WO2021087827A1 - 激活或者更新pusch路损rs的方法和设备 - Google Patents

激活或者更新pusch路损rs的方法和设备 Download PDF

Info

Publication number
WO2021087827A1
WO2021087827A1 PCT/CN2019/116071 CN2019116071W WO2021087827A1 WO 2021087827 A1 WO2021087827 A1 WO 2021087827A1 CN 2019116071 W CN2019116071 W CN 2019116071W WO 2021087827 A1 WO2021087827 A1 WO 2021087827A1
Authority
WO
WIPO (PCT)
Prior art keywords
sri
power control
path loss
field
pusch power
Prior art date
Application number
PCT/CN2019/116071
Other languages
English (en)
French (fr)
Inventor
尤心
陈文洪
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980091944.5A priority Critical patent/CN113424599A/zh
Priority to CN202111101269.5A priority patent/CN113692041B/zh
Priority to EP19951791.3A priority patent/EP3962183A4/en
Priority to PCT/CN2019/116071 priority patent/WO2021087827A1/zh
Publication of WO2021087827A1 publication Critical patent/WO2021087827A1/zh
Priority to US17/565,257 priority patent/US20220124630A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • This application relates to the field of communications, and in particular to a method and device for activating or updating a PUSCH path loss RS.
  • Network equipment can configure each spatial relationship information (space relationship information, SRI) physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) power control (Power Control) for terminal equipment through radio resource control (RRC) messages. ) Configuration (Identifier, ID) and the corresponding PUSCH pathloss (pathloss) reference signal (Reference Signal, RS) ID. At the same time, the network device can also activate or update one or more PUSCH pathloss RS through the RRC message.
  • SRI spatial relationship information
  • PUSCH Physical Uplink Shared Channel
  • Power Control Power Control
  • RRC radio resource control
  • the transmission delay of the RRC message is relatively large, and how to activate or update the PUSCH pathloss RS more quickly is a problem to be solved urgently.
  • the embodiments of the present application provide a method and device for activating or updating a PUSCH path loss RS, which can reduce transmission delay.
  • a method for activating or updating PUSCH path loss RS including: a terminal device receives a MAC CE sent by a network device, where the MAC CE includes at least one SRI-PUSCH power control field and/or at least one path loss RS field, the at least one SRI-PUSCH power control field is used to indicate at least one SRI-PUSCH power control configuration, and the at least one path loss RS field is used to indicate at least one SRI-PUSCH power control configuration corresponding to the at least one SRI-PUSCH power control configuration.
  • One path loss RS the terminal device updates or activates the at least one path loss RS corresponding to the at least one SRI-PUSCH power control configuration according to the MAC CE.
  • a method for activating or updating a PUSCH path loss RS including: a network device sends a MAC CE to a terminal device, where the MAC CE includes at least one SRI-PUSCH power control field and/or at least one path loss RS Field, the at least one SRI-PUSCH power control field is used to indicate at least one SRI-PUSCH power control configuration, and the at least one path loss RS field is used to indicate at least one corresponding to the at least one SRI-PUSCH power control configuration Path loss RS; the MAC CE is used to instruct the terminal device to update or activate the at least one path loss RS corresponding to the at least one SRI-PUSCH power control configuration.
  • a terminal device which is used to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each of its implementation manners.
  • a network device which is used to execute the method in the above second aspect or each of its implementation manners.
  • the network device includes a functional module for executing the method in the above-mentioned second aspect or each of its implementation manners.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned second aspect or each of its implementation modes.
  • a chip which is used to implement any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first aspect to the second aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each of its implementation manners.
  • the PUSCH-pathloss RS ID corresponding to the SRI-PUSCH-Power Control configuration is activated or updated based on the MAC CE, which greatly reduces the transmission delay.
  • Fig. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a method for activating or updating a PUSCH path loss RS provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a MAC CE format provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of another MAC CE format provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of another MAC CE format provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another MAC CE format provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another MAC CE format provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another MAC CE format provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another MAC CE format provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another MAC CE format provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another MAC CE format provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another MAC CE format provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another MAC CE format provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another MAC CE format provided by an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 16 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, and direct cable connection ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • IoT Internet of Things
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 having a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiment of the present application.
  • the embodiment of the present application provides a method for activating or updating the path loss RS of the physical uplink shared channel PUSCH, which can be achieved through medium access control (medium access control).
  • medium access control medium access control
  • CE control element
  • FIG. 2 is a schematic flowchart of a method 200 for activating or updating the path loss RS of the physical uplink shared channel PUSCH according to an embodiment of the application.
  • the method 200 includes: S210, sending a MAC CE, that is, the network device sends the MAC CE to the terminal device.
  • the MAC CE includes at least one SRI-PUSCH-Power Control field and/or at least one PUSCH-pathloss RS field
  • the at least one SRI-PUSCH-Power Control field is used to indicate at least one SRI-PUSCH-Power Control configuration (configuration )
  • the at least one PUSCH-pathloss RS field is used to indicate at least one PUSCH-pathloss RS corresponding to the at least one SRI-PUSCH-Power Control configuration.
  • MAC CEs of this type can be distinguished by logical channel identifier (logical channel identifier, LCID).
  • LCID logical channel identifier
  • the header of the MAC protocol data unit (Protocol Data Unit, PDU) or the header of the MAC subPDU where the MAC CE is located includes an LCID field, and the LCID field is used to indicate the type of the MAC CE.
  • the value of the LCID used to indicate the MAC CE type in the embodiment of the application can be set according to actual applications. For example, any value between 33 and 46 can be selected, but the embodiment of the application is not limited to this.
  • the MAC CE may also include a serving cell (Serving Cell) identification field, where the serving cell identification field is used to indicate the ID of the serving cell where the terminal device resides.
  • the size of the serving cell identification field can be set according to the maximum number of serving cells. For example, if the maximum number of serving cells is 32, the corresponding serving cell identification field occupies 5 bits.
  • the MAC CE further includes a bandwidth part (bandwidth part, BWP) identification field, and the bandwidth part identification field is used to indicate the BWP ID corresponding to the terminal device.
  • the size of the bandwidth part identification field can be set according to the maximum number of bandwidth parts. For example, if the maximum number of the bandwidth part is 4, the corresponding bandwidth part identification field occupies 2 bits.
  • the MAC CE may also include reserved bits, denoted by "R", but the embodiment of the present application is not limited to this.
  • the method 200 in the embodiment of the present application may be executed by a terminal device and a network device.
  • the terminal device may be the terminal device shown in FIG. 1
  • the network device may be the network device shown in FIG. 1, but the embodiment of the present application is not limited to this.
  • the method 200 further includes: S220, determining the PUSCH-pathloss RS corresponding to the updated or activated SRI-PUSCH-Power Control configuration, the terminal device receives the MAC CE sent by the network device, and updates or Activate the at least one PUSCH-pathloss RS corresponding to at least one SRI-PUSCH-Power Control configuration indicated by the MAC CE.
  • the network device can configure one or more SRI-PUSCH-Power Control configuration for the terminal device, or one or more PUSCH-pathloss RS, and there is a corresponding relationship between SRI-PUSCH-Power Control configuration and PUSCH-pathloss RS .
  • the maximum number of SRI-PUSCH-Power Control configuration is usually 16, and the maximum number of PUSCH-pathloss RS is usually 8 or 16, or it can also be 32 or 64; in addition, one SRI-PUSCH -Power Control configuration usually corresponds to one PUSCH-pathloss RS, but there may be multiple SRI-PUSCH-Power Control configurations corresponding to the same PUSCH-pathloss RS, that is, one PUSCH-pathloss RS may correspond to one or more SRI-PUSCH- Power Control configuration, the embodiment of this application is not limited to this.
  • the network device may configure the one or more SRI-PUSCH-Power Control configuration and/or configure one or more PUSCH-pathloss RS for the terminal device through the RRC message, or the network device may also use the RRC message
  • the corresponding relationship between the SRI-PUSCH-Power Control configuration and the PUSCH-pathloss RS is configured for the terminal device, and the embodiment of the present application is not limited to this.
  • the MAC CE of the embodiment of the present application may have various forms.
  • at least one SRI-PUSCH-Power Control field and/or at least one PUSCH-pathloss RS field included in the MAC CE may have different settings.
  • Various situations will be described in detail below with reference to Figs. 3 to 14.
  • Figs. 3 to 14 respectively show several different MAC CE formats.
  • the MAC CE may include at least one SRI-PUSCH-Power Control field and at least one PUSCH-pathloss RS field, and the at least one SRI-PUSCH-Power Control field and the at least one There is a one-to-one correspondence between PUSCH-pathloss RS fields, that is, one SRI-PUSCH-Power Control field corresponds to one PUSCH-pathloss RS field, and one SRI-PUSCH-Power Control field in the at least one SRI-PUSCH-Power Control field is used for In the at least one SRI-PUSCH-Power Control configuration identifier (ID) (or can also be called SRI-PUSCH-Power Control ID) of one SRI-PUSCH-Power Control configuration, in the at least one PUSCH-pathloss RS field One PUSCH-pathloss RS field is used to indicate the ID of one PUSCH-pathloss RS in the at least one PUSCH-pathloss RS.
  • ID SRI-PUSCH-Power Control configuration identifier
  • ID
  • At least one PUSCH-pathloss RS field in the MAC CE may include Multiple PUSCH-pathloss RS fields include the ID of the same PUSCH-pathloss RS.
  • each SRI-PUSCH-Power Control field is used to indicate the ID of the SRI-PUSCH-Power Control configuration
  • the PUSCH-pathloss RS field is used to indicate the ID of the PUSCH-pathloss RS
  • the value of each SRI-PUSCH-Power Control field is The size is related to the number of SRI-PUSCH-Power Control configurations
  • the size of each PUSCH-pathloss RS field is related to the number of PUSCH-pathloss RS.
  • the method 200 may further include: the terminal device determines each SRI-PUSCH-Power Control field in the at least one SRI-PUSCH-Power Control field according to the number of the at least one SRI-PUSCH-Power Control configuration the size of. For example, as shown in Figures 3 to 6, assuming that the maximum number of the at least one SRI-PUSCH-Power Control configuration is 16, each SRI-PUSCH-Power Control field occupies 4 bits.
  • the method 200 may further include: the terminal device determines the size of each PUSCH-pathloss RS field in the at least one PUSCH-pathloss RS field according to the number of the at least one PUSCH-pathloss RS field.
  • each PUSCH-pathloss RS field occupies 2 bits; for another example, suppose that the at least one PUSCH-pathloss RS field The maximum number is 8, then each PUSCH-pathloss RS field occupies 3 bits; for another example, as shown in Figure 4 and Figure 6, assuming that the maximum number of at least one PUSCH-pathloss RS is 16, then each PUSCH- The pathloss RS field occupies 4 bits, and so on.
  • one SRI-PUSCH-Power Control field corresponds to one PUSCH-pathloss RS field, so for any MCA CE, the MAC CE can be used to indicate one or more SRI-PUSCH-Power Control configuration Corresponding PUSCH-pathloss RS.
  • a MAC CE can only be used to indicate a PUSCH-pathloss RS corresponding to an SRI-PUSCH-Power Control configuration
  • the MCA CE includes an SRI-PUSCH-Power Control field and A PUSCH-pathloss RS field
  • the SRI-PUSCH-Power Control field includes the ID of the SRI-PUSCH-Power Control configuration
  • the PUSCH-pathloss RS field includes the ID of the PUSCH-pathloss RS corresponding to the SRI-PUSCH-Power Control configuration
  • the terminal the device determines the PUSCH-pathloss RS corresponding to an SRI-PUSCH-Power Control configuration that needs to be activated or updated. If it is necessary to activate or update the PUSCH-pathloss RS corresponding to multiple SRI-PUSCH-Power Control configurations, multiple MAC CEs can be sent to the terminal device.
  • one MCA CE can also be used to indicate the PUSCH-pathloss RS corresponding to multiple SRI-PUSCH-Power Control configurations, then the MCA CE includes multiple SRI-PUSCH-Power Control fields And multiple PUSCH-pathloss RS fields, where one SRI-PUSCH-Power Control field includes an SRI-PUSCH-Power Control configuration ID, and a corresponding PUSCH-pathloss RS field includes the SRI-PUSCH-Power Control configuration The ID of the corresponding PUSCH-pathloss RS.
  • the MCA CE includes N octets (Oct) as shown in Fig. 5 and Fig.
  • the MCA CE can be used to indicate at least N-1 SRI-PUSCH-Power Control configuration and its corresponding PUSCH-pathloss RS, so that the terminal device can update or activate the PUSCH-pathloss RS corresponding to the N-1 SRI-PUSCH-Power Control configuration according to the MCA CE.
  • the MAC CE includes at least one SRI-PUSCH-Power Control field and at least one PUSCH-pathloss RS field, but the difference from the first embodiment is that the MAC CE includes at least one SRI-PUSCH-Power Control field and at least one PUSCH-pathloss RS field.
  • the CE specifically includes multiple SRI-PUSCH-Power Control fields, and the multiple SRI-PUSCH-Power Control fields correspond to multiple SRI-PUSCH-Power Control configurations configured for the terminal device one by one.
  • Each SRI-PUSCH-Power Control field in the Power Control field is used to indicate whether the corresponding SRI-PUSCH-Power Control configuration PUSCH-pathloss RS needs to be updated or activated, that is, each SRI-PUSCH-Power Control field does not Then there is the ID of the SRI-PUSCH-Power Control configuration in the first embodiment.
  • the SRI-PUSCH-Power Control field expressed as the first value among the multiple SRI-PUSCH-Power Control fields is the at least one SRI-PUSCH-Power Control field, that is, if the multiple SRI-PUSCH-Power Control fields If a certain SRI-PUSCH-Power Control field in the Power Control field is the first value, then the SRI-PUSCH-Power Control field belongs to at least one SRI-PUSCH-Power Control field in the above S210, that is, the SRI-PUSCH-Power Control field.
  • the PUSCH-pathloss RS of the SRI-PUSCH-Power Control configuration corresponding to the field needs to be updated or activated; on the contrary, if a certain SRI-PUSCH-Power Control field in the multiple SRI-PUSCH-Power Control fields is not equal to the first value , Then the SRI-PUSCH-Power Control field does not belong to at least one SRI-PUSCH-Power Control field in the above S210, that is, the PUSCH-pathloss RS of the SRI-PUSCH-Power Control configuration corresponding to the SRI-PUSCH-Power Control field No update or activation is required.
  • the network device can configure multiple SRI-PUSCH-Power Control configurations for the terminal device, and set multiple SRI-PUSCH-Power Control fields corresponding to one of them, and there may be some or all of the multiple SRI-PUSCH-Power Control fields
  • the field belongs to at least one SRI-PUSCH-Power Control field in the above S210.
  • at least one PUSCH-pathloss RS field is set in a one-to-one correspondence with the at least one SRI-PUSCH-Power Control field.
  • One PUSCH-pathloss RS field in the at least one PUSCH-pathloss RS field is used to indicate the ID of one PUSCH-pathloss RS in the at least one PUSCH-pathloss RS.
  • the size of each PUSCH-pathloss RS field is related to the number of PUSCH-pathloss RS.
  • the method 200 may further include: the terminal device determines the size of each PUSCH-pathloss RS field in the at least one PUSCH-pathloss RS field according to the number of the at least one PUSCH-pathloss RS field.
  • each PUSCH-pathloss RS field occupies 2 bits; for another example, as shown in Figure 8, it is assumed that the at least one PUSCH-pathloss RS field occupies 2 bits.
  • the maximum number of pathloss RS is 64, then each PUSCH-pathloss RS field occupies 6 bits; for another example, as shown in Figure 9, assuming that the maximum number of at least one PUSCH-pathloss RS is 8, then each PUSCH- The pathloss RS field occupies 3 bits, and so on.
  • each SRI-PUSCH-Power Control field in the multiple SRI-PUSCH-Power Control fields is used to indicate whether the PUSCH-pathloss RS of the corresponding SRI-PUSCH-Power Control configuration needs to be updated or activated. Therefore, each SRI -The PUSCH-Power Control field can be set to occupy only 1 bit.
  • each SRI-PUSCH-Power Control field in the multiple SRI-PUSCH-Power Control fields may also be set to occupy multiple bits,
  • the multiple SRI-PUSCH-Power Control fields in the MAC CE in the second embodiment may be continuous or discontinuous. Specifically, as the first case, the multiple SRI-PUSCH-Power Control fields may be continuous.
  • the MAC CE may include the SRI-PUSCH-Power Control bitmap.
  • the multiple SRI-PUSCH-Power Control fields may be continuous.
  • One SRI-PUSCH-Power Control field is multiple consecutive bits included in the SRI-PUSCH-Power Control bitmap.
  • the corresponding SRI-PUSCH-Power Control bitmap included in the MCA CE can be set to 16 bits, that is, S 0 to S 15 in Oct2 and Oct3 shown in FIG. 7 and FIG. 8, each bit corresponds to an SRI-PUSCH-Power Control field, and the MCA CE includes a total of 16 SRI-PUSCH-Power Control fields.
  • the arrangement order of the 16 SRI-PUSCH-Power Control fields may be as shown in FIG. 7 or 8, or other arrangement order may also be adopted. The embodiment of the present application is not limited to this.
  • At least one SRI-PUSCH-Power Control field whose bit value is "1" in the bitmap formed by the 16 SRI-PUSCH-Power Control fields at least one PUSCH-pathloss RS field is correspondingly set thereafter,
  • Each PUSCH-pathloss RS field includes an ID of a PUSCH-pathloss RS, indicating that the terminal device updates or activates the PUSCH-pathloss RS.
  • S 3 the value of S 3 is "1”
  • a PUSCH-pathloss RS field is set corresponding to S 3
  • the PUSCH-pathloss RS field includes the ID of a PUSCH-pathloss RS.
  • the terminal device updates or activates the corresponding S 3 ID of the PUSCH-pathloss RS of the SRI-PUSCH-Power Control configuration.
  • the PUSCH-pathloss RS field may not be set, or may also be set The PUSCH-pathloss RS field, but the terminal device does not need to activate or update the ID of the PUSCH-pathloss RS carried.
  • the PUSCH-pathloss RS field is not set, that is, the value of a bit in the SRI-PUSCH-Power Control bitmap is not For the first value, the corresponding PUSCH-pathloss RS field is not set, and the size of the MAC CE depends on the number of PUSCH-pathloss RSs of the SRI-PUSCH-Power Control configuration that the terminal device needs to update or activate.
  • the multiple SRI-PUSCH-Power Control fields may also be discontinuous.
  • the MAC CE includes multiple SRI-PUSCH-Power Control fields, and in addition, it also includes multiple PUSCHs.
  • -pathloss RS field the multiple PUSCH-pathloss RS fields are in one-to-one correspondence with the multiple SRI-PUSCH-Power Control fields.
  • the first PUSCH-pathloss RS field in the multiple PUSCH-pathloss RS fields corresponds to the first SRI-PUSCH-Power Control field in the multiple SRI-PUSCH-Power Control fields
  • the first PUSCH-pathloss RS field It is continuous with the first SRI-PUSCH-Power Control field, where the first SRI-PUSCH-Power Control field is any one of multiple SRI-PUSCH-Power Control fields, and the first PUSCH-pathloss RS field is multiple PUSCHs -A field in the pathloss RS field corresponding to the first SRI-PUSCH-Power Control field.
  • the first SRI-PUSCH-Power Control field is used to indicate whether the terminal device activates or updates the first PUSCH-pathloss RS of the corresponding first SRI-PUSCH-Power Control configuration.
  • the first PUSCH-pathloss RS field is used to indicate the first PUSCH-pathloss RS of the corresponding first SRI-PUSCH-Power Control configuration.
  • the ID of a PUSCH-pathloss RS, that is, the first PUSCH-pathloss RS corresponds to the first SRI-PUSCH-Power Control configuration corresponding to the first SRI-PUSCH-Power Control field.
  • the size of the MAC CE depends on the number of SRI-PUSCH-Power Control configurations configured by the network device for the terminal device. If the number of SRI-PUSCH-Power Control configurations is fixed, the size of the MAC CE is fixed.
  • the MAC CE can be set with 16 SRI-PUSCH-Power Control fields, which are represented as S 0 in Figure 9 respectively.
  • S 15 each of the SRI-PUSCH-Power Control field corresponds to a field PUSCH-pathloss RS, i.e., the MAC CE 16 PUSCH-pathloss RS field.
  • the terminal device obtains a PUSCH-pathloss RS after the S 1
  • the ID of the PUSCH-pathloss RS in the field, and the PUSCH-pathloss RS indicated by the ID is the PUSCH-pathloss RS of the SRI-PUSCH-Power Control configuration corresponding to S 1 that the terminal device needs to update or activate.
  • a certain SRI-PUSCH-Power Control field is not “1”, for example, if S 2 is “0”, it means that the PUSCH-pathloss RS of the SRI-PUSCH-Power Control configuration corresponding to S 2 is not required Update or activate.
  • the MAC CE includes at least one SRI-PUSCH-Power Control field and at least one PUSCH-pathloss RS field, but the difference from the previous two embodiments is that it is assumed here
  • the multiple SRI-PUSCH-Power Control configurations configured by the network device for the terminal device do not have multiple SRI-PUSCH-Power Control configurations corresponding to the same PUSCH-pathloss RS, that is, a PUSCH-pathloss RS has at most one SRI -PUSCH-Power Control configuration corresponds to it, for example, multiple SRI-PUSCH-Power Control configurations can correspond to multiple PUSCH-pathloss RSs one-to-one, then refer to the second embodiment for setting multiple SRI-PUSCH-Power Control fields In this way, multiple PUSCH-pathloss RS fields can also be set.
  • the SRI-PUSCH-Power Control field can be a bitmap.
  • PUSCH-Power Control field can be a bitmap.
  • the MAC CE may include multiple PUSCH-pathloss RS fields, and the multiple PUSCH-pathloss RS fields correspond to multiple PUSCH-pathloss RS configured by the network device for the terminal device one by one, and each PUSCH-pathloss RS field is used for each PUSCH-pathloss RS field.
  • the multiple PUSCH-pathloss RS fields may be a PUSCH-pathloss RS bitmap, and the multiple bits included in the PUSCH-pathloss RS bitmap correspond one-to-one with multiple PUSCH-pathloss RSs configured by the network device for the terminal device.
  • Each bit in the PUSCH-pathloss RS bitmap is used to indicate whether the corresponding PUSCH-pathloss RS needs to be updated or activated. That is to say, if a PUSCH-pathloss RS field in the multiple PUSCH-pathloss RS fields is the first value, then the PUSCH-pathloss RS field belongs to at least one PUSCH-pathloss RS field in S210, that is, the PUSCH-pathloss RS field.
  • the PUSCH-pathloss RS of the SRI-PUSCH-Power Control configuration corresponding to the pathloss RS field needs to be updated or activated; on the contrary, if one of the multiple PUSCH-pathloss RS fields is not equal to the first value, then The PUSCH-pathloss RS field does not belong to at least one PUSCH-pathloss RS field in S210, that is, the PUSCH-pathloss RS of the SRI-PUSCH-Power Control configuration corresponding to the PUSCH-pathloss RS field does not need to be updated or activated.
  • the network device may configure multiple PUSCH-pathloss RS for the terminal device, and multiple PUSCH-pathloss RS fields are set corresponding to one of them. Some or all of the multiple PUSCH-pathloss RS fields may belong to at least one PUSCH-pathloss.
  • RS field then in the MAC CE, at least one SRI-PUSCH-Power Control field is set in a one-to-one correspondence with the at least one PUSCH-pathloss RS field, where one SRI-PUSCH in the at least one SRI-PUSCH-Power Control field
  • the -Power Control field is used to indicate the ID of one SRI-PUSCH-Power Control configuration in the at least one SRI-PUSCH-Power Control configuration.
  • the size of each SRI-PUSCH-Power Control field is related to the number of SRI-PUSCH-Power Control configurations.
  • the method 200 may further include: the terminal device determines each SRI-PUSCH-Power Control field in the at least one SRI-PUSCH-Power Control field according to the number of the at least one SRI-PUSCH-Power Control configuration the size of. For example, as shown in FIG. 10 and FIG. 11, assuming that the maximum number of the at least one SRI-PUSCH-Power Control configuration is 16, each SRI-PUSCH-Power Control field occupies 4 bits.
  • each PUSCH-pathloss RS field in the multiple PUSCH-pathloss RS fields is used to indicate whether the corresponding SRI-PUSCH-Power Control configuration PUSCH-pathloss RS needs to be updated or activated. Therefore, each PUSCH-pathloss RS field It can only be set to occupy 1 bit. For example, if a certain PUSCH-pathloss RS field is "1", it means that the PUSCH-pathloss RS field is the first value, and then the MAC CE is set with the SRI-PUSCH-Power corresponding to the PUSCH-pathloss RS field Control field.
  • the SRI-PUSCH-Power Control field includes the ID of the SRI-PUSCH-Power Control configuration.
  • the PUSCH-pathloss RS of the SRI-PUSCH-Power Control configuration indicated by the ID needs to be updated or activated; on the contrary, if a certain PUSCH If the -pathloss RS field is "0", it means that the PUSCH-pathloss RS field is not the first value, that is, the PUSCH-pathloss RS of the SRI-PUSCH-Power Control configuration corresponding to the PUSCH-pathloss RS field does not need to be updated or activated.
  • each PUSCH-pathloss RS field in the multiple PUSCH-pathloss RS fields may also be set to occupy multiple bits, and the embodiment of the present application is not limited to this.
  • multiple PUSCH-pathloss RS fields in the MAC CE may be continuous or discontinuous.
  • the multiple SRI-PUSCH-Power Control fields are continuous as an example for illustration, that is, the MAC CE may include a PUSCH-pathloss RS bitmap, and the multiple PUSCH-pathloss RS fields are the PUSCH-pathloss RS.
  • the bitmap consists of multiple consecutive bits.
  • the MCA CE includes
  • the PUSCH-pathloss RS bitmap can be set to 16 bits, that is, S 0 to S 15 in Oct2 and Oct3 as shown in Figure 10. Each bit corresponds to a PUSCH-pathloss RS field.
  • the MCA CE includes 16 PUSCH-pathloss RS field.
  • the MCA CE includes
  • the PUSCH-pathloss RS bitmap can be set to 8 bits, that is, S 0 to S 7 in Oct2 as shown in Figure 11. Each bit corresponds to a PUSCH-pathloss RS field.
  • the MCA CE includes a total of 8 PUSCH- The pathloss RS field.
  • the arrangement order of the 16 PUSCH-pathloss RS fields may be as shown in FIG. 10, and the arrangement order of the 8 PUSCH-pathloss RS fields may be as shown in FIG. 11, or other arrangement orders may also be used. Not limited to this,
  • each SRI-PUSCH-Power Control field includes an ID of an SRI-PUSCH-Power Control configuration, indicating that the terminal device updates or activates the PUSCH-pathloss corresponding to the SRI-PUSCH-Power Control configuration RS.
  • the SRI-PUSCH-Power Control field includes a SRI-PUSCH-Power Control configuration of the ID, unit apparatus update or activate the SRI-PUSCH-Power Control configuration of PUSCH-pathloss RS ID for the S 3 corresponding PUSCH-pathloss RS.
  • the SRI-PUSCH-Power Control field may not be set, or it may be The SRI-PUSCH-Power Control field is set, but the terminal device does not need to activate or update the PUSCH-pathloss RS ID of the SRI-PUSCH-Power Control configuration indicated by the SRI-PUSCH-Power Control field.
  • the SRI-PUSCH-Power is not set.
  • Control field that is, when the value of a bit in the PUSCH-pathloss RS bitmap is not the first value, the corresponding SRI-PUSCH-Power Control field is not set, then the size of the MAC CE depends on whether the terminal device needs to be updated or The number of activated SRI-PUSCH-Power Control configuration PUSCH-pathloss RS.
  • the multiple PUSCH-pathloss RS fields in the MAC CE may also be discontinuous.
  • the MAC CE includes at least one SRI-PUSCH-Power Control field and at least one PUSCH-pathloss RS field.
  • the MAC CE includes at least one SRI-PUSCH-Power Control field and at least one PUSCH-pathloss RS field.
  • the at least one SRI-PUSCH-Power Control field included in the CE corresponds to the at least one PUSCH-pathloss RS field in a one-to-one correspondence, where each PUSCH-pathloss RS field is a PUSCH-pathloss RS bitmap.
  • the first PUSCH-pathloss RS field is any one of the multiple PUSCH-pathloss RS fields
  • the first SRI-PUSCH-Power Control field is any one of the multiple SRI-PUSCH-Power Control fields
  • the first SRI-PUSCH-Power Control field corresponds to the first PUSCH-pathloss RS field.
  • the first SRI-PUSCH-Power Control field is used to indicate the ID of the first SRI-PUSCH-Power Control configuration in the at least one SRI-PUSCH-Power Control configuration
  • the first PUSCH-pathloss RS field is a bitmap. This is referred to as the first PUSCH-pathloss RS bitmap.
  • the multiple bits included in the first PUSCH-pathloss RS bitmap correspond to multiple PUSCH-pathloss RSs configured for the terminal device one by one.
  • the first PUSCH-pathloss RS The presence of one or more first bits in the RS bitmap satisfies: the value of the first bit is the first value, and the PUSCH-pathloss RS corresponding to the first bit corresponds to the first SRI-PUSCH-Power Control configuration The PUSCH-pathloss RS.
  • the size of each SRI-PUSCH-Power Control field is related to the number of SRI-PUSCH-Power Control configurations.
  • the method 200 may further include: the terminal device determines each SRI-PUSCH-Power Control field in the at least one SRI-PUSCH-Power Control field according to the number of the at least one SRI-PUSCH-Power Control configuration the size of. For example, as shown in FIG. 12, assuming that the maximum number of at least one SRI-PUSCH-Power Control configuration is 16, each SRI-PUSCH-Power Control field occupies 4 bits.
  • the total number of bits in each bitmap of at least one PUSCH-pathloss RS bitmap included in the MAC CE is determined by the number of PUSCH-pathloss RSs possessed by the terminal device. For example, as shown in Figure 12, if the maximum number of PUSCH-pathloss RS is 8, each PUSCH-pathloss RS bitmap has 8 bits; for another example, if the maximum number of PUSCH-pathloss RS is 16, then Each PUSCH-pathloss RS bitmap has 16 bits, and so on.
  • the MAC CE includes at least one SRI-PUSCH-Power Control field, and each SRI-PUSCH-Power Control field includes an SRI-PUSCH-Power Control configuration ID to indicate that the terminal device needs Activate or update at least one PUSCH-pathloss RS corresponding to the SRI-PUSCH-Power Control configuration.
  • SRI-PUSCH-Power Control field in at least one SRI-PUSCH-Power Control field, for example, taking the SRI-PUSCH-Power Control field in Oct2 as an example, it is referred to as the first SRI-PUSCH-Power Control field here.
  • the first SRI-PUSCH-Power Control field includes the ID of the first SRI-PUSCH-Power Control configuration
  • the first PUSCH-pathloss RS field corresponding to the first SRI-PUSCH-Power Control field is the first PUSCH-pathloss RS field.
  • the PUSCH-pathloss RS field is a bitmap, here it is called the first PUSCH-pathloss RS bitmap, and it is assumed that the terminal device has 8 PUSCH-pathloss RS, that is, as shown in Oct3 in Figure 12, the first PUSCH- The pathloss RS bitmap has 8 bits, and each bit corresponds to a PUSCH-pathloss RS.
  • the terminal device activates or updates this SRI-PUSCH-Power Control configuration corresponding PUSCH-pathloss RS ID for the S 5 corresponding PUSCH-pathloss RS's ID.
  • the arrangement of at least one SRI-PUSCH-Power Control field and the corresponding PUSCH-pathloss RS field included in the MAC CE may be as shown in FIG. 12, or may also be set in other ways, as implemented in this application Examples are not limited to this.
  • the MAC CE includes the SRI-PUSCH-Power Control field and the PUSCH-pathloss RS field.
  • the MAC CE may also only include the SRI-PUSCH-Power Control field and PUSCH-pathloss.
  • One type in the RS field is not limited.
  • the MAC CE may include the PUSCH-pathloss RS field, but not the SRI-PUSCH-Power Control field.
  • the MAC CE may include multiple PUSCH-pathloss RS fields, and the multiple PUSCH-pathloss RS fields correspond to multiple SRI-PUSCH-Power Control configurations and PUSCH-pathloss RSs configured for the terminal device one by one.
  • one SRI-PUSCH-Power Control configuration corresponds to only one PUSCH-pathloss RS. Therefore, the corresponding SRI-PUSCH-Power Control configuration can be arranged in a certain order of multiple SRI-PUSCH-Power Control configurations configured for the terminal device.
  • one PUSCH-pathloss RS field in the multiple PUSCH-pathloss RS fields is used to indicate the ID of the corresponding PUSCH-pathloss RS of the SRI-PUSCH-Power Control configuration; in addition, the method 200 also It may include: the terminal device determines whether to update or activate the SRI-PUSCH corresponding to each PUSCH-pathloss RS field according to the ID of the PUSCH-pathloss RS indicated by each PUSCH-pathloss RS field in the multiple PUSCH-pathloss RS fields -Power Control configuration PUSCH-pathloss RS.
  • each PUSCH-pathloss RS field includes the ID of the PUSCH-pathloss RS
  • the size of each PUSCH-pathloss RS field is related to the number of PUSCH-pathloss RS.
  • the method 200 may further include: the terminal device determines the size of each PUSCH-pathloss RS field in the at least one PUSCH-pathloss RS field according to the number of the at least one PUSCH-pathloss RS field.
  • each PUSCH-pathloss RS field occupies 3 bits; for another example, as shown in Figure 13, suppose the maximum number of at least one PUSCH-pathloss RS If it is 16, each PUSCH-pathloss RS field occupies 4 bits, and so on.
  • multiple PUSCH-pathloss RS fields are correspondingly set according to multiple SRI-PUSCH-Power Control configurations possessed by the terminal device, and each PUSCH-pathloss RS field corresponds to one SRI-PUSCH-Power Control configuration.
  • each PUSCH-pathloss RS field includes its corresponding SRI-PUSCH-Power Control configuration PUSCH-pathloss RS ID, then the terminal device can determine according to the PUSCH-pathloss RS ID included in each PUSCH-pathloss RS field Whether the PUSCH-pathloss RS corresponding to each SRI-PUSCH-Power Control configuration needs to be updated or activated.
  • the terminal device needs to activate the SRI-PUSCH-Power Control configuration corresponding to the PUSCH-pathloss RS field.
  • the PUSCH-pathloss RS For example, assuming that the ID of the PUSCH-pathloss RS included in the PUSCH-pathloss RS field corresponding to a certain SRI-PUSCH-Power Control configuration changes, it means that the terminal device needs to activate the SRI-PUSCH-Power Control configuration corresponding to the PUSCH-pathloss RS field.
  • the PUSCH-pathloss RS The PUSCH-pathloss RS.
  • the MAC CE may also include the SRI-PUSCH-Power Control field, but not the PUSCH-pathloss RS field.
  • the SRI-PUSCH-Power Control field may include multiple SRI-PUSCH-Power Control fields, and the multiple SRI-PUSCH-Power Control fields correspond to Multiple SRI-PUSCH-Power Control configurations and PUSCH-pathloss RSs configured by the terminal device.
  • one PUSCH-pathloss RS corresponds to only one SRI-PUSCH-Power Control configuration, it is possible to arrange multiple corresponding SRI-PUSCH-Power according to a specific order of multiple PUSCH-pathloss RSs configured for the terminal device Control field, then one SRI-PUSCH-Power Control field in the multiple SRI-PUSCH-Power Control fields is used to indicate the ID of the corresponding SRI-PUSCH-Power Control configuration; in addition, the method 200 may also include: the terminal device According to the ID of the SRI-PUSCH-Power Control configuration indicated by each SRI-PUSCH-Power Control field in the multiple SRI-PUSCH-Power Control fields, determine whether to update or activate the corresponding SRI-PUSCH-Power Control field SRI-PUSCH-Power Control configured PUSCH-pathloss RS.
  • multiple PUSCH-pathloss RSs correspond to the same SRI-PUSCH-Power Control configuration
  • the size of each SRI-PUSCH-Power Control field is related to the number of SRI-PUSCH-Power Control configurations.
  • the method 200 may further include: the terminal device determines each SRI-PUSCH-Power Control field in the at least one SRI-PUSCH-Power Control field according to the number of the at least one SRI-PUSCH-Power Control configuration the size of. For example, as shown in FIG. 14, assuming that the maximum number of the at least one SRI-PUSCH-Power Control configuration is 16, each SRI-PUSCH-Power Control field occupies 4 bits.
  • multiple SRI-PUSCH-Power Control fields are set corresponding to multiple PUSCH-pathloss RSs possessed by the terminal device, and each SRI-PUSCH-Power Control field corresponds to one PUSCH-pathloss RS, and each SRI-PUSCH-Power Control field corresponds to one PUSCH-pathloss RS.
  • Each SRI-PUSCH-Power Control field includes its corresponding SRI-PUSCH-Power Control configuration ID, so the terminal device can according to the SRI-PUSCH-Power Control configuration ID included in each SRI-PUSCH-Power Control field and each SRI-PUSCH-Power Control configuration ID and each SRI-PUSCH-Power Control field.
  • the PUSCH-pathloss RS corresponding to each SRI-PUSCH-Power Control field determines whether the PUSCH-pathloss RS corresponding to each SRI-PUSCH-Power Control configuration needs to be updated or activated. For example, if the ID of the SRI-PUSCH-Power Control configuration included in the SRI-PUSCH-Power Control field corresponding to a certain PUSCH-pathloss RS changes, it means that the terminal device needs to activate the SRI-PUSCH corresponding to the SRI-PUSCH-Power Control field.
  • -Power Control configuration PUSCH-pathloss RS.
  • the method for activating or updating the path loss reference signal corresponding to the PUSCH in the embodiment of the present application can flexibly set a variety of different MAC CE formats, and activate or update the PUSCH-PUSCH corresponding to the SRI-PUSCH-Power Control configuration based on the MAC CE.
  • the pathloss RS ID greatly reduces the transmission delay.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the terminal device 300 includes: a processing unit 310 and a transceiving unit 320.
  • the transceiving unit 320 is configured to receive a MAC CE sent by a network device, where the MAC CE includes at least one SRI-PUSCH power control field and/or at least one path loss RS field, and the at least one SRI-PUSCH function
  • the control field is used to indicate at least one SRI-PUSCH power control configuration
  • the at least one path loss RS field is used to indicate at least one path loss RS corresponding to the at least one SRI-PUSCH power control configuration
  • the processing unit 310 uses In: According to the MAC CE, update or activate the at least one path loss RS corresponding to the at least one SRI-PUSCH power control configuration.
  • the MAC CE includes the at least one SRI-PUSCH power control field and the at least one path loss RS field.
  • the at least one SRI-PUSCH power control field has a one-to-one correspondence with the at least one path loss RS field, and one SRI-PUSCH power control field in the at least one SRI-PUSCH power control field
  • An identifier used to indicate one SRI-PUSCH power control configuration in the at least one SRI-PUSCH power control configuration, and one path loss RS field in the at least one path loss RS field is used to indicate one of the at least one path loss RS The identification of the path loss RS.
  • the MAC CE includes multiple SRI-PUSCH power control fields, and the multiple SRI-PUSCH power control fields correspond to multiple SRI-PUSCH configured for the terminal device 300 one by one. Power control configuration, each SRI-PUSCH power control field in the multiple SRI-PUSCH power control fields is used to indicate whether it is necessary to update or activate the path loss RS of the corresponding SRI-PUSCH power control configuration.
  • the SRI-PUSCH power control field expressed as the first value in the PUSCH power control field is the at least one SRI-PUSCH power control field, and the at least one SRI-PUSCH power control field is one-to-one with the at least one path loss RS field
  • one path loss RS field in the at least one path loss RS field is used to indicate an identifier of one path loss RS in the at least one path loss RS.
  • the MAC CE includes an SRI-PUSCH power control bitmap, and the multiple SRI-PUSCH power control fields are consecutive multiple bits included in the SRI-PUSCH power control bitmap .
  • the MAC CE includes multiple path loss RS fields, and the multiple path loss RS fields correspond to the multiple SRI-PUSCH power control fields in a one-to-one correspondence.
  • the one-to-one correspondence between the RS field and the at least one SRI-PUSCH power control field is the at least one path loss RS field
  • the first path loss RS field of the multiple path loss RS fields corresponds to the multiple SRIs -The first SRI-PUSCH power control field in the PUSCH power control field
  • the first path loss RS field is continuous with the first SRI-PUSCH power control field
  • the first path loss RS field is used to indicate the first An identifier of the path loss RS, where the first path loss RS corresponds to the first SRI-PUSCH power control configuration corresponding to the first SRI-PUSCH power control field.
  • the MAC CE includes a path loss RS bitmap, and the path loss The multiple bits included in the RS bitmap correspond to the multiple path loss RSs one by one, and each bit in the path loss RS bitmap is used to indicate whether the corresponding path loss RS needs to be updated or activated.
  • the path loss RS field expressed as the first value among the multiple path loss RS fields is the at least one path loss RS field, and the at least one path loss RS field corresponds to the at least one SRI-PUSCH power control field on a one-to-one basis,
  • One SRI-PUSCH power control field in the at least one SRI-PUSCH power control field is used to indicate an identifier of one SRI-PUSCH power control configuration in the at least one SRI-PUSCH power control configuration.
  • the at least one SRI-PUSCH power control field has a one-to-one correspondence with the at least one path loss RS field, and the first SRI-PUSCH power control field in the at least one SRI-PUSCH power control field
  • the control field is used to indicate the identifier of the first SRI-PUSCH power control configuration in the at least one SRI-PUSCH power control configuration, and the first SRI-PUSCH power control field corresponds to the first SRI-PUSCH power control field in the at least one path loss RS field.
  • the first path loss RS field is a first path loss RS bitmap
  • the multiple bits included in the first path loss RS bitmap correspond to the one configured for the terminal device 300
  • Multiple path loss RSs the value of the first bit in the first path loss RS bitmap is a first value
  • the path loss RS corresponding to the first bit is the first SRI-PUSCH power control configuration Corresponding path loss RS.
  • the MAC CE includes multiple path loss RS fields, and the multiple path loss RS fields correspond to multiple SRI-PUSCH power control configurations configured for the terminal device 300 one by one.
  • One path loss RS field in the multiple path loss RS fields is used to indicate the identifier of the path loss RS of the corresponding SRI-PUSCH power control configuration; the processing unit 310 is further configured to: according to the multiple path loss RS fields The identification of the path loss RS indicated by each path loss RS field in each path loss RS field determines whether to update or activate the path loss RS of the SRI-PUSCH power control configuration corresponding to each path loss RS field.
  • the processing unit 310 is further configured to: determine each SRI-PUSCH power control field in the at least one SRI-PUSCH power control field according to the number of the at least one SRI-PUSCH power control configuration The size of the power control field.
  • each SRI-PUSCH power control field occupies 4 bits.
  • the processing unit 310 is further configured to determine the size of each path loss RS field in the at least one path loss RS field according to the number of the at least one path loss RS field.
  • each path loss RS field occupies 2 bits; if the maximum number of the at least one path loss RS is 8 Each path loss RS field occupies 3 bits; if the maximum number of the at least one path loss RS is 16, each path loss RS field occupies 4 bits.
  • the MAC CE further includes a serving cell identification field, and the serving cell identification field is used to indicate the identification of the serving cell where the terminal device 300 resides.
  • the MAC CE further includes a bandwidth part identifier field, and the bandwidth part identifier field is used to indicate the identifier of the bandwidth part corresponding to the terminal device 300.
  • the header of the MAC PDU where the MAC CE is located includes a logical channel identification field, and the logical channel identification field is used to indicate the type of the MAC CE.
  • each unit in the terminal device 300 of the embodiment of the present application is used to implement the corresponding procedures of the terminal device in each method in FIG. 1 to FIG. 14. For the sake of brevity, it will not be omitted here. Go into details.
  • the terminal device of the embodiment of the present application can flexibly set a variety of different MAC CE formats, and activate or update the PUSCH-pathloss RS ID corresponding to the SRI-PUSCH-Power Control configuration based on the MAC CE, so that the transmission delay is greatly reduced. .
  • the network device 400 includes: a processing unit 410 and a transceiver unit 420.
  • the transceiver unit 420 is configured to send a MAC CE to a terminal device, where the MAC CE includes at least one SRI-PUSCH power control field and/or at least one path loss RS field, and the at least one SRI-PUSCH power control field
  • the field is used to indicate at least one SRI-PUSCH power control configuration
  • the at least one path loss RS field is used to indicate at least one path loss RS corresponding to the at least one SRI-PUSCH power control configuration
  • the MAC CE is used to indicate The terminal device updates or activates the at least one path loss RS corresponding to the at least one SRI-PUSCH power control configuration.
  • the MAC CE includes the at least one SRI-PUSCH power control field and the at least one path loss RS field.
  • the at least one SRI-PUSCH power control field has a one-to-one correspondence with the at least one path loss RS field, and one SRI-PUSCH power control field in the at least one SRI-PUSCH power control field
  • An identifier used to indicate one SRI-PUSCH power control configuration in the at least one SRI-PUSCH power control configuration, and one path loss RS field in the at least one path loss RS field is used to indicate one of the at least one path loss RS The identification of the path loss RS.
  • the MAC CE includes multiple SRI-PUSCH power control fields, and the multiple SRI-PUSCH power control fields correspond one-to-one with multiple SRI-PUSCH power control fields configured by the network device 400 for the terminal device.
  • a SRI-PUSCH power control configuration, and each SRI-PUSCH power control field in the multiple SRI-PUSCH power control fields is used to indicate whether it is necessary to update or activate the path loss RS of the corresponding SRI-PUSCH power control configuration.
  • the SRI-PUSCH power control field expressed as the first value among the plurality of SRI-PUSCH power control fields is the at least one SRI-PUSCH power control field, the at least one SRI-PUSCH power control field and the at least one path loss
  • the RS fields have a one-to-one correspondence, and one path loss RS field in the at least one path loss RS field is used to indicate an identifier of one path loss RS in the at least one path loss RS.
  • the MAC CE includes an SRI-PUSCH power control bitmap, and the multiple SRI-PUSCH power control fields are consecutive multiple bits included in the SRI-PUSCH power control bitmap .
  • the MAC CE includes multiple path loss RS fields, and the multiple path loss RS fields correspond to the multiple SRI-PUSCH power control fields in a one-to-one correspondence.
  • the one-to-one correspondence between the RS field and the at least one SRI-PUSCH power control field is the at least one path loss RS field
  • the first path loss RS field of the multiple path loss RS fields corresponds to the multiple SRIs -The first SRI-PUSCH power control field in the PUSCH power control field
  • the first path loss RS field is continuous with the first SRI-PUSCH power control field
  • the first path loss RS field is used to indicate the first An identifier of the path loss RS, where the first path loss RS corresponds to the first SRI-PUSCH power control configuration corresponding to the first SRI-PUSCH power control field.
  • the MAC CE includes a path loss RS bitmap, and the path loss RS bitmap
  • the included multiple bits correspond to the multiple path loss RS one by one, and each bit in the path loss RS bitmap is used to indicate whether the corresponding path loss RS needs to be updated or activated.
  • the path loss RS field expressed as the first value in the loss RS field is the at least one path loss RS field, and the at least one path loss RS field corresponds to the at least one SRI-PUSCH power control field one to one, and the at least one path loss RS field corresponds to the at least one SRI-PUSCH power control field.
  • One SRI-PUSCH power control field in one SRI-PUSCH power control field is used to indicate an identifier of one SRI-PUSCH power control configuration in the at least one SRI-PUSCH power control configuration.
  • the at least one SRI-PUSCH power control field has a one-to-one correspondence with the at least one path loss RS field, and the first SRI-PUSCH power control field in the at least one SRI-PUSCH power control field
  • the control field is used to indicate the identifier of the first SRI-PUSCH power control configuration in the at least one SRI-PUSCH power control configuration, and the first SRI-PUSCH power control field corresponds to the first SRI-PUSCH power control field in the at least one path loss RS field.
  • One path loss RS field, the first path loss RS field is a first path loss RS bitmap, and the multiple bits included in the first path loss RS bitmap correspond to the network device 400 one by one.
  • the multiple path loss RS configured by the terminal device, the value of the first bit in the first path loss RS bitmap is the first value, and the path loss RS corresponding to the first bit is the first SRI- The path loss RS corresponding to the PUSCH power control configuration.
  • the MAC CE includes multiple path loss RS fields, and the multiple path loss RS fields correspond to multiple SRI-PUSCHs configured by the network device 400 for the terminal device one by one.
  • Power control configuration the first path loss RS field of the multiple path loss RS fields is used to indicate the identifier of the first path loss RS of the corresponding first SRI-PUSCH power control configuration; the identifier of the first path loss RS It is used to indicate whether the terminal device updates or activates the first path loss RS of the first SRI-PUSCH power control configuration corresponding to the first path loss RS field.
  • the processing unit 410 is configured to determine, according to the number of the at least one SRI-PUSCH power control configuration, each SRI-PUSCH power control field in the at least one SRI-PUSCH power control field. The size of the control field.
  • each SRI-PUSCH power control field occupies 4 bits.
  • the processing unit 410 is configured to determine the size of each path loss RS field in the at least one path loss RS field according to the number of the at least one path loss RS field.
  • each path loss RS field occupies 2 bits; if the maximum number of the at least one path loss RS is 8 Each path loss RS field occupies 3 bits; if the maximum number of the at least one path loss RS is 16, each path loss RS field occupies 4 bits.
  • the MAC CE further includes a serving cell identification field, and the serving cell identification field is used to indicate the identification of the serving cell where the terminal device resides.
  • the MAC CE further includes a bandwidth part identifier field, and the bandwidth part identifier field is used to indicate the identifier of the bandwidth part corresponding to the terminal device.
  • the header of the MAC PDU where the MAC CE is located includes a logical channel identification field, and the logical channel identification field is used to indicate the type of the MAC CE.
  • each unit in the network device 400 of the embodiment of the present application is used to implement the corresponding process of the network device in each method in FIG. 1 to FIG. 14. For the sake of brevity, it will not be omitted here. Go into details.
  • the network device of the embodiment of this application can flexibly set a variety of different MAC CE formats, and activate or update the PUSCH-pathloss RS ID corresponding to the SRI-PUSCH-Power Control configuration based on the MAC CE, which greatly reduces the transmission delay. .
  • FIG. 17 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 shown in FIG. 17 includes a processor 510, and the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 500 may specifically be a network device of an embodiment of the present application, and the communication device 500 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, it will not be repeated here. .
  • the communication device 500 may specifically be a mobile terminal/terminal device of an embodiment of the application, and the communication device 500 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the application.
  • I won’t repeat it here.
  • FIG. 18 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 600 shown in FIG. 18 includes a processor 610, and the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the chip 600 may further include an input interface 630.
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 600 may further include an output interface 640.
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 19 is a schematic block diagram of a communication system 700 according to an embodiment of the present application. As shown in FIG. 19, the communication system 700 includes a terminal device 710 and a network device 720.
  • the terminal device 710 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 720 can be used to implement the corresponding function implemented by the network device in the above method. Go into details.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Abstract

本申请实施例涉及激活或者更新PUSCH路损RS的方法和设备。该方法包括终端设备接收网络设备发送的MAC CE,所述MAC CE包括至少一个SRI-PUSCH功控字段和/或至少一个路损RS字段,所述至少一个SRI-PUSCH功控字段用于指示至少一个SRI-PUSCH功控配置,所述至少一个路损RS字段用于指示与所述至少一个SRI-PUSCH功控配置对应的至少一个路损RS;所述终端设备根据所述MAC CE,更新或者激活所述至少一个SRI-PUSCH功控配置对应的所述至少一个路损RS。本申请实施例的激活或者更新PUSCH路损RS的方法和设备,能够降低传输时延。

Description

激活或者更新PUSCH路损RS的方法和设备 技术领域
本申请涉及通信领域,尤其涉及激活或者更新PUSCH路损RS的方法和设备。
背景技术
网络设备可以通过无线资源控制(radio resource control,RRC)消息,为终端设备配置每个空间关系信息(space relationship information,SRI)物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的功控(Power Control)配置(configuration)的标识(Identifier,ID)以及对应的PUSCH路损(pathloss)参考信号(Reference Signal,RS)的ID。同时,网络设备也可以通过RRC消息激活或者更新一个或者多个PUSCH pathloss RS。
但是,通过RRC消息传输时延较大,如何更加快速的激活或更新PUSCH pathloss RS是目前亟待解决的问题。
发明内容
本申请实施例提供一种激活或者更新PUSCH路损RS的方法和设备,能够降低传输时延。
第一方面,提供了一种激活或者更新PUSCH路损RS的方法,包括:终端设备接收网络设备发送的MAC CE,所述MAC CE包括至少一个SRI-PUSCH功控字段和/或至少一个路损RS字段,所述至少一个SRI-PUSCH功控字段用于指示至少一个SRI-PUSCH功控配置,所述至少一个路损RS字段用于指示与所述至少一个SRI-PUSCH功控配置对应的至少一个路损RS;所述终端设备根据所述MAC CE,更新或者激活所述至少一个SRI-PUSCH功控配置对应的所述至少一个路损RS。
第二方面,提供了一种激活或者更新PUSCH路损RS的方法,包括:网络设备向终端设备发送MAC CE,所述MAC CE包括至少一个SRI-PUSCH功控字段和/或至少一个路损RS字段,所述至少一个SRI-PUSCH功控字段用于指示至少一个SRI-PUSCH功控配置,所述至少一个路损RS字段用于指示与所述至少一个SRI-PUSCH功控配置对应的至少一个路损RS;所述MAC CE用于指示所述终端设备更新或者激活所述至少一个SRI-PUSCH功控配置对应的所述至少一个路损RS。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,基于该MAC CE激活或更新SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS ID,使得传输时延大大降低。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请实施例提供的一种激活或者更新PUSCH路损RS的方法的示意性图。
图3是本申请实施例提供的一种MAC CE的格式的示意图。
图4是本申请实施例提供的另一种MAC CE的格式的示意图。
图5是本申请实施例提供的再一种MAC CE的格式的示意图。
图6是本申请实施例提供的再一种MAC CE的格式的示意图。
图7是本申请实施例提供的再一种MAC CE的格式的示意图。
图8是本申请实施例提供的再一种MAC CE的格式的示意图。
图9是本申请实施例提供的再一种MAC CE的格式的示意图。
图10是本申请实施例提供的再一种MAC CE的格式的示意图。
图11是本申请实施例提供的再一种MAC CE的格式的示意图。
图12是本申请实施例提供的再一种MAC CE的格式的示意图。
图13是本申请实施例提供的再一种MAC CE的格式的示意图。
图14是本申请实施例提供的再一种MAC CE的格式的示意图。
图15是本申请实施例提供的一种终端设备的示意性框图。
图16是本申请实施例提供的一种网络设备的示意性框图。
图17是本申请实施例提供的一种通信设备的示意性框图。
图18是本申请实施例提供的一种芯片的示意性框图。
图19是本申请实施例提供的一种通信系统的示意性图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
考虑到通过RRC消息指示激活或者更新PUSCH pathloss RS时延较大,因此,本申请实施例提供了一种激活或者更新物理上行共享信道PUSCH的路损RS的方法,可以通过介质访问控制(medium access control,MAC)控制元素(control element,CE)进行指示。
具体地,图2为本申请实施例提供的一种激活或者更新物理上行共享信道PUSCH的路损RS的方法200的示意性流程图。如图2所示,该方法200包括:S210,发送MAC CE,即网络设备向终端设备发送MAC CE。其中,该MAC CE包括至少一个SRI-PUSCH-Power Control字段和/或至少一个PUSCH-pathloss RS字段,该至少一个SRI-PUSCH-Power Control字段用于指示至少一个SRI-PUSCH-Power Control配置(configuration),该至少一个PUSCH-pathloss RS字段用于指示与该至少一个SRI-PUSCH-Power Control configuration对应的至少一个PUSCH-pathloss RS。
应理解,上述的这一类MAC CE可以通过逻辑信道标识符(logical channel identifier,LCID)进行区分。例如,该MAC CE所在的MAC协议数据单元(Protocol Data Unit,PDU)的包头或者MAC subPDU的包头中包括LCID字段,该LCID字段用于指示该MAC CE的类型。另外,用于指示本申请实施例中该MAC CE类型的LCID的取值可以根据实际应用进行设置,例如,可以选择33-46之间任意值,但本申请实施例并不限于此。
可选地,该MAC CE还可以包括服务小区(Serving Cell)标识字段,该服务小区标识字段用于指示该终端设备驻留的服务小区的ID。该服务小区标识字段的大小可以根据服务小区的最大个数进行设置,例如,若服务小区的最大个数为32,那么对应的服务小区标识字段占用5bits(比特)。
可选地,该MAC CE还包括带宽部分(bandwidth part,BWP)标识字段,该带宽部分标识字段用于指示该终端设备对应的BWP ID。该带宽部分标识字段的大小可以根据带宽部分的最大个数进行设置,例如,若带宽部分的最大个数为4,那么对应的该带宽部分标识字段占用2bits。
可选地,该MAC CE还可以包括保留比特位,用“R”表示,但本申请实施例并不限于此。
应理解,本申请实施例的方法200可以由终端设备和网络设备执行。例如,该终端设备可以为如图1所示的终端设备,该网络设备可以为如图1所示的网络设备,但本申请实施例并不限于此。
如图2所示,该方法200还包括:S220,确定更新或激活的SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS,终端设备接收网络设备发送的MAC CE,根据该MAC CE,更新或者激活MAC CE指示的至少一个SRI-PUSCH-Power Control configuration对应的该至少一个PUSCH-pathloss RS。
网络设备可以为终端设备配置一个或者多个SRI-PUSCH-Power Control configuration,也可以配置一个或者多个PUSCH-pathloss RS,并且,SRI-PUSCH-Power Control configuration与PUSCH-pathloss RS之间具有对应关系。例如,SRI-PUSCH-Power Control configuration的最大个数通常为16个,PUSCH-pathloss RS的最大个数通常为8个或者16个,或者还可以为32个或者64个;另外,一个SRI-PUSCH-Power Control configuration通常对应有一个PUSCH-pathloss RS,但可能存在多个SRI-PUSCH-Power Control configuration对应有同一个PUSCH-pathloss RS,即一个PUSCH-pathloss RS可能对应一个或者多个SRI-PUSCH-Power Control configuration,本申请实施例并不限于此。
可选地,网络设备可以通过RRC消息为该终端设备配置该一个或者多个SRI-PUSCH-Power Control configuration和/或配置一个或者多个PUSCH-pathloss RS,或者,该网络设备还可以通过RRC消息为该终端设备配置SRI-PUSCH-Power Control configuration与PUSCH-pathloss RS之间的对应关系,本申请实施例并不限于此。
应理解,本申请实施例的MAC CE可以有多种形式,例如,MAC CE包括的至少一个 SRI-PUSCH-Power Control字段和/或至少一个PUSCH-pathloss RS字段可以有不同设置方式。下面将结合图3至图14,详细描述各种情况,其中,图3至图14分别示出了几种不同MAC CE的格式。
可选地,作为第一个实施例,该MAC CE可以包括至少一个SRI-PUSCH-Power Control字段以及至少一个PUSCH-pathloss RS字段,并且,该至少一个SRI-PUSCH-Power Control字段与该至少一个PUSCH-pathloss RS字段一一对应,也就是说,一个SRI-PUSCH-Power Control字段对应一个PUSCH-pathloss RS字段,该至少一个SRI-PUSCH-Power Control字段中的一个SRI-PUSCH-Power Control字段用于表示该至少一个SRI-PUSCH-Power Control configuration中一个SRI-PUSCH-Power Control configuration的标识(ID)(或者也可以称为SRI-PUSCH-Power Control ID),该至少一个PUSCH-pathloss RS字段中一个PUSCH-pathloss RS字段用于表示该至少一个PUSCH-pathloss RS中一个PUSCH-pathloss RS的ID。
可选地,由于可能存在多个SRI-PUSCH-Power Control configuration对应同一PUSCH-pathloss RS的情况,因此,在该第一个实施例中,MAC CE中的至少一个PUSCH-pathloss RS字段中可能包括多个PUSCH-pathloss RS字段包括了同一个PUSCH-pathloss RS的ID的情况。
应理解,由于SRI-PUSCH-Power Control字段用于表示SRI-PUSCH-Power Control configuration的ID,PUSCH-pathloss RS字段用于表示PUSCH-pathloss RS的ID,所以每个SRI-PUSCH-Power Control字段的大小与SRI-PUSCH-Power Control configuration的个数相关,每个PUSCH-pathloss RS字段的大小与PUSCH-pathloss RS的个数相关。
可选地,该方法200还可以包括:该终端设备根据该至少一个SRI-PUSCH-Power Control configuration的个数,确定该至少一个SRI-PUSCH-Power Control字段中每个SRI-PUSCH-Power Control字段的大小。例如,如图3至图6所示,假设该至少一个SRI-PUSCH-Power Control configuration的最大个数为16,那么每个SRI-PUSCH-Power Control字段占用4比特。
类似的,该方法200还可以包括:该终端设备根据该至少一个PUSCH-pathloss RS字段的个数,确定该至少一个PUSCH-pathloss RS字段中每个PUSCH-pathloss RS字段的大小。例如,如图3和图5所示,假设该至少一个PUSCH-pathloss RS的最大个数为4,那么每个PUSCH-pathloss RS字段占用2比特;再例如,假设该至少一个PUSCH-pathloss RS的最大个数为8,那么每个PUSCH-pathloss RS字段占用3比特;再例如,如图4和图6所示,假设该至少一个PUSCH-pathloss RS的最大个数为16,那么每个PUSCH-pathloss RS字段占用4比特,以此类推。
在该第一个实施例中,一个SRI-PUSCH-Power Control字段对应一个PUSCH-pathloss RS字段,那么对于任意一个MCA CE,该MAC CE可以用于指示一个或者多个SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS。例如,如图3和图4所示,一个MAC CE可以仅用于指示一个SRI-PUSCH-Power Control configuration对应的一个PUSCH-pathloss RS,那么该MCA CE中包括一个SRI-PUSCH-Power Control字段以及一个PUSCH-pathloss RS字段,SRI-PUSCH-Power Control字段包括SRI-PUSCH-Power Control configuration的ID,PUSCH-pathloss RS字段包括该SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS的ID,则终端设备根据该MCA CE,确定需要激活或者更新的一个SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS。若需要激活或者更新多个SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS,则可以向终端设备发送多个MAC CE。
再例如,如图5和图6所示,一个MCA CE还可以用于指示多个SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS,那么该MCA CE包括多个SRI-PUSCH-Power Control字段以及多个PUSCH-pathloss RS字段,其中,一个SRI-PUSCH-Power Control字段包括一个SRI-PUSCH-Power Control configuration的ID,与之对应的一个PUSCH-pathloss RS字段包括该SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS的ID。假设该MCA CE包括如图5和图6所示的N个八比特组(Oct),那么该MCA CE可以用于指示至少N-1个SRI-PUSCH-Power Control configuration及其对应的PUSCH-pathloss RS,以便于终端设备根据该MCA CE,更新或者激活该N-1个SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS。
可选地,作为第二个实施例,仍然以该MAC CE包括至少一个SRI-PUSCH-Power Control字段和至少一个PUSCH-pathloss RS字段为例,但是与第一个实施例不同的是,该MAC CE具体包括多个SRI-PUSCH-Power Control字段,该多个SRI-PUSCH-Power Control字段一一对应于为该终端设备配置的多个SRI-PUSCH-Power Control configuration,该多个SRI-PUSCH-Power Control字段中每个SRI-PUSCH-Power Control字段用于指示是否需要更新或者激活对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS,也就是说,每个SRI-PUSCH-Power Control字段不再是第一个实施例中的SRI-PUSCH-Power Control configuration的ID。
另外,该多个SRI-PUSCH-Power Control字段中表示为第一值的SRI-PUSCH-Power Control字段为该至少一个SRI-PUSCH-Power Control字段,也就是说,若该多个SRI-PUSCH-Power Control字段中某个SRI-PUSCH-Power Control字段为第一值,那么该SRI-PUSCH-Power Control字段属于上述S210中的至少一个SRI-PUSCH-Power Control字段,即该SRI-PUSCH-Power Control字段对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS需要更新或者激活;相反的,如果该多个SRI-PUSCH-Power Control字段中某个SRI-PUSCH-Power Control字段不等于该第一值,那么该SRI-PUSCH-Power Control字段就不属于上述S210中的至少一个SRI-PUSCH-Power Control字段,即该SRI-PUSCH-Power Control字段对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS不需要更新或者激活。
网络设备可以为终端设备配置多个SRI-PUSCH-Power Control configuration,与之一一对应设置有多个SRI-PUSCH-Power Control字段,该多个SRI-PUSCH-Power Control字段中可能存在部分或者全部字段属于上述S210中的至少一个SRI-PUSCH-Power Control字段,那么在该MAC CE中,与该至少一个SRI-PUSCH-Power Control字段一一对应设置了至少一个PUSCH-pathloss RS字段,其中,该至少一个PUSCH-pathloss RS字段中一个PUSCH-pathloss RS字段用于表示该至少一个PUSCH-pathloss RS中一个PUSCH-pathloss RS的ID。
应理解,由于PUSCH-pathloss RS字段用于表示PUSCH-pathloss RS的ID,所以每个PUSCH-pathloss RS字段的大小与PUSCH-pathloss RS的个数相关。可选地,该方法200还可以包括:该终端设备根据该至少一个PUSCH-pathloss RS字段的个数,确定该至少一个PUSCH-pathloss RS字段中每个PUSCH-pathloss RS字段的大小。例如,如图7所示,假设该至少一个PUSCH-pathloss RS的最大个数为4,那么每个PUSCH-pathloss RS字段占用2比特;再例如,如图8所示,假设该至少一个PUSCH-pathloss RS的最大个数为64,那么每个PUSCH-pathloss RS字段占用6比特;再例如,如图9所示,假设该至少一个PUSCH-pathloss RS的最大个数为8,那么每个PUSCH-pathloss RS字段占用3比特,以此类推。
另外,该多个SRI-PUSCH-Power Control字段中每个SRI-PUSCH-Power Control字段用于指示是否需要更新或者激活对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS,因此,每个SRI-PUSCH-Power Control字段可以设置为仅占用1bit。例如,若某个SRI-PUSCH-Power Control字段为“1”,则表示该SRI-PUSCH-Power Control字段为第一值,即该SRI-PUSCH-Power Control字段对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS需要更新或者激活,并且在该MAC CE中设置有与该SRI-PUSCH-Power Control字段对应的PUSCH-pathloss RS字段,以表示更新或者激活的PUSCH-pathloss RS的ID;相反的,若某个SRI-PUSCH-Power Control字段为“0”,则表示该SRI-PUSCH-Power Control字段不为第一值,即该SRI-PUSCH-Power Control字段对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS不需要更新或者激活。可选地,该多个SRI-PUSCH-Power Control字段中每个SRI-PUSCH-Power Control字段也可以设置为占用多个比特,本申请实施例并不限于此。
该第二个实施例中的MAC CE中的多个SRI-PUSCH-Power Control字段可以是连续的,或者也可以是不连续的。具体地,作为第一种情况,该多个SRI-PUSCH-Power Control字段可以是连续的,例如,该MAC CE可以包括SRI-PUSCH-Power Control位图,该第二个实施例中上述的多个SRI-PUSCH-Power Control字段为该SRI-PUSCH-Power Control位图包括的连续的多个比特位。
例如,如图7和图8所示,假设终端设备最多具有16个SRI-PUSCH-Power Control configuration,那么对应的,该MCA CE包括的SRI-PUSCH-Power Control位图可以设置为16bits,即如图7和图8所示的Oct2和Oct3中的S 0至S 15,每个比特位对应表示一个SRI-PUSCH-Power Control字段,该MCA CE共包括16个SRI-PUSCH-Power Control字段。其中,该16个SRI-PUSCH-Power Control字段的排列顺序可以如图7或者8所示,或者也可以采用其它排列顺序,本申请实施例并不限于此,
对于该16个SRI-PUSCH-Power Control字段构成的位图中比特位的值为“1”的至少一个SRI-PUSCH-Power Control字段,在后面对应一一设置有至少一个PUSCH-pathloss RS字段,每个PUSCH-pathloss RS字段包括一个PUSCH-pathloss RS的ID,表示终端设备更新或者激活该PUSCH-pathloss RS。例如,假设S 3的值为“1”,那么与S 3对应的设置一个PUSCH-pathloss RS字段,该PUSCH-pathloss RS字段包括一个PUSCH-pathloss RS的ID,终端设备更新或者激活该S 3对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS的ID。
相反的,对于该16个SRI-PUSCH-Power Control字段构成的位图中比特位的值为“0”的其它SRI-PUSCH-Power Control字段,可以不设置PUSCH-pathloss RS字段,或者也可以设置PUSCH-pathloss RS字段,但是终端设备并不需要激活或者更新其携带的PUSCH-pathloss RS的ID。
应理解,在该第一种情况中,如果不需要终端设备激活或者更新的PUSCH-pathloss RS不设置PUSCH-pathloss RS字段,即SRI-PUSCH-Power Control位图中某个比特位的值不为第一值时,不设置与之对应的PUSCH-pathloss RS字段,那么MAC CE的大小取决于终端设备需要更新或者激活的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS个数。
可选地,作为另一种情况,该多个SRI-PUSCH-Power Control字段也可以是不连续的,例如,该MAC CE包括多个SRI-PUSCH-Power Control字段,另外,还包括多个PUSCH-pathloss RS字段,该多个PUSCH-pathloss RS字段与该多个SRI-PUSCH-Power Control字段一一对应。例如,该多个PUSCH-pathloss RS字段中第一PUSCH-pathloss RS字段对应于该多个SRI-PUSCH-Power Control字段中的第一SRI-PUSCH-Power Control字段,该第一PUSCH-pathloss RS字段与该第一SRI-PUSCH-Power Control字段连续,其中,第一SRI-PUSCH-Power Control字段为多个SRI-PUSCH-Power Control字段中的任意一个,第一PUSCH-pathloss RS字段为多个PUSCH-pathloss RS字段中与第一SRI-PUSCH-Power Control字段对应的一个字段。
第一SRI-PUSCH-Power Control字段用于指示终端设备是否激活或者更新对应的第一SRI-PUSCH-Power Control configuration的第一PUSCH-pathloss RS,该第一PUSCH-pathloss RS字段用于表示该第一PUSCH-pathloss RS的ID,即该第一PUSCH-pathloss RS对应于该第一SRI-PUSCH-Power Control字段对应的第一SRI-PUSCH-Power Control configuration。
在这种情况下,MAC CE的大小取决于网络设备为终端设备配置的SRI-PUSCH-Power Control configuration的个数,如果SRI-PUSCH-Power Control configuration的个数固定,那么MAC CE的大小固定。
例如,如图9所示,假设终端设备最多具有16个SRI-PUSCH-Power Control configuration,那么MAC CE可以设置有16个SRI-PUSCH-Power Control字段,并分别表示为图9所示的S 0至S 15,每个SRI-PUSCH-Power Control字段对应有一个PUSCH-pathloss RS字段,即该MAC CE有16个PUSCH-pathloss RS字段。若该16个SRI-PUSCH-Power Control字段中的某个SRI-PUSCH-Power Control字段为“1”,例如假设S 1为“1”,则终端设备获取该S 1之后的一个PUSCH-pathloss RS字段中的PUSCH-pathloss RS的ID,并且该ID指示的PUSCH-pathloss RS为该终端设备需要更新或者激活的S 1对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS。相反的,若某个该SRI-PUSCH-Power Control字段不为“1”,例如假设S 2为“0”,则表示该S 2对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS不需要更新或者激活。
可选地,作为第三个实施例,仍然以该MAC CE包括至少一个SRI-PUSCH-Power Control字段和至少一个PUSCH-pathloss RS字段为例,但是与前两个实施例不同的是,这里假设网络设备为该终端设备配置的多个SRI-PUSCH-Power Control configuration中不存在多个SRI-PUSCH-Power Control configuration对应同一个PUSCH-pathloss RS的情况,也就是一个PUSCH-pathloss RS最多存在一个SRI-PUSCH-Power Control configuration与之对应,例如,多个SRI-PUSCH-Power Control configuration可以一一对应多个PUSCH-pathloss RS,那么参照第二个实施例中设置多个SRI-PUSCH-Power Control字段的方式,也可以设置多个PUSCH-pathloss RS字段,例如,在第二个实施例中SRI-PUSCH-Power Control字段可以是位图,那么,在该第三个实施例中,PUSCH-pathloss RS也可以设置为位图。
具体地,该MAC CE可以包括多个PUSCH-pathloss RS字段,该多个PUSCH-pathloss RS字段一一对应于网络设备为终端设备配置的多个PUSCH-pathloss RS,每个PUSCH-pathloss RS字段用于指示是否需要更新或者激活对应的PUSCH-pathloss RS。例如,该多个PUSCH-pathloss RS字段可以为PUSCH-pathloss RS位图,该PUSCH-pathloss RS位图包括的多个比特位一一对应于网络设备为终端设备配置的多个PUSCH-pathloss RS,该PUSCH-pathloss RS位图中的每一个比特位用于指示是否需要更新或者激活对应的PUSCH-pathloss RS。也就是说,若该多个PUSCH-pathloss RS字段中某个PUSCH-pathloss RS字段为第一值,那么该PUSCH-pathloss RS字段属于上述S210中的至少一个PUSCH-pathloss RS字段,即该PUSCH-pathloss RS字段对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS需要更新或者激活;相反的,如果该多个PUSCH-pathloss RS字段中某个PUSCH-pathloss RS字段不等于该第一值,那么该PUSCH-pathloss RS字段就不属于上述S210中的至少一个PUSCH-pathloss RS字段,即该PUSCH-pathloss RS字段对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS不需要更新或者激活。
网络设备可以为终端设备配置多个PUSCH-pathloss RS,与之一一对应设置有多个PUSCH-pathloss RS字段,该多个PUSCH-pathloss RS字段中可能存在部分或者全部字段属于至少一个PUSCH-pathloss RS字段,那么在该MAC CE中,与该至少一个PUSCH-pathloss RS字段一一对应设置至少一个SRI-PUSCH-Power Control字段,其中,该至少一个SRI-PUSCH-Power Control字段中一个 SRI-PUSCH-Power Control字段用于表示该至少一个SRI-PUSCH-Power Control configuration中一个SRI-PUSCH-Power Control configuration的ID。
应理解,由于SRI-PUSCH-Power Control字段用于表示SRI-PUSCH-Power Control configuration的ID,所以每个SRI-PUSCH-Power Control字段的大小与SRI-PUSCH-Power Control configuration的个数相关。可选地,该方法200还可以包括:该终端设备根据该至少一个SRI-PUSCH-Power Control configuration的个数,确定该至少一个SRI-PUSCH-Power Control字段中每个SRI-PUSCH-Power Control字段的大小。例如,如图10和图11所示,假设该至少一个SRI-PUSCH-Power Control configuration的最大个数为16,那么每个SRI-PUSCH-Power Control字段占用4比特。
另外,该多个PUSCH-pathloss RS字段中每个PUSCH-pathloss RS字段用于指示是否需要更新或者激活对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS,因此,每个PUSCH-pathloss RS字段可以仅设置为占用1bit。例如,若某个PUSCH-pathloss RS字段为“1”,则表示该PUSCH-pathloss RS字段为第一值,那么在该MAC CE中设置有与该PUSCH-pathloss RS字段对应的SRI-PUSCH-Power Control字段,该SRI-PUSCH-Power Control字段包括SRI-PUSCH-Power Control configuration的ID,该ID表示的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS需要更新或者激活;相反的,若某个PUSCH-pathloss RS字段为“0”,则表示该PUSCH-pathloss RS字段不为第一值,即该PUSCH-pathloss RS字段对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS不需要更新或者激活。可选地,该多个PUSCH-pathloss RS字段中每个PUSCH-pathloss RS字段也可以设置为占用多个比特,本申请实施例并不限于此。
应理解,类似该第二个实施例中的MAC CE,在该第三个实施例中,MAC CE中的多个PUSCH-pathloss RS字段可以是连续的,或者也可以是不连续的。具体地,这里以该多个SRI-PUSCH-Power Control字段是连续的为例进行说明,即该MAC CE可以包括PUSCH-pathloss RS位图,该多个PUSCH-pathloss RS字段为该PUSCH-pathloss RS位图包括的连续的多个比特位。
例如,如图10所示,假设终端设备最多具有16个PUSCH-pathloss RS,并且该16个PUSCH-pathloss RS一一对应有16个SRI-PUSCH-Power Control configuration,那么对应的,该MCA CE包括的PUSCH-pathloss RS位图可以设置为16bits,即如图10所示的Oct2和Oct3中的S 0至S 15,每个比特位对应表示一个PUSCH-pathloss RS字段,该MCA CE共包括16个PUSCH-pathloss RS字段。或者,如图11所示,假设终端设备最多具有8个PUSCH-pathloss RS,并且该8个PUSCH-pathloss RS一一对应有8个SRI-PUSCH-Power Control configuration,那么对应的,该MCA CE包括的PUSCH-pathloss RS位图可以设置为8bits,即如图11所示的Oct2中的S 0至S 7,每个比特位对应表示一个PUSCH-pathloss RS字段,该MCA CE共包括8个PUSCH-pathloss RS字段。
可选地,16个PUSCH-pathloss RS字段的排列顺序可以如图10所示,8个PUSCH-pathloss RS字段的排列顺序可以如图11所示,或者也可以采用其它排列顺序,本申请实施例并不限于此,
如图10或者图11所示,对于该16个或者8个PUSCH-pathloss RS字段构成的位图中比特位的值为“1”的至少一个PUSCH-pathloss RS字段,在后面对应一一设置有至少一个SRI-PUSCH-Power Control字段,每个SRI-PUSCH-Power Control字段包括一个SRI-PUSCH-Power Control configuration的ID,表示终端设备更新或者激活该SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS。例如,假设S 3的值为“1”,那么与S 3对应的设置一个SRI-PUSCH-Power Control字段,该SRI-PUSCH-Power Control字段包括一个SRI-PUSCH-Power Control configuration的ID,终端设备更新或者激活该SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS的ID为S 3对应的PUSCH-pathloss RS。
相反的,对于该16个或者8个PUSCH-pathloss RS字段构成的位图中比特位的值为“0”的其它PUSCH-pathloss RS字段,可以不设置SRI-PUSCH-Power Control字段,或者也可以设置SRI-PUSCH-Power Control字段,但是终端设备并不需要激活或者更新该SRI-PUSCH-Power Control字段指示的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS的ID。
应理解,在该这种设置PUSCH-pathloss RS位图的情况中,如果不需要终端设备激活或者更新某个SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS,那么就不设置SRI-PUSCH-Power Control字段,即PUSCH-pathloss RS位图中某个比特位的值不为第一值时,不设置与之对应的SRI-PUSCH-Power Control字段,那么MAC CE的大小取决于终端设备需要更新或者激活的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS个数。
应理解,MAC CE中的多个PUSCH-pathloss RS字段也可以是不连续的,具体可参考第二个实施例中的第二种情况进行设置,为了简洁,在此不再赘述。
可选地,作为第四个实施例,仍然以该MAC CE包括至少一个SRI-PUSCH-Power Control字段和至少一个PUSCH-pathloss RS字段为例,但是与前三个实施例不同的是,该MAC CE包括的该至少一 个SRI-PUSCH-Power Control字段与该至少一个PUSCH-pathloss RS字段一一对应,其中,每个PUSCH-pathloss RS字段均为PUSCH-pathloss RS位图。具体地,假设第一PUSCH-pathloss RS字段为多个PUSCH-pathloss RS字段中的任意一个,第一SRI-PUSCH-Power Control字段为多个SRI-PUSCH-Power Control字段中的任意一个,并且,该第一SRI-PUSCH-Power Control字段对应于第一PUSCH-pathloss RS字段。该第一SRI-PUSCH-Power Control字段用于表示该至少一个SRI-PUSCH-Power Control configuration中的第一SRI-PUSCH-Power Control configuration的ID,该第一PUSCH-pathloss RS字段为一个位图,这里称为第一PUSCH-pathloss RS位图,该第一PUSCH-pathloss RS位图包括的多个比特位一一对应于为该终端设备配置的多个PUSCH-pathloss RS,该第一PUSCH-pathloss RS位图中存在一个或者多个第一比特位满足:该第一比特位的值为第一值,该第一比特位对应的PUSCH-pathloss RS为该第一SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS。
应理解,由于SRI-PUSCH-Power Control字段用于表示SRI-PUSCH-Power Control configuration的ID,所以每个SRI-PUSCH-Power Control字段的大小与SRI-PUSCH-Power Control configuration的个数相关。可选地,该方法200还可以包括:该终端设备根据该至少一个SRI-PUSCH-Power Control configuration的个数,确定该至少一个SRI-PUSCH-Power Control字段中每个SRI-PUSCH-Power Control字段的大小。例如,如图12所示,假设该至少一个SRI-PUSCH-Power Control configuration的最大个数为16,那么每个SRI-PUSCH-Power Control字段占用4比特。
应理解,该MAC CE包括的至少一个PUSCH-pathloss RS位图中每个位图的比特位的总个数由终端设备具有的PUSCH-pathloss RS个数决定。例如,如图12所示,若PUSCH-pathloss RS最大个数为8,则每个PUSCH-pathloss RS位图具有8个比特位;再例如,若PUSCH-pathloss RS的最大个数为16,则每个PUSCH-pathloss RS位图具有16个比特位,以此类推。
例如,如图12所示,该MAC CE包括至少一个SRI-PUSCH-Power Control字段,每个SRI-PUSCH-Power Control字段包括一个SRI-PUSCH-Power Control configuration的ID,以用于指示终端设备需要激活或者更新至少一个SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS。对于至少一个SRI-PUSCH-Power Control字段中任意一个SRI-PUSCH-Power Control字段,例如,以Oct2中的SRI-PUSCH-Power Control字段为例,这里将其称为第一SRI-PUSCH-Power Control字段,该第一SRI-PUSCH-Power Control字段包括第一SRI-PUSCH-Power Control configuration的ID,与该第一SRI-PUSCH-Power Control字段对应的为第一PUSCH-pathloss RS字段,该第一PUSCH-pathloss RS字段为一个位图,这里称其为第一PUSCH-pathloss RS位图,并假设终端设备具有8个PUSCH-pathloss RS,即如图12中的Oct3所示,该第一PUSCH-pathloss RS位图具有8个比特位,每个比特位对应表示一个PUSCH-pathloss RS。
假设该第一SRI-PUSCH-Power Control字段对应的第一PUSCH-pathloss RS位图中仅有S 5的值为“1”,即第一值为“1”,第一PUSCH-pathloss RS位图中其余比特位均为“0”,那么表示该第一SRI-PUSCH-Power Control字段指示的第一SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS为S 5,并且终端设备激活或者更新该SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS的ID为S 5对应的PUSCH-pathloss RS的ID。
可选地,该MAC CE中包括的至少一个SRI-PUSCH-Power Control字段以及对应的PUSCH-pathloss RS字段的排列方式可以如图12所示,或者,也可以采用其他方式进行设置,本申请实施例并不限于此。
在上述四个实施例中,MAC CE中都包括SRI-PUSCH-Power Control字段和PUSCH-pathloss RS字段这两类字段,但该MAC CE也可以只包括SRI-PUSCH-Power Control字段和PUSCH-pathloss RS字段中的一类。
可选地,作为第五个实施例,该MAC CE可以包括PUSCH-pathloss RS字段,但不包括SRI-PUSCH-Power Control字段。具体地,该MAC CE可以包括多个PUSCH-pathloss RS字段,该多个PUSCH-pathloss RS字段一一对应于为该终端设备配置的多个SRI-PUSCH-Power Control configuration以及PUSCH-pathloss RS。由于通常情况下,一个SRI-PUSCH-Power Control configuration仅对应一个PUSCH-pathloss RS,因此,可以按照为终端设备配置的多个SRI-PUSCH-Power Control configuration的某个特定顺序,排列与之对应的多个PUSCH-pathloss RS字段,那么该多个PUSCH-pathloss RS字段中一个PUSCH-pathloss RS字段用于表示对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS的ID;另外,该方法200还可以包括:该终端设备根据该多个PUSCH-pathloss RS字段中每个PUSCH-pathloss RS字段指示的PUSCH-pathloss RS的ID,确定是否更新或者激活该每个PUSCH-pathloss RS字段对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS。
可选地,考虑到可能存在多个SRI-PUSCH-Power Control configuration对应同一个PUSCH-pathloss  RS的情况,因此,可能存在多个PUSCH-pathloss RS字段包括的PUSCH-pathloss RS的ID相同,即该多个PUSCH-pathloss RS字段对应的多个SRI-PUSCH-Power Control configuration对应同一个PUSCH-pathloss RS。
应理解,由于每个PUSCH-pathloss RS字段包括PUSCH-pathloss RS的ID,所以每个PUSCH-pathloss RS字段的大小与PUSCH-pathloss RS的个数相关。可选地,该方法200还可以包括:该终端设备根据该至少一个PUSCH-pathloss RS字段的个数,确定该至少一个PUSCH-pathloss RS字段中每个PUSCH-pathloss RS字段的大小。例如,假设该至少一个PUSCH-pathloss RS的最大个数为8,那么每个PUSCH-pathloss RS字段占用3比特;再例如,如图13所示,假设该至少一个PUSCH-pathloss RS的最大个数为16,那么每个PUSCH-pathloss RS字段占用4比特,以此类推。
具体地,以图13为例,按照终端设备具有的多个SRI-PUSCH-Power Control configuration对应设置多个PUSCH-pathloss RS字段,每个PUSCH-pathloss RS字段对应一个SRI-PUSCH-Power Control configuration,并且每个PUSCH-pathloss RS字段包括其对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS的ID,那么终端设备可以根据每个PUSCH-pathloss RS字段中包括的PUSCH-pathloss RS的ID,确定每个SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS是否需要更新或者激活。例如,假设某个SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS字段包括的PUSCH-pathloss RS的ID改变,则表示终端设备需要激活该PUSCH-pathloss RS字段对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS。
可选地,作为第六个实施例,该MAC CE还可以包括SRI-PUSCH-Power Control字段,但不包括PUSCH-pathloss RS字段。具体地,这里假设网络设备为该终端设备配置的多个SRI-PUSCH-Power Control configuration中不存在不同SRI-PUSCH-Power Control configuration对应同一个PUSCH-pathloss RS的情况,例如,为终端设备配置的多个SRI-PUSCH-Power Control configuration一一对应多个PUSCH-pathloss RS,那么该MAC CE可以包括多个SRI-PUSCH-Power Control字段,该多个SRI-PUSCH-Power Control字段一一对应于为该终端设备配置的多个SRI-PUSCH-Power Control configuration以及PUSCH-pathloss RS。
由于一个PUSCH-pathloss RS仅对应一个SRI-PUSCH-Power Control configuration,因此,可以按照为终端设备配置的多个PUSCH-pathloss RS的某个特定顺序,排列与之对应的多个SRI-PUSCH-Power Control字段,那么该多个SRI-PUSCH-Power Control字段中一个SRI-PUSCH-Power Control字段用于表示对应的SRI-PUSCH-Power Control configuration的ID;另外,该方法200还可以包括:该终端设备根据该多个SRI-PUSCH-Power Control字段中每个SRI-PUSCH-Power Control字段指示的SRI-PUSCH-Power Control configuration的ID,确定是否更新或者激活该每个SRI-PUSCH-Power Control字段对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS。
可选地,假设存在多个PUSCH-pathloss RS对应同一个SRI-PUSCH-Power Control configuration的情况,那么可能存在多个SRI-PUSCH-Power Control字段包括的SRI-PUSCH-Power Control configuration的ID相同,即该多个SRI-PUSCH-Power Control字段对应的多个PUSCH-pathloss RS对应同一个SRI-PUSCH-Power Control configuration。
应理解,由于SRI-PUSCH-Power Control字段用于表示SRI-PUSCH-Power Control configuration的ID,所以每个SRI-PUSCH-Power Control字段的大小与SRI-PUSCH-Power Control configuration的个数相关。可选地,该方法200还可以包括:该终端设备根据该至少一个SRI-PUSCH-Power Control configuration的个数,确定该至少一个SRI-PUSCH-Power Control字段中每个SRI-PUSCH-Power Control字段的大小。例如,如图14所示,假设该至少一个SRI-PUSCH-Power Control configuration的最大个数为16,那么每个SRI-PUSCH-Power Control字段占用4比特。
具体地,以图14为例,按照终端设备具有的多个PUSCH-pathloss RS对应设置多个SRI-PUSCH-Power Control字段,每个SRI-PUSCH-Power Control字段对应一个PUSCH-pathloss RS,并且每个SRI-PUSCH-Power Control字段包括其对应的SRI-PUSCH-Power Control configuration的ID,那么终端设备可以根据每个SRI-PUSCH-Power Control字段中包括的SRI-PUSCH-Power Control configuration的ID以及每个SRI-PUSCH-Power Control字段对应的PUSCH-pathloss RS,确定每个SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS是否需要更新或者激活。例如,假设某个PUSCH-pathloss RS对应的SRI-PUSCH-Power Control字段包括的SRI-PUSCH-Power Control configuration的ID改变,则表示终端设备需要激活该SRI-PUSCH-Power Control字段对应的SRI-PUSCH-Power Control configuration的PUSCH-pathloss RS。
因此,本申请实施例的激活或者更新PUSCH对应的路损参考信号的方法,可以灵活设置多种不同的MAC CE格式,并基于该MAC CE激活或更新SRI-PUSCH-Power Control configuration对应的 PUSCH-pathloss RS ID,使得传输时延大大降低。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中结合图1至图14,详细描述了根据本申请实施例的激活或者更新探测参考信号对应的路损参考信号的方法,下面将结合图15至图19,描述根据本申请实施例的终端设备和网络设备。
如图15所示,根据本申请实施例的终端设备300包括:处理单元310和收发单元320。具体地,所述收发单元320用于:接收网络设备发送的MAC CE,所述MAC CE包括至少一个SRI-PUSCH功控字段和/或至少一个路损RS字段,所述至少一个SRI-PUSCH功控字段用于指示至少一个SRI-PUSCH功控配置,所述至少一个路损RS字段用于指示与所述至少一个SRI-PUSCH功控配置对应的至少一个路损RS;所述处理单元310用于:根据所述MAC CE,更新或者激活所述至少一个SRI-PUSCH功控配置对应的所述至少一个路损RS。
可选地,作为一个实施例,所述MAC CE包括所述至少一个SRI-PUSCH功控字段和所述至少一个路损RS字段。
可选地,作为一个实施例,所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,所述至少一个SRI-PUSCH功控字段中一个SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中一个SRI-PUSCH功控配置的标识,所述至少一个路损RS字段中一个路损RS字段用于表示所述至少一个路损RS中一个路损RS的标识。
可选地,作为一个实施例,所述MAC CE包括多个SRI-PUSCH功控字段,所述多个SRI-PUSCH功控字段一一对应于为所述终端设备300配置的多个SRI-PUSCH功控配置,所述多个SRI-PUSCH功控字段中每个SRI-PUSCH功控字段用于指示是否需要更新或者激活对应的SRI-PUSCH功控配置的路损RS,所述多个SRI-PUSCH功控字段中表示为第一值的SRI-PUSCH功控字段为所述至少一个SRI-PUSCH功控字段,所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,所述至少一个路损RS字段中一个路损RS字段用于表示所述至少一个路损RS中一个路损RS的标识。
可选地,作为一个实施例,所述MAC CE包括SRI-PUSCH功控位图,所述多个SRI-PUSCH功控字段为所述SRI-PUSCH功控位图包括的连续的多个比特位。
可选地,作为一个实施例,所述MAC CE包括多个路损RS字段,所述多个路损RS字段与所述多个SRI-PUSCH功控字段一一对应,所述多个路损RS字段中与所述至少一个SRI-PUSCH功控字段一一对应的为所述至少一个路损RS字段,所述多个路损RS字段中第一路损RS字段对应于所述多个SRI-PUSCH功控字段中的第一SRI-PUSCH功控字段,所述第一路损RS字段与所述第一SRI-PUSCH功控字段连续,所述第一路损RS字段用于表示第一路损RS的标识,所述第一路损RS对应于所述第一SRI-PUSCH功控字段对应的第一SRI-PUSCH功控配置。
可选地,作为一个实施例,若为所述终端设备300配置的多个路损RS一一对应多个SRI-PUSCH功控配置,所述MAC CE包括路损RS位图,所述路损RS位图包括的多个比特位一一对应于所述多个路损RS,所述路损RS位图中的每一个比特位用于指示是否需要更新或者激活对应的路损RS,所述多个路损RS字段中表示为第一值的路损RS字段为所述至少一个路损RS字段,所述至少一个路损RS字段与所述至少一个SRI-PUSCH功控字段一一对应,所述至少一个SRI-PUSCH功控字段中一个SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中一个SRI-PUSCH功控配置的标识。
可选地,作为一个实施例,所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,所述至少一个SRI-PUSCH功控字段中的第一SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中的第一SRI-PUSCH功控配置的标识,所述第一SRI-PUSCH功控字段对应所述至少一个路损RS字段中的第一路损RS字段,所述第一路损RS字段为第一路损RS位图,所述第一路损RS位图包括的多个比特位一一对应于为所述终端设备300配置的多个路损RS,所述第一路损RS位图中存在第一比特位的值为第一值,所述第一比特位对应的路损RS为所述第一SRI-PUSCH功控配置对应的路损RS。
可选地,作为一个实施例,所述MAC CE包括多个路损RS字段,所述多个路损RS字段一一对应于为所述终端设备300配置的多个SRI-PUSCH功控配置,所述多个路损RS字段中一个路损RS字段用于表示对应的SRI-PUSCH功控配置的路损RS的标识;所述处理单元310还用于:根据所述多个路损RS字段中每个路损RS字段指示的路损RS的标识,确定是否更新或者激活所述每个路损RS字段对应的SRI-PUSCH功控配置的路损RS。
可选地,作为一个实施例,所述处理单元310还用于:根据所述至少一个SRI-PUSCH功控配置的个数,确定所述至少一个SRI-PUSCH功控字段中每个SRI-PUSCH功控字段的大小。
可选地,作为一个实施例,若所述至少一个SRI-PUSCH功控配置的最大个数为16,所述每个 SRI-PUSCH功控字段占用4比特。
可选地,作为一个实施例,所述处理单元310还用于:根据所述至少一个路损RS字段的个数,确定所述至少一个路损RS字段中每个路损RS字段的大小。
可选地,作为一个实施例,若所述至少一个路损RS的最大个数为4,所述每个路损RS字段占用2比特;若所述至少一个路损RS的最大个数为8,所述每个路损RS字段占用3比特;若所述至少一个路损RS的最大个数为16,所述每个路损RS字段占用4比特。
可选地,作为一个实施例,所述MAC CE还包括服务小区标识字段,所述服务小区标识字段用于指示所述终端设备300驻留的服务小区的标识。
可选地,作为一个实施例,所述MAC CE还包括带宽部分标识字段,所述带宽部分标识字段用于指示所述终端设备300对应的带宽部分的标识。
可选地,作为一个实施例,所述MAC CE所在的MAC PDU的包头中包括逻辑信道标识字段,所述逻辑信道标识字段用于指示所述MAC CE的类型。
应理解,本申请实施例的终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图1至图14中的各个方法中终端设备的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的终端设备,可以灵活设置多种不同的MAC CE格式,并基于该MAC CE激活或更新SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS ID,使得传输时延大大降低。
如图16所示,根据本申请实施例的网络设备400包括:处理单元410和收发单元420。具体地,所述收发单元420用于:向终端设备发送MAC CE,所述MAC CE包括至少一个SRI-PUSCH功控字段和/或至少一个路损RS字段,所述至少一个SRI-PUSCH功控字段用于指示至少一个SRI-PUSCH功控配置,所述至少一个路损RS字段用于指示与所述至少一个SRI-PUSCH功控配置对应的至少一个路损RS;所述MAC CE用于指示所述终端设备更新或者激活所述至少一个SRI-PUSCH功控配置对应的所述至少一个路损RS。
可选地,作为一个实施例,所述MAC CE包括所述至少一个SRI-PUSCH功控字段和所述至少一个路损RS字段。
可选地,作为一个实施例,所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,所述至少一个SRI-PUSCH功控字段中一个SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中一个SRI-PUSCH功控配置的标识,所述至少一个路损RS字段中一个路损RS字段用于表示所述至少一个路损RS中一个路损RS的标识。
可选地,作为一个实施例,所述MAC CE包括多个SRI-PUSCH功控字段,所述多个SRI-PUSCH功控字段一一对应于所述网络设备400为所述终端设备配置的多个SRI-PUSCH功控配置,所述多个SRI-PUSCH功控字段中每个SRI-PUSCH功控字段用于指示是否需要更新或者激活对应的SRI-PUSCH功控配置的路损RS,所述多个SRI-PUSCH功控字段中表示为第一值的SRI-PUSCH功控字段为所述至少一个SRI-PUSCH功控字段,所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,所述至少一个路损RS字段中一个路损RS字段用于表示所述至少一个路损RS中一个路损RS的标识。
可选地,作为一个实施例,所述MAC CE包括SRI-PUSCH功控位图,所述多个SRI-PUSCH功控字段为所述SRI-PUSCH功控位图包括的连续的多个比特位。
可选地,作为一个实施例,所述MAC CE包括多个路损RS字段,所述多个路损RS字段与所述多个SRI-PUSCH功控字段一一对应,所述多个路损RS字段中与所述至少一个SRI-PUSCH功控字段一一对应的为所述至少一个路损RS字段,所述多个路损RS字段中第一路损RS字段对应于所述多个SRI-PUSCH功控字段中的第一SRI-PUSCH功控字段,所述第一路损RS字段与所述第一SRI-PUSCH功控字段连续,所述第一路损RS字段用于表示第一路损RS的标识,所述第一路损RS对应于所述第一SRI-PUSCH功控字段对应的第一SRI-PUSCH功控配置。
可选地,作为一个实施例,若为所述终端设备配置的多个路损RS一一对应SRI-PUSCH功控配置,所述MAC CE包括路损RS位图,所述路损RS位图包括的多个比特位一一对应于所述多个路损RS,所述路损RS位图中的每一个比特位用于指示是否需要更新或者激活对应的路损RS,所述多个路损RS字段中表示为第一值的路损RS字段为所述至少一个路损RS字段,所述至少一个路损RS字段与所述至少一个SRI-PUSCH功控字段一一对应,所述至少一个SRI-PUSCH功控字段中一个SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中一个SRI-PUSCH功控配置的标识。
可选地,作为一个实施例,所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,所述至少一个SRI-PUSCH功控字段中的第一SRI-PUSCH功控字段用于表示所述至少一个 SRI-PUSCH功控配置中的第一SRI-PUSCH功控配置的标识,所述第一SRI-PUSCH功控字段对应所述至少一个路损RS字段中的第一路损RS字段,所述第一路损RS字段为第一路损RS位图,所述第一路损RS位图包括的多个比特位一一对应于所述网络设备400为所述终端设备配置的多个路损RS,所述第一路损RS位图中存在第一比特位的值为第一值,所述第一比特位对应的路损RS为所述第一SRI-PUSCH功控配置对应的路损RS。
可选地,作为一个实施例,所述MAC CE包括多个路损RS字段,所述多个路损RS字段一一对应于所述网络设备400为所述终端设备配置的多个SRI-PUSCH功控配置,所述多个路损RS字段中第一路损RS字段用于表示对应的第一SRI-PUSCH功控配置的第一路损RS的标识;所述第一路损RS的标识用于指示所述终端设备是否更新或者激活所述第一路损RS字段对应的所述第一SRI-PUSCH功控配置的所述第一路损RS。
可选地,作为一个实施例,所述处理单元410用于:根据所述至少一个SRI-PUSCH功控配置的个数,确定所述至少一个SRI-PUSCH功控字段中每个SRI-PUSCH功控字段的大小。
可选地,作为一个实施例,若所述至少一个SRI-PUSCH功控配置的最大个数为16,所述每个SRI-PUSCH功控字段占用4比特。
可选地,作为一个实施例,所述处理单元410用于:根据所述至少一个路损RS字段的个数,确定所述至少一个路损RS字段中每个路损RS字段的大小。
可选地,作为一个实施例,若所述至少一个路损RS的最大个数为4,所述每个路损RS字段占用2比特;若所述至少一个路损RS的最大个数为8,所述每个路损RS字段占用3比特;若所述至少一个路损RS的最大个数为16,所述每个路损RS字段占用4比特。
可选地,作为一个实施例,所述MAC CE还包括服务小区标识字段,所述服务小区标识字段用于指示所述终端设备驻留的服务小区的标识。
可选地,作为一个实施例,所述MAC CE还包括带宽部分标识字段,所述带宽部分标识字段用于指示所述终端设备对应的带宽部分的标识。
可选地,作为一个实施例,所述MAC CE所在的MAC PDU的包头中包括逻辑信道标识字段,所述逻辑信道标识字段用于指示所述MAC CE的类型。
应理解,本申请实施例的网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图1至图14中的各个方法中网络设备的相应流程,为了简洁,在此不再赘述。
因此,本申请实施例的网络设备,可以灵活设置多种不同的MAC CE格式,并基于该MAC CE激活或更新SRI-PUSCH-Power Control configuration对应的PUSCH-pathloss RS ID,使得传输时延大大降低。
图17是本申请实施例提供的一种通信设备500示意性结构图。图17所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图17所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图17所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备500具体可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备500具体可为本申请实施例的移动终端/终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图18是本申请实施例的芯片的示意性结构图。图18所示的芯片600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图18所示,芯片600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,该芯片600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图19是本申请实施例提供的一种通信系统700的示意性框图。如图19所示,该通信系统700包括终端设备710和网络设备720。
其中,该终端设备710可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备720可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (74)

  1. 一种激活或者更新物理上行共享信道PUSCH对应的路损参考信号RS的方法,其特征在于,包括:
    终端设备接收网络设备发送的介质访问控制MAC控制元素CE,所述MAC CE包括至少一个空间关系信息SRI-PUSCH功控字段和/或至少一个路损RS字段,所述至少一个SRI-PUSCH功控字段用于指示至少一个SRI-PUSCH功控配置,所述至少一个路损RS字段用于指示与所述至少一个SRI-PUSCH功控配置对应的至少一个路损RS;
    所述终端设备根据所述MAC CE,更新或者激活所述至少一个SRI-PUSCH功控配置对应的所述至少一个路损RS。
  2. 根据权利要求1所述的方法,其特征在于,所述MAC CE包括所述至少一个SRI-PUSCH功控字段和所述至少一个路损RS字段。
  3. 根据权利要求2所述的方法,其特征在于,所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,
    所述至少一个SRI-PUSCH功控字段中一个SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中一个SRI-PUSCH功控配置的标识,
    所述至少一个路损RS字段中一个路损RS字段用于表示所述至少一个路损RS中一个路损RS的标识。
  4. 根据权利要求2所述的方法,其特征在于,所述MAC CE包括多个SRI-PUSCH功控字段,所述多个SRI-PUSCH功控字段一一对应于为所述终端设备配置的多个SRI-PUSCH功控配置,所述多个SRI-PUSCH功控字段中每个SRI-PUSCH功控字段用于指示是否需要更新或者激活对应的SRI-PUSCH功控配置的路损RS,
    所述多个SRI-PUSCH功控字段中表示为第一值的SRI-PUSCH功控字段为所述至少一个SRI-PUSCH功控字段,
    所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,所述至少一个路损RS字段中一个路损RS字段用于表示所述至少一个路损RS中一个路损RS的标识。
  5. 根据权利要求4所述的方法,其特征在于,所述MAC CE包括SRI-PUSCH功控位图,所述多个SRI-PUSCH功控字段为所述SRI-PUSCH功控位图包括的连续的多个比特位。
  6. 根据权利要求4所述的方法,其特征在于,所述MAC CE包括多个路损RS字段,所述多个路损RS字段与所述多个SRI-PUSCH功控字段一一对应,所述多个路损RS字段中与所述至少一个SRI-PUSCH功控字段一一对应的为所述至少一个路损RS字段,
    所述多个路损RS字段中第一路损RS字段对应于所述多个SRI-PUSCH功控字段中的第一SRI-PUSCH功控字段,所述第一路损RS字段与所述第一SRI-PUSCH功控字段连续,所述第一路损RS字段用于表示第一路损RS的标识,所述第一路损RS对应于所述第一SRI-PUSCH功控字段对应的第一SRI-PUSCH功控配置。
  7. 根据权利要求2所述的方法,其特征在于,若为所述终端设备配置的多个路损RS一一对应多个SRI-PUSCH功控配置,所述MAC CE包括路损RS位图,所述路损RS位图包括的多个比特位一一对应于所述多个路损RS,
    所述路损RS位图中的每一个比特位用于指示是否需要更新或者激活对应的路损RS,
    所述多个路损RS字段中表示为第一值的路损RS字段为所述至少一个路损RS字段,
    所述至少一个路损RS字段与所述至少一个SRI-PUSCH功控字段一一对应,所述至少一个SRI-PUSCH功控字段中一个SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中一个SRI-PUSCH功控配置的标识。
  8. 根据权利要求2所述的方法,其特征在于,所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,
    所述至少一个SRI-PUSCH功控字段中的第一SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中的第一SRI-PUSCH功控配置的标识,所述第一SRI-PUSCH功控字段对应所述至少一个路损RS字段中的第一路损RS字段,
    所述第一路损RS字段为第一路损RS位图,所述第一路损RS位图包括的多个比特位一一对应于为所述终端设备配置的多个路损RS,
    所述第一路损RS位图中存在第一比特位的值为第一值,所述第一比特位对应的路损RS为所述第一SRI-PUSCH功控配置对应的路损RS。
  9. 根据权利要求1所述的方法,其特征在于,所述MAC CE包括多个路损RS字段,所述多个路 损RS字段一一对应于为所述终端设备配置的多个SRI-PUSCH功控配置,
    所述多个路损RS字段中一个路损RS字段用于表示对应的SRI-PUSCH功控配置的路损RS的标识;
    所述方法还包括:
    所述终端设备根据所述多个路损RS字段中每个路损RS字段指示的路损RS的标识,确定是否更新或者激活所述每个路损RS字段对应的SRI-PUSCH功控配置的路损RS。
  10. 根据权利要求3、7和8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述至少一个SRI-PUSCH功控配置的个数,确定所述至少一个SRI-PUSCH功控字段中每个SRI-PUSCH功控字段的大小。
  11. 根据权利要求10所述的方法,其特征在于,若所述至少一个SRI-PUSCH功控配置的最大个数为16,所述每个SRI-PUSCH功控字段占用4比特。
  12. 根据权利要求3-6和9中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述至少一个路损RS字段的个数,确定所述至少一个路损RS字段中每个路损RS字段的大小。
  13. 根据权利要求12所述的方法,其特征在于,
    若所述至少一个路损RS的最大个数为4,所述每个路损RS字段占用2比特;
    若所述至少一个路损RS的最大个数为8,所述每个路损RS字段占用3比特;
    若所述至少一个路损RS的最大个数为16,所述每个路损RS字段占用4比特。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述MAC CE还包括服务小区标识字段,所述服务小区标识字段用于指示所述终端设备驻留的服务小区的标识。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述MAC CE还包括带宽部分标识字段,所述带宽部分标识字段用于指示所述终端设备对应的带宽部分的标识。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述MAC CE所在的MAC协议数据单元的包头中包括逻辑信道标识字段,所述逻辑信道标识字段用于指示所述MAC CE的类型。
  17. 一种激活或者更新物理上行共享信道PUSCH对应的路损参考信号RS的方法,其特征在于,包括:
    网络设备向终端设备发送介质访问控制MAC控制元素CE,所述MAC CE包括至少一个空间关系信息SRI-PUSCH功控字段和/或至少一个路损RS字段,所述至少一个SRI-PUSCH功控字段用于指示至少一个SRI-PUSCH功控配置,所述至少一个路损RS字段用于指示与所述至少一个SRI-PUSCH功控配置对应的至少一个路损RS;所述MAC CE用于指示所述终端设备更新或者激活所述至少一个SRI-PUSCH功控配置对应的所述至少一个路损RS。
  18. 根据权利要求17所述的方法,其特征在于,所述MAC CE包括所述至少一个SRI-PUSCH功控字段和所述至少一个路损RS字段。
  19. 根据权利要求18所述的方法,其特征在于,所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,
    所述至少一个SRI-PUSCH功控字段中一个SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中一个SRI-PUSCH功控配置的标识,
    所述至少一个路损RS字段中一个路损RS字段用于表示所述至少一个路损RS中一个路损RS的标识。
  20. 根据权利要求18所述的方法,其特征在于,所述MAC CE包括多个SRI-PUSCH功控字段,所述多个SRI-PUSCH功控字段一一对应于所述网络设备为所述终端设备配置的多个SRI-PUSCH功控配置,所述多个SRI-PUSCH功控字段中每个SRI-PUSCH功控字段用于指示是否需要更新或者激活对应的SRI-PUSCH功控配置的路损RS,
    所述多个SRI-PUSCH功控字段中表示为第一值的SRI-PUSCH功控字段为所述至少一个SRI-PUSCH功控字段,
    所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,所述至少一个路损RS字段中一个路损RS字段用于表示所述至少一个路损RS中一个路损RS的标识。
  21. 根据权利要求20所述的方法,其特征在于,所述MAC CE包括SRI-PUSCH功控位图,所述多个SRI-PUSCH功控字段为所述SRI-PUSCH功控位图包括的连续的多个比特位。
  22. 根据权利要求20所述的方法,其特征在于,所述MAC CE包括多个路损RS字段,所述多个路损RS字段与所述多个SRI-PUSCH功控字段一一对应,所述多个路损RS字段中与所述至少一个SRI-PUSCH功控字段一一对应的为所述至少一个路损RS字段,
    所述多个路损RS字段中第一路损RS字段对应于所述多个SRI-PUSCH功控字段中的第一 SRI-PUSCH功控字段,所述第一路损RS字段与所述第一SRI-PUSCH功控字段连续,所述第一路损RS字段用于表示第一路损RS的标识,所述第一路损RS对应于所述第一SRI-PUSCH功控字段对应的第一SRI-PUSCH功控配置。
  23. 根据权利要求18所述的方法,其特征在于,若为所述终端设备配置的多个路损RS一一对应SRI-PUSCH功控配置,所述MAC CE包括路损RS位图,所述路损RS位图包括的多个比特位一一对应于所述多个路损RS,
    所述路损RS位图中的每一个比特位用于指示是否需要更新或者激活对应的路损RS,
    所述多个路损RS字段中表示为第一值的路损RS字段为所述至少一个路损RS字段,
    所述至少一个路损RS字段与所述至少一个SRI-PUSCH功控字段一一对应,所述至少一个SRI-PUSCH功控字段中一个SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中一个SRI-PUSCH功控配置的标识。
  24. 根据权利要求18所述的方法,其特征在于,所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,
    所述至少一个SRI-PUSCH功控字段中的第一SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中的第一SRI-PUSCH功控配置的标识,所述第一SRI-PUSCH功控字段对应所述至少一个路损RS字段中的第一路损RS字段,
    所述第一路损RS字段为第一路损RS位图,所述第一路损RS位图包括的多个比特位一一对应于所述网络设备为所述终端设备配置的多个路损RS,
    所述第一路损RS位图中存在第一比特位的值为第一值,所述第一比特位对应的路损RS为所述第一SRI-PUSCH功控配置对应的路损RS。
  25. 根据权利要求17所述的方法,其特征在于,所述MAC CE包括多个路损RS字段,所述多个路损RS字段一一对应于所述网络设备为所述终端设备配置的多个SRI-PUSCH功控配置,
    所述多个路损RS字段中第一路损RS字段用于表示对应的第一SRI-PUSCH功控配置的第一路损RS的标识;
    所述第一路损RS的标识用于指示所述终端设备是否更新或者激活所述第一路损RS字段对应的所述第一SRI-PUSCH功控配置的所述第一路损RS。
  26. 根据权利要求19、23和24中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述至少一个SRI-PUSCH功控配置的个数,确定所述至少一个SRI-PUSCH功控字段中每个SRI-PUSCH功控字段的大小。
  27. 根据权利要求26所述的方法,其特征在于,若所述至少一个SRI-PUSCH功控配置的最大个数为16,所述每个SRI-PUSCH功控字段占用4比特。
  28. 根据权利要求19-22和25中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述至少一个路损RS字段的个数,确定所述至少一个路损RS字段中每个路损RS字段的大小。
  29. 根据权利要求28所述的方法,其特征在于,
    若所述至少一个路损RS的最大个数为4,所述每个路损RS字段占用2比特;
    若所述至少一个路损RS的最大个数为8,所述每个路损RS字段占用3比特;
    若所述至少一个路损RS的最大个数为16,所述每个路损RS字段占用4比特。
  30. 根据权利要求17至29中任一项所述的方法,其特征在于,所述MAC CE还包括服务小区标识字段,所述服务小区标识字段用于指示所述终端设备驻留的服务小区的标识。
  31. 根据权利要求17至30中任一项所述的方法,其特征在于,所述MAC CE还包括带宽部分标识字段,所述带宽部分标识字段用于指示所述终端设备对应的带宽部分的标识。
  32. 根据权利要求17至31中任一项所述的方法,其特征在于,所述MAC CE所在的MAC协议数据单元的包头中包括逻辑信道标识字段,所述逻辑信道标识字段用于指示所述MAC CE的类型。
  33. 一种终端设备,其特征在于,包括:
    收发单元,用于接收网络设备发送的介质访问控制MAC控制元素CE,所述MAC CE包括至少一个空间关系信息SRI-物理上行共享信道PUSCH功控字段和/或至少一个路损参考信号RS字段,所述至少一个SRI-PUSCH功控字段用于指示至少一个SRI-PUSCH功控配置,所述至少一个路损RS字段用于指示与所述至少一个SRI-PUSCH功控配置对应的至少一个路损RS;
    处理单元,用于根据所述MAC CE,更新或者激活所述至少一个SRI-PUSCH功控配置对应的所述至少一个路损RS。
  34. 根据权利要求33所述的终端设备,其特征在于,所述MAC CE包括所述至少一个SRI-PUSCH 功控字段和所述至少一个路损RS字段。
  35. 根据权利要求34所述的终端设备,其特征在于,所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,
    所述至少一个SRI-PUSCH功控字段中一个SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中一个SRI-PUSCH功控配置的标识,
    所述至少一个路损RS字段中一个路损RS字段用于表示所述至少一个路损RS中一个路损RS的标识。
  36. 根据权利要求34所述的终端设备,其特征在于,所述MAC CE包括多个SRI-PUSCH功控字段,所述多个SRI-PUSCH功控字段一一对应于为所述终端设备配置的多个SRI-PUSCH功控配置,所述多个SRI-PUSCH功控字段中每个SRI-PUSCH功控字段用于指示是否需要更新或者激活对应的SRI-PUSCH功控配置的路损RS,
    所述多个SRI-PUSCH功控字段中表示为第一值的SRI-PUSCH功控字段为所述至少一个SRI-PUSCH功控字段,
    所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,所述至少一个路损RS字段中一个路损RS字段用于表示所述至少一个路损RS中一个路损RS的标识。
  37. 根据权利要求36所述的终端设备,其特征在于,所述MAC CE包括SRI-PUSCH功控位图,所述多个SRI-PUSCH功控字段为所述SRI-PUSCH功控位图包括的连续的多个比特位。
  38. 根据权利要求36所述的终端设备,其特征在于,所述MAC CE包括多个路损RS字段,所述多个路损RS字段与所述多个SRI-PUSCH功控字段一一对应,所述多个路损RS字段中与所述至少一个SRI-PUSCH功控字段一一对应的为所述至少一个路损RS字段,
    所述多个路损RS字段中第一路损RS字段对应于所述多个SRI-PUSCH功控字段中的第一SRI-PUSCH功控字段,所述第一路损RS字段与所述第一SRI-PUSCH功控字段连续,所述第一路损RS字段用于表示第一路损RS的标识,所述第一路损RS对应于所述第一SRI-PUSCH功控字段对应的第一SRI-PUSCH功控配置。
  39. 根据权利要求34所述的终端设备,其特征在于,若为所述终端设备配置的多个路损RS一一对应多个SRI-PUSCH功控配置,所述MAC CE包括路损RS位图,所述路损RS位图包括的多个比特位一一对应于所述多个路损RS,
    所述路损RS位图中的每一个比特位用于指示是否需要更新或者激活对应的路损RS,
    所述多个路损RS字段中表示为第一值的路损RS字段为所述至少一个路损RS字段,
    所述至少一个路损RS字段与所述至少一个SRI-PUSCH功控字段一一对应,所述至少一个SRI-PUSCH功控字段中一个SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中一个SRI-PUSCH功控配置的标识。
  40. 根据权利要求34所述的终端设备,其特征在于,所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,
    所述至少一个SRI-PUSCH功控字段中的第一SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中的第一SRI-PUSCH功控配置的标识,所述第一SRI-PUSCH功控字段对应所述至少一个路损RS字段中的第一路损RS字段,
    所述第一路损RS字段为第一路损RS位图,所述第一路损RS位图包括的多个比特位一一对应于为所述终端设备配置的多个路损RS,
    所述第一路损RS位图中存在第一比特位的值为第一值,所述第一比特位对应的路损RS为所述第一SRI-PUSCH功控配置对应的路损RS。
  41. 根据权利要求33所述的终端设备,其特征在于,所述MAC CE包括多个路损RS字段,所述多个路损RS字段一一对应于为所述终端设备配置的多个SRI-PUSCH功控配置,
    所述多个路损RS字段中一个路损RS字段用于表示对应的SRI-PUSCH功控配置的路损RS的标识;
    所述处理单元还用于:
    根据所述多个路损RS字段中每个路损RS字段指示的路损RS的标识,确定是否更新或者激活所述每个路损RS字段对应的SRI-PUSCH功控配置的路损RS。
  42. 根据权利要求35、39和40中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    根据所述至少一个SRI-PUSCH功控配置的个数,确定所述至少一个SRI-PUSCH功控字段中每个SRI-PUSCH功控字段的大小。
  43. 根据权利要求42所述的终端设备,其特征在于,若所述至少一个SRI-PUSCH功控配置的最大个数为16,所述每个SRI-PUSCH功控字段占用4比特。
  44. 根据权利要求35-38和41中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    根据所述至少一个路损RS字段的个数,确定所述至少一个路损RS字段中每个路损RS字段的大小。
  45. 根据权利要求44所述的终端设备,其特征在于,
    若所述至少一个路损RS的最大个数为4,所述每个路损RS字段占用2比特;
    若所述至少一个路损RS的最大个数为8,所述每个路损RS字段占用3比特;
    若所述至少一个路损RS的最大个数为16,所述每个路损RS字段占用4比特。
  46. 根据权利要求33至45中任一项所述的终端设备,其特征在于,所述MAC CE还包括服务小区标识字段,所述服务小区标识字段用于指示所述终端设备驻留的服务小区的标识。
  47. 根据权利要求33至46中任一项所述的终端设备,其特征在于,所述MAC CE还包括带宽部分标识字段,所述带宽部分标识字段用于指示所述终端设备对应的带宽部分的标识。
  48. 根据权利要求33至47中任一项所述的终端设备,其特征在于,所述MAC CE所在的MAC协议数据单元的包头中包括逻辑信道标识字段,所述逻辑信道标识字段用于指示所述MAC CE的类型。
  49. 一种网络设备,其特征在于,包括:
    收发单元,用于向终端设备发送介质访问控制MAC控制元素CE,所述MAC CE包括至少一个空间关系信息SRI-物理上行共享信道PUSCH功控字段和/或至少一个路损参考信号RS字段,所述至少一个SRI-PUSCH功控字段用于指示至少一个SRI-PUSCH功控配置,所述至少一个路损RS字段用于指示与所述至少一个SRI-PUSCH功控配置对应的至少一个路损RS;所述MAC CE用于指示所述终端设备更新或者激活所述至少一个SRI-PUSCH功控配置对应的所述至少一个路损RS。
  50. 根据权利要求49所述的网络设备,其特征在于,所述MAC CE包括所述至少一个SRI-PUSCH功控字段和所述至少一个路损RS字段。
  51. 根据权利要求50所述的网络设备,其特征在于,所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,
    所述至少一个SRI-PUSCH功控字段中一个SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中一个SRI-PUSCH功控配置的标识,
    所述至少一个路损RS字段中一个路损RS字段用于表示所述至少一个路损RS中一个路损RS的标识。
  52. 根据权利要求50所述的网络设备,其特征在于,所述MAC CE包括多个SRI-PUSCH功控字段,所述多个SRI-PUSCH功控字段一一对应于所述网络设备为所述终端设备配置的多个SRI-PUSCH功控配置,所述多个SRI-PUSCH功控字段中每个SRI-PUSCH功控字段用于指示是否需要更新或者激活对应的SRI-PUSCH功控配置的路损RS,
    所述多个SRI-PUSCH功控字段中表示为第一值的SRI-PUSCH功控字段为所述至少一个SRI-PUSCH功控字段,
    所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,所述至少一个路损RS字段中一个路损RS字段用于表示所述至少一个路损RS中一个路损RS的标识。
  53. 根据权利要求52所述的网络设备,其特征在于,所述MAC CE包括SRI-PUSCH功控位图,所述多个SRI-PUSCH功控字段为所述SRI-PUSCH功控位图包括的连续的多个比特位。
  54. 根据权利要求52所述的网络设备,其特征在于,所述MAC CE包括多个路损RS字段,所述多个路损RS字段与所述多个SRI-PUSCH功控字段一一对应,所述多个路损RS字段中与所述至少一个SRI-PUSCH功控字段一一对应的为所述至少一个路损RS字段,
    所述多个路损RS字段中第一路损RS字段对应于所述多个SRI-PUSCH功控字段中的第一SRI-PUSCH功控字段,所述第一路损RS字段与所述第一SRI-PUSCH功控字段连续,所述第一路损RS字段用于表示第一路损RS的标识,所述第一路损RS对应于所述第一SRI-PUSCH功控字段对应的第一SRI-PUSCH功控配置。
  55. 根据权利要求50所述的网络设备,其特征在于,若为所述终端设备配置的多个路损RS一一对应SRI-PUSCH功控配置,所述MAC CE包括路损RS位图,所述路损RS位图包括的多个比特位一一对应于所述多个路损RS,
    所述路损RS位图中的每一个比特位用于指示是否需要更新或者激活对应的路损RS,
    所述多个路损RS字段中表示为第一值的路损RS字段为所述至少一个路损RS字段,
    所述至少一个路损RS字段与所述至少一个SRI-PUSCH功控字段一一对应,所述至少一个SRI-PUSCH功控字段中一个SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中一个SRI-PUSCH功控配置的标识。
  56. 根据权利要求50所述的网络设备,其特征在于,所述至少一个SRI-PUSCH功控字段与所述至少一个路损RS字段一一对应,
    所述至少一个SRI-PUSCH功控字段中的第一SRI-PUSCH功控字段用于表示所述至少一个SRI-PUSCH功控配置中的第一SRI-PUSCH功控配置的标识,所述第一SRI-PUSCH功控字段对应所述至少一个路损RS字段中的第一路损RS字段,
    所述第一路损RS字段为第一路损RS位图,所述第一路损RS位图包括的多个比特位一一对应于所述网络设备为所述终端设备配置的多个路损RS,
    所述第一路损RS位图中存在第一比特位的值为第一值,所述第一比特位对应的路损RS为所述第一SRI-PUSCH功控配置对应的路损RS。
  57. 根据权利要求49所述的网络设备,其特征在于,所述MAC CE包括多个路损RS字段,所述多个路损RS字段一一对应于所述网络设备为所述终端设备配置的多个SRI-PUSCH功控配置,
    所述多个路损RS字段中第一路损RS字段用于表示对应的第一SRI-PUSCH功控配置的第一路损RS的标识;
    所述第一路损RS的标识用于指示所述终端设备是否更新或者激活所述第一路损RS字段对应的所述第一SRI-PUSCH功控配置的所述第一路损RS。
  58. 根据权利要求51、55和56中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    处理单元,用于根据所述至少一个SRI-PUSCH功控配置的个数,确定所述至少一个SRI-PUSCH功控字段中每个SRI-PUSCH功控字段的大小。
  59. 根据权利要求58所述的网络设备,其特征在于,若所述至少一个SRI-PUSCH功控配置的最大个数为16,所述每个SRI-PUSCH功控字段占用4比特。
  60. 根据权利要求51-54和57中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    处理单元,用于根据所述至少一个路损RS字段的个数,确定所述至少一个路损RS字段中每个路损RS字段的大小。
  61. 根据权利要求60所述的网络设备,其特征在于,若所述至少一个路损RS的最大个数为4,所述每个路损RS字段占用2比特;若所述至少一个路损RS的最大个数为8,所述每个路损RS字段占用3比特;若所述至少一个路损RS的最大个数为16,所述每个路损RS字段占用4比特。
  62. 根据权利要求49至61中任一项所述的网络设备,其特征在于,所述MAC CE还包括服务小区标识字段,所述服务小区标识字段用于指示所述终端设备驻留的服务小区的标识。
  63. 根据权利要求49至62中任一项所述的网络设备,其特征在于,所述MAC CE还包括带宽部分标识字段,所述带宽部分标识字段用于指示所述终端设备对应的带宽部分的标识。
  64. 根据权利要求49至63中任一项所述的网络设备,其特征在于,所述MAC CE所在的MAC协议数据单元的包头中包括逻辑信道标识字段,所述逻辑信道标识字段用于指示所述MAC CE的类型。
  65. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至16中任一项所述的方法。
  66. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求17至32中任一项所述的方法。
  67. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至16中任一项所述的方法。
  68. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求17至32中任一项所述的方法。
  69. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法。
  70. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求17至32中任一项所述的方法。
  71. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至16中任一项所述的方法。
  72. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求17至32中任一项所述的方法。
  73. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法。
  74. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求17至32中任一项所述的方法。
PCT/CN2019/116071 2019-11-06 2019-11-06 激活或者更新pusch路损rs的方法和设备 WO2021087827A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980091944.5A CN113424599A (zh) 2019-11-06 2019-11-06 激活或者更新pusch路损rs的方法和设备
CN202111101269.5A CN113692041B (zh) 2019-11-06 2019-11-06 激活或者更新pusch路损rs的方法和设备
EP19951791.3A EP3962183A4 (en) 2019-11-06 2019-11-06 METHOD FOR ACTIVATING OR UPDATING PUSCH SPREAD DAMAGE RS AND DEVICE
PCT/CN2019/116071 WO2021087827A1 (zh) 2019-11-06 2019-11-06 激活或者更新pusch路损rs的方法和设备
US17/565,257 US20220124630A1 (en) 2019-11-06 2021-12-29 Method and device for activating or updating pusch pathloss rs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116071 WO2021087827A1 (zh) 2019-11-06 2019-11-06 激活或者更新pusch路损rs的方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/565,257 Continuation US20220124630A1 (en) 2019-11-06 2021-12-29 Method and device for activating or updating pusch pathloss rs

Publications (1)

Publication Number Publication Date
WO2021087827A1 true WO2021087827A1 (zh) 2021-05-14

Family

ID=75849438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116071 WO2021087827A1 (zh) 2019-11-06 2019-11-06 激活或者更新pusch路损rs的方法和设备

Country Status (4)

Country Link
US (1) US20220124630A1 (zh)
EP (1) EP3962183A4 (zh)
CN (2) CN113424599A (zh)
WO (1) WO2021087827A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11611870B2 (en) * 2019-11-20 2023-03-21 Qualcomm Incorporated UE capability reporting for configured and activated pathloss reference signals
US11582700B2 (en) * 2020-02-24 2023-02-14 Qualcomm Incorporated Applicable time for MAC-CE based path loss reference signal (PL RS) update

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11729782B2 (en) * 2018-06-11 2023-08-15 Apple Inc. Enhanced uplink beam management
EP3864904A1 (en) * 2018-10-11 2021-08-18 Lenovo (Singapore) Pte. Ltd. Method and apparatus for determining physical uplink channel power control parameter values for use after a beam failure recovery
KR20220006544A (ko) * 2019-05-14 2022-01-17 가부시키가이샤 엔티티 도코모 유저단말 및 무선 통신 방법
CN114223266B (zh) * 2019-06-13 2024-04-02 株式会社Ntt都科摩 终端以及无线通信方法
EP3986037A4 (en) * 2019-06-13 2023-01-18 Ntt Docomo, Inc. TERMINAL AND WIRELESS COMMUNICATION METHOD
CN114175761B (zh) * 2019-06-13 2024-01-09 株式会社Ntt都科摩 终端以及无线通信方法
JP7407187B2 (ja) * 2019-06-13 2023-12-28 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
WO2020255401A1 (ja) * 2019-06-21 2020-12-24 株式会社Nttドコモ 端末及び無線通信方法
CA3087757A1 (en) * 2019-07-22 2021-01-22 Comcast Cable Communications, Llc Power control for wireless communications
EP4005297A1 (en) * 2019-08-14 2022-06-01 Ofinno, LLC Power control in carrier aggregation with multiple transmission reception points
EP4014344A1 (en) * 2019-08-15 2022-06-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Uplink beamforming framework for advanced 5g networks
WO2021038656A1 (ja) * 2019-08-23 2021-03-04 株式会社Nttドコモ 端末及び無線通信方法
CN115694770B (zh) * 2019-11-08 2023-10-31 中兴通讯股份有限公司 发送参数确定方法、电子装置、设备及介质

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CATT: "Remaining issues on beam management enhancements in Rel.16", 3GPP DRAFT; R1-1910350, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191013 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789154 *
CHINA TELECOM: "Enhancements on multi-beam operation", 3GPP DRAFT; R1-1911236, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051790006 *
ERICSSON: "Enhancements to multi-beam operation", 3GPP DRAFT; R1-1907436 ENHANCEMENTS TO MULTI-BEAM OPERATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051709450 *
FRAUNHOFER IIS, FRAUNHOFER HHI: "Enhancements on UE multi-beam operation", 3GPP DRAFT; R1-1910432_UE-MULTIBEAM_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20190814 - 20190820, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789238 *
OPPO: "Discussion on Multi-beam Operation Enhancements", 3GPP DRAFT; R1-1910117, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 11, XP051788924 *
See also references of EP3962183A4 *
ZTE: "Enhancements on multi-beam operation", 3GPP DRAFT; R1-1910285 ENHANCEMENTS ON MULTI-BEAM OPERATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789090 *

Also Published As

Publication number Publication date
US20220124630A1 (en) 2022-04-21
EP3962183A1 (en) 2022-03-02
CN113692041A (zh) 2021-11-23
CN113692041B (zh) 2023-03-24
CN113424599A (zh) 2021-09-21
EP3962183A4 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
WO2021147001A1 (zh) 功率控制参数确定方法、终端、网络设备及存储介质
WO2021087828A1 (zh) 激活或者更新srs的路损rs的方法和设备
WO2020191683A1 (zh) 一种测量间隔配置方法及装置、终端、网络设备
WO2020118574A1 (zh) 一种上行传输的功率控制方法及终端设备
WO2019242712A1 (zh) 一种能力交互方法及相关设备
WO2021016777A1 (zh) 无线通信的方法、终端设备和网络设备
US11432370B2 (en) D2D communication method and terminal device
WO2021046778A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020043009A1 (zh) 一种ui显示方法、装置、终端设备及存储介质
WO2021092860A1 (zh) 一种小区配置方法及装置、终端设备、网络设备
US20220124630A1 (en) Method and device for activating or updating pusch pathloss rs
US11576162B2 (en) Method and device for radio communication
WO2020034163A1 (zh) 一种上行信号传输方法、终端和存储介质
WO2020061851A1 (zh) 无线通信方法和基站
WO2020093399A1 (zh) 无线通信方法、网络设备和终端设备
WO2020029201A1 (zh) 信号上报的方法、终端设备和网络设备
WO2020010619A1 (zh) 数据传输方法、终端设备和网络设备
WO2020000174A1 (zh) 一种核心网选择方法及装置、终端设备、网络设备
WO2020034161A1 (zh) 一种下行信号传输方法、终端和计算机可读存储介质
US20210160873A1 (en) Information indication method, device and terminal
WO2021120205A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021026842A1 (zh) 无线通信方法、网络设备和终端设备
WO2020087546A1 (zh) 一种网络信息传输方法、获取方法、网络设备及终端设备
WO2020147040A1 (zh) 数据复制传输配置方法、装置、芯片及计算机程序
WO2020061916A1 (zh) 一种触发状态的确定方法及装置、终端、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019951791

Country of ref document: EP

Effective date: 20211123

NENP Non-entry into the national phase

Ref country code: DE