna unit,AAU);也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请不限定。
如图7所示,为本申请实施例提供的一种数据传输方法700,该数据传输方法700应用于终端设备。该终端设备至少配置两条射频Tx通道,分别记为射频Tx1通道和射频Tx2通道。该数据传输方法700包括以下步骤:
S701、终端设备在第一载波上向网络设备发送第一数据。相应的,网络设备在第一载波上接收来自终端设备的第一数据。
其中,第一载波的介绍包括如下两个关键点:
关键点1,第一载波占用至少两条上行射频通道中的全部通道。也就是说,第一载波占用了终端设备的全部上行射频通道。换言之,在S701的执行过程中,终端设备中无空闲的上行射频通道。示例性的,以图5为例,终端设备全部的上行射频通道包括射频Tx1通道和射频Tx2通道,第一载波占用了射频Tx1通道和射频Tx2通道。
关键点2,第一载波包括至少一个NUL载波。下面,通过4个示例(下述示例1~示例4)进行介绍:
示例1,第一载波包括一个NUL载波。其中,第一载波记为PCell NUL载波1。PCell NUL载波1支持的多输入多输出(multiple-input multiple-output,MIMO)层数为两层或两层以上。PCell NUL载波1占用了终端设备的全部上行射频通道。示例性的,仍以图5为例,终端设备的全部上行射频通道包括2T,即射频Tx1通道和射频Tx2通道。PCell NUL载波1占用2T,即射频Tx1通道和射频Tx2通道。
示例2,第一载波包括两个NUL载波,且两个NUL载波分别为PCell NUL载波1和SCell NUL载波1。在两个NUL载波中,一个NUL载波占用一个射频通道,不同NUL载波占用不同的射频通道。示例性的,仍以图5为例,终端设备的全部上行射频通道包括2T,即射频Tx1通道和射频Tx2通道。PCell NUL载波1占用1T,如射频Tx1通道。SCell NUL载波1占用1T,如射频Tx2通道。
示例3,第一载波包括三个NUL载波,且三个NUL载波分别为PCell NUL载波1、 SCell NUL载波1和SCell NUL载波2。在三个NUL载波中,一个NUL载波占用一个射频通道,不同NUL载波占用不同的射频通道。示例性的,终端设备的全部上行射频通道包括3T,即射频Tx1通道、射频Tx2通道和射频Tx3通道。PCell NUL载波1占用1T,如射频Tx1通道。SCell NUL载波1占用1T,如射频Tx2通道。SCell NUL载波2占用1T,如射频Tx3通道。
示例4,第一载波包括两个NUL载波,且两个NUL载波分别为PCell NUL载波1和SCell NUL载波1。示例性的,终端设备的全部上行射频通道包括3T,即射频Tx1通道、射频Tx2通道和射频Tx3通道。PCell NUL载波1占用1T,如占用射频Tx1通道。SCell NUL载波1占用2T,如占用射频Tx2通道和射频Tx3通道。
应理解,上述示例1至示例4仅是示例性的给出了第一载波的介绍,当然,第一载波还可以包括更多的情况,如第一载波包括一个PCell NUL载波和三个SCell NUL载波,PCell NUL载波占用了两条上行射频通道,三个SCell NUL载波分别占用了一条上行射频通道。对于第一载波的其他状况,此处不再一一列举。
需要说明的是,终端设备在近点区域执行S701。由于其他因素影响(如终端设备移动,从近点区域进入远点区域),终端设备确定信号质量变差,如终端设备测量到的下行参考信号接收功率(reference signal receiving power,RSRP)小于预设值,终端设备确定从NUL载波切换到SUL载波。终端设备执行S702:
S702、终端设备在第二载波上向网络设备发起随机接入过程。
其中,第二载波的介绍包括如下两个关键点:
关键点1,第二载波是一个SUL载波。示例性的,第二载波是一个PCell NUL载波。
关键点2,第二载波占用终端设备的全部上行射频通道中的至少一条上行射频通道。示例性的,第二载波(如一个PCell NUL载波)可以占用一条上行射频通道。或者,在MIMO场景下,第二载波可以占用两条或两条以上的上行射频通道。其中,第二载波支持的MIMO层数可以等于第二载波占用的上行射频通道数量。
其中,随机接入过程可以参见图1b的介绍,如终端设备在第二载波上向网络设备发送Msg1。若终端设备采用基于竞争的随机接入过程,则终端设备仍在第二载波上向网络设备发送Msg3。相应的,网络设备在第二载波上接收来自终端设备的Msg3。
应理解,终端设备在执行S702的过程中,由于信号质量变差,终端设备中的全部上行射频通道不再用于发送NUL载波。终端设备可以通过全部上行射频通道中的至少一条射频通道发送第二载波。经过上述随机接入过程之后,终端设备与网络设备即可实现上行同步。
对于网络设备而言,网络设备在SUL载波上接收随机接入请求之后,确定终端设备处于远点区域。并且,网络设备结合终端设备上报的能力信息,确定终端设备的上行射频通道全部配置为NUL载波的发送。其中,能力信息指示终端设备中上行射频通道的数量。此种情况下,网络设备执行S703:
S703、网络设备在下行载波上向终端设备发送第一消息。相应的,终端设备在下行载波上接收来自网络设备的第一消息。
