WO2024027317A1 - 通信方法和通信装置 - Google Patents
通信方法和通信装置 Download PDFInfo
- Publication number
- WO2024027317A1 WO2024027317A1 PCT/CN2023/097375 CN2023097375W WO2024027317A1 WO 2024027317 A1 WO2024027317 A1 WO 2024027317A1 CN 2023097375 W CN2023097375 W CN 2023097375W WO 2024027317 A1 WO2024027317 A1 WO 2024027317A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- msd
- value
- information
- terminal
- frequency band
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 121
- 238000004891 communication Methods 0.000 title claims abstract description 85
- 238000001228 spectrum Methods 0.000 claims abstract description 227
- 230000035945 sensitivity Effects 0.000 claims abstract description 27
- 230000006872 improvement Effects 0.000 claims description 123
- 230000005540 biological transmission Effects 0.000 claims description 100
- 230000006399 behavior Effects 0.000 claims description 69
- 230000015654 memory Effects 0.000 claims description 49
- 238000002955 isolation Methods 0.000 claims description 26
- 238000004590 computer program Methods 0.000 claims description 20
- 230000009467 reduction Effects 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 11
- 230000015556 catabolic process Effects 0.000 abstract description 2
- 238000006731 degradation reaction Methods 0.000 abstract description 2
- 230000001668 ameliorated effect Effects 0.000 abstract 1
- 208000035032 Multiple sulfatase deficiency Diseases 0.000 description 792
- 201000006033 mucosulfatidosis Diseases 0.000 description 792
- 230000000875 corresponding effect Effects 0.000 description 50
- 238000012545 processing Methods 0.000 description 27
- 230000009977 dual effect Effects 0.000 description 23
- 230000006870 function Effects 0.000 description 19
- 238000013507 mapping Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 15
- 238000005259 measurement Methods 0.000 description 14
- 230000002776 aggregation Effects 0.000 description 10
- 238000004220 aggregation Methods 0.000 description 10
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 5
- 101100411667 Arabidopsis thaliana RAN4 gene Proteins 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000003542 behavioural effect Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229920001690 polydopamine Polymers 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
- H04W8/24—Transfer of terminal data
Definitions
- the embodiments of the present application relate to the field of communication, and more specifically, to a communication method and a communication device.
- Reception sensitivity is used to describe the minimum signal reception power required by a terminal to receive downlink useful signals.
- the terminal will not receive any data. That is to say, the receiving sensitivity is the minimum threshold that the terminal can receive signals.
- reception sensitivity is similar to people's hearing when communicating and talking. Improving the reception sensitivity of signals can make wireless products have a stronger ability to capture weak signals. In this way, as the transmission distance increases and the received signal becomes weaker, highly sensitive wireless products can still receive data, maintain a stable connection, and greatly increase the transmission distance.
- MSD Sensitivity degradation
- both the network and the terminal can improve the MSD, but information cannot be exchanged between the terminal and the network.
- the network cannot know which MSDs need to be improved, and cannot determine whether measures need to be taken to improve the MSD. As a result, the MSD cannot be effectively improved, which in turn affects Terminal reception performance.
- Embodiments of the present application provide a communication method and a communication device.
- the terminal and the network can interact through the first information, thereby effectively improving the MSD and thereby improving the reception performance of the terminal device.
- a communication method is provided, applied to a terminal or a module in the terminal, and the method includes:
- the first spectrum combination includes a first frequency band and a second frequency band, and the frequency band number of the first frequency band is different from the frequency band number of the second frequency band;
- First information is sent, the first information indicating the capability of MSD improvement for the first spectrum combination.
- the terminal may send first information to the network, and the first information may indicate the terminal's MSD improvement capability for the first spectrum combination, so that the network can learn the terminal's MSD improvement capability, so that the network can obtain the MSD improvement capability of the terminal according to the first spectrum combination.
- This information determines whether the MSD needs to be further improved, and the MSD can be effectively improved, thereby improving the receiving performance of the terminal.
- the method before the terminal determines the maximum sensitivity drop MSD improvement capability of the first spectrum combination, the method further includes: the terminal obtains the first carrier and the second carrier, and the first frequency band corresponding to the first carrier
- the second frequency band corresponding to the second carrier constitutes a first spectrum combination
- the relationship between the first spectrum combination is carrier aggregation, or,
- the relationship of the first spectrum combination is dual connectivity. That is to say, the network configures carrier aggregation CA/dual connectivity DC for the terminal.
- the dual connectivity mode can include EN-DC, NE-DC or NR-DC.
- the first information includes MSD improvement capability information
- the MSD improvement capability information indicates that the terminal can improve the MSD
- the MSD improvement capability information indicates that the terminal cannot improve the MSD.
- the first information sent by the terminal to the network may include MSD improvement capability information, and the MSD improvement capability information may indicate that the terminal can improve MSD or indicate that the terminal cannot improve MSD, so that after the network receives the first information, Determine whether the terminal can improve the MSD. If the terminal cannot improve the MSD, the network can take corresponding measures to improve the MSD, thereby avoiding failure to improve the MSD and affecting the reception performance of the terminal.
- the MSD improvement capability information indicates that the terminal can improve the MSD; or, if the first MSD value is greater than the first threshold , then the MSD improvement capability information indicates that the terminal cannot improve the MSD; where the first MSD value is the MSD value of the terminal for the first spectrum combination. That is, the MSD improvement capability information is determined based on the first MSD value.
- the first MSD value can be understood as the MSD value actually generated by the terminal for a given spectrum combination (for example, the first spectrum combination). It should be understood that the first MSD value corresponds to the terminal, and the first MSD values of different terminals may be different.
- the first threshold is predefined, or the first threshold is configured by high-level parameters, or the first threshold is dynamically indicated through DCI/MAC CE, which is not limited in this application.
- the value of the first threshold may be 5dB, 10dB, etc.
- the MSD value of the terminal for the first spectrum combination is less than or equal to the first threshold, it means that the first MSD value of the terminal (that is, the MSD value improved by the terminal) meets certain requirements, and the MSD can be reported at this time.
- the improvement capability information indicates that the terminal can improve the MSD and does not require further improvement by the network; if the first MSD value of the terminal is greater than the first threshold, it means that the terminal cannot effectively improve the MSD value, that is, the improved MSD value cannot meet the requirements. At this time, it can Reporting MSD improvement capability information indicates that the terminal cannot improve the MSD, and network scheduling restrictions are required to reduce the terminal's MSD and improve the terminal's reception performance.
- the MSD improvement capability information indicates that the terminal can improve the MSD; Or, if the first MSD value is greater than the first threshold, the MSD improvement capability information indicates that the terminal cannot improve the MSD; where the first MSD value is the MSD value of the terminal for the first spectrum combination, and the second MSD value is the predetermined MSD value of the first spectrum combination.
- the first MSD value is smaller than the second MSD value. That is, the MSD improvement capability information is determined based on the first MSD value and the second MSD value.
- the second MSD value can be understood as the MSD value obtained using traditional RAN4 assumptions and definitions of frequency band combinations. At a specific power level, for a given frequency band combination (for example, the first spectrum combination), the second MSD value is fixed and predefined in the protocol.
- the second threshold is predefined, or the second threshold is configured by high-level parameters, or the second threshold is dynamically indicated through DCI/MAC CE, which is not limited in this application.
- the value of the second threshold may be 5dB, 10dB, etc.
- the terminal may determine whether it is capable of improving the MSD based on the first MSD value and the second MSD value. If the first MSD value is less than or equal to the first threshold and the second MSD value is greater than or equal to the second threshold, it means that the terminal can improve the MSD and does not need to be improved by the network.
- the terminal can send MSD improvement capability information to the network to indicate that the terminal can improve the MSD. . If the first MSD value is greater than the first threshold, it means that the terminal cannot effectively improve the MSD. Therefore, the terminal can send MSD improvement capability information to the network to indicate that the terminal cannot improve the MSD.
- the first information includes MSD type information
- the MSD type information indicates the type of MSD of the first spectrum combination
- the MSD type information includes at least one of the following: second-order intermodulation Interference, third-order intermodulation interference, fourth-order intermodulation interference, fifth-order intermodulation interference, second-order harmonic interference, third-order harmonic interference, fourth-order harmonic interference, fifth-order harmonic interference, second-order harmonic mixed interference , third-order harmonic mixing interference, fourth-order harmonic mixing interference, fifth-order harmonic mixing interference, and cross-band isolation.
- the MSD type information includes all MSD types present in the first spectrum combination. That is, all MSD types existing in the first spectrum combination are reported to the network.
- the MSD type information includes the MSD type corresponding to the largest second MSD value in the first spectrum combination, and the second MSD value is a predefined MSD value of the first spectrum combination. That is, the MSD type with the most serious MSD problem is reported to the network.
- the MSD type information includes an MSD type in the first spectrum combination that satisfies a first condition.
- the first condition is that the first MSD value is greater than or equal to a third threshold, and the first MSD value is the terminal's target for the first MSD value of spectrum combination. That is to say, the terminal can send the MSD type corresponding to the first MSD value greater than or equal to the third threshold to the network according to its own first MSD value. In this case, it means that the terminal cannot improve the MSD, so it needs to send an MSD type that cannot be improved to the network, so that the network can take appropriate measures based on the MSD type information in the first information.
- the third threshold is predefined, or the third threshold is configured by high-level parameters, or the third threshold is dynamically indicated through DCI/MAC CE, which is not limited in this application.
- the value of the third threshold may be 5dB, 10dB, etc.
- the MSD type information includes an MSD type whose third MSD value is not zero in the first spectrum combination, and the third MSD value is the difference between the first MSD value and the second MSD value.
- One MSD value is the MSD value of the terminal device for the first spectrum combination
- the second MSD value is the predefined MSD value of the first spectrum combination
- the first MSD value is smaller than the second MSD value.
- the MSD type information reported by the terminal device is an improved MSD type.
- the terminal reports an MSD type that satisfies a second condition.
- the second condition is that the first MSD value is less than or equal to the first threshold and the second MSD value is greater than the second threshold.
- the first information includes MSD improvement capability information and MSD type information. That is to say, when reporting MSD improvement capability information, the terminal can report corresponding MSD type information, that is, which types of MSDs the terminal can improve, or which types of MSDs the terminal cannot improve. In this case, the network can learn which types of MSDs need to be improved and/or which types of MSDs do not need to be improved by receiving the first information.
- the first spectrum combination further includes a third frequency band, the frequency band number of the third frequency band is different from the frequency band number of the first frequency band, and the frequency band number of the third frequency band is different from the frequency band number of the second frequency band.
- the frequency bands have different band numbers.
- the first information includes frequency band information, and the frequency band information indicates a third frequency band.
- the third frequency band is a frequency band affected by MSD in the first spectrum combination.
- the terminal can directly report the frequency band affected by MSD to the network, so that after the network receives the first information, it can determine the third frequency band information (for example, the third frequency band number) affected by MSD, so that it can Improve MSD issues in a targeted manner.
- the third frequency band information for example, the third frequency band number
- the first information includes at least one of MSD improvement capability information, MSD type information, and frequency band information, so that after the network receives the first information, it can take appropriate measures to improve the MSD based on the first information. .
- the first information includes first interval information
- the first interval information includes an interval to which the first MSD value belongs
- the first MSD value is the terminal's value for the first spectrum combination. MSD value.
- the network side and the terminal side can predefine or preconfigure an MSD improvement interval mapping table (that is, the interval mapping table corresponding to the first MSD value).
- the mapping table can include the terminal reported value (reported value) and the corresponding reported value.
- the first MSD value interval range of An MSD value interval corresponds to the range.
- the terminal reports 0 bits to indicate that the first MSD value is within the range of [0, N1), and the terminal reports 1 bit to indicate that the first MSD value is within the range of [N1, N2). Therefore, after the network receives the reported bit value, it can determine the range of the first MSD value according to the MSD improvement interval mapping table, so that after the network receives the first information, it can take appropriate measures to improve the MSD.
- the first information includes at least one of MSD improvement capability information, MSD type information, frequency band information and first interval information, so that after the network receives the first information, it can take actions based on the first information. Appropriate measures to improve MSD.
- the first information may include first interval information and MSD type information. That is to say, when reporting the first interval information, the terminal can also report MSD type information, so that after the network receives the first information, it can learn the interval to which the first MSD value belongs and the type of the first MSD value, and then This allows the network to take more targeted measures to improve the MSD based on the first information.
- the first information includes second interval information
- the second interval information includes the interval to which the third MSD value belongs
- the third MSD value is the combination of the first MSD value and the second The difference between the MSD values
- the first MSD value is the MSD value of the terminal for the first spectrum combination
- the second MSD value is the predefined MSD value of the first spectrum combination
- the first MSD value is smaller than the second MSD value.
- the network side and the terminal side can predefine or preconfigure an improved MSD interval mapping table (that is, the interval mapping table corresponding to the third MSD value).
- the mapping table can include the terminal reported value (reported value) and the reported value.
- the corresponding third MSD value interval range where the reported value can be a bit value, and the third MSD value interval range can be [0, N1), [N1, N2), [N2, N3), etc., the bit value is the same as The third MSD value interval corresponds to the range.
- the terminal reports 0 bits to indicate that the third MSD value is within the range of [0, N1), and the terminal reports 1 bit to indicate that the third MSD value is within the range of [N1, N2). Therefore, after the network receives the reported bit value, it can determine the range of the third MSD value according to the MSD improvement interval mapping table, so that the network can take appropriate measures to improve the MSD after receiving the first information.
- the first information includes at least one of MSD improvement capability information, MSD type information, frequency band information and second interval information, so that after the network receives the first information, it can take action based on the first information. Appropriate measures to improve MSD.
- the first information may include second interval information and MSD type information. That is to say, when reporting the second interval information, the terminal can also report MSD type information, so that after the network receives the first information, it can learn the interval to which the third MSD value belongs and the type of the third MSD value, and then This allows the network to take more targeted measures to improve the MSD based on the first information.
- the first information includes a first MSD value, or the first information includes a third MSD value, and the third MSD value is the first MSD value and the second MSD value.
- the difference between the first MSD value is the MSD value of the terminal for the first spectrum combination
- the second MSD value is the predefined MSD value of the first spectrum combination
- the first MSD value is smaller than the second MSD value.
- the first information includes at least one of MSD improvement capability information, MSD type information, frequency band information, first MSD value and third MSD value, so that after the network receives the first information, it can Take appropriate measures to improve the MSD based on this first information.
- the first information includes first behavior information and/or second behavior information, and the first behavior information instructs the network to send uplink transmission on a single carrier or a single frequency band;
- the second behavioral information indicates that the network does not schedule uplink/downlink transmission simultaneously in the first frequency band combination, or the second behavioral information indicates that the network schedules uplink and downlink transmission in the first frequency band combination at an interval greater than or equal to the fifth threshold.
- the fifth threshold is predefined, or the fifth threshold is configured by high-level parameters, or the fifth threshold is dynamically indicated through DCI/MAC CE, which is not limited in this application.
- the first information includes at least one of MSD improvement capability information, MSD type information, frequency band information, first interval information, first behavior information and second behavior information, so that the network receives the first After receiving the information, appropriate measures can be taken to improve the MSD based on this first information.
- the first information includes at least one of MSD improvement capability information, MSD type information, frequency band information, second interval information, first behavior information and second behavior information, so that the network receives the first After receiving the information, appropriate measures can be taken to improve the MSD based on this first information.
- the first information includes at least one of MSD improvement capability information, MSD type information, frequency band information, first MSD value, third MSD value, first behavior information and second behavior information, so that After receiving the first information, the network can take appropriate measures to improve the MSD based on the first information.
- the first information includes simultaneous transceiver capability indication information
- the simultaneous transceiver capability indication information indicates that the first spectrum combination supports simultaneous transceiver
- the simultaneous transceiver capability indication information indicates that the first Spectrum combinations do not support simultaneous transmission and reception.
- the simultaneous transceiver capability indication information indicates that the first spectrum combination does not support simultaneous transceiver; or, if the first MSD value is greater than or equal to the first threshold, the simultaneous transceiver capability indication information indicates that the first spectrum combination does not support simultaneous transceiver The value is less than the first threshold, then the simultaneous transceiver capability indication information indicates that the first spectrum combination supports simultaneous transceiver;
- the simultaneous transceiver capability indication information indicates that the first spectrum combination does not support simultaneous transceiver; or, if the second MSD value is less than the fourth threshold, the simultaneous transceiver capability indication information indicates that the first spectrum combination does not support simultaneous transceiver.
- One spectrum combination supports simultaneous transmission and reception;
- the first MSD value is the MSD value of the terminal for the first spectrum combination
- the second MSD value is the predefined MSD value of the first spectrum combination
- the first MSD value is smaller than the second MSD value
- the fourth threshold is predefined, or the fourth threshold is configured by high-level parameters, or the fourth threshold is dynamically indicated through DCI/MAC CE, which is not limited in this application.
- the value of the fourth threshold may be 10dB, 15dB, 28.7dB, etc.
- the terminal if the first MSD value is greater than or equal to the first threshold, it means that the terminal cannot effectively improve the MSD, and therefore needs to send simultaneous transceiver capability indication information to the network to indicate that the first spectrum combination does not support simultaneous transceiver. This prevents the network from scheduling signal reception and transmission at the same time, thereby avoiding further impact on MSD.
- the second MSD value is greater than or equal to the fourth threshold, it means that the original MSD value is larger. If simultaneous transmission and reception of the first spectrum combination is still supported, the MSD may be further affected. Therefore, the terminal can also report simultaneous transmission and reception capability indication information. Indicates that the first spectrum combination does not support simultaneous transmission and reception.
- the simultaneous transceiver capability indication information indicates that the first spectrum combination does not support simultaneous transceiver, and the first MSD value is the terminal MSD value for the first spectrum combination.
- the terminal may report simultaneous transceiver capability indication information indicating that the first spectrum combination does not support simultaneous transceiver.
- the first information includes at least one of MSD improvement capability information, MSD type information, frequency band information, first interval information, first behavior information, second behavior information and simultaneous transceiver capability indication information, Therefore, after receiving the first information, the network can take appropriate measures to improve the MSD based on the first information.
- the first information includes at least one of MSD improvement capability information, MSD type information, frequency band information, second interval information, first behavior information, second behavior information and simultaneous transceiver capability indication information, Therefore, after receiving the first information, the network can take appropriate measures to improve the MSD based on the first information.
- the first information includes MSD improvement capability information, MSD type information, frequency band information, first MSD value, third MSD value, first behavior information, second behavior information and simultaneous transceiver capability indication information. At least one of them, so that after receiving the first information, the network can take appropriate measures to improve the MSD based on the first information.
- the first information includes scale factor information
- the scale factor information is used to indicate the ratio of the transmit power change value of the terminal to the third MSD value
- the third MSD value is the third MSD value.
- the difference between an MSD value and a second MSD value is the MSD value of the terminal for the first spectrum combination.
- the second MSD value is the predefined MSD value in the first spectrum combination.
- the first MSD value is less than Second MSD value.
- the terminal may report scale factor information corresponding to at least one MSD type.
- the first information includes MSD improvement capability information, MSD type information, frequency band information, first interval information, first behavior information, second behavior information, simultaneous transceiver capability indication information, and scale factor information. At least one of them, so that after the network receives the first information, it can take appropriate measures to improve the MSD based on the first information.
- the first information includes MSD improvement capability information, MSD type information, frequency band information, second interval information, first behavior information, second behavior information, simultaneous transceiver capability indication information, and scale factor information. At least one of them, so that after the network receives the first information, it can take appropriate measures to improve the MSD based on the first information.
- the first information includes MSD improvement capability information, MSD type information, frequency band information, first MSD value, third MSD value, first behavior information, second behavior information, and simultaneous transceiver capability indication information. and at least one of the scale factor information, so that after the network receives the first information, it can take appropriate measures to improve the MSD based on the first information.
- the first information is determined based on the location of the terminal.
- the terminal device determines its location in the cell based on the path loss measurement value or timing advance amount; if the path loss measurement value or timing advance amount of the terminal device is less than or equal to the sixth threshold, the terminal device is located in the middle or near vicinity of the cell to which it belongs. The position of the point; if the path loss measurement value or timing advance of the terminal device is greater than the sixth threshold, the terminal device is located at the far point of the cell to which it belongs.
- the terminal can also determine its location in the cell according to the RRM measurement parameters configured by the network.
- the first information includes MSD improvement capability information, and the MSD improvement capability information indicates that the terminal device can improve the MSD of the first spectrum combination, or the MSD improvement capability information indicates The terminal equipment cannot improve the MSD of the first spectrum combination.
- the MSD improvement capability information is used to indicate that the terminal device can improve the MSD of the first spectrum combination; or, if the first MSD value is greater than the first threshold, the MSD improvement The capability information is used to indicate that the terminal device cannot improve the MSD of the first spectrum combination; where the first MSD value is the MSD value of the terminal for the first spectrum combination.
- the MSD improvement capability information is used to indicate that the terminal device can improve the MSD of the first spectrum combination; or, if If the first MSD value is greater than the first threshold, the improvement capability information is used to indicate that the terminal device cannot improve the MSD of the first spectrum combination; where the first MSD value is the MSD value of the terminal for the first spectrum combination, and the second MSD value is the MSD value of the first spectrum combination.
- a spectrum combines predefined MSD values, and the first MSD value is smaller than the second MSD value.
- the first information includes first behavior information and/or second behavior information
- the first behavior information is used to instruct the network to send uplink data on a single carrier or a single frequency band.
- the second behavior information is used to instruct the network not to schedule uplink/downlink transmission at the same time in the first frequency band combination, or the second behavior information is used to instruct the network to schedule the uplink and downlink transmission in the first frequency band combination at an interval greater than or equal to Fifth threshold.
- the terminal when determining the first information, the terminal considers the impact of the terminal's location on the MSD, so that the terminal can determine and report the first information more efficiently.
- a communication method which is applied to the network or modules in the network.
- the method includes:
- the first information indicates the terminal's maximum sensitivity reduction MSD improvement capability for the first spectrum combination
- the first spectrum combination includes a first frequency band and a second frequency band, the frequency band number of the first frequency band and the frequency band number of the second frequency band different.
- first information may be the first aspect and the first information described in any one of the first aspects.
- the network receives the first information and determines the terminal's MSD improvement capability based on the first information, so that it can determine whether the MSD needs to be further improved based on the first information, thereby improving the terminal's reception performance.
- the method further includes: the network sends a first carrier and a second carrier, the first frequency band corresponding to the first carrier and the second frequency band corresponding to the second carrier constitute a first spectrum combination, and the first spectrum
- the combination relationship is carrier aggregation, or the first spectrum combination relationship is dual connectivity, where the dual connectivity mode may include EN-DC, NE-DC or NR-DC.
- the network determines to schedule uplink transmission on a single carrier or a single frequency band based on the first information.
- the network determines not to schedule uplink/downlink transmission simultaneously in the first frequency band combination based on the first information.
- the network determines based on the first information that the interval between uplink and downlink transmissions scheduled in the first frequency band combination is greater than or equal to the fifth threshold.
- the network adjusts the transmission power of the uplink signal sent by the terminal device according to the first information.
- the network can take corresponding measures to intervene in the terminal based on the received first information.
- the network can schedule the terminal to send uplink transmission on a single carrier or a single frequency band, or at different times in the first frequency band combination.
- Schedule uplink/downlink transmission, or the interval between scheduled uplink and downlink transmission in the first frequency band combination is greater than or equal to the fifth threshold, or adjust the transmit power of the terminal device for sending uplink signals.
- a communication device including: a processing unit and a sending unit, the processing unit being used to: confirm The ability to improve the maximum sensitivity reduction of MSD for the first spectrum combination is determined.
- the first spectrum combination includes a first frequency band and a second frequency band. The frequency band number of the first frequency band is different from the frequency band number of the second frequency band; the sending unit is used for: sending The first information indicates the ability to improve the MSD.
- first information may be the first aspect and the first information described in any one of the first aspects.
- the communication device further includes a receiving unit, the receiving unit is configured to: obtain the first carrier and the second carrier, the first frequency band corresponding to the first carrier and the second carrier.
- the second frequency band corresponding to the carrier constitutes a first spectrum combination.
- the relationship of the first spectrum combination is carrier aggregation.
- the relationship of the first spectrum combination is dual connectivity.
- the dual connectivity mode may include EN-DC, NE-DC or NR. -DC.
- the processing unit is also used to: determine the location in the cell based on the path loss measurement value or timing advance; if the path loss measurement value or timing advance of the terminal device The amount is less than or equal to the sixth threshold, then the terminal equipment is located at the near and middle point of the cell to which it belongs; or, if the path loss measurement value or timing advance amount of the terminal equipment is greater than the sixth threshold, the terminal equipment is located at the far point of the cell to which it belongs. Location.
- the first information includes MSD improvement capability information, and the MSD improvement capability information indicates that the terminal device can improve the MSD of the first spectrum combination, or the MSD improvement capability information indicates The terminal equipment cannot improve the MSD of the first spectrum combination.
- the MSD improvement capability information is used to indicate that the terminal device can improve the MSD of the first spectrum combination; or, if the first MSD value is greater than the first threshold, the MSD improvement The capability information is used to indicate that the terminal device cannot improve the MSD of the first spectrum combination; where the first MSD value is the MSD value of the terminal for the first spectrum combination.
- the MSD improvement capability information is used to indicate that the terminal device can improve the MSD of the first spectrum combination; or, if If the first MSD value is greater than the first threshold, the improvement capability information is used to indicate that the terminal device cannot improve the MSD of the first spectrum combination; where the first MSD value is the MSD value of the terminal for the first spectrum combination, and the second MSD value is the MSD value of the first spectrum combination.
- a spectrum combines predefined MSD values, and the first MSD value is smaller than the second MSD value.
- the first information includes first behavior information and/or second behavior information
- the first behavior information is used to instruct the network to schedule uplink on a single carrier or a single frequency band.
- the second behavior information is used to instruct the network not to schedule uplink/downlink transmission at the same time in the first frequency band combination, or the second behavior information is used to instruct the network to schedule the uplink and downlink transmission in the first frequency band combination at an interval greater than or equal to Fifth threshold.
- a communication device including: a receiving unit, the receiving unit is configured to receive first information, the first information indicates the maximum sensitivity reduction and MSD improvement capability of the terminal for the first spectrum combination, the first spectrum combination It includes a first frequency band and a second frequency band, and the frequency band number of the first frequency band is different from the frequency band number of the second frequency band.
- first information may be the first aspect and the first information described in any one of the first aspects.
- the communication device further includes a sending unit, the sending unit is configured to: send a first carrier and a second carrier, and the first frequency band corresponding to the first carrier and the second carrier
- the second frequency band corresponding to the carrier constitutes a first spectrum combination
- the relationship of the first spectrum combination is carrier aggregation, or the relationship of the first spectrum combination is dual connectivity, where the dual connectivity mode may include EN-DC, NE-DC or NR-DC.
- the communication device further includes a processing unit configured to determine, according to the first information, to schedule uplink transmission on a single carrier or a single frequency band.
- the processing unit is further configured to determine, according to the first information, not to schedule uplink/downlink transmission simultaneously in the first frequency band combination.
- the processing unit is further configured to determine, based on the first information, that the interval between uplink and downlink transmissions scheduled in the first frequency band combination is greater than or equal to the fifth threshold.
- the processing unit is further configured to adjust the transmit power of the uplink signal sent by the terminal device according to the first information.
- a communication device including: a processor, the processor is coupled to a memory, and the memory is used to store programs or instructions.
- the communication device implements the above Any possible implementation method of the first aspect or the second aspect.
- a chip in a sixth aspect, includes a processor.
- a memory used to store a computer program is provided independently of the chip.
- the processor is used to execute the computer program stored in the memory to execute the first aspect or the second aspect. any possible implementation method.
- a computer-readable storage medium In a seventh aspect, a computer-readable storage medium is provided. Computer programs or instructions are stored in the computer-readable storage medium. When the computer program or instructions are executed, any one of the above-mentioned first or second aspects is implemented. possible implementation methods.
- a computer program product includes: computer program code.
- the computer program code When the computer program code is run on a computer, it enables the computer to execute any one of the above-mentioned first aspect or the second aspect. method within the method.
- any of the communication devices, chips, computer-readable storage media, computer program products, etc. provided above are used to execute the corresponding methods provided above. Therefore, the beneficial effects they can achieve can be referred to The beneficial effects of the corresponding methods will not be described again here.
- Figure 1 is a schematic diagram of a communication system suitable for embodiments of the present application.
- Figure 2 is a schematic flow chart of a communication method provided by an embodiment of the present application.
- Figure 3 is a schematic flow chart of another communication method provided by an embodiment of the present application.
- Figure 4 is a schematic flow chart of another communication method provided by an embodiment of the present application.
- Figure 5 is a schematic block diagram of a communication device provided by an embodiment of the present application.
- Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- GSM global system of mobile communication
- CDMA code division multiple access
- WCDMA wideband code division multiple access
- GPRS general packet radio service
- LTE long term evolution
- FDD frequency division duplex
- TDD LTE Time division duplex
- UMTS universal mobile telecommunication system
- WiMAX fifth generation
- 5G Fifth generation
- 6G sixth generation
- 6G sixth generation
- FIG 1 is a schematic diagram of a communication system 100 suitable for embodiments of the present application.
- the communication system 100 may include a core network device 110, an access network device 120 and at least one terminal device (for example, the terminal device 130 and the terminal device 140 in Figure 1).
- the terminal device 130 and the terminal device 140 can be connected to the access network device 120 through a wireless manner, and the access network device 120 is connected to the core network device 110 through a wireless or wired manner.
- the core network equipment and the access network equipment can be independent and different physical devices, or the functions of the core network equipment and the logical functions of the access network equipment can be integrated on the same physical device, or they can be one physical device.
- the device integrates some functions of core network equipment and some functions of access network equipment.
- FIG. 1 is only a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which is not limited in this application.
- the network involved in the embodiment of this application may be the core network device 110 or the access network device 120.
- the terminal involved in the embodiment of this application may be the terminal device 130 and/or the terminal device 140.
- the access network device (for example, the access network device 120) is an access device through which the terminal device wirelessly accesses the communication system.
- Access network equipment can also be called wireless access network (radio access network, RAN) equipment, wireless access network equipment, and network equipment.
- the access network device may be a base station.
- the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), master station (master eNodeB, MeNB), secondary station (secondary eNodeB, SeNB), multi-standard radio (multi standard radio, MSR) node, home base station, network controller, access node, wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), radio frequency remote unit (remote radio unit, RRU), active antenna unit (active antenna unit, AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
- NodeB Node B
- eNB evolved base station
- gNB next
- the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
- a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
- the base station can also be a network-side device in the 6G network, a device that assumes the base station function in the future communication system, etc.
- Base stations can support networks with the same or different access technologies.
- Base stations can be fixed or mobile. For example, a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location. In other examples, a helicopter or drone may be configured to serve as a device that communicates with another base station.
- the embodiments of this application do not limit the specific technology and specific equipment form used by the access network equipment.
- gNB may include CUs and DUs.
- the gNB may also include an active antenna unit (AAU).
- CU implements some functions of gNB;
- DU implements some functions of gNB.
- CU is responsible for processing non-real-time protocols and services to implement radio resource control (RRC) and packet data convergence protocol (PDCP) layer functions.
- RRC radio resource control
- PDCP packet data convergence protocol
- DU is responsible for processing physical layer protocols and real-time services to implement the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
- RLC radio link control
- MAC media access control
- PHY physical layer
- the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
- the CU can be used as a network device in the access network or as a network device in the core network (core network, CN), which is not limited in this application.
- the terminal devices may be a A device that provides voice/data connectivity to users, such as handheld devices with wireless connection functions, vehicle-mounted devices, etc.; it can be devices in Internet of Vehicles communications, such as vehicle-mounted communication terminals, road side units , RSU); it can be a communication terminal carried on a drone; it can also be a terminal device in an Internet of Things (IoT) system.
- Terminal equipment may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user Agent or user device, etc.
- UE user equipment
- terminal devices include but are not limited to: mobile phones, tablets, laptops, PDAs, mobile Internet devices (MID), wearable devices, and virtual reality (VR) devices.
- augmented reality (AR) equipment wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grids Wireless terminals in grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless phones, session initiation protocols ( session initiation protocol (SIP) telephone, wireless local loop (WLL) station, personal digital assistant (personal digital assistant (PDA)), handheld device with wireless communication capabilities, computing device or other process connected to a wireless modem Equipment, wearable devices, terminal equipment in 5G networks or terminal equipment in next-generation communication systems (for example, 6G communication systems), or terminal equipment in future evolved public land mobile communication networks (public land mobile network, PLMN), etc.
- the embodiments of this application do not limit the specific form of the terminal device.
- Access network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky.
- the embodiments of this application do not limit the application scenarios of access network equipment and terminal equipment.
- the above-mentioned devices may still use their names in the 5G communication system, or may have other names, which are not limited in the embodiments of this application.
- the functions of the above devices can be completed by an independent device or by several devices together.
- network elements in the core network may be deployed on the same or different physical devices, which is not limited in the embodiments of this application.
- Figure 1 is only an example and does not constitute any limitation on the scope of protection of the present application.
- the communication method provided by the embodiment of the present application may also involve network elements or equipment not shown in Figure 1.
- the communication method provided by the embodiment of the present application may also only include some of the equipment shown in Figure 1. This embodiment of the present application does not Not limited.
- the above communication system 100 applied to the embodiment of the present application is only an example.
- the communication system applicable to the embodiment of the present application is not limited thereto. Any communication system that can realize the functions of each of the above devices is suitable for the embodiment of the present application.
- network equipment refers to access network equipment.
- Terminal equipment or network equipment includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
- This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU) and memory (also called main memory).
- the operating system can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system, etc.
- This application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
- the embodiments of the present application do not specifically limit the specific structure of the execution subject of the method provided by the embodiments of the present application, as long as the program recorded in the code of the method provided by the embodiments of the present application can be executed according to the method provided by the embodiments of the present application. It suffices to communicate by method.
- the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a terminal device or a network device.
- a functional module (such as a processor, chip, or chip system, etc.) that can call a program and execute the program.
- MSD inter-modulation interference
- harmonic/harmonic mixing interference harmonic/harmonic mixing
- cross-band isolation cross band isolation
- Proximity proximity interference
- Intermodulation interference refers to the second-order and third-order interference of two uplink frequency bands in dual uplink frequency band combinations such as LTE-NR dual connectivity (E-UTRA-NR dual connectivity, EN-DC) or uplink carrier aggregation (UL CA).
- the intermodulation products of the first, fourth or fifth order fall within the received signal band of the downlink frequency band.
- the intermodulation products of the two uplink frequency bands fall within the received signal band of the downlink frequency band. It can be understood that the frequency points of the two uplink frequency bands can be obtained by calculation.
- the frequency point of n-order intermodulation is within the range of the UE's downlink receiving frequency band, which may cause interference to the UE's receiving signal, causing the UE's receiving sensitivity to decrease.
- the downlink receiving frequency band can be one of the downlink frequency bands corresponding to the two uplink frequency bands that generate intermodulation, or the downlink receiving frequency band can also refer to two concurrent uplink frequency bands in a CA/DC combination of more than two frequency bands.
- the downlink receiving frequency band of the third frequency band can be one of the downlink frequency bands corresponding to the two uplink frequency bands that generate intermodulation, or the downlink receiving frequency band can also refer to two concurrent uplink frequency bands in a CA/DC combination of more than two frequency bands.
- the downlink receiving frequency band of the third frequency band can be one of the downlink frequency bands corresponding to the two uplink frequency bands that generate intermodulation, or the downlink receiving frequency band can also refer to two concurrent uplink frequency bands in a CA/DC combination of more than two frequency bands.
- Harmonic/harmonic mixed interference means that when the transmitter and receiver of the frequency band combination supported by the UE are active at the same time, harmonic and/or harmonic mixed interference will reduce the reception performance of the UE.
- Harmonic interference refers to the uplink second, third, fourth or fifth harmonics of the lower frequency band of the CA/DC frequency band combination falling into the higher frequency band, causing interference to the reception of the higher frequency band.
- Harmonic mixed interference refers to the second, third, fourth or fifth harmonic mixing of the higher frequency band uplink signal of the CA/DC frequency band combination and the lower frequency band local oscillator signal falling into the lower frequency band useful signal reception band , causing interference to reception in lower frequency bands.
- Cross-band isolation means that when the frequency band where the UE sends uplink information is very close to the frequency band where downlink information is received, or because the uplink signal in one frequency band in the frequency band combination is insufficiently suppressed by the filter in the frequency range of the received signal in another frequency band, there is an uplink When there is interference from the downlink, the receiving sensitivity of the UE will decrease.
- Adjacent interference refers to the interference of uplink signals in the same frequency band to signals in the receiving frequency band.
- DC_3-n78 means that frequency band 3 and frequency band n78 are used as dual-link DC.
- Table 1 The MSD values of DC_3-n78 under different channel bandwidths are shown in Table 1. Among them, the channel bandwidth of downlink frequency band n78 exceeds 10dB. When the n78 downlink channel bandwidth is 10MHz, 15MHz and 20MHz, the MSD value even exceeds 20dB.
- the terminal when the signal energy of the terminal is less than the MSD value specified in the protocol, the terminal will not be able to receive any data. Therefore, when the MSD value is too high, the reception performance of the terminal may be affected. Therefore, it is necessary to reduce the MSD value, that is, to improve the MSD.
- intermodulation interference MSD it can be achieved by adjusting the UE hardware or through network scheduling.
- Intermodulation interference MSD can be improved, for example, by improving the UE's printed circuit board (PCB) isolation, improving the UE's antenna isolation, and improving the performance of radio frequency devices (for example, the linearity of the power amplifier (PA) ), UE transmit power rollback or network scheduling single uplink carrier to improve.
- PA power amplifier
- harmonic/harmonic mixed interference MSD the improvement of harmonic/harmonic mixed interference MSD can also be achieved by adjusting the UE hardware or through network scheduling. For example, the PA output harmonic suppression of the UE can be increased. Use harmonic suppression filters and network scheduling to limit non-simultaneous transmission and reception, etc.
- Various methods to improve MSD are introduced in detail below.
- Crosstalk refers to the coupling phenomenon between signal lines that are not directly connected.
- the parameters of the PCB layer, the spacing of the signal lines, the electrical characteristics of the driving end and the receiving end, and the signal line termination method all have a certain impact on crosstalk.
- One possible solution is to reduce high-frequency signal crosstalk through PCB wiring, that is, using PCB isolation to reduce intermodulation interference MSD.
- inserting a ground wire or ground plane between two lines with serious crosstalk can provide isolation and reduce crosstalk.
- the spacing between adjacent signal lines can be increased and the parallel length of the signal lines can be reduced.
- the directions of the wiring should be perpendicular to each other, and other measures.
- Method 2 Improve the antenna isolation of UE
- Antenna isolation refers to the ratio of the signal transmitted by one antenna and the signal received by another antenna to the signal of the transmitting antenna. That is, the less one antenna receives the signal transmitted by the other antenna, the better the isolation between the two antennas and the lower the degree of interference.
- Effective measures to improve antenna isolation mainly include: blocking method, orthogonal polarization method, cancellation method and appropriate antenna layout.
- the blocking method refers to setting up obstacles on the electromagnetic coupling channel to block electromagnetic coupling.
- a parabolic antenna is equipped with a skirt, and its front-to-back ratio index is improved by nearly 15 decibels (dB) compared with a standard antenna.
- the orthogonal polarization method means that two antennas adopt mutually orthogonal polarizations.
- two orthogonal linear polarizations or two orthogonal circular polarizations are used for transmitting and receiving to increase the polarization. Isolation effect.
- the cancellation method refers to artificially opening another coupling channel between the two antennas so that it can cancel each other out with the original coupling to enhance the isolation effect.
- increasing the antenna spacing can improve antenna isolation, but in practice, limitations are often encountered, especially when the antenna layout range on mobile terminals is narrow, appropriate antenna layout is more important. When solving practical problems, the above methods are usually used in combination.
- the increase in UE transmit power will cause the MSD value to increase. For example, when power level 3 is increased to power level 2 (that is, 23dBm is increased to 26dBm), the second-order intermodulation MSD can be increased from 26dB to 31.9dB, and the fourth-order intermodulation MSD can be increased from 26dB to 31.9dB. Can be increased from 8dB to 18.5dB.
- the transmit power of the physical uplink shared channel (PUSCH) is determined by Formula 1.
- PCMAX,f,c (i) represents the maximum transmit power configured for the UE. When PCMAX,f,c (i) is small enough, the UE will use PCMAX,f,c (i) as the actual transmit power of PUSCH.
- P PUSCH,b,f,c (i,j,q d ,l) represents the transmit power of PUSCH
- P O_PUSCH,b,f,c (j) represents the open-loop basic power control parameters
- a b,f,c (j) represents the path loss compensation factor
- PL b,f,c (q d ) represents the path loss measured based on the path loss reference signal group qd
- ⁇ TF,b ,f,c (i) means PUSCH
- MCS modulation and coding scheme
- P EMAX,c represents the power parameter configured by the network
- P PowerClass represents the maximum UE power/power level
- ⁇ T TB,c represents additional tolerance
- MPR c represents the maximum power fallback.
- the range of the configured maximum transmit power is related to the maximum power reduction (MPR).
- MPR maximum power reduction
- the value of MPR is related to the power level, waveform selection, modulation method and frequency domain resource allocation of uplink transmission. Therefore, higher modulation order or adjusting RB allocation can improve MPR and reduce the UE's transmit power, thereby reducing MSD.
- Method 4 The network schedules a single uplink carrier to send uplink transmission
- intermodulation interference may occur. If network equipment scheduling is used to limit uplink transmission to only one uplink carrier at the same time, and no uplink transmission is scheduled on another carrier, intermodulation interference can be effectively avoided and MSD reduced.
- Method 5 Network scheduling to send and receive non-simultaneous uplink transmission and downlink transmission
- the main cause of harmonic/harmonic mixed interference is that the UE needs to receive downlink transmission while sending uplink transmission, thus affecting the UE receiving sensitivity. Therefore, the network limits the same time to schedule uplink transmission without scheduling downlink transmission, and the UE sends uplink transmission without receiving downlink transmission; or, schedules downlink transmission without scheduling uplink transmission at the same time, and UE receives downlink transmission without sending uplink transmission at the same time, so that the UE can Reduce the impact on receiving sensitivity.
- improving PCB isolation, improving antenna isolation, transmit power rollback, and network scheduling limiting single carrier uplink transmission can improve intermodulation interference MSD.
- the ability to improve harmonic/harmonic mixed interference MSD is very small.
- Increasing PA output harmonic suppression and network scheduling to limit non-simultaneous transmission and reception can improve harmonic/harmonic mixed interference MSD, but the ability to improve intermodulation interference MSD is very small.
- the network does not know whether the MSD of the accessed UE can be improved, it has no way of knowing whether it needs to intervene on the UE through scheduling restrictions to reduce the MSD of the UE. For UEs that have already reduced the MSD on their own, the network does not need to further reduce the MSD. If the network blindly takes measures at this time, it will increase scheduling restrictions. For UEs that cannot reduce the MSD on their own, the network needs to take measures, but the network does not know the measures. Which MSD for frequency band/band combination? needs to be reduced, appropriate measures cannot be taken.
- embodiments of the present application provide a communication method and a communication device.
- the terminal sends first information to the network.
- the first information is used to indicate the ability to improve MSD, so that the network can determine whether to take measures based on the first information. , which can improve the transmission performance of terminals with MSD problems.
- Figure 2 is a communication method provided by an embodiment of the present application.
- method 200 involves interaction between a network and a terminal.
- the network can be, for example, the access network device 120 and the core network device 110 shown in Figure 1.
- the terminal can be the terminal shown in Figure 1. device 130 and terminal device 140.
- the method 200 may specifically include S210 and S220.
- the terminal determines the maximum sensitivity reduction MSD improvement capability for the first spectrum combination.
- the first spectrum combination includes a first frequency band and a second frequency band.
- the frequency band number of the first frequency band is different from the frequency band number of the second frequency band.
- the terminal can meet the requirements for improving MSD.
- the terminal's own hardware design allows greater PCB isolation.
- the terminal can improve the intermodulation interference MSD. That is to say, after determining the two frequency bands in the first spectrum combination, the terminal can determine whether the MSD of the first spectrum combination can be improved according to its own hardware conditions, that is, the terminal determines the ability of the MSD to improve the first spectrum combination.
- the first spectrum combination is CA_n3-n78
- the first frequency band is n3
- the second frequency band is n78
- the first frequency band n3 and the second frequency band n78 perform carrier aggregation.
- S220 The terminal sends the first information.
- the network receives the first information.
- the first information indicates the capability of MSD improvement for the first spectrum combination.
- the first information may include at least one of the following: MSD improvement capability information, MSD type information, frequency band information, first interval information, first behavior information, second behavior information, simultaneous transceiver capability information, and scale factor information; or, the The first information may include at least one of the following: MSD improvement capability information, MSD type information, frequency band information, second interval information, first behavior information, second behavior information, simultaneous transceiver capability information, and scale factor information; or, the first information One piece of information may include at least one of the following: improvement capability information, MSD type information, frequency band information, first MSD value, third MSD value, first behavior information, second behavior information, simultaneous transmission and reception capability information, and scale factor information.
- the first information includes MSD improvement capability information
- the MSD improvement capability information indicates that the terminal can improve the MSD
- the MSD improvement capability information indicates that the terminal cannot improve the MSD
- the MSD improvement capability information is determined based on a first MSD value, and the first MSD value is the MSD value of the terminal for the first spectrum combination.
- the first MSD value may be understood as the MSD value actually generated by the terminal for a given spectrum combination (for example, the first spectrum combination). It should be understood that the first MSD value corresponds to the terminal, and the first MSD values of different terminals may be different.
- the first MSD value also corresponds to the spectrum combination, and the MSD values of different spectrum combinations are determined independently. For example, the terminal increases the original MSD value (ie, increases the second MSD value) by improving antenna isolation, PCB isolation, etc.
- the original MSD value here can be understood as the MSD value obtained using the traditional RAN4 assumptions and definitions of frequency band combinations.
- a specific power level for a given frequency band combination (eg, a first spectrum combination), there are fixed MSD types and their corresponding second MSD values.
- the MSD improvement capability information indicates that the terminal can improve the MSD; or, if the first MSD value is greater than the first threshold, the MSD improvement capability information indicates that the terminal cannot improve the MSD.
- the MSD improvement capability information indicates that the terminal can improve the MSD; or if the first MSD value is greater than or equal to the first threshold, the MSD improvement capability information indicates that the terminal cannot Improve MSD.
- the MSD value of the terminal for the first spectrum combination is less than or equal to the first threshold, it means that the first MSD value of the terminal (that is, the MSD value improved by the terminal) meets certain requirements, and the MSD improvement capability can be reported at this time
- the information indicates that the terminal can improve the MSD and does not require further improvement by the network; if the first MSD value of the terminal is greater than the first threshold, it means that the terminal cannot improve the MSD value, or the improved MSD value cannot meet the requirements. At this time, the MSD improvement capability can be reported
- the information indicates that the terminal cannot improve the MSD, and network scheduling restrictions need to intervene in the terminal to reduce the MSD of the terminal.
- the MSD improvement capability information is determined based on a first MSD value and a second MSD value.
- the first MSD value is the MSD value of the terminal for the first spectrum combination.
- the first MSD value can be understood as the terminal's MSD value for a given spectrum combination.
- the MSD value actually produced by the spectrum combination (for example, the first spectrum combination).
- the second MSD value is a predefined MSD value of the first spectrum combination, and the first MSD value is smaller than the second MSD value.
- the second MSD value can be understood as the MSD value obtained using traditional RAN4 assumptions and definitions of frequency band combinations. For a given frequency band combination (for example, the first spectrum combination), the second MSD value is fixed and predefined in the protocol.
- the first MSD value is smaller than the second MSD value, that is, the terminal improves the MSD value.
- the first MSD value is the improved MSD value
- the second MSD value is the original MSD value.
- the MSD improvement capability information indicates that the terminal can improve the MSD; or, if the first MSD value is greater than the first threshold, then The MSD improvement capability information indicates that the terminal cannot improve the MSD.
- the MSD improvement capability information indicates that the terminal can improve the MSD; or, if the first MSD value is greater than or equal to the first threshold, the MSD The improvement capability information indicates that the terminal cannot improve the MSD.
- the terminal can determine whether it is capable of improving the MSD according to the first MSD value and the second MSD value. If the first MSD value is less than or equal to the first threshold and the second MSD value is greater than or equal to the second threshold, it means that the terminal can improve the MSD and does not need to be improved by the network.
- the terminal can send MSD improvement capability information to the network to indicate that the terminal can improve the MSD. . If the first MSD value is greater than the first threshold, it means that the terminal cannot effectively improve the MSD. Therefore, the terminal can send MSD improvement capability information to the network to indicate that the terminal cannot improve the MSD.
- first threshold and/or second threshold are predefined, or the first threshold and/or the second threshold are configured by high-level parameters, or the first threshold and/or the second threshold are This application does not limit the dynamic indication through downlink control information (DCI)/medium access control control element (MAC CE).
- DCI downlink control information
- MAC CE medium access control control element
- the value of the first threshold and/or the second threshold may be 5dB, 10dB, etc.
- the first information may include 1 bit. If set to 0, it indicates that the first information includes MSD improvement capability information indicating that the terminal device cannot improve MSD. If set to 1, it indicates that the first information includes MSD improvement capability information to indicate that the terminal device cannot improve MSD. Equipment can improve MSD.
- the first information may only include MSD improvement capability information.
- MSD improvement capability information For example, when the first MSD value drops to 5 dB and below, the MSD improvement capability information reported by the terminal indicates that the terminal can improve the MSD. But when the second MSD value improves from 20dB to 10dB, because the first MSD value (that is, the improved MSD value is 10dB) cannot meet the transmission requirements (the first MSD value is less than or equal to 5dB), the MSD improvement capability reported by the terminal The information indicates that the terminal cannot improve the MSD, and network scheduling restrictions need to intervene in the terminal to reduce the MSD of the terminal.
- the first information includes MSD type information
- the MSD type information indicates the type of MSD of the first spectrum combination
- the MSD type information includes at least one of the following: second-order intermodulation interference, third-order intermodulation Dry interference, fourth-order intermodulation interference, fifth-order intermodulation interference, second-order harmonic interference, third-order harmonic interference, fourth-order harmonic interference, fifth-order harmonic interference, second-order harmonic mixed interference, third-order harmonic mixing frequency interference, fourth-order harmonic mixing interference, fifth-order harmonic mixing interference, and cross-band isolation.
- the MSD type information includes all MSD types present in the first spectrum combination. That is, all MSD types existing in the first spectrum combination are reported to the network. It is understood that for a specific frequency band combination, no fewer than two MSD types may occur. For example, second-order intermodulation interference, fourth-order intermodulation interference, fifth-order intermodulation interference and harmonic interference exist simultaneously in the CA_n3-n78 spectrum combination.
- the MSD type information includes the MSD type corresponding to the largest second MSD value in the first spectrum combination, and the second MSD value is a predefined MSD value of the first spectrum combination. That is, the MSD type with the most serious MSD problem is reported to the network.
- the MSD type information includes an MSD type in the first spectrum combination that satisfies a first condition.
- the first condition is that the first MSD value is greater than or equal to a third threshold, and the first MSD value is the terminal's target for the first spectrum combination.
- MSD value the terminal can send the MSD type corresponding to the first MSD value greater than or equal to the third threshold to the network according to its own first MSD value. In this case, it means that the terminal cannot improve the MSD, so it needs to send an MSD type that cannot be improved to the network, so that the network can take appropriate measures based on the MSD type information in the first information.
- the third threshold is predefined, or the third threshold is configured by high-level parameters, or the third threshold is dynamically indicated through DCI/MAC CE, which is not limited in this application.
- the value of the third threshold may be 5dB, 10dB, etc.
- the MSD type information includes an MSD type whose third MSD value is not zero in the first spectrum combination, the third MSD value is a difference between the first MSD value and the second MSD value, and the first MSD The value is the MSD value of the terminal device for the first spectrum combination, the second MSD value is the predefined MSD value of the first spectrum combination, and the first MSD value is smaller than the second MSD value.
- the MSD type information reported by the terminal device is an improved MSD type.
- the terminal reports an MSD type that satisfies a second condition.
- the second condition is that the first MSD value is less than or equal to the first threshold and the second MSD value is greater than the second threshold.
- the MSD type information reported by the terminal includes the first MSD type, that is, the first MSD type is The terminal has undergone MSD improvements.
- the network can learn which MSD types have been improved by the terminal by receiving the first information, so that it can take more targeted measures to improve other types of MSDs.
- the MSD type information reported by the terminal does not include the second MSD type. That is, although the terminal is not interested in the second MSD Types were improved, but the second MSD type was not improved enough.
- the network receives the first information, the first information does not include the second MSD type, indicating that the terminal has not improved the second MSD type, and the network needs to take corresponding measures to improve the second MSD type.
- the improved MSD type reported by the terminal does not include the third MSD type, that is, the third MSD type.
- the original MSD value of the third MSD type is not large (that is, the second MSD value is not large), and neither the terminal nor the network needs to improve the third MSD type.
- the first information may contain 8 bits, each bit corresponds to an MSD type, then the first information Can correspond to up to 8 MSD types. For each bit, setting 0 indicates that the MSD type corresponding to the bit does not exist in the first spectrum combination, and setting 1 indicates that the MSD type corresponding to the bit exists in the first spectrum combination.
- the first information includes MSD improvement capability information and MSD type information. That is to say, when reporting MSD improvement capability information, the terminal can report corresponding MSD type information, that is, which types of MSDs the terminal can improve, or which types of MSDs the terminal cannot improve. In this case, the network can learn which types of MSDs need to be improved and/or which types of MSDs do not need to be improved by receiving the first information.
- the first spectrum combination also includes a third frequency band, the frequency band number of the third frequency band is different from the frequency band number of the first frequency band, and the frequency band number of the third frequency band is different from the frequency band number of the second frequency band,
- the first information includes frequency band information, the frequency band information indicates a third frequency band, and the third frequency band is a frequency band affected by MSD in the first spectrum combination.
- the terminal can directly report the frequency band affected by MSD to the network, so that after the network receives the first information, it can determine the information of the third frequency band affected by MSD, so that the MSD problem can be improved in a targeted manner.
- the terminal device can report the frequency band information of the third frequency band. For example, the terminal device can report the frequency band number of the third frequency band.
- the first information includes first interval information, the first interval information includes an interval to which the first MSD value belongs, and the first MSD value is the MSD value of the terminal for the first spectrum combination.
- the network side and the terminal side may predefine or the network may preconfigure an MSD improvement interval mapping table (i.e., the first MSD interval mapping table).
- the mapping table may include the terminal reported value (reported value) and the third value corresponding to the reported value.
- the reported value may be a bit value
- the first MSD value interval may be [0, N1), [N1, N2), [N2, N3), etc.
- the bit value corresponds to the first MSD value interval.
- the terminal reports 0 bits to indicate that the first MSD value is within the range of [0, N1)
- the division of the MSD improvement interval may be as shown in Table 2 or Table 3.
- the values of (N1, N2, N3, ..N(m+1)) are predefined or preconfigured.
- the first information may include first interval information and MSD type information. That is to say, when reporting the first interval information, the terminal can also report MSD type information, so that after the network receives the first information, it can learn the interval to which the first MSD value belongs and the type of the first MSD value, and then This allows the network to take more targeted measures to improve the MSD based on the first information.
- the first information includes second interval information
- the second interval information includes the interval to which the third MSD value belongs
- the third MSD value is the difference between the first MSD value and the second MSD value.
- the first MSD value is the MSD value of the terminal for the first spectrum combination
- the second MSD value is the predefined MSD value of the first spectrum combination
- the first MSD value is smaller than the second MSD value.
- the network side and the terminal side can predefine or the network can pre-configure an improved MSD interval mapping table (ie, the third MSD interval mapping table).
- the mapping table can include the terminal reported value (reported value) and the corresponding value of the reported value.
- the third MSD value interval range where the reported value can be a bit value, the third MSD value interval range can be [0, N1), [N1, N2), [N2, N3), etc., the bit value is the same as the third MSD value interval range.
- the MSD value interval corresponds to the range.
- the terminal reports 0 bits to indicate that the third MSD value is within the range of [0, N1), and the terminal reports 1 bit to indicate that the third MSD value is within the range of [N1, N2). Therefore, after the network receives the reported bit value, it can determine the range of the third MSD value according to the MSD improvement interval mapping table, so that the network can take appropriate measures to improve the MSD after receiving the first information.
- the division of the improved MSD value interval may be as shown in Table 2, Table 3 or Table 4.
- the values of (N1, N2, N3, ..N(m+1)) are predefined or preconfigured.
- the first information may include second interval information and MSD type information. That is to say, when reporting the second interval information, the terminal can also report MSD type information, so that after the network receives the first information, it can learn the interval to which the third MSD value belongs and the type of the third MSD value, and then This allows the network to take more targeted measures to improve the MSD based on the first information.
- the first information includes a first MSD value, or the first information includes a third MSD value, and the third MSD value is the difference between the first MSD value and the second MSD value,
- the first MSD value is the MSD value of the terminal for the first spectrum combination
- the second MSD value is the predefined MSD value of the first spectrum combination
- the first MSD value is smaller than the second MSD value.
- the first information includes first behavior information and/or second behavior information, the first behavior information instructs the network to schedule uplink transmission on a single carrier or a single frequency band; the second behavior information instructs the network to schedule uplink transmission on a single carrier or a single frequency band; Uplink/downlink transmission is not scheduled simultaneously in the first frequency band combination, or the second behavioral information instructs the network to schedule The interval between uplink and downlink transmission is greater than or equal to the fifth threshold.
- the terminal reports that it expects the network device to perform the first behavior.
- the network For UL CA/EN-DC, if both carriers have uplink resources at the same time, the network only schedules uplink transmission on one carrier.
- the terminal reports that it expects the network to perform the second behavior.
- uplink and downlink are not scheduled at the same time, or terminals are prevented from sending and receiving information at the same time, or there is a certain degree of isolation between sending and receiving information.
- the fifth threshold is predefined, or the fifth threshold is configured by high-level parameters, or the fifth threshold is dynamically indicated through DCI/MAC CE, which is not limited in this application.
- the first information includes simultaneous transceiver capability indication information
- the simultaneous transceiver capability indication information indicates that the first spectrum combination supports simultaneous transceiver
- the simultaneous transceiver capability indication information indicates that the first spectrum combination does not support simultaneous transceiver .
- the simultaneous transceiver capability indication information indicates that the first spectrum combination does not support simultaneous transceiver; or, if the first MSD value is less than the first threshold, the simultaneous transceiver capability The indication information indicates that the first spectrum combination supports simultaneous transmission and reception.
- the terminal cannot effectively improve the MSD. Therefore, it is necessary to send simultaneous transceiver capability indication information to the network to indicate that the first spectrum combination does not support simultaneous transceiver, thereby avoiding The network schedules signal reception and transmission simultaneously to avoid further impact on MSD.
- the simultaneous transceiver capability indication information indicates that the first spectrum combination does not support simultaneous transceiver; or, if the second MSD value is less than the fourth threshold, then simultaneous transceiver The capability indication information indicates that the first spectrum combination supports simultaneous transmission and reception.
- the terminal also needs to report simultaneous transmission and reception.
- the capability indication information indicates that the first spectrum combination does not support simultaneous transmission and reception.
- the simultaneous transceiver capability indication information indicates that the first spectrum combination does not support simultaneous transceiver, and the first MSD value is the MSD value of the terminal for the first spectrum combination.
- the terminal needs to report simultaneous transceiver capability indication information indicating that the first spectrum combination does not support simultaneous transceiver.
- the terminal may send simultaneous transceiver capability indication information to indicate that the first spectrum combination does not support simultaneous transceiver. If the terminal does not report capability information that supports simultaneous transmission and reception before sending the first information, the terminal reports capability information that does not support simultaneous transmission and reception, or the terminal does not report capability information related to simultaneous transmission and reception, or the terminal can send simultaneous transmission and reception capability indication information. Indicates that the first spectrum combination does not support simultaneous transmission and reception.
- the fourth threshold is predefined, or the fourth threshold is configured by high-level parameters, or the fourth threshold is dynamically indicated through DCI/MAC CE, which is not limited in this application.
- the value of the fourth threshold may be 10dB, 15dB, 28.7dB, etc.
- the first information includes scale factor information.
- the scale factor information is used to indicate the ratio of the terminal's transmit power change value to the third MSD value.
- the third MSD value is the ratio of the first MSD value to the second MSD value.
- MSD value The difference between the first MSD value is the MSD value of the terminal for the first spectrum combination, the second MSD value is the predefined MSD value in the first spectrum combination, and the first MSD value is smaller than the second MSD value.
- the first information reported by the terminal includes a ratio of the terminal's transmit power change value to the third MSD value.
- the terminal calculates the scale factor information by itself based on the relationship between the transmit power change value and the third MSD value. For example, if the transmit power of the terminal increases by 2dB and the MSD value decreases by 4dB, the scaling factor reported by the terminal is 0.5.
- the first information reported by the terminal includes the transmit power change value and the third MSD value, that is, the terminal reports the transmit power change value and the third MSD value of the terminal respectively, and the network calculates the scale factor information based on the first information. For example, if the transmit power change value reported by the terminal is 2dB and the value of the third MSD is 4dB, then the scale factor calculated by the terminal network is 0.5.
- the network and the terminal may predefine or the network may pre-configure a scaling factor mapping table.
- the mapping table may include the terminal reported value (reported value) and the scaling factor interval range corresponding to the reported value, where the reported value may is a bit value, and the scale factor interval range can be [0, 0.2), [0.2, 0.4), ..., [0.8, 1), and the bit value corresponds to the scale factor interval range.
- the terminal reports 0 bits to indicate that the scale factor is within the range of [0, 0.2), and the terminal reports 1 bit to indicate that the scale factor is within the range of [0.2, 0.4). Therefore, after the network receives the reported bit value, it can determine the range of the scale factor based on the scale factor interval mapping table.
- the first information may include MSD type information and scale factor information. Considering different spectrum combinations and different MSD types, the ratio of the transmit power change value to the third MSD value will be different. Therefore, when reporting a given spectrum combination (for example, the first spectrum combination), the terminal may report scale factor information corresponding to at least one MSD type. After the network receives the first information, it can learn the scaling factor corresponding to which type of MSD, so that the transmission power of the terminal can be adjusted in a targeted manner.
- the above-mentioned first information can be carried on the MAC CE and sent to the network, or can also be carried on the PUSCH and sent to the network. This application does not limit this.
- the network learns that the terminal can improve the MSD, or the type of MSD to be improved, or the improvement value of the MSD. The network can then judge for itself whether further improvements to the MSD are necessary.
- the network determines that there is no need to further improve the MSD, no action will be taken after receiving the first information. If the network determines that the MSD needs to be further improved, the MSD of the terminal can be improved through scheduling restrictions.
- the network after the network receives the first information and learns that the terminal cannot improve the MSD, the network takes corresponding measures to improve the MSD.
- the network can take corresponding measures to improve the MSD according to the MSD type. For example, if the MSD type reported by the terminal is intermodulation interference, the network can schedule uplink transmission on a single carrier or a single frequency band to reduce this type of MSD; if the MSD type reported by the terminal is harmonic/harmonic intermodulation interference MSD , then the network may not schedule uplink and downlink transmission at the same time, or there may be a certain interval between scheduled uplink and downlink transmission to reduce this type of MSD.
- the network device learns that the network behavior expected by the terminal is the first behavior or the second behavior, and then the network performs corresponding scheduling based on the first behavior or the second behavior expected by the terminal.
- Limitation that is, the network schedules uplink transmission on a single carrier or a single frequency band, or the network does not schedule uplink/downlink transmission at the same time in the first frequency band combination, or the network schedules uplink and downlink transmission in the first frequency band combination with a certain interval.
- the terminal can send first information to the network, and the first information can indicate the terminal's MSD improvement capability for the first spectrum combination, so that the network can learn the terminal's MSD improvement capability, so that it can It is determined based on the first information whether the MSD needs to be further improved, and the receiving performance of the terminal can be improved by effectively improving the MSD through the terminal or the network.
- Figure 3 is another communication method provided by an embodiment of the present application.
- method 300 involves interaction between network equipment and terminal equipment.
- the network equipment may be, for example, the access network equipment 120 and core network equipment 110 shown in Figure 1.
- the terminal equipment may be the access network equipment 120 shown in Figure 1.
- Terminal device 130 and terminal device 140 are shown.
- the method 300 may specifically include S310 to S340.
- S310 The terminal device obtains the first carrier and the second carrier.
- the network device sends the first carrier and the second carrier.
- the network device can add a first carrier to the terminal device in the initial configuration information, and the terminal device can access the network device through the first carrier and establish an RRC connection, where the frequency point of the first carrier belongs to the first band.
- the network device may query the UE's capability information through signaling, and the UE reports its own capability information.
- the capability information may include a list of frequency band combinations and/or candidate frequency band combinations supported by the UE.
- the network device uses the RRC reconfiguration information to add a second carrier to the UE as a secondary cell, and the frequency point of the second carrier belongs to the second band.
- the uplink carrier of the first band and the uplink carrier of the second band perform carrier aggregation CA, or the first carrier and the second carrier form dual connectivity.
- This dual connection mode may be EN-DC dual connection, NE-DC dual connection or NR-DC dual connection, etc., which is not limited in this application.
- the terminal device is configured to aggregate the first carrier and the second carrier, or the terminal device is configured to dual-connect the first carrier and the second carrier, and the first carrier and the second carrier form a first spectrum combination.
- the spectrum combination DC_3-n78 means that frequency band 3 and frequency band n78 are dual-linked.
- the terminal determines the maximum sensitivity reduction MSD improvement capability for the first spectrum combination.
- the first spectrum combination includes a first frequency band and a second frequency band.
- the frequency band number of the first frequency band is different from the frequency band number of the second frequency band.
- S330 The terminal device sends the first information.
- the network device receives the first information.
- S320 and S330 can refer to S210 and S220 respectively. For the sake of simplicity, they will not be described again here.
- S340 The network device determines whether to schedule the restricted terminal device according to the first information.
- the network device determines whether the MSD needs to be further improved based on the first information. If the network device determines that the terminal device has improved the MSD, the network device may not perform any operation after receiving the first information. If the network device determines that the MSD needs to be further improved, the network device can schedule and restrict the terminal device to improve the MSD of the terminal device.
- the network device learns the MSD type whose MSD value is too large, the network device takes measures according to the specific situation of the first information. For example, if the MSD type reported by the terminal device is intermodulation interference MSD, the network device can schedule uplink transmission on a single carrier or a single frequency band to reduce this type of MSD; if the MSD type reported by the terminal device is harmonic/ If harmonic intermodulation interferes with MSD, the network equipment may not schedule uplink and downlink transmission at the same time, or there may be a certain interval between scheduled uplink and downlink transmission to reduce this type of MSD.
- intermodulation interference MSD the MSD type reported by the terminal device can schedule uplink transmission on a single carrier or a single frequency band to reduce this type of MSD
- harmonic/ harmonic intermodulation interferes with MSD
- the network equipment may not schedule uplink and downlink transmission at the same time, or there may be a certain interval between scheduled uplink and downlink transmission to reduce this type of MSD.
- the network device can perform corresponding actions based on the first behavior or the second behavior that the terminal device expects to perform. Scheduling restrictions. That is, the network device determines based on the first information that the terminal device schedules uplink transmission on a single carrier or a single frequency band, or the network device determines based on the first information that uplink/downlink transmission is not scheduled simultaneously in the first frequency band combination, or the network device determines based on the first information One piece of information determines that the interval between uplink and downlink transmissions scheduled in the first frequency band combination is greater than or equal to the fifth threshold.
- the network device can learn the change value of the transmit power of the terminal device and the third According to the ratio of the MSD value, the network device can adjust the transmission power of the uplink signal sent by the terminal device according to the first information, thereby reducing the impact on the MSD.
- the terminal device and the network device may interact through first information.
- the first information may indicate the terminal device's ability to improve the MSD of the first spectrum combination, so that the network device determines based on the first information. Is it necessary to further improve MSD to avoid the impact of MSD on downlink communications, so as to improve the receiving performance of the terminal?
- Figure 4 is another communication method provided by an embodiment of the present application.
- method 400 involves interaction between network equipment and terminal equipment.
- the network equipment may be, for example, the access network equipment 120 and core network equipment 110 shown in Figure 1.
- the terminal equipment may be the access network equipment 120 shown in Figure 1.
- Terminal device 130 and terminal device 140 are shown.
- the method 400 may specifically include S410 to S460.
- S410 The terminal device obtains the first carrier and the second carrier.
- the network device sends the first carrier and the second carrier.
- the terminal device determines the maximum sensitivity reduction MSD improvement capability for the first spectrum combination.
- the first spectrum combination includes a first frequency band and a second frequency band.
- the frequency band number of the first frequency band is different from the frequency band number of the second frequency band.
- S430 The terminal device determines its location in the cell.
- the terminal device determines its location in the cell based on the path loss measurement value or timing advance (timing advance, TA); if the path loss measurement value or timing advance of the terminal device is less than or equal to the sixth threshold, the terminal device The terminal device is located at the near-middle point of the cell to which it belongs; if the path loss measurement value or the timing advance of the terminal device is greater than the sixth threshold, the terminal device is located at the far point of the cell to which it belongs.
- timing advance timing advance
- the terminal device can also determine its location in the cell according to radio resource management (RRM) measurement parameters configured by the network.
- RRM radio resource management
- S440 The terminal device determines the first information according to its own location.
- the first information includes MSD improvement capability information, and the MSD improvement capability information indicates that the terminal device can improve the MSD of the first spectrum combination, or the MSD improvement capability information indicates The terminal equipment cannot improve the MSD of the first spectrum combination.
- the MSD improvement capability information is used to indicate that the terminal device can improve the MSD of the first spectrum combination; or, if the first MSD value is greater than the first threshold, then The MSD improvement capability information is used to indicate that the terminal device cannot improve the MSD of the first spectrum combination; where the first MSD value is the MSD value of the terminal for the first spectrum combination.
- the MSD improvement capability information is used to indicate that the terminal device can improve the MSD of the first spectrum combination;
- the improvement capability information is used to indicate that the terminal device cannot improve the MSD of the first spectrum combination; where the first MSD value is the MSD value of the terminal for the first spectrum combination, and the second MSD The value is the predefined MSD value of the first spectrum combination, and the first MSD value is smaller than the second MSD value.
- the first information includes first behavior information and/or second behavior information
- the first behavior information is used to instruct the network to schedule uplink on a single carrier or a single frequency band.
- the second behavior information is used to instruct the network not to schedule uplink/downlink transmission at the same time in the first frequency band combination, or the second behavior information is used to instruct the network to schedule the uplink and downlink transmission in the first frequency band combination at an interval greater than or equal to Fifth threshold.
- the terminal device sends the first information, and correspondingly, the network device receives the first information.
- S460 The network device determines whether to schedule the restricted terminal device according to the first information.
- the terminal device when determining the first information, the terminal device considers the impact of the location of the terminal device on the MSD, thereby enabling the terminal device to more efficiently determine and report the first information, and facilitate the network device to determine the first information based on the first information. Whether to take corresponding measures to further improve the MSD, so as to avoid affecting the reception performance of the terminal equipment as much as possible.
- Figure 5 is a schematic block diagram of a communication device provided by an embodiment of the present application.
- the communication device 500 includes a processing unit 520 and a sending unit 530.
- the communication device 500 can be used to implement steps or processes performed by the terminal device corresponding to the method embodiments shown in Figures 2 to 4.
- the communication device 500 can be a terminal device, or it can also be a terminal. A chip or circuit in a device.
- the processing unit 520 is configured to: determine the maximum sensitivity reduction MSD improvement capability for a first spectrum combination, the first spectrum combination includes a first frequency band and a second frequency band, and the frequency band number of the first frequency band is different from the frequency band number of the second frequency band;
- the sending unit 530 is configured to send first information, where the first information indicates the ability to improve the MSD.
- the communication device 500 further includes a receiving unit 510, which is configured to: obtain a first carrier and a second carrier.
- the first frequency band corresponding to the first carrier and the second frequency band corresponding to the second carrier constitute the first Spectrum combination
- the relationship of the first spectrum combination is carrier aggregation
- the relationship of the first spectrum combination is dual connectivity
- the dual connectivity mode may include EN-DC, NE-DC or NR-DC.
- the processing unit 520 is also used to: determine the location in the cell according to the path loss measurement value or the timing advance amount; if the path loss measurement value or the timing advance amount of the terminal device is less than or equal to the sixth threshold, the terminal device The terminal device is located at the mid-to-near point of the cell to which it belongs; or, if the path loss measurement value or the timing advance of the terminal device is greater than the sixth threshold, the terminal device is located at the far point of the cell to which it belongs.
- the first information includes MSD improvement capability information, and the MSD improvement capability information indicates that the terminal device can improve the MSD of the first spectrum combination, or the MSD improvement capability information indicates that the terminal device cannot improve the MSD. MSD of the first spectrum combination.
- the MSD improvement capability information is used to indicate that the terminal device can improve the MSD of the first spectrum combination; or, if the first MSD value is greater than the first threshold, the MSD improvement capability information is used to indicate Indicates that the terminal device cannot improve the MSD of the first spectrum combination; wherein the first MSD value is the MSD value of the terminal for the first spectrum combination.
- the MSD improvement capability information is used to indicate that the terminal device can improve the MSD of the first spectrum combination; or, if the first MSD value is greater than the first threshold, the improvement capability information is used to indicate that the terminal device cannot improve the MSD of the first spectrum combination; where the first MSD value is the MSD value of the terminal for the first spectrum combination, and the second MSD value is the predetermined MSD of the first spectrum combination. Defined MSD value, the first MSD value is smaller than the second MSD value.
- the first information includes first behavior information and/or second behavior information.
- the first behavior information is used to instruct the network to send uplink transmission on a single carrier or a single frequency band
- the second behavior information The behavior information is used to indicate that the network does not schedule uplink/downlink transmission at the same time in the first frequency band combination, or the second behavior information is used to indicate It means that the interval between uplink and downlink transmissions scheduled by the network in the first frequency band combination is greater than or equal to the fifth threshold.
- the communication device 500 includes a receiving unit 510.
- the communication device 500 can be used to implement steps or processes performed by the network device corresponding to the method embodiments shown in Figures 2 to 4.
- the communication device 500 can be a network device, or it can also be a network device. A chip or circuit in a device.
- the receiving unit 510 is configured to: receive first information.
- the first information indicates the terminal's maximum sensitivity reduction MSD improvement capability for a first spectrum combination.
- the first spectrum combination includes a first frequency band and a second frequency band, and the frequency band number of the first frequency band. Different from the band number of the second band.
- the communication device further includes a sending unit 530, which is configured to send a first carrier and a second carrier.
- the first frequency band corresponding to the first carrier and the second frequency band corresponding to the second carrier constitute the first spectrum.
- the relationship of the first spectrum combination is carrier aggregation, or the relationship of the first spectrum combination is dual connectivity, where the dual connectivity mode may include EN-DC, NE-DC or NR-DC.
- the communication device further includes a processing unit 520, which is configured to determine, according to the first information, to schedule uplink transmission on a single carrier or a single frequency band.
- a processing unit 520 which is configured to determine, according to the first information, to schedule uplink transmission on a single carrier or a single frequency band.
- the processing unit 520 is also configured to determine, according to the first information, not to schedule uplink/downlink transmission simultaneously in the first frequency band combination.
- the processing unit 520 is further configured to determine, according to the first information, that the interval between uplink and downlink transmissions scheduled in the first frequency band combination is greater than or equal to the fifth threshold.
- the processing unit 520 is also configured to adjust the transmission power of the uplink signal sent by the terminal device according to the first information.
- Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- the communication device 600 includes a processor 610.
- the processor 610 is coupled to a memory 620.
- the memory 620 is used to store computer programs or instructions and/or data.
- the processor 610 is used to execute the computer program stored in the memory 620 or instructions, or reads the data stored in the memory 620 to execute the methods in each of the above method embodiments.
- processors 610 there are one or more processors 610 .
- the memory 620 is integrated with the processor 610, or is provided separately.
- the communication device further includes a transceiver 630, which is used for receiving and/or transmitting signals.
- the processor 610 is used to control the transceiver 630 to receive and/or transmit signals.
- the communication device 600 can be used to implement the operations performed by the terminal device in each of the above method embodiments.
- the processor 610 is used to execute computer programs or instructions stored in the memory 620 to implement related operations performed by the terminal device in each of the above method embodiments.
- the transceiver 630 can be used to perform the receiving operation of the terminal device in S310 shown in FIG. 3, and can also be used to perform the sending operation of the terminal device in S330.
- the processor 610 is used to execute the processing steps of the terminal device in the embodiment of the present application. For example, it is used to perform an operation of determining the first information according to the location of the terminal device. It should be understood that the communication device 600 shown in FIG. 6 can perform operations performed by the terminals in FIGS. 2 to 4 .
- the communication device 600 can be used to implement the operations performed by the network device in each of the above method embodiments.
- the processor 610 is used to execute computer programs or instructions stored in the memory 620 to implement related operations performed by the network device in each of the above method embodiments.
- the transceiver 630 may be used to perform the sending operation of the network device in S310 shown in FIG. 3, and may also be used to perform the receiving operation of the network device in S450 shown in FIG. 4.
- the processor 610 is used to perform the processing steps of the network device in the embodiment of the present application.
- the processor 610 is configured to determine not to simultaneously schedule uplink/downlink transmission in the first frequency band combination according to the first information, or to determine according to the first information Adjust the transmit power of the terminal device for sending uplink signals. It should be understood that the communication device 600 shown in FIG. 6 can perform operations performed by the network devices in FIGS. 2 to 4 .
- FIG. 6 is only an example and not a limitation.
- the above-mentioned communication device including a processor, a memory and a transceiver may not rely on the structure shown in FIG. 6 .
- the present application provides a chip, which includes a processor.
- the memory used to store the computer program is provided independently of the chip, and the processor is used to execute the computer program stored in the memory, so that the operations and/or processing performed by the terminal device or the first device or the positioning management device in any method embodiment be executed.
- the chip may also include a communication interface.
- the communication interface may be an input/output interface, or an interface circuit, etc.
- the chip may also include a memory.
- the chip in the embodiment of the present application can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC). It can be a CPU, a network processor (NP), a digital signal processing circuit (DSP), a microcontroller unit (MCU), or a programmable Controller (programmable logic device, PLD), other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or other integrated chips.
- FPGA field programmable gate array
- ASIC application specific integrated circuit
- SoC system on chip
- It can be a CPU, a network processor (NP), a digital signal processing circuit (DSP), a microcontroller unit (MCU), or a programmable Controller (programmable logic device, PLD), other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or other integrated chips.
- NP network processor
- DSP digital signal processing circuit
- MCU microcontroller unit
- PLD programmable Controller
- the computer program product includes: computer program code.
- the computer program code When the computer program code is run on a computer, it causes the computer to execute any one of the embodiments shown in Figures 2 to 4. method.
- This application also provides a computer-readable medium.
- the computer-readable medium stores program code.
- the program code When the program code is run on a computer, it causes the computer to execute any one of the embodiments shown in Figures 2 to 4. method.
- each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
- the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
- the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
- the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
- the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
- each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
- a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
- the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
- the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
- the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
- the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
- the non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
- Volatile memory may be random access memory (RAM), which is used as an external cache.
- RAM random access memory
- static RAM static Random access memory
- dynamic RAM dynamic random access memory
- DRAM dynamic random access memory
- SDRAM synchronous dynamic random access memory
- double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
- enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
- synchronous link dynamic random access memory direct memory bus random access memory
- direct rambus RAM direct rambus RAM
- the disclosed devices and methods can be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
- the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
- the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
- the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
- the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .
- a and/or B can mean: only A exists, only B exists, and A and B exist simultaneously. , where A and B can be singular or plural.
- the character "/” generally indicates that the related objects are in an "or” relationship.
- sequence numbers of each process below do not mean the order of execution.
- the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application. For example, in the embodiments of this application, words such as "301", “401", and "501” are only used for convenience of description and do not limit the order of execution steps.
- "for indicating” may include for direct indicating and for indirect indicating. When describing that certain indication information is used to indicate A, it may include that the indication information directly indicates A or indirectly indicates A, but it does not mean that the indication information must carry A.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供了一种通信方法和通信装置,该方法包括:终端确定对于第一频谱组合的最大灵敏度下降MSD改善的能力,第一频谱组合包括第一频段和第二频段,第一频段的频段号与第二频段的频段号不同;终端向网络发送第一信息,第一信息指示改善MSD的能力。在本申请实施例中,终端可以向网络发送第一信息,该第一信息可以指示终端对于第一频谱组合的MSD改善的能力,使得网络可以获知终端的MSD改善的能力,从而可以根据该第一信息确定是否需要进一步改善MSD,通过终端或者网络对MSD进行的有效改善,可以提升终端的接收性能。
Description
本申请要求于2022年08月03日提交中国专利局、申请号为202210926439.1、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请实施例涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
接收灵敏度用于描述终端接收下行链路有用信号的最小信号接收功率。当终端的信号能量小于标称的接收灵敏度时,终端将不会接收任何数据,也就是说接收灵敏度是终端能够接收信号最小门限。在无线传输中,接收灵敏度类似于人们沟通交谈时的听力,提高信号的接收灵敏度可使无线产品具有更强地捕获弱信号的能力。这样,随着传输距离的增加,接收信号变弱,高灵敏度的无线产品仍可以接收数据,维持稳定连接,大幅提高传输距离。
然而在信号实际传输过程中,由于各种原因(例如,两个上行频段的信号落入下行接收频段中)使得终端的接收产生干扰,可能会导致终端的接收灵敏度恶化,即最大灵敏度下降(maximum sensitivity degradation,MSD),MSD会对终端的下行通信产生影响,即影响终端的接收性能,因此需要终端和/或网络采取相应的措施对MSD进行改善。
一般情况下,网络和终端都可以改善MSD,但终端与网络之间无法进行信息交互,网络无法获知需要改善哪些MSD,以及无法确定是否需要采取措施改善MSD,从而无法有效的改善MSD,进而影响终端的接收性能。
发明内容
本申请实施例提供一种通信方法和通信装置,终端与网络之间可以通过第一信息进行交互,从而能够有效的改善MSD,进而提高终端设备的接收性能。
第一方面,提供了一种通信方法,应用于终端或终端中的模块,该方法包括:
确定对于第一频谱组合的最大灵敏度下降MSD改善的能力,第一频谱组合包括第一频段和第二频段,第一频段的频段号与第二频段的频段号不同;
发送第一信息,第一信息指示对于第一频谱组合的MSD改善的能力。
在本申请实施例中,终端可以向网络发送第一信息,该第一信息可以指示终端对于第一频谱组合的MSD改善的能力,使得网络可以获知终端的MSD改善的能力,从而可以根据该第一信息确定是否需要进一步改善MSD,对MSD进行有效的改善,从而可以提升终端的接收性能。
在一种可能的实现方式中,终端在确定对于第一频谱组合的最大灵敏度下降MSD改善的能力之前,该方法还包括:终端获取第一载波和第二载波,第一载波对应的第一频段与第二载波对应的第二频段构成第一频谱组合,第一频谱组合的关系为载波聚合,或者,
第一频谱组合的关系为双连接。也就是说,网络为终端配置载波聚合CA/双连接DC,双连接的模式可以包括EN-DC、NE-DC或NR-DC。
结合第一方面,在第一方面的某些实现方式中,第一信息包括MSD改善能力信息,MSD改善能力信息指示终端能够改善MSD,或者,MSD改善能力信息指示终端不能改善MSD。
在本申请实施例中,终端向网络发送的第一信息可以包括MSD改善能力信息,并且该MSD改善能力信息可以指示终端能够改善MSD或者指示终端不能改善MSD,从而使得网络接收第一信息后,确定终端能否改善MSD,若终端不能改善MSD,网络可以采取相应措施改善MSD,从而避免无法改善MSD,影响终端的接收性能。
结合第一方面,在第一方面的某些实现方式中,若第一MSD值小于或等于第一阈值,则MSD改善能力信息指示终端能够改善MSD;或者,若第一MSD值大于第一阈值,则MSD改善能力信息指示终端不能改善MSD;其中,第一MSD值为终端针对第一频谱组合的MSD值。也就是说,MSD改善能力信息基于第一MSD值确定。其中,第一MSD值可以理解为终端对于给定的频谱组合(例如,第一频谱组合)实际产生的MSD值。应理解,第一MSD值与终端对应,不同终端的第一MSD值可能存在不同。
可选地,第一阈值为预先定义的,或者,第一阈值是高层参数配置的,或者,第一阈值是通过DCI/MAC CE动态指示的,本申请对此不作限定。例如,第一阈值的取值可以为5dB、10dB等。
在本申请实施例中,若终端针对第一频谱组合的MSD值小于或等于第一阈值,则说明终端的第一MSD值(即终端改善的MSD值)满足一定的要求,此时可以上报MSD改善能力信息指示终端能够改善MSD,不需要网络再进行改善;若终端的第一MSD值大于第一阈值,则说明终端无法有效地改善MSD值,即改善的MSD值不能满足要求,此时可以上报MSD改善能力信息指示终端不能改善MSD,需要网络调度限制降低终端的MSD,提高终端的接收性能。
结合第一方面,在第一方面的某些实现方式中,若第一MSD值小于或等于第一阈值且第二MSD值大于或等于第二阈值,则MSD改善能力信息指示终端能够改善MSD;或者,若第一MSD值大于第一阈值,则MSD改善能力信息指示终端不能改善MSD;其中,第一MSD值为终端针对第一频谱组合的MSD值,第二MSD值为第一频谱组合预定义的MSD值,第一MSD值小于第二MSD值。也就是说,MSD改善能力信息基于第一MSD值和第二MSD值确定。第二MSD值可以理解为利用传统的RAN4对频段组合的假设和定义得到的MSD值。在特定功率等级下,对于给定的频段组合(例如,第一频谱组合),该第二MSD值是固定的,是协议中预定义的。
可选地,第二阈值为预先定义的,或者,第二阈值是高层参数配置的,或者,第二阈值是通过DCI/MAC CE动态指示的,本申请对此不作限定。例如,第二阈值的取值可以为5dB、10dB等。
在本申请实施例中,终端可以根据第一MSD值和第二MSD值确定自身是否有能力改善MSD。若第一MSD值小于或等于第一阈值且第二MSD值大于或等于第二阈值,说明终端能够改善MSD,不需要网络再进行改善,终端可以向网络发送MSD改善能力信息指示终端能够改善MSD。若第一MSD值大于第一阈值,则说明终端不能有效改善MSD,因此,终端可以向网络发送MSD改善能力信息指示终端不能改善MSD。
结合第一方面,在第一方面的某些实现方式中,第一信息包括MSD类型信息,MSD类型信息指示第一频谱组合的MSD的类型,MSD类型信息包括以下至少一种:二阶互调干扰、三阶互调干扰、四阶互调干扰、五阶互调干扰、二阶谐波干扰、三阶谐波干扰、四阶谐波干扰、五阶谐波干扰、二阶谐波混合干扰、三阶谐波混频干扰、四阶谐波混频干扰、五阶谐波混频干扰、跨频带隔离。
在一种可能的实现方式中,MSD类型信息包括第一频谱组合中存在的所有的MSD类型。即第一频谱组合中存在的所有的MSD类型都上报给网络。
在一种可能的实现方式中,MSD类型信息包括第一频谱组合中最大第二MSD值对应的MSD类型,第二MSD值为第一频谱组合预定义的MSD值。即上报MSD问题最严重的MSD类型给网络。
在一种可能的实现方式中,MSD类型信息包括第一频谱组合中满足第一条件的MSD类型,第一条件为第一MSD值大于或等于第三阈值,第一MSD值为终端针对第一频谱组合的MSD值。也就是说,终端可以根据自身的第一MSD值,向网络发送第一MSD值大于或等于第三阈值对应的MSD类型。在这种情况下,说明终端也无法改善MSD,因此需要向网络发送无法进行改善的MSD类型,以便于网络根据第一信息中的MSD类型信息采取合适的措施。
可选地,第三阈值为预先定义的,或者,第三阈值是高层参数配置的,或者,第三阈值是通过DCI/MAC CE动态指示的,本申请对此不作限定。例如,第三阈值的取值可以为5dB、10dB等。
在一种可能的实现方式中,MSD类型信息包括第一频谱组合中第三MSD值不为零的MSD类型,第三MSD值为第一MSD值与第二MSD值之间的差值,第一MSD值为终端设备针对第一频谱组合的MSD值,第二MSD值为第一频谱组合预定义的MSD值,第一MSD值小于第二MSD值。也就是说,终端设备上报的MSD类型信息为改善了的MSD类型。
可选地,终端上报满足第二条件的MSD类型,第二条件为第一MSD值小于或等于第一阈值且第二MSD值大于第二阈值。
在一种可能的实现方式中,第一信息包括MSD改善能力信息和MSD类型信息。也就是说,终端在上报MSD改善能力信息时,可以上报对应的MSD类型信息,即终端能够改善哪些类型的MSD,或者终端不能改善哪些类型的MSD。在这种情况下,网络通过接收第一信息可以获知需要改善哪些类型的MSD和/或不需要改善哪些类型的MSD。
结合第一方面,在第一方面的某些实现方式中,第一频谱组合还包括第三频段,第三频段的频段号与第一频段的频段号不同,第三频段的频段号与第二频段的频段号不同,第一信息包括频段信息,频段信息指示第三频段,第三频段为第一频谱组合中受到MSD影响的频段。
在这种情况下,终端可以直接向网络上报受到MSD影响的频段,从而使得网络接收到第一信息后,可以确定受到MSD影响的第三频段信息(例如,第三频段号),从而可以有针对性的改善MSD问题。
在一种可能的实现方式中,第一信息包括MSD改善能力信息、MSD类型信息和频段信息中的至少一个,从而使得网络接收第一信息后,可以根据该第一信息采取合适的措施改善MSD。
结合第一方面,在第一方面的某些实现方式中,第一信息包括第一区间信息,第一区间信息包括第一MSD值所属的区间,第一MSD值为终端针对第一频谱组合的MSD值。
可选地,网络侧和终端侧可以预定义或预配置一个MSD改善区间映射表(即第一MSD值对应的区间映射表),该映射表可以包括终端上报值(reported value)以及上报值对应的第一MSD值区间范围,其中,该上报值可以为比特值,该第一MSD值区间范围可以为[0,N1),[N1,N2),[N2,N3)等,比特值与第一MSD值区间范围相对应。例如,终端上报0比特表示第一MSD值在[0,N1)范围内,终端上报1比特表示第一MSD值在[N1,N2)范围内。因此,当网络接收到上报的比特值后,可以根据MSD改善区间映射表确定第一MSD值的范围,从而使得网络接收第一信息后,可以采取合适的措施改善MSD。
在一种可能的实现方式中,第一信息包括MSD改善能力信息、MSD类型信息、频段信息和第一区间信息中的至少一个,从而使得网络接收第一信息后,可以根据该第一信息采取合适的措施改善MSD。
可选地,该第一信息可以包括第一区间信息和MSD类型信息。也就是说,终端在上报第一区间信息时,还可以上报MSD类型信息,从而使得当网络接收到第一信息后,可以获知第一MSD值所属的区间以及该第一MSD值的类型,进而使得网络根据该第一信息更有针对性的采取相应措施改善MSD。
结合第一方面,在第一方面的某些实现方式中,第一信息包括第二区间信息,第二区间信息包括第三MSD值所属的区间,第三MSD值为第一MSD值与第二MSD值之间的差值,第一MSD值为终端针对第一频谱组合的MSD值,第二MSD值为第一频谱组合预定义的MSD值,第一MSD值小于第二MSD值。
可选地,网络侧和终端侧可以预定义或预配置改善后的MSD区间映射表(即第三MSD值对应的区间映射表),该映射表可以包括终端上报值(reported value)以及上报值对应的第三MSD值区间范围,其中,该上报值可以为比特值,该第三MSD值区间范围可以为[0,N1),[N1,N2),[N2,N3)等,比特值与第三MSD值区间范围相对应。例如,终端上报0比特表示第三MSD值在[0,N1)范围内,终端上报1比特表示第三MSD值在[N1,N2)范围内。因此,当网络接收到上报的比特值后,可以根据MSD改善区间映射表确定第三MSD值的范围,从而使得网络接收第一信息可以采取合适的措施改善MSD。
在一种可能的实现方式中,第一信息包括MSD改善能力信息、MSD类型信息、频段信息和第二区间信息中的至少一个,从而使得网络接收第一信息后,可以根据该第一信息采取合适的措施改善MSD。
可选地,该第一信息可以包括第二区间信息和MSD类型信息。也就是说,终端在上报第二区间信息时,还可以上报MSD类型信息,从而使得当网络接收到第一信息后,可以获知第三MSD值所属的区间以及该第三MSD值的类型,进而使得网络根据该第一信息更有针对性的采取相应措施改善MSD。
结合第一方面,在第一方面的某些实现方式中,第一信息包括第一MSD值,或者,第一信息包括第三MSD值,第三MSD值为第一MSD值与第二MSD值之间的差值,第一MSD值为终端针对第一频谱组合的MSD值,第二MSD值为第一频谱组合预定义的MSD值,第一MSD值小于第二MSD值。
在一种可能的实现方式中,第一信息包括MSD改善能力信息、MSD类型信息、频段信息、第一MSD值和第三MSD值中的至少一个,从而使得网络接收第一信息后,可以
根据该第一信息采取合适的措施改善MSD。
结合第一方面,在第一方面的某些实现方式中,第一信息包括第一行为信息和/或第二行为信息,第一行为信息指示网络在单个载波或单个频段上发送上行传输;第二行为信息指示网络在第一频段组合中不同时调度上/下行传输,或者,第二行为信息指示网络在第一频段组合中调度的上下行传输的间隔大于或等于第五阈值。
可选地,第五阈值为预先定义的,或者,第五阈值是高层参数配置的,或者,第五阈值是通过DCI/MAC CE动态指示的,本申请对此不作限定。
在一种可能的实现方式中,第一信息包括MSD改善能力信息、MSD类型信息、频段信息、第一区间信息、第一行为信息和第二行为信息中的至少一个,从而使得网络接收第一信息后,可以根据该第一信息采取合适的措施改善MSD。
在一种可能的实现方式中,第一信息包括MSD改善能力信息、MSD类型信息、频段信息、第二区间信息、第一行为信息和第二行为信息中的至少一个,从而使得网络接收第一信息后,可以根据该第一信息采取合适的措施改善MSD。
在一种可能的实现方式中,第一信息包括MSD改善能力信息、MSD类型信息、频段信息、第一MSD值、第三MSD值、第一行为信息和第二行为信息中的至少一个,从而使得网络接收第一信息后,可以根据该第一信息采取合适的措施改善MSD。
结合第一方面,在第一方面的某些实现方式中,第一信息包括同时收发能力指示信息,同时收发能力指示信息指示第一频谱组合支持同时收发,或者,同时收发能力指示信息指示第一频谱组合不支持同时收发。
结合第一方面,在第一方面的某些实现方式中,若第一MSD值大于或等于第一阈值,则同时收发能力指示信息指示第一频谱组合不支持同时收发;或者,若第一MSD值小于第一阈值,则同时收发能力指示信息指示第一频谱组合支持同时收发;
或者,若第二MSD值大于或等于第四阈值,则同时收发能力指示信息指示第一频谱组合不支持同时收发;或者,若第二MSD值小于第四阈值,则同时收发能力指示信息指示第一频谱组合支持同时收发;
其中,第一MSD值为终端针对第一频谱组合的MSD值,第二MSD值为第一频谱组合预定义的MSD值,第一MSD值小于第二MSD值。
可选地,第四阈值为预先定义的,或者,第四阈值是高层参数配置的,或者,第四阈值是通过DCI/MAC CE动态指示的,本申请对此不作限定。例如,第四阈值的取值可以为10dB、15dB、28.7dB等。
在本申请实施例中,若第一MSD值大于或等于第一阈值,则说明终端无法对MSD进行有效的改善,因此需要向网络发送同时收发能力指示信息指示第一频谱组合不支持同时收发,从而避免网络同时调度信号的接收和发送,进而避免对MSD产生进一步影响。此外,若第二MSD值大于或等于第四阈值,说明原始MSD值较大,如果仍然支持第一频谱组合同时收发的话,也可能会进一步影响MSD,因此,终端也可以上报同时收发能力指示信息指示第一频谱组合不支持同时收发。
结合第一方面,在第一方面的某些实现方式中,若第一MSD值小于或等于第一阈值,则同时收发能力指示信息指示第一频谱组合不支持同时收发,第一MSD值为终端针对第一频谱组合的MSD值。
在本申请实施例中,若第一MSD值小于或等于第一阈值,可能是终端对第一频谱组
合中的MSD进行了改善,如果仍然支持同时收发信号的话,可能会对终端的第一MSD值产生影响(例如,使得第一MSD值变大),从而影响终端的接收性能。因此,在这种情况下,终端可以上报同时收发能力指示信息指示第一频谱组合不支持同时收发。
在一种可能的实现方式中,第一信息包括MSD改善能力信息、MSD类型信息、频段信息、第一区间信息、第一行为信息、第二行为信息和同时收发能力指示信息中的至少一个,从而使得网络接收第一信息后,可以根据该第一信息采取合适的措施改善MSD。
在一种可能的实现方式中,第一信息包括MSD改善能力信息、MSD类型信息、频段信息、第二区间信息、第一行为信息、第二行为信息和同时收发能力指示信息中的至少一个,从而使得网络接收第一信息后,可以根据该第一信息采取合适的措施改善MSD。
在一种可能的实现方式中,第一信息包括MSD改善能力信息、MSD类型信息、频段信息、第一MSD值、第三MSD值、第一行为信息、第二行为信息和同时收发能力指示信息中的至少一个,从而使得网络接收第一信息后,可以根据该第一信息采取合适的措施改善MSD。
结合第一方面,在第一方面的某些实现方式中,第一信息包括比例因子信息,比例因子信息用于指示终端的发射功率变化值与第三MSD值的比值,第三MSD值为第一MSD值与第二MSD值之间的差值,第一MSD值为终端针对第一频谱组合的MSD值,第二MSD值为第一频谱组合中预定义的MSD值,第一MSD值小于第二MSD值。
可以理解的是,对于不同的频谱组合、不同的MSD类型,发射功率变化值与第三MSD值的比值会存在差异。因此,终端在上报给定频谱组合(例如,第一频谱组合)时,可以上报至少一种MSD类型对应的比例因子信息。
在一种可能的实现方式中,第一信息包括MSD改善能力信息、MSD类型信息、频段信息、第一区间信息、第一行为信息、第二行为信息、同时收发能力指示信息和比例因子信息中的至少一个,从而使得网络接收第一信息后,可以根据该第一信息采取合适的措施改善MSD。
在一种可能的实现方式中,第一信息包括MSD改善能力信息、MSD类型信息、频段信息、第二区间信息、第一行为信息、第二行为信息、同时收发能力指示信息和比例因子信息中的至少一个,从而使得网络接收第一信息后,可以根据该第一信息采取合适的措施改善MSD。
在一种可能的实现方式中,第一信息包括MSD改善能力信息、MSD类型信息、频段信息、第一MSD值、第三MSD值、第一行为信息、第二行为信息、同时收发能力指示信息和比例因子信息中的至少一个,从而使得网络接收第一信息后,可以根据该第一信息采取合适的措施改善MSD。
结合第一方面,在第一方面的某些实现方式中,第一信息基于终端的位置确定。
可选地,终端设备根据路损测量值或者定时提前量确定在小区中的位置;若终端设备的路损测量值或定时提前量小于或等于第六阈值,则终端设备位于所属小区的中近点的位置;若终端设备的路损测量值或定时提前量大于第六阈值,则终端设备位于所属小区的远点的位置。可选地,终端还可以根据网络配置的RRM测量参数确定在小区中的位置。
可选地,若终端设备位于所属小区的中近点的位置,则第一信息包括MSD改善能力信息,MSD改善能力信息指示终端设备能够改善第一频谱组合的MSD,或者,MSD改善能力信息指示终端设备不能改善第一频谱组合的MSD。
可选地,若第一MSD值小于或等于第一阈值,则MSD改善能力信息用于指示终端设备能够改善第一频谱组合的MSD;或者,若第一MSD值大于第一阈值,则MSD改善能力信息用于指示终端设备不能改善第一频谱组合的MSD;其中,第一MSD值为终端针对第一频谱组合的MSD值。
可选地,若第一MSD值小于或等于第一阈值,且第二MSD值大于或等于第二阈值,则MSD改善能力信息用于指示终端设备能够改善第一频谱组合的MSD;或者,若第一MSD值大于第一阈值,则改善能力信息用于指示终端设备不能改善第一频谱组合的MSD;其中,第一MSD值为终端针对第一频谱组合的MSD值,第二MSD值为第一频谱组合预定义的MSD值,第一MSD值小于第二MSD值。
可选地,若终端设备位于所属小区的远点的位置,则第一信息包括第一行为信息和/或第二行为信息,第一行为信息用于指示网络在单个载波或单个频段上发送上行传输,第二行为信息用于指示网络在第一频段组合中不同时调度上/下行传输,或者,第二行为信息用于指示网络在第一频段组合中调度的上下行传输的间隔大于或等于第五阈值。
在本申请实施例中,终端在确定第一信息时,考虑了终端的位置对于MSD的影响,从而使得终端更能高效地确定并上报第一信息。
第二方面,提供了一种通信方法,应用于网络或者网络中的模块,该方法包括:
接收第一信息,第一信息指示终端对于第一频谱组合的最大灵敏度下降MSD改善的能力,第一频谱组合包括第一频段和第二频段,第一频段的频段号与第二频段的频段号不同。
应理解,该第一信息可以为第一方面及第一方面中任一项所述的第一信息。
在本申请实施例中,网络接收第一信息,并根据第一信息确定终端的MSD改善的能力,从而可以根据该第一信息确定是否需要进一步改善MSD,进而提升终端的接收性能。
在一种可能的实现方式中,该方法还包括,网络发送第一载波和第二载波,第一载波对应的第一频段与第二载波对应的第二频段构成第一频谱组合,第一频谱组合的关系为载波聚合,或者,第一频谱组合的关系为双连接,其中,双连接的模式可以包括EN-DC、NE-DC或NR-DC。
结合第二方面,在第二方面的某些实现方式中,网络根据第一信息确定在单个载波或单个频段上调度上行传输。
结合第二方面,在第二方面的某些实现方式中,网络根据第一信息确定在第一频段组合中不同时调度上/下行传输。
结合第二方面,在第二方面的某些实现方式中,网络根据第一信息确定在第一频段组合中调度的上下行传输的间隔大于或等于第五阈值。
结合第二方面,在第二方面的某些实现方式中,网络根据第一信息调整终端设备发送上行信号的发射功率。
在本申请实施例中,网络可以根据接收到的第一信息采取相应的措施对终端进行干预,网络可以调度终端在单个载波或单个频段上发送上行传输,或者,在第一频段组合中不同时调度上/下行传输,或者,在第一频段组合中调度的上下行传输的间隔大于或等于第五阈值,或者,调整终端设备发送上行信号的发射功率。从而降低终端的MSD,进而提升终端的接收性能。
第三方面,提供了一种通信装置,包括:处理单元和发送单元,该处理单元用于:确
定对于第一频谱组合的最大灵敏度下降MSD改善的能力,第一频谱组合包括第一频段和第二频段,第一频段的频段号与第二频段的频段号不同;该发送单元用于:发送第一信息,第一信息指示改善MSD的能力。
应理解,该第一信息可以为第一方面及第一方面中任一项所述的第一信息。
结合第三方面,在第三方面的某些实现方式中,该通信装置还包括接收单元,该接收单元用于:获取第一载波和第二载波,第一载波对应的第一频段与第二载波对应的第二频段构成第一频谱组合,第一频谱组合的关系为载波聚合,或者,第一频谱组合的关系为双连接,该双连接的模式可以包括EN-DC、NE-DC或NR-DC。
结合第三方面,在第三方面的某些实现方式中,该处理单元还用于:根据路损测量值或者定时提前量确定在小区中的位置;若终端设备的路损测量值或定时提前量小于或等于第六阈值,则终端设备位于所属小区的中近点的位置;或者,若终端设备的路损测量值或定时提前量大于第六阈值,则终端设备位于所属小区的远点的位置。
可选地,若终端设备位于所属小区的中近点的位置,则第一信息包括MSD改善能力信息,MSD改善能力信息指示终端设备能够改善第一频谱组合的MSD,或者,MSD改善能力信息指示终端设备不能改善第一频谱组合的MSD。
可选地,若第一MSD值小于或等于第一阈值,则MSD改善能力信息用于指示终端设备能够改善第一频谱组合的MSD;或者,若第一MSD值大于第一阈值,则MSD改善能力信息用于指示终端设备不能改善第一频谱组合的MSD;其中,第一MSD值为终端针对第一频谱组合的MSD值。
可选地,若第一MSD值小于或等于第一阈值,且第二MSD值大于或等于第二阈值,则MSD改善能力信息用于指示终端设备能够改善第一频谱组合的MSD;或者,若第一MSD值大于第一阈值,则改善能力信息用于指示终端设备不能改善第一频谱组合的MSD;其中,第一MSD值为终端针对第一频谱组合的MSD值,第二MSD值为第一频谱组合预定义的MSD值,第一MSD值小于第二MSD值。
可选地,若终端设备位于所属小区的远点的位置,则第一信息包括第一行为信息和/或第二行为信息,第一行为信息用于指示网络在单个载波或单个频段上调度上行传输,第二行为信息用于指示网络在第一频段组合中不同时调度上/下行传输,或者,第二行为信息用于指示网络在第一频段组合中调度的上下行传输的间隔大于或等于第五阈值。
第四方面,提供了一种通信装置,包括:接收单元,该接收单元用于,接收第一信息,第一信息指示终端对于第一频谱组合的最大灵敏度下降MSD改善的能力,第一频谱组合包括第一频段和第二频段,第一频段的频段号与第二频段的频段号不同。
应理解,该第一信息可以为第一方面及第一方面中任一项所述的第一信息。
结合第四方面,在第四方面的某些实现方式中,该通信装置还包括发送单元,该发送单元用于:发送第一载波和第二载波,第一载波对应的第一频段与第二载波对应的第二频段构成第一频谱组合,第一频谱组合的关系为载波聚合,或者,第一频谱组合的关系为双连接,其中,双连接的模式可以包括EN-DC、NE-DC或NR-DC。
结合第四方面,在第四方面的某些实现方式中,该通信装置还包括处理单元,该处理单元用于,根据第一信息确定在单个载波或单个频段上调度上行传输。
结合第四方面,在第四方面的某些实现方式中,该处理单元还用于,根据第一信息确定在第一频段组合中不同时调度上/下行传输。
结合第四方面,在第四方面的某些实现方式中,该处理单元还用于,根据第一信息确定在第一频段组合中调度的上下行传输的间隔大于或等于第五阈值。
结合第四方面,在第四方面的某些实现方式中,该处理单元还用于,根据第一信息调整终端设备发送上行信号的发射功率。
第五方面,提供了一种通信装置,包括:处理器,该处理器与存储器耦合,该存储器用于存储程序或指令,当该程序或指令被该处理器执行时,使得该通信装置实现上述第一方面或第二方面中任一可能的实现方式的方法。
第六方面,提供了一种芯片,该芯片包括处理器,用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以执行上述第一方面或第二方面中任一可能的实现方式的方法。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现上述第一方面或第二方面的任一种可能的实现方式中的方法。
第八方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第二方面中任一种可能实现方式中的方法。
可以理解的是,上述提供的任一种通信装置、芯片、计算机可读存储介质、计算机程序产品等均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
图1是适用于本申请实施例的一种通信系统示意图。
图2是本申请实施例提供的一种通信方法的示意性流程图。
图3是本申请实施例提供的另一种通信方法的示意性流程图。
图4是本申请实施例提供的另一种通信方法的示意性流程图。
图5是本申请实施例提供的一种通信装置的示意性框图。
图6是本申请实施例提供的一种通信装置的示意图结构图。
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统或新无线接入技术(new radio,NR),本申请提供的技术方案还可以应用于未来的通信系统,如第六代(6th generation,6G)移动通信系统。
图1是适用于本申请实施例的一种通信系统100的示意图。如图1所示,该通信系统100可以包括核心网设备110、接入网设备120和至少一个终端设备(例如图1中的终端设备130和终端设备140)。终端设备130和终端设备140可以通过无线的方式与接入网设备120相连,接入网设备120通过无线或有线方式与核心网设备110连接。应理解,核心网设备与接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的接入网设备的功能。还应理解,图1仅为示意图,该通信系统中还可以包括其它网络设备,例如还可以包括无线中继设备和无线回传设备,本申请对此不作限定。可以理解的是,本申请实施例中涉及的网络可以是核心网设备110,也可以是接入网设备120。本申请实施例中涉及的终端可以是终端设备130和/或终端设备140。
在本申请实施例中,接入网设备(例如,接入网设备120)是终端设备通过无线方式接入到该通信系统中的接入设备。接入网设备还可以称为无线接入网(radio access network,RAN)设备、无线接入网设备、网络设备。示例性的,该接入网设备可以是基站。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站(master eNodeB,MeNB)、辅站(secondary eNodeB,SeNB)、多制式无线(multi standard radio,MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。本申请的实施例对接入网设备所采用的具体技术和具体设备形态不做限定。
在一些部署中,gNB可以包括CU和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能;DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,以实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,以实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,CU可以作为接入网中的网络设备,也可以作为核心网(core network,CN)中的网络设备,本申请对此不做限定。
此外,本申请实施例中的终端设备(例如,终端设备130和终端设备140)可以是一
种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等;可以是车联网通信中的设备,例如车辆上载的通信终端、路边单元(road side unit,RSU);可以是无人机上载有的通信终端;还可以是物联网(internet of things,IoT)系统中的终端设备。终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
示例性的,终端设备包括但不限于:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备,5G网络中的终端设备或者下一代通信系统(例如,6G通信系统)的终端设备,或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对终端设备的具体形式不作限定。
接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对接入网设备和终端设备的应用场景不做限定。
应理解,在未来的通信系统,例如6G通信系统中,上述设备仍可以使用其在5G通信系统中的名称,或者也可以有其它名称,本申请实施例对此不作限定。上述设备的功能可以由一个独立设备完成,也可以由若干个设备共同完成。在实际部署中,核心网中的网元可以部署在相同或者不同的物理设备上,本申请实施例对此不作限定。图1只是一种示例,对本申请的保护范围不构成任何限定。本申请实施例提供的通信方法还可以涉及图1中未示出的网元或设备,当然本申请实施例提供的通信方法也可以只包括图1示出的部分设备,本申请实施例对此不作限定。
上述应用于本申请实施例的通信系统100仅是举例说明,适用本申请实施例的通信系统并不局限于此,任何能够实现上述各个设备的功能的通信系统都适用于本申请实施例。
在本申请实施例中,如果没有特殊说明,网络设备均指接入网设备。终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备
中能够调用程序并执行程序的功能模块(例如处理器、芯片、或芯片系统等)。
如背景技术中所述,在信号实际传输过程中,由于各种原因均会对UE接收信号产生干扰,可能会导致UE的接收灵敏度下降,即MSD,从而影响UE的接收性能。根据干扰原因的不同,MSD主要可以分为四类:互调干扰(inter-modulation,IMD)、谐波/谐波混合干扰(harmonic/harmonic mixing)、跨频带隔离(cross band isolation)或邻近干扰(Proximity)。
互调干扰是指LTE-NR双连接(E-UTRA-NR dual connectivity,EN-DC)或者上行载波聚合(uplink carrier aggregation,UL CA)等双上行频段组合中两个上行频段的二阶、三阶、四阶或五阶互调产物落入下行频段接收信号带内,两个上行频段的互调产物落入下行频段接收信号带内可以理解为,两个上行频段的频点经过计算可以得到n阶互调的频点,这个频点在UE下行接收频段的范围内,从而可能会对UE接收信号产生干扰,导致UE的接收灵敏度下降。其中,下行接收频段可以是产生互调的两个上行频段分别对应的下行频段中的一个,或者下行接收频段也可以指多于两个频段的CA/DC组合中的两个并发上行频段外的第三个频段的下行接收频段。
谐波/谐波混合干扰是指当UE支持的频段组合的发射机和接收机同时处于活跃状态时,谐波和/或谐波混合干扰会降低UE的接收性能。谐波干扰是指CA/DC频段组合的较低频段的上行二次、三次、四次或五次谐波落入较高频段中,对较高频段的接收产生干扰。谐波混合干扰是指CA/DC频段组合的较高频段的上行信号与较低频段的本振信号的二次、三次、四次或五次谐波混频落入较低频段有用信号接收带中,对较低频段的接收产生干扰。
跨频带隔离是指当UE发送上行信息的频带距离接收下行信息的频带很近,或由于频段组合中一个频段的上行信号由于滤波器在另一个频段的接收信号频率范围抑制度不足,存在上行链路到下行链路的干扰时,UE的接收灵敏度会下降。
邻近干扰是指同一频段的上行信号对接收频段信号的干扰。
此外,利用传统的RAN4对频段组合的假设和定义,得到的MSD值在很多频段组合超过10分贝(dB),有些甚至会超过20dB,而过大的MSD不适合运营商部署CA/DC组合。以5G NR广泛应用的频段组合DC_3-n78为例,DC_3-n78表示频段3和频段n78做双链接DC。DC_3-n78在不同信道带宽下的MSD值如表1所示,其中,下行频段n78的信道带宽均超过10dB,当n78下行信道带宽为10MHz、15MHz和20MHz时,MSD值甚至超过了20dB。可以理解的是,终端的信号能量小于协议规定的MSD值时,终端将无法接收任何数据,因此当MSD值过高时,可能会影响终端的接收性能。因此,需要降低MSD值,即改善MSD。
表1
目前,针对MSD改善的方法比较多样,主要包括通过UE的硬件实现和网络调度两种主要方式。对于互调干扰MSD而言,可以通过调整UE的硬件或者通过网络调度实现
互调干扰MSD的改善,例如可以通过提高UE的印刷电路板(printed circuit board,PCB)隔离、提高UE的天线隔离度、提升射频器件性能(例如,功率放大器(power amplifier,PA)的线性度)、UE发射功率回退或者网络调度单上行载波加以改善。对于谐波/谐波混合干扰MSD而言,也可以通过调整UE的硬件或者通过网络调度实现谐波/谐波混合干扰MSD的改善,例如可以增加UE的PA输出谐波抑制、在PA输出端使用谐波抑制滤波器和网络调度限制非同时收发等。下面对各种改善MSD方法详细介绍。
方法一、提高PCB隔离
在PCB的高频线路布线时,信号线近距离平行走线会引入串扰,串扰是指没有直接连接的信号线之间的耦合现象。PCB板层的参数、信号线的间距、驱动端和接收端的电气特性以及信号线端接方式对串扰都有一定影响。一种可能的解决方法是通过PCB布线减少高频信号串扰,即用PCB隔离的方法降低互调干扰MSD。
例如,在串扰较严重的两条线之间插入一条地线或地平面,可以起到隔离的作用而减少串扰。又例如,在布线空间许可的前提下,可加大相邻信号线的间距,减小信号线的平行长度。再例如,如果同一层内的平行走线无法避免,在相邻两个层,走线的方向相互垂直等等措施。
方法二、提高UE的天线隔离度
天线隔离度是指一个天线发射信号,通过另一个天线接收信号与该发射天线的信号比值。即一个天线接收到另一个天线发射的信号越少,那么两个天线的隔离度越好,被干扰程度越低。提高天线隔离度的有效措施主要包括:阻挡法、正交极化法、抵消法和合适的天线布局。
其中,阻挡法是指在电磁耦合通道上设置障碍阻挡电磁耦合,例如抛物面天线加装裙边,其前后比指标比标准天线改善接近15分贝(dB)。正交极化法是指两副天线采用相互正交的极化,例如双工状态的天线,发射与接收分别采用两个正交线极化或者两个正交圆极化,以增大其隔离效果。抵消法是指在两个天线之间人为开辟另一耦合通道,使之与原耦合相互抵消,实现隔离效果的增强。最直接地,增大天线间距可提高天线隔离度,但实际上经常会遇到限制,特别是在移动终端上天线布局范围狭小的情况下,恰当的天线布局更为重要。在解决实际问题时,上述几种方法通常是综合使用的。
方法三、UE发射功率回退
UE发射功率的提升会引起MSD值的升高,例如,功率等级3提升到功率等级2(即23dBm提升到26dBm),二阶互调MSD可以从26dB升高到31.9dB,四阶互调MSD可以从8dB升高到18.5dB。物理上行共享信道(physical uplink shared channel,PUSCH)的发射功率通过公式1确定,PCMAX,f,c(i)表示UE被配置的最大发射功率。当PCMAX,f,c(i)足够小时,UE会采用PCMAX,f,c(i)作为PUSCH的实际发送功率。
其中,PPUSCH,b,f,c(i,j,qd,l)表示PUSCH的发射功率,PO_PUSCH,b,f,c(j)表示开环基础功率控制参数,表示PUSCH所占的带宽,ab,f,c(j)表示路径损耗补偿因子,PLb,f,c(qd)表示基于路径损耗参考信号组qd测量得到的路径损耗,ΔTF,b,f,c(i)表示PUSCH
传输使用的编码调制方案(modulation and coding scheme,MCS)的调整值,fb,f,c(i,l)表示闭环功率调整值。
配置的最大发射功率PCMAX,f,c满足如下的边界限制:
PCMAX_L,f,c≤PCMAX,f,c≤PCMAX_H,f,c (公式2)
PCMAX_H,f,c=MIN{PEMAX,c,PPowerClass-ΔPPowerClass} (公式4)
PCMAX_L,f,c≤PCMAX,f,c≤PCMAX_H,f,c (公式2)
PCMAX_H,f,c=MIN{PEMAX,c,PPowerClass-ΔPPowerClass} (公式4)
其中,PEMAX,c表示由网络配置的功率参数,PPowerClass表示最大UE功率/功率等级,ΔTTB,c表示additional tolerance,MPRc表示最大功率回退。
结合公式2至公式4可知,配置的最大发射功率的范围与最大回退功率(maximum power reduction,MPR)有关,MPR取值越大,配置的最大发射功率越小。因此,一方面UE可以自行确定较大的MPR值,降低UE的发射功率,从而降低MSD。另一方面,由于MPR的取值与功率等级、波形选取、调制方式和上行传输的频域资源分配有关。因此,较高的调制阶数,或者调整RB分配可以提升MPR,降低UE的发射功率,从而降低MSD。
方法四、网络调度单上行载波发送上行传输
对于UL CA/EN-DC这种双上行的频谱组合,如果两个上行载波上同时发送上行传输,可能会产生互调干扰。如果通过网络设备调度限制同一时刻只能在一个上行载波上发送上行传输,另一个载波上不调度上行传输,则可有效避免互调干扰,降低MSD。
方法五、网络调度非同时收发上行传输和下行传输
谐波/谐波混合干扰的主要原因是UE在发送上行传输的同时需要接收下行传输,从而影响UE接收灵敏度。因此,网络限制同一时刻,调度上行传输的同时不调度下行传输,UE发送上行传输的同时无需接收下行;或者,调度下行传输的同时不调度上行传输,UE接收下行的同时无需发送上行,从而可以减小对接收灵敏度的影响。
综上所述,不同类型的MSD的改善方法也各不相同,例如,提高PCB隔离、提高天线隔离度、发射功率回退、网络调度限制单载波上行传输这四种方式可以改善互调干扰MSD,而对谐波/谐波混合干扰MSD的改善能力很小。增加PA输出谐波抑制和网络调度限制非同时收发这两种方式可以改善谐波/谐波混合干扰MSD,而对互调干扰MSD的改善能力很小。
此外,不同厂商生产的UE性能不尽相同,一些UE能够达到改善MSD的要求,例如通过设计限制允许更大的PCB隔离,而有些UE不能改善MSD。但网络不知道哪些UE能够改善MSD,哪些UE不能改善MSD。这会导致两种结果,一是运营商避免部署MSD问题过于严重的频谱组合,可能包括n3+n78,n3+n41。然而这些频段是移动、联通和电信等国内运营商的主要频段,限制在这些频段上部署网络会大大影响运营商的收益。二是运营商仍然部署MSD较大的频段/频段组合,忽略MSD,不可避免地会影响UE的接收性能。
进一步地,网络既然不知道接入的UE能否改善MSD,便也无从得知是否需要通过调度限制对UE加以干预,降低UE的MSD。对于已经自行降低MSD的UE,不需要网络再进一步降低MSD,而此时网络若盲目地采取措施,反而会增加调度限制;对于不能自行降低MSD的UE,需要网络采取措施,但网络不知道该频段/频段组合的哪一种MSD
需要降低,也就无法采取合适的措施。
因此,本申请实施例提供了一种通信方法和通信装置,终端通过向网络发送第一信息,该第一信息用于指示改善MSD的能力,从而使得网络能够根据该第一信息确定是否采取措施,进而能够提升具有MSD问题的终端的传输性能。
图2是本申请实施例提供的一种通信方法。如图2所示,方法200涉及网络和终端之间的交互,该网络例如可以是图1中所示的接入网设备120和核心网设备110,该终端可以是图1中所示的终端设备130和终端设备140。该方法200具体可以包括S210和S220。
S210,终端确定对于第一频谱组合的最大灵敏度下降MSD改善的能力,第一频谱组合包括第一频段和第二频段,第一频段的频段号与第二频段的频段号不同。
应理解,由于不同终端的性能各不相同,有些终端能够达到改善MSD的要求,例如,通过终端自身的硬件设计允许更大的PCB隔离,在这种情况下,终端能够改善互调干扰MSD。也就是说,当确定第一频谱组合中的两个频段后,终端可以根据自身硬件情况确定对于第一频谱组合的MSD是否能够改善,即终端确定对于第一频谱组合的MSD改善的能力。
例如,第一频谱组合为CA_n3-n78,第一频段为n3,第二频段为n78,第一频段n3与第二频段n78进行载波聚合。CA_n3-n78频谱组合中可能同时存在互调干扰MSD和谐波干扰MSD。若终端自身的硬件设计允许更大的PCB隔离,则互调干扰MSD可能会得到改善,则终端确定能够改善CA_n3-n78频谱组合的互调干扰MSD。
S220,终端发送第一信息。相对应地,网络接收该第一信息。
应理解,该第一信息指示对于第一频谱组合的MSD改善的能力。该第一信息可以包括以下至少一项:MSD改善能力信息、MSD类型信息、频段信息、第一区间信息、第一行为信息、第二行为信息、同时收发能力信息、比例因子信息;或者,该第一信息可以包括以下至少一项:MSD改善能力信息、MSD类型信息、频段信息、第二区间信息、第一行为信息、第二行为信息、同时收发能力信息、比例因子信息;或者,该第一信息可以包括以下至少一项:改善能力信息、MSD类型信息、频段信息、第一MSD值、第三MSD值、第一行为信息、第二行为信息、同时收发能力信息、比例因子信息。
在一种可能的实现方式中,第一信息包括MSD改善能力信息,MSD改善能力信息指示终端能够改善MSD,或者,MSD改善能力信息指示终端不能改善MSD。
在一个实施例中,该MSD改善能力信息根据第一MSD值确定,第一MSD值为终端针对第一频谱组合的MSD值。第一MSD值可以理解为终端对于给定的频谱组合(例如,第一频谱组合)实际产生的MSD值。应理解,第一MSD值与终端对应,不同终端的第一MSD值可能存在不同。第一MSD值还与频谱组合对应,不同频谱组合的MSD值是独立确定的。例如,终端通过提升天线隔离度、PCB隔离等,提高原始MSD值(即提高第二MSD值)。此处的原始MSD值可以理解为利用传统的RAN4对频段组合的假设和定义得到的MSD值。在特定功率等级下,对于给定的频段组合(例如,第一频谱组合),有固定的MSD类型及其对应的第二MSD值。
具体地,若第一MSD值小于或等于第一阈值,则MSD改善能力信息指示终端能够改善MSD;或者,若第一MSD值大于第一阈值,则MSD改善能力信息指示终端不能改善MSD。或者,若第一MSD值小于第一阈值,则MSD改善能力信息指示终端能够改善MSD;或者,若第一MSD值大于或等于第一阈值,则MSD改善能力信息指示终端不能
改善MSD。
可以理解的是,若终端针对第一频谱组合的MSD值小于或等于第一阈值,则说明终端的第一MSD值(即终端改善的MSD值)满足一定的要求,此时可以上报MSD改善能力信息指示终端能够改善MSD,不需要网络再进行改善;若终端的第一MSD值大于第一阈值,则说明终端无法改善MSD值,或者改善的MSD值不能满足要求,此时可以上报MSD改善能力信息指示终端不能改善MSD,需要网络调度限制对终端加以干预,降低终端的MSD。
在另一个实施例中,该MSD改善能力信息根据第一MSD值和第二MSD值确定,第一MSD值为终端针对第一频谱组合的MSD值,第一MSD值可以理解为终端对于给定的频谱组合(例如,第一频谱组合)实际产生的MSD值。第二MSD值为第一频谱组合预定义的MSD值,第一MSD值小于第二MSD值。第二MSD值可以理解为利用传统的RAN4对频段组合的假设和定义得到的MSD值。对于给定的频段组合(例如,第一频谱组合),该第二MSD值是固定的,是协议中预定义的。一般情况下,第一MSD值小于第二MSD值,即终端改善了MSD值。其中,第一MSD值即为改善后的MSD值,第二MSD值即为原始MSD值。
具体地,若第一MSD值小于或等于第一阈值且第二MSD值大于或等于第二阈值,则MSD改善能力信息指示终端能够改善MSD;或者,若第一MSD值大于第一阈值,则MSD改善能力信息指示终端不能改善MSD。或者,若第一MSD值小于第一阈值且第二MSD值大于或等于第二阈值,则MSD改善能力信息指示终端能够改善MSD;或者,若第一MSD值大于或等于第一阈值,则MSD改善能力信息指示终端不能改善MSD。
可以理解的是,终端可以根据第一MSD值和第二MSD值确定自身是否有能力改善MSD。若第一MSD值小于或等于第一阈值且第二MSD值大于或等于第二阈值,说明终端能够改善MSD,不需要网络再进行改善,终端可以向网络发送MSD改善能力信息指示终端能够改善MSD。若第一MSD值大于第一阈值,则说明终端不能有效改善MSD,因此,终端可以向网络发送MSD改善能力信息指示终端不能改善MSD。
需要说明的是,上述的第一阈值和/或第二阈值为预先定义的,或者,第一阈值和/或第二阈值是高层参数配置的,或者,第一阈值和/或第二阈值是通过下行控制信令(downlink control information,DCI)/媒体访问控制控制单元(medium access control control element,MAC CE)动态指示的,本申请对此不作限定。例如,第一阈值和/或第二阈值的取值可以为5dB、10dB等。
示例性的,该第一信息可以包含1个比特,置0表示该第一信息中包括MSD改善能力信息指示终端设备不能改善MSD,置1则表示该第一信息中包括MSD改善能力信息指示终端设备能够改善MSD。
可以理解的是,该第一信息可以仅包括MSD改善能力信息。示例性的,当该第一MSD值下降到5dB及以下时,终端上报的MSD改善能力信息才指示终端能够改善MSD。但当第二MSD值从20dB改善到10dB时,由于第一MSD值(即改善后的MSD值为10dB)不能达到传输的要求(第一MSD值小于或等于5dB),终端上报的MSD改善能力信息指示终端不能改善MSD,需要网络调度限制对终端加以干预,降低终端的MSD。
在另一种可能的实现方式中,第一信息包括MSD类型信息,MSD类型信息指示第一频谱组合的MSD的类型,MSD类型信息包括以下至少一种:二阶互调干扰、三阶互调干
扰、四阶互调干扰、五阶互调干扰、二阶谐波干扰、三阶谐波干扰、四阶谐波干扰、五阶谐波干扰、二阶谐波混合干扰、三阶谐波混频干扰、四阶谐波混频干扰、五阶谐波混频干扰、跨频带隔离。
在一个实施例中,MSD类型信息包括第一频谱组合中存在的所有的MSD类型。即第一频谱组合中存在的所有的MSD类型都上报给网络。可以理解的是,对于一种特定的频段组合,可能出现不少于两种MSD类型。例如,二阶互调干扰、四阶互调干扰、五阶互调干扰和谐波干扰同时存在于CA_n3-n78频谱组合中。
在另一个实施例中,MSD类型信息包括第一频谱组合中最大第二MSD值对应的MSD类型,第二MSD值为第一频谱组合预定义的MSD值。即上报MSD问题最严重的MSD类型给网络。
在另一个实施例中,MSD类型信息包括第一频谱组合中满足第一条件的MSD类型,第一条件为第一MSD值大于或等于第三阈值,第一MSD值为终端针对第一频谱组合的MSD值。也就是说,终端可以根据自身的第一MSD值,向网络发送第一MSD值大于或等于第三阈值对应的MSD类型。在这种情况下,说明终端也无法改善MSD,因此需要向网络发送无法进行改善的MSD类型,以便于网络根据第一信息中的MSD类型信息采取合适的措施。
需要说明的是,第三阈值为预先定义的,或者,第三阈值是高层参数配置的,或者,第三阈值是通过DCI/MAC CE动态指示的,本申请对此不作限定。例如,第三阈值的取值可以为5dB、10dB等。
在另一个实施例中,MSD类型信息包括第一频谱组合中第三MSD值不为零的MSD类型,第三MSD值为第一MSD值与第二MSD值之间的差值,第一MSD值为终端设备针对第一频谱组合的MSD值,第二MSD值为第一频谱组合预定义的MSD值,第一MSD值小于第二MSD值。也就是说,终端设备上报的MSD类型信息为改善了的MSD类型。
可选地,终端上报满足第二条件的MSD类型,第二条件为第一MSD值小于或等于第一阈值且第二MSD值大于第二阈值。
例如,若第一MSD类型满足:第一MSD值小于或等于第一阈值且第二MSD值大于第二阈值,则终端上报的MSD类型信息中包括第一MSD类型,即该第一MSD类型为终端已经进行MSD改善的类型。通过上报终端已经改善了的MSD类型,网络通过接收第一信息可以获知终端改善了哪些MSD类型,从而可以更有针对性的采取相应措施改善其他类型的MSD。
又例如,若第二MSD类型满足:第一MSD值大于第一阈值且第二MSD值大于第二阈值,则终端上报的MSD类型信息中不包括第二MSD类型,即终端虽然对第二MSD类型进行了改善,但第二MSD类型的改善程度不够。当网络接收的该第一信息后,该第一信息中不包括该第二MSD类型,说明终端没有对该第二MSD类型进行改善,需要网络采取相应的措施改善第二MSD类型。
再例如,若第三MSD类型满足:第一MSD值小于或等于第一阈值且第二MSD值小于或等于第一阈值,则终端上报的改善的MSD类型也不包括第三MSD类型,即第三MSD类型的原始MSD值不大(即第二MSD值不大),终端和网络都不需要对第三MSD类型进行改善。
可选地,第一信息中可以包含8个比特,每个比特对应一种MSD类型,则第一信息
可以对应最多8个MSD类型。对于每一个比特,置0表示第一频谱组合不存在该比特对应的MSD类型,置1则表示第一频谱组合存在该比特对应的MSD类型。
在另一种可能的实现方式中,第一信息包括MSD改善能力信息和MSD类型信息。也就是说,终端在上报MSD改善能力信息时,可以上报对应的MSD类型信息,即终端能够改善哪些类型的MSD,或者终端不能改善哪些类型的MSD。在这种情况下,网络通过接收第一信息可以获知需要改善哪些类型的MSD和/或不需要改善哪些类型的MSD。
在另一种可能的实现方式中,第一频谱组合还包括第三频段,第三频段的频段号与第一频段的频段号不同,第三频段的频段号与第二频段的频段号不同,第一信息包括频段信息,频段信息指示第三频段,第三频段为第一频谱组合中受到MSD影响的频段。
在这种情况下,终端可以直接向网络上报受到MSD影响的频段,从而使得网络接收到第一信息后,可以确定受到MSD影响的第三频段信息,从而可以有针对性的改善MSD问题。
示例性的,若频谱组合中包括至少三个频段,第一频段和第二频段产生的MSD落在第三频段的接收带中,则终端设备可以上报第三频段的频段信息。例如,终端设备可以上报第三频段的频段号。
在另一种可能的实现方式中,第一信息包括第一区间信息,第一区间信息包括第一MSD值所属的区间,第一MSD值为终端针对第一频谱组合的MSD值。
可选地,网络侧和终端侧可以预定义或网络预配置一个MSD改善区间映射表(即第一MSD区间映射表),该映射表可以包括终端上报值(reported value)以及上报值对应的第一MSD值区间范围。其中,该上报值可以为比特值,该第一MSD值区间范围可以为[0,N1),[N1,N2),[N2,N3)等,比特值与第一MSD值区间范围相对应。例如,终端上报0比特表示第一MSD值在[0,N1)范围内,终端上报1比特表示第一MSD值在[N1,N2)范围内。因此,当网络接收到上报的reported value后,可以根据MSD改善区间映射表确定第一MSD值的范围。
示例性的,MSD的改善区间的划分可以如表2或表3所示。其中,(N1,N2,N3,..N(m+1))的取值为预定义的或者预配置的。可选地,m=3,(N1,N2,N3,N4)取值为(5,10,15,20);或者,m=7,(N1,N2,N3,N4,N5,N6,N7)取值为(5,10,15,20,25,30,35);或者,m=0,N1取值可以为5、10、15或20。
表2
表3
可选地,该第一信息可以包括第一区间信息和MSD类型信息。也就是说,终端在上报第一区间信息时,还可以上报MSD类型信息,从而使得当网络接收到第一信息后,可以获知第一MSD值所属的区间以及该第一MSD值的类型,进而使得网络根据该第一信息更有针对性的采取相应措施改善MSD。
在另一种可能的实现方式中,第一信息包括第二区间信息,第二区间信息包括第三MSD值所属的区间,第三MSD值为第一MSD值与第二MSD值之间的差值,第一MSD值为终端针对第一频谱组合的MSD值,第二MSD值为第一频谱组合预定义的MSD值,第一MSD值小于第二MSD值。
可选地,网络侧和终端侧可以预定义或网络预配置改善后的MSD区间映射表(即第三MSD区间映射表),该映射表可以包括终端上报值(reported value)以及上报值对应的第三MSD值区间范围,其中,该上报值可以为比特值,该第三MSD值区间范围可以为[0,N1),[N1,N2),[N2,N3)等,比特值与第三MSD值区间范围相对应。例如,终端上报0比特表示第三MSD值在[0,N1)范围内,终端上报1比特表示第三MSD值在[N1,N2)范围内。因此,当网络接收到上报的比特值后,可以根据MSD改善区间映射表确定第三MSD值的范围,从而使得网络接收第一信息可以采取合适的措施改善MSD。
示例性的,改善后的MSD值区间的划分可以如表2、表3或表4所示。其中,(N1,N2,N3,..N(m+1))的取值为预定义的或者预配置的。可选地,m=3,(N1,N2,N3,N4)取值为(5,10,15,20);或者,m=7,(N1,N2,N3,N4,N5,N6,N7)取值为(5,10,15,20,25,30,35);或者,m=0,N1取值可以为5、10、15或20。
表4
可选地,该第一信息可以包括第二区间信息和MSD类型信息。也就是说,终端在上报第二区间信息时,还可以上报MSD类型信息,从而使得当网络接收到第一信息后,可以获知第三MSD值所属的区间以及该第三MSD值的类型,进而使得网络根据该第一信息更有针对性的采取相应措施改善MSD。
在另一种可能的实现方式中,第一信息包括第一MSD值,或者,第一信息包括第三MSD值,第三MSD值为第一MSD值与第二MSD值之间的差值,第一MSD值为终端针对第一频谱组合的MSD值,第二MSD值为第一频谱组合预定义的MSD值,第一MSD值小于第二MSD值。
在另一种可能的实现方式中,第一信息包括第一行为信息和/或第二行为信息,第一行为信息指示网络在单个载波或单个频段上调度上行传输;第二行为信息指示网络在第一频段组合中不同时调度上/下行传输,或者,第二行为信息指示网络在第一频段组合中调
度的上下行传输的间隔大于或等于第五阈值。
可选地,当第一频谱组合中存在互调干扰MSD,且第二MSD值较大,终端不能改善时,终端上报期待网络设备进行第一行为。对于UL CA/EN-DC,若在同一时刻两个载波都有上行资源,则网络仅在一个载波上调度上行传输。
可选地,当第一频谱组合中存在谐波/谐波混合干扰MSD,且第二MSD值较大,终端不能改善时,终端上报期待网络进行第二行为。对于FDD载波,不同时调度上下行,或者避免终端同时收发信息,或者收发信息之间有一定的隔离度。
需要说明的是,该第五阈值为预先定义的,或者,第五阈值是高层参数配置的,或者,第五阈值是通过DCI/MAC CE动态指示的,本申请对此不作限定。
在另一种可能的实现方式中,第一信息包括同时收发能力指示信息,同时收发能力指示信息指示第一频谱组合支持同时收发,或者,同时收发能力指示信息指示第一频谱组合不支持同时收发。
在一个实施例中,若第一MSD值大于或等于第一阈值,则同时收发能力指示信息指示第一频谱组合不支持同时收发;或者,若第一MSD值小于第一阈值,则同时收发能力指示信息指示第一频谱组合支持同时收发。
可以理解的是,若第一MSD值大于或等于第一阈值,则说明终端无法对MSD进行有效的改善,因此需要向网络发送同时收发能力指示信息指示第一频谱组合不支持同时收发,从而避免网络同时调度信号的接收和发送,进而避免对MSD产生进一步影响。
在另一个实施例中,若第二MSD值大于或等于第四阈值,则同时收发能力指示信息指示第一频谱组合不支持同时收发;或者,若第二MSD值小于第四阈值,则同时收发能力指示信息指示第一频谱组合支持同时收发。
可以理解的是,若第二MSD值大于或等于第四阈值,说明原始MSD值较大,如果仍然支持第一频谱组合同时收发的话,也可能会进一步影响MSD,因此,终端也需要上报同时收发能力指示信息指示第一频谱组合不支持同时收发。
在另一个实施例中,若第一MSD值小于或等于第一阈值,则同时收发能力指示信息指示第一频谱组合不支持同时收发,第一MSD值为终端针对第一频谱组合的MSD值。
可以理解的是,若第一MSD值小于或等于第一阈值,即终端对第一频谱组合中的MSD进行了改善,如果仍然支持同时收发信号的话,可能会对终端的第一MSD值产生影响,例如,使得第一MSD值变大,从而影响终端的接收性能。因此,在这种情况下,终端需要上报同时收发能力指示信息指示第一频谱组合不支持同时收发。
应理解,若终端在发送第一信息之前已经上报了支持同时收发的能力信息,则终端可以发送同时收发能力指示信息,指示该第一频谱组合不支持同时收发。若终端在发送第一信息之前没有上报支持同时收发的能力信息,则终端上报不同时收发的能力信息,或者,终端不上报与同时收发相关的能力信息,或者,终端可以发送同时收发能力指示信息指示该第一频谱组合不支持同时收发。
需要说明的是,第四阈值为预先定义的,或者,第四阈值是高层参数配置的,或者,第四阈值是通过DCI/MAC CE动态指示的,本申请对此不作限定。例如,第四阈值的取值可以为10dB、15dB、28.7dB等。
在另一种可能的实现方式中,第一信息包括比例因子信息,比例因子信息用于指示终端的发射功率变化值与第三MSD值的比值,第三MSD值为第一MSD值与第二MSD值
之间的差值,第一MSD值为终端针对第一频谱组合的MSD值,第二MSD值为第一频谱组合中预定义的MSD值,第一MSD值小于第二MSD值。
在一些实施例中,终端上报的第一信息包括终端的发射功率变化值与第三MSD值的比值。终端根据发射功率变化值与第三MSD值之间的关系,自行计算比例因子信息。示例性的,若终端的发射功率提升了2dB,MSD的值下降了4dB,则终端上报的比例因子为0.5。
在另一些实施例中,终端上报的第一信息包括发射功率变化值和第三MSD值,即终端分别上报终端的发射功率变化值与第三MSD值,网络根据第一信息计算比例因子信息。示例性的,终端上报的发射功率变化值为2dB,第三MSD的值为4dB,则终端网络计算得到的比例因子为0.5。
在另一些实施例中,网络和终端可以预定义或网络预配置比例因子映射表,该映射表可以包括终端上报值(reported value)以及上报值对应的比例因子区间范围,其中,该上报值可以为比特值,该比例因子区间范围可以为[0,0.2),[0.2,0.4),……,[0.8,1),比特值与比例因子区间范围相对应。例如,终端上报0比特表示比例因子在[0,0.2)范围内,终端上报1比特表示比例因子在[0.2,0.4)范围内。因此,当网络接收到上报的比特值后,可以根据比例因子区间映射表确定比例因子的范围。
在另一种可能的实现方式中,第一信息可以包括MSD类型信息和比例因子信息。考虑到不同的频谱组合、不同的MSD类型,发射功率变化值与第三MSD值的比值会存在差异。因此,终端在上报给定频谱组合(例如,第一频谱组合)时,可以上报至少一种MSD类型对应的比例因子信息。当网络接收到该第一信息后,可以获知是哪种类型的MSD对应的比例因子,从而可以针对性的调整终端的发射功率。
应理解,上述的第一信息可以承载在MAC CE上发送给网络,也可以承载在PUSCH上发送给网络,本申请对此不作限定。
此外,网络接收到第一信息后,得知终端能够改善MSD,或者被改善的MSD类型,或者MSD的改善值。那么网络可以自行判断是否有必要进一步改善MSD。
可选地,网络判断不需要进一步改善MSD,则接收到第一信息后没有动作。若网络判断需要进一步改善MSD,则可以通过调度限制改善终端的MSD。
在一个实施例中,网络接收到第一信息后,得知终端不能够改善MSD,则网络采取相应的措施改善MSD。
具体地,网络接收到第一信息后,得知MSD值过大的MSD类型,则网络可以根据MSD类型采取相应的措施改善MSD。例如,若终端上报的MSD类型为互调干扰,则网络可以调度在单个载波或单个频段上发送上行传输,以降低该类型MSD;若终端上报的MSD类型为谐波/谐波互调干扰MSD,则网络可以不同时调度上下行传输,或者调度的上下行传输存在一定的间隔,以降低该类型MSD。
在另一个实施例中,网络设备接收到第一信息后,得知终端期待的网络行为为第一行为或者第二行为,那么网络依据终端的期待执行的第一行为或者第二行为相应的调度限制,即网络在单个载波或单个频段上调度上行传输,或者网络在第一频段组合中不同时调度上/下行传输,或者网络在第一频段组合中调度的上下行传输的具有一定间隔。
在本申请实施例中,终端可以向网络发送第一信息,该第一信息可以指示终端对于第一频谱组合的MSD改善的能力,使得网络可以获知终端的MSD改善的能力,从而可以
根据该第一信息确定是否需要进一步改善MSD,通过终端或者网络对MSD进行有效的改善,可以提升终端的接收性能。
图3是本申请实施例提供的另一种通信方法。如图3所示,方法300涉及网络设备和终端设备之间的交互,该网络设备例如可以是图1中所示的接入网设备120和核心网设备110,该终端设备可以是图1中所示的终端设备130和终端设备140。该方法300具体可以包括S310至S340。
S310,终端设备获取第一载波和第二载波。相对应地,网络设备发送第一载波和第二载波。
网络设备在初始配置信息中可以为终端设备添加第一载波,终端设备可以通过该第一载波接入网络设备,并建立RRC连接,其中,第一载波的频点属于第一波段。网络设备可以通过信令询问UE能力信息,UE上报自身的能力信息,该能力信息中可以包括UE支持的频段组合和/或候选频段组合的列表。网络设备通过RRC重配置信息为UE添加第二载波,作为辅小区,该第二载波的频点属于第二波段。
第一波段的上行载波与第二波段的上行载波进行载波聚合CA,或者,第一载波与第二载波构成双连接。这种双连接的模式可以为EN-DC双连接、NE-DC双连接或NR-DC双连接等,本申请对此不作限定。
可以理解的是,终端设备被配置为聚合第一载波和第二载波,或者,终端设备被配置为双连接第一载波和第二载波,该第一载波与该第二载波构成第一频谱组合。例如,频谱组合DC_3-n78,表示频段3和频段n78做双链接。
S320,终端确定对于第一频谱组合的最大灵敏度下降MSD改善的能力,第一频谱组合包括第一频段和第二频段,第一频段的频段号与第二频段的频段号不同。
S330,终端设备发送第一信息。相对应地,网络设备接收第一信息。
S320和S330可以分别参考S210和S220,为了简洁,在此不再赘述。
S340,网络设备根据第一信息确定是否调度限制终端设备。
具体地,网络设备接收到第一信息后,根据第一信息确定是否需要进一步改善MSD。若网络设备确定终端设备已经改善了MSD,则网络设备接收到第一信息后可以不执行任何操作。若网络设备确定还需要进一步改善MSD,则网络设备可以调度限制终端设备,改善终端设备的MSD。
可选地,若网络设备接收到第一信息后,得知MSD值过大的MSD类型,则网络设备根据第一信息的具体情况采取措施。示例性的,若终端设备上报的MSD类型为互调干扰MSD,则网络设备可以调度在单个载波或单个频段上调度上行传输,以降低该类型MSD;若终端设备上报的MSD类型为谐波/谐波互调干扰MSD,则网络设备可以不同时调度上下行传输,或者,调度的上下行传输存在一定的间隔,以降低该类型MSD。
可选地,若网络设备接收到第一信息后,得知终端设备期待的网络行为为第一行为或者第二行为,那么网络设备可以依据终端设备期待执行的第一行为或者第二行为相应的调度限制。即网络设备根据第一信息确定终端设备在单个载波或单个频段上调度上行传输,或者,网络设备根据第一信息确定在第一频段组合中不同时调度上/下行传输,或者,网络设备根据第一信息确定在第一频段组合中调度的上下行传输的间隔大于或等于第五阈值。
可选地,若网络设备接收到第一信息后,可以获知终端设备的发射功率变化值与第三
MSD值的比值,则,网络设备可以根据第一信息调整终端设备发送上行信号的发射功率,从而减小对MSD的影响。
在本申请实施例中,终端设备与网络设备之间可以通过第一信息进行交互,该第一信息可以指示终端设备对于第一频谱组合的MSD改善的能力,从而网络设备根据该第一信息确定是否需要进一步改善MSD,避免MSD对下行通信产生影响,从而可以提升终端的接收性能。
图4是本申请实施例提供的另一种通信方法。如图4所示,方法400涉及网络设备和终端设备之间的交互,该网络设备例如可以是图1中所示的接入网设备120和核心网设备110,该终端设备可以是图1中所示的终端设备130和终端设备140。该方法400具体可以包括S410至S460。
S410,终端设备获取第一载波和第二载波。相对应地,网络设备发送第一载波和第二载波。
该步骤具体内容可以参考S310,在此不再赘述。
S420,终端设备确定对于第一频谱组合的最大灵敏度下降MSD改善的能力,第一频谱组合包括第一频段和第二频段,第一频段的频段号与第二频段的频段号不同。
该步骤具体内容可以参考S210,在此不再赘述。
S430,终端设备确定自身在小区中的位置。
可选地,终端设备根据路损测量值或者定时提前量(timing advance,TA)确定在小区中的位置;若终端设备的路损测量值或定时提前量小于或等于第六阈值,则终端设备位于所属小区的中近点的位置;若终端设备的路损测量值或定时提前量大于第六阈值,则终端设备位于所属小区的远点的位置。
可选地,终端设备还可以根据网络配置的无线资源管理(radio resource management,RRM)测量参数确定在小区中的位置。
S440,终端设备根据自身的位置确定第一信息。
可选地,若终端设备位于所属小区的中近点的位置,则第一信息包括MSD改善能力信息,MSD改善能力信息指示终端设备能够改善第一频谱组合的MSD,或者,MSD改善能力信息指示终端设备不能改善第一频谱组合的MSD。
在一个实施例中,若第一MSD值小于或等于第一阈值,则MSD改善能力信息用于指示终端设备能够改善第一频谱组合的MSD;或者,若第一MSD值大于第一阈值,则MSD改善能力信息用于指示终端设备不能改善第一频谱组合的MSD;其中,第一MSD值为终端针对第一频谱组合的MSD值。
在另一个实施例中,若第一MSD值小于或等于第一阈值,且第二MSD值大于或等于第二阈值,则MSD改善能力信息用于指示终端设备能够改善第一频谱组合的MSD;或者,若第一MSD值大于第一阈值,则改善能力信息用于指示终端设备不能改善第一频谱组合的MSD;其中,第一MSD值为终端针对第一频谱组合的MSD值,第二MSD值为第一频谱组合预定义的MSD值,第一MSD值小于第二MSD值。
可选地,若终端设备位于所属小区的远点的位置,则第一信息包括第一行为信息和/或第二行为信息,第一行为信息用于指示网络在单个载波或单个频段上调度上行传输,第二行为信息用于指示网络在第一频段组合中不同时调度上/下行传输,或者,第二行为信息用于指示网络在第一频段组合中调度的上下行传输的间隔大于或等于第五阈值。
S450,终端设备发送第一信息,相对应地,网络设备接收该第一信息。
该步骤具体内容可以参考S220,在此不再赘述。
S460,网络设备根据第一信息确定是否调度限制终端设备。
该步骤具体内容可以参考S340,在此不再赘述。
在本申请实施例中,终端设备在确定第一信息时,考虑了终端设备的位置对于MSD的影响,从而使得终端设备更能高效地确定并上报第一信息,便于网络设备根据第一信息确定是否采取相应措施进一步改善MSD,从而尽量避免影响终端设备的接收性能。
上文结合图1至图4详细的描述了本申请实施例的方法实施例,下面结合图5和图6,描述本申请实施例的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图5是本申请实施例提供的一种通信装置的示意性框图。
在一些实施例中,该通信装置500包括处理单元520和发送单元530。可选地,该通信装置500可以用于实现对应于图2至图4所示的方法实施例中终端设备执行的步骤或者流程,例如,该通信装置500可以为终端设备,或者也可以为终端设备中的芯片或电路。
该处理单元520用于:确定对于第一频谱组合的最大灵敏度下降MSD改善的能力,第一频谱组合包括第一频段和第二频段,第一频段的频段号与第二频段的频段号不同;该发送单元530用于:发送第一信息,第一信息指示改善MSD的能力。
可选地,该通信装置500还包括接收单元510,该接收单元510用于:获取第一载波和第二载波,第一载波对应的第一频段与第二载波对应的第二频段构成第一频谱组合,第一频谱组合的关系为载波聚合,或者,第一频谱组合的关系为双连接,该双连接的模式可以包括EN-DC、NE-DC或NR-DC。
可选地,该处理单520还用于:根据路损测量值或者定时提前量确定在小区中的位置;若终端设备的路损测量值或定时提前量小于或等于第六阈值,则终端设备位于所属小区的中近点的位置;或者,若终端设备的路损测量值或定时提前量大于第六阈值,则终端设备位于所属小区的远点的位置。
若终端设备位于所属小区的中近点的位置,则第一信息包括MSD改善能力信息,MSD改善能力信息指示终端设备能够改善第一频谱组合的MSD,或者,MSD改善能力信息指示终端设备不能改善第一频谱组合的MSD。
若第一MSD值小于或等于第一阈值,则MSD改善能力信息用于指示终端设备能够改善第一频谱组合的MSD;或者,若第一MSD值大于第一阈值,则MSD改善能力信息用于指示终端设备不能改善第一频谱组合的MSD;其中,第一MSD值为终端针对第一频谱组合的MSD值。
若第一MSD值小于或等于第一阈值,且第二MSD值大于或等于第二阈值,则MSD改善能力信息用于指示终端设备能够改善第一频谱组合的MSD;或者,若第一MSD值大于第一阈值,则改善能力信息用于指示终端设备不能改善第一频谱组合的MSD;其中,第一MSD值为终端针对第一频谱组合的MSD值,第二MSD值为第一频谱组合预定义的MSD值,第一MSD值小于第二MSD值。
若终端设备位于所属小区的远点的位置,则第一信息包括第一行为信息和/或第二行为信息,第一行为信息用于指示网络在单个载波或单个频段上发送上行传输,第二行为信息用于指示网络在第一频段组合中不同时调度上/下行传输,或者,第二行为信息用于指
示网络在第一频段组合中调度的上下行传输的间隔大于或等于第五阈值。
在一些实施例中,该通信装置500包括接收单元510。可选地,该通信装置500可以用于实现对应于图2至图4所示的方法实施例中网络设备执行的步骤或者流程,例如,该通信装置500可以为网络设备,或者也可以为网络设备中的芯片或电路。
该接收单元510用于:接收第一信息,第一信息指示终端对于第一频谱组合的最大灵敏度下降MSD改善的能力,第一频谱组合包括第一频段和第二频段,第一频段的频段号与第二频段的频段号不同。
可选地,该通信装置还包括发送单元530,该发送单元530用于:发送第一载波和第二载波,第一载波对应的第一频段与第二载波对应的第二频段构成第一频谱组合,第一频谱组合的关系为载波聚合,或者,第一频谱组合的关系为双连接,其中,双连接的模式可以包括EN-DC、NE-DC或NR-DC。
可选地,该通信装置还包括处理单元520,该处理单元520用于,根据第一信息确定在单个载波或单个频段上调度上行传输。
可选地,该处理单元520还用于,根据第一信息确定在第一频段组合中不同时调度上/下行传输。
可选地,该处理单元520还用于,根据第一信息确定在第一频段组合中调度的上下行传输的间隔大于或等于第五阈值。
可选地,该处理单元520还用于,根据第一信息调整终端设备发送上行信号的发射功率。
图6是本申请实施例提供的一种通信装置的示意性结构图。
如图6所示,该通信装置600包括处理器610,处理器610与存储器620耦合,存储器620用于存储计算机程序或指令和/或数据,处理器610用于执行存储器620存储的计算机程序或指令,或读取存储器620存储的数据,以执行上文各方法实施例中的方法。
可选地,处理器610为一个或多个。
可选地,存储器620为一个或多个。
可选地,该存储器620与该处理器610集成在一起,或者分离设置。
可选地,如图6所示,该通信装置还包括收发器630,收发器630用于信号的接收和/或发送。例如,处理器610用于控制收发器630进行信号的接收和/或发送。
可选地,该通信装置600可以用于实现上文各个方法实施例中由终端设备执行的操作。例如,处理器610用于执行存储器620存储的计算机程序或指令,以实现上文各个方法实施例中由终端设备执行的相关操作。例如,收发器630可以用于执行图3中所示的S310中终端设备的接收操作,还可以用于S330中终端设备的发送操作。处理器610用于执行本申请实施例中终端设备的处理步骤。例如,用于执行根据终端设备的位置确定第一信息的操作。应理解,图6所示的通信装置600可以执行图2至图4中的终端执行的操作。
可选地,该通信装置600可以用于实现上文各个方法实施例中由网络设备执行的操作。例如,处理器610用于执行存储器620存储的计算机程序或指令,以实现上文各个方法实施例中由网络设备执行的相关操作。例如,收发器630可以用于执行图3中所示的S310中网络设备的发送操作,还可以用于执行图4中所示的S450中网络设备的接收操作。处理器610用于执行本申请实施例中网络设备的处理步骤。例如,处理器610用于执行根据第一信息确定在第一频段组合中不同时调度上/下行传输,或者,用于执行根据第一信息
调整终端设备发送上行信号的发射功率。应理解,图6所示的通信装置600可以执行图2至图4中的网络设备执行的操作。
还应理解,图6仅为示例而非限定,上述包括处理器、存储器和收发器的通信装置可以不依赖于图6所示的结构。
此外,本申请提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得任意一个方法实施例中由终端设备或第一设备或定位管理设备执行的操作和/或处理被执行。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括存储器。
本申请实施例中的芯片可以是编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是CPU,还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)、其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,或其他集成芯片。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2至图4所示实施例中任意一个实施例的方法。
本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2至图4所示实施例中任意一个实施例的方法。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态
随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(sync link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申
请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”和“该”旨在包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“至少一项”、“一个或多个”是指一个、两个或两个以上。“第一”、“第二”以及各种数字编号只是为了描述方便进行的区分,并不用来限制本申请实施例的范围。“和/或”,用于描述对应对象的对应关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或复数。字符“/”一般表示前后关联对象是一种“或”的关系。下文各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。例如,本申请实施例中,“301”、“401”、“501”等字样仅为了描述方便作出的标识,并不是对执行步骤的次序进行限定。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。在本申请实施例中,“当……时”、“在……的情况下”、“若”以及“如果”等描述均指在某种客观情况下设备会做出相应的处理,并非是限定时间,且也不要求设备在实现时一定要有判断的动作,也不意味着存在其它限定。在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (20)
- 一种通信方法,应用于终端或终端中的模块,其特征在于,包括:确定对于第一频谱组合的最大灵敏度下降MSD改善的能力,所述第一频谱组合包括第一频段和第二频段,所述第一频段的频段号与所述第二频段的频段号不同;发送第一信息,所述第一信息指示对于所述第一频谱组合的MSD改善的能力。
- 一种通信方法,应用于网络或网络中的模块,其特征在于,包括:接收第一信息,所述第一信息指示终端对于第一频谱组合的最大灵敏度下降MSD改善的能力,所述第一频谱组合包括第一频段和第二频段,所述第一频段的频段号与所述第二频段的频段号不同。
- 根据权利要求1或2所述的方法,其特征在于,所述第一信息包括MSD改善能力信息,所述MSD改善能力信息指示所述终端能够改善所述MSD,或者,所述MSD改善能力信息指示所述终端不能改善所述MSD。
- 根据权利要求3所述的方法,其特征在于,若第一MSD值小于或等于第一阈值,则所述MSD改善能力信息指示所述终端能够改善所述MSD;或者,若第一MSD值大于所述第一阈值,则所述MSD改善能力信息指示所述终端不能改善所述MSD;其中,所述第一MSD值为所述终端针对所述第一频谱组合的MSD值。
- 根据权利要求3所述的方法,其特征在于,若第一MSD值小于或等于第一阈值,且第二MSD值大于或等于第二阈值,则所述MSD改善能力信息指示所述终端能够改善所述MSD;或者,若所述第一MSD值大于所述第一阈值,则所述MSD改善能力信息指示所述终端不能改善所述MSD;其中,所述第一MSD值为所述终端针对所述第一频谱组合的MSD值,所述第二MSD值为所述第一频谱组合预定义的MSD值,所述第一MSD值小于所述第二MSD值。
- 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一信息包括MSD类型信息,所述MSD类型信息指示所述MSD的类型,所述MSD类型信息包括以下至少一种:二阶互调干扰、三阶互调干扰、四阶互调干扰、五阶互调干扰、二阶谐波干扰、三阶谐波干扰、四阶谐波干扰、五阶谐波干扰、二阶谐波混合干扰、三阶谐波混频干扰、四阶谐波混频干扰、五阶谐波混频干扰、跨频带隔离。
- 根据权利要求6所述的方法,其特征在于,所述MSD类型信息包括所述第一频谱组合中满足第一条件的所述MSD的类型,所述第一条件为第一MSD值大于或等于第三阈值,所述第一MSD值为所述终端针对所述第一频谱组合的MSD值。
- 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一频谱组合还包括第三频段,所述第三频段的频段号与所述第一频段的频段号不同,所述第三频段的频段号与所述第二频段的频段号不同,所述第一信息包括频段信息,所述频段信息指示所述第三频段,所述第三频段为所述第一频谱组合中受到MSD影响的频段。
- 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一信息包括第一区间信息,所述第一区间信息包括第一MSD值所属的区间,所述第一MSD值为所述终端针对所述第一频谱组合的MSD值。
- 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一信息包括第二区间信息,所述第二区间信息包括第三MSD值所属的区间,所述第三MSD值为第一MSD值与第二MSD值之间的差值,所述第一MSD值为所述终端针对所述第一频谱组合的MSD值,所述第二MSD值为所述第一频谱组合预定义的MSD值,所述第一MSD值小于所述第二MSD值。
- 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一信息包括第一MSD值,或者,所述第一信息包括第三MSD值,所述第三MSD值为第一MSD值与第二MSD值之间的差值,所述第一MSD值为所述终端针对所述第一频谱组合的MSD值,所述第二MSD值为所述第一频谱组合预定义的MSD值,所述第一MSD值小于所述第二MSD值。
- 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一信息包括第一行为信息和/或第二行为信息,所述第一行为信息指示网络在单个载波或单个频段上调度上行传输,所述第二行为信息指示网络在所述第一频段组合中不同时调度上/下行传输,或者,所述第二行为信息指示网络在所述第一频段组合中调度的上下行传输的间隔大于或等于第五阈值。
- 根据权利要求1至12中任一项所述的方法,其特征在于,所述第一信息包括同时收发能力指示信息,所述同时收发能力指示信息指示所述第一频谱组合支持同时收发,或者,所述同时收发能力指示信息指示所述第一频谱组合不支持同时收发。
- 根据权利要求13所述的方法,其特征在于,若第一MSD值大于或等于第一阈值,则所述同时收发能力指示信息指示所述第一频谱组合不支持同时收发,或者,若所述第一MSD值小于所述第一阈值,则所述同时收发能力指示信息指示所述第一频谱组合支持同时收发;或者,若第二MSD值大于或等于第四阈值,则所述同时收发能力指示信息指示所述第一频谱组合不支持同时收发,或者,若所述第二MSD值小于所述第四阈值,则所述同时收发能力指示信息指示所述第一频谱组合支持同时收发;其中,所述第一MSD值为所述终端针对所述第一频谱组合的MSD值,所述第二MSD值为所述第一频谱组合预定义的MSD值,所述第一MSD值小于所述第二MSD值。
- 根据权利要求13所述的方法,其特征在于,若第一MSD值小于或等于第一阈值,则所述同时收发能力指示信息指示所述第一频谱组合不支持同时收发,所述第一MSD值为所述终端针对所述第一频谱组合的MSD值。
- 根据权利要求1至15中任一项所述的方法,其特征在于,所述第一信息包括比例因子信息,所述比例因子信息用于指示所述终端的发射功率变化值与第三MSD值的比值,所述第三MSD值为第一MSD值与第二MSD值之间的差值, 所述第一MSD值为所述终端针对所述第一频谱组合的MSD值,所述第二MSD值为所述第一频谱组合中预定义的MSD值,所述第一MSD值小于所述第二MSD值。
- 一种通信装置,其特征在于,包括用于执行如权利要求1至16中任一项所述方法的模块。
- 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述通信装置执行如权利要求1至16中任一项所述的方法。
- 一种芯片,其特征在于,包括:处理器,所述处理器用于读取并执行存储器中存储的计算机程序,以执行如权利要求1至16中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至16中任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210926439.1A CN117560658A (zh) | 2022-08-03 | 2022-08-03 | 通信方法和通信装置 |
CN202210926439.1 | 2022-08-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024027317A1 true WO2024027317A1 (zh) | 2024-02-08 |
Family
ID=89819118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/097375 WO2024027317A1 (zh) | 2022-08-03 | 2023-05-31 | 通信方法和通信装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117560658A (zh) |
WO (1) | WO2024027317A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200236696A1 (en) * | 2017-10-06 | 2020-07-23 | Ntt Docomo, Inc. | User apparatus and base station apparatus |
CN112020140A (zh) * | 2019-05-29 | 2020-12-01 | 中国移动通信有限公司研究院 | 资源配置方法及装置、通信设备 |
CN112770316A (zh) * | 2019-11-05 | 2021-05-07 | 中国移动通信有限公司研究院 | 信息上报方法、调度方法、装置、终端及网络侧设备 |
CN113678550A (zh) * | 2019-03-29 | 2021-11-19 | 诺基亚技术有限公司 | 降级信令 |
-
2022
- 2022-08-03 CN CN202210926439.1A patent/CN117560658A/zh active Pending
-
2023
- 2023-05-31 WO PCT/CN2023/097375 patent/WO2024027317A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200236696A1 (en) * | 2017-10-06 | 2020-07-23 | Ntt Docomo, Inc. | User apparatus and base station apparatus |
CN113678550A (zh) * | 2019-03-29 | 2021-11-19 | 诺基亚技术有限公司 | 降级信令 |
CN112020140A (zh) * | 2019-05-29 | 2020-12-01 | 中国移动通信有限公司研究院 | 资源配置方法及装置、通信设备 |
CN112770316A (zh) * | 2019-11-05 | 2021-05-07 | 中国移动通信有限公司研究院 | 信息上报方法、调度方法、装置、终端及网络侧设备 |
Non-Patent Citations (1)
Title |
---|
NOKIA, NOKIA SHANGHAI BELL: "Single UL Transmission in LTE-NR Dual Connectivity", 3GPP DRAFT; R1-1716614 1TX UE IN LTE-NR DC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 17 September 2017 (2017-09-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051340065 * |
Also Published As
Publication number | Publication date |
---|---|
CN117560658A (zh) | 2024-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112867129B (zh) | 功率余量上报发送方法和装置 | |
WO2021026715A1 (zh) | 用于传输侧行数据的方法、终端设备和网络设备 | |
CN113517970B (zh) | 一种小区状态管理方法 | |
EP3942876B1 (en) | Method and apparatus for beam management, and ue | |
WO2020210964A1 (zh) | 无线通信方法、终端设备和网络设备 | |
WO2020043009A1 (zh) | 一种ui显示方法、装置、终端设备及存储介质 | |
WO2020001582A1 (zh) | 一种配置pdcch检测的方法及相关设备 | |
WO2020093394A1 (zh) | 通信方法、终端设备和网络设备 | |
JP7429242B2 (ja) | 測定管理方法及び装置、通信デバイス | |
WO2021114206A1 (zh) | 一种cli测量的方法及装置、终端设备、网络设备 | |
WO2020143048A1 (zh) | 一种信息处理方法及终端设备 | |
WO2022147731A1 (zh) | 无线通信方法、终端设备和网络设备 | |
US20240022942A1 (en) | Measurement parameter determination method, electronic device and storage medium | |
WO2020029077A1 (zh) | 一种信息传输方法及装置、终端 | |
WO2024027317A1 (zh) | 通信方法和通信装置 | |
US20220007425A1 (en) | Method and apparatus for transmitting a system information request and system | |
EP4236467A2 (en) | Radio communication method, network device, and terminal device | |
WO2021129120A1 (zh) | 通信方法以及终端设备 | |
EP4156799A1 (en) | Power control method and apparatus | |
CN113508623B (zh) | 调整功率的方法和终端设备 | |
WO2020154871A1 (zh) | 一种测量控制方法、终端设备及网络设备 | |
WO2023131108A1 (zh) | 通信方法、装置及系统 | |
US20240259959A1 (en) | Device and method for reporting power-related information | |
WO2024199375A1 (zh) | 一种通信方法及装置 | |
WO2021195880A1 (zh) | 一种功率余量上报的方法装置、网络设备、终端设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23849027 Country of ref document: EP Kind code of ref document: A1 |