WO2023060561A1 - 功率相关信息的上报装置及方法 - Google Patents

功率相关信息的上报装置及方法 Download PDF

Info

Publication number
WO2023060561A1
WO2023060561A1 PCT/CN2021/124114 CN2021124114W WO2023060561A1 WO 2023060561 A1 WO2023060561 A1 WO 2023060561A1 CN 2021124114 W CN2021124114 W CN 2021124114W WO 2023060561 A1 WO2023060561 A1 WO 2023060561A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power
power headroom
related information
uplink
Prior art date
Application number
PCT/CN2021/124114
Other languages
English (en)
French (fr)
Inventor
易粟
张磊
蒋琴艳
陈哲
李国荣
Original Assignee
富士通株式会社
易粟
张磊
蒋琴艳
陈哲
李国荣
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 易粟, 张磊, 蒋琴艳, 陈哲, 李国荣 filed Critical 富士通株式会社
Priority to PCT/CN2021/124114 priority Critical patent/WO2023060561A1/zh
Priority to CN202180103123.6A priority patent/CN118077236A/zh
Publication of WO2023060561A1 publication Critical patent/WO2023060561A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This application relates to the field of communication.
  • Coverage issues are a fundamental issue in cellular network deployment.
  • Mobile operators employ different types of network nodes in their deployments to provide comprehensive coverage.
  • a common full-stack cell deployment is ideal, but it is not always feasible (eg, when there is no backhaul link) or economical. Therefore, mobile operators consider using new types of network nodes to increase the flexibility of network deployment.
  • NR rel-17 introduces a radio frequency repeater (RF repeater), which is used to increase the coverage area of NR's cellular network deployment.
  • RF repeaters are usually non-generative and simply amplify and forward (AF) all received signals.
  • RF repeaters are usually full-duplex and cannot distinguish between upstream and downstream transmissions. Its advantages are low cost, simple deployment, and no delay. Its disadvantage is that it is possible to amplify the noise together, thus increasing the interference to the signal.
  • NR's radio frequency repeater needs to regulate radio frequency and electromagnetic compatibility (EMC) requirements, and also needs to consider the frequency bands of FR1 (FDD and TDD) and FR2 (TDD).
  • EMC radio frequency and electromagnetic compatibility
  • the RF repeater does not need to perform adaptive beamforming on the end equipment (UE).
  • smart repeaters are proposed and considered to be an effective solution for improving network topology.
  • the main advantages of the smart repeater are: a simpler protocol stack than the traditional relay (relay), IAB-DU (integrated access and backhaul-distributed unit) and gNB; intelligent operation through the side control of gNB , such as dynamically changing the transmit and receive (TX/RX) of the repeater.
  • the smart repeater can be divided into two parts, one part is used to implement some UE functions, and this part can be called MT (mobile termination, mobile terminal), which communicates with network devices (such as gNB).
  • MT mobile termination, mobile terminal
  • network devices such as gNB
  • the other part realizes the wireless radio frequency function, that is, the amplification and forwarding function of the repeater, and this part can be called RU (radio unit, wireless unit).
  • the link between the gNB and the MT is a control link or a control path, and is also a fronthaul link.
  • gNB can configure the smart repeater through side control information, such as TDD configuration, switch information, beamforming information of RU, etc.
  • the control link can be based on the existing Uu interface.
  • the MT applies these configuration information to the RU (that is, the AF module) through the internal operation of the intelligent repeater.
  • the access link from gNB to ordinary UE has undergone signal amplification and forwarding by intelligent repeater, so it is called AF link, and it can also be called data path.
  • the repeater is transparent to the UE, and the UE does not know the existence of the repeater.
  • the data path (for example, FR2) carries an analog uplink or downlink signal from or to the UE. This path is essentially an analog signal pass through.
  • the data path is completely controlled by the gNB(DU) through the control path.
  • the power headroom indicates the difference between the transmit power in the current UE's BWP (bandwidth part, partial bandwidth) and the maximum allowable transmit power capability.
  • Type 1 PH is the difference between the current maximum transmit power of the terminal and the estimated PUSCH (Physical Uplink Shared CHannel, physical uplink shared channel) transmission power
  • Type 2 PH is The difference between the maximum transmission power of the current terminal and the sum of the estimated PUCCH (Physical Uplink Control CHannel, Physical Uplink Control Channel) and PUSCH transmission power
  • Type 3 PH is the maximum transmission power of the current terminal and the estimated SRS (Sounding Reference Signal, sounding reference signal) the difference in transmission power.
  • SRS Sounding Reference Signal
  • a terminal when reporting a power headroom, a terminal (MT) can only report the power headroom of the MT itself, and cannot report the power headroom of the RU part. In this way, it is unfavorable for the network equipment to perform power control on the radio unit (RU), thereby affecting network performance.
  • a network node such as an intelligent repeater
  • an embodiment of the present application provides an apparatus and method for reporting power-related information.
  • the first module of the first network node reports the power-related information of the second module.
  • the network device can according to The reported power-related information performs effective power control on the second module, thereby realizing network performance optimization.
  • an apparatus for reporting power-related information is provided, the apparatus is used for a first network node, the first network node includes a first module and a second module, and the apparatus includes: A reporting unit, which is set in the first module of the first network node, and reports power-related information of the second module.
  • a device for receiving power-related information the device is used for network equipment, and the device includes: a receiving unit, which receives the first module of the first network node from the first Power-related information of a second module of a network node.
  • an intelligent repeater is provided, and the intelligent repeater includes the device according to the first aspect of the embodiments of the present application.
  • a network device is provided, and the network device includes the apparatus according to the second aspect of the embodiments of the present application.
  • the communication system includes the intelligent repeater according to the third aspect of the embodiments of the present application and/or the smart repeater according to the fourth aspect of the embodiments of the present application The above-mentioned network equipment and terminal equipment.
  • a method for reporting power-related information is provided, the method is used for a first network node, the first network node includes a first module and a second module, and the method includes: The first module of the first network node reports power-related information of the second module.
  • a method for receiving power-related information the method is used in a network device, and the method includes: receiving from a first module of the first network node the information of the first network node Power related information for the second module.
  • a computer-readable program wherein when the program is executed in the power-related information reporting device or the intelligent repeater, the program makes the power-related information
  • the reporting device or the intelligent repeater implements the method for reporting power-related information described in the sixth aspect of the embodiments of the present application.
  • a storage medium storing a computer-readable program, wherein the computer-readable program causes the power-related information reporting device or the intelligent repeater to execute the first The method for reporting power-related information described in the six aspects.
  • a computer-readable program wherein when the program is executed in a power-related information receiving device or a network device, the program causes the power-related information receiving device to Or the network device executes the method for receiving power-related information described in the seventh aspect of the embodiments of this application.
  • a storage medium storing a computer-readable program, wherein the computer-readable program causes a device for receiving power-related information or a network device to execute the seventh aspect of the embodiments of the present application.
  • the method for receiving power-related information described in the aspect is provided.
  • the beneficial effect of the present application is that: the first module of the first network node reports the power-related information of the second module to the network device, so that the network device can effectively control the power of the second module according to the reported power-related information, thereby realizing Optimization of network performance.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a first network node in Embodiment 1 of the present application.
  • FIG. 3 is a schematic diagram of a method for reporting power-related information in Embodiment 1 of the present application.
  • FIG. 4 is a schematic diagram of an intelligent repeater according to Embodiment 1 of the present application.
  • FIG. 5 is another schematic diagram of the intelligent repeater in Embodiment 1 of the present application.
  • FIG. 6 is another schematic diagram of the intelligent repeater in Embodiment 1 of the present application.
  • FIG. 7 is a schematic diagram of a method for receiving power-related information according to Embodiment 2 of the present application.
  • FIG. 8 is a schematic diagram of a reporting device for power-related information in Embodiment 3 of the present application.
  • FIG. 9 is a schematic diagram of a receiving device for power-related information according to Embodiment 4 of the present application.
  • FIG. 10 is a schematic block diagram of a system configuration of a network node according to Embodiment 5 of the present application.
  • FIG. 11 is a schematic block diagram of a system configuration of a network device according to Embodiment 6 of the present application.
  • the terms “first”, “second”, etc. are used to distinguish different elements from the title, but do not indicate the spatial arrangement or time order of these elements, and these elements should not be referred to by these terms restricted.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “comprising”, “including”, “having” and the like refer to the presence of stated features, elements, elements or components, but do not exclude the presence or addition of one or more other features, elements, elements or components.
  • multiple or “multiple” means at least two or at least two.
  • the term “communication network” or “wireless communication network” may refer to a network conforming to any of the following communication standards, such as Long Term Evolution (LTE, Long Term Evolution), Enhanced Long Term Evolution (LTE-A, LTE- Advanced), Wideband Code Division Multiple Access (WCDMA, Wideband Code Division Multiple Access), High-Speed Packet Access (HSPA, High-Speed Packet Access), etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-A Long Term Evolution-A
  • LTE- Advanced Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • High-Speed Packet Access High-Speed Packet Access
  • the communication between devices in the communication system can be carried out according to any stage of communication protocol, for example, it can include but not limited to the following communication protocols: 1G (generation), 2G, 2.5G, 2.75G, 3G, 4G, 4.5G and future 5G, New Radio (NR, New Radio), etc., and/or other communication protocols that are currently known or will be developed in the future.
  • Network device refers to, for example, a device in a communication system that connects a user equipment to a communication network and provides services for the user equipment.
  • Network equipment may include but not limited to the following equipment: base station (BS, Base Station), access point (AP, Access Point), transmission and reception point (TRP, Transmission Reception Point), broadcast transmitter, mobile management entity (MME, Mobile Management Entity), gateway, server, radio network controller (RNC, Radio Network Controller), base station controller (BSC, Base Station Controller) and so on.
  • the base station may include but not limited to: Node B (NodeB or NB), evolved Node B (eNodeB or eNB), and 5G base station (gNB), etc., and may also include Remote Radio Head (RRH, Remote Radio Head) , Remote Radio Unit (RRU, Remote Radio Unit), relay (relay) or low-power node (such as femto, pico, etc.).
  • NodeB Node B
  • eNodeB or eNB evolved Node B
  • gNB 5G base station
  • RRH Remote Radio Head
  • RRU Remote Radio Unit
  • relay relay
  • low-power node such as femto, pico, etc.
  • base station may include some or all of their functions, each base station may provide communication coverage for a particular geographic area.
  • the term "cell” can refer to a base station and/or its coverage area depending on the context in which the term is used.
  • the term "user equipment” or “terminal equipment” refers to, for example, a device that accesses a communication network through a network device and receives network services.
  • a user equipment may be fixed or mobile, and may also be referred to as a mobile station (MS, Mobile Station), terminal, subscriber station (SS, Subscriber Station), access terminal (AT, Access Terminal), station, etc.
  • the user equipment may include but not limited to the following equipment: Cellular Phone (Cellular Phone), Personal Digital Assistant (PDA, Personal Digital Assistant), wireless modem, wireless communication equipment, handheld equipment, machine type communication equipment, laptop computer, Cordless phones, smartphones, smart watches, digital cameras, and more.
  • Cellular Phone Cellular Phone
  • PDA Personal Digital Assistant
  • wireless modem wireless communication equipment
  • handheld equipment machine type communication equipment
  • laptop computer Cordless phones
  • Cordless phones smartphones, smart watches, digital cameras, and more.
  • the user equipment can also be a machine or device for monitoring or measurement, such as but not limited to: a machine type communication (MTC, Machine Type Communication) terminal, Vehicle communication terminal, device to device (D2D, Device to Device) terminal, machine to machine (M2M, Machine to Machine) terminal, etc.
  • MTC Machine Type Communication
  • Vehicle communication terminal device to device (D2D, Device to Device) terminal
  • M2M Machine to Machine
  • the term "smart repeater” is a relay device, for example, a relay device installed in a serving cell corresponding to a network device, which is used to forward and transmission signals between terminal equipment.
  • it can also be called a repeater, or a repeater node.
  • Fig. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • the communication system 100 may include a network device 101, a terminal device 102, and a first network node 103.
  • eMBB enhanced mobile broadband
  • mMTC massive Machine Type Communication
  • URLLC Ultra-Reliable and Low- Latency Communication
  • the first network node 103 is, for example, an intelligent repeater.
  • the first network node 103 receives the first RF signal from the network device 101, amplifies the signal to obtain a first forwarded signal and sends it to the terminal device 102, and/or, the first network node 103 receives the first RF signal from the The second RF signal of the terminal device 102 is amplified to obtain a second forwarded signal and sent to the network device 101 .
  • An embodiment of the present application provides a method for reporting power-related information, which is applied to a first network node.
  • the first network node is a node used to improve network coverage or user performance, and the first network node is controlled by a network device.
  • the first network node is a smart repeater (smart repeater), or the first network node may also be another node such as a reconfigurable intelligent surface (reconfigurable intelligent surface, RIS).
  • RIS reconfigurable intelligent surface
  • an intelligent repeater is taken as an example for description.
  • this embodiment of the present application does not limit the type of the first network node.
  • the first network node may include a first module and a second module, for example, the first module is a terminal equipment (mobile terminal, MT) module, and the second module is a radio unit (radio unit, RU ) module.
  • the first module is a terminal equipment (mobile terminal, MT) module
  • the second module is a radio unit (radio unit, RU ) module.
  • FIG. 2 is a schematic diagram of a first network node according to Embodiment 1 of the present application. As shown in Figure 2, the first network node 103 includes:
  • a first module 201 which communicates with the network device 101;
  • the second module 202 which amplifies and forwards the radio frequency signal.
  • the radio frequency signal from the network device 101 and/or the terminal device 102 is amplified and forwarded (amplify and forward, AF).
  • the first module 201 is an MT module
  • the second module 202 is an RU module.
  • the first module 201 may apply the configuration information or commands obtained from the network device to the amplification and/or forwarding of the second module 202 .
  • FIG. 3 is a schematic diagram of a method for reporting power-related information according to Embodiment 1 of the present application. As shown in Figure 3, the method includes:
  • Step 301 The first module of the first network node reports power related information of the second module.
  • the first module of the first network node reports the power-related information of the second module to the network device, and the network device can effectively control the power of the second module according to the reported power-related information, thereby realizing network performance optimization.
  • the power-related information may include at least one of power headroom (power headroom, PH), gain (gain), and transmit power of the second module.
  • the power headroom of the second module refers to, for example, a difference between the current maximum transmit power and the estimated value of the transmit power.
  • the gain of the second module refers to the gain of amplifying the radio frequency signal by the second module. This gain can be called amplification gain or repeater gain
  • the transmit power of the second module is the power when the second module transmits the forwarded and amplified radio frequency signal.
  • the power-related information may include uplink power-related information and/or downlink power-related information of the second module.
  • the second module since the second module amplifies and forwards both the uplink radio frequency signal and the downlink radio frequency signal, there will be corresponding power related information for both uplink transmission and downlink transmission.
  • the uplink power-related information of the second module and the downlink power-related information of the second module may be represented by the same information, or may be represented by different information.
  • the same power-related information indicates the uplink power-related information and downlink power-related information of the second module, or the first power-related information indicates the uplink power-related information of the second module, and the second power information indicates the second module information about the downlink power.
  • the uplink power-related information and downlink power-related information of the second module can be reported at the same time, for example, included in the same PHR for reporting; or, the uplink power-related information of the second module and the downlink power-related information Power-related information may also be reported separately, for example, included in different PHRs for reporting.
  • a corresponding power headroom for uplink transmission which may be called an uplink power headroom
  • a corresponding power headroom for downlink transmission which may be called a downlink power headroom
  • an uplink gain there is a corresponding gain for uplink transmission, which may be called an uplink gain; there is a corresponding gain for downlink transmission, which may be called a downlink gain.
  • transmit power for uplink transmission which may be called uplink transmit power
  • transmit power for downlink transmission which may be called downlink transmit power
  • the uplink power-related information may include at least one of uplink power headroom, uplink gain, and uplink transmit power
  • the downlink power-related information may include at least one of downlink power headroom, downlink gain, and downlink transmit power.
  • the first module in addition to reporting power-related information of the second module (for example, uplink power-related information and/or downlink power-related information), the first module may also report power-related information of the first module.
  • the second module for example, uplink power-related information and/or downlink power-related information
  • the first module may also report power-related information of the first module.
  • the first module may use the same MAC (medium access control) CE (control element) to report the power-related information of the first module and the power-related information of the second module, or, the first The module may also use different MAC CEs to report the power-related information of the first module and the power-related information of the second module.
  • MAC medium access control
  • the power-related information of the second module may be reported when a certain trigger condition is met.
  • the uplink power headroom of the second module is called a first power headroom
  • the downlink power headroom of the second module is called a second power headroom
  • the first power headroom and the second power headroom may be the same type of power headroom, or may be different types of power headroom.
  • the first power headroom is Type 4 power headroom (Type 4 PH)
  • the second power headroom is Type 5 power headroom (Type 5 PH)
  • both the first power headroom and the second power headroom are It is Type 4 power headroom (Type 4 PH).
  • Type 4 power headroom (Type 4 PH) and Type 5 power headroom (Type 5 PH) are just exemplary names, and the first power headroom and the second power headroom can also use other names to indicate their types .
  • the first power headroom represents the difference between the current maximum transmission power of the second module in a frequency band and the estimated uplink transmission power
  • the second power headroom represents the current maximum transmission power of the second module in a frequency band. The difference between the maximum transmission power of the two modules in a frequency band and the estimated downlink transmission power.
  • PH P CMAX -P RU
  • PH represents the first power headroom or the second power headroom
  • PCMAX represents the current maximum transmission power of the second module in a frequency band
  • P RU represents the estimated uplink transmission power or downlink transmission power.
  • the PRU may be calculated according to the power control formula, or may be measured by the second module at a certain moment or period.
  • PH When PH is a positive value, it indicates how much transmission power the second module still has available; when PH is negative, it indicates that the calculated transmission power has exceeded the maximum transmission power allowed by the second module.
  • the "one frequency band” may have different specific meanings according to the implementation of the second module.
  • the first power headroom and/or the second power headroom may be aimed at a cell (cell), or a BWP of a cell, or a carrier frequency (carrier), or a pass band (pass band).
  • the starting frequency point or center frequency point and bandwidth of the frequency band can be reflected.
  • the first module reports at least one uplink power headroom of the second module and at least one frequency band identifier (ID) corresponding to the uplink power headroom to the network device, And/or, the first module reports at least one downlink power headroom of the second module and at least one frequency band identifier (ID) corresponding to the downlink power headroom to the network device.
  • ID frequency band identifier
  • the first module may report one or more uplink power headrooms and corresponding frequency band IDs, and/or one or more downlink power headrooms and corresponding frequency band IDs.
  • the frequency band ID is cell ID, or BWP ID, or carrier ID, or pass band ID.
  • the first module may also report the maximum output power (P CMAX ) of the second module in at least one frequency band corresponding to the uplink power headroom to the network device, and/or Or, the first module may also report the maximum output power (P CMAX ) of the second module in at least one frequency band corresponding to the downlink power headroom to the network device.
  • P CMAX maximum output power
  • the first module may report the power headroom of the second module through a first MAC CE (control element, control unit).
  • the first MAC CE may include at least one cell ID and uplink power headroom and/or downlink power headroom corresponding to the cell ID.
  • the uplink power headroom of the second module can be equal to the power headroom of the first module Report to the network device together, that is to say, the existing PHR MAC CE can be used to report the power headroom of the first module and the second module.
  • the existing single-entry or multi-entry PHR MAC CE can be unchanged.
  • the network device uses the cell ID to distinguish whether the power headroom corresponding to the cell ID is for the first module or for the second module.
  • the corresponding entry when a cell ID corresponds to the second module, the corresponding entry includes the PCMAX and Type 4 PH of the second module.
  • the first module can use the same MAC CE to report the power related information of the first module and the power headroom of the second module, or use different MAC CEs to report the power of the first module related information and the power headroom of the second module.
  • the power headroom corresponding to the first cell is the power headroom of the first module.
  • the power headroom corresponding to the second cell is the power headroom of the second module, and the second cell includes the working frequency band of the second module. That is to say, for example, when a reported serving cell contains the working frequency band of the activated second module (such as RU), the Type 4 PH of the second module in the working frequency band can be reported.
  • At least one type of power headroom of the first module or at least one type of power headroom of the second module has a reporting priority. That is to say, at most one kind of power headroom is reported for each serving cell, and which power headroom to report is determined according to the priorities of these power headrooms, that is, the power headroom with higher priority is reported. In this way, reporting signaling overhead can be reduced.
  • the first module of the first network node reports the power headroom of the second module.
  • the first condition includes at least one of the following conditions:
  • the second module is activated or reactivated in a frequency band
  • the first timer expires, and at the same time, the first module has obtained uplink resources for new data transmission, and since the last power headroom report, at least one active downlink BWP used for path loss reference is not a dormant BWP service
  • the path loss variation of the cell exceeds the first threshold
  • the second timer expires
  • the RRC layer configures or reconfigures the power headroom report (PHR) function (excluding closing PHR) for the first module;
  • PHR power headroom report
  • the network side activates a secondary cell (SCell) configured with an uplink BWP whose firstActiveDownlinkBWP-Id is not set to dormant;
  • SCell secondary cell
  • the MAC entity has uplink resources for new data transmission, and any activated serving cell configured with uplink in the MAC entity meets the following conditions: the activated serving cell has uplink resource allocation or has PUCCH transmission, and the activated serving cell
  • the power backoff required by the activated serving cell due to power management is equivalent to the change value when the uplink resource allocated to the activated serving cell by the MAC entity or the power headroom transmitted on the PUCCH last time exceeds the second threshold;
  • the first timer may be called a power headroom report prohibition timer (phr-ProhibitTimer), and the second timer may be called a power headroom report periodic timer (phr-PeriodicTimer).
  • phr-ProhibitTimer a power headroom report prohibition timer
  • phr-PeriodicTimer a power headroom report periodic timer
  • the first threshold is a threshold phr-Tx-PowerFactorChange configured by the network.
  • the second module of the first network node since the second module of the first network node simultaneously performs uplink and downlink amplification and forwarding, there is also a power margin for downlink transmission.
  • the downlink power headroom that is, the second power headroom, is specifically described as follows.
  • a new PH type for downlink AF transmission can be defined for the second module, for example, Type 5 PH.
  • This new type of PH represents the difference between the current maximum transmission power of the second module in a certain frequency band and the estimated downlink transmission power.
  • Type 5 PH is similar to Type 4 PH.
  • the second module (such as the RU module) will also send its own reference signal, so that the UE can perform measurement.
  • These reference signals may include, for example, at least one of SSB (Synchronization Signal Block, synchronization signal block), CSI-RS (Channel State Information-Reference Signal, channel state information reference signal), and downlink SRS.
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information-Reference Signal
  • channel state information reference signal channel state information reference signal
  • These signals are generated by the second module itself, not transmitted through the AF link, and the power control used for their transmission may also be different.
  • Type 6 PH as the difference between the current maximum transmission power of the second module and the estimated SSB transmission power
  • Type 7 PH as the difference between the current maximum transmission power of the second module and the estimated CSI-RS transmission power
  • Type 8 PH is the difference between the current maximum transmission power of the second module and the estimated downlink SRS transmission power.
  • the second power headroom includes a real power headroom and a virtual power headroom.
  • Type 6 PH, Type 7 PH and Type 8 PH can all be divided into real PH and virtual PH.
  • report the real PH to the network device and when there is no corresponding reference signal transmission, report the pre-agreed reference signal format to calculate a PH to the network device, which is called a virtual PH.
  • the first module of the first network node may report the one or more downlink PHs and the corresponding one or more frequency band IDs of the second module to the base station, such as reporting through MAC CE. While reporting the PH of a certain frequency band, the corresponding PCMAX value of the frequency band may also be included.
  • At least one type of power headroom of the second power headroom of the second module has the priority of reporting, that is, different types of PHs of the second power headroom of the second module can be prioritized When there are multiple PHs in a frequency band at the same time, report the PH with the highest priority according to the priority.
  • a prioritization is: Type 5 PH>real Type 6 PH>real Type 7 PH>real Type 8 PH>virtual Type 6 PH>virtual Type 7 PH>virtual Type 8 PH.
  • the data transmission between the MT module (the first module) and the RU module (the second module) in the intelligent repeater may adopt various methods.
  • the following takes the first network node being an intelligent repeater as an example to describe a specific scenario.
  • the MT module and the RU module may adopt a frequency division multiplexing (frequency division multiplexing, FDM) manner, that is, the MT module and the RU module use different carrier frequencies.
  • FDM frequency division multiplexing
  • FIG. 4 is a schematic diagram of an intelligent repeater according to Embodiment 1 of the present application.
  • the smart repeater 400 includes an MT module and an RU module, and the MT module and the RU module use different carrier frequencies, that is, out-of-band communication with each other.
  • the frequency at which the RU module works as an amplifier is always different from the frequency at which the MT module communicates with network equipment, or is always separated by a sufficient frequency range. In this case, the AF (amplify and forward) functional part of the smart repeater 400 will not be affected by the signal sent or received by the MT module to or from the network device.
  • the network device also needs to know the uplink transmission power headroom of the RU module, so as to control the uplink power of the RU module. Since the RU module is a non-self-generated repeater and does not encode or decode signals from UE or network equipment, the RU module will not know which physical channel the data it forwards belongs to, that is, the three PH types defined by 5G are not applicable in the PHR of the RU module.
  • the power headroom of the RU module reported by the MT module is Type 4 PH, which indicates the difference between the maximum transmission power of the current RU module in a certain frequency band and the estimated uplink transmission power.
  • Type 4 PH indicates the difference between the maximum transmission power of the current RU module in a certain frequency band and the estimated uplink transmission power.
  • the MT module reports one or more uplink PHs of the RU module and one or more corresponding frequency band IDs to the network device.
  • the uplink PH of the RU module can be reported to the network device together with the PH of the MT module, and also It is to use the existing PHR MAC CE to report the PH of the MT module and the RU module. Existing single-entry and multi-entry PHR MAC CEs may not be changed.
  • the network device can use the cell ID to distinguish whether the PH corresponding to the cell ID is for the MT module or for the RU module. If a cell ID corresponds to an RU module, the corresponding entry contains the PCMAX and Type 4 PH of the RU module.
  • the MT module and the RU module may adopt a time division multiplexing (time division multiplexing, TDM) manner, that is, the MT module and the RU module communicate at different time periods.
  • FIG. 5 is another schematic diagram of the intelligent repeater according to Embodiment 1 of the present application.
  • the intelligent repeater 500 includes an MT module and an RU module, and the MT module and the RU module communicate at different time periods, and the MT module and the RU module use the same frequency band, that is, both are in-band (in-band ) communication.
  • the RU module will suspend or suspend work.
  • the RU module is amplifying and forwarding, the MT module will stop communicating.
  • FIG. 6 is another schematic diagram of the intelligent repeater according to Embodiment 1 of the present application.
  • the intelligent repeater 600 includes an MT module and an RU module.
  • the MT module and the RU module use the same frequency band, that is, the two are in-band (in-band) communication, but the MT module and the RU module do not use the same frequency band.
  • Time-division multiplexing transmission mode The uplink or downlink signal of the MT module and the AF signal of the repeater are combined for transmission.
  • both the MT module and the RU module work in the same frequency band, so the PHR MAC CE can be reused for PH reporting, that is, the MT module still uses the PHR MAC CE to report the PH related to itself , such as Type 1 and Type 3 PH.
  • the cell can define Type 4 PH for the RU module.
  • Type 4 PH For the specific content of the Type 4 PH, please refer to the previous records, and the description will not be repeated here.
  • the MT module can also report the Type 4 PH of the RU module at the same time.
  • the method is to still use single-entry or multi-entry PHR MAC CE.
  • the Type 4 PH of the RU module in the working frequency band can be reported.
  • At least one type of power headroom of the MT module or at least one type of power headroom of the RU module has the priority of reporting. That is to say, at most one kind of power headroom is reported for each serving cell, and which power headroom to report for each cell is determined according to the priorities of these power headrooms, that is, the power headroom with higher priority is reported. In this way, reporting signaling overhead can be reduced.
  • the power headroom of the MT module or the power headroom of the RU module can be reported; and if the cell does not contain the working frequency band of the RU module, report The power headroom of the MT module.
  • the MT module and the RU module have multiple types of power headroom, it is determined according to the priority which power headroom the cell reports.
  • the priority order of the power headroom is: real (actual) Type 1 PH>Type 4 PH>real Type 3 PH>virtual (virtual) Type 1 PH>virtual Type 3 PH.
  • the first module may report the gain of the second module in at least one frequency band to the network device.
  • the gain is for a cell (cell), or a BWP of the cell, or a carrier frequency (carrier), or a pass band (pass band).
  • the gain of the second module includes an uplink gain and/or a downlink gain of the second module
  • the uplink gain refers to an amplification gain of uplink transmission
  • the downlink gain refers to an amplification gain of downlink transmission.
  • the first network node is usually to enhance cell coverage, so the gain used is usually used to compensate the path loss from the network device to the first network node, so uplink and downlink transmission may sample the same amplification gain. In this case, only one common gain of each frequency band can be reported, indicating that the uplink and downlink use this gain at the same time.
  • the first module may report the gain of the second module through the second MAC CE or RRC signaling.
  • the second MAC CE is called GR (Gain Report) MAC CE.
  • the RRC signaling is RRC signaling from the first module to the network device.
  • the second MAC CE or the RRC signaling may include a frequency band identifier (ID) and uplink gain and/or downlink gain corresponding to the frequency band ID.
  • ID frequency band identifier
  • the second MAC CE or the RRC signaling may further include a maximum gain corresponding to the frequency band.
  • the first module of the first network node reports the gain of the second module.
  • the second condition includes at least one of the following conditions:
  • the third timer expires, and at the same time, the first module obtains uplink resources for new data transmission, and the change value between the gain of the second module in a frequency band and the gain reported last time is greater than or equal to the third threshold ;
  • the RRC layer configures or reconfigures a gain reporting (GR) function (not including disabling GR) for the first module.
  • GR gain reporting
  • the third timer may be called a gain report prohibition timer (gr-ProhibitTimer), and the fourth timer may be called a gain report periodic timer (gr-PeriodicTimer), for example.
  • gr-ProhibitTimer a gain report prohibition timer
  • gr-PeriodicTimer a gain report periodic timer
  • the gain report prohibition timer is a minimum report interval set for gain report, that is, gain report cannot be performed while the timer is running, so as to avoid frequent report transitions.
  • the gain reporting period timer is the maximum reporting interval set, that is, even if no other event is triggered, it needs to be reported after a certain period of time.
  • the third threshold is configured by the network device to the first module through RRC signaling.
  • the reported transmit power may be the transmit power of the second module at a certain moment, or may be the average transmit power of the second module within a certain period of time.
  • the transmit power of the second module may include uplink transmit power and/or downlink transmit power of the second module.
  • the first module may report the transmit power of the second module through the third MAC CE or RRC signaling.
  • the third MAC CE is called PR (Powr Report) MAC CE.
  • the third MAC CE or the RRC signaling includes a frequency band identifier (ID) and uplink transmit power and/or downlink transmit power corresponding to the frequency band identifier.
  • the third MAC CE or the RRC signaling may also include a maximum transmission power corresponding to the frequency band.
  • the first module of the first network node reports the transmit power of the second module.
  • the third condition includes at least one of the following conditions:
  • the fifth timer expires, and at the same time, the first module obtains uplink resources for new data transmission, and the change value between the transmit power of the second module in a frequency band and the transmit power reported last time is greater than or equal to the first Four thresholds;
  • the RRC layer configures or reconfigures a power reporting (PR) function (excluding disabling PR) for the first module.
  • PR power reporting
  • the fifth timer is called a power report prohibition timer (pr-ProhibitTimer)
  • the sixth timer is called a power report periodic timer (pr-PeriodicTimer).
  • the fourth threshold is configured by the network device to the first module through RRC signaling.
  • the first module of the first network node reports the power-related information of the second module to the network device, so that the network device can effectively control the power of the second module according to the reported power-related information, thereby realizing network Performance optimization.
  • Embodiment 2 of the present application also provides a method for receiving power-related information, and the method is applied to a network device side.
  • This method corresponds to the method for reporting power-related information on the first network node side in Embodiment 1, and the same content will not be described repeatedly.
  • FIG. 7 is a schematic diagram of a method for receiving power-related information according to Embodiment 2 of the present application. As shown in Figure 7, the method includes:
  • Step 701 Receive power related information of the second module of the first network node from the first module of the first network node.
  • the power related information includes uplink power related information and/or downlink power related information of the second module.
  • the power-related information includes at least one of power headroom, gain and transmit power of the second module.
  • the first module is a terminal equipment (mobile terminal, MT) module
  • the second module is a radio unit (radio unit, RU) module.
  • the first network node is a smart repeater (smart repeater, SR).
  • smart repeater smart repeater
  • the first module of the first network node reports the power-related information of the second module to the network device, so that the network device can effectively control the power of the second module according to the reported power-related information, thereby realizing network Performance optimization.
  • Embodiment 3 of the present application provides an apparatus for reporting power-related information, and the apparatus is set at a first network node.
  • the first network node includes a first module and a second module. Since the problem-solving principle of the device is similar to the method in Example 1, its specific implementation can refer to the implementation of the method described in Example 1, and the same or related parts will not be described again.
  • FIG. 8 is a schematic diagram of a reporting device for power-related information in Embodiment 3 of the present application.
  • the reporting device 800 for power-related information includes:
  • a reporting unit 801 is set in the first module of the first network node and reports power-related information of the second module.
  • the power-related information may include uplink power-related information and/or downlink power-related information of the second module.
  • the uplink power-related information of the second module and the downlink power-related information of the second module may be represented by the same information.
  • the uplink power-related information and downlink power-related information of the second module may be reported simultaneously, or the uplink power-related information and downlink power-related information of the second module may be reported separately.
  • the power-related information may include at least one of power headroom, gain, and transmit power of the second module.
  • the power headroom of the second module may include the uplink power headroom of the second module and/or the downlink power headroom of the second module, and the uplink power headroom of the second module is the first A power headroom, the downlink power headroom of the second module is the second power headroom.
  • the first power headroom and the second power headroom may be the same type of power headroom or different types of power headroom.
  • the first power headroom represents the difference between the current maximum transmission power of the second module in a frequency band and the estimated uplink transmission power
  • the second power headroom represents the current The difference between the maximum transmission power of the second module in a frequency band and the estimated downlink transmission power
  • the first power headroom and/or the second power headroom may be for a cell, or a BWP of a cell, or a carrier frequency (carrier), or a passband (pass band).
  • the reporting unit 801 may report at least one uplink power headroom of the second module and at least one frequency band identifier (ID) corresponding to the uplink power headroom to the network device, and/or, the reporting Unit 801 reports at least one downlink power headroom of the second module and at least one frequency band identifier (ID) corresponding to the downlink power headroom to the network device.
  • ID frequency band identifier
  • the reporting unit 801 may also report the maximum output power (P CMAX ) of the second module in at least one frequency band corresponding to the uplink power headroom to the network device, and/or, the reporting unit 801 also reports the maximum output power (P CMAX ) of the second module in at least one frequency band corresponding to the downlink power headroom to the network device.
  • P CMAX maximum output power
  • the reporting unit 801 may report the power headroom of the second module through the first MAC CE.
  • the first MAC CE may include at least one cell ID and uplink power headroom and/or downlink power headroom corresponding to the cell ID.
  • the device 800 may also include:
  • a sending unit 802 which is arranged in the second module and sends a reference signal
  • the second power headroom represents a difference between the current maximum transmission power of the second module in a frequency band and the estimated reference signal transmission power.
  • the reference signal may include at least one of SSB, CSI-RS and downlink SRS.
  • the second power headroom may include a real power headroom and a virtual power headroom.
  • At least one type of power headroom of the second power headroom of the second module has a reporting priority.
  • the first module may report the gain of the second module in at least one frequency band to the network device.
  • the gain may be for a cell, or a BWP of the cell, or a carrier frequency (carrier), or a pass band (pass band).
  • the gain of the second module may include an uplink gain and/or a downlink gain of the second module.
  • the first module may report the gain of the second module through the second MAC CE or RRC signaling.
  • the second MAC CE or the RRC signaling may include a frequency band identifier (ID) and uplink gain and/or downlink gain corresponding to the frequency band ID.
  • ID frequency band identifier
  • the second MAC CE or the RRC signaling may further include a maximum gain corresponding to the frequency band.
  • the transmit power of the second module may include uplink transmit power and/or downlink transmit power of the second module.
  • the reporting unit 801 may report the transmit power of the second module through the third MAC CE or RRC signaling.
  • the third MAC CE or the RRC signaling may include a frequency band identifier (ID) and uplink transmit power and/or downlink transmit power corresponding to the frequency band identifier.
  • ID frequency band identifier
  • the third MAC CE or the RRC signaling may also include a maximum transmit power corresponding to the frequency band.
  • the reporting unit 801 may also report power-related information of the first module.
  • the first module may use the same MAC CE to report the power-related information of the first module and the power-related information of the second module, or the first module may use different MAC CEs to report the power-related information of the first module.
  • the power headroom corresponding to the first cell is the power headroom of the first module
  • the power headroom corresponding to the second cell is the power headroom of the second cell
  • the second cell includes the working frequency band of the second module.
  • At least one type of power headroom of the first module or at least one type of power headroom of the second module has a reporting priority.
  • the reporting unit reports the power headroom of the second module.
  • the first condition includes at least one of the following conditions:
  • the second module is activated or reactivated in a frequency band
  • the first timer expires, and at the same time, the first module has obtained uplink resources for new data transmission, and since the last power headroom report, at least one active downlink BWP used for path loss reference is not a dormant BWP service
  • the path loss variation of the cell exceeds the first threshold
  • the second timer expires
  • the RRC layer configures or reconfigures a power headroom reporting function for the first module
  • the network side activates a secondary cell (SCell) configured with an uplink BWP whose firstActiveDownlinkBWP-Id is not set to dormant;
  • SCell secondary cell
  • the MAC entity has uplink resources for new data transmission, and any activated serving cell configured with uplink in the MAC entity meets the following conditions: the activated serving cell has uplink resource allocation or has PUCCH transmission, and the activated serving cell
  • the power backoff required by the activated serving cell due to power management is equivalent to the change value when the uplink resource allocated to the activated serving cell by the MAC entity or the power headroom transmitted on the PUCCH last time exceeds the second threshold;
  • the first timer may be called a power headroom report prohibition timer (phr-ProhibitTimer), and the second timer may be called a power headroom report periodic timer (phr-PeriodicTimer).
  • phr-ProhibitTimer a power headroom report prohibition timer
  • phr-PeriodicTimer a power headroom report periodic timer
  • the reporting unit reports the gain of the second module.
  • the second condition includes at least one of the following conditions:
  • the third timer expires, and at the same time, the first module obtains uplink resources for new data transmission, and the change value between the gain of the second module in a frequency band and the gain reported last time is greater than or equal to the third threshold ;
  • the RRC layer configures or reconfigures a gain reporting function for the first module.
  • the third timer may be called a gain report prohibition timer (gr-ProhibitTimer), and the fourth timer may be called a gain report periodic timer (gr-PeriodicTimer).
  • gr-ProhibitTimer a gain report prohibition timer
  • gr-PeriodicTimer a gain report periodic timer
  • the third threshold is configured by the network device to the first module through RRC signaling.
  • the reporting unit reports the transmit power of the second module.
  • the third condition includes at least one of the following conditions:
  • the fifth timer expires, and at the same time, the first module obtains uplink resources for new data transmission, and the change value between the transmit power of the second module in a frequency band and the transmit power reported last time is greater than or equal to the first Four thresholds;
  • the RRC layer configures or reconfigures the power reporting function for the first module.
  • the fifth timer may be called a power report prohibition timer (pr-ProhibitTimer), and the sixth timer may be called a power report periodic timer (pr-PeriodicTimer).
  • pr-ProhibitTimer a power report prohibition timer
  • pr-PeriodicTimer a power report periodic timer
  • the fourth threshold is configured by the network device to the first module through RRC signaling.
  • the first module may be a terminal equipment (mobile terminal, MT) module
  • the second module may be a radio unit (radio unit, RU) module.
  • the first network node may be a smart repeater (smart repeater, SR).
  • smart repeater smart repeater
  • the first module of the first network node reports the power-related information of the second module to the network device, so that the network device can effectively control the power of the second module according to the reported power-related information, thereby realizing network Performance optimization.
  • Embodiment 4 of the present application provides an apparatus for receiving power-related information, and the apparatus is applied to a network device side. Since the problem-solving principle of the device is similar to the method in Embodiment 2, its specific implementation can refer to the implementation of the method described in Embodiment 2, and the same or related parts will not be described again.
  • FIG. 9 is a schematic diagram of a receiving device for power-related information in Embodiment 4 of the present application. As shown in FIG. 9, the receiving device 900 for power-related information includes:
  • a receiving unit 901 configured to receive power related information of the second module of the first network node from the first module of the first network node.
  • the power-related information may include uplink power-related information and/or downlink power-related information of the second module.
  • the power-related information may include at least one of power headroom, gain, and transmit power of the second module.
  • the first module may be a terminal equipment (mobile terminal, MT) module
  • the second module is a radio unit (radio unit, RU) module.
  • the first network node may be a smart repeater (smart repeater, SR).
  • smart repeater smart repeater
  • the first module of the first network node reports the power-related information of the second module to the network device, so that the network device can effectively control the power of the second module according to the reported power-related information, thereby realizing network Performance optimization.
  • An embodiment of the present application provides a network node, that is, the aforementioned first network node, such as an intelligent repeater, and the network node includes the device for reporting power-related information as described in Embodiment 3.
  • FIG. 10 is a schematic block diagram of a system configuration of a network node according to Embodiment 5 of the present application.
  • the network node 1000 may include a processor 1010 and a memory 1020 ; the memory 1020 is coupled to the processor 1010 .
  • the memory 1020 can store various data; in addition, it also stores a program 1030 for information processing, and executes the program 1030 under the control of the processor 1010 . It is worth noting that this figure is exemplary; other types of structures may also be used in addition to or instead of this structure to implement telecommunications functions or other functions.
  • the function of the device for reporting power-related information may be integrated into the processor 1010 .
  • the processor 1010 may be configured to: the first module of the first network node reports the power-related information of the second module.
  • the device for reporting power-related information can be configured separately from the processor 1010.
  • the device for reporting power-related information can be configured as a chip connected to the processor 1010, and the power-related information can be realized through the control of the processor 1010. The function of the information reporting device.
  • the network node 1000 may further include: a network-side transceiver 1040-1 and a network-side antenna 1050-1, a terminal-side transceiver 1040-2, a terminal-side antenna 1050-2, and a signal amplification circuit 1060; , the functions of the above components are similar to those of the prior art, and will not be repeated here. It should be noted that the network node 1000 does not necessarily include all the components shown in FIG. 10 ; in addition, the network node 1000 may also include components not shown in FIG. 10 , and reference may be made to the prior art.
  • the processor 1010 may include a microprocessor or other processor device and/or logic device, and the processor 1010 receives input and controls the various components of the network node 1000. operate.
  • the memory 1020 may be, for example, one or more of a cache, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable devices.
  • Various data can be stored, and programs for executing related information can also be stored.
  • the processor 1010 can execute the program stored in the memory 1020 to implement information storage or processing.
  • the functions of other components are similar to those in the prior art, and will not be repeated here.
  • Each component of the terminal device 1000 may be implemented by dedicated hardware, firmware, software or a combination thereof without departing from the scope of the present application.
  • the first module of the intelligent repeater reports the power-related information of the second module to the network device, so that the network device can effectively control the power of the second module according to the reported power-related information, thereby realizing network Performance optimization.
  • An embodiment of the present application provides a network device, and the network device includes the apparatus for reporting power-related information as described in Embodiment 4.
  • FIG. 11 is a schematic block diagram of a system configuration of a network device according to Embodiment 6 of the present application.
  • the network device 1100 may include: a processor (processor) 1110 and a memory 1120 ; the memory 1120 is coupled to the processor 1110 .
  • the memory 1120 can store various data; in addition, it also stores an information processing program 1130, and executes the program 1130 under the control of the processor 1110 to receive various information sent by the first network node and send the first network node Send various information.
  • the function of the device for reporting power-related information may be integrated into the processor 1110 .
  • the processor 1110 may be configured to: receive the power-related information of the second module of the first network node from the first module of the first network node.
  • the network device 1100 may further include: a transceiver 1140 and an antenna 1150 ; wherein, the functions of the above components are similar to those of the prior art, and will not be repeated here. It should be noted that the network device 1100 does not necessarily include all the components shown in FIG. 11 ; in addition, the network device 1100 may also include components not shown in FIG. 11 , and reference may be made to the prior art.
  • the first module of the first network node reports the power-related information of the second module to the network device, so that the network device can effectively control the power of the second module according to the reported power-related information, thereby realizing network Performance optimization.
  • An embodiment of the present application provides a communication system, including the network node described in Embodiment 5 and/or the network device described in Embodiment 6.
  • the structure of the communication system can refer to FIG. 1.
  • the communication system 100 includes a network device 101, a terminal device 102, and a first network node 103.
  • the network nodes are the same, and the network device 101 is the same as the network device described in Embodiment 6, and the repeated content will not be repeated.
  • the first module of the first network node reports the power-related information of the second module to the network device, so that the network device can effectively control the power of the second module according to the reported power-related information, thereby realizing network Performance optimization.
  • the above devices and methods in the embodiments of the present application may be implemented by hardware, or may be implemented by combining hardware with software.
  • the embodiments of the present application relate to such a computer-readable program.
  • the logic component can realize the above-mentioned devices or components, or the logic component can realize the above-mentioned various components. a method or steps.
  • Embodiments of the present application also relate to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, and the like.
  • the method/device described in conjunction with the embodiments of the present application may be directly embodied as hardware, a software module executed by a processor, or a combination of both.
  • one or more of the functional block diagrams shown in FIG. 8 and/or one or more combinations of the functional block diagrams may correspond to each software module or each hardware module of the computer program flow.
  • These software modules may respectively correspond to the steps shown in FIG. 3 .
  • These hardware modules for example, can be realized by solidifying these software modules by using a Field Programmable Gate Array (FPGA).
  • FPGA Field Programmable Gate Array
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other form of storage medium known in the art.
  • a storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium, or it can be an integral part of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the software module can be stored in the memory of the mobile terminal, or can be stored in a memory card that can be inserted into the mobile terminal.
  • the software module can be stored in the MEGA-SIM card or large-capacity flash memory device.
  • One or more and/or one or more combinations of the functional blocks described in FIG. 8 can be implemented as a general-purpose processor, a digital signal processor (DSP) for performing the functions described in this application. ), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
  • DSP digital signal processor
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • One or more of the functional blocks described in FIG. 8 and/or one or more combinations of the functional blocks can also be implemented as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors processor, one or more microprocessors in communication with a DSP, or any other such configuration.
  • a device for reporting power related information is used for a first network node, and the first network node includes a first module and a second module,
  • the devices include:
  • a reporting unit which is set in the first module of the first network node, and reports power-related information of the second module.
  • the power-related information includes uplink power-related information and/or downlink power-related information of the second module.
  • the uplink power-related information of the second module and the downlink power-related information of the second module are represented by the same information.
  • the uplink power-related information and downlink power-related information of the second module are reported at the same time, or the uplink power-related information and downlink power-related information of the second module are reported separately.
  • the power-related information includes at least one of power headroom, gain, and transmit power of the second module.
  • the power headroom of the second module includes an uplink power headroom of the second module and/or a downlink power headroom of the second module,
  • the uplink power headroom of the second module is the first power headroom
  • the downlink power headroom of the second module is the second power headroom
  • the first power headroom and the second power headroom are the same type of power headroom or different types of power headroom.
  • the first power headroom represents the difference between the current maximum transmission power of the second module in a frequency band and the estimated uplink transmission power, and/or,
  • the second power headroom represents a difference between the current maximum transmission power of the second module in a frequency band and the estimated downlink transmission power.
  • the first power headroom and/or the second power headroom are for a cell (cell), or a BWP of a cell, or a carrier frequency (carrier), or a pass band (pass band).
  • the reporting unit reports at least one uplink power headroom of the second module and at least one frequency band identifier (ID) corresponding to the uplink power headroom to the network device, and/or,
  • the reporting unit reports at least one downlink power headroom of the second module and at least one frequency band identifier (ID) corresponding to the downlink power headroom to the network device.
  • ID frequency band identifier
  • the reporting unit also reports the maximum output power (P CMAX ) of the second module in at least one frequency band corresponding to the uplink power headroom to the network device, and/or,
  • the reporting unit also reports the maximum output power (P CMAX ) of the second module in at least one frequency band corresponding to the downlink power headroom to the network device.
  • the reporting unit reports the power headroom of the second module through the first MAC CE.
  • the first MAC CE includes at least one cell ID and uplink power headroom and/or downlink power headroom corresponding to the cell ID.
  • a sending unit which is arranged in the second module and sends a reference signal
  • the second power headroom represents a difference between the current maximum transmission power of the second module in a frequency band and the estimated reference signal transmission power.
  • the reference signal includes at least one of SSB, CSI-RS and downlink SRS.
  • the second power headroom includes a real power headroom and a virtual power headroom.
  • At least one type of power headroom of the second power headroom of the second module has a reporting priority.
  • the first module reports the gain of the second module in at least one frequency band to the network device
  • the gain is for a cell, or a BWP of the cell, or a carrier frequency (carrier), or a pass band (pass band).
  • the gain of the second module includes an uplink gain and/or a downlink gain of the second module.
  • the first module reports the gain of the second module through the second MAC CE or RRC signaling.
  • the second MAC CE or the RRC signaling includes a frequency band identifier (ID) and uplink gain and/or downlink gain corresponding to the frequency band ID.
  • ID frequency band identifier
  • the second MAC CE or the RRC signaling further includes a maximum gain corresponding to the frequency band.
  • the transmit power of the second module includes uplink transmit power and/or downlink transmit power of the second module.
  • the reporting unit reports the transmission power of the second module through the third MAC CE or RRC signaling.
  • the third MAC CE or the RRC signaling includes a frequency band identifier (ID) and uplink transmit power and/or downlink transmit power corresponding to the frequency band ID.
  • ID frequency band identifier
  • the third MAC CE or the RRC signaling further includes a maximum transmission power corresponding to the frequency band.
  • the reporting unit also reports power-related information of the first module.
  • the first module uses the same MAC CE to report the power-related information of the first module and the power-related information of the second module, or,
  • the first module uses different MAC CEs to report the power-related information of the first module and the power-related information of the second module.
  • the power headroom corresponding to the first cell is the power headroom of the first module
  • the power headroom corresponding to the second cell is the power headroom of the second module
  • the second cell includes the working frequency band of the second module.
  • At least one type of power headroom of the first module or at least one type of power headroom of the second module has a priority for reporting.
  • the reporting unit reports the power headroom of the second module.
  • the second module is activated or reactivated in a frequency band
  • the first timer expires, and at the same time, the first module has obtained uplink resources for new data transmission, and since the last power headroom report, at least one active downlink BWP used for path loss reference is not a dormant BWP
  • the path loss variation of the serving cell exceeds the first threshold
  • the second timer expires
  • the RRC layer configures or reconfigures a power headroom reporting function for the first module
  • the network side activates a secondary cell (SCell) configured with an uplink BWP whose firstActiveDownlinkBWP-Id is not set to dormant;
  • SCell secondary cell
  • the MAC entity has uplink resources for new data transmission, and any active serving cell configured with uplink in the MAC entity meets the following conditions: the activated serving cell has uplink resource allocation or has PUCCH transmission, And the power backoff required by the activated serving cell due to power management is equivalent to the change value when the uplink resource allocated to the activated serving cell by the MAC entity or the power headroom transmitted on the PUCCH last time exceeds the second threshold; as well as
  • the first timer is called a power headroom report prohibition timer (phr-ProhibitTimer),
  • the second timer is called a power headroom reporting periodic timer (phr-PeriodicTimer).
  • the reporting unit reports the gain of the second module.
  • the third timer expires, and at the same time, the first module obtains an uplink resource for new data transmission, and the change value between the gain of the second module in a frequency band and the gain reported last time is greater than or equal to the first Three thresholds;
  • the RRC layer configures or reconfigures a gain reporting function for the first module.
  • the third timer is called a gain report prohibition timer (gr-ProhibitTimer)
  • the fourth timer is called a gain reporting periodic timer (gr-PeriodicTimer).
  • the third threshold is configured by the network device to the first module through RRC signaling.
  • the reporting unit reports the transmit power of the second module.
  • the third condition includes at least one of the following conditions:
  • the fifth timer expires, and at the same time, the first module obtains an uplink resource for new data transmission, and the change value between the transmission power of the second module in a frequency band and the transmission power reported last time is greater than or equal to the fourth threshold;
  • the RRC layer configures or reconfigures the power reporting function for the first module.
  • the fifth timer is called a power report prohibition timer (pr-ProhibitTimer)
  • the sixth timer is called a power reporting periodic timer (pr-PeriodicTimer).
  • the fourth threshold is configured by the network device to the first module through RRC signaling.
  • the first module is a terminal equipment (mobile terminal, MT) module
  • the second module is a radio unit (radio unit, RU) module.
  • the first network node is a smart repeater (smart repeater, SR).
  • a device for receiving power-related information the device is used for network equipment, and the device includes:
  • a receiving unit configured to receive power related information of the second module of the first network node from the first module of the first network node.
  • the power-related information includes uplink power-related information and/or downlink power-related information of the second module.
  • the power-related information includes at least one of power headroom, gain, and transmit power of the second module.
  • the first module is a terminal equipment (mobile terminal, MT) module
  • the second module is a radio unit (radio unit, RU) module.
  • the first network node is a smart repeater (smart repeater, SR).
  • a network node, the intelligent network node comprising the device according to any one of Supplements 1-44.
  • a network device comprising the device according to any one of supplementary notes 45-49.
  • a communication system comprising:
  • a method for reporting power related information is used for a first network node, and the first network node includes a first module and a second module,
  • the methods include:
  • the first module of the first network node reports power-related information of the second module.
  • the power-related information includes uplink power-related information and/or downlink power-related information of the second module.
  • the uplink power-related information of the second module and the downlink power-related information of the second module are represented by the same information.
  • the uplink power-related information and downlink power-related information of the second module are reported at the same time, or the uplink power-related information and downlink power-related information of the second module are reported separately.
  • the power-related information includes at least one of power headroom, gain, and transmit power of the second module.
  • the power headroom of the second module includes an uplink power headroom of the second module and/or a downlink power headroom of the second module,
  • the uplink power headroom of the second module is the first power headroom
  • the downlink power headroom of the second module is the second power headroom
  • the first power headroom and the second power headroom are the same type of power headroom or different types of power headroom.
  • the first power headroom represents the difference between the current maximum transmission power of the second module in a frequency band and the estimated uplink transmission power, and/or,
  • the second power headroom represents a difference between the current maximum transmission power of the second module in a frequency band and the estimated downlink transmission power.
  • the first power headroom and/or the second power headroom are aimed at a cell (cell), or a BWP of a cell, or a carrier frequency (carrier), or a pass band (pass band).
  • the first module reports at least one uplink power headroom of the second module and at least one frequency band identifier (ID) corresponding to the uplink power headroom to a network device, and/or,
  • the first module reports at least one downlink power headroom of the second module and at least one frequency band identifier (ID) corresponding to the downlink power headroom to the network device.
  • ID frequency band identifier
  • the first module also reports the maximum output power (P CMAX ) of the second module in at least one frequency band corresponding to the uplink power headroom to the network device, and/or,
  • the first module also reports the maximum output power (P CMAX ) of the second module in at least one frequency band corresponding to the downlink power headroom to the network device.
  • the first module reports the power headroom of the second module through the first MAC CE.
  • the first MAC CE includes at least one cell ID and uplink power headroom and/or downlink power headroom corresponding to the cell ID.
  • the second module sends a reference signal
  • the second power headroom represents a difference between the current maximum transmission power of the second module in a frequency band and the estimated reference signal transmission power.
  • the reference signal includes at least one of SSB, CSI-RS and downlink SRS.
  • the second power headroom includes a real power headroom and a virtual power headroom.
  • At least one type of power headroom of the second power headroom of the second module has a reporting priority.
  • the first module reports the gain of the second module in at least one frequency band to the network device
  • the gain is for a cell, or a BWP of the cell, or a carrier frequency (carrier), or a pass band (pass band).
  • the gain of the second module includes an uplink gain and/or a downlink gain of the second module.
  • the first module reports the gain of the second module through the second MAC CE or RRC signaling.
  • the second MAC CE or the RRC signaling includes a frequency band identifier (ID) and uplink gain and/or downlink gain corresponding to the frequency band ID.
  • ID frequency band identifier
  • the second MAC CE or the RRC signaling further includes a maximum gain corresponding to the frequency band.
  • the transmit power of the second module includes uplink transmit power and/or downlink transmit power of the second module.
  • the first module reports the transmission power of the second module through the third MAC CE or RRC signaling.
  • the third MAC CE or the RRC signaling includes a frequency band identifier (ID) and uplink transmit power and/or downlink transmit power corresponding to the frequency band ID.
  • ID frequency band identifier
  • the third MAC CE or the RRC signaling further includes a maximum transmission power corresponding to the frequency band.
  • the first module also reports power-related information of the first module.
  • the first module uses the same MAC CE to report the power-related information of the first module and the power-related information of the second module, or,
  • the first module uses different MAC CEs to report the power-related information of the first module and the power-related information of the second module.
  • the power headroom corresponding to the first cell is the power headroom of the first module
  • the power headroom corresponding to the second cell is the power headroom of the second module
  • the second cell includes the working frequency band of the second module.
  • the at least one type of power headroom of the first module or the at least one type of power headroom of the second module has a reporting priority.
  • the first module of the first network node reports the power headroom of the second module.
  • the second module is activated or reactivated in a frequency band
  • the first timer expires, and at the same time, the first module has obtained uplink resources for new data transmission, and since the last power headroom report, at least one active downlink BWP used for path loss reference is not a dormant BWP
  • the path loss variation of the serving cell exceeds the first threshold
  • the second timer expires
  • the RRC layer configures or reconfigures a power headroom reporting function for the first module
  • the network side activates a secondary cell (SCell) configured with an uplink BWP whose firstActiveDownlinkBWP-Id is not set to dormant;
  • SCell secondary cell
  • the MAC entity has uplink resources for new data transmission, and any active serving cell configured with uplink in the MAC entity meets the following conditions: the activated serving cell has uplink resource allocation or has PUCCH transmission, And the power backoff required by the activated serving cell due to power management is equivalent to the change value when the uplink resource allocated to the activated serving cell by the MAC entity or the power headroom transmitted on the PUCCH last time exceeds the second threshold; as well as
  • the first timer is called a power headroom report prohibition timer (phr-ProhibitTimer),
  • the second timer is called a power headroom reporting periodic timer (phr-PeriodicTimer).
  • the first module of the first network node reports the gain of the second module.
  • the third timer expires, and at the same time, the first module obtains an uplink resource for new data transmission, and the change value of the gain of the second module in a frequency band and the gain reported last time is greater than or equal to the first Three thresholds;
  • the RRC layer configures or reconfigures a gain reporting function for the first module.
  • the third timer is called a gain report prohibition timer (gr-ProhibitTimer)
  • the fourth timer is called a gain reporting periodic timer (gr-PeriodicTimer).
  • the third threshold is configured by the network device to the first module through RRC signaling.
  • the first module of the first network node reports the transmit power of the second module.
  • the third condition includes at least one of the following conditions:
  • the fifth timer expires, and at the same time, the first module obtains an uplink resource for new data transmission, and the change value between the transmission power of the second module in a frequency band and the transmission power reported last time is greater than or equal to the fourth threshold;
  • the RRC layer configures or reconfigures the power reporting function for the first module.
  • the fifth timer is called a power report prohibition timer (pr-ProhibitTimer)
  • the sixth timer is called a power reporting periodic timer (pr-PeriodicTimer).
  • the fourth threshold is configured by the network device to the first module through RRC signaling.
  • the first module is a terminal equipment (mobile terminal, MT) module
  • the second module is a radio unit (radio unit, RU) module.
  • the first network node is a smart repeater (smart repeater, SR).
  • a method for receiving power-related information is used in a network device, and the method includes:
  • Power related information of a second module of a first network node is received from a first module of the first network node.
  • the power-related information includes uplink power-related information and/or downlink power-related information of the second module.
  • the power-related information includes at least one of power headroom, gain, and transmit power of the second module.
  • the first module is a terminal equipment (mobile terminal, MT) module
  • the second module is a radio unit (radio unit, RU) module.
  • the first network node is a smart repeater (smart repeater, SR).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种功率相关信息的上报装置及方法。所述方法用于第一网络节点,所述第一网络节点包括第一模块和第二模块,所述方法包括:所述第一网络节点的第一模块上报第二模块的功率相关信息。