其中,第一消息可以实现为RRC重配置消息。当然,第一消息也可以是其他名称,本申请实施例对此不作限定。
其中,第一消息指示以下至少一项:
第一项,减少第一载波支持的MIMO层数。例如,在第一载波包括PCell NUL载波的情况下,如S701中示例1,第一消息包括第一信息。其中,第一信息指示修改主小区的配置,且第一信息指示的配置用于减少PCell NUL载波支持的MIMO层数。示例性的,第一信息可以记为修改主小区配置(PCell config),第一信息可以承载于第一消息的修改主小区的配置字段。换言之,第一消息携带PCell config。再如,在第一载波包括SCell NUL载波的情况下,如S701中示例4,第一消息包括第二信息。其中,第二信息指示修改辅小区的配置,且第二信息指示的配置用于减少SCell NUL载波支持的MIMO层数。示例性的,第二信息可以记为辅小区添加列表(SCellToAddModList),第二信息可以承载于第一消息的修改辅小区的配置字段。换言之,第一消息携带SCellToAddModList。其中,SCellToAddModList包括辅小区的索引,以指示修改索引对应辅小区的配置,如减少SCellToAddModList中索引对应辅小区的NUL载波支持的MIMO层数。
第二项,减少第一载波的数量。例如,在第一载波包括SCell NUL载波的情况下,如S701中示例2、示例3或示例4,第一消息包括第三信息。其中,第三信息指示删除辅小区的配置,且第三信息指示的配置用于删除SCell NUL载波。示例性的,第三信息可以记为辅小区删除列表(SCellToReleaseList),第三信息可以承载于第一消息的删除辅小区的配置字段。换言之,第一消息携带SCellToReleaseList。其中,SCellToReleaseList包括辅小区的索引,以指示删除索引对应辅小区的配置,如删除SCellToReleaseList中索引对应辅小区的配置。
在第一消息实现为上述第一项的情况下,终端设备减少第一载波支持的MIMO层数。由于第一载波支持的MIMO层数减少,相应的,第一载波占用的上行射频通道数量减少。
在第一消息实现为上述第二项的情况下,终端设备减少第一载波中NUL载波的数量。由于第一载波中NUL载波的数量减少,相应的,第一载波占用的上行射频通道数量减少。
应理解,在本申请实施例数据传输方法700中,终端设备可以接收来自网络设备的SUL载波的专用配置信息,具体参见S105的介绍。终端设备先执行S105,再执行S703,也可以先执行S703,再执行S105,还可以同时执行S105和S703,本申请实施例对此不作限定。进一步地,在终端设备同时执行S105和S703的情况下,SUL载波的专用配置信息也可以承载于第一消息。即,通过一条消息,既为终端设备提供SUL载波的专用配置信息,又指示了终端设备减少用于NUL载波的上行射频通道数量,以节省信令开销。
与图3所示的数据传输方法相比,本申请实施例数据传输方法700中,终端设备无需向网络设备发送RRC重建立请求,也无需接收来自网络设备的RRC重建立消息。换言之,图7所示的数据传输方法中,即使终端设备执行S701之后,确定信号质量变差,终端设备与网络设备之间的RRC连接未断裂,无需执行RRC连接重建立过程。网络设备基于S701执行过程中的配置,向终端设备发送第一消息,以指示终端设备减少发送NUL载波的上行射频通道数量,所以,终端设备也就有空闲的上行射频通道用于发送第二数据,以保证业务连续性。终端设备执行S703之后,即可执行S704:
S704、终端设备在第二载波上向网络设备发送第二数据。相应的,网络设备在第二载波上接收来自终端设备的第二数据。
其中,第二数据是第一数据之后发送的数据,以保证业务连续性。
示例性的,终端设备确定信号质量变差之后,如终端设备处于远点区域,终端设备也可以在第二载波上向网络设备发送第二数据。
应理解,在终端设备执行S701之后,且执行S704之前,终端设备与网络设备之间的RRC连接始终未断裂,所以,PCell NUL载波的配置仍保留,上行射频通道中至少一个通道用于发送PCell NUL载波。所以,第二载波占用的上行射频通道数量小于终端设备的全部上行射频通道数量。
在本申请实施例数据传输方法700中,即使终端设备中的上行射频通道全部用于发送NUL载波,在确定信号质量变差,如下行RSRP小于预设值的情况下,终端设备也可以在至少一条上行射频通道上发送SUL载波,从而在SUL载波上发起随机接入,以使得终端设备与网络设备之间实现上行同步。终端设备接收来自网络设备的第一消息,以使终端设备减少用于发送NUL载波的上行射频通道。如此,终端设备即可有空闲的上行射频通道来继续发送业务数据,从而避免由于上行失步而发生掉话的现象,以保持业务连续性。
在一些实施例中,本申请实施例数据传输方法还包括S705:
S705、终端设备在第三载波上向网络设备发送第三数据。相应的,网络设备在第三载波上接收来自终端设备的第三数据。
其中,第三数据是第一数据之后发送的数据,且与第二数据不同。
其中,第三载波是除第二载波之外,用于发送上行业务数据的载波。示例性的,从载波数量上来说,第三载波可以是一个载波,也可以是多个载波。从载波特性上来说,第三载波可以包括NUL载波,也可以包括SUL载波。其中,第三载波包括以下至少一项:
第一项,主小区的NUL载波,即PCell NUL载波。示例性的,在信号质量较差的情况下,PCell NUL载波的配置仍保留。虽然,PCell NUL载波的信号质量有一定程度的衰减,但PCell NUL载波仍可以发送上行业务数据的情况下,终端设备仍可以在PCell NUL载波上发送第三数据,即第三载波包PCell NUL载波,以提升数据吞吐量。
第二项,主小区的SUL载波,即PCell SUL载波。示例性的,在S701中的示例3中,终端设备可以在射频Tx2通道上发送第二载波,在射频Tx3通道上发送第三载波,即PCell SUL载波。也就是说,PCell SUL载波可以有两个。其中,一个PCell SUL载波用于发送Msg1,即作为第二载波。另一个PCell SUL载波用于发送第三数据,即作为第三载波。应理解,PCell SUL载波的数量仅是示例,不应理解为对PCell SUL载波的限定。例如,在终端设备有四条上行射频通道的情况系,PCell SUL载波可以有三个,本申请实施例对此不作限定。
第三项,辅小区的SUL载波,即SCell SUL载波。示例性的,在S701中的示例3中,终端设备可以在射频Tx2通道上发送第二载波,在射频Tx3通道上发送第三载波,即SCell SUL载波。也就是说,PCell SUL载波可以有一个,SCell SUL载波也可以有一个。其中,一个PCell SUL载波用于发送Msg1,即作为第二载波。SCell SUL载波用于发送第三数据,即作为第三载波。
应理解,SCell SUL载波和PCell SUL载波的数量仅是示例,不应理解为对SCell SUL载波和PCell SUL载波的限定。例如,在终端设备有四条上行射频通道的情况下,PCell SUL载波可以有一个,占用一个上行射频通道。SCell SUL载波可以有两个,每个SCell SUL载波占用一个上行射频通道,本申请实施例对此不作限定。
如此,即使终端设备确定信号质量变差之后,终端设备仍可以在更多的载波上发送上行业务数据,以提升数据吞吐量。
需要说明的是,终端设备在确定信号质量变差之后,用于发送上行业务数据的载波包括第二载波和第三载波。第三载波占用的上行射频通道数量和第二载波占用的上行射频通道数量之和小于或等于第一载波占用的上行射频通道数量。应理解,在终端设备执行S701至S704的过程中,PCell NUL载波的配置仍保留。在第三载波包括PCell NUL载波的情况下,第三载波占用的上行射频通道数量和第二载波占用的上行射频通道数量之和可以等于第一载波占用的上行射频通道数量。在第三载波不包括PCell NUL载波的情况下,第三载波占用的上行射频通道数量和第二载波占用的上行射频通道数量之和小于第一载波占用的上行射频通道数量。在本申请实施例中,终端设备可以先执行S704,再执行S705,也可以先执行S705,再执行S704,还可以同时执行S704和S705,本申请实施例对此不作限定。
上述主要从设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,终端设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
如图8所示,为本申请实施例提供的一种通信装置,该通信装置包括处理单元801、发送单元802和接收单元803。
例如,处理单元801用于支持终端设备执行图7中的S702等,和/或本申请实施例中终端设备需要执行的其他处理操作。发送单元802用于支持终端设备执行图7中的S701、S704、S705等,和/或本申请实施例中终端设备需要执行的其他发送操作。接收单元803用于支持终端设备执行图7中的S703等,和/或本申请实施例中终端设备需要执行的其他接收操作。作为一个示例,图8中的处理单元801可以通过图5中的处理器510来实现,图8中的发送单元802和接收单元803可以由图5中的收发器350来实现。
再如,接收单元803用于支持网络设备执行图7中的S701、S704、S705等,和/或本申请实施例中网络设备需要执行的其他接收操作。发送单元802用于支持网络设备执行图7中的S703等,和/或本申请实施例中网络设备需要执行的其他发送操作。处理单元801用于支持网络设备执行需要执行的其他处理操作。作为一个示例,图8中的处理单元801可以通过图5中的处理器621来实现,图8中的发送单元802和接收单元803可以由图6中的RRU610来实现。
可选的,本申请实施例还提供一种携带计算机指令的计算机程序产品,当该计算机指 令在计算机上运行时,使得计算机执行前述方法实施例所提供的数据传输方法。
可选的,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,当该计算机指令在计算机上运行时,使得计算机执行前述方法实施例所提供的数据传输方法。
可选的,本申请实施例还提供一种芯片,包括:处理电路和收发管脚,处理电路和收发管脚用于实现前述方法实施例所提供的数据传输方法。其中,处理电路用于执行相应方法中的处理动作,收发管脚用于执行相应方法中的接收/发送的动作。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个设备上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个功能单元独立存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申 请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种数据传输方法,其特征在于,应用于终端设备,所述终端设备配置有至少两条通道,所述方法包括:
    在第一载波上发送第一数据,其中,所述第一载波包括至少一个普通上行NUL载波,且所述第一载波占用所述至少两条通道中的全部通道;
    在第二载波上发起随机接入,其中,所述第二载波属于补充上行SUL载波,且占用所述至少两条通道中的至少一条通道;
    在下行载波上接收第一消息,其中,所述第一消息指示以下至少一项:减少所述第一载波的数量,或减少所述第一载波支持的多输入多输出MIMO层数;
    在所述第二载波上发送第二数据,所述第二数据是所述第一数据之后发送的数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一消息包括第一信息,其中,所述第一信息指示修改主小区的配置,且所述第一信息指示的配置用于减少所述主小区的NUL载波支持的MIMO层数,所述第一载波包括所述主小区的NUL载波。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息承载于所述第一消息的修改主小区的配置字段。
  4. 根据权利要求1所述的方法,其特征在于,所述第一消息包括第二信息,其中,所述第二信息指示修改辅小区的配置,且所述第二信息指示的配置用于减少所述辅小区的NUL载波支持的MIMO层数,所述第一载波包括所述辅小区的NUL载波。
  5. 根据权利要求4所述的方法,其特征在于,所述第二信息承载于所述第一消息的修改辅小区的配置字段。
  6. 根据权利要求1所述的方法,其特征在于,所述第一消息包括第三信息,其中,所述第三信息指示删除辅小区的配置,且所述第三信息指示的配置用于删除所述辅小区的NUL载波,所述第一载波包括所述辅小区的NUL载波。
  7. 根据权利要求6所述的方法,其特征在于,所述第三信息承载于所述第一消息的删除辅小区的配置字段。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述第一消息为无线资源控制RRC重配置消息。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述第二载波属于主小区的SUL载波。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述方法还包括:
    在第三载波上发送第三数据,其中,所述第三载波占用的通道数量和所述第二载波占用的通道数量之和小于或等于所述第一载波占用的通道数量,所述第三数据是所述第一数据之后发送的数据。
  11. 根据权利要求10所述的方法,其特征在于,所述第三载波包括以下至少一项:主小区的NUL载波,或辅小区的SUL载波。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述第一消息还包括所述SUL载波的配置信息,所述配置信息用于所述终端设备发送所述第二数据。
  13. 一种数据传输方法,其特征在于,应用于网络设备,所述方法包括:
    在第一载波上接收第一数据,所述第一载波包括至少一个普通上行NUL载波;
    在第二载波上执行随机接入,其中,所述第二载波属于补充上行SUL载波;
    在下行载波上发送第一消息,其中,所述第一消息指示以下至少一项:减少所述第一载波的数量,或减少所述第一载波支持的多输入多输出MIMO层数;
    在所述第二载波上接收第二数据,所述第二数据是所述第一数据之后接收的数据。
  14. 根据权利要求13所述的方法,其特征在于,所述第一消息包括第一信息,其中,所述第一信息指示修改主小区的配置,且所述第一信息指示的配置用于减少所述主小区的NUL载波支持的MIMO层数,所述第一载波包括所述主小区的NUL载波。
  15. 根据权利要求14所述的方法,其特征在于,所述第一信息承载于所述第一消息的修改主小区的配置字段。
  16. 根据权利要求13所述的方法,其特征在于,所述第一消息包括第二信息,其中,所述第二信息指示修改辅小区的配置,且所述第二信息指示的配置用于减少所述辅小区的NUL载波支持的MIMO层数,所述第一载波包括所述辅小区的NUL载波。
  17. 根据权利要求16所述的方法,其特征在于,所述第二信息承载于所述第一消息的修改辅小区的配置字段。
  18. 根据权利要求13所述的方法,其特征在于,所述第一消息包括第三信息,其中,所述第三信息指示删除辅小区的配置,且所述第三信息指示的配置用于删除所述辅小区的NUL载波,所述第一载波包括所述辅小区的NUL载波。
  19. 根据权利要求18所述的方法,其特征在于,所述第三信息承载于所述第一消息的删除辅小区的配置字段。
  20. 根据权利要求13至19任一项所述的方法,其特征在于,所述第一消息为无线资源控制RRC重配置消息。
  21. 根据权利要求13至20任一项所述的方法,其特征在于,所述第二载波属于主小区的SUL载波。
  22. 根据权利要求13至21任一项所述的方法,其特征在于,所述方法还包括:
    在第三载波上接收第三数据,其中,所述第三载波占用的通道数量和所述第二载波占用的通道数量之和小于或等于所述第一载波占用的通道数量,所述第三数据是所述第一数据之后接收的数据。
  23. 根据权利要求22所述的方法,其特征在于,所述第三载波包括以下至少一项:主小区的NUL载波,或辅小区的SUL载波。
  24. 根据权利要求13至23任一项所述的方法,其特征在于,所述第一消息还包括所述SUL载波的配置信息,所述配置信息用于所述终端设备发送所述第二数据。
  25. 一种通信装置,包括用于执行如权利要求1至12中的任一项所述方法的单元,或包括用于执行如权利要求13至24中的任一项所述方法的单元。
  26. 一种通信装置,其特征在于,包括:处理器和存储器,所述处理器和所述存储器耦合,所述存储器存储有程序指令,当所述存储器存储的程序指令被所述处理器执行时,如权利要求1至12中任一项所述的方法被执行,或如权利要求13至24中任一项所述的方法被执行。
  27. 一种芯片,其特征在于,所述芯片包括逻辑电路和输入输出接口,所述输入输出接口用于与所述芯片之外的模块通信,所述逻辑电路用于运行计算机程序或指令, 以控制终端设备执行如权利要求1至12中任一项所述的方法,或执行如权利要求13至24中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1至12任一项所述的方法,或执行如权利要求13至24中任一项所述的方法。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,当所述计算机程序产品在计算机上运行时,使得计算机执行如权利要求1至12任一项所述的方法,或执行如权利要求13至24中任一项所述的方法。
PCT/CN2021/109344 2021-07-29 2021-07-29 数据传输方法及通信装置 WO2023004703A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/109344 WO2023004703A1 (zh) 2021-07-29 2021-07-29 数据传输方法及通信装置
CN202180007111.3A CN115885567A (zh) 2021-07-29 2021-07-29 数据传输方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109344 WO2023004703A1 (zh) 2021-07-29 2021-07-29 数据传输方法及通信装置

Publications (1)

Publication Number Publication Date
WO2023004703A1 true WO2023004703A1 (zh) 2023-02-02

Family

ID=85086002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109344 WO2023004703A1 (zh) 2021-07-29 2021-07-29 数据传输方法及通信装置

Country Status (2)

Country Link
CN (1) CN115885567A (zh)
WO (1) WO2023004703A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238720A (zh) * 2010-04-29 2011-11-09 华为技术有限公司 载波同步的方法及用户设备、基站
US10051511B1 (en) * 2016-11-29 2018-08-14 Sprint Spectrum L.P. Responding to uplink backhaul congestion by avoiding invocation of uplink MIMO
CN109842915A (zh) * 2017-11-29 2019-06-04 华为技术有限公司 一种通信方法和装置以及系统
CN110049563A (zh) * 2019-03-15 2019-07-23 华为技术有限公司 一种过热指示方法以及相关设备
CN111200873A (zh) * 2018-11-19 2020-05-26 华为技术有限公司 一种上行链路切换的方法、通信装置和通信系统
CN111225410A (zh) * 2018-11-24 2020-06-02 华为技术有限公司 一种确定上行链路的方法及装置
CN111726213A (zh) * 2019-03-21 2020-09-29 华硕电脑股份有限公司 物理上行链路共享信道的波束指示的方法和设备
CN112087810A (zh) * 2019-06-14 2020-12-15 华为技术有限公司 一种随机接入方法及装置
CN112385285A (zh) * 2018-07-20 2021-02-19 华为技术有限公司 一种随机接入方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102238720A (zh) * 2010-04-29 2011-11-09 华为技术有限公司 载波同步的方法及用户设备、基站
US10051511B1 (en) * 2016-11-29 2018-08-14 Sprint Spectrum L.P. Responding to uplink backhaul congestion by avoiding invocation of uplink MIMO
CN109842915A (zh) * 2017-11-29 2019-06-04 华为技术有限公司 一种通信方法和装置以及系统
CN112385285A (zh) * 2018-07-20 2021-02-19 华为技术有限公司 一种随机接入方法及装置
CN111200873A (zh) * 2018-11-19 2020-05-26 华为技术有限公司 一种上行链路切换的方法、通信装置和通信系统
CN111225410A (zh) * 2018-11-24 2020-06-02 华为技术有限公司 一种确定上行链路的方法及装置
CN110049563A (zh) * 2019-03-15 2019-07-23 华为技术有限公司 一种过热指示方法以及相关设备
CN111726213A (zh) * 2019-03-21 2020-09-29 华硕电脑股份有限公司 物理上行链路共享信道的波束指示的方法和设备
CN112087810A (zh) * 2019-06-14 2020-12-15 华为技术有限公司 一种随机接入方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "RACH Fallback from NUL to SUL", 3GPP DRAFT; R2-1913549 RACH FALLBACK FROM NUL TO SUL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing, China; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051791544 *

Also Published As

Publication number Publication date
CN115885567A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
JP7200993B2 (ja) 無線通信システムにおける装置及び方法
CN109314736B (zh) 一种实现双卡双待双通的通信方法及终端
WO2020038181A1 (zh) 上行信息的发送方法及终端
US20230232457A1 (en) Channel Occupancy Time Sharing Method and Device Node
US20230262663A1 (en) Information transmission method, information transmission apparatus, electronic device, and readable storage medium
US11115093B2 (en) Electronic device supporting thermal mitigating and a control method of thereof
WO2018137512A1 (zh) 前导资源分组方法、前导选择方法,网络设备及终端设备
WO2023078327A1 (zh) 上行传输信息确定、上行传输以及上行传输配置的方法
WO2023004703A1 (zh) 数据传输方法及通信装置
WO2022087929A1 (zh) 数据传输方法及装置
WO2022140996A1 (zh) 一种信道接入方法及通信装置
CN116367312A (zh) 传输确定方法、装置、终端、网络侧设备和存储介质
CN111771402B (zh) 通信方法及装置
WO2022246616A1 (zh) 数据传输方法及通信装置
US20230239923A1 (en) Resource transmission method, terminal device, and network device
WO2023011286A1 (zh) 反馈方法、相关设备及可读存储介质
WO2021227052A1 (zh) 一种信息传输方法、通信设备以及计算机可读存储介质
WO2024061261A1 (zh) 资源配置方法及装置、终端及网络侧设备
EP4192159A1 (en) Data communication method, terminal device and network device
US20230319722A1 (en) Multi-link single radio suspension and operating parameters
WO2023011532A1 (zh) 波束应用时间的确定方法、终端及网络侧设备
CN113316234B (zh) Srs的发送方法及终端设备
WO2022087849A1 (zh) 一种无线通信方法、终端设备及网络设备
WO2023006018A1 (zh) 功率检测门限的确定方法、cot共享方法和设备
US20240114584A1 (en) Communication method and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE