WO2022147731A1 - 无线通信方法、终端设备和网络设备 - Google Patents

无线通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022147731A1
WO2022147731A1 PCT/CN2021/070714 CN2021070714W WO2022147731A1 WO 2022147731 A1 WO2022147731 A1 WO 2022147731A1 CN 2021070714 W CN2021070714 W CN 2021070714W WO 2022147731 A1 WO2022147731 A1 WO 2022147731A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmit power
terminal device
maximum
power
power level
Prior art date
Application number
PCT/CN2021/070714
Other languages
English (en)
French (fr)
Inventor
邢金强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21916789.7A priority Critical patent/EP4266768A4/en
Priority to CN202180082177.9A priority patent/CN116602013A/zh
Priority to PCT/CN2021/070714 priority patent/WO2022147731A1/zh
Publication of WO2022147731A1 publication Critical patent/WO2022147731A1/zh
Priority to US18/218,997 priority patent/US20230354216A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/265TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the quality of service QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Definitions

  • the embodiments of the present application relate to the field of communication, and more particularly, to a wireless communication method, a terminal device, and a network device.
  • the maximum transmit power of the terminal equipment can be constrained based on the power class (Power Class, PC), that is, the maximum transmit power of the terminal equipment cannot exceed the terminal equipment's maximum transmit power.
  • the transmit power corresponding to the power level can also be called the nominal maximum transmit power value.
  • the upper limit value of the transmit power corresponding to the power level is equal to the difference between the transmit power corresponding to the power level and the maximum tolerance. and.
  • the transmission capability of the power amplifier (PA) of the terminal equipment exceeds the upper limit of the transmission power corresponding to the power level, in practice, it is still necessary to control the maximum transmission power of the terminal equipment not to exceed the transmission power corresponding to the power level.
  • the upper limit value will waste the transmission power of the terminal equipment with higher transmission capability, and limit the use of the transmission capability of its power amplifier.
  • Embodiments of the present application provide a wireless communication method, terminal device, and network device, which can reduce the waste of transmit power of a terminal device with higher transmit capability, and improve the use efficiency of the transmit capability of its power amplifier.
  • a wireless communication method including:
  • the terminal device sends indication information to the network device, where the indication information is used to determine the maximum transmit power of the terminal device.
  • a wireless communication method including:
  • the network device receives the indication information sent by the terminal device, where the indication information is used to determine the maximum transmit power of the terminal device.
  • a terminal device for executing the method in the above-mentioned first aspect or each implementation manner thereof.
  • the terminal device includes a functional module for executing the method in the first aspect or each implementation manner thereof.
  • a network device for executing the method in the second aspect or each of its implementations.
  • the network device includes a functional module for executing the method in the second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a network device including a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory, so as to execute the method in the above-mentioned second aspect or each implementation manner thereof.
  • a chip for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor for calling and running a computer program from a memory, so that a device installed with the chip executes any one of the above-mentioned first to second aspects or each of its implementations method in .
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first aspect to the second aspect or each implementation manner thereof.
  • a computer program product comprising computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above-mentioned first to second aspects or the implementations thereof.
  • a computer program which, when run on a computer, causes the computer to perform the method in any one of the above-mentioned first to second aspects or the respective implementations thereof.
  • the terminal device sends information for determining the maximum transmit power of the terminal device to the network device, which can support the terminal device to independently determine the maximum transmit power, and ensure that the network device can know the maximum transmit power of the terminal device, and can reduce the The waste of transmit power of terminal equipment with higher transmit capability improves the use efficiency of transmit capability of its power amplifier.
  • FIG. 1 is an example of a communication system architecture to which the embodiments of the present application are applied.
  • FIG. 2 and FIG. 3 are schematic structural diagrams of a radio frequency frame provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120 .
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120 .
  • the embodiment of the present application only uses the communication system 100 for exemplary description, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: long term evolution (Long Term Evolution, LTE) system, LTE time division duplex (Time Division Duplex, TDD), universal mobile communication system (Universal mobile communication system) Mobile Telecommunication System, UMTS), 5G communication system (also known as New Radio (New Radio, NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • Universal mobile communication system Universal mobile communication system
  • Mobile Telecommunication System Universal mobile communication system
  • UMTS Universal mobile communication system
  • 5G communication system also known as New Radio (New Radio, NR) communication system
  • future communication systems etc.
  • the network device 120 may be an access network device that communicates with the terminal device 110 .
  • An access network device may provide communication coverage for a particular geographic area, and may communicate with terminal devices 110 (eg, UEs) located within the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, or a next generation radio access network (Next Generation Radio Access Network, NG RAN) device, Or a base station (gNB) in an NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolved Public Land Mobile Network (PLMN).
  • PLMN Public Land Mobile Network
  • the terminal device 110 may be any terminal device, which includes, but is not limited to, a terminal device that adopts a wired or wireless connection with the network device 120 or other terminal devices.
  • the terminal equipment 110 may refer to an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, end devices in 5G networks or end devices in future evolved networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 110 may be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may further include a core network device 130 that communicates with the base station, and the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, an Access and Mobility Management Function (Access and Mobility Management Function). , AMF), another example, authentication server function (Authentication Server Function, AUSF), another example, user plane function (User Plane Function, UPF), another example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be an evolved packet core (Evolved Packet Core, EPC) device of an LTE network, for example, a session management function+core network data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) Equipment.
  • EPC evolved packet core
  • the SMF+PGW-C can simultaneously implement the functions that the SMF and the PGW-C can implement.
  • the above-mentioned core network equipment may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited in this embodiment of the present application.
  • the various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal equipment establishes an air interface connection with the access network equipment through the NR interface to transmit user plane data and control plane signaling; the terminal equipment can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); access Network equipment, such as the next generation wireless access base station (gNB), can establish a user plane data connection with the UPF through the NG interface 3 (N3 for short); the access network equipment can establish a control plane signaling with the AMF through the NG interface 2 (N2 for short).
  • gNB next generation wireless access base station
  • UPF can establish a control plane signaling connection with SMF through NG interface 4 (N4 for short); UPF can exchange user plane data with the data network through NG interface 6 (N6 for short); AMF can communicate with SMF through NG interface 11 (N11 for short)
  • the SMF establishes a control plane signaling connection; the SMF can establish a control plane signaling connection with the PCF through the NG interface 7 (N7 for short).
  • FIG. 1 exemplarily shows one base station, one core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and the coverage area of each base station may include other numbers of terminals equipment, which is not limited in this embodiment of the present application.
  • a device having a communication function in the network/system can be referred to as a communication device.
  • the communication device may include a network device 120 and a terminal device 110 with a communication function, and the network device 120 and the terminal device 110 may be the devices described above, which will not be repeated here;
  • the communication device may further include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the transmit power of the terminal device can be defined based on the power class (Power Class, PC), that is, the maximum transmit power of the terminal device cannot exceed the transmit power upper limit corresponding to the power class of the terminal device, and the transmit power corresponding to the power class It can also be called the nominal maximum transmit power value, and the transmit power upper limit value corresponding to the power level is equal to the sum of the transmit power corresponding to the power level and the maximum tolerance.
  • Power Class PC
  • the nominal maximum transmit power value the transmit power upper limit value corresponding to the power level is equal to the sum of the transmit power corresponding to the power level and the maximum tolerance.
  • Each power level can correspond to a different transmit power.
  • a tolerance (Tolerance) range of the nominal value of the maximum transmit power is defined.
  • the tolerance range may include a minimum tolerance and a maximum tolerance.
  • the tolerance ranges that may be different for different frequency bands are described in conjunction with Table 1 below.
  • the transmit power corresponding to power level 1 is 31 decibel milliwatts (dBm).
  • the tolerance range of the transmit power corresponding to PC1 is +2/-3dB, that is, as long as the terminal's When the transmit power is in the range of 28-33dBm, it can be considered that the terminal satisfies PC1.
  • the transmit power of the terminal is 26dBm
  • the tolerance range of the transmit power corresponding to PC2 is +2/-3dB, that is, the range of the maximum transmit power of the terminal device is 23 ⁇ 28dBm.
  • the transmit power corresponding to PC3 is 23dBm, and for the n1 frequency band, the tolerance range of the transmit power corresponding to PC3 is +2/-2dB, that is, the maximum transmit power range of the terminal equipment is 21 ⁇ 25dBm.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two (for example, power level and transmit power), and may also indicate that both (for example, power level) and transmit power) have an associated relationship, and may also be instructed and instructed, configured and configured, and so on.
  • the terminal When the terminal performs transmit power control, it will calculate according to the configurable maximum transmit power (P CMAX,f,c ), and control the size of its transmit power.
  • P CMAX,f,c the configurable maximum transmit power
  • the lower limit of P CMAX,f,c is P CMAX_L,f,c , that is, the maximum transmit power needs to be higher than this lower limit.
  • the upper limit of P CMAX,f,c is P CMAX_H,f,c , that is, the maximum transmit power needs to be lower than this upper limit. It can be seen from the following formula that P CMAX_H,f,c is actually the minimum value of P EMAX,c and P PowerClass – ⁇ P PowerClass .
  • P EMAX,c is the maximum transmit power of the terminal allowed in the cell configured by the base station.
  • P PowerClass – ⁇ P PowerClass defines the restriction conditions brought by the power class.
  • P PowerClass corresponds to the transmit power corresponding to the power class, that is, the value when the tolerance is not considered, that is, 31 dBm for PC1, 26 dBm for PC2, and 23 dBm for PC3. It can be seen from this that the transmit power of the terminal will not exceed the upper limit of transmit power corresponding to the power level.
  • the power level under the frequency band combination is also defined.
  • the power level of each frequency band combination is respectively defined.
  • the following is an example of the power level of UL CA.
  • the power level of the frequency band combination is similar to the definition of the power level of a single frequency band, and also includes the maximum transmit power nominal value and tolerance range.
  • the difference from the single frequency band is that it includes multiple frequency bands, and the total transmit power of these multiple frequency bands is constrained by the power level (including the tolerance range), among which the maximum configurable transmit power P CMAX,f,c in the formula
  • the upper limit of power generation is defined as:
  • P CMAX_H MIN ⁇ 10log 10 ⁇ p EMAX,c , P EMAX,CA , P PowerClass ⁇ .
  • P PowerClass corresponds to the transmit power corresponding to the power class, that is, the value when the tolerance is not considered. It should be noted that, under normal circumstances, the transmit power corresponding to the power level of the frequency band combination is a fixed value, but the power level under the frequency band combination is relative to the total power of the frequency band combination. For example, 31 dBm for PC1, 26 dBm for PC2, and 23 dBm for PC3. It can be seen from this that the transmit power of the terminal will not exceed the upper limit value of transmit power corresponding to the power level even under the combination of frequency bands.
  • the maximum transmit power of the terminal is constrained by the upper limit value of the transmit power corresponding to the power level, regardless of the power level under a single frequency band or the power level under a combination of frequency bands, that is, the maximum transmit power of the terminal has an upper limit.
  • Limit in practice, the maximum transmit power of the terminal cannot exceed the upper limit.
  • 3GPP only defines the transmit power corresponding to the power level and the tolerance range of the transmit power corresponding to the power level. There are no restrictions on the specific implementation. Based on this, even if the transmission capability of the power amplifier (PA) of the terminal equipment exceeds the upper limit of the transmission power corresponding to the power level, in practice, it is still necessary to control the maximum transmission power of the terminal equipment not to exceed the transmission power corresponding to the power level. The upper limit value will waste the transmission power of the terminal equipment with higher transmission capability, and limit the use of the transmission capability of its power amplifier.
  • PA power amplifier
  • FIG. 2 and FIG. 3 are schematic structural diagrams of a radio frequency frame provided by an embodiment of the present application.
  • the terminal has two transmit branches (such as a terminal supporting uplink MIMO, transmit diversity, EN-DC, NE-DC, uplink CA, etc.), which is implemented in hardware.
  • the terminal can be realized in several ways as shown in Figure 2, that is, it can be realized by using two PC3 power amplifiers (Power Amplifier, PA), or one PC2 PA and one PC3 PA, or one PC3 PA.
  • PA Power Amplifier
  • the maximum transmit power cannot exceed the transmit power upper limit value corresponding to the power level.
  • the corresponding PA of the frequency band nx and the frequency band ny can be used for implementation.
  • it can be implemented in several ways as shown in Figure 3 That is, two PC3 power amplifiers (Power Amplifier, PA) can be used for implementation, one PC2 PA and one PC3 PA can be used for implementation, and two PC2 PAs can also be used for implementation.
  • PA Power Amplifier
  • the total maximum transmit power cannot exceed the transmit power upper limit value corresponding to the power level.
  • Mode 2 and Mode 3 use PC2PA with higher transmit power capability than Mode 1, they are affected by the upper limit value of transmit power corresponding to PC2, and in practice the maximum During the power control of the transmit power, the transmit power upper limit value corresponding to PC2 cannot be exceeded. That is, the maximum transmit power of the terminal is constrained by the upper limit value of the transmit power corresponding to the power level. Therefore, even if the terminal has the ability to transmit higher power, it cannot break through the upper limit value of the transmit power corresponding to the power level. The waste of transmit power capability also cannot achieve optimal performance.
  • FIG. 2 and FIG. 3 are only examples of the present application, and should not be construed as limiting the present application.
  • the transmit power of a terminal on a single frequency band usually includes two situations of single PA transmission and dual PA transmission.
  • the situation of dual PA transmission is introduced in FIG. 2 , that is, when a PC2 terminal includes the PA of PC2, its transmit power capability can actually exceed the transmit power upper limit value corresponding to PC2.
  • a similar situation actually exists in single-PA transmission because the transmission capability of the PA usually exceeds the upper limit of the transmission power corresponding to the power level, which is used to compensate for the power loss of the devices connected behind the PA, and is limited by the corresponding power level.
  • the upper limit of the transmit power limits the maximum transmit power of the terminal in the case of a single PA. Therefore, regardless of single-PA transmission or dual-PA transmission, the maximum transmission power is limited by the upper limit of the power level, and the optimal performance cannot be achieved.
  • Embodiments of the present application provide a wireless communication method, terminal device, and network device, which can reduce the waste of transmit power of a terminal device with higher transmit capability, and improve the use efficiency of the transmit capability of its power amplifier.
  • FIG. 4 is a schematic flowchart of a wireless communication method 200 provided by an embodiment of the present application.
  • the method 200 may be executed interactively by a terminal device and a network device, for example, the method 200 may be executed interactively by the terminal device 110 shown in FIG. 1 and the network device 120 shown in FIG. 1 .
  • the method 200 may include:
  • the terminal device sends indication information to the network device, where the indication information is used to determine the maximum transmit power of the terminal device.
  • the network device receives the indication information sent by the terminal device, where the indication information is used to determine the maximum transmit power of the terminal device.
  • the indication information includes physical layer signaling such as downlink control information (Downlink Control Information, DCI), system information (System Information, SI), radio resource control (Radio Resource Control, RRC) information.
  • DCI Downlink Control Information
  • SI System Information
  • RRC Radio Resource Control
  • the terminal device sends information for determining the maximum transmit power of the terminal device to the network device, which can support the terminal device to independently determine the maximum transmit power, and ensure that the network device can know the maximum transmit power of the terminal device, and can reduce the The waste of transmit power of terminal equipment with higher transmit capability improves the use efficiency of transmit capability of its power amplifier.
  • the "indication information" mentioned in the embodiments of the present application may be direct indication information, indirect indication information, or information indicating an association relationship. For example, if A indicates B, it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the transmit power corresponding to the power level of the terminal device is only used to define the lower limit of the maximum transmit power.
  • the maximum transmission power of the terminal device is not constrained based on the upper limit value of the transmission power corresponding to the power level, that is, the maximum transmission power of the terminal device is constrained only based on the lower limit value corresponding to the power level.
  • higher power transmission can be achieved for a terminal with higher transmission power capability by releasing the restriction on the upper limit value of the transmission power corresponding to the power level.
  • the embodiment of the present application adjusts the definition of the power level of the terminal, and only defines the lower limit of transmit power corresponding to the power level, that is, the maximum transmit power of the terminal only needs to exceed the lower limit of transmit power corresponding to the power level. The following description is given in conjunction with Table 4.
  • the transmit power corresponding to power level 1 is still 31dBm, and the minimum tolerance is -3dB (this is just an example, the tolerance value can be other values such as -2 or -2.5, etc.), that is, the maximum The transmit power capability needs to reach at least 28dBm; the transmit power corresponding to power level 1.5 is still 29dBm, and the minimum tolerance is -3dB (this is just an example, the tolerance value can be other values such as -2 or -2.5, etc.), that is, the terminal The maximum transmit power capability needs to reach at least 26dBm; the transmit power corresponding to power level 2 is still 26dBm, and the minimum tolerance is -3dB (this is just an example, the tolerance value can be other values such as -2 or -2.5, etc.), or That is, the maximum transmit power capability of the terminal needs to reach at least 23dBm; the transmit power corresponding to power level 3 is still 23dBm, and the minimum tolerance is -3dB (this is just an example, the tolerance value can be other values such
  • the maximum transmit power of the terminal device can be improved. degrees of freedom to ensure that the terminal device can achieve optimal performance.
  • the network device can know the actual maximum transmit power of the terminal device, so as to ensure normal communication.
  • the indication information includes information for indicating the maximum transmit power, and multiple transmit powers corresponding to the power level of the terminal device include the maximum transmit power.
  • the terminal reports the upper limit that it can reach (i.e. maximum transmit power).
  • multiple optional multiple transmit powers such as 27dBm, 28dBm, 29dBm, etc.
  • the terminal informs the network device of the maximum transmit power, such as 28dBm, through indication information.
  • the indication information includes information used to indicate a first maximum tolerance, and the maximum transmission power is equal to the transmission power corresponding to the power level of the terminal device and the first maximum tolerance There are multiple maximum tolerances defined for the transmit power corresponding to the power level of the terminal device, and the multiple maximum tolerances include the first maximum tolerance.
  • the fixed constraint on the upper limit of the maximum transmit power in the power level is modified to multiple optional upper limits (ie, multiple maximum tolerances) for the maximum transmit power, and the terminal reports the upper limit of the maximum transmit power.
  • the upper limit that can be reached ie the first maximum tolerance.
  • multiple optional maximum tolerances can be defined, such as +2dB, +3dB, +4dB, etc., and the terminal informs the network device of the multiple maximum tolerances adopted by the maximum transmit power through indication information.
  • the first highest tolerance such as +3dB.
  • the indication information includes information used to indicate a first radio frequency architecture of the terminal device, and the maximum transmit power is determined according to information corresponding to the first radio frequency architecture.
  • the first radio frequency architecture may be any one of Modes 1 to 3 shown in FIG. 2 , or any one of Modes 1 to 3 shown in FIG. 3 .
  • the power level of each PA represents its transmit power capability
  • the dual-transmission architecture of the terminal can be PC3+PC3, PC2+PC3 and PC2+PC2, and the terminal device can indicate to the network device. Dual-engine architecture.
  • the information corresponding to the first radio frequency architecture is a second maximum tolerance
  • the maximum transmission power is equal to the sum of the transmission power corresponding to the power level and the second maximum tolerance
  • the information corresponding to the first radio frequency architecture is first transmit power, and the maximum transmit power is equal to the first transmit power.
  • different architectures can correspond to different transmit powers.
  • the transmit power corresponding to PC3+PC3 is 26dBm
  • the transmit power corresponding to PC2+PC3 is 28dBm
  • the transmit power corresponding to PC2+PC2 is 29dBm.
  • the indication information includes information for indicating enhanced transmit power, and the maximum transmit power is equal to the sum of the transmit power corresponding to the power level of the terminal device and the enhanced transmit power.
  • the enhanced transmit power is introduced without changing the definition of the power class.
  • the enhanced transmit power is intended to quantify the additional increased transmit power.
  • the enhanced transmit power is the transmit power that is additionally increased relative to the transmit power upper limit corresponding to the power level.
  • the enhanced transmit power is used to expand the power level capability of the terminal device.
  • the enhanced transmit power is described below by taking the PC2 of the NR frequency band nx as an example.
  • the transmit power corresponding to power level 2 is 26dBm, and the tolerance range is +2/-3.
  • the upper limit of the transmit power corresponding to the power level can be extended, such as 1dB boost, 2dB boost, 3dB boost, etc.
  • the maximum transmit power of the terminal is 27dBm, 28dBm, 29dBm, and the terminal device indicates the maximum transmit power.
  • the actual capability of the transmit power can indicate the enhanced value, such as 1dB/2dB/3dB, etc., or the enhanced maximum transmit power, such as 27dBm/28dBm/29dBm. After obtaining the indication information, the network device can obtain the actual maximum transmit power of the terminal in combination with the definition of the power level.
  • the indication information includes information for indicating enhanced transmit power
  • the maximum transmit power may also be equal to the terminal device The sum of the transmit power corresponding to the power level of , the one maximum tolerance and the enhanced transmit power.
  • the power level of the terminal device is a power level in a single frequency band.
  • the power level of the terminal device is the power level under the frequency band combination
  • the transmit power corresponding to the power level of the terminal device is the sum of the transmit power of each frequency band in the frequency band combination .
  • the transmit power corresponding to the power level of the terminal device is the power sum of each frequency band. That is, it can be understood as the transmit power corresponding to the power level of the frequency band combination.
  • the above-mentioned method for extending the maximum transmit power in a single frequency band is also applicable to the frequency band combination, but the difference is that the power expansion in the frequency band combination refers to the total transmit power of multiple frequency bands.
  • the maximum transmit power is equal to the sum of transmit powers corresponding to power levels in each frequency band in the frequency band combination.
  • the maximum transmit power is extended by removing the upper limit of the power level of the frequency band combination, and using the sum of the transmit powers corresponding to the power levels of the terminals in each frequency band as the maximum transmit power under the frequency band combination.
  • the power level of the terminal in the frequency band nx is PC2, and its corresponding transmit power is M dBm;
  • the power level of the frequency band ny is PC3, and its corresponding transmit power is N dBm;
  • the power level of the terminal in the frequency band combination nx+ny is PC2,
  • the lower limit of the maximum transmit power still follows the definition of PC2, that is, its maximum transmit power is still constrained by the lower limit of the transmit power corresponding to the power level, and the maximum transmit power is M+N dBm.
  • the maximum transmit power Pcmax configurable by the terminal it can be in the following two ways:
  • P CMAX_H MIN ⁇ 10log 10 ⁇ p EMAX,c ,P EMAX,CA ⁇ .
  • P PowerClass is directly removed from PCMAX_H , and the maximum transmit power of the terminal in this frequency band combination is defined as M+N dBm.
  • P CMAX_H MIN ⁇ 10log 10 ⁇ p EMAX,c ,P EMAX,CA ,P PowerClass ⁇ .
  • P PowerClass represents the transmit power corresponding to the power level of the frequency band combination (the value when the tolerance range is not considered, that is, PC1 is 31dBm , PC2 is 26dBm, PC3 is 23dBm), change to the transmit power corresponding to the power level of each frequency band in the frequency band combination of the terminal (the value when the tolerance range is not considered, PC1 is 31dBm, PC2 is 26dBm, PC3 is 23dBm) and.
  • the terminal can maximize its transmit power capability by releasing the upper limit value of transmit power corresponding to the power level.
  • the terminal device can inform the base station of its maximum transmit power, or under the combination of frequency bands Using the sum of the transmit powers corresponding to the power levels in a single frequency band as the actual maximum transmit power can reduce the waste of transmit power of terminal equipment with higher transmit capabilities, and improve the use efficiency of the transmit capabilities of its power amplifiers.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the present application.
  • the implementation of the embodiments constitutes no limitation.
  • FIG. 5 is a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 300 may include:
  • the sending unit 310 sends indication information to the network device, where the indication information is used to determine the maximum transmit power of the terminal device.
  • the transmit power corresponding to the power level of the terminal device is only used to define the lower limit of the maximum transmit power.
  • the indication information includes information for indicating the maximum transmit power, and multiple transmit powers corresponding to the power level of the terminal device include the maximum transmit power.
  • the indication information includes information used to indicate a first maximum tolerance, and the maximum transmission power is equal to the transmission power corresponding to the power level of the terminal device and the first maximum tolerance There are multiple maximum tolerances defined for the transmit power corresponding to the power level of the terminal device, and the multiple maximum tolerances include the first maximum tolerance.
  • the indication information includes information used to indicate a first radio frequency architecture of the terminal device, and the maximum transmit power is determined according to information corresponding to the first radio frequency architecture.
  • the information corresponding to the first radio frequency architecture is a second maximum tolerance
  • the maximum transmit power is equal to the sum of the transmit power corresponding to the power level and the second maximum tolerance
  • the information corresponding to the first radio frequency architecture is a first transmit power, and the maximum transmit power is equal to the first transmit power.
  • the indication information includes information for indicating enhanced transmit power, and the maximum transmit power is equal to the sum of the transmit power corresponding to the power level of the terminal device and the enhanced transmit power.
  • the power level of the terminal device is a power level in a single frequency band.
  • the power level of the terminal device is the power level under the frequency band combination
  • the transmit power corresponding to the power level of the terminal device is the sum of the transmit power of each frequency band in the frequency band combination .
  • the maximum transmit power is equal to the sum of transmit powers corresponding to power levels in each frequency band in the frequency band combination.
  • FIG. 6 is a schematic block diagram of a network device 400 provided by an embodiment of the present application.
  • the network device 400 may include:
  • the receiving unit 410 is configured to receive indication information sent by a terminal device, where the indication information is used to determine the maximum transmit power of the terminal device.
  • the transmit power corresponding to the power level of the terminal device is only used to define the lower limit of the maximum transmit power.
  • the indication information includes information for indicating the maximum transmit power, and multiple transmit powers corresponding to the power level of the terminal device include the maximum transmit power.
  • the indication information includes information used to indicate a first maximum tolerance, and the maximum transmission power is equal to the transmission power corresponding to the power level of the terminal device and the first maximum tolerance There are multiple maximum tolerances defined for the transmit power corresponding to the power level of the terminal device, and the multiple maximum tolerances include the first maximum tolerance.
  • the indication information includes information used to indicate a first radio frequency architecture of the terminal device, and the maximum transmit power is determined according to information corresponding to the first radio frequency architecture.
  • the information corresponding to the first radio frequency architecture is a second maximum tolerance
  • the maximum transmit power is equal to the sum of the transmit power corresponding to the power level and the second maximum tolerance
  • the information corresponding to the first radio frequency architecture is a first transmit power, and the maximum transmit power is equal to the first transmit power.
  • the indication information includes information for indicating enhanced transmit power, and the maximum transmit power is equal to the sum of the transmit power corresponding to the power level of the terminal device and the enhanced transmit power.
  • the power level of the terminal device is a power level in a single frequency band.
  • the power level of the terminal device is the power level under the frequency band combination
  • the transmit power corresponding to the power level of the terminal device is the sum of the transmit power of each frequency band in the frequency band combination .
  • the maximum transmit power is equal to the sum of transmit powers corresponding to power levels in each frequency band in the frequency band combination.
  • the apparatus embodiments and the method embodiments may correspond to each other, and similar descriptions may refer to the method embodiments.
  • the terminal device 300 shown in FIG. 5 may correspond to the corresponding subject in executing the method 200 of the embodiment of the present application, and the aforementioned and other operations and/or functions of the various units in the terminal device 300 are respectively for the purpose of realizing the method shown in FIG. 2 .
  • the network device 400 shown in FIG. 8 may correspond to the corresponding subject in executing the method 200 of the embodiments of the present application, and the aforementioned and other operations and/or the various units in the network device 400
  • the or functions are respectively to implement the corresponding processes in each method in FIG. 2 ; for the sake of brevity, details are not repeated here.
  • the steps of the method embodiments in the embodiments of the present application may be completed by hardware integrated logic circuits in the processor and/or instructions in the form of software, and the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as hardware
  • the execution of the decoding processor is completed, or the execution is completed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, registers, and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the above method embodiments in combination with its hardware.
  • processing unit and the communication unit referred to above may be implemented by a processor and a transceiver, respectively.
  • FIG. 7 is a schematic structural diagram of a communication device 500 according to an embodiment of the present application.
  • the communication device 500 may include a processor 510 .
  • the processor 510 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the communication device 500 may further include a memory 520 .
  • the memory 520 may be used to store instruction information, and may also be used to store codes, instructions, etc. executed by the processor 510 .
  • the processor 510 may call and run a computer program from the memory 520 to implement the methods in the embodiments of the present application.
  • the memory 520 may be a separate device independent of the processor 510 , or may be integrated in the processor 510 .
  • the communication device 500 may further include a transceiver 530 .
  • the processor 510 may control the transceiver 530 to communicate with other devices, specifically, may send information or data to other devices, or receive information or data sent by other devices.
  • Transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include antennas, and the number of the antennas may be one or more.
  • each component in the communication device 500 is connected through a bus system, wherein the bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the communication device 500 may be a terminal device of an embodiment of the present application, and the communication device 500 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application.
  • the communication device 500 may correspond to the terminal device 300 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method according to the embodiment of the present application, wherein the transceiver 530 may correspondingly implement the sending unit in the terminal device 300 at this time.
  • the operations and/or functions implemented by 310 are not repeated here for brevity.
  • the communication device 500 may be the network device of the embodiments of the present application, and the communication device 500 may implement corresponding processes implemented by the network device in each method of the embodiments of the present application.
  • the communication device 500 in the embodiment of the present application may correspond to the network device 400 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method according to the embodiment of the present application, wherein the transceiver 530 may be
  • the corresponding operations and/or functions implemented by the receiving unit 410 in the network device 400 will not be repeated here for brevity.
  • the embodiment of the present application also provides a chip.
  • the chip may be an integrated circuit chip, which has a signal processing capability, and can implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the chip may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • FIG. 8 is a schematic structural diagram of a chip 600 according to an embodiment of the present application.
  • the chip 600 includes a processor 610 .
  • the processor 610 may call and run a computer program from the memory to implement the methods in the embodiments of the present application.
  • the chip 600 may further include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be used to store instruction information, and may also be used to store codes, instructions and the like executed by the processor 610 .
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the chip 600 may further include an input interface 630 .
  • the processor 610 may control the input interface 630 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 600 may further include an output interface 640 .
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip 600 can be applied to the network device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the network device in the various methods in the embodiments of the present application, and can also implement the various methods in the embodiments of the present application.
  • the corresponding process implemented by the terminal device in FIG. 1 is not repeated here.
  • bus system includes a power bus, a control bus and a status signal bus in addition to a data bus.
  • the processors referred to above may include, but are not limited to:
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of this application.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory mentioned above includes but is not limited to:
  • Non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Random Access Memory
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • Embodiments of the present application also provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium stores one or more programs comprising instructions that, when executed by a portable electronic device including a plurality of application programs, enable the portable electronic device to perform the methods of the method embodiments .
  • the computer-readable storage medium can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device in each method of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For brevity, here No longer.
  • the embodiments of the present application also provide a computer program product, including a computer program.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the terminal device in each method of the embodiments of the present application.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • a computer program is also provided in the embodiments of the present application.
  • the computer program When executed by a computer, it enables the computer to perform the method of the method embodiment.
  • the computer program can be applied to the terminal device in the embodiments of the present application.
  • the computer program runs on the computer, the computer executes the corresponding processes implemented by the terminal device in each method of the embodiments of the present application.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • an embodiment of the present application also provides a communication system
  • the communication system may include the above-mentioned terminal equipment and network equipment to form a communication system as shown in FIG. 1 , which is not repeated here for brevity.
  • system and the like in this document may also be referred to as “network management architecture” or “network system” and the like.
  • a software functional unit If implemented in the form of a software functional unit and sold or used as a stand-alone product, it may be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种无线通信方法、终端设备和网络设备。所述方法包括:终端设备向网络设备发送指示信息,所述指示信息用于确定所述终端设备的最大发射功率。本申请中,终端设备向网络设备发送用于确定所述终端设备的最大发射功率的信息,能够支持终端设备自主确定最大发射功率,并且保证网络设备能够知道终端设备的最大发射功率,能够降低具备更高发射能力的终端设备的发射功率的浪费,提升了其功率放大器的发射能力的使用效率。

Description

无线通信方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法、终端设备和网络设备。
背景技术
截至目前,在第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)标准中,可基于功率等级(Power Class,PC)约束终端设备的最大发射功率,即终端设备的最大发射功率不能超过终端设备的功率等级对应的发射功率上限值,功率等级对应的发射功率也可称为最大发射功率标称值,功率等级对应的发射功率上限值等于功率等级对应的发射功率与最高容限的和。基于此,即使终端设备的功率放大器(Power Amplifier,PA)的发射能力超出功率等级对应的发射功率上限值,在实际中,仍然需要控制终端设备的最大发射功率不能超过功率等级对应的发射功率上限值,进而对具备更高发射能力的终端设备的发射功率造成了浪费,限制了其功率放大器的发射能力的使用。
发明内容
本申请实施例提供一种无线通信方法、终端设备和网络设备,能够降低具备更高发射能力的终端设备的发射功率的浪费,提升了其功率放大器的发射能力的使用效率。
第一方面,提供了一种无线通信方法,包括:
终端设备向网络设备发送指示信息,所述指示信息用于确定所述终端设备的最大发射功率。
第二方面,提供了一种无线通信方法,包括:
网络设备接收终端设备发送的指示信息,所述指示信息用于确定所述终端设备的最大发射功率。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。具体地,所述网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
基于以上技术方案,终端设备向网络设备发送用于确定所述终端设备的最大发射功率的信息,能够支持终端设备自主确定最大发射功率,并且保证网络设备能够知道终端设备的最大发射功率,能够降低具备更高发射能力的终端设备的发射功率的浪费,提升了其功率放大器的发射能力的使用效率。
附图说明
图1是本申请实施例应用的一种通信系统架构的示例。
图2和图3是本申请实施例提供的射频框架的示意性结构图。
图4是本申请实施例提供的无线通信方法的示意性流程图。
图5是本申请实施例提供的终端设备的示意性框图。
图6是本申请实施例提供的网络设备的示意性框图。
图7是本申请实施例提供的通信设备的示意性框图。
图8是本申请实施例提供的芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端设备110可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。
例如,所述终端设备110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进网络中的终端设备等。
终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备均可称为通信设备。以图1示出的通 信系统100为例,通信设备可包括具有通信功能的网络设备120和终端设备110,网络设备120和终端设备110可以为上文所述的设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在3GPP标准中,可基于功率等级(Power Class,PC)定义终端设备的发射功率,即终端设备的最大发射功率不能超过终端设备的功率等级对应的发射功率上限值,功率等级对应的发射功率也可称为最大发射功率标称值,功率等级对应的发射功率上限值等于功率等级对应的发射功率与最高容限的和。每个功率等级可对应不同的发射功率。此外,考虑到终端在实现中功率控制的不确定度,定义了最大发射功率标称值的容限(Tolerance)范围。容限范围可包括最低容限和最高容限。对于不同频段可能会不同的容限范围,下面结合表1进行说明。
表1
Figure PCTCN2021070714-appb-000001
如表1所示,功率等级1(PC1)对应的发射功率为31分贝毫瓦(dBm),对于n14频段,PC1对应的发射功率的容限范围为+2/-3dB,也即只要终端的发射功率处于28~33dBm的范围内即可用认为该终端满足了PC1。相应的,对于功率等级2(PC2),终端的发射功率是26dBm,对于n40频段,PC2对应的发射功率的容限范围为+2/-3dB,也即终端设备的最大发射功率的范围是23~28dBm。对于功率等级(PC3),PC3对应的发射功率是23dBm,对于n1频段,PC3对应的发射功率的容限范围为+2/-2dB,也即终端设备的最大发射功率的范围是21~25dBm。
需要说明的是,在本申请实施例的描述中,术语“对应”可表示两者(例如功率等级和发射功率)之间具有直接对应或间接对应的关系,也可以表示两者(例如功率等级和发射功率)之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
终端在进行发射功率控制时,将按照可配置最大发射功率(P CMAX,f,c)进行计算,并控制其发射功率的大小。
下面以单载波为例,结合表2进行说明。
表2
Figure PCTCN2021070714-appb-000002
如表2所示,P CMAX,f,c的下限为P CMAX_L,f,c,也即最大发射功率需要高于这个下限。P CMAX,f,c的上限为P CMAX_H,f,c,也即最大发射功率需要低于这个上限。从下面的公式可以看出,P CMAX_H,f,c实际是取了P EMAX,c和P PowerClass–ΔP PowerClass中的最小值。P EMAX,c是基站配置的小区内允许的终端最大发射功率,P PowerClass–ΔP PowerClass定义了功率等级带来的限制条件,通常情况下,ΔP PowerClass取值为0,因此主要受到P PowerClass的取值限制。P PowerClass对应的是功率等级对应的发射功率,即不考虑容限时的取值,也即,对于PC1是31dBm,对于PC2是26dBm,对于PC3是23dBm。从这里可以看到终端的发射功率将不会超过功率等级对应的发射功率上限值。
在NR中除了单频段外,也定义了频段组合下的功率等级,比如对于CA、DC、EN-DC、NE-DC等都分别定义了各个频段组合的功率等级。
下面是UL CA的功率等级为例进行说明。
表3
Figure PCTCN2021070714-appb-000003
如表3所示,频段组合下的功率等级跟单频段的功率等级定义类似,也包括了最大发射功率标称 值和容限范围。不同于单频段的地方在于这里包括了多个频段,这多个频段的总发射功率受到功率等级(包括容限范围)的约束,其中在最大可配置发射功率P CMAX,f,c公式中最大发功率的上限定义为:
P CMAX_H=MIN{10log 10∑p EMAX,c,P EMAX,CA,P PowerClass}。
其中,P PowerClass对应的是功率等级对应的发射功率,即不考虑容限时的取值。需要说明的是,通常情况下,频段组合的功率等级对应的发射功率是个定值,只不过对于频段组合下的功率等级是相对频段组合的总功率来而言的。例如,对于PC1是31dBm,对于PC2是26dBm,对于PC3是23dBm。从这里可以看到终端即使在频段组合下其发射功率也将不会超过基于功率等级对应的发射功率上限值。
通过以上分析可见,不管针对单频段下的功率等级还是针对频段组合下的功率等级,终端的最大发射功率都受到功率等级对应的发射功率上限值的约束,即终端的最大发射功率有一个上限值,在实际中,终端的最大发射功率时不能超过该上限值。
对于功率等级,3GPP只定义功率等级对应的发射功率以及功率等级对应的发射功率的容限范围,功率等级对应的发射功率的容限范围可包括功率等级对应的发射功率的最低容限和最高容限,而对具体的实现方式不做约束。基于此,即使终端设备的功率放大器(Power Amplifier,PA)的发射能力超出功率等级对应的发射功率上限值,在实际中,仍然需要控制终端设备的最大发射功率不能超过功率等级对应的发射功率上限值,进而对具备更高发射能力的终端设备的发射功率造成了浪费,限制了其功率放大器的发射能力的使用。
图2和图3是本申请实施例提供的射频框架的示意性结构图。
如图2所示,针对单频段,以PC2为例,假设终端有两个发射支路(如支持上行MIMO、发射分集、EN-DC、NE-DC、上行CA等的终端),在硬件实现中,可以采用如图2中的几种方式实现,即,可以采用两个PC3的功率放大器(Power Amplifier,PA)来实现,也可以采用一个PC2的PA和一个PC3的PA来实现,还可以采用两个PC2的PA来实现。但不论采用哪种实现方式,如上面所述,其最大发射功率是不能够超出功率等级对应的发射功率上限值。
如图3所示,针对频段组合nx+ny,以PC2为例,在硬件实现中,可以采用频段nx和频段ny的分别对应的PA实现,例如,可以采用如图3中的几种方式实现,即,可以采用两个PC3的功率放大器(Power Amplifier,PA)来实现,也可以采用一个PC2的PA和一个PC3的PA来实现,还可以采用两个PC2的PA来实现。但不论采用哪种实现方式,如上面所述,其总的最大发射功率是不能够超出功率等级对应的发射功率上限值。
在图2和图3所示的射频架构中,尽管方式2和方式3采用了相比方式1发射功率能力更高的PC2PA,但受到PC2对应的发射功率上限值的影响,在实际进行最大发射功率的功率控制时仍然不能超过PC2对应的发射功率上限值。即,终端的最大发射功率受到功率等级对应的发射功率上限值的约束,由此,会导致即使终端具备发射更高功率的能力也无法突破该功率等级对应的发射功率上限值,导致其发射功率能力的浪费,也无法达到最优的性能。
当然,图2和图3仅为本申请的示例,不应理解为对本申请的限制。
例如,针对单频段,终端在单个频段上发射功率通常包括了单PA发射、双PA发射两种情况。在图2介绍了双PA发射的情况,也即当一个PC2终端包含了PC2的PA时,其发射功率能力实际是可以超过PC2对应的发射功率上限值。类似的情况实际也存在于单PA发射,因为通常PA的发射能力是会超过功率等级对应的发射功率上限值,用于弥补PA后面所连接器件的功率损耗,而受限于功率等级对应的发射功率上限值,使得单PA情况下终端的最大发射功率也会受限。因此,不论是单PA发射还是双PA发射,其最大发射功率都受到了功率等级上限的限制,而不能达到最优的性能。
本申请实施例提供一种无线通信方法、终端设备和网络设备,能够降低具备更高发射能力的终端设备的发射功率的浪费,提升了其功率放大器的发射能力的使用效率。
图4是本申请实施例提供的无线通信方法200的示意性流程图。所述方法200可通过终端设备和网络设备交互执行,例如所述方法200可通过如图1所示的终端设备110和如图1所示的网络设备120交互执行。
如图4所示,所述方法200可包括:
S210,终端设备向网络设备发送指示信息,所述指示信息用于确定所述终端设备的最大发射功率。
换言之,网络设备接收终端设备发送的指示信息,所述指示信息用于确定所述终端设备的最大发射功率。可选地,在本申请实施例中,指示信息包括物理层信令例如下行控制信息(Downlink Control Information,DCI)、系统消息(System Information,SI)、无线资源控制(Radio Resource Control,RRC)信令和媒体接入控制控制单元(Media Access Control Control Element,MAC CE)中的至少一种。
基于以上技术方案,终端设备向网络设备发送用于确定所述终端设备的最大发射功率的信息,能够支持终端设备自主确定最大发射功率,并且保证网络设备能够知道终端设备的最大发射功率,能够降低具备更高发射能力的终端设备的发射功率的浪费,提升了其功率放大器的发射能力的使用效率。
需要说明的是,在本申请的实施例中提到的“指示信息”可以是直接指示信息,也可以是间接指示信息,还可以是表示具有关联关系的信息。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请的一些实施例中,所述终端设备的功率等级对应的发射功率仅用于定义所述最大发射功率的下限。
换言之,不基于功率等级对应的发射功率上限值对终端设备的最大发射功率进行约束,即仅基于功率等级对应的下限值对终端设备的最大发射功率进行约束。或者说,可以通过解除功率等级对应的发射功率上限值的限制来实现对于有更高发射功率能力的终端可以实现更高的功率发射。本申请实施例对终端的功率等级的定义进行了调整,仅定义了功率等级对应的发射功率下限值,也即终端的最大发射功率只需要超过功率等级对应的发射功率下限值即可。下面结合表4进行说明。
表4
Figure PCTCN2021070714-appb-000004
如表4所示,功率等级1对应的发射功率仍然为31dBm,最低容限为-3dB(这里仅仅是示例,容限值可以为其他值如-2或-2.5等),也即终端的最大发射功率能力至少需要达到28dBm;功率等级1.5对应的发射功率仍然为29dBm,最低容限为-3dB(这里仅仅是示例,容限值可以为其他值如-2或-2.5等),也即终端的最大发射功率能力至少需要达到26dBm;功率等级2对应的发射功率仍然为26dBm,最低容限为-3dB(这里仅仅是示例,容限值可以为其他值如-2或-2.5等),也即终端的最大发射功率能力至少需要达到23dBm;功率等级3对应的发射功率仍然为23dBm,最低容限为-3dB(这里仅仅是示例,容限值可以为其他值如-2或-2.5等),也即终端的最大发射功率能力至少需要达到20dBm。
简言之,针对功率等级,仅定义了最大发射功率需要达到的下限值,而不对上限值进行定义。
在仅仅定义了最大发射功率需要达到的下限值,而不对上限值进行定义的情况下,相当于,终端设备的最大发射功率没有上限约束,一方面,可以提升终端设备的最大发射功率的自由度,以保证终端设备能够达到最优的性能。另一方面,通过指示信息可以使得网络设备知道终端设备实际的最大发射功率,以保证正常通信。
在本申请的一些实施例中,所述指示信息包括用于指示所述最大发射功率的信息,所述终端设备的功率等级对应多个发射功率包括所述最大发射功率。
换言之,通过修改功率等级的定义,去掉功率等级中针对最大发射功率的上限的固定约束,并直接定义可选的多个上限(即多个发射功率),并由终端上报其能达到的上限(即最大发射功率)。例如,针对PC2,可定义多个可选的多个发射功率,如27dBm,28dBm,29dBm等,终端通过指示信息来告知网络设备最大发射功率,如28dBm。
在本申请的一些实施例中,所述指示信息包括用于指示第一最高容限的信息,所述最大发射功率等于所述终端设备的功率等级对应的发射功率和所述第一最高容限的和,针对所述终端设备的功率等级对应的发射功率定义有多个最高容限,所述多个最高容限包括所述第一最高容限。
换言之,通过修改功率等级的定义,将功率等级中针对最大发射功率的上限的固定约束,修改为针对最大发射功率的可选的多个上限(即多个最高容限),并由终端上报其能达到的上限(即第一最高容限)。例如,针对PC2,可定义多个可选的多个最高容限,如+2dB,+3dB,+4dB等,终端通过指示信息来告知网络设备最大发射功率采用的所述多个最高容限中的第一最高容限,如+3dB。
在本申请的一些实施例中,所述指示信息包括用于指示所述终端设备的第一射频架构的信息,所述最大发射功率是根据所述第一射频架构对应的信息确定的。
以PC2为例,所述第一射频架构可以是如图2所示方式1至方式3中的任一种架构,也可以是如图3所示方式1至方式3中的任一种架构。结合图3来说,通过每个PA的功率等级代表其发射功率能力,终端的双发架构可以为PC3+PC3,PC2+PC3以及PC2+PC2,终端设备可向网络设备指示所述终端设备的双发架构。
可选的,所述第一射频架构对应的信息为第二最高容限,所述最大发射功率等于所述功率等级对应的发射功率和所述第二最高容限的和。
换言之,不同的架构可对应不同的最高容限。
可选的,所述第一射频架构对应的信息为第一发射功率,所述最大发射功率等于所述第一发射功率。
换言之,不同的架构可对应不同的发射功率。
下面结合表5以不同的架构对应不同的发射功率为例进行说明。
表5
双发架构 PC3+PC3 PC2+PC3 PC2+PC2
发射功率 26dBm 28dBm 29dBm
如表5所示,PC3+PC3对应的发射功率为26dBm,PC2+PC3对应的发射功率为28dBm,以及PC2+PC2对应的发射功率为29dBm。
在本申请的一些实施例中,所述指示信息包括用于指示增强发射功率的信息,所述最大发射功率等于所述终端设备的功率等级对应的发射功率以及所述增强发射功率的和。
换言之,对功率等级的定义不作改动的情况下,引入增强发射功率。所述增强发射功率旨在量化额外增加的发射功率。所述增强发射功率为相对功率等级对应的发射功率上限额外增加的发射功率。所述增强发射功率用于扩展终端设备的功率等级能力。
下面以NR频段nx的PC2为例,对增强发射功率进行说明。
表6
NR频带 功率等级2(dBm) 容限范围(dB)
nx 26dBm +2/-3
如表6所示,针对NR频段nx,功率等级2对应的发射功率为26dBm,容限范围为+2/-3。通过引用增强发射功率,可以扩展该功率等级对应的发射功率上限,比如1dB增强、2dB增强、3dB增强等,相应的,终端的最大发射功率为27dBm、28dBm、29dBm,由终端设备去指示其最大发射功率的实际能力,可以指示增强的值,例如1dB/2dB/3dB等,也可以指示增强后的最大发射功率,例如27dBm/28dBm/29dBm。网络设备获取到该指示信息后结合功率等级的定义可以得到终端的实际的最大发射功率。
当然,所述指示信息包括用于指示增强发射功率的信息的情况下,若所述终端设备的功率等级对应的发射功率定义有一个最高容限,所述最大发射功率也可以等于所述终端设备的功率等级对应的发射功率、所述一个最高容限以及增强发射功率的和。
在本申请的一些实施例中,所述终端设备的功率等级为单频段下的功率等级。
在本申请的一些实施例中,所述终端设备的功率等级为频段组合下的功率等级,所述终端设备的功率等级对应的发射功率为所述频段组合中的各个的频段的发射功率的和。
换言之,终端设备的功率等级对应的发射功率是各个频段的功率和。即可以理解为频段组合的功率等级对应的发射功率。这种情况下,上述单频段下的最大发射功率的扩展方法同样适用于频段组合,只不过区别地方在于功率的扩展在频段组合下是指的多个频段的总发射功率。
在本申请的一些实施例中,所述最大发射功率等于频段组合中的各个的频段下的功率等级所对应的发射功率的和。
换言之,对于频段组合下的功率等级,由于其包含了多频段,且每个频段也会分别上报其功率等级。在一种可能的实现方式中,最大发射功率的扩展方式是去掉频段组合的功率等级上限,而采用终端在各个频段功率等级对应的发射功率的和作为该频段组合下的最大发射功率。
下面以频段组合nx+ny为例进行说明。假设终端在频段nx的功率等级为PC2,且其对应的发射功率为M dBm;频段ny的功率等级为PC3,且其对应的发射功率为N dBm;终端在频段组合nx+ny上的功率等级为PC2,则最大发射功率的下限依然遵循PC2的定义,即其最大发射功率仍然受到功率等级对应的发射功率下限的约束,而最大发射功率为M+N dBm。体现在终端可配置的最大发射功率Pcmax定义上可以为以下两种方式:
方式1:
P CMAX_H=MIN{10log 10∑p EMAX,c,P EMAX,CA}。
即,直接从P CMAX_H中去掉P PowerClass,并定义终端在该频段组合下的最大发射功率为M+N dBm。
方式2:
P CMAX_H=MIN{10log 10∑p EMAX,c,P EMAX,CA,P PowerClass}。
即,保留P CMAX_H中的P PowerClass,但对其含义进行重新定义,也即,P PowerClass从表示该频段组合的功率等级对应的发射功率(不考虑容限范围时的取值,即PC1是31dBm,PC2是26dBm,PC3是23dBm),变更为终端在该频段组合中各频段功率等级对应的发射功率(不考虑容限范围时的取值, PC1是31dBm,PC2是26dBm,PC3是23dBm)的和。
本申请实施例中,通过解除功率等级对应的发射功率上限值,来使得终端可以最大化其发射功率能力,另外,通过引入指示信息使得终端设备告知基站其最大发射功率,或在频段组合下采用单频段下的功率等级对应的发射功率的和作为实际的最大发射功率,能够降低具备更高发射能力的终端设备的发射功率的浪费,提升了其功率放大器的发射能力的使用效率。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文详细描述了本申请的方法实施例,下文结合图9至图12,详细描述本申请的装置实施例。
图5是本申请实施例的终端设备300的示意性框图。
如图5所示,所述终端设备300可包括:
发送单元310,向网络设备发送指示信息,所述指示信息用于确定所述终端设备的最大发射功率。
在本申请的一些实施例中,所述终端设备的功率等级对应的发射功率仅用于定义所述最大发射功率的下限。
在本申请的一些实施例中,所述指示信息包括用于指示所述最大发射功率的信息,所述终端设备的功率等级对应多个发射功率包括所述最大发射功率。
在本申请的一些实施例中,所述指示信息包括用于指示第一最高容限的信息,所述最大发射功率等于所述终端设备的功率等级对应的发射功率和所述第一最高容限的和,针对所述终端设备的功率等级对应的发射功率定义有多个最高容限,所述多个最高容限包括所述第一最高容限。
在本申请的一些实施例中,所述指示信息包括用于指示所述终端设备的第一射频架构的信息,所述最大发射功率是根据所述第一射频架构对应的信息确定的。
在本申请的一些实施例中,所述第一射频架构对应的信息为第二最高容限,所述最大发射功率等于所述功率等级对应的发射功率和所述第二最高容限的和。
在本申请的一些实施例中,所述第一射频架构对应的信息为第一发射功率,所述最大发射功率等于所述第一发射功率。
在本申请的一些实施例中,所述指示信息包括用于指示增强发射功率的信息,所述最大发射功率等于所述终端设备的功率等级对应的发射功率以及增强发射功率的和。
在本申请的一些实施例中,所述终端设备的功率等级为单频段下的功率等级。
在本申请的一些实施例中,所述终端设备的功率等级为频段组合下的功率等级,所述终端设备的功率等级对应的发射功率为所述频段组合中的各个的频段的发射功率的和。
在本申请的一些实施例中,所述最大发射功率等于频段组合中的各个的频段下的功率等级所对应的发射功率的和。
图6是本申请实施例提供的网络设备400的示意性框图。
如图6所示,所述网络设备400可包括:
接收单元410,用于接收终端设备发送的指示信息,所述指示信息用于确定所述终端设备的最大发射功率。
在本申请的一些实施例中,所述终端设备的功率等级对应的发射功率仅用于定义所述最大发射功率的下限。
在本申请的一些实施例中,所述指示信息包括用于指示所述最大发射功率的信息,所述终端设备的功率等级对应多个发射功率包括所述最大发射功率。
在本申请的一些实施例中,所述指示信息包括用于指示第一最高容限的信息,所述最大发射功率等于所述终端设备的功率等级对应的发射功率和所述第一最高容限的和,针对所述终端设备的功率等级对应的发射功率定义有多个最高容限,所述多个最高容限包括所述第一最高容限。
在本申请的一些实施例中,所述指示信息包括用于指示所述终端设备的第一射频架构的信息,所述最大发射功率是根据所述第一射频架构对应的信息确定的。
在本申请的一些实施例中,所述第一射频架构对应的信息为第二最高容限,所述最大发射功率等于所述功率等级对应的发射功率和所述第二最高容限的和。
在本申请的一些实施例中,所述第一射频架构对应的信息为第一发射功率,所述最大发射功率等于所述第一发射功率。
在本申请的一些实施例中,所述指示信息包括用于指示增强发射功率的信息,所述最大发射功率等于所述终端设备的功率等级对应的发射功率以及增强发射功率的和。
在本申请的一些实施例中,所述终端设备的功率等级为单频段下的功率等级。
在本申请的一些实施例中,所述终端设备的功率等级为频段组合下的功率等级,所述终端设备的功率等级对应的发射功率为所述频段组合中的各个的频段的发射功率的和。
在本申请的一些实施例中,所述最大发射功率等于频段组合中的各个的频段下的功率等级所对应的发射功率的和。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图5所示的终端设备300可以对应于执行本申请实施例的方法200中的相应主体,并且终端设备300中的各个单元的前述和其它操作和/或功能分别为了实现图2中的各个方法中的相应流程,类似的,图8所示的网络设备400可以对应于执行本申请实施例的方法200中的相应主体,并且网络设备400中的各个单元的前述和其它操作和/或功能分别为了实现图2中的各个方法中的相应流程;为了简洁,在此不再赘述。
上文中结合附图从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。
具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。
可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,上文涉及的处理单元和通信单元可分别由处理器和收发器实现。
图7是本申请实施例的通信设备500示意性结构图。
如图7所示,所述通信设备500可包括处理器510。
其中,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图7,通信设备500还可以包括存储器520。
其中,该存储器520可以用于存储指示信息,还可以用于存储处理器510执行的代码、指令等。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
请继续参见图7,通信设备500还可以包括收发器530。
其中,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
应当理解,该通信设备500中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
还应理解,该通信设备500可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的通信设备500可对应于本申请实施例中的终端设备300,并可以对应于执行根据本申请实施例的方法中的相应主体,其中,收发器530此时可以对应实现终端设备300中的发送单元310实现的操作和/或功能,为了简洁,在此不再赘述。类似地,该通信设备500可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程。也就是说,本申请实施例的通信设备500可对应于本申请实施例中的网络设备400,并可以对应于执行根据本申请实施例的方法中的相应主体,其中,收发器530此时可以对应实现网络设备400中的接收单元410实现的操作和/或功能,为了简洁,在此不再赘述。
此外,本申请实施例中还提供了一种芯片。
例如,芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。所述芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图8是根据本申请实施例的芯片600的示意性结构图。
如图8所示,所述芯片600包括处理器610。
其中,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
请继续参见图8,所述芯片600还可以包括存储器620。
其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
请继续参见图8,所述芯片600还可以包括输入接口630。
其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
请继续参见图8,所述芯片600还可以包括输出接口640。
其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
应理解,所述芯片600可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,也可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
还应理解,该芯片600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
上文涉及的处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上文涉及的存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括这些和其它任意适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行方法实施例的方法。
可选的,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。
可选的,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。可选地,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行方法实施例的方法。
可选的,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时, 使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
此外,本申请实施例还提供了一种通信系统,所述通信系统可以包括上述涉及的终端设备和网络设备,以形成如图1所示的通信系统,为了简洁,在此不再赘述。需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (30)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备向网络设备发送指示信息,所述指示信息用于确定所述终端设备的最大发射功率。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备的功率等级对应的发射功率仅用于定义所述最大发射功率的下限。
  3. 根据权利要求1所述的方法,其特征在于,所述指示信息包括用于指示所述最大发射功率的信息,所述终端设备的功率等级对应多个发射功率包括所述最大发射功率。
  4. 根据权利要求1所述的方法,其特征在于,所述指示信息包括用于指示第一最高容限的信息,所述最大发射功率等于所述终端设备的功率等级对应的发射功率和所述第一最高容限的和,针对所述终端设备的功率等级对应的发射功率定义有多个最高容限,所述多个最高容限包括所述第一最高容限。
  5. 根据权利要求1所述的方法,其特征在于,所述指示信息包括用于指示所述终端设备的第一射频架构的信息,所述最大发射功率是根据所述第一射频架构对应的信息确定的。
  6. 根据权利要求5所述的方法,其特征在于,所述第一射频架构对应的信息为第二最高容限,所述最大发射功率等于所述功率等级对应的发射功率和所述第二最高容限的和。
  7. 根据权利要求5所述的方法,其特征在于,所述第一射频架构对应的信息为第一发射功率,所述最大发射功率等于所述第一发射功率。
  8. 根据权利要求1所述的方法,其特征在于,所述指示信息包括用于指示增强发射功率的信息,所述最大发射功率等于所述终端设备的功率等级对应的发射功率以及所述增强发射功率的和。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述终端设备的功率等级为单频段下的功率等级。
  10. 根据权利要求1至8中任一项所述的方法,其特征在于,所述终端设备的功率等级为频段组合下的功率等级,所述终端设备的功率等级对应的发射功率为所述频段组合中的各个的频段的发射功率的和。
  11. 根据权利要求1所述的方法,其特征在于,所述最大发射功率等于频段组合中的各个的频段下的功率等级所对应的发射功率的和。
  12. 一种无线通信方法,其特征在于,包括:
    网络设备接收终端设备发送的指示信息,所述指示信息用于确定所述终端设备的最大发射功率。
  13. 根据权利要求12所述的方法,其特征在于,所述终端设备的功率等级对应的发射功率仅用于定义所述最大发射功率的下限。
  14. 根据权利要求12所述的方法,其特征在于,所述指示信息包括用于指示所述最大发射功率的信息,所述终端设备的功率等级对应多个发射功率包括所述最大发射功率。
  15. 根据权利要求12所述的方法,其特征在于,所述指示信息包括用于指示第一最高容限的信息,所述最大发射功率等于所述终端设备的功率等级对应的发射功率和所述第一最高容限的和,针对所述终端设备的功率等级对应的发射功率定义有多个最高容限,所述多个最高容限包括所述第一最高容限。
  16. 根据权利要求12所述的方法,其特征在于,所述指示信息包括用于指示所述终端设备的第一射频架构的信息,所述最大发射功率是根据所述第一射频架构对应的信息确定的。
  17. 根据权利要求16所述的方法,其特征在于,所述第一射频架构对应的信息为第二最高容限,所述最大发射功率等于所述功率等级对应的发射功率和所述第二最高容限的和。
  18. 根据权利要求16所述的方法,其特征在于,所述第一射频架构对应的信息为第一发射功率,所述最大发射功率等于所述第一发射功率。
  19. 根据权利要求12所述的方法,其特征在于,所述指示信息包括用于指示增强发射功率的信息,所述最大发射功率等于所述终端设备的功率等级对应的发射功率以及所述增强发射功率的和。
  20. 根据权利要求12至19中任一项所述的方法,其特征在于,所述终端设备的功率等级为单频段下的功率等级。
  21. 根据权利要求12至19中任一项所述的方法,其特征在于,所述终端设备的功率等级为频段组合下的功率等级,所述终端设备的功率等级对应的发射功率为所述频段组合中的各个的频段的发射功率的和。
  22. 根据权利要求12所述的方法,其特征在于,所述最大发射功率等于频段组合中的各个的频段下的功率等级所对应的发射功率的和。
  23. 一种终端设备,其特征在于,包括:
    发射单元,用于向网络设备发送指示信息,所述指示信息用于确定所述终端设备的最大发射功率。
  24. 一种网络设备,其特征在于,包括:
    接收单元,用于接收终端设备发送的指示信息,所述指示信息用于确定所述终端设备的最大发射功率。
  25. 一种终端设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至11中任一项所述的方法。
  26. 一种网络设备,其特征在于,包括:
    处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求12至22中任一项所述的方法。
  27. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至11中任一项所述的方法或如权利要求12至22中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至11中任一项所述的方法或如权利要求12至22中任一项所述的方法。
  29. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至11中任一项所述的方法或如权利要求12至22中任一项所述的方法。
  30. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至11中任一项所述的方法或如权利要求12至22中任一项所述的方法。
PCT/CN2021/070714 2021-01-07 2021-01-07 无线通信方法、终端设备和网络设备 WO2022147731A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21916789.7A EP4266768A4 (en) 2021-01-07 2021-01-07 WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN202180082177.9A CN116602013A (zh) 2021-01-07 2021-01-07 无线通信方法、终端设备和网络设备
PCT/CN2021/070714 WO2022147731A1 (zh) 2021-01-07 2021-01-07 无线通信方法、终端设备和网络设备
US18/218,997 US20230354216A1 (en) 2021-01-07 2023-07-06 Wireless communication method, terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/070714 WO2022147731A1 (zh) 2021-01-07 2021-01-07 无线通信方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/218,997 Continuation US20230354216A1 (en) 2021-01-07 2023-07-06 Wireless communication method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2022147731A1 true WO2022147731A1 (zh) 2022-07-14

Family

ID=82357805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070714 WO2022147731A1 (zh) 2021-01-07 2021-01-07 无线通信方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20230354216A1 (zh)
EP (1) EP4266768A4 (zh)
CN (1) CN116602013A (zh)
WO (1) WO2022147731A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536388A (zh) * 2019-08-27 2019-12-03 维沃移动通信有限公司 一种功率控制方法及终端设备
CN111050390A (zh) * 2018-10-12 2020-04-21 电信科学技术研究院有限公司 一种上行功率控制方法、终端设备及网络设备
CN111182619A (zh) * 2018-11-12 2020-05-19 电信科学技术研究院有限公司 一种上行功率控制的方法和设备
US10779198B1 (en) * 2017-08-16 2020-09-15 Sprint Spectrum L.P. Adjusting handover thresholds for high power class wireless devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107148798B (zh) * 2014-11-06 2020-08-04 夏普株式会社 单位移位寄存器电路、移位寄存器电路、单位移位寄存器电路的控制方法以及显示装置
ES2960393T3 (es) * 2018-04-05 2024-03-04 Ntt Docomo Inc Equipo de usuario y dispositivo de estación base

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10779198B1 (en) * 2017-08-16 2020-09-15 Sprint Spectrum L.P. Adjusting handover thresholds for high power class wireless devices
CN111050390A (zh) * 2018-10-12 2020-04-21 电信科学技术研究院有限公司 一种上行功率控制方法、终端设备及网络设备
CN111182619A (zh) * 2018-11-12 2020-05-19 电信科学技术研究院有限公司 一种上行功率控制的方法和设备
CN110536388A (zh) * 2019-08-27 2019-12-03 维沃移动通信有限公司 一种功率控制方法及终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4266768A4 *

Also Published As

Publication number Publication date
US20230354216A1 (en) 2023-11-02
EP4266768A1 (en) 2023-10-25
CN116602013A (zh) 2023-08-15
EP4266768A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
US11638220B2 (en) Indication information sending method, indication information receiving method, device, and system
CN101573896A (zh) 移动通信系统、基站和移动台以及通信控制方法
WO2014206262A1 (zh) 避免d2d传输造成上行干扰的方法、基站和用户设备
TW202013924A (zh) 無線通訊方法、終端設備發射上行信號的方法及設備
CN112867129B (zh) 功率余量上报发送方法和装置
WO2021063071A1 (zh) 无线通信方法和装置
WO2020118574A1 (zh) 一种上行传输的功率控制方法及终端设备
WO2020156211A1 (zh) 数据发送方法及终端设备
WO2020043009A1 (zh) 一种ui显示方法、装置、终端设备及存储介质
WO2020210964A1 (zh) 无线通信方法、终端设备和网络设备
WO2021022894A1 (zh) 一种天线面板状态的通知方法、设备、芯片及存储介质
WO2020143048A1 (zh) 一种信息处理方法及终端设备
WO2021087827A1 (zh) 激活或者更新pusch路损rs的方法和设备
WO2022147731A1 (zh) 无线通信方法、终端设备和网络设备
KR102468956B1 (ko) 무선 통신 방법, 네트워크 디바이스, 단말기 디바이스, 칩 및 컴퓨터 판독 가능한 기억매체
CN105323840B (zh) 功率配置方法
WO2020132862A1 (zh) 一种上行传输的功率控制方法及终端设备、网络设备
WO2020034096A1 (zh) 一种终端功率等级控制方法及装置、终端
WO2021129120A1 (zh) 通信方法以及终端设备
WO2020097935A1 (zh) 一种通信方法及装置
WO2024027317A1 (zh) 通信方法和通信装置
WO2021195880A1 (zh) 一种功率余量上报的方法装置、网络设备、终端设备
WO2022148235A1 (zh) 功率控制方法和相关设备
WO2023000232A1 (zh) 无线通信方法、终端设备和网络设备
CN113891444B (zh) 一种发射功率确定方法、装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21916789

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180082177.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021916789

Country of ref document: EP

Effective date: 20230719

NENP Non-entry into the national phase

Ref country code: DE