Description

功率相关信息的上报装置及方法 技术领域
本申请涉及通信领域。
背景技术
覆盖问题是蜂窝网络部署的一个根本问题。移动运营商在其部署中采用不同类型的网络节点来提供全面覆盖。普通的全协议栈的小区部署是最理想的,但是它并不总是可行的(例如,当没有回传链路时)或者经济的。因此,移动运营商考虑使用新的类型的网络节点来增加网络部署的灵活性。
NR rel-17引入了射频中继器(RF repeater),用于增加NR的蜂窝网络部署的覆盖面积。射频中继器通常是非自生的(non-generative),只是简单地将所有收到的信号进行放大并转发(amplify and forward,AF)。射频中继器通常是全双工的,不能区分上行和下行传输。它的优点是成本低,部署简单,不增加时延。它的不足之处是有可能将噪音一起放大,从而增加了对信号的干扰。
NR的射频中继器需要规范射频和电磁兼容(electromagnetic compatibility,EMC)的需求,还需要考虑FR1(FDD和TDD)和FR2(TDD)的频段。射频中继器不需要对终端设备(UE)执行自适应波束成形。
应该注意,上面对技术背景的介绍只是为了方便对本申请的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本申请的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
为了优化系统性能,包括可能的减轻干扰和进一步提高覆盖,智能中继器(smart repeater)被提出并被认为是一个用来提升网络拓扑的有效方案。智能中继器的主要优点有:比传统中继(relay),IAB-DU(integrated access and backhaul-distributed unit)和gNB更加简单的协议栈;通过gNB的侧面控制(side control)来实现智能操作,比如动态改变中继器的发送和接收(TX/RX)。
智能中继器可以分为两个部分,一部分用来实现部分UE的功能,这部分可以叫做MT(mobile termination,移动终端),其和网络设备(例如gNB)进行通信。另外一部分实现无线射频功能,也就是中继器的放大转发功能,这部分可以称为RU(radio unit,无线单元)。
gNB和MT之间的链路是一个控制链路或控制路径,也是前向(fronthaul)链路。通过该控制链路,gNB可以通过侧面控制信息,例如TDD配置、开关信息、RU的波束成形信息等来配置智能中继器。该控制链路可以基于已有的Uu接口。MT将这些配置信息通过智能中继器内部操作运用到RU(也就是AF模块)中。
gNB到普通UE的接入链路经历了智能中继器的信号放大转发,因此称为AF链路,也可以叫数据路径。中继器对UE来讲是透明的,UE并不知道中继器的存在。该数据路径(例如FR2)携带了从UE来的或者发给UE的模拟上行或下行信号。该路径本质上是一个模拟信号穿过(pass through)。数据路径完全被gNB(DU)通过控制路径来进行控制。
在UE进行上行传输时,除了完成物理层功率控制之外,需要将UE的功率余量上报(power headroom report,PHR)到网络。功率余量(power headroom,PH)表示当前UE的BWP(bandwidth part,部分带宽)中发射功率与最大允许发射功率能力之间的差值。
针对UE的功率余量上报,5G定义了3种PH类型:Type 1 PH是当前终端最大发射功率和估计的PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)传输功率的差值;Type 2 PH是当前终端最大发射功率和估计的PUCCH(Physical Uplink Control CHannel,物理上行控制信道)和PUSCH传输功率之和的差值;Type 3 PH是当前终端最大发射功率和估计的SRS(Sounding Reference Signal,探测参考信号)传输功率的差值。
发明人发现,在例如智能中继器等的网络节点中,终端(MT)在功率余量上报时,只能上报MT自己的功率余量,不能上报RU部分的功率余量。这样,不利于网络设备对无线单元(RU)进行功率控制,从而影响网络性能。
为了解决上述问题中的一个或多个,本申请实施例提供一种功率相关信息的上报装置及方法,第一网络节点的第一模块上报第二模块的功率相关信息,这样,网络设备能够根据上报的功率相关信息对第二模块进行有效的功率控制,从而实现网络性能 的优化。
根据本申请实施例的第一方面,提供一种功率相关信息的上报装置,所述装置用于第一网络节点,所述第一网络节点包括第一模块和第二模块,所述装置包括:上报单元,其设置在所述第一网络节点的第一模块中,并上报第二模块的功率相关信息。
根据本申请实施例的第二方面,提供一种功率相关信息的接收装置,所述装置用于网络设备,所述装置包括:接收单元,其从第一网络节点的第一模块接收所述第一网络节点的第二模块的功率相关信息。
根据本申请实施例的第三方面,提供一种智能中继器,所述智能中继器包括根据本申请实施例的第一方面所述的装置。
根据本申请实施例的第四方面,提供一种网络设备,所述网络设备包括根据本申请实施例的第二方面所述的装置。
根据本申请实施例的第五方面,提供一种通信系统,所述通信系统包括根据本申请实施例的第三方面所述的智能中继器和/或根据本申请实施例的第四方面所述的网络设备,以及终端设备。
根据本申请实施例的第六方面,提供一种功率相关信息的上报方法,所述方法用于第一网络节点,所述第一网络节点包括第一模块和第二模块,所述方法包括:所述第一网络节点的第一模块上报第二模块的功率相关信息。
根据本申请实施例的第七方面,提供一种功率相关信息的接收方法,所述方法用于网络设备,所述方法包括:从第一网络节点的第一模块接收所述第一网络节点的第二模块的功率相关信息。
根据本申请实施例的第八方面,提供了一种计算机可读程序,其中当在功率相关信息的上报装置或智能中继器中执行所述程序时,所述程序使得所述功率相关信息的上报装置或智能中继器执行本申请实施例的第六方面所述的功率相关信息的上报方法。
根据本申请实施例的第九方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得功率相关信息的上报装置或智能中继器执行本申请实施例的第六方面所述的功率相关信息的上报方法。
根据本申请实施例的第十方面,提供了一种计算机可读程序,其中当在功率相关信息的接收装置或网络设备中执行所述程序时,所述程序使得所述功率相关信息的接 收装置或网络设备执行本申请实施例的第七方面所述的功率相关信息的接收方法。
根据本申请实施例的第十一方面,提供了一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得功率相关信息的接收装置或网络设备执行本申请实施例的第七方面所述的功率相关信息的接收方法。
本申请的有益效果在于:第一网络节点的第一模块向网络设备上报第二模块的功率相关信息,这样,网络设备能够根据上报的功率相关信息对第二模块进行有效的功率控制,从而实现网络性能的优化。
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本申请的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本申请实施例的通信系统的一示意图;
图2是本申请实施例1的第一网络节点的一示意图;
图3是本申请实施例1的功率相关信息的上报方法的一示意图;
图4是本申请实施例1的智能中继器的一示意图;
图5是本申请实施例1的智能中继器的另一示意图;
图6是本申请实施例1的智能中继器的又一示意图;
图7是本申请实施例2的功率相关信息的接收方法的一示意图;
图8是本申请实施例3的功率相关信息的上报装置的一示意图;
图9是本申请实施例4的功率相关信息的接收装置的一示意图;
图10是本申请实施例5的网络节点的系统构成的一示意框图;
图11是本申请实施例6的网络设备的系统构成的一示意框图。
具体实施方式
参照附图,通过下面的说明书,本申请的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本申请的特定实施方式,其表明了其中可以采用本申请的原则的部分实施方式,应了解的是,本申请不限于所描述的实施方式,相反,本申请包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在本申请实施例中,术语“第一”、“第二”等用于对不同元素从称谓上进行区分,但并不表示这些元素的空间排列或时间顺序等,这些元素不应被这些术语所限制。术语“和/或”包括相关联列出的术语的一种或多个中的任何一个和所有组合。术语“包含”、“包括”、“具有”等是指所陈述的特征、元素、元件或组件的存在,但并不排除存在或添加一个或多个其他特征、元素、元件或组件。
在本申请实施例中,单数形式“一”、“该”等可以包括复数形式,应广义地理解为“一种”或“一类”而并不是限定为“一个”的含义;此外术语“所述”应理解为既包括单数形式也包括复数形式,除非上下文另外明确指出。此外术语“根据”应理解为“至少部分根据……”,术语“基于”应理解为“至少部分基于……”,除非上下文另外明确指出。
在本申请实施例中,“多个”或“多种”指的是至少两个或至少两种。
在本申请实施例中,术语“通信网络”或“无线通信网络”可以指符合如下任意通信标准的网络,例如长期演进(LTE,Long Term Evolution)、增强的长期演进(LTE-A,LTE-Advanced)、宽带码分多址接入(WCDMA,Wideband Code Division Multiple Access)、高速报文接入(HSPA,High-Speed Packet Access)等等。
并且,通信系统中设备之间的通信可以根据任意阶段的通信协议进行,例如可以包括但不限于如下通信协议:1G(generation)、2G、2.5G、2.75G、3G、4G、4.5G以及未来的5G、新无线(NR,New Radio)等等,和/或其他目前已知或未来将被开发的通信协议。
在本申请实施例中,术语“网络设备”例如是指通信系统中将用户设备接入通信 网络并为该用户设备提供服务的设备。网络设备可以包括但不限于如下设备:基站(BS,Base Station)、接入点(AP、Access Point)、发送接收点(TRP,Transmission Reception Point)、广播发射机、移动管理实体(MME、Mobile Management Entity)、网关、服务器、无线网络控制器(RNC,Radio Network Controller)、基站控制器(BSC,Base Station Controller)等等。
其中,基站可以包括但不限于:节点B(NodeB或NB)、演进节点B(eNodeB或eNB)以及5G基站(gNB),等等,此外还可包括远端无线头(RRH,Remote Radio Head)、远端无线单元(RRU,Remote Radio Unit)、中继(relay)或者低功率节点(例如femto、pico等等)。并且术语“基站”可以包括它们的一些或所有功能,每个基站可以对特定的地理区域提供通信覆盖。术语“小区”可以指的是基站和/或其覆盖区域,这取决于使用该术语的上下文。
在本申请实施例中,术语“用户设备”或者“终端设备”(TE,Terminal Equipment)例如是指通过网络设备接入通信网络并接收网络服务的设备。用户设备可以是固定的或移动的,并且也可以称为移动台(MS,Mobile Station)、终端、用户台(SS,Subscriber Station)、接入终端(AT,Access Terminal)、站,等等。
其中,用户设备可以包括但不限于如下设备:蜂窝电话(Cellular Phone)、个人数字助理(PDA,Personal Digital Assistant)、无线调制解调器、无线通信设备、手持设备、机器型通信设备、膝上型计算机、无绳电话、智能手机、智能手表、数字相机,等等。
再例如,在物联网(IoT,Internet of Things)等场景下,用户设备还可以是进行监控或测量的机器或装置,例如可以包括但不限于:机器类通信(MTC,Machine Type Communication)终端、车载通信终端、设备到设备(D2D,Device to Device)终端、机器到机器(M2M,Machine to Machine)终端,等等。
在本申请实施例中,术语“智能中继器(smart repeater)”是一种中继(relay)设备,例如,设置在网络设备对应的服务小区中的中继设备,其用于转发网络设备和终端设备之间的传输信号。另外,也可以称为直放站,也可以是直放站节点(repeater node)。
以下通过示例对本申请实施例的场景进行说明,但本申请实施例不限于此。
图1是本申请实施例的通信系统的一示意图,如图1所示,通信系统100可以包 括网络设备101、终端设备102以及第一网络节点103。
在本申请实施例中,网络设备101和终端设备102之间可以进行现有的业务或者未来可实施的业务。例如,这些业务包括但不限于:增强的移动宽带(eMBB,enhanced Mobile Broadband)、大规模机器类型通信(mMTC,massive Machine Type Communication)和高可靠低时延通信(URLLC,Ultra-Reliable and Low-Latency Communication),等等。第一网络节点103例如是智能中继器。
如图1所示,第一网络节点103接收来自网络设备101的第一RF信号,将该信号放大后得到第一转发信号并发送至终端设备102,和/或,第一网络节点103接收来自终端设备102的第二RF信号,将该信号放大后得到第二转发信号并发送至网络设备101。
实施例1
本申请实施例提供一种功率相关信息的上报方法,应用于第一网络节点。
在本申请实施例中,第一网络节点是用于提高网络覆盖或者提升用户性能的节点,第一网络节点被网络设备控制。
例如,第一网络节点是智能中继器(smart repeater),或者,第一网络节点也可以是可重构的智能发射表面(reconfigurable intelligent surface,RIS)等其他节点。
在本申请实施例中,以智能中继器为例进行说明。但是,本申请实施例不对第一网络节点的类型进行限制。
在本申请实施例中,第一网络节点可以包括第一模块和第二模块,例如,该第一模块是终端设备(mobile terminal,MT)模块,该第二模块是无线单元(radio unit,RU)模块。
图2是本申请实施例1的第一网络节点的一示意图。如图2所示,第一网络节点103包括:
第一模块201,其与网络设备101进行通信;以及
第二模块202,其对射频信号进行放大和转发。例如,将来自网络设备101和/或终端设备102的射频信号进行放大并转发(amplify and forward,AF)。
例如,第一模块201是MT模块,第二模块202是RU模块。
另外,在本申请实施例中,第一模块201可以将从网络设备获得的配置信息或命令应用于第二模块202的放大和/或转发中。
图3是本申请实施例1的功率相关信息的上报方法的一示意图。如图3所示,该方法包括:
步骤301:该第一网络节点的第一模块上报第二模块的功率相关信息。
这样,第一网络节点的第一模块向网络设备上报第二模块的功率相关信息,网络设备能够根据上报的功率相关信息对第二模块进行有效的功率控制,从而实现网络性能的优化。
在本申请实施例中,该功率相关信息可以包括第二模块的功率余量(power headroom,PH)、增益(gain)以及发射功率中的至少一个。
在本申请实施例中,第二模块的功率余量例如是指当前最大发射功率和传输功率估计值之间的差值。
在本申请实施例中,第二模块的增益是指第二模块对射频信号进行放大的增益。该增益可以称为放大增益,也可以称为中继器增益(repeater gain)
在本申请实施例中,第二模块的发射功率是第二模块对转发并放大的射频信号发射时的功率。
在本申请实施例中,该功率相关信息可以包括第二模块的上行功率相关信息和/或下行功率相关信息。
在本申请实施例中,由于第二模块对上行射频信号和下行射频信号都进行放大和转发,因此,针对上行传输和下行传输都会有相应的功率相关信息。
在本申请实施例中,该第二模块的上行功率相关信息和该第二模块的下行功率相关信息可以通过同一个信息表示,也可以通过不同的信息表示。
例如,通过同一个功率相关信息表示第二模块的上行功率相关信息和下行功率相关信息,或者,通过第一功率相关信息表示第二模块的上行功率相关信息,通过第二功率信息表示第二模块的下行功率相关信息。
另外,在本申请实施例中,第二模块的上行功率相关信息和下行功率相关信息可以同时进行上报,例如,包含在同一个PHR中进行上报;或者,第二模块的上行功率相关信息和下行功率相关信息也可以分别进行上报,例如分别包含在不同的PHR中进行上报。
在本申请实施例中,例如,针对上行传输有相应的功率余量,可以称为上行功率余量;针对下行传输有相应的功率余量,可以称为下行功率余量。
例如,针对上行传输有相应的增益,可以称为上行增益;针对下行传输有相应的增益,可以称为下行增益。
例如,针对上行传输有相应的发射功率,可以称为上行发射功率;针对下行传输有相应的发射功率,可以称为下行发射功率。
也就是说,上行功率相关信息可以包括上行功率余量、上行增益以及上行发射功率中的至少一个,下行功率相关信息可以包括下行功率余量、下行增益以及下行发射功率中的至少一个。
在本申请实施例中,第一模块除了上报第二模块的功率相关信息(例如上行功率相关信息和/或下行功率相关信息),还可以上报该第一模块的功率相关信息。
在本申请实施例中,该第一模块可以使用相同的MAC(medium access control)CE(control element)上报该第一模块的功率相关信息和该第二模块的功率相关信息,或者,该第一模块也可以使用不相同的MAC CE上报该第一模块的功率相关信息和该第二模块的功率相关信息。
在本申请实施例中,可以是在满足一定触发条件时,上报第二模块的功率相关信息。
下面,基于上报第二模块的功率余量、增益以及发射功率分别进行具体的说明
首先,对上报功率余量的情况进行具体的说明。
在本申请实施例中,例如将第二模块的上行功率余量称为第一功率余量,将第二模块的下行功率余量称为第二功率余量。
该第一功率余量和该第二功率余量可以是相同类型的功率余量,或者也可以是不同类型的功率余量。
例如,第一功率余量是Type 4功率余量(Type 4 PH),第二功率余量是Type 5功率余量(Type 5 PH),或者,第一功率余量和第二功率余量均为Type 4功率余量(Type 4 PH)。另外,Type 4功率余量(Type 4 PH)以及Type 5功率余量(Type 5 PH)只是一个示例性的名称,第一功率余量和第二功率余量也可以采用其他名称来表示其类型。
在本申请实施例中,该第一功率余量表示当前第二模块在一个频段内的最大发射功率和估计的上行传输功率的差值,和/或,该第二功率余量表示当前该第二模块在一个频段内的最大发射功率和估计的下行传输功率的差值。
例如,PH=P CMAX-P RU
其中,PH表示第一功率余量或第二功率余量,P CMAX表示当前第二模块在一个频段内的最大发射功率,P RU表示估计的上行传输功率或下行传输功率。
在本申请实施例中,P RU可以是根据功率控制式计算得到,也可以由第二模块在某个时刻或时段测量得到。当PH为正值时,其表示第二模块还有多少传输功率可以使用;当PH为负值时,其表示所计算的传输功率已经超过第二模块允许的最大传输功率。
在本申请实施例中,根据第二模块的实现情况,该“一个频段”可以有不同的具体含义。例如,该第一功率余量和/或该第二功率余量可以针对一个小区(cell),或者小区的一个BWP,或者一个载频(carrier),或者一个通带(pass band)。
这样,通过cell ID,或者BWP ID,或者carrier ID,或者pass band ID,能够反映出该频段的起始频点或中心频点,以及带宽。
在本申请实施例中,在步骤301中,例如,该第一模块将该第二模块的至少一个上行功率余量和该上行功率余量对应的至少一个频段标识(ID)上报给网络设备,和/或,该第一模块将该第二模块的至少一个下行功率余量和该下行功率余量对应的至少一个频段标识(ID)上报给网络设备。
也就是说,第一模块可以上报一个或多个上行功率余量以及相应的频段ID,和/或,一个或多个下行功率余量以及相应的频段ID。
例如,该频段ID是cell ID,或者BWP ID,或者carrier ID,或者pass band ID。
在本申请实施例中,在步骤301中,该第一模块还可以将该上行功率余量对应的至少一个频段的该第二模块的最大输出功率(P CMAX)上报给该网络设备,和/或,该第一模块还可以将该下行功率余量对应的至少一个频段的该第二模块的最大输出功率(P CMAX)上报给该网络设备。
在步骤301中,该第一模块可以通过第一MAC CE(control element,控制单元)上报该第二模块的功率余量。
在本申请实施例中,该第一MAC CE可以包含至少一个小区ID以及与该小区ID对应的上行功率余量和/或下行功率余量。
例如,当第二模块分配了一个或多个小区(cell)ID,且这些cell ID和第一模块的cell ID不重叠时,第二模块的上行功率余量可以和第一模块的功率余量一起上报 给网络设备,也就是说,可以利用已有的PHR MAC CE来上报第一模块和第二模块的功率余量。
例如,已有的单条目或多条目的PHR MAC CE可以不变。网络设备通过cell ID来区分该cell ID对应的功率余量是针对第一模块的还是针对第二模块的。
例如,当一个cell ID对应的是第二模块时,相应的条目包含的是第二模块的P CMAX和Type 4 PH。
在本申请实施例中,该第一模块可以使用相同的MAC CE上报该第一模块的功率相关信息和该第二模块的功率余量,也可以使用不同的MAC CE上报该第一模块的功率相关信息和该第二模块的功率余量。
例如,当使用相同的MAC CE上报该第一模块的功率余量和该第二模块的功率余量时,在该MAC CE中,第一小区对应的功率余量是该第一模块的功率余量,第二小区对应的功率余量是该第二模块的功率余量,该第二小区包含该第二模块的工作频段。也就是说,例如,当某上报的服务小区含有激活的第二模块(例如RU)的工作频段时,可上报第二模块在该工作频段的Type 4 PH。
另外,在本申请实施例中,该第一模块的至少一个类型的功率余量或该第二模块的至少一个类型的功率余量具有上报的优先级。也就是说,为每个服务小区上报最多一种功率余量,且根据这些功率余量的优先级来确定上报哪种功率余量,即,上报优先级高的功率余量。这样,能够减少上报信令开销。
在本申请实施例中,可以是,当满足第一条件时,该第一网络节点的第一模块上报第二模块的功率余量。
例如,该第一条件包括以下条件中的至少一个:
该第二模块在一个频段被激活或重激活;
第一定时器超时,同时,该第一模块获得了用于新数据传输的上行资源,并且自从上一次功率余量上报后至少一个用于路损参考的且激活的下行BWP不是休眠BWP的服务小区的路损变化量超过第一阈值;
第二定时器超时;
RRC层对该第一模块配置或重配置了功率余量上报(PHR)功能(不包含关闭PHR);
网络侧激活了一个配置有上行的且firstActiveDownlinkBWP-Id没有被设为休眠的 BWP的辅小区(SCell);
主辅小区(PSCell)添加;
该第一定时器超时,MAC实体有用于新数据传输的上行资源,并且任何一个MAC实体中配置有上行的激活服务小区满足如下条件:该激活服务小区有上行资源分配或者有PUCCH传输,并且该激活服务小区由于功率管理所需的功率回退相当于上次在MAC实体分配给该激活服务小区的上行资源或者PUCCH上传输的功率余量上报时的变化值超过第二阈值;以及
在任意配置有上行的MAC实体的辅小区上将激活BWP从休眠BWP切换至非休眠的下行BWP。
例如,该第一定时器可以称作功率余量上报禁止定时器(phr-ProhibitTimer),该第二定时器可以称作功率余量上报周期定时器(phr-PeriodicTimer)。
例如,该第一阈值是网络配置的门限phr-Tx-PowerFactorChange。
在本申请实施例中,由于第一网络节点的第二模块同时进行上行和下行的放大和转发,因此针对下行传输也会有功率余量。对于下行功率余量,即第二功率余量,具体说明如下。
在本申请实施例中,可以为第二模块定义一个新的针对下行AF传输的PH类型,例如是Type 5 PH。这个新的类型的PH表示当前第二模块在某个频段内的最大发射功率和估计的下行传输功率的差值。Type 5 PH除了是针对下行,其他相关内容与Type4 PH类似。
在某些场景下,第二模块(例如RU模块)也会发送自己的参考信号,以便于UE进行测量。
这些参考信号例如可以包括SSB(Synchronization Signal Block,同步信号块)、CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)以及下行SRS中的至少一个。
这些信号是第二模块自己产生的,不是通过AF链路传输的,它们的传输所用的功率控制也可以不同。
在本申请实施例中,可以给这些参考信号定义不同类型的功率余量。
例如,定义Type 6 PH为当前第二模块最大发射功率和估计的SSB传输功率的差值;定义Type 7 PH为当前第二模块最大发射功率和估计的CSI-RS传输功率的差值; 定义Type 8 PH为当前第二模块最大发射功率和估计的下行SRS传输功率的差值。
在本申请实施例中,该第二功率余量包括真实功率余量和虚拟功率余量。
例如,Type 6 PH、Type 7 PH和Type 8 PH都可以分为真实PH和虚拟PH。当有相应的参考信号传输时,上报真实的PH到网络设备,当没有相应的参考信号传输时,上报预先约定的参考信号格式计算一个PH给网络设备,称为虚拟PH。
在本申请实施例中,可以通过第一网络节点的第一模块将第二模块的一个或多个下行PH和对应的一个或多个频段ID上报给基站,比如通过MAC CE来上报。在上报某频段PH的同时,还可以包含对应的该频段的P CMAX值。
为了减少上报信令开销,可以为每个频段上报最多一种PH。
在本申请实施例中,第二模块的第二功率余量的至少一个类型的功率余量具有上报的优先级,即,可以将第二模块的第二功率余量的不同类型的PH进行优先级排序,在某频段同时有多个PH的时候按优先级汇报优先级高的PH。
例如,一种优先级排序为:Type 5 PH>真实的Type 6 PH>真实的Type 7 PH>真实的Type 8 PH>虚拟的Type 6 PH>虚拟的Type 7 PH>虚拟的Type 8 PH。
在本申请实施例中,智能中继器中的MT模块(第一模块)和RU模块(第二模块)的数据传输可以采用多种方式。以下以第一网络节点是智能中继器为例,针对具体的场景进行说明。
例如,MT模块和RU模块可以采用频分复用(frequency division multiplexing,FDM)的方式,也就是MT模块和RU模块采用不同的载频。
图4是本申请实施例1的智能中继器的一示意图。如图4所示,智能中继器400包括MT模块和RU模块,MT模块和RU模块采用不同的载频,即互为带外(out-of-band)通信。在智能中继器中有两个射频链(RF chain),一个用于MT模块,另一个用于RU模块。RU模块作为放大器工作的频点和MT模块与网络设备通信用的频点总是不同,或者总是相隔足够的频率范围。在这种情况下,智能中继器400的AF(放大并转发)功能部分不会被MT模块发送给或接收网络设备的信号所影响。
对于智能中继器,网络设备也需要知道RU模块的上行传输功率余量,以便对RU模块进行上行功率控制。由于RU模块是非自生的中继器,并不对UE或者网络设备的信号进行编解码,因此RU模块不会知道自己转发的数据是属于什么物理信道,也就是5G定义的3种PH类型都不适用于RU模块的PHR。
在本申请实施例中,例如,MT模块上报的RU模块的功率余量是Type 4 PH,其表示当前RU模块在某个频段内的最大发射功率和估计的上行传输功率的差值。具体的计算方式可参见上面关于上行功率余量的内容,此处不再重复说明。
类似的,如果RU的上行功率余量报告(PHR)被触发,则通过MT模块将RU模块的一个或多个上行PH和对应的一个或多个频段ID上报给网络设备。另外,如果RU模块也分配了一个或多个小区ID(cell ID),这些小区ID和MT模块的小区ID不重叠,那么RU模块的上行PH可以和MT模块的PH一起上报给网络设备,也就是利用已有的PHR MAC CE来上报MT模块和RU模块的PH。已有的单条目和多条目的PHR MAC CE可以不变。网络设备可以通过cell ID来区分该cell ID对应的PH是针对MT模块的还是针对RU模块的。如果某cell ID对应的是RU模块,则相应的条目包含的是RU模块的P CMAX和Type 4 PH。
又例如,MT模块和RU模块可以采用时分复用(time division multiplexing,TDM)的方式,也就是MT模块和RU模块在不同的时段进行通信。图5是本申请实施例1的智能中继器的另一示意图。如图5所示,智能中继器500包括MT模块和RU模块,MT模块和RU模块在不同的时段进行通信,MT模块和RU模块采用相同的频段,即两者为带内(in-band)通信。在这种结构下,当MT模块在收发和网络设备的信号时,RU模块会暂停或者挂起工作。当RU模块在进行放大和转发时,MT模块会停止通信。
图6是本申请实施例1的智能中继器的又一示意图。如图6所示,智能中继器600包括MT模块和RU模块,MT模块和RU模块采用相同的频段,即两者为带内(in-band)通信,但是MT模块和RU模块并不采用时分复用的传输方式。MT模块的上行或下行信号和中继器的AF信号合并在一起进行传输。
在图5和图6示出的场景中,MT模块和RU模块都在同频段工作,因此可以重用PHR MAC CE来进行PH上报,也就是MT模块照常使用PHR MAC CE来上报与自身相关的PH,例如Type 1和Type 3 PH。
但是,如果某小区包含有RU模块的工作频段,该小区可以为RU模块定义Type 4 PH,有关Type 4 PH的具体内容可以参考前面的记载,此处不再重复说明。
另外,如前所述,和传统的PHR MAC CE不同,MT模块还可以同时上报RU模块的Type 4 PH。方法是仍然采用单条目或多条目的PHR MAC CE,当某上报的服务 小区含有激活的RU模块工作频段时,可上报RU模块在该工作频段的Type 4 PH。
另外,如前所述,MT模块的至少一个类型的功率余量或RU模块的至少一个类型的功率余量具有上报的优先级。也就是说,为每个服务小区上报最多一种功率余量且根据这些功率余量的优先级来确定各小区上报哪种功率余量,即,上报优先级高的功率余量。这样,能够减少上报信令开销。
例如,对于一个小区,如果该小区含有RU模块的工作频段,那么可以上报MT模块的功率余量,也可以上报RU模块的功率余量;而如果该小区不含有RU模块的工作频段,则上报MT模块的功率余量。并且,在MT模块和RU模块有多个类型的功率余量的情况下,根据优先级来确定该小区上报哪种功率余量。
例如,功率余量的优先级排序为:真实的(actual)Type 1 PH>Type 4 PH>真实的Type 3 PH>虚拟的(virtual)Type 1 PH>虚拟的Type 3 PH。
以上,对上报功率余量的情况进行了具体的说明。接着,对上报第二模块的增益的情况进行具体的说明。
在本申请实施例中,该第一模块可以将该第二模块在至少一个频段的增益上报给网络设备。
例如,该增益针对一个小区(cell),或者小区的一个BWP,或者一个载频(carrier),或者一个通带(pass band)。
例如,该第二模块的增益包括该第二模块的上行增益和/或下行增益,该上行增益是指上行传输的放大增益,下行增益是指下行传输的放大增益。
在本申请实施例中,第一网络节点通常是为了增强小区覆盖,因此所使用的增益通常是用来补偿网络设备到第一网络节点的路径损耗,因此上下行传输可能采样同样的放大增益。在这种情况下,可以只上报各频段的一个通用增益,表明上下行同时使用该增益。
在本申请实施例中,该第一模块可以通过第二MAC CE或RRC信令上报该第二模块的增益。
例如,第二MAC CE称为GR(Gain Report)MAC CE。
该RRC信令是第一模块到网络设备的RRC信令。
在本申请实施例中,该第二MAC CE或该RRC信令可以包括频段标识(ID)以及与该频段标识对应的上行增益和/或下行增益。
在本申请实施例中,该第二MAC CE或该RRC信令还可以包括与该频段对应的最大增益。
在本申请实施例中,例如,当满足第二条件时,该第一网络节点的第一模块上报第二模块的增益。
例如,该第二条件包括以下条件中的至少一个:
第三定时器超时,同时,该第一模块获得了用于新数据传输的上行资源,并且,该第二模块在一个频段的增益与上次功率上报的增益的变化值大于或等于第三阈值;
第四定时器超时;以及
RRC层对该第一模块配置或重配置了增益上报(GR)功能(不包含关闭GR)。
例如,该第三定时器例如可以称作增益上报禁止定时器(gr-ProhibitTimer),该第四定时器例如可以称作增益上报周期定时器(gr-PeriodicTimer)。
在本申请实施例中,增益上报禁止定时器是为增益上报设置的一个最小上报间隔,也就是定时器运行时不能进行增益上报,避免上报过渡频繁。增益上报周期定时器是设置的最大上报间隔,也就是即使没有其他事件触发,到一定时间周期也需要上报。
例如,该第三阈值由网络设备通过RRC信令对第一模块进行配置。
以上,对上报增益的情况进行了具体的说明。接着,对上报第二模块的发射功率的情况进行具体的说明。
在本申请实施例中,上报的发射功率可以是第二模块在某一时刻的发射功率,也可以是第二模块在某一段时间内的平均发射功率。
在本申请实施例中,第二模块的发射功率可以包括第二模块的上行发射功率和/或下行发射功率。
在本申请实施例中,该第一模块可以通过第三MAC CE或RRC信令上报该第二模块的发射功率。
例如,第三MAC CE称为PR(Powr Report)MAC CE。
例如,该第三MAC CE或该RRC信令包括频段标识(ID)以及与该频段标识对应的上行发射功率和/或下行发射功率。该第三MAC CE或该RRC信令还可以包括与该频段对应的最大发射功率。
在本申请实施例中,例如,当满足第三条件时,该第一网络节点的第一模块上报 第二模块的发射功率。
例如,该第三条件包括以下条件中的至少一个:
第五定时器超时,同时,该第一模块获得了用于新数据传输的上行资源,并且,该第二模块在一个频段的发射功率与上次功率上报的发射功率的变化值大于或等于第四阈值;
第六定时器超时;以及
RRC层对该第一模块配置或重配置了功率上报(PR)功能(不包含关闭PR)。
例如,该第五定时器称作功率上报禁止定时器(pr-ProhibitTimer),该第六定时器称作功率上报周期定时器(pr-PeriodicTimer)。
例如,该第四阈值由网络设备通过RRC信令对第一模块进行配置。
由上述实施例可知,第一网络节点的第一模块向网络设备上报第二模块的功率相关信息,这样,网络设备能够根据上报的功率相关信息对第二模块进行有效的功率控制,从而实现网络性能的优化。
实施例2
本申请实施例2还提供一种功率相关信息的接收方法,该方法应用于网络设备侧。该方法对应于实施例1中的第一网络节点侧的功率相关信息的上报方法,相同的内容不再重复说明。
图7是本申请实施例2的功率相关信息的接收方法的一示意图。如图7所示,该方法包括:
步骤701:从第一网络节点的第一模块接收该第一网络节点的第二模块的功率相关信息。
例如,该功率相关信息包括该第二模块的上行功率相关信息和/或下行功率相关信息。
例如,该功率相关信息包括该第二模块的功率余量、增益以及发射功率中的至少一个。
例如,该第一模块是终端设备(mobile terminal,MT)模块,该第二模块是无线单元(radio unit,RU)模块。
例如,该第一网络节点是智能中继器(smart repeater,SR)。
上述方法的具体实现以及有关功率相关信息的具体内容可以参照实施例1中的 记载,此处不再具体说明。
由上述实施例可知,第一网络节点的第一模块向网络设备上报第二模块的功率相关信息,这样,网络设备能够根据上报的功率相关信息对第二模块进行有效的功率控制,从而实现网络性能的优化。
实施例3
本申请实施例3提供了一种功率相关信息的上报装置,该装置设置于第一网络节点。该第一网络节点包括第一模块和第二模块。由于该装置解决问题的原理与实施例1的方法类似,因此其具体的实施可以参照实施例1所述的方法的实施,内容相同或相关之处不再重复说明。
图8是本申请实施例3的功率相关信息的上报装置的一示意图,如图8所示,功率相关信息的上报装置800包括:
上报单元801,其设置在该第一网络节点的第一模块中,并上报第二模块的功率相关信息。
在本申请实施例中,该功率相关信息可以包括该第二模块的上行功率相关信息和/或下行功率相关信息。
在本申请实施例中,该第二模块的上行功率相关信息可以和该第二模块的下行功率相关信息通过同一个信息表示。
在本申请实施例中,该第二模块的上行功率相关信息和下行功率相关信息可以同时进行上报,或者,该第二模块的上行功率相关信息和下行功率相关信息可以分别进行上报。
在本申请实施例中,该功率相关信息可以包括该第二模块的功率余量、增益以及发射功率中的至少一个。
在本申请实施例中,该第二模块的功率余量可以包括该第二模块的上行功率余量和/或该第二模块的下行功率余量,该第二模块的上行功率余量是第一功率余量,该第二模块的下行功率余量是第二功率余量。
在本申请实施例中,该第一功率余量和该第二功率余量可以是相同类型的功率余量或者不同类型的功率余量。
在本申请实施例中,该第一功率余量表示当前该第二模块在一个频段内的最大发射功率和估计的上行传输功率的差值,和/或,该第二功率余量表示当前该第二模块 在一个频段内的最大发射功率和估计的下行传输功率的差值。
在本申请实施例中,该第一功率余量和/或该第二功率余量可以针对一个小区(cell),或者小区的一个BWP,或者一个载频(carrier),或者一个通带(pass band)。
在本申请实施例中,该上报单元801可以将该第二模块的至少一个上行功率余量和该上行功率余量对应的至少一个频段标识(ID)上报给网络设备,和/或,该上报单元801将该第二模块的至少一个下行功率余量和该下行功率余量对应的至少一个频段标识(ID)上报给网络设备。
在本申请实施例中,该上报单元801还可以将该上行功率余量对应的至少一个频段的该第二模块的最大输出功率(P CMAX)上报给该网络设备,和/或,该上报单元801还将该下行功率余量对应的至少一个频段的该第二模块的最大输出功率(P CMAX)上报给该网络设备。
在本申请实施例中,该上报单元801可以通过第一MAC CE上报该第二模块的功率余量。
在本申请实施例中,该第一MAC CE可以包含至少一个小区ID以及与该小区ID对应的上行功率余量和/或下行功率余量。
在本申请实施例中,如图8所示,该装置800还可以包括:
发送单元802,其设置在该第二模块中,并发送参考信号,
例如,该第二功率余量表示当前该第二模块在一个频段内的最大发射功率和估计的参考信号传输功率的差值。
例如,该参考信号可以包括SSB、CSI-RS以及下行SRS中的至少一个。
在本申请实施例中,该第二功率余量可以包括真实功率余量和虚拟功率余量。
在本申请实施例中,该第二模块的第二功率余量的至少一个类型的功率余量具有上报的优先级。
在本申请实施例中,该第一模块可以将该第二模块在至少一个频段的增益上报给网络设备。
在本申请实施例中,该增益可以针对一个小区(cell),或者小区的一个BWP,或者一个载频(carrier),或者一个通带(pass band)。
在本申请实施例中,该第二模块的增益可以包括该第二模块的上行增益和/或下行增益。
在本申请实施例中,该第一模块可以通过第二MAC CE或RRC信令上报该第二模块的增益。
在本申请实施例中,该第二MAC CE或该RRC信令可以包括频段标识(ID)以及与该频段标识对应的上行增益和/或下行增益。
在本申请实施例中,该第二MAC CE或该RRC信令还可以包括与该频段对应的最大增益。
在本申请实施例中,第二模块的发射功率可以包括第二模块的上行发射功率和/或下行发射功率。
在本申请实施例中,该上报单元801可以通过第三MAC CE或RRC信令上报该第二模块的发射功率。
在本申请实施例中,该第三MAC CE或该RRC信令可以包括频段标识(ID)以及与该频段标识对应的上行发射功率和/或下行发射功率。
在本申请实施例中,该第三MAC CE或该RRC信令还可以包括与该频段对应的最大发射功率。
在本申请实施例中,该上报单元801还可以上报该第一模块的功率相关信息。
在本申请实施例中,该第一模块可以使用相同的MAC CE上报该第一模块的功率相关信息和该第二模块的功率相关信息,或者,该第一模块使用不相同的MAC CE上报该第一模块的功率相关信息和该第二模块的功率相关信息。
在本申请实施例中,在用于上报功率相关信息的MAC CE中,例如,第一小区对应的功率余量是该第一模块的功率余量,第二小区对应的功率余量是该第二模块的功率余量,该第二小区包含该第二模块的工作频段。
在本申请实施例中,该第一模块的至少一个类型的功率余量或该第二模块的至少一个类型的功率余量具有上报的优先级。
在本申请实施例中,例如,当满足第一条件时,该上报单元上报第二模块的功率余量。
例如,该第一条件包括以下条件中的至少一个:
该第二模块在一个频段被激活或重激活;
第一定时器超时,同时,该第一模块获得了用于新数据传输的上行资源,并且自从上一次功率余量上报后至少一个用于路损参考的且激活的下行BWP不是休眠 BWP的服务小区的路损变化量超过第一阈值;
第二定时器超时;
RRC层对该第一模块配置或重配置了功率余量上报功能;
网络侧激活了一个配置有上行的且firstActiveDownlinkBWP-Id没有被设为休眠的BWP的辅小区(SCell);
主辅小区(PSCell)添加;
该第一定时器超时,MAC实体有用于新数据传输的上行资源,并且任何一个MAC实体中配置有上行的激活服务小区满足如下条件:该激活服务小区有上行资源分配或者有PUCCH传输,并且该激活服务小区由于功率管理所需的功率回退相当于上次在MAC实体分配给该激活服务小区的上行资源或者PUCCH上传输的功率余量上报时的变化值超过第二阈值;以及
在任意配置有上行的MAC实体的辅小区上将激活BWP从休眠BWP切换至非休眠的下行BWP。
例如,该第一定时器可以称作功率余量上报禁止定时器(phr-ProhibitTimer),该第二定时器可以称作功率余量上报周期定时器(phr-PeriodicTimer)。
在本申请实施例中,例如,当满足第二条件时,该上报单元上报第二模块的增益。
例如,该第二条件包括以下条件中的至少一个:
第三定时器超时,同时,该第一模块获得了用于新数据传输的上行资源,并且,该第二模块在一个频段的增益与上次功率上报的增益的变化值大于或等于第三阈值;
第四定时器超时;以及
RRC层对该第一模块配置或重配置了增益上报功能。
例如,该第三定时器可以称作增益上报禁止定时器(gr-ProhibitTimer),该第四定时器可以称作增益上报周期定时器(gr-PeriodicTimer)。
例如,该第三阈值由网络设备通过RRC信令对第一模块进行配置。
在本申请实施例中,当满足第三条件时,该上报单元上报第二模块的发射功率。
例如,该第三条件包括以下条件中的至少一个:
第五定时器超时,同时,该第一模块获得了用于新数据传输的上行资源,并且,该第二模块在一个频段的发射功率与上次功率上报的发射功率的变化值大于或等于第四阈值;
第六定时器超时;以及
RRC层对该第一模块配置或重配置了功率上报功能。
例如,该第五定时器可以称作功率上报禁止定时器(pr-ProhibitTimer),该第六定时器可以称作功率上报周期定时器(pr-PeriodicTimer)。
例如,该第四阈值由网络设备通过RRC信令对第一模块进行配置。
在本申请实施例中,该第一模块可以是终端设备(mobile terminal,MT)模块,该第二模块可以是无线单元(radio unit,RU)模块。
在本申请实施例中,该第一网络节点可以是智能中继器(smart repeater,SR)。
由上述实施例可知,第一网络节点的第一模块向网络设备上报第二模块的功率相关信息,这样,网络设备能够根据上报的功率相关信息对第二模块进行有效的功率控制,从而实现网络性能的优化。
实施例4
本申请实施例4提供了一种功率相关信息的接收装置,该装置应用于网络设备侧。由于该装置解决问题的原理与实施例2的方法类似,因此其具体的实施可以参照实施例2所述的方法的实施,内容相同或相关之处不再重复说明。
图9是本申请实施例4的功率相关信息的接收装置的一示意图,如图9所示,功率相关信息的接收装置900包括:
接收单元901,其从第一网络节点的第一模块接收该第一网络节点的第二模块的功率相关信息。
在本申请实施例中,该功率相关信息可以包括该第二模块的上行功率相关信息和/或下行功率相关信息。
在本申请实施例中,该功率相关信息可以包括该第二模块的功率余量、增益以及发射功率中的至少一个。
在本申请实施例中,该第一模块可以是终端设备(mobile terminal,MT)模块,该第二模块是无线单元(radio unit,RU)模块。
在本申请实施例中,该第一网络节点可以是智能中继器(smart repeater,SR)。
由上述实施例可知,第一网络节点的第一模块向网络设备上报第二模块的功率相关信息,这样,网络设备能够根据上报的功率相关信息对第二模块进行有效的功率控制,从而实现网络性能的优化。
实施例5
本申请实施例提供了一种网络节点,即前述的第一网络节点,例如是智能中继器,该网络节点包括如实施例3所述的功率相关信息的上报装置。
图10是本申请实施例5的网络节点的系统构成的一示意框图。如图10所示,网络节点1000可以包括处理器1010和存储器1020;存储器1020耦合到处理器1010。其中该存储器1020可存储各种数据;此外还存储信息处理的程序1030,并且在处理器1010的控制下执行该程序1030。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,功率相关信息的上报装置的功能可以被集成到处理器1010中。其中,处理器1010可以被配置为:该第一网络节点的第一模块上报第二模块的功率相关信息。
在另一个实施方式中,功率相关信息的上报装置可以与处理器1010分开配置,例如可以将功率相关信息的上报装置配置为与处理器1010连接的芯片,通过处理器1010的控制来实现功率相关信息的上报装置的功能。
如图10所示,网络节点1000还可以包括:网络侧收发机1040-1和网络侧天线1050-1、终端侧收发机1040-2和终端侧天线1050-2以及信号放大电路1060等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络节点1000也并不是必须要包括图10中所示的所有部件;此外,网络节点1000还可以包括图10中没有示出的部件,可以参考现有技术。
如图10所示,处理器1010有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,该处理器1010接收输入并控制网络节点1000的各个部件的操作。
其中,存储器1020,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存各种数据,此外还可存储执行有关信息的程序。并且处理器1010可执行该存储器1020存储的该程序,以实现信息存储或处理等。其他部件的功能与现有类似,此处不再赘述。终端设备1000的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本申请的范围。
由上述实施例可知,智能中继器的第一模块向网络设备上报第二模块的功率相关 信息,这样,网络设备能够根据上报的功率相关信息对第二模块进行有效的功率控制,从而实现网络性能的优化。
实施例6
本申请实施例提供了一种网络设备,该网络设备包括如实施例4所述的功率相关信息的上报装置。
图11是本申请实施例6的网络设备的系统构成的一示意框图。如图11所示,网络设备1100可以包括:处理器(processor)1110和存储器1120;存储器1120耦合到处理器1110。其中该存储器1120可存储各种数据;此外还存储信息处理的程序1130,并且在处理器1110的控制下执行该程序1130,以接收第一网络节点发送的各种信息、并且向第一网络节点发送各种信息。
在一个实施方式中,功率相关信息的上报装置的功能可以被集成到处理器1110中。其中,处理器1110可以被配置为:从第一网络节点的第一模块接收该第一网络节点的第二模块的功率相关信息。
此外,如图11所示,网络设备1100还可以包括:收发机1140和天线1150等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,网络设备1100也并不是必须要包括图11中所示的所有部件;此外,网络设备1100还可以包括图11中没有示出的部件,可以参考现有技术。
由上述实施例可知,第一网络节点的第一模块向网络设备上报第二模块的功率相关信息,这样,网络设备能够根据上报的功率相关信息对第二模块进行有效的功率控制,从而实现网络性能的优化。
实施例7
本申请实施例提供了一种通信系统,包括如实施例5所述的网络节点和/或如实施例6所述的网络设备。
例如,该通信系统的结构可以参照图1,如图1所示,通信系统100包括网络设备101和终端设备102,以及第一网络节点103,第一网络节点103可以与实施例5中记载的网络节点相同,网络设备101与实施例6中记载的网络设备相同,重复的内容不再赘述。
由上述实施例可知,第一网络节点的第一模块向网络设备上报第二模块的功率相关信息,这样,网络设备能够根据上报的功率相关信息对第二模块进行有效的功率控 制,从而实现网络性能的优化。
本申请实施例以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本申请实施例涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本申请实施例还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
结合本申请实施例描述的方法/装置可直接体现为硬件、由处理器执行的软件模块或二者组合。例如,图8中所示的功能框图中的一个或多个和/或功能框图的一个或多个组合,既可以对应于计算机程序流程的各个软件模块,亦可以对应于各个硬件模块。这些软件模块,可以分别对应于图3所示的各个步骤。这些硬件模块例如可利用现场可编程门阵列(FPGA)将这些软件模块固化而实现。
软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动磁盘、CD-ROM或者本领域已知的任何其它形式的存储介质。可以将一种存储介质耦接至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息;或者该存储介质可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。该软件模块可以存储在移动终端的存储器中,也可以存储在可插入移动终端的存储卡中。例如,若设备(如移动终端)采用的是较大容量的MEGA-SIM卡或者大容量的闪存装置,则该软件模块可存储在该MEGA-SIM卡或者大容量的闪存装置中。
针对图8中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对图8描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本申请进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本申请保护范围的限制。本领域技术人员可以根据本申请的精神和原理对本申请做出各种变型和修改,这些变型和修改也在本申请的范围 内。
关于包括以上实施例的实施方式,还公开下述的附记:
附记一
1、一种功率相关信息的上报装置,所述装置用于第一网络节点,所述第一网络节点包括第一模块和第二模块,
所述装置包括:
上报单元,其设置在所述第一网络节点的第一模块中,并上报第二模块的功率相关信息。
2、根据附记1所述的装置,其中,
所述功率相关信息包括所述第二模块的上行功率相关信息和/或下行功率相关信息。
3、根据附记2所述的装置,其中,
所述第二模块的上行功率相关信息和所述第二模块的下行功率相关信息通过同一个信息表示。
4、根据附记2所述的装置,其中,
所述第二模块的上行功率相关信息和下行功率相关信息同时进行上报,或者,所述第二模块的上行功率相关信息和下行功率相关信息分别进行上报。
5、根据附记1-4中的任一项所述的装置,其中,
所述功率相关信息包括所述第二模块的功率余量、增益以及发射功率中的至少一个。
6、根据附记5所述的装置,其中,
所述第二模块的功率余量包括所述第二模块的上行功率余量和/或所述第二模块的下行功率余量,
所述第二模块的上行功率余量是第一功率余量,所述第二模块的下行功率余量是第二功率余量。
7、根据附记6所述的装置,其中,
所述第一功率余量和所述第二功率余量是相同类型的功率余量或者不同类型的功率余量。
8、根据附记6或7所述的装置,其中,
所述第一功率余量表示当前所述第二模块在一个频段内的最大发射功率和估计的上行传输功率的差值,和/或,
所述第二功率余量表示当前所述第二模块在一个频段内的最大发射功率和估计的下行传输功率的差值。
9、根据附记6-8中的任一项所述的装置,其中,
所述第一功率余量和/或所述第二功率余量针对一个小区(cell),或者小区的一个BWP,或者一个载频(carrier),或者一个通带(pass band)。
10、根据附记1-9中的任一项所述的装置,其中,
所述上报单元将所述第二模块的至少一个上行功率余量和所述上行功率余量对应的至少一个频段标识(ID)上报给网络设备,和/或,
所述上报单元将所述第二模块的至少一个下行功率余量和所述下行功率余量对应的至少一个频段标识(ID)上报给网络设备。
11、根据附记10所述的装置,其中,
所述上报单元还将所述上行功率余量对应的至少一个频段的所述第二模块的最大输出功率(P CMAX)上报给所述网络设备,和/或,
所述上报单元还将所述下行功率余量对应的至少一个频段的所述第二模块的最大输出功率(P CMAX)上报给所述网络设备。
12、根据附记1-11中的任一项所述的装置,其中,
所述上报单元通过第一MAC CE上报所述第二模块的功率余量。
13、根据附记12所述的装置,其中,
所述第一MAC CE包含至少一个小区ID以及与所述小区ID对应的上行功率余量和/或下行功率余量。
14、根据附记6所述的装置,其中,所述装置还包括:
发送单元,其设置在所述第二模块中,并发送参考信号,
所述第二功率余量表示当前所述第二模块在一个频段内的最大发射功率和估计的参考信号传输功率的差值。
15、根据附记14所述的装置,其中,
所述参考信号包括SSB、CSI-RS以及下行SRS中的至少一个。
16、根据附记6-15中的任一项所述的装置,其中,
所述第二功率余量包括真实功率余量和虚拟功率余量。
17、根据权利要求6-16中的任一项所述的装置,其中,
所述第二模块的第二功率余量的至少一个类型的功率余量具有上报的优先级。
18、根据附记5所述的装置,其中,
所述第一模块将所述第二模块在至少一个频段的增益上报给网络设备
19、根据附记18所述的装置,其中,
所述增益针对一个小区(cell),或者小区的一个BWP,或者一个载频(carrier),或者一个通带(pass band)。
20、根据附记5所述的装置,其中,
所述第二模块的增益包括所述第二模块的上行增益和/或下行增益。
21、根据附记5、18-20中的任一项所述的装置,其中,
所述第一模块通过第二MAC CE或RRC信令上报所述第二模块的增益。
22、根据附记21所述的装置,其中,
所述第二MAC CE或所述RRC信令包括频段标识(ID)以及与所述频段标识对应的上行增益和/或下行增益。
23、根据附记22所述的装置,其中,
所述第二MAC CE或所述RRC信令还包括与所述频段对应的最大增益。
24、根据附记5、18-23中的任一项所述的装置,其中,
第二模块的发射功率包括第二模块的上行发射功率和/或下行发射功率。
25、根据附记5或24所述的装置,其中,
所述上报单元通过第三MAC CE或RRC信令上报所述第二模块的发射功率。
26、根据附记25所述的装置,其中,
所述第三MAC CE或所述RRC信令包括频段标识(ID)以及与所述频段标识对应的上行发射功率和/或下行发射功率。
27、根据附记26所述的装置,其中,
所述第三MAC CE或所述RRC信令还包括与所述频段对应的最大发射功率。
28、根据附记1-27中的任一项所述的装置,其中,
所述上报单元还上报所述第一模块的功率相关信息。
29、根据附记28所述的装置,其中,
所述第一模块使用相同的MAC CE上报所述第一模块的功率相关信息和所述第二模块的功率相关信息,或者,
所述第一模块使用不相同的MAC CE上报所述第一模块的功率相关信息和所述第二模块的功率相关信息。
30、根据附记1-29中的任一项所述的装置,其中,
在用于上报功率相关信息的MAC CE中,第一小区对应的功率余量是所述第一模块的功率余量,第二小区对应的功率余量是所述第二模块的功率余量,
所述第二小区包含所述第二模块的工作频段。
31、根据附记30所述的装置,其中,
所述第一模块的至少一个类型的功率余量或所述第二模块的至少一个类型的功率余量具有上报的优先级。
32、根据附记1-31中的任一项所述的装置,其中,
当满足第一条件时,所述上报单元上报第二模块的功率余量。
33、根据附记32所述的装置,其中,所述第一条件包括以下条件中的至少一个:
所述第二模块在一个频段被激活或重激活;
第一定时器超时,同时,所述第一模块获得了用于新数据传输的上行资源,并且自从上一次功率余量上报后至少一个用于路损参考的且激活的下行BWP不是休眠BWP的服务小区的路损变化量超过第一阈值;
第二定时器超时;
RRC层对所述第一模块配置或重配置了功率余量上报功能;
网络侧激活了一个配置有上行的且firstActiveDownlinkBWP-Id没有被设为休眠的BWP的辅小区(SCell);
主辅小区(PSCell)添加;
所述第一定时器超时,MAC实体有用于新数据传输的上行资源,并且任何一个MAC实体中配置有上行的激活服务小区满足如下条件:所述激活服务小区有上行资源分配或者有PUCCH传输,并且所述激活服务小区由于功率管理所需的功率回退相当于上次在MAC实体分配给所述激活服务小区的上行资源或者PUCCH上传输的功率余量上报时的变化值超过第二阈值;以及
在任意配置有上行的MAC实体的辅小区上将激活BWP从休眠BWP切换至非休 眠的下行BWP。
34、根据附记33所述的装置,其中,
所述第一定时器称作功率余量上报禁止定时器(phr-ProhibitTimer),
所述第二定时器称作功率余量上报周期定时器(phr-PeriodicTimer)。
35、根据附记1-31中的任一项所述的装置,其中,
当满足第二条件时,所述上报单元上报第二模块的增益。
36、根据附记35所述的装置,其中,所述第二条件包括以下条件中的至少一个:
第三定时器超时,同时,所述第一模块获得了用于新数据传输的上行资源,并且,所述第二模块在一个频段的增益与上次功率上报的增益的变化值大于或等于第三阈值;
第四定时器超时;以及
RRC层对所述第一模块配置或重配置了增益上报功能。
37、根据附记36所述的装置,其中,
所述第三定时器称作增益上报禁止定时器(gr-ProhibitTimer),
所述第四定时器称作增益上报周期定时器(gr-PeriodicTimer)。
38、根据附记36所述的装置,其中,
所述第三阈值由网络设备通过RRC信令对第一模块进行配置。
39、根据附记1-31中的任一项所述的装置,其中,
当满足第三条件时,所述上报单元上报第二模块的发射功率。
40、根据附记39所述的装置,其中,
所述第三条件包括以下条件中的至少一个:
第五定时器超时,同时,所述第一模块获得了用于新数据传输的上行资源,并且,所述第二模块在一个频段的发射功率与上次功率上报的发射功率的变化值大于或等于第四阈值;
第六定时器超时;以及
RRC层对所述第一模块配置或重配置了功率上报功能。
41、根据附记40所述的装置,其中,
所述第五定时器称作功率上报禁止定时器(pr-ProhibitTimer),
所述第六定时器称作功率上报周期定时器(pr-PeriodicTimer)。
42、根据附记40所述的装置,其中,
所述第四阈值由网络设备通过RRC信令对第一模块进行配置。
43、根据附记1-42中的任一项所述的装置,其中,
所述第一模块是终端设备(mobile terminal,MT)模块,所述第二模块是无线单元(radio unit,RU)模块。
44、根据附记1-43中的任一项所述的装置,其中,
所述第一网络节点是智能中继器(smart repeater,SR)。
45、一种功率相关信息的接收装置,所述装置用于网络设备,所述装置包括:
接收单元,其从第一网络节点的第一模块接收所述第一网络节点的第二模块的功率相关信息。
46、根据附记45所述的装置,其中,
所述功率相关信息包括所述第二模块的上行功率相关信息和/或下行功率相关信息。
47、根据附记45或46所述的装置,其中,
所述功率相关信息包括所述第二模块的功率余量、增益以及发射功率中的至少一个。
48、根据附记45-47中的任一项所述的装置,其中,
所述第一模块是终端设备(mobile terminal,MT)模块,所述第二模块是无线单元(radio unit,RU)模块。
49、根据附记45-48中的任一项所述的装置,其中,
所述第一网络节点是智能中继器(smart repeater,SR)。
50、一种网络节点,所述智网络节点包括根据附记1-44中的任一项所述的装置。
51、一种网络设备,所述网络设备包括根据附记45-49中的任一项所述的装置。
52、一种通信系统,所述通信系统包括:
根据附记50所述的网络节点和/或根据附记51所述的网络设备,以及终端设备。
附记二
1、一种功率相关信息的上报方法,所述方法用于第一网络节点,所述第一网络节点包括第一模块和第二模块,
所述方法包括:
所述第一网络节点的第一模块上报第二模块的功率相关信息。
2、根据附记1所述的方法,其中,
所述功率相关信息包括所述第二模块的上行功率相关信息和/或下行功率相关信息。
3、根据附记2所述的方法,其中,
所述第二模块的上行功率相关信息和所述第二模块的下行功率相关信息通过同一个信息表示。
4、根据附记2所述的方法,其中,
所述第二模块的上行功率相关信息和下行功率相关信息同时进行上报,或者,所述第二模块的上行功率相关信息和下行功率相关信息分别进行上报。
5、根据附记1-4中的任一项所述的方法,其中,
所述功率相关信息包括所述第二模块的功率余量、增益以及发射功率中的至少一个。
6、根据附记5所述的方法,其中,
所述第二模块的功率余量包括所述第二模块的上行功率余量和/或所述第二模块的下行功率余量,
所述第二模块的上行功率余量是第一功率余量,所述第二模块的下行功率余量是第二功率余量。
7、根据附记6所述的方法,其中,
所述第一功率余量和所述第二功率余量是相同类型的功率余量或者不同类型的功率余量。
8、根据附记6或7所述的方法,其中,
所述第一功率余量表示当前所述第二模块在一个频段内的最大发射功率和估计的上行传输功率的差值,和/或,
所述第二功率余量表示当前所述第二模块在一个频段内的最大发射功率和估计的下行传输功率的差值。
9、根据附记6-8中的任一项所述的方法,其中,
所述第一功率余量和/或所述第二功率余量针对一个小区(cell),或者小区的一 个BWP,或者一个载频(carrier),或者一个通带(pass band)。
10、根据附记1-9中的任一项所述的方法,其中,
所述第一模块将所述第二模块的至少一个上行功率余量和所述上行功率余量对应的至少一个频段标识(ID)上报给网络设备,和/或,
所述第一模块将所述第二模块的至少一个下行功率余量和所述下行功率余量对应的至少一个频段标识(ID)上报给网络设备。
11、根据附记10所述的方法,其中,
所述第一模块还将所述上行功率余量对应的至少一个频段的所述第二模块的最大输出功率(P CMAX)上报给所述网络设备,和/或,
所述第一模块还将所述下行功率余量对应的至少一个频段的所述第二模块的最大输出功率(P CMAX)上报给所述网络设备。
12、根据附记1-11中的任一项所述的方法,其中,
所述第一模块通过第一MAC CE上报所述第二模块的功率余量。
13、根据附记12所述的方法,其中,
所述第一MAC CE包含至少一个小区ID以及与所述小区ID对应的上行功率余量和/或下行功率余量。
14、根据附记6所述的方法,其中,所述方法还包括:
所述第二模块发送参考信号,
所述第二功率余量表示当前所述第二模块在一个频段内的最大发射功率和估计的参考信号传输功率的差值。
15、根据附记14所述的方法,其中,
所述参考信号包括SSB、CSI-RS以及下行SRS中的至少一个。
16、根据附记6-15中的任一项所述的方法,其中,
所述第二功率余量包括真实功率余量和虚拟功率余量。
17、根据权利要求6-16中的任一项所述的方法,其中,
所述第二模块的第二功率余量的至少一个类型的功率余量具有上报的优先级。
18、根据附记5所述的方法,其中,
所述第一模块将所述第二模块在至少一个频段的增益上报给网络设备
19、根据附记18所述的方法,其中,
所述增益针对一个小区(cell),或者小区的一个BWP,或者一个载频(carrier),或者一个通带(pass band)。
20、根据附记5所述的方法,其中,
所述第二模块的增益包括所述第二模块的上行增益和/或下行增益。
21、根据附记5、18-20中的任一项所述的方法,其中,
所述第一模块通过第二MAC CE或RRC信令上报所述第二模块的增益。
22、根据附记21所述的方法,其中,
所述第二MAC CE或所述RRC信令包括频段标识(ID)以及与所述频段标识对应的上行增益和/或下行增益。
23、根据附记22所述的方法,其中,
所述第二MAC CE或所述RRC信令还包括与所述频段对应的最大增益。
24、根据附记5、18-23中的任一项所述的方法,其中,
第二模块的发射功率包括第二模块的上行发射功率和/或下行发射功率。
25、根据附记5或24所述的方法,其中,
所述第一模块通过第三MAC CE或RRC信令上报所述第二模块的发射功率。
26、根据附记25所述的方法,其中,
所述第三MAC CE或所述RRC信令包括频段标识(ID)以及与所述频段标识对应的上行发射功率和/或下行发射功率。
27、根据附记26所述的方法,其中,
所述第三MAC CE或所述RRC信令还包括与所述频段对应的最大发射功率。
28、根据附记1-27中的任一项所述的方法,其中,
所述第一模块还上报所述第一模块的功率相关信息。
29、根据附记28所述的方法,其中,
所述第一模块使用相同的MAC CE上报所述第一模块的功率相关信息和所述第二模块的功率相关信息,或者,
所述第一模块使用不相同的MAC CE上报所述第一模块的功率相关信息和所述第二模块的功率相关信息。
30、根据附记1-29中的任一项所述的方法,其中,
在用于上报功率相关信息的MAC CE中,第一小区对应的功率余量是所述第一 模块的功率余量,第二小区对应的功率余量是所述第二模块的功率余量,
所述第二小区包含所述第二模块的工作频段。
31、根据附记30所述的方法,其中,
所述第一模块的至少一个类型的功率余量或所述第二模块的至少一个类型的功率余量具有上报的优先级。
32、根据附记1-31中的任一项所述的方法,其中,
当满足第一条件时,所述第一网络节点的第一模块上报第二模块的功率余量。
33、根据附记32所述的方法,其中,所述第一条件包括以下条件中的至少一个:
所述第二模块在一个频段被激活或重激活;
第一定时器超时,同时,所述第一模块获得了用于新数据传输的上行资源,并且自从上一次功率余量上报后至少一个用于路损参考的且激活的下行BWP不是休眠BWP的服务小区的路损变化量超过第一阈值;
第二定时器超时;
RRC层对所述第一模块配置或重配置了功率余量上报功能;
网络侧激活了一个配置有上行的且firstActiveDownlinkBWP-Id没有被设为休眠的BWP的辅小区(SCell);
主辅小区(PSCell)添加;
所述第一定时器超时,MAC实体有用于新数据传输的上行资源,并且任何一个MAC实体中配置有上行的激活服务小区满足如下条件:所述激活服务小区有上行资源分配或者有PUCCH传输,并且所述激活服务小区由于功率管理所需的功率回退相当于上次在MAC实体分配给所述激活服务小区的上行资源或者PUCCH上传输的功率余量上报时的变化值超过第二阈值;以及
在任意配置有上行的MAC实体的辅小区上将激活BWP从休眠BWP切换至非休眠的下行BWP。
34、根据附记33所述的方法,其中,
所述第一定时器称作功率余量上报禁止定时器(phr-ProhibitTimer),
所述第二定时器称作功率余量上报周期定时器(phr-PeriodicTimer)。
35、根据附记1-31中的任一项所述的方法,其中,
当满足第二条件时,所述第一网络节点的第一模块上报第二模块的增益。
36、根据附记35所述的方法,其中,所述第二条件包括以下条件中的至少一个:
第三定时器超时,同时,所述第一模块获得了用于新数据传输的上行资源,并且,所述第二模块在一个频段的增益与上次功率上报的增益的变化值大于或等于第三阈值;
第四定时器超时;以及
RRC层对所述第一模块配置或重配置了增益上报功能。
37、根据附记36所述的方法,其中,
所述第三定时器称作增益上报禁止定时器(gr-ProhibitTimer),
所述第四定时器称作增益上报周期定时器(gr-PeriodicTimer)。
38、根据附记36所述的方法,其中,
所述第三阈值由网络设备通过RRC信令对第一模块进行配置。
39、根据附记1-31中的任一项所述的方法,其中,
当满足第三条件时,所述第一网络节点的第一模块上报第二模块的发射功率。
40、根据附记39所述的方法,其中,
所述第三条件包括以下条件中的至少一个:
第五定时器超时,同时,所述第一模块获得了用于新数据传输的上行资源,并且,所述第二模块在一个频段的发射功率与上次功率上报的发射功率的变化值大于或等于第四阈值;
第六定时器超时;以及
RRC层对所述第一模块配置或重配置了功率上报功能。
41、根据附记40所述的方法,其中,
所述第五定时器称作功率上报禁止定时器(pr-ProhibitTimer),
所述第六定时器称作功率上报周期定时器(pr-PeriodicTimer)。
42、根据附记40所述的方法,其中,
所述第四阈值由网络设备通过RRC信令对第一模块进行配置。
43、根据附记1-42中的任一项所述的方法,其中,
所述第一模块是终端设备(mobile terminal,MT)模块,所述第二模块是无线单元(radio unit,RU)模块。
44、根据附记1-43中的任一项所述的方法,其中,
所述第一网络节点是智能中继器(smart repeater,SR)。
45、一种功率相关信息的接收方法,所述方法用于网络设备,所述方法包括:
从第一网络节点的第一模块接收所述第一网络节点的第二模块的功率相关信息。
46、根据附记45所述的方法,其中,
所述功率相关信息包括所述第二模块的上行功率相关信息和/或下行功率相关信息。
47、根据附记45或46所述的方法,其中,
所述功率相关信息包括所述第二模块的功率余量、增益以及发射功率中的至少一个。
48、根据附记45-47中的任一项所述的方法,其中,
所述第一模块是终端设备(mobile terminal,MT)模块,所述第二模块是无线单元(radio unit,RU)模块。
49、根据附记45-48中的任一项所述的方法,其中,
所述第一网络节点是智能中继器(smart repeater,SR)。

Claims (20)

  1. 一种功率相关信息的上报装置,所述装置用于第一网络节点,所述第一网络节点包括第一模块和第二模块,
    所述装置包括:
    上报单元,其设置在所述第一网络节点的第一模块中,并上报第二模块的功率相关信息。
  2. 根据权利要求1所述的装置,其中,
    所述功率相关信息包括所述第二模块的上行功率相关信息和/或下行功率相关信息。
  3. 根据权利要求1所述的装置,其中,
    所述功率相关信息包括所述第二模块的功率余量、增益以及发射功率中的至少一个。
  4. 根据权利要求3所述的装置,其中,
    所述第二模块的功率余量包括所述第二模块的上行功率余量和/或所述第二模块的下行功率余量,
    所述第二模块的上行功率余量是第一功率余量,所述第二模块的下行功率余量是第二功率余量。
  5. 根据权利要求4所述的装置,其中,
    所述第一功率余量表示当前所述第二模块在一个频段内的最大发射功率和估计的上行传输功率的差值,和/或,
    所述第二功率余量表示当前所述第二模块在一个频段内的最大发射功率和估计的下行传输功率的差值。
  6. 根据权利要求4所述的装置,其中,
    所述第一功率余量和/或所述第二功率余量针对一个小区,或者小区的一个BWP,或者一个载频,或者一个通带。
  7. 根据权利要求1所述的装置,其中,
    所述上报单元将所述第二模块的至少一个上行功率余量和所述上行功率余量对应的至少一个频段标识(ID)上报给网络设备,和/或,
    所述上报单元将所述第二模块的至少一个下行功率余量和所述下行功率余量对应的至少一个频段标识(ID)上报给网络设备。
  8. 根据权利要求1所述的装置,其中,
    所述上报单元通过第一MAC CE上报所述第二模块的功率余量。
  9. 根据权利要求4所述的装置,其中,所述装置还包括:
    发送单元,其设置在所述第二模块中,并发送参考信号,
    所述第二功率余量表示当前所述第二模块在一个频段内的最大发射功率和估计的参考信号传输功率的差值。
  10. 根据权利要求9所述的装置,其中,
    所述参考信号包括SSB、CSI-RS以及下行SRS中的至少一个。
  11. 根据权利要求3所述的装置,其中,
    所述第一模块将所述第二模块在至少一个频段的增益上报给网络设备。
  12. 根据权利要求11所述的装置,其中,
    所述增益针对一个小区,或者小区的一个BWP,或者一个载频,或者一个通带。
  13. 根据权利要求3所述的装置,其中,
    所述第一模块通过第二MAC CE或RRC信令上报所述第二模块的增益。
  14. 根据权利要求13所述的装置,其中,
    所述第二MAC CE或所述RRC信令包括频段标识(ID)以及与所述频段标识对应的上行增益和/或下行增益。
  15. 根据权利要求1所述的装置,其中,
    所述上报单元还上报所述第一模块的功率相关信息。
  16. 根据权利要求1所述的装置,其中,
    在用于上报功率相关信息的MAC CE中,第一小区对应的功率余量是所述第一模块的功率余量,第二小区对应的功率余量是所述第二模块的功率余量,
    所述第二小区包含所述第二模块的工作频段。
  17. 根据权利要求16所述的装置,其中,
    所述第一模块的至少一个类型的功率余量或所述第二模块的至少一个类型的功率余量具有上报的优先级。
  18. 根据权利要求1所述的装置,其中,
    当满足第二条件时,所述上报单元上报第二模块的增益。
  19. 根据权利要求18所述的装置,其中,所述第二条件包括以下条件中的至少一个:
    第三定时器超时,同时,所述第一模块获得了用于新数据传输的上行资源,并且,所述第二模块在一个频段的增益与上次功率上报的增益的变化值大于或等于第三阈值;
    第四定时器超时;以及
    RRC层对所述第一模块配置或重配置了增益上报功能。
  20. 根据权利要求1所述的装置,其中,
    所述第一模块是终端设备(MT)模块,所述第二模块是无线单元(RU)模块。
PCT/CN2021/124114 2021-10-15 2021-10-15 功率相关信息的上报装置及方法 WO2023060561A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/124114 WO2023060561A1 (zh) 2021-10-15 2021-10-15 功率相关信息的上报装置及方法
CN202180103123.6A CN118077236A (zh) 2021-10-15 2021-10-15 功率相关信息的上报装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/124114 WO2023060561A1 (zh) 2021-10-15 2021-10-15 功率相关信息的上报装置及方法

Publications (1)

Publication Number Publication Date
WO2023060561A1 true WO2023060561A1 (zh) 2023-04-20

Family

ID=85987963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124114 WO2023060561A1 (zh) 2021-10-15 2021-10-15 功率相关信息的上报装置及方法

Country Status (2)

Country Link
CN (1) CN118077236A (zh)
WO (1) WO2023060561A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972186A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 功率余量上报方法及终端设备
CN111278112A (zh) * 2018-12-05 2020-06-12 华为技术有限公司 一种功率余量的上报方法及装置
US20210037574A1 (en) * 2019-08-01 2021-02-04 Qualcomm Incorporated Power saving of smart repeaters
WO2021175177A1 (zh) * 2020-03-06 2021-09-10 维沃移动通信有限公司 Phr上报方法、phr接收方法、终端和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972186A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 功率余量上报方法及终端设备
CN111278112A (zh) * 2018-12-05 2020-06-12 华为技术有限公司 一种功率余量的上报方法及装置
US20210037574A1 (en) * 2019-08-01 2021-02-04 Qualcomm Incorporated Power saving of smart repeaters
WO2021175177A1 (zh) * 2020-03-06 2021-09-10 维沃移动通信有限公司 Phr上报方法、phr接收方法、终端和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Views on smart repeaters", 3GPP DRAFT; RP-212279, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210913 - 20210917, 6 September 2021 (2021-09-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052049553 *

Also Published As

Publication number Publication date
CN118077236A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
US11122523B2 (en) Information transmission method and apparatus
US10264532B2 (en) Method for controlling uplink power, eNodeB, and user equipment
JP5227938B2 (ja) ユーザ装置及び移動通信方法
US9826488B2 (en) Method for reporting a power headroom and communication device thereof
US20220006599A1 (en) Method and device for managing band width part
KR20130058733A (ko) 무선 통신 시스템에서 파워헤드룸 보고 방법 및 장치
US10264534B1 (en) Power control for high power class wireless devices
KR20130108254A (ko) 무선 통신 시스템에서 측정 결과 보고 방법 및 장치
US10375657B2 (en) Method for transmitting a buffer status reporting for LTE-WLAN aggregation system and a device therefor
WO2021087678A1 (zh) 一种小区状态管理方法及装置、终端设备、网络设备
WO2014067359A1 (zh) 一种载波聚合系统中的功率上报方法及装置
US9661591B2 (en) Method for reducing transmission power for sounding reference signal and terminal therefor
WO2014190823A1 (zh) 异构tdd中继网络中基于asa辅助的干扰协调方法
WO2013135195A1 (zh) 功率控制方法及装置
WO2021056460A1 (zh) 一种测量管理方法及装置、通信设备
WO2020143048A1 (zh) 一种信息处理方法及终端设备
WO2012145974A1 (zh) 功率余量报告触发方法及装置
WO2012130040A1 (zh) 功率余量报告触发方法及装置
WO2023060561A1 (zh) 功率相关信息的上报装置及方法
US20220007425A1 (en) Method and apparatus for transmitting a system information request and system
US11350447B2 (en) Method and apparatus for operations in different frequency bands within a radio device
WO2024027317A1 (zh) 通信方法和通信装置
WO2024092819A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024065410A1 (zh) 转发器的指示方法、转发器和网络设备
WO2024065417A1 (zh) 转发器的指示方法、转发器和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE