WO2012152019A1 - 相邻频段共存的方法、装置及终端 - Google Patents

相邻频段共存的方法、装置及终端 Download PDF

Info

Publication number
WO2012152019A1
WO2012152019A1 PCT/CN2011/084563 CN2011084563W WO2012152019A1 WO 2012152019 A1 WO2012152019 A1 WO 2012152019A1 CN 2011084563 W CN2011084563 W CN 2011084563W WO 2012152019 A1 WO2012152019 A1 WO 2012152019A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
adjacent frequency
frequency bands
antennas
power band
Prior art date
Application number
PCT/CN2011/084563
Other languages
English (en)
French (fr)
Inventor
张成赞
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012152019A1 publication Critical patent/WO2012152019A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/403Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency
    • H04B1/406Circuits using the same oscillator for generating both the transmitter frequency and the receiver local oscillator frequency with more than one transmission mode, e.g. analog and digital modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2215/00Reducing interference at the transmission system level
    • H04B2215/064Reduction of clock or synthesizer reference frequency harmonics
    • H04B2215/068Reduction of clock or synthesizer reference frequency harmonics by avoiding a reception frequency range

Definitions

  • the present invention relates to the field of interference suppression technologies in wireless networks, and in particular, to a method, device and terminal for coexistence of adjacent frequency bands in the same terminal. Background technique
  • the first one is implemented by adding a filter method, that is, adding filters to two adjacent frequency bands to filter out frequency interference of another frequency band to ensure performance and indicators of the required frequency bands, but due to two adjacent frequency bands Closer, the above frequency interference problem cannot be fundamentally solved;
  • the second method is implemented by changing the polarization of the antenna, that is, the polarization of the antennas of two adjacent frequency bands is different, for example, one is vertical polarization and the other is horizontal polarization to minimize the distance between the two antennas. Isolation, guaranteeing the performance and indicators of the required frequency bands;
  • the interference between two adjacent frequency bands is avoided by controlling different radio frequency signals at different times, and the data throughput is not satisfied, because the sleep and the work are alternately generated, This increases the requirement for time accuracy, increases the complexity of data transmission, and cannot guarantee the accuracy of the data, thereby reducing the reliability of the terminal operation.
  • the main purpose of the present invention is to provide a method, a device and a terminal for coexistence of adjacent frequency bands, which aim to reduce interference when adjacent frequency bands coexist and improve terminal operational reliability.
  • a method for coexisting adjacent frequency bands comprising: adding an isolation between the antennas of the two adjacent frequency bands when acquiring an antenna; and acquiring a first carrier signal quality C1 of the antennas of the low power frequency bands of the two adjacent frequency band antennas;
  • the process of medium and large power band antennas includes:
  • the method for increasing the isolation between two adjacent frequency band antennas is:
  • the method for changing the form of the antenna of the high power band is:
  • the high power band antenna is changed to a single frequency antenna or a balanced antenna by turning on or off the radiator of the high power band antenna.
  • the method for replacing the matching circuit of the high power band antenna is:
  • the matching circuit of the high-power band antenna of the high-level one is selected step by step from low to high.
  • a device in which adjacent frequency bands coexist including:
  • a matching control module configured to increase the isolation between the antennas of the two adjacent frequency bands when there is interference between two adjacent frequency band antennas in the terminal, and the interference is from the antenna of the high power frequency band; Obtaining a first carrier signal quality C1 of a small power band antenna in two adjacent band antennas;
  • a determining operation module configured to maintain a radio frequency performance state of the antennas of the two adjacent frequency bands under the isolation when the difference between the C1 and a preset default value is less than a first predetermined value; otherwise, the matching is controlled by the matching
  • the module increases the isolation between the antennas of the two adjacent bands.
  • a second acquiring module configured to acquire a second carrier signal quality C2 of the small power band antenna before increasing the isolation between the two adjacent frequency band antennas; and a second predetermined value, as the high power band antenna Current maximum transmit power;
  • a third acquiring module configured to acquire a third carrier signal quality C3 of the small power band antenna at a current maximum transmit power of the high power band antenna
  • the interference judging module is configured to: when the difference between the C3 and C2 is greater than the second predetermined rate band antenna.
  • the matching control module is further configured to change a form of a high power band antenna in the two adjacent frequency bands and/or a matching circuit for replacing the high power band antenna.
  • the matching control module is further configured to turn on or off the high power band antenna by turning on or off
  • the matching control module is also used to select a matching circuit of a high-level high-power band antenna from a low to a high level.
  • a terminal in which adjacent frequency bands coexist including devices in which the adjacent frequency bands coexist.
  • the method, device and terminal for coexistence of adjacent frequency bands are provided by the present invention.
  • the isolation between the antennas of two adjacent frequency bands is increased. Degree, improve the carrier signal quality of the small power band antennas in two adjacent frequency bands, and adjust the form or matching circuit of the high power band antennas in real time according to the comparison of the carrier signal quality of the low power band antennas with the default values, until two adjacent frequency bands
  • the interference between the antennas meets the predetermined requirements, thereby ensuring the accuracy of the terminal data transmission and improving the reliability of the terminal operation.
  • FIG. 1 is a schematic flow chart of a method for coexisting adjacent frequency bands according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a process for determining interference between two adjacent frequency bands in a terminal and interference from an antenna of a high power band in the method for coexisting adjacent frequency bands according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an embodiment of an apparatus for coexistence of adjacent frequency bands according to the present invention.
  • FIG. 4 is a schematic structural diagram of another embodiment of a device in which adjacent frequency bands coexist in the present invention
  • FIG. 5 is a schematic structural diagram of an embodiment of a terminal in which adjacent frequency bands coexist in the present invention.
  • the solution of the embodiment of the present invention is mainly: when there is interference between antennas of two adjacent frequency bands in the terminal and the interference comes from the antenna of the high power band, the isolation between the two adjacent frequency bands is increased, and the two adjacent frequency bands are improved.
  • the carrier signal quality of the power band antenna, and the form or matching circuit of the high-power band antenna is adjusted in real time according to the carrier signal quality of the antenna of the low-power band antenna, until the interference between the antennas of two adjacent frequency bands meets the predetermined requirements, so as to improve the reliability of the terminal operation. . As shown in FIG.
  • an embodiment of the present invention provides a method for coexistence of adjacent frequency bands, including: Step S101: When there is interference between two adjacent frequency band antennas in the terminal and interference occurs from a high power frequency band antenna, two phases are added. Isolation between adjacent band antennas;
  • an antenna of a frequency band having a relatively high power among antennas of two adjacent frequency bands coexisting in the same terminal is defined as a high power band antenna, and an antenna of a frequency band having a smaller power is defined as a small power band antenna.
  • determining whether there is interference between the antennas of two adjacent frequency bands in the terminal and whether the interference is from the antenna of the high power band may be determined by the following two methods:
  • the first type when the antennas of two adjacent frequency bands work simultaneously, obtain the carrier signal quality of the terminal in the small power band antenna, and compare the carrier signal quality with a preset default value, if the deviation is large, such as deviation If the value is greater than a predetermined threshold, then the transmitted signal of the antenna of the low power band is considered to be interfered by the transmitted signal of the antenna of the high power band.
  • This type of judgment can only initially judge the interference between two adjacent frequency bands, and is suitable for the case where the deviation between the carrier signal quality and the preset default value is large. The interference between the two is present, and the interference comes from the transmitted signal of the antenna in the high power band.
  • the interference between the antennas of two adjacent frequency bands in the terminal and the interference from the antenna of the high power band include:
  • Step S201 Acquire a current transmit power of the antenna of the high power band
  • Step S202 acquiring a second carrier signal quality C2 of the low power band antenna under the current transmit power of the high power band antenna;
  • Step S203 The current transmit power of the antenna of the high power band is reduced to a second predetermined value, as the current maximum transmit power of the antenna of the high power band;
  • Step S204 acquiring a third carrier signal quality C3 of the low power band antenna at the current maximum transmit power of the high power band antenna;
  • Step S205 determining whether the difference between the third carrier signal quality C3 and the second carrier signal quality C2 is greater than a second predetermined value; if yes, proceeding to step S206; otherwise, ending the flow.
  • Step S206 determining that there is interference between the antennas of two adjacent frequency bands in the terminal, and the interference is from the antenna of the high power band.
  • the second predetermined value can be set according to actual needs.
  • the present embodiment improves the carrier signal quality of the antennas of the small power band in the two adjacent frequency bands by increasing the isolation between the antennas of the two adjacent frequency bands. According to the comparison between the carrier signal quality of the antenna of the small power band and the default value, the form or matching circuit of the antenna of the high power band is adjusted in real time until the interference between the antennas of the two adjacent bands meets the predetermined requirements, so as to ensure the accuracy of the terminal data transmission. Sexuality, improve the reliability of the terminal work.
  • Antenna isolation refers to the ratio of the signal transmitted by one antenna to the signal transmitted by the other antenna.
  • the isolation reflects the degree of attenuation of the output of the transmitting antenna to the receiving antenna.
  • the isolation between the antennas of two adjacent frequency bands is increased by the following manner: the form of the antenna of the high power band in the two adjacent frequency bands may be changed, or the matching circuit of the antenna of the high power frequency band may be replaced; the way.
  • changing the form of the antenna in the high-power band can change the antenna of the high-power band antenna to a single-frequency antenna or a balanced antenna by turning on or off the antenna of the high-power band antenna; the matching circuit for replacing the antenna of the high-power band means from low To the high level, select the matching circuit of the high-power band antenna of the higher level.
  • the circuit control portion composed of a triode or a switch controls the opening and closing of the antenna radiator, thereby realizing the antenna by the multi-frequency antenna. Become a single-frequency antenna and increase the isolation between the antennas.
  • Step S102 Acquire a first carrier signal quality of a small power band antenna in two adjacent frequency bands
  • Step S103 determining whether the difference between the first carrier signal quality C1 and the preset default value is less than the first predetermined value; if yes, proceeding to step S104; otherwise, returning to step S101;
  • Step S104 maintaining the radio frequency performance status of the antennas of the two adjacent frequency bands under the isolation.
  • the first predetermined value may be set according to actual needs.
  • the matching circuit of the high-power band antenna is replaced, if the high-power band antenna is preset with a three-stage matching circuit, the first-stage matching circuit is used for the first time, in order to increase the isolation between the antennas of the two adjacent bands, the switch is adopted. Select to switch on the higher level matching circuit (the second stage matching circuit) to improve the carrier signal quality of the low power band antenna, reduce the interference between the antennas in the two adjacent bands, and increase the low power band obtained after the isolation.
  • the above process is repeated, and the matching circuit of the higher level is reselected; if the requirement is met, the current large
  • the transmit signal of the power band antenna has less interference to the transmit signal of the low power band antenna, and has less influence on the working performance of the terminal. Therefore, the radio frequency performance state of the current two adjacent frequency bands can be maintained.
  • LTE and WIFI coexist in one terminal.
  • WIFI starts work, or when it works in WIFI, it starts LTE work.
  • An LTE antenna module, an LTE radio frequency module, an LTE baseband module, a power control module, an LTE signal control module, an antenna radiator circuit control module, and an antenna matching circuit control module are disposed on the LTE frequency band side;
  • a WIFI antenna module is disposed on the WiFi frequency band side, WIFI RF transceiver module, WIFI CQI (Carrier Signal Quality) module, where:
  • An LTE antenna module configured to send and receive LTE signals to the LTE radio frequency module for modulation and demodulation, a multimode antenna, including one or more of GSM/WCDMA/CDMA/LTE, each of which includes one or more frequency bands;
  • the LTE radio module is configured to process the LTE signal transmitted and received by the LTE antenna module, and up-convert the LTE signal to become an IQ signal to the LTE baseband module.
  • the LTE RF module can handle a variety of formats, including GSM/WCDMA/CDMA/LTE, each of which contains one or more frequency bands.
  • the LTE baseband module is configured to process the IQ signal sent by the LTE radio module, and complete the interaction of the LTE data stream through the peripheral device. Meanwhile, the LTE baseband module also acquires the transmit power of the current LTE band antenna, and controls the LTE radio frequency module to implement the radio frequency power. Change; further compare the CQI values fed back in the WIFI CQI module.
  • the power control module is configured to respond to the command of the LTE baseband module by controlling the LTE radio frequency module to further control the transmit power of the current LTE band antenna.
  • the LTE signal control module, the LTE baseband module determines whether the LTE band antenna form or the matching circuit needs to be modified according to the CQI value after the power reduction. When the modification is needed, the corresponding command is respectively sent to the antenna radiator circuit control module and the antenna matching. A circuit control module to change the antenna form or matching circuit of the LTE antenna module.
  • the antenna radiator circuit control module can change the shape of the antenna by controlling the on/off of the antenna radiator, so that it can become a single-frequency antenna or a balanced antenna, thereby increasing the isolation between the LTE band antenna and the WiFi band antenna.
  • the antenna matching circuit control module can change the matching circuit of the LTE antenna to change it into a single-frequency antenna or optimize the impedance state of certain frequency points, thereby increasing the isolation between the LTE band antenna and the WiFi band antenna.
  • the WIFI antenna module is responsible for receiving and transmitting the WIFI signal, and transmitting the WIFI signal signal to the WIFI RF transceiver module.
  • the WIFI radio frequency transceiver module is responsible for demodulating the WIFI signal received by the WIFI antenna module, and transmitting the demodulated data to the LTE baseband module to complete the interaction of the data stream. Same It is responsible for modulating the signal sent by the LTE baseband module, modulating it to the corresponding frequency, and then transmitting it through the WIFI antenna module.
  • the WIFI CQI module is responsible for feeding back the CQI value obtained by demodulating the signal received by the WIFI antenna module in the WIFI radio transceiver module to the LTE baseband module.
  • the WIFI antenna module receives a terminal data packet through the WIFI antenna, and demodulates the data packet in the WIFI radio frequency transceiver module.
  • the WIFI CQI module obtains the CAI value C2 of the WIFI band antenna of the terminal under the current condition, and transmits the CAI value C2 to the WIC. LTE baseband module.
  • the LTE baseband module reads the radio frequency power L1 transmitted by the current terminal in the LTE frequency band from the LTE baseband chip, for example, 20 dBm. At this time, the maximum transmission power of the set terminal in the LTE frequency band is 17 dBm. In this case, the WIFI CQI The module obtains the CQI value C3 of the terminal in the WIFI band again, and compares C3 and C2. If C3-C2>3, the interference is considered to exist, and the interference is considered to be due to the higher LTE transmission power of the terminal itself.
  • the LTE antenna is modified to improve the isolation between the two antennas, thereby optimizing the RF performance of the WIFI.
  • the specific modification method is: controlling the on/off of the switch of the antenna radiator circuit control module, or selecting a different matching circuit by the antenna matching circuit control module to change the radiator of the antenna, so that the LTE antenna becomes a single frequency antenna or a balanced antenna. .
  • the WIFI CQI module After changing the antenna form or replacing the matching circuit, the WIFI CQI module acquires the value C1 of the WIFI CQI of the terminal in this case again, and then transmits the C1 to the LTE baseband module through the WIFI CQI module, and then in the LTE baseband module, C1 is compared with the default value.
  • the antenna matching circuit control module is further used to select different antenna matching circuits, or other In the form of an antenna, until the CQI value obtained from the WIFI chip differs from the default value set in the LTE baseband, the predetermined requirement is met. Whether there is interference between them, and whether the interference is caused by a high-power band antenna.
  • the carrier signal quality of the antennas of the small power band in the two adjacent frequency bands is improved by increasing the isolation between the antennas of the two adjacent frequency bands, and According to the comparison between the carrier signal quality of the antenna of the small power band and the default value, the form or matching circuit of the antenna of the high power band is adjusted in real time until the interference between the antennas of the two adjacent bands meets the predetermined requirements, thereby ensuring the accuracy of the data transmission of the terminal. , improve the reliability of the terminal work.
  • an embodiment of the present invention provides a device for coexistence of adjacent frequency bands, including: a matching control module 301, a first ear module 302, and a determining operation module 303, where:
  • the matching control module 301 is configured to increase the isolation between the antennas of the two adjacent frequency bands when there is interference between the antennas of the two adjacent frequency bands in the terminal and the interference comes from the antenna of the high power band;
  • the first obtaining module 302 is configured to acquire a first carrier signal quality C1 of the small power band antenna in two adjacent frequency bands;
  • the determining operation module 303 is configured to maintain the radio frequency performance state of the antennas of the two adjacent frequency bands under the isolation when the difference between the first carrier signal quality C1 and the preset default value is less than the first predetermined value;
  • the control module 301 increases the isolation between the antennas of two adjacent bands.
  • an antenna of a frequency band having a relatively high power among antennas of two adjacent frequency bands coexisting in the same terminal is defined as a high power band antenna, and an antenna of a frequency band having a smaller power is defined as a small power band antenna.
  • the following two methods are used to determine whether there is interference between two adjacent frequency bands in the terminal and whether the interference comes from the antenna of the high power band.
  • the first type when the antennas of two adjacent frequency bands work simultaneously, acquire the terminal in which the small power frequency band
  • the carrier signal quality under the antenna is compared with a preset default value. If the deviation is large, for example, the deviation value is greater than a predetermined threshold, then the transmission signal of the antenna of the small power band is considered to be large. Interference of the transmitted signal of the power band antenna. This type of judgment can only initially determine the interference between two adjacent frequency bands, and is applicable to the case where the deviation between the carrier signal quality and the preset default value is large. The interference between the two is present, and the interference comes from the transmitted signal of the antenna in the high power band.
  • the present embodiment improves the carrier signal quality of the antennas of the small power band in the two adjacent frequency bands by increasing the isolation between the antennas of the two adjacent frequency bands. According to the comparison between the carrier signal quality of the antenna of the small power band and the default value, the form or matching circuit of the antenna of the high power band is adjusted in real time until the interference between the antennas of the two adjacent bands meets the predetermined requirements, so as to ensure the accuracy of the terminal data transmission. Sexuality, improve the reliability of the terminal work.
  • Antenna isolation refers to the ratio of the signal transmitted by one antenna to the signal transmitted by the other antenna.
  • the isolation reflects the degree of attenuation of the output of the transmitting antenna to the receiving antenna.
  • the matching control module 301 increases the isolation between the antennas of two adjacent frequency bands by using the following manners, and can change the form of the antenna of the high power band in the two adjacent frequency bands, or replace the matching circuit of the antenna of the high power frequency band; Use the above two methods.
  • changing the form of the antenna in the high-power band can change the antenna of the high-power band antenna to a single-frequency antenna or a balanced antenna by turning on or off the antenna of the high-power band antenna; the matching circuit for replacing the antenna of the high-power band means from low To the high level, select the matching circuit of the high-power band antenna of the higher level.
  • the circuit control portion composed of a triode or a switch controls the opening and closing of the antenna radiator, thereby realizing the antenna by the multi-frequency antenna.
  • Become a single-frequency antenna increase the gap between the antennas Deviation.
  • the matching circuit of the corresponding level is selected to achieve the purpose of increasing the isolation between the antennas.
  • the matching circuit of the high-power band antenna is replaced, if the high-power band antenna is preset with a three-stage matching circuit, the first-stage matching circuit is used for the first time, in order to increase the isolation between the antennas of the two adjacent bands, the switch is adopted. Selecting the matching circuit of the higher level (the matching circuit of the second stage) to improve the carrier signal quality of the antenna of the low power band and reduce the interference between the antennas of the two adjacent bands. If the isolation is increased, the operation module 303 is judged.
  • the above process is repeated, and the matching control is performed.
  • the module 301 reselects the matching circuit of the higher level; if it meets the requirements, it indicates that the transmitting signal of the current high power band antenna has less interference to the transmitting signal of the small power band antenna, and has less influence on the working performance of the terminal.
  • the RF performance status of the current two adjacent frequency bands can be maintained.
  • another embodiment of the present invention provides an apparatus for coexistence of adjacent frequency bands. Based on the foregoing embodiments, the method further includes:
  • the second obtaining module 270 is configured to obtain the second carrier signal quality C2 of the small power band antenna before increasing the isolation between the two adjacent frequency bands;
  • the third obtaining module 290 is configured to obtain a third carrier signal quality C3 of the low power band antenna at the current maximum transmit power of the high power band antenna;
  • the interference judging module 300 is configured to: when the difference between the third carrier signal quality C3 and the second carrier signal quality C2 is greater than a second predetermined value, determine that interference exists between two adjacent frequency bands in the terminal, and the interference comes from the high power Band antenna.
  • the present embodiment reduces the power of the high frequency band by The transmit power of the line is used to determine whether there is interference between the antennas of two adjacent frequency bands, and whether the interference is caused by the antenna of the high power band.
  • the present invention further provides a terminal in which adjacent frequency bands coexist, and the terminal includes a device 501 in which adjacent frequency bands are coexisted in the foregoing embodiment, and an internal structure and a functional principle of the device in which the adjacent frequency bands coexist. Please refer to the above embodiments, which will not be described in detail herein.
  • the method, device and terminal for coexistence of adjacent frequency bands in the embodiment of the present invention determine whether there is interference between antennas in two adjacent frequency bands by reducing the transmission power of the antenna in the high power band, and determine whether the interference is caused by the antenna of the high power band;
  • the carrier signal quality of the antennas of the small power band in the two adjacent frequency bands is improved by increasing the isolation between the antennas of the two adjacent frequency bands, and according to The comparison between the carrier signal quality of the low power band antenna and the default value, real-time adjustment of the form or matching circuit of the antenna of the high power band until the interference between the antennas of the two adjacent bands meets the predetermined requirements, thereby ensuring the accuracy of the data transmission of the terminal, Improve the reliability of the terminal work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Details Of Aerials (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种相邻频段共存的方法、装置及终端,当终端内两相邻频段天线间存在干扰且干扰来自其中大功率频段天线时,增加两相邻频段天线之间的隔离度;获取两相邻频段天线中小功率频段天线的第一载波信号质量C1;当C1与预设的默认值之差小于第一预定值时,保持隔离度下两相邻频段天线的射频性能状态;否则,再次增加两相邻频段天线之间的隔离度。本发明通过增加两相邻频段天线之间的隔离度,提升两相邻频段中小功率频段天线的载波信号质量,并根据小功率频段天线的载波信号质量与默认值的比较结果,实时调整大功率频段天线的形式或匹配电路,直至两相邻频段天线间的干扰符合预定要求,提高了终端工作的可靠性。

Description

相邻频段共存的方法、 装置及终端 技术领域
本发明涉及无线网络中抑制干扰技术领域, 尤其涉及一种处于同一终 端中的相邻频段共存的方法、 装置及终端。 背景技术
随着无线网络技术的发展, 频谱资源越来越紧张, 使得相邻频段信号 之间更容易相互干扰, 因此, 有必要解决相邻频段之间的干扰问题, 使相 邻频段能够在同一终端得以共存。
目前, 用于相邻频段共存的方法包括以下几种:
第一种, 采用加滤波器的方法来实现, 即两个相邻频段分别添加滤波 器来滤除另一频段的频率干扰, 以保证所需频段的性能和指标, 但是, 由 于两相邻频段较近, 无法从根本上解决上述频率干扰问题;
第二种, 采用改变天线极化的方式来实现, 即让两相邻频段的天线的 极化不同, 比如, 一个为垂直极化, 另一个为水平极化, 以尽可能减小两 天线间的隔离度, 保证所需频段的性能和指标;
第三种, 使两相邻频段共存工作时采用不同的时间来传输数据, 即其 中一个频段工作时, 另一个频段休眠, 工作与休眠时段交替出现, 保证两 种频段下终端都能有效的工作。
上述第二、 三种方法中, 通过控制在不同的时刻传送不同的射频信号 来避免两相邻频段之间的干扰, 无法满足数据吞吐量较大的情况, 由于休 眠与工作属于交替出现, 由此加大了对时间精确度的要求, 增加了数据传 输的复杂性, 无法保证数据的准确性, 从而降低了终端工作的可靠性。 发明内容
本发明的主要目的在于提供一种相邻频段共存的方法、 装置及终端, 旨在降低相邻频段共存时的干扰, 提高终端工作可靠性。
为了达到上述目的, 本发明的技术方案是这样实现的:
一种相邻频段共存的方法, 包括: 天线时, 增加所述两相邻频段天线之间的隔离度; 并且获取所述两相邻频 段天线中小功率频段天线的第一载波信号质量 C1 ;
当所述 C1与预设的默认值之差小于第一预定值时,保持所述隔离度下 所述两相邻频段天线的射频性能状态; 否则, 增加所述两相邻频段天线之 间的隔离度。 中大功率频段天线的过程包括:
在增加所述两相邻频段天线之间的隔离度之前, 获取所述小功率频段 天线的第二载波信号质量 C2; 述大功率频段天线的当前最大发射功率;
获取所述小功率频段天线在所述大功率频段天线的当前最大发射功率 下的第三载波信号质量 C3;
若所述 C3与 C2之间的差值大于所述第二预定值, 则确定所述终端内 两相邻频段天线间存在干扰且所述干扰来自其中大功率频段天线。
其中, 所述增加两相邻频段天线之间的隔离度的方法为:
更改所述两相邻频段中大功率频段天线的形式和 /或更换所述大功率频 段天线的匹配电路。
其中, 所述更改大功率频段天线的形式的方法为: 通过接通或断开所述大功率频段天线的辐射体, 使所述大功率频段天 线更改为单频天线或平衡天线。
其中, 所述更换大功率频段天线的匹配电路的方法为:
从低到高逐级选择高一级别的大功率频段天线的匹配电路。
一种相邻频段共存的装置, 包括:
匹配控制模块, 用于当终端内两相邻频段天线间存在干扰且所述干扰 来自其中大功率频段天线时, 增加所述两相邻频段天线之间的隔离度; 第一获取模块, 用于获取两相邻频段天线中小功率频段天线的第一载 波信号质量 C1 ;
判断操作模块, 用于当所述 C1 与预设的默认值之差小于第一预定值 时, 保持所述隔离度下所述两相邻频段天线的射频性能状态; 否则, 由所 述匹配控制模块增加所述两相邻频段天线之间的隔离度。
其中, 还包括:
第二获取模块, 用于在增加所述两相邻频段天线之间的隔离度之前, 获取所述小功率频段天线的第二载波信号质量 C2; 二预定值, 以作为所述大功率频段天线的当前最大发射功率;
第三获取模块, 用于获取所述小功率频段天线在所述大功率频段天线 的当前最大发射功率下的第三载波信号质量 C3;
干扰判断模块, 用于当所述 C3与 C2之间的差值大于所述第二预定值 率频段天线。
其中, 所述匹配控制模块还用于更改所述两相邻频段中大功率频段天 线的形式和 /或更换所述大功率频段天线的匹配电路。
其中, 所述匹配控制模块还用于通过接通或断开所述大功率频段天线 述匹配控制模块还用于从低到高逐级选择高一级别的大功率频段天线的匹 配电路。
一种相邻频段共存的终端, 包括所述的相邻频段共存的装置。
本发明提出的一种相邻频段共存的方法、 装置及终端, 当终端内两相 邻频段天线间存在干扰且该干扰来自其中大功率频段天线时, 通过增加两 相邻频段天线之间的隔离度, 提升两相邻频段中小功率频段天线的载波信 号质量, 并根据小功率频段天线的载波信号质量与默认值的比较结果, 实 时调整大功率频段天线的形式或匹配电路, 直至两相邻频段天线间的干扰 符合预定要求, 从而保证了终端数据传输的准确性, 提高了终端工作的可 靠性。 附图说明
图 1是本发明相邻频段共存的方法一实施例流程示意图;
图 2是本发明相邻频段共存的方法一实施例中判断终端内两相邻频段 天线间存在干扰且干扰来自其中大功率频段天线的流程示意图;
图 3是本发明相邻频段共存的装置一实施例的结构示意图;
图 4是本发明相邻频段共存的装置另一实施例的结构示意图; 图 5是本发明相邻频段共存的终端一实施例的结构示意图。 具体实施方式
本发明实施例解决方案主要是: 当终端内两相邻频段天线间存在干扰 且该干扰来自其中大功率频段天线时, 通过增加两相邻频段天线之间的隔 离度, 提升两相邻频段中小功率频段天线的载波信号质量, 并根据小功率 频段天线的载波信号质量实时调整大功率频段天线的形式或匹配电路, 直 至两相邻频段天线间的干扰符合预定要求, 以提高终端工作的可靠性。 如图 1所示, 本发明一实施例提出一种相邻频段共存的方法, 包括: 步驟 S101 , 当终端内两相邻频段天线间存在干扰且干扰来自其中大功 率频段天线时, 增加两相邻频段天线之间的隔离度;
本实施例将共存于同一终端中的两相邻频段的天线中功率较大的频段 的天线定义为大功率频段天线, 将其中功率较小的频段的天线定义为小功 率频段天线。
其中, 判断终端内两相邻频段天线间是否存在干扰以及该干扰是否来 自其中大功率频段天线, 可以采用以下两种方式进行判断:
第一种, 在两相邻频段天线同时工作时, 获取终端在其中小功率频段 天线下的载波信号质量, 将该载波信号质量与预先设定的默认值进行比较, 若偏差较大, 比如偏差值大于一预定阀值, 则认为其中小功率频段天线的 发射信号受到了其中大功率频段天线的发射信号的干扰。 此种判断方式只 能初略判断两相邻频段之间的干扰情况, 对于载波信号质量与预先设定的 默认值之间的偏差值较大的情况较为适用。 之间的干扰是否存在, 且该干扰来自其中大功率频段天线的发射信号。
如图 2所示, 对于上述第二种判断终端内两相邻频段天线间存在干扰 且干扰来自其中大功率频段天线的步驟包括:
步驟 S201 , 获取大功率频段天线的当前发射功率;
步驟 S202, 获取小功率频段天线在大功率频段天线的当前发射功率下 的第二载波信号质量 C2;
步驟 S203 , 将大功率频段天线的当前发射功率降低为第二预定值, 以 作为大功率频段天线的当前最大发射功率;
步驟 S204, 获取小功率频段天线在大功率频段天线的当前最大发射功 率下的第三载波信号质量 C3; 步驟 S205 ,判断第三载波信号质量 C3与第二载波信号质量 C2之间的 差值是否大于第二预定值; 若是, 则进入步驟 S206; 否则, 结束流程。
步驟 S206, 确定终端内两相邻频段天线间存在干扰且该干扰来自其中 大功率频段天线。
其中, 第二预定值可以根据实际需要进行设定。
当判断出两相邻频段天线间存在干扰且干扰来自其中大功率频段天线 时, 本实施例通过增加两相邻频段天线之间的隔离度, 提升两相邻频段中 小功率频段天线的载波信号质量, 并根据小功率频段天线的载波信号质量 与默认值的比较结果, 实时调整大功率频段天线的形式或匹配电路, 直至 两相邻频段天线间的干扰符合预定要求, 以保证终端数据传输的准确性, 提高终端工作的可靠性。
天线隔离度是指一个天线发射信号, 通过另一个天线接收的信号与该 发射天线信号的比值, 隔离度反映出发射天线的发射信号至接收天线时的 输出衰减程度。
本实施例增加两相邻频段天线之间的隔离度通过以下方式来实现, 可 以更改两相邻频段中大功率频段天线的形式, 或者更换大功率频段天线的 匹配电路; 或者同时采用上述两种方式。
其中, 更改大功率频段天线的形式可通过接通或断开大功率频段天线 的辐射体, 使大功率频段天线更改为单频天线或平衡天线; 更换大功率频 段天线的匹配电路是指从低到高逐级选择高一级别的大功率频段天线的匹 配电路。 对于大功率频段天线而言, 通常具有多个天线辐射体以及多个不 同级别匹配电路, 通过三极管或开关等组成的电路控制部分控制天线辐射 体的接通与断开, 实现天线由多频天线变为单频天线, 增加天线之间的隔 离度。
同时, 通过关断或接通相应的开关, 选择接通相应级别的匹配电路, 达到增加天线之间的隔离度的目的。
步驟 S102 , 获取两相邻频段中小功率频段天线的第一载波信号质量
C1 ;
步驟 S103 , 判断第一载波信号质量 C1 与预设的默认值之差是否小于 第一预定值; 若是, 则进入步驟 S104; 否则, 返回步驟 S101 ;
步驟 S104, 保持该隔离度下两相邻频段天线的射频性能状态。
其中, 第一预定值可以根据实际需要设定。
以更换大功率频段天线的匹配电路为例, 若大功率频段天线预先设定 有三级匹配电路, 初次使用了第一级匹配电路, 为了增加两相邻频段天线 之间的隔离度,通过开关选择接通高一级的匹配电路(第二级的匹配电路), 以提升小功率频段天线的载波信号质量, 降低两相邻频段天线之间的干扰, 若增加隔离度之后获得的小功率频段天线的载波信号质量与预设的默认值 之差仍然不符合预定的要求(大于第一预定值), 则重复上述过程, 重新选 择更高一级的匹配电路; 若符合要求, 则表明当前大功率频段天线的发射 信号对小功率频段天线的发射信号的干扰较小, 对终端的工作性能影响较 小, 因此, 可以保持当前两相邻频段的射频性能状态。
下面以 LTE和 WiFi两相邻频段共存于同一终端为例,对本实施例技术 方案进行详细说明:
LTE与 WIFI共存在一个终端中是指, 在 LTE工作时, WIFI启动工作, 或在 WIFI工作时, 启动 LTE工作。
在 LTE频段侧设有 LTE天线模块、 LTE射频模块、 LTE基带模块、 功 率控制模块、 LTE信号控制模块、 天线辐射体电路控制模块以及天线匹配 电路控制模块; 在 WiFi频段侧设有 WIFI天线模块、 WIFI射频收发模块、 WIFI CQI (载波信号质量)模块, 其中:
LTE天线模块, 用于收发 LTE信号给 LTE射频模块进行调制解调, 其 为一个多模天线, 包括 GSM/WCDMA/CDMA/LTE中的一种制式或多种制 式, 每种制式包含一种或多种频段;
LTE射频模块, 用于处理 LTE天线模块收发的 LTE信号, 并对 LTE信 号进行下上变频, 变成 IQ信号给 LTE基带模块。 LTE射频模块可以处理多 种制式, 包括 GSM/WCDMA/CDMA/LTE , 每种制式包含一种或多种频段。
LTE基带模块, 用于处理 LTE射频模块发来的 IQ信号,通过外设完成 LTE数据流的交互; 同时, LTE基带模块还获取当前 LTE频段天线的发射 功率, 并控制 LTE射频模块来实现射频功率的改变; 进一步比较 WIFI CQI 模块中反馈的 CQI值。
功率控制模块, 用于响应 LTE基带模块的指令通过控制 LTE射频模块 进而控制当前 LTE频段天线的发射功率。
LTE信号控制模块, LTE基带模块根据降低功率后比较的 CQI值来判 断是否需要修改 LET频段天线的形式或匹配电路, 当需要修改时, 分别发 送相应的指令给天线辐射体电路控制模块和天线匹配电路控制模块, 来改 变 LTE天线模块的天线形式或匹配电路。
天线辐射体电路控制模块, 通过控制天线辐射体的通断来改变天线的 形状, 可以让其变成单频天线或平衡天线, 进而增加 LTE频段天线与 WiFi 频段天线之间的隔离度。
天线匹配电路控制模块, 通过改变 LTE天线的匹配电路, 可以让其变 成单频天线或优化某些频点的阻抗状态, 进而增加 LTE频段天线与 WiFi 频段天线之间的隔离度。
WIFI天线模块, 负责接收和发射 WIFI信号, 并把 WIFI信号信号传送 给 WIFI射频收发模块。
WIFI射频收发模块,负责对 WIFI天线模块接收到的 WIFI信号进行解 调, 并把解调处理后的数据传送给 LTE基带模块, 完成数据流的交互。 同 时负责把 LTE基带模块发送来的信号进行调制, 调制到相应频率上, 然后 通过 WIFI天线模块进行发送。
WIFI CQI模块,负责把 WIFI射频收发模块中通过 WIFI天线模块收到 的信号进行解调后获取的 CQI值反馈给 LTE基带模块。
具体地, 当 LTE和 WiFi两相邻频段共存时, 首先需要判断两相邻频段 天线之间是否存在干扰, 且干扰是否是由 LTE发射功率较高引起。
WIFI天线模块通过 WIFI天线接收一个终端数据包,在 WIFI射频收发 模块中解调该数据包, WIFI CQI模块获取当前条件下终端的 WIFI频段天 线的 CAI的值 C2, 同时把该 CAI值 C2传给 LTE基带模块。
LTE基带模块从 LTE基带芯片中读取当前终端在 LTE频段所发射的射 频功率 L1 , 比如为 20dBm, 此时, 设定终端在 LTE频段的最大发射功率为 17dBm,在此种情况下, WIFI CQI模块再次获取终端在 WIFI频段时的 CQI 的值 C3 , 比较 C3与 C2, 若 C3-C2>3 , 则认为干扰存在, 且认为干扰是由 于终端自身的 LTE发射功率较高产生。
当判断干扰是由于终端自身的 LTE发射功率较高产生的, 则通过修改 LET天线来改善两天线之间的隔离度, 进而优化 WIFI的射频性能。
具体修改方法为, 通过控制天线辐射体电路控制模块的开关的通断, 或者, 通过天线匹配电路控制模块选择不同的匹配电路来改变天线的辐射 体, 使 LTE天线变为单频天线或平衡天线。
在更改天线形式或更换匹配电路之后, WIFI CQI模块再次获取终端在 此种情况下的 WIFI CQI的值 C1 ,然后通过 WIFI CQI模块将 C1传送到 LTE 基带模块中, 然后在 LTE基带模块中, 将 C1与预设的默认值进行比较, 若两者差距较小, 比如两者差值小于预定值 3dB, 则认为此时 LTE对 WIFI 的影响较小, 可以满足终端当前应用场景; 若两者仍然有较大的差距, 则 进一步通过天线匹配电路控制模块来选择不同的天线匹配电路, 或者其他 天线形式, 直至从 WIFI芯片中获取到的 CQI值与 LTE基带中设定的默认 值相差较小, 满足预定要求。 之间是否存在干扰, 并判断该干扰是否为大功率频段天线引起。 当终端内 两相邻频段天线间存在干扰且该干扰来自其中大功率频段天线时, 通过增 加两相邻频段天线之间的隔离度, 提升两相邻频段中小功率频段天线的载 波信号质量, 并根据小功率频段天线的载波信号质量与默认值的比较结果, 实时调整大功率频段天线的形式或匹配电路, 直至两相邻频段天线间的干 扰符合预定要求, 从而保证了终端数据传输的准确性, 提高了终端工作的 可靠性。
如图 3 所示, 本发明一实施例提出一种相邻频段共存的装置, 包括: 匹配控制模块 301、 第一获耳 4莫块 302以及判断操作模块 303 , 其中:
匹配控制模块 301 ,用于当终端内两相邻频段天线间存在干扰且干扰来 自其中大功率频段天线时, 增加两相邻频段天线之间的隔离度;
第一获取模块 302,用于获取两相邻频段中小功率频段天线的第一载波 信号质量 C1 ;
判断操作模块 303 , 用于当第一载波信号质量 C1与预设的默认值之差 小于第一预定值时, 保持隔离度下两相邻频段天线的射频性能状态; 否贝' J , 由匹配控制模块 301增加两相邻频段天线之间的隔离度。
本实施例将共存于同一终端中的两相邻频段的天线中功率较大的频段 的天线定义为大功率频段天线, 将其中功率较小的频段的天线定义为小功 率频段天线。
其中, 判断终端内两相邻频段天线间是否存在干扰以及该干扰是否来 自其中大功率频段天线, 可以采用以下两种方式:
第一种, 在两相邻频段天线同时工作时, 获取终端在其中小功率频段 天线下的载波信号质量, 将该载波信号质量与预先设定的默认值进行比较, 若偏差较大, 比如偏差值大于一预定阀值, 则认为其中小功率频段天线的 发射信号受到了其中大功率频段天线的发射信号的干扰。 此种判断方式只 能初略判断两相邻频段之间的干扰情况, 对于载波信号质量与预先设定的 默认值之间的偏差值较大的情况较为适用。 之间的干扰是否存在, 且该干扰来自其中大功率频段天线的发射信号。
当判断出两相邻频段天线间存在干扰且干扰来自其中大功率频段天线 时, 本实施例通过增加两相邻频段天线之间的隔离度, 提升两相邻频段中 小功率频段天线的载波信号质量, 并根据小功率频段天线的载波信号质量 与默认值的比较结果, 实时调整大功率频段天线的形式或匹配电路, 直至 两相邻频段天线间的干扰符合预定要求, 以保证终端数据传输的准确性, 提高终端工作的可靠性。
天线隔离度是指一个天线发射信号, 通过另一个天线接收的信号与该 发射天线信号的比值, 隔离度反映出发射天线的发射信号至接收天线时的 输出衰减程度。
本实施例匹配控制模块 301 增加两相邻频段天线之间的隔离度通过以 下方式来实现, 可以更改两相邻频段中大功率频段天线的形式, 或者更换 大功率频段天线的匹配电路; 或者同时采用上述两种方式。
其中, 更改大功率频段天线的形式可通过接通或断开大功率频段天线 的辐射体, 使大功率频段天线更改为单频天线或平衡天线; 更换大功率频 段天线的匹配电路是指从低到高逐级选择高一级别的大功率频段天线的匹 配电路。 对于大功率频段天线而言, 通常具有多个天线辐射体以及多个不 同级别匹配电路, 通过三极管或开关等组成的电路控制部分控制天线辐射 体的接通与断开, 实现天线由多频天线变为单频天线, 增加天线之间的隔 离度。
同时, 通过关断或接通相应的开关, 选择接通相应级别的匹配电路, 达到增加天线之间的隔离度的目的。
以更换大功率频段天线的匹配电路为例, 若大功率频段天线预先设定 有三级匹配电路, 初次使用了第一级匹配电路, 为了增加两相邻频段天线 之间的隔离度,通过开关选择接通高一级的匹配电路(第二级的匹配电路), 以提升小功率频段天线的载波信号质量, 降低两相邻频段天线之间的干扰, 若增加隔离度之后, 判断操作模块 303判断出第一获耳 4莫块 302获得的小 功率频段天线的载波信号质量与预设的默认值之差仍然不符合预定的要求 (大于第一预定值 ), 则重复上述过程, 由匹配控制模块 301重新选择更高 一级的匹配电路; 若符合要求, 则表明当前大功率频段天线的发射信号对 小功率频段天线的发射信号的干扰较小, 对终端的工作性能影响较小, 因 此, 可以保持当前两相邻频段的射频性能状态。
如图 4所示, 本发明另一实施例提出一种相邻频段共存的装置, 在上 述实施例的基础上, 还包括:
第二获取模块 270, 用于在增加两相邻频段天线之间的隔离度之前, 获 取小功率频段天线的第二载波信号质量 C2;
预定值, 以作为大功率频段天线的当前最大发射功率;
第三获取模块 290,用于获取小功率频段天线在大功率频段天线的当前 最大发射功率下的第三载波信号质量 C3;
干扰判断模块 300, 用于当第三载波信号质量 C3与第二载波信号质量 C2之间的差值大于第二预定值时, 确定终端内两相邻频段天线间存在干扰 且干扰来自其中大功率频段天线。
本实施例与上述实施例的区别在于, 本实施例通过降低大功率频段天 线的发射功率来判断两相邻频段天线之间是否存在干扰, 并判断该干扰是 否为大功率频段天线引起。
如图 5 所示, 本发明还提出一种相邻频段共存的终端, 该终端包括上 述实施例中所述的相邻频段共存的装置 501 ,该相邻频段共存的装置内部结 构及功能原理, 请参照上述各实施例, 在此不作详述。
本发明实施例相邻频段共存的方法、 装置及终端, 通过降低大功率频 段天线的发射功率来判断两相邻频段天线之间是否存在干扰, 并判断该干 扰是否为大功率频段天线引起; 当终端内两相邻频段天线间存在干扰且该 干扰来自其中大功率频段天线时, 通过增加两相邻频段天线之间的隔离度, 提升两相邻频段中小功率频段天线的载波信号质量, 并根据小功率频段天 线的载波信号质量与默认值的比较结果, 实时调整大功率频段天线的形式 或匹配电路, 直至两相邻频段天线间的干扰符合预定要求, 从而保证了终 端数据传输的准确性, 提高了终端工作的可靠性。
以上所述仅为本发明的优选实施例, 并非因此限制本发明的专利范围 , 凡是利用本发明说明书及附图内容所作的等效结构或流程变换, 或直接或 间接运用在其它相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求书
1、 一种相邻频段共存的方法, 包括: 天线时, 增加所述两相邻频段天线之间的隔离度; 并且获取所述两相邻频 段天线中小功率频段天线的第一载波信号质量 C1 ;
当所述 C1与预设的默认值之差小于第一预定值时,保持所述隔离度下 所述两相邻频段天线的射频性能状态; 否则, 增加所述两相邻频段天线之 间的隔离度。
2、 根据权利要求 1所述的方法, 其中, 判断所述终端内两相邻频段天 线间存在干扰且所述干扰来自其中大功率频段天线的过程包括:
在增加所述两相邻频段天线之间的隔离度之前, 获取所述小功率频段 天线的第二载波信号质量 C2; 述大功率频段天线的当前最大发射功率;
获取所述小功率频段天线在所述大功率频段天线的当前最大发射功率 下的第三载波信号质量 C3;
若所述 C3与 C2之间的差值大于所述第二预定值, 则确定所述终端内 两相邻频段天线间存在干扰且所述干扰来自其中大功率频段天线。
3、 根据权利要求 1或 2所述的方法, 其中, 所述增加两相邻频段天线 之间的隔离度的方法为:
更改所述两相邻频段中大功率频段天线的形式和 /或更换所述大功率频 段天线的匹配电路。
4、 根据权利要求 3所述的方法, 其中, 所述更改大功率频段天线的形 式的方法为:
通过接通或断开所述大功率频段天线的辐射体, 使所述大功率频段天 线更改为单频天线或平衡天线。
5、 根据权利要求 3所述的方法, 其中, 所述更换大功率频段天线的匹 配电路的方法为:
从低到高逐级选择高一级别的大功率频段天线的匹配电路。
6、 一种相邻频段共存的装置, 包括:
匹配控制模块, 用于当终端内两相邻频段天线间存在干扰且所述干扰 来自其中大功率频段天线时, 增加所述两相邻频段天线之间的隔离度; 第一获取模块, 用于获取两相邻频段天线中小功率频段天线的第一载 波信号质量 C1 ;
判断操作模块, 用于当所述 C1 与预设的默认值之差小于第一预定值 时, 保持所述隔离度下所述两相邻频段天线的射频性能状态; 否则, 由所 述匹配控制模块增加所述两相邻频段天线之间的隔离度。
7、 根据权利要求 6所述的装置, 其中, 还包括:
第二获取模块, 用于在增加所述两相邻频段天线之间的隔离度之前, 获取所述小功率频段天线的第二载波信号质量 C2; 二预定值, 以作为所述大功率频段天线的当前最大发射功率;
第三获取模块, 用于获取所述小功率频段天线在所述大功率频段天线 的当前最大发射功率下的第三载波信号质量 C3;
干扰判断模块, 用于当所述 C3与 C2之间的差值大于所述第二预定值 率频段天线。
8、 根据权利要求 6或 7所述的装置, 其中, 所述匹配控制模块还用于 更改所述两相邻频段中大功率频段天线的形式和 /或更换所述大功率频段天 线的匹配电路。
9、 根据权利要求 8所述的装置, 其中, 所述匹配控制模块还用于通过 接通或断开所述大功率频段天线的辐射体, 使所述大功率频段天线更改为 单频天线或平衡天线; 或者, 所述匹配控制模块还用于从低到高逐级选择 高一级别的大功率频段天线的匹配电路。
10、 一种相邻频段共存的终端, 包括权利要求 6至 9中任一项所述的 相邻频段共存的装置。
PCT/CN2011/084563 2011-08-22 2011-12-23 相邻频段共存的方法、装置及终端 WO2012152019A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110241629.1A CN102307352B (zh) 2011-08-22 2011-08-22 相邻频段共存的方法、装置及终端
CN201110241629.1 2011-08-22

Publications (1)

Publication Number Publication Date
WO2012152019A1 true WO2012152019A1 (zh) 2012-11-15

Family

ID=45381142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084563 WO2012152019A1 (zh) 2011-08-22 2011-12-23 相邻频段共存的方法、装置及终端

Country Status (2)

Country Link
CN (1) CN102307352B (zh)
WO (1) WO2012152019A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490787B (zh) * 2012-06-13 2017-04-26 华为技术有限公司 处理设备内干扰的方法及控制器
US9438286B2 (en) * 2014-11-20 2016-09-06 Intel Corporation Accurate desensitization estimation of a receiver
CN106658746B (zh) * 2015-10-30 2020-08-25 华为终端有限公司 一种WiFi信道的选择电路
CN106330211B (zh) * 2016-08-31 2019-04-26 Oppo广东移动通信有限公司 Lte频段选择方法及设备
CN107864493B (zh) * 2016-09-22 2020-11-06 中国移动通信有限公司研究院 一种共存通信系统间的干扰协调方法和装置
CN110911804B (zh) * 2018-09-17 2023-03-24 中兴通讯股份有限公司 一种天线调整方法、装置以及计算机存储介质
CN110224709B (zh) * 2019-05-31 2021-07-30 维沃移动通信有限公司 信号传输方法、装置及终端
CN111641042B (zh) * 2020-06-22 2022-01-28 广东虹勤通讯技术有限公司 一种天线间隔离度优化系统、方法及移动终端
CN111816987B (zh) * 2020-08-11 2022-01-11 深圳市资福医疗技术有限公司 一种图像传输方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201004681Y (zh) * 2007-02-01 2008-01-09 宣德科技股份有限公司 增强隔离度的接收装置
CN101345546A (zh) * 2007-07-11 2009-01-14 中国电信股份有限公司 确定移动通信系统基站间干扰的方法和系统
US20100029204A1 (en) * 2008-07-30 2010-02-04 Jie Gao Techniques to improve the radio co-existence of wireless signals
CN102148622A (zh) * 2011-03-22 2011-08-10 中兴通讯股份有限公司 消除终端模式间互扰的方法及终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8693950B2 (en) * 2006-03-23 2014-04-08 Broadcom Corporation Method and system for transmit power control techniques to reduce mutual interference between coexistent wireless networks device
US7826459B2 (en) * 2007-08-10 2010-11-02 Texas Instruments Incorporated Coexistence of different network technologies
CN101730112B (zh) * 2008-11-03 2012-06-27 电信科学技术研究院 一种频段相邻时的信号发送方法和装置
CN101854643B (zh) * 2009-03-31 2012-07-04 中国移动通信集团广西有限公司 一种无线资源复用方法及其设备和系统
CN102149223B (zh) * 2011-03-22 2014-10-22 中兴通讯股份有限公司 提高终端接收灵敏度的方法及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201004681Y (zh) * 2007-02-01 2008-01-09 宣德科技股份有限公司 增强隔离度的接收装置
CN101345546A (zh) * 2007-07-11 2009-01-14 中国电信股份有限公司 确定移动通信系统基站间干扰的方法和系统
US20100029204A1 (en) * 2008-07-30 2010-02-04 Jie Gao Techniques to improve the radio co-existence of wireless signals
CN102148622A (zh) * 2011-03-22 2011-08-10 中兴通讯股份有限公司 消除终端模式间互扰的方法及终端

Also Published As

Publication number Publication date
CN102307352A (zh) 2012-01-04
CN102307352B (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
WO2012152019A1 (zh) 相邻频段共存的方法、装置及终端
CN102714799B (zh) 用于减小装置内共存干扰的功率控制方法和无线通信装置
EP3232509B1 (en) System and method for controlling a wireless device
EP2496027B1 (en) Method, control equipment and communication system for dynamically adjusting transmission power
WO2015154437A1 (zh) 一种支持载波聚合的方法及终端
US9225493B2 (en) Multimode wireless systems and methods
WO2014198088A1 (zh) 减少邻频段网络间共设备互扰的方法及装置
WO2015127854A1 (zh) 多模无线终端
EP2508023B1 (en) Technique for performing physical layer measurements
US8620312B2 (en) Combined background and 20/40 coexistence scan
JP4192514B2 (ja) セルラシステムの回線制御方法及びセルラシステム並びにそれに用いる移動局
WO2013189347A2 (zh) 一种毫米波通信空间复用传输方法及毫米波通信设备
CN114389651B (zh) 调度数据传输的方法和通信装置
US9503149B1 (en) Electronic device and control method thereof
KR20220092451A (ko) 셀 상태의 관리 방법, 장치, 단말 디바이스 및 네트워크 디바이스
US10187132B2 (en) Communication terminal and method for selecting a transmission antenna
WO2023124455A1 (zh) 通信控制方法、装置、射频系统、通信设备和存储介质
WO2024067707A1 (zh) 一种通信方法和通信装置
JP6307284B2 (ja) 無線回路および無線端末
US9913172B2 (en) Method for enabling coexistence of multiple wireless communication modes in mobile terminal and mobile terminal thereof
CN105307178A (zh) 双模双连接终端及其通信方法
JP2012204893A (ja) 無線装置及び無線装置の無線干渉軽減方法
KR20130055537A (ko) 무선 통신 단말기에서의 에너지 소비를 감소시키는 방법 및 상기 방법을 구현하는 통신 단말기
WO2014161419A1 (zh) 一种处理载波聚合干扰的方法及终端
US12101180B2 (en) Systems and methods for high power operation in user equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865315

Country of ref document: EP

Kind code of ref document: A1