WO2017185328A1 - 一种射频前端、终端设备及载波聚合方法 - Google Patents

一种射频前端、终端设备及载波聚合方法 Download PDF

Info

Publication number
WO2017185328A1
WO2017185328A1 PCT/CN2016/080662 CN2016080662W WO2017185328A1 WO 2017185328 A1 WO2017185328 A1 WO 2017185328A1 CN 2016080662 W CN2016080662 W CN 2016080662W WO 2017185328 A1 WO2017185328 A1 WO 2017185328A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving
filter
branch
transmitting
frequency band
Prior art date
Application number
PCT/CN2016/080662
Other languages
English (en)
French (fr)
Inventor
张和平
陈坚
潘光胜
王定杰
秦虎根
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/080662 priority Critical patent/WO2017185328A1/zh
Priority to JP2018526896A priority patent/JP6683406B2/ja
Priority to US15/770,969 priority patent/US10567012B2/en
Priority to CN201680011513.XA priority patent/CN107836084A/zh
Priority to EP16899840.9A priority patent/EP3352378B1/en
Publication of WO2017185328A1 publication Critical patent/WO2017185328A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/54Circuits using the same frequency for two directions of communication
    • H04B1/56Circuits using the same frequency for two directions of communication with provision for simultaneous communication in two directions

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a radio frequency front end, a terminal device, and a carrier aggregation method.
  • LTE-A Long Term Evolution Advanced
  • CA Carrier Aggregation
  • the CA technology can aggregate at least two component carriers (English: Component Carrier, CC for short) to achieve a larger transmission bandwidth and effectively improve the uplink and downlink transmission rates. For example, assuming that each CC has a bandwidth of 20 MHz, if 5 CCs are aggregated together, a transmission bandwidth of 100 MHz can be achieved.
  • CC Component Carrier
  • the other two implementation modes are usually used when the CA combination mode cannot be implemented by the combiner.
  • the quad amplifier has four input ports and one output port. The four input ports respectively connect two transmission channels and two receiving channels, so that the carriers of the two frequency bands can be simultaneously operated, and the CA of 2CC can be realized.
  • the six-function device has six input ports and one output port. The six input ports are respectively connected to the three-way transmission path and the three-way reception path, so that the carriers of the three frequency bands can be simultaneously operated, and the CA of 3CC can be realized.
  • the other is to simultaneously turn on two or more duplexers (Duplexer), each of which can receive and transmit in one frequency band, so that two or more duplexers are turned on at the same time. It is possible to implement two or more CAs.
  • the intervals between the frequency bands are too close, and the design difficulty is relatively large in order to filter out interference of each frequency band.
  • the design of the duplexer itself is difficult, and on the other hand, the duplexer itself has a large insertion loss, so that the radio frequency performance is affected. Therefore, the design of the RF front end implementing CA in the prior art is difficult.
  • the embodiments of the present invention provide a radio frequency front end, a terminal device, and a carrier aggregation method, which are used to solve the technical problem that the design of the radio frequency front end of the carrier aggregation in the prior art is difficult.
  • an embodiment of the present invention provides a radio frequency front end, including:
  • each transmitting branch is for transmitting a carrier modulated signal of one of M different frequency bands; each of the transmitting branches includes at least one transmitting filter, and the transmitting filter is a band pass filter, the frequency band of the carrier through which the transmitting filter is allowed to coincide with at least one frequency band transmitted by each of the transmitting branches; M being an integer greater than or equal to 2; N receiving branches, each receiving branch a path for receiving a carrier modulated signal of at least one of the M different frequency bands; each of the receiving branches includes at least one receive filter, the receive filter is a band pass filter, and the receiving The frequency band of the carrier through which the filter is allowed to pass is coincident with the at least one frequency band received by the receiving branch; N is an integer greater than or equal to 1 and less than or equal to M; the switching circuit has L input ports and at least one output port; The output port is connected to an antenna or an antenna back-end circuit, and the L input ports are configured to simultaneously turn on the P branch branches and the transmitting branches of the same frequency band in the
  • the method in the embodiment of the invention adopts an independent transmitting filter and a receiving filter, and simultaneously turns on the transmitting filter and the receiving filter through the switching circuit to realize the function of the traditional duplexer. Therefore, the structure is simple and the design is difficult. And the uplink CA or the downlink CA is implemented by turning on the transmitting branch and the receiving branch of two or more frequency bands.
  • each of the transmitting branches further includes an isolator or a phase shifting phase circuit, and the isolator or the phase shifting phase circuit is disposed at Between the transmit filter and the switch circuit; the isolator or the phase shift phase circuit is for reducing interaction between the transmit filter and other transmit filters or the receive filter.
  • each of the transmitting branches further includes a matching network, each of the transmitting branches A matching network is disposed at at least one end of the transmit filter, and a matching network of each of the transmit branches is used to match matching characteristics of the transmit filter.
  • each of the receiving branches A matching network is further included, and a matching network of each receiving branch is disposed at at least one end of the receiving filter, and a matching network of each receiving branch is used to match a matching characteristic of the receiving filter, And for reducing the effect of the transmit filter on the receive filter.
  • the number of at least one frequency band received by each receiving branch is 1, and the receiving filter is an independent filter, and N is equal to M.
  • the number of at least one frequency band received by each receiving branch is two or more, and the receiving filter is a two-in-one or all-in-one filter.
  • the power tolerance of the receive filter is the transmit power of the transmit branch.
  • the second aspect of the present invention provides a terminal device, including:
  • An antenna for radiating a modulated signal into the space and the electromagnetic wave in the receiving space as in the first aspect or the first possible implementation of the first aspect to any of the sixth possible implementations of the first aspect
  • the RF front end, the output port is connected to the antenna; the controller is used And controlling a conduction state between the L input ports and the transmitting branch and the receiving branch.
  • the embodiment of the present invention provides a carrier aggregation method, which is applied to the terminal device according to the second aspect, and includes:
  • Determining at least two frequency bands for carrier aggregation controlling, when the downlink carrier is aggregated, simultaneously turning on the receiving branches corresponding to the at least two frequency bands and corresponding to one of the at least two frequency bands
  • the transmitting branch is configured to control, when the uplink carrier is aggregated, the transmitting branch corresponding to the at least two frequency bands and the receiving branch corresponding to one of the at least two frequency bands.
  • the determining, by the at least two frequency bands for performing carrier aggregation includes: determining the at least two frequency bands according to the indication information of the received network side device, The indication information is used to indicate the at least two frequency bands.
  • the indication information is further used to indicate a primary frequency band of the at least two frequency bands, where the one The frequency band is the main frequency band.
  • FIG. 1 is a structural diagram of a radio frequency front end according to an embodiment of the present invention.
  • FIG. 2 is a detailed structural diagram of a radio frequency front end according to an embodiment of the present invention.
  • FIG. 3 is a structural diagram of another radio frequency front end according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of still another radio frequency front end according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a carrier aggregation method according to an embodiment of the present invention.
  • the embodiments of the present invention provide a radio frequency front end, a terminal device, and a carrier aggregation method, which are used to solve the technical problem that the design of the radio frequency front end of the carrier aggregation in the prior art is difficult.
  • FIG. 1 is a structural diagram of a radio frequency front end according to an embodiment of the present invention.
  • the RF front end includes: a total of P transmission branches from the first transmission branch to the Mth transmission branch, a total of N receiving branches from the first receiving branch to the Nth receiving branch, and a switching circuit.
  • M is an integer greater than or equal to 2
  • P is an integer greater than or equal to 1 and less than or equal to M
  • N is an integer greater than or equal to 1 and less than or equal to M.
  • Each of the transmit branches includes at least one transmit filter for transmitting a carrier modulated signal of at least one of the M different frequency bands.
  • the transmit filter is a bandpass filter. The frequency band of the carrier through which the transmit filter is allowed to coincide with the frequency band of the carrier transmitted by the transmit branch.
  • the first transmit branch includes a transmit filter that allows the carrier of the first frequency band to pass, so the first transmit branch is used to transmit the carrier modulated signal of the first frequency band.
  • the second transmit branch includes a transmit filter that only allows carriers of the second frequency band to pass.
  • the Mth transmission branch includes a transmission filter that allows only the carrier of the Mth band to pass. The first frequency band to the Mth frequency band are different from each other.
  • the first transmitting branch includes a two-in-one transmitting filter of the first frequency band and the second frequency band, so that the first transmitting branch allows carriers of the first frequency band and the second frequency band to pass.
  • the sum of the frequency bands transmitted by the P transmitting branches is M.
  • the transmit filters are independent filters, P is equal to M.
  • the reception filter includes an all-in-one filter and/or a two-in-one filter, P is smaller than M. If the transmit filter is an M-in-one filter, P is equal to one.
  • the two frequency bands are different from each other, that is, the frequency ranges covered by the two frequency bands do not overlap, and the frequency widths covered by the two frequency bands may be the same or different.
  • the first frequency band has a frequency range of 780 MHz to 800 MHz and a frequency width of 20 MHz.
  • Second frequency band The rate ranges from 960MHz to 980MHz with a frequency width of 20MHz.
  • each of the receiving branches includes a receiving filter for receiving a carrier modulated signal of at least one of the M different frequency bands.
  • the receive filter is also a bandpass filter. If the receive filter included in a receive branch is a separate receive filter, the receive branch can only receive carrier modulated signals for one frequency band. If the receiving filter included in one receiving branch is a two-in-one or all-in-one filter, the receiving branch can receive carrier modulated signals of two or more frequency bands. Therefore, the frequency band of the carrier through which the receiving filter is allowed to coincide with the frequency band of the carrier modulated signal received by the receiving branch. For example, as shown in FIG.
  • the first receiving branch includes a receiving filter that is an independent receiving filter, and then the first receiving branch receives only the carrier modulated signal of the first frequency band, and the receiving filter Only the carrier modulated signal of the first frequency band is allowed to pass.
  • the filter included in the second receiving branch is a two-in-one filter of the second frequency band and the third frequency band, and then the second receiving branch can receive the carrier modulated signal of the second frequency band and the third frequency band, and the two-in-one filtering One of the filters allows the carrier modulated signal of the second frequency band to pass, while the other filter allows the carrier modulated signal of the third frequency band to pass.
  • N is equal to M.
  • the receive filter includes an all-in-one filter and/or a two-in-one filter, N is smaller than M. If the receive filter is an M-in-one filter, N is equal to one.
  • a two-in-one filter or an all-in-one filter refers to encapsulating two or more independent filters in one module.
  • the switching circuit has L input ports and at least one output port.
  • the L input ports are used to simultaneously turn on the transmit branch and the receive branch of the P transmit branch and the N transmit branches in the same frequency band to implement carrier aggregation of at least two frequency bands.
  • the number of L is determined according to actual needs. For example, assuming that each receive branch contains a receive filter that is an independent filter, the number of receive branches is also M. If it is necessary to implement uplink carrier aggregation of M frequency bands, then it is necessary to simultaneously turn on P transmission branches and simultaneously turn on one reception branch. At this time, the switch circuit must have at least P+1 input ports.
  • the switching circuit Just have 2 input ports.
  • the number of input ports of the switch circuit can be designed to be larger than M+N.
  • At least one output port is coupled to the antenna or antenna back end circuitry. If there are two output ports, the two output ports are connected to the antenna or antenna back-end circuit through circuits such as switches or Diplexers.
  • the switch circuit can use the SKYWORKS company model SKY13492-21 switch, which has 16 input ports and one output port, so it is also called SP16T (single-pole sixteen-throw) switch. It is also possible to use the SKYWORKS company model SKY13535-11 switch. The switch has 21 input ports and two output ports, so it is also called DP21T (double-pole twenty one-throw) switch.
  • the radio frequency front end in the embodiment of the present invention can implement not only the CA but also the transmitting branch and the receiving branch of one frequency band to realize single-carrier data transmission. Therefore, the radio frequency front end in the embodiment of the present invention can be compatible with single carrier transmission and CA transmission.
  • the radio frequency front end in this embodiment may further include a radio frequency integrated circuit (English: Radio Frequency Integrated Circuit, or RFIC for short).
  • RFIC Radio Frequency Integrated Circuit
  • the RFIC and RF front end can be separate components.
  • the RFIC is configured to modulate uplink data on a carrier to form a carrier modulated signal, and to demodulate the received carrier modulated signal to obtain downlink data.
  • each of the transmit branches also includes an isolator or phase shift phase circuit.
  • An isolator or phase shift phase circuit is disposed between the transmit filter and the switch circuit. Add isolator or phase shift phase After the circuit, when two switching filters or one transmitting filter and two receiving filters are simultaneously turned on through the switching circuit, from one transmitting filter through the isolator or phase shifting phase circuit, the switching circuit to another transmitting filter or When receiving a filter, the impedance is an open state, and vice versa. Adding an isolator or phase shift phase circuit can reduce the interaction between the transmit filter and other transmit or receive filters.
  • each of the transmit branches also includes an isolator or phase shift phase circuit disposed between the receive filter and the switch circuit. Isolators or phase shifting phase circuits are used to reduce the interaction between the receive filter and other receive or transmit filters.
  • each of the transmitting branches further includes a matching network (English: Matching Network, MN for short), and the MN is disposed at at least one end of the transmitting filter, for example, may be disposed between the transmitting filter and the RFIC, or may be configured Between the switching circuit and the transmit filter, or at both ends.
  • the MN of the transmit branch is used to match the matching characteristics of the transmit filter.
  • the matching network of the transmitting branch can adjust the impedance characteristics of the transmitting filter to match the impedance characteristics required by the RFIC to achieve an optimal transmission effect.
  • each receiving branch further includes an MN disposed at at least one end of the receiving filter, for example, between the receiving filter and the RFIC, or between the switching circuit and the receiving filter, or Each location is a device.
  • the MN receiving the branch is used to match the matching characteristics of the receive filter.
  • the matching network of the receiving branch can adjust the impedance characteristics of the receiving filter to match the impedance characteristics required by the RFIC to achieve an optimal transmission effect.
  • each of the transmitting branches further includes a power amplifier (English: Power Amplifier, referred to as PA).
  • PA Power Amplifier
  • the PA is placed between the RFIC and the transmit filter, optionally between the RFIC and the MN (as shown in Figure 2).
  • the PA is used to power amplify the carrier modulated signal modulated by the RFIC to achieve the required transmit power.
  • the transmitting branch and the receiving branch may also include other components as long as the CA is not affected.
  • the power tolerance capability of the transmit filter on the transmit branch needs to meet the transmit power requirement of the transmit branch.
  • the first issue The transmitting power of the transmitting branch needs to reach 50 watts (W), so the power carrying capacity tolerance of the transmitting filter corresponding to the first transmitting branch needs to reach 50W.
  • M is 2.
  • the M frequency bands are the B1 frequency band and the B3 frequency band, respectively.
  • the input ports of the switching circuit are respectively turned on simultaneously with the first transmitting branch and the first receiving branch corresponding to the B1 band.
  • the input ports of the switching circuit are respectively turned on simultaneously with the second transmitting branch corresponding to the B3 band and the first receiving branch.
  • the base station sends indication information to the terminal device, indicating that the B1 frequency band is the main frequency band, and when the B1 frequency band and the B3 frequency band are the downlink CA, the input ports of the switch circuit simultaneously turn on the first transmitting branch and the first receiving, respectively.
  • Branch road For example, if, at a certain moment, the base station sends the indication information to the terminal device, indicating that the B1 frequency band is the main frequency band, and the B1 frequency band and the B3 frequency band are the uplink CA, the input ports of the switch circuit respectively turn on the first transmitting branch, a second transmitting branch and a first receiving branch.
  • the transmission filter of the B1 frequency band is compared with the two-in-one receiving filter of the B1 frequency band and the B3 frequency band, in the B1 frequency band and the B3 frequency band.
  • the range of the receiving frequency band is open circuit, that is, the high impedance state
  • the two-in-one receiving filter of the B1 frequency band and the B3 frequency band is open circuit, that is, the high impedance state, with respect to the transmitting frequency band of the B1 frequency band.
  • an isolator is added in the receiving branch.
  • the transmit filter of the B1 band needs to consider the impedance characteristics of the Smith chart in the receiving band of the B1 band and the B3 band to be close to the open state or the high impedance state, so that the B1 band and the B3 band are simultaneously filtered.
  • the signal transmitted from the B1 band's transmit filter when passing through the B3 band's transmit filter, will not leak any signal due to high-impedance or open-circuit conditions, and will not affect each other.
  • the two-in-one receive filter of the B1 band and the B3 band needs to consider the high-impedance state or the open-circuit state in the B1 band transmission frequency and the B3 band transmission frequency range at the initial stage of design.
  • M is 3.
  • the M frequency bands are B1 frequency band, B3 frequency band and B7 frequency band respectively.
  • the input of the switching circuit The first transmitting branch corresponding to the B1 band and the first receiving branch are simultaneously turned on.
  • the input ports of the switching circuit are respectively turned on simultaneously with the second transmitting branch corresponding to the B3 band and the first receiving branch.
  • the input ports of the switching circuit are respectively turned on simultaneously with the third transmitting branch and the second receiving branch corresponding to the B7 band.
  • the base station sends indication information to the terminal device, indicating that the B1 frequency band is the main frequency band, and when the B1 frequency band and the B3 frequency band are the downlink CA, the input ports of the switch circuit simultaneously turn on the first transmitting branch and the first receiving, respectively.
  • Branch road For example, if, at a certain moment, the base station sends the indication information to the terminal device, indicating that the B1 frequency band is the main frequency band, and the B1 frequency band and the B3 frequency band are the uplink CA, the input ports of the switch circuit respectively turn on the first transmitting branch, a second transmitting branch and a first receiving branch.
  • the base station sends indication information to the terminal device, indicating that the B7 frequency band is the main frequency band, and when the B3 frequency band and the B7 frequency band are the downlink CA, the input ports of the switching circuit simultaneously turn on the third transmitting branch and the second receiving branch respectively. road.
  • the terminal device can be, for example, a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device with wireless access Network exchange language and / or data.
  • a mobile phone or "cellular" phone
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the wireless terminal device may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, or a remote terminal. Access Terminal, User Terminal, User Agent, User Device or User Equipment.
  • the terminal device includes an antenna 10, a radio frequency front end 20, a controller 30, a processor 40, a memory 50, and a user input module 60.
  • Figure 5 illustrates a terminal device having various components, but it should be understood that not all illustrated components are required to be implemented. More or fewer components can be implemented instead.
  • the components may be a bus structure or other structures, such as a star structure, which is not specifically limited in the present invention.
  • the antenna 10 may include an antenna body and an antenna back end circuit. Of course, the antenna 10 may also be only an antenna body.
  • the antenna 10 is for radiating a carrier modulated signal into electromagnetic waves in space and in the receiving space.
  • the RF front end 20 can be any of the RF front ends described above.
  • An output port of the switching circuit in the RF front end 20 is connected to the antenna 10.
  • the controller 30 is configured to control a conduction state between the L input ports of the start circuit in the RF front end 20 and the transmitting branch and the receiving branch.
  • the controller 30 controls the conduction state between the L input ports and the transmitting branch and the receiving branch according to the indication information sent by the base station.
  • the controller 30 can also make a conduction state between the L input ports and the transmitting branch and the receiving branch according to the decision of the terminal device itself.
  • controller 30 may be a separate controller, integrated in the switching circuit, or integrated with the processor 40.
  • the processor 40 may be a general-purpose central processing unit or an application specific integrated circuit (ASIC), and may be one or more integrated circuits for controlling program execution, and may be A hardware circuit developed using a Field Programmable Gate Array (English: Field Programmable Gate Array, FPGA for short).
  • ASIC application specific integrated circuit
  • processor 40 typically controls the overall operation of the terminal device.
  • the processor 40 performs control and processing related to voice calls, data communications, video calls, and the like.
  • the memory 50 may store a software program or the like for processing and control operations performed by the processor 40, or may store data that has been output or is to be output (for example, a phone book, a message, a still image, a video, etc.).
  • the memory 50 can also store data regarding various modes of vibration and audio signals that are output when a touch is applied to the touch screen.
  • the memory 50 may include a read only memory (English: Read Only Memory, ROM for short), a random access memory (English: Random Access Memory, RAM for short), and disk storage. One or more of the devices. The number of memories 50 is one or more.
  • the user input module 60 can generate key input data in accordance with commands input by the user to control various operations of the terminal device.
  • the user input module 60 allows the user to input various types of information and may include one or more of a keyboard, a touch pad, a scroll wheel, and a joystick.
  • a touchscreen can be formed.
  • FIG. 6 is a flowchart of a method for implementing carrier aggregation on a terminal device as shown in FIG. 5 or a terminal device similar thereto.
  • the method includes:
  • Step 101 Determine at least two frequency bands for performing carrier aggregation.
  • Step 102 In the downlink carrier aggregation, controlling the L input ports to simultaneously turn on the receiving branch corresponding to the at least two frequency bands and the transmitting branch corresponding to one of the at least two frequency bands;
  • Step 103 Control, during uplink carrier aggregation, the L input ports simultaneously turn on a transmit branch corresponding to the at least two frequency bands and a receive branch corresponding to one of the at least two frequency bands.
  • the step 101 includes: determining, according to the indication information of the received network side device, the at least two frequency bands, where the indication information is used to indicate the at least two frequency bands. This step can be performed by the controller 30.
  • the radio frequency front end 20 takes the structure shown in FIG. 4 as an example, and assumes that the current terminal equipment operates in a single carrier mode and uses a carrier of the B1 frequency band. Then, the base station can send the indication information to the terminal device through the carrier of the B1 frequency band.
  • the indication information indicates that the downlink CA is used using the B1 band and the B3 band.
  • the processor 40 or the controller 30 of the terminal device analyzes the indication information and learns that the B1 frequency band and the B3 frequency band need to be used for the downlink CA. Therefore, the controller 30 controls the input port of the switch circuit to simultaneously turn on the first receiving branch corresponding to the B1 band and the B3 band, and the first transmitting branch or the second transmitting branch.
  • the first transmission branch or the second transmission branch may be any one, or may also indicate the main frequency band in at least two frequency bands in step 101 in the indication information, and then the conductive branch that is simultaneously turned on.
  • the road is the transmitting branch corresponding to the main frequency band.
  • the B1 band is The main frequency band, then the first receiving branch and the first transmitting branch are simultaneously turned on.
  • the controller 30 controls the input port of the switching circuit to simultaneously turn on the first transmitting branch, the second transmitting branch, and the B1 band corresponding to the B1 band and the B3 band.
  • the receiving branch corresponding to the B3 band may be any one, and may also be based on the main frequency band in the indication information, for example, indicating that the B1 frequency band is the main frequency band, then it should be simultaneously turned on.
  • the receiving branch of the B1 band Because in the example shown in FIG. 4, the B1 band and the B3 band use a 2-in-1 receive filter, so the corresponding ones are all the first receive branches. Therefore, the first transmitting branch, the second transmitting branch, and the first receiving branch are finally turned on at the same time.
  • the step 101 has another implementation manner.
  • the step 101 includes: determining the at least two frequency bands according to actual needs. For example, if the data that the current terminal device needs to transmit is large, it is determined that the uplink CA needs to be performed, and then, according to the required transmission bandwidth, it is determined which frequency bands are required for the uplink CA. The rest is similar to the case where the network side device sends the indication information, so it will not be described again.
  • the base station or network side device in this document may be a base station in Global Mobile Communication (English: Global System of Mobile communication; GSM) or Code Division Multiple Access (CDMA) (English: Base Transceiver Station; referred to as BTS), it can also be a base station (English: NodeB; NB for short) in Wideband Code Division Multiple Access (WCDMA), or it can be long-term evolution.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • WCDMA Wideband Code Division Multiple Access
  • Long Term Evolution; LTE Evolved Base Station (English: Evolutional Node B; eNB or eNodeB for short), or a relay station or an access point, or a base station in a future 5G network, etc., which is not limited herein.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

一种射频前端、终端设备及载波聚合方法。该射频前端包括:P个发射支路,每个发射支路用于发射M个互不相同的频段中的一个频段的载波调制信号;每个发射支路包括至少一路发射滤波器,发射滤波器允许通过的载波的频段与每个发射支路发射的至少一个频段一致;N个接收支路,每个接收支路用于接收M个互不相同的频段中至少一个频段的载波调制信号;每个接收支路包括至少一路接收滤波器,接收滤波器允许通过的载波的频段与每个接收支路接收的至少一个频段一致;开关电路,具有L个输入端口和至少一个输出端口;其中,输出端口与天线或天线后端电路连接,L个输入端口用于同时导通P个发射支路和N个接收支路中相同频段的发射支路和接收支路。

Description

一种射频前端、终端设备及载波聚合方法 技术领域
本发明涉及通信技术领域,尤其涉及一种射频前端、终端设备及载波聚合方法。
背景技术
随着无线通信技术的不断发展,对于无线通信的速率要求越来越高,随之而来的是无线通信协议、技术的不断发展。为了码组单用户峰值速率和系统容量提升的要求,一种直接的办法就是增加系统传输带宽。因此,高级长期演进(英文:Long Term Evolution Advanced,简称:LTE-A)系统引入了一项增加传输带宽的技术,即载波聚合(英文:Carrier Aggregation,简称:CA)技术。
CA技术可以将至少两个成员载波(英文:Component Carrier,简称:CC)聚合在一起,实现较大的传输带宽,有效提高了上下行传输速率。举例来说,假设每个CC的带宽为20MHz,如果将5个CC聚合在一起,就可以实现100MHz的传输带宽。
在终端设备侧实现CA时,针对通信频段相邻非常近的CA组合,无法通过用合路器(Diplexer)实现CA组合方式时,通常会有其它的两种实现方式,一种是使用四功器或者六功器。四功器具有四个输入端口,一个输出端口。四个输入端口分别接通两路发射通路,两路接收通路,所以可以支持两个频段的载波同时工作,进而可以实现2CC的CA。类似的,六功器具有六个输入端口,一个输出端口。六个输入端口分别接通三路发射通路、三路接收通路,所以可以支持三个频段的载波同时工作,进而可以实现3CC的CA。
另一种是同时导通两个或两个以上的双工器(Duplexer),每个双工器可以实现一个频段的接收和发射,所以同时导通两个或两个以上的双工器,就可以实现两个或两个以上的CA。
在前一种实现CA的方式中,频段之间间隔太近,为了滤除各个频段的彼此干扰,设计难度比较大。而在后一种实现CA的方式中,一方面是双工器自身的设计难度较大,另一方面双工器自身插损较大,所以影响射频性能。因此,现有技术中的实现CA的射频前端的设计难度较大。
发明内容
本发明实施例提供一种射频前端、终端设备及载波聚合方法,用以解决现有技术中存在的实现载波聚合的射频前端的设计难度较大的技术问题。
第一方面,本发明实施例提供了一种射频前端,包括:
P个发射支路,每个发射支路用于发射M个互不相同的频段中的一个频段的载波调制信号;所述每个发射支路包括至少一路发射滤波器,所述发射滤波器为带通滤波器,所述发射滤波器允许通过的载波的频段与所述每个发射支路发射的至少一个频段一致;M为大于或等于2的整数;N个接收支路,每个接收支路用于接收所述M个互不相同的频段中至少一个频段的载波调制信号;所述每个接收支路包括至少一路接收滤波器,所述接收滤波器为带通滤波器,所述接收滤波器允许通过的载波的频段与所述接收支路接收的至少一个频段一致;N为大于或等于1且小于或等于M的整数;开关电路,具有L个输入端口和至少一个输出端口;其中,所述输出端口与天线或天线后端电路连接,所述L个输入端口用于同时导通所述P个发射支路和所述N个接收支路中相同频段的发射支路和接收支路;L为大于或等于2的整数;P为大于或等于1且小于或等于M的整数。
本发明实施例中的方法采用独立的发射滤波器和接收滤波器,通过开关电路同时导通发射滤波器和接收滤波器,实现传统双工器的功能。因此,结构简单,设计难度小。并且通过导通两个或两个以上频段的发射支路和接收支路,实现上行CA或者下行CA。
结合第一方面,在第一方面的第一种可能的实现方式中,所述每个发射支路还包括隔离器或相位移相电路,所述隔离器或所述相位移相电路设置在 所述发射滤波器和所述开关电路之间;所述隔离器或所述相位移相电路用于减少所述发射滤波器和其它发射滤波器或所述接收滤波器之间的相互影响。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述每个发射支路还包括匹配网络,所述每个发射支路的匹配网络设置在所述发射滤波器的至少一端,所述每个发射支路的匹配网络用于对所述发射滤波器的匹配特性进行匹配。
结合第一方面或第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述每个接收支路还包括匹配网络,所述每个接收支路的匹配网络设置在所述接收滤波器的至少一端,所述每个接收支路的匹配网络用于对所述接收滤波器的匹配特性进行匹配,以及用于减少所述发射滤波器对所述接收滤波器的影响。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第三种可能的实现方式种的任意一种,在第一方面的第四种可能的实现方式中,所述每个接收支路接收的至少一个频段的数量为1,所述接收滤波器为独立的滤波器,N等于M。通过该设计,可以更加灵活的实现不同频段之间的CA。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第三种可能的实现方式种的任意一种,在第一方面的第五种可能的实现方式中,所述每个接收支路接收的至少一个频段的数量为两个或两个以上,所述接收滤波器为二合一或多合一滤波器。通过该设计,可以减少对开关电路的输入端口的数量的限制,并且在电路板上占用面积较小,便于进行电路设计。
结合第一方面或第一方面的第一种可能的实现方式至第一方面的第五种可能的实现方式种的任意一种,在第一方面的第六种可能的实现方式中,所述接收滤波器的功率承受能力容限为所述发射支路的发射功率。
第二方面,本发明实施例提供一种终端设备,包括:
天线,用于将调制信号辐射至空间中及接收空间中的电磁波;如第一方面或第一方面的第一种可能的实现方式至第一方面的第六种可能的实现方式种的任意一种所述的射频前端,所述输出端口与所述天线连接;控制器,用 于控制所述L个输入端口与所述发射支路和所述接收支路之间的导通状态。
第三方面,本发明实施例提供一种载波聚合方法,应用于如第二方面所述的终端设备,包括:
确定进行载波聚合的至少两个频段;在下行载波聚合时,控制所述L个输入端口同时导通所述至少两个频段对应的接收支路以及所述至少两个频段中的其中一个频段对应的发射支路;在上行载波聚合时,控制所述L个输入端口同时导通所述至少两个频段对应的发射支路以及所述至少两个频段中的其中一个频段对应的接收支路。
结合第三方面,在第三方面的第一种可能的实现方式中,所述确定进行载波聚合的至少两个频段,包括:根据接收的网络侧设备的指示信息确定所述至少两个频段,所述指示信息用于指示所述至少两个频段。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述指示信息还用于指示所述至少两个频段中的主频段,所述其中一个频段为所述主频段。
附图说明
图1为本发明实施例提供的一种射频前端的结构图;
图2为本发明实施例提供的一种射频前端的详细结构图;
图3为本发明实施例提供的另一种射频前端的结构图;
图4为本发明实施例提供的再一种射频前端的结构图;
图5为本发明实施例提供的一种终端设备的示结构图;
图6为本发明实施例提供的一种载波聚合方法的流程图。
具体实施方式
本发明实施例提供一种射频前端、终端设备及载波聚合方法,用以解决现有技术中存在的实现载波聚合的射频前端的设计难度较大的技术问题。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
请参考图1所示,为本发明实施例提供的一种射频前端的结构图。射频前端包括:第一发射支路至第M发射支路共P个发射支路、第一接收支路至第N接收支路共N个接收支路以及开关电路。其中,M为大于或等于2的整数;P为大于或等于1且小于或等于M的整数;N为大于或等于1且小于或等于M的整数。
每个发射支路包括至少一路发射滤波器,用于发射M个互不相同的频段中的至少一个频段的载波调制信号。发射滤波器为带通滤波器。发射滤波器允许通过的载波的频段与该发射支路所发射的载波的频段一致。如图1所示,第一发射支路包括一个发射滤波器,该发射滤波器允许第一频段的载波通过,所以第一发射支路用于发射第一频段的载波调制信号。类似的,第二发射支路包括只允许第二频段的载波通过的发射滤波器。第M发射支路包括只允许第M频段的载波通过的发射滤波器。第一频段至第M频段之间互不相同。当然,也可以是第一发射支路包括第一频段和第二频段的二合一发射滤波器,所以第一发射支路允许第一频段和第二频段的载波通过。P个发射支路发射的频段的总和为M。
因此,当发射滤波器均为独立的滤波器时,P与M相等。当接收滤波器中包括多合一滤波器和/或二合一滤波器时,P小于M。如果发射滤波器为M合一滤波器时,P等于1。
需要说明的是,两个频段互不相同指的是两个频段所覆盖的频率范围不重叠,而两个频段所覆盖的频率宽度可以相同,也可不同。举例来说,第一频段的频率范围为780MHz至800MHz,频率宽度为20MHz。第二频段的频 率范围为960MHz至980MHz,频率宽度为20MHz。
在接收支路中,每个接收支路包括接收滤波器,用于接收M个互不相同的频段中至少一个频段的载波调制信号。接收滤波器同样为带通滤波器。如果一个接收支路包括的接收滤波器是单独的一个接收滤波器,该接收支路只能接收一个频段的载波调制信号。如果一个接收支路包括的接收滤波器为二合一或者多合一滤波器,那么该接收支路可以接收两个或两个以上频段的载波调制信号。因此,接收滤波器允许通过的载波的频段与该接收支路接收的载波调制信号的频段一致。举例来说,请参考图1所示,第一接收支路包括的接收滤波器为独立的接收滤波器,那么第一接收支路就只接收第一频段的载波调制信号,并且该接收滤波器也仅允许第一频段的载波调制信号通过。第二接收支路包括的滤波器为第二频段和第三频段的二合一滤波器,那么第二接收支路就可以接收第二频段和第三频段的载波调制信号,该二合一滤波器中的其中一个滤波器允许第二频段的载波调制信号通过,而另一个滤波器允许第三频段的载波调制信号通过。
因此,当接收滤波器均为独立的滤波器时,N与M相等。当接收滤波器中包括多合一滤波器和/或二合一滤波器时,N小于M。如果接收滤波器为M合一滤波器时,N等于1。
需要说明的是,二合一滤波器或者多合一滤波器是指将两个或者多个独立的滤波器封装在一个模组中。
开关电路具有L个输入端口和至少一个输出端口。L个输入端口用于同时导通P个发射支路和N个发射支路中相同频段的发射支路和接收支路,以实现至少两个频段的载波聚合。L的数量根据实际需求来定。举例来说,假设每个接收支路包含的接收滤波器为独立的滤波器,那么接收支路的数量也为M。如果需要实现M个频段的上行载波聚合的话,那么就需要同时导通P个发射支路,并且同时导通一个接收支路。此时,开关电路至少要具有P+1个输入端口。再例如,M大于或等于3,但是实际需求可能只需要实现2个频段的载波聚合即可,所以如果是实现2个频段的下行载波聚合的话,而且这两 个频段采用的是二合一接收滤波器,那么就只需要同时导通两个频段中的一个频段的发射支路以及二合一接收滤波器对应的接收支路即可,此时,开关电路只要具有2个输入端口即可。在实际运用中,为了便于后续载波聚合的数量的扩展,开关电路的输入端口的数量可以设计的大于M+N。
至少一个输出端口与天线或天线后端电路连接。如果有两个输出端口,这两个输出端口会通过例如:开关、或Diplexer等电路接入到天线或天线后端电路。
在实际运用中,开关电路可以采用SKYWORKS公司的型号为SKY13492-21的开关,该开关具有16个输入端口,一个输出端口,所以也称为SP16T(single-pole sixteen-throw)开关。还可以采用SKYWORKS公司的型号为SKY13535-11的开关。该开关具有21个输入端口,两个输出端口,所以也称为DP21T(double-pole twenty one-throw)开关。
由上面描述可以看出,本发明实施例中采用独立的发射滤波器和接收滤波器,通过开关电路同时导通发射滤波器和接收滤波器,实现传统双工器的功能。因此,结构简单,设计难度小。并且通过导通两个或两个以上频段的发射支路和接收支路,实现上行CA或者下行CA。由此可见,本发明实施例中的射频前端不仅可以实现CA,还可以只导通一个频段的发射支路和接收支路,实现单载波的数据传输。因此,本发明实施例中的射频前端可以兼容单载波传输和CA传输。
可选的,如图1所示,本实施例中的射频前端还可以包括射频集成电路(英文:Radio Frequency Integrated Circuit,简称:RFIC)。当然,在实际运用中,RFIC和射频前端可以是单独的元器件。RFIC用于将上行数据调制在载波上,形成载波调制信号,以及用于将接收到的载波调制信号进行解调,获得下行数据。
接下来请再参考图2所示,为本发明实施例提供的射频前端的更详细的结构图。如图2所示,每个发射支路还包括隔离器或相位移相电路。隔离器或相位移相电路设置在发射滤波器和开关电路之间。增加隔离器或相位移相 电路后,通过开关电路同时导通两个发射滤波器或一个发射滤波器和两个接收滤波器时,从一个发射滤波器通过隔离器或相位移相电路、开关电路到另外一个发射滤波器或接收滤波器时,阻抗是开路状态,反之也是同样的原理。增加隔离器或相位移相电路,可以减少发射滤波器和其它发射滤波器或接收滤波器之间的相互影响。
类似的,每个发射支路也包括隔离器或相位移相电路,设置在接收滤波器和开关电路之间。隔离器或相位移相电路用于减少接收滤波器和其它接收滤波器或发射滤波器之间的相互影响。
可选的,每个发射支路还包括匹配网络(英文:Matching Network,简称:MN),MN设置在发射滤波器的至少一端,例如可以设置在发射滤波器和RFIC之间,也可以是设置在开关电路和发射滤波器之间,或者在这两端均设置。发射支路的MN用于对发射滤波器的匹配特性进行匹配。详细来说,发射支路的匹配网络可以调整发射滤波器的阻抗特性能完全和RFIC要求的阻抗特性进行匹配,达到最优的传输效果。
可选的,每个接收支路还包括MN,设置在接收滤波器的至少一端,例如可以设置在接收滤波器和RFIC之间,也可以设置在开关电路和接收滤波器之间,或者在两个位置均设备。接收支路的MN用于对接收滤波器的匹配特性进行匹配。类似的,接收支路的匹配网络可以调整接收滤波器的阻抗特性能完全和RFIC要求的阻抗特性进行匹配,达到最优的传输效果。
可选的,每个发射支路还包括功率放大器(英文:Power Amplifier,简称:PA)。PA设置在RFIC和发射滤波器之间,可选的,设置在RFIC和MN之间(如图2所示)。PA用于对RFIC调制成的载波调制信号进行功率放大,以达到需求的发射功率。
以上举例描述了发射支路和接收支路可能的构成,在实际运用中,发射支路和接收支路还可以包括其它元器件,只要不影响CA即可。
可选的,为了保证整个通路的可靠性要求,发射支路上的发射滤波器的功率承受能力容限需要满足该发射支路的发射功率要求。举例来说,第一发 射支路的发射功率需要达到50瓦(W),那么第一发射支路对应的发射滤波器的功率承受能力容限就需要达到50W。
以下将举两个具体的实例来说明本发明实施例中射频前端的实施过程。
请参考图3所示,在本实施例中,假设M为2。M个频段分别为B1频段和B3频段。在B1频段的单载波的情况下,开关电路的输入端口分别与B1频段对应的第一发射支路和第一接收支路同时导通。而在B3频段的单载波的情况下,开关电路的输入端口分别与B3频段对应的第二发射支路和第一接收支路同时导通。假设在某一时刻,基站下发指示信息给终端设备,指示B1频段为主频段,B1频段和B3频段为下行CA时,开关电路的输入端口分别同时导通第一发射支路和第一接收支路。再例如,假设在某一时刻,基站下发指示信息给终端设备,指示B1频段为主频段,B1频段和B3频段为上行CA时,开关电路的输入端口分别同时导通第一发射支路、第二发射支路和第一接收支路。
当终端设备工作在B频段为主频段,B1频段和B3频段为下行CA时,从B1频段的发射滤波器相对B1频段和B3频段的二合一接收滤波器来看,在B1频段及B3频段的接收频段范围内是开路,即高阻状态,B1频段和B3频段的二合一接收滤波器相对B1频段的发射频段范围内是开路,即高阻状态。为了保证发射通路和接收通路互不干扰,在接收支路增加隔离器。同时,B1频段的发射滤波器在设计初期需要考虑在B1频段及B3频段的接收频段范围内在史密斯圆图的阻抗特性靠近开路状态或高阻状态,这样同时导通B1频段和B3频段的发射滤波器时,从B1频段的发射滤波器发射的信号,在通过B3频段的发射滤波器时,由于是高阻或开路状态,信号能量不会有任何的泄漏,彼此不会相互影响。同理,B1频段和B3频段的二合一接收滤波器在设计初期需要考虑在B1频段发射频率和B3频段发射频率范围处在高阻状态或开路状态。
请继续参考图4所示,在本实施例中,假设M为3。M个频段分别为B1频段、B3频段和B7频段。在B1频段的单载波的情况下,开关电路的输入端 口分别与B1频段对应的第一发射支路和第一接收支路同时导通。而在B3频段的单载波的情况下,开关电路的输入端口分别与B3频段对应的第二发射支路和第一接收支路同时导通。在B7频段的单载波的情况下,开关电路的输入端口分别与B7频段对应的第三发射支路和第二接收支路同时导通。假设在某一时刻,基站下发指示信息给终端设备,指示B1频段为主频段,B1频段和B3频段为下行CA时,开关电路的输入端口分别同时导通第一发射支路和第一接收支路。再例如,假设在某一时刻,基站下发指示信息给终端设备,指示B1频段为主频段,B1频段和B3频段为上行CA时,开关电路的输入端口分别同时导通第一发射支路、第二发射支路和第一接收支路。假设在某一时,基站下发指示信息给终端设备,指示B7频段为主频段,B3频段和B7频段为下行CA时,开关电路的输入端口分别同时导通第三发射支路和第二接收支路。
接下来请再参考图5所示,为本发明实施例提供的一种终端设备的结构图。该终端设备例如可以是移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(英文:Personal Communication Service;简称:PCS)电话、无绳电话、会话发起协议(英文:Session Initiation Protocol;简称:SIP)话机、无线本地环路(英文:Wireless Local Loop;简称:WLL)站、个人数字助理(英文:Personal Digital Assistant;简称:PDA)等设备。无线终端设备也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment)。
终端设备包括天线10、射频前端20、控制器30、处理器40、存储器50及用户输入模块60。图5示出了具有各种组件的终端设备,但是应理解的是,并不要求实施所有示出的组件。可以替代地实施更多或更少的组件。另外, 各个组件之间可以是总线结构,也可以是其它结构,例如星型结构,本发明不作具体限定。
天线10可以包括天线本体和天线后端电路,当然,天线10也可以只是天线本体。
天线10用于将载波调制信号辐射至空间中及接收空间中的电磁波。
射频前端20可以为前述描述的任一种射频前端。射频前端20中的开关电路的输出端口与天线10连接。
控制器30,用于控制射频前端20中的开端电路的L个输入端口与发射支路和接收支路之间的导通状态。
可选的,控制器30是根据基站下发的指示信息控制L个输入端口与发射支路和接收支路之间的导通状态。
在实际运用中,控制器30还可以根据终端设备自身的决策来制L个输入端口与发射支路和接收支路之间的导通状态。
可选的,控制器30可以是单独的控制器,也可以是集成在开关电路中,也可以是和处理器40集成在一起。
可选的,处理器40可以是通用的中央处理器或者是特定应用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC),可以是一个或多个用于控制程序执行的集成电路,可以是使用现场可编程门阵列(英文:Field Programmable Gate Array,简称:FPGA)开发的硬件电路。
可选的,处理器40通常控制终端设备的总体操作。例如处理器40执行与语音通话、数据通信、视频通话等相关的控制和处理.
可选的,存储器50可以存储由处理器40执行的处理和控制操作的软件程序等,或者可以蚕食地存储已经输出或将要输出的数据(例如,电话薄、消息、静态图像、视频等)。存储器50还可以存储关于当触摸施加到触摸屏时输出的各种方式的振动和音频信号的数据。
存储器50可以包括只读存储器(英文:Read Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)和磁盘存储 器中的一种或多种。存储器50的数量为一个或多个。
用户输入模块60可以根据用户输入的命令生成键输入数据以控制终端设备的各种操作。用户输入模块60允许用户输入各种类型的信息,并且可以包括键盘、触摸板、滚轮、摇杆的一种或多种。当触摸板以层的形式叠加在显示器上时,可以形成触摸屏。
接下来请再参考图6所示,为在如图5所示的终端设备或者与其类似的终端设备上实现载波聚合的方法的流程图。该方法包括:
步骤101:确定进行载波聚合的至少两个频段;
步骤102:在下行载波聚合时,控制所述L个输入端口同时导通所述至少两个频段对应的接收支路以及所述至少两个频段中的其中一个频段对应的发射支路;
步骤103:在上行载波聚合时,控制所述L个输入端口同时导通所述至少两个频段对应的发射支路以及所述至少两个频段中的其中一个频段对应的接收支路。
可选的,步骤101包括:根据接收的网络侧设备的指示信息确定所述至少两个频段,所述指示信息用于指示所述至少两个频段。该步骤可以由控制器30执行。
举例来说,射频前端20以图4所示的结构为例,假设当前终端设备工作在单载波模式,且使用的是B1频段的载波。那么基站可以通过B1频段的载波下发指示信息给终端设备。指示信息指示使用B1频段和B3频段进行下行CA。终端设备的处理器40或者控制器30解析指示信息,获知需要使用B1频段和B3频段进行下行CA。因此控制器30就控制开关电路的输入端口同时导通B1频段和B3频段对应的第一接收支路以及第一发射支路或第二发射支路。
至于具体是第一发射支路还是第二发射支路,可以任选一个,还可以是在指示信息中还可以指示步骤101中的至少两个频段中的主频段,那么同时导通的发射支路即为主频段对应的发射支路。在本例中,假设指示B1频段为 主频段,那么同时导通的为第一接收支路以及第一发射支路。
如果指示信息指示的是B1频段和B3频段做上行CA时,控制器30控制开关电路的输入端口同时导通B1频段和B3频段对应的第一发射支路、第二发射支路以及B1频段或B3频段对应的接收支路。具体是B1频段对应的接收支路还是B3频段对应的接收支路,可以是任选一个,还可以以指示信息中的主频段为准,例如指示B1频段为主频段,那么就应该同时导通B1频段的接收支路。因为在图4所示的例子中,B1频段和B3频段使用的是二合一接收滤波器,所以对应的均为第一接收支路。因此,最终同时导通的是第一发射支路、第二发射支路以及第一接收支路。
在实际运用中,步骤101还有另一种实施方式,详细来说,步骤101包括:根据实际需求确定所述至少两个频段。举例来说,假设当前终端设备需要传输的数据较大,所以确定需要进行上行CA,然后根据需要的传输带宽确定需要哪几个频段进行上行CA。其余与网络侧设备发送指示信息的情况类似,所以不再赘述。
本文中的基站或网络侧设备,可以是全球移动通讯(英文:Global System of Mobile communication;简称:GSM)或码分多址(英文:Code Division Multiple Access;简称:CDMA)中的基站(英文:Base Transceiver Station;简称:BTS)中,也可以是宽带码分多址(英文:Wideband Code Division Multiple Access;简称:WCDMA)中的基站(英文:NodeB;简称NB),还可以是长期演进(英文:Long Term Evolution;简称:LTE)中的演进型基站(英文:Evolutional Node B;简称:eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,本文中并不限定。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (11)

  1. 一种射频前端,其特征在于,包括:
    P个发射支路,每个发射支路用于发射M个互不相同的频段中的至少一个频段的载波调制信号;所述每个发射支路包括至少一路发射滤波器,所述发射滤波器为带通滤波器,所述发射滤波器允许通过的载波的频段与所述每个发射支路发射的至少一个频段一致;P为大于或等于1且小于等于M的整数;M为大于或等于2的整数;
    N个接收支路,每个接收支路用于接收所述M个互不相同的频段中至少一个频段的载波调制信号;所述每个接收支路包括至少一路接收滤波器,所述接收滤波器为带通滤波器,所述接收滤波器允许通过的载波的频段与所述每个接收支路接收的至少一个频段一致;N为大于或等于1且小于或等于M的整数;
    开关电路,具有L个输入端口和至少一个输出端口;其中,所述输出端口与天线或天线后端电路连接,所述L个输入端口用于同时导通所述P个发射支路和所述N个接收支路中相同频段的发射支路和接收支路;L为大于或等于2的整数。
  2. 如权利要求1所述的射频前端,其特征在于,所述每个发射支路还包括隔离器或相位移相电路,所述隔离器或所述相位移相电路设置在所述发射滤波器和所述开关电路之间;所述隔离器或所述相位移相电路用于减少所述发射滤波器和其它发射滤波器或所述接收滤波器之间的相互影响。
  3. 如权利要求1或2所述的射频前端,其特征在于,所述每个发射支路还包括匹配网络,所述每个发射支路的匹配网络设置在所述发射滤波器的至少一端,所述每个发射支路的匹配网络用于对所述发射滤波器的匹配特性进行匹配。
  4. 如权利要求1-3任一项所述的射频前端,其特征在于,所述每个接收支路还包括匹配网络,所述每个接收支路的匹配网络设置在所述接收滤波器 的至少一端,所述每个接收支路的匹配网络用于对所述接收滤波器的匹配特性进行匹配。
  5. 如权利要求1-4任一项所述的射频前端,其特征在于,所述每个接收支路接收的至少一个频段的数量为1,所述接收滤波器为独立的滤波器,N等于M。
  6. 如权利要求1-4任一项所述的射频前端,其特征在于,所述每个接收支路接收的至少一个频段的数量为两个或两个以上,所述接收滤波器为二合一或多合一滤波器。
  7. 如权利要求1-6任一项所述的射频前端,其特征在于,所述发射滤波器的功率承受能力容限为所述发射支路的发射功率。
  8. 一种终端设备,其特征在于,包括:
    天线,用于将调制信号辐射至空间中及接收空间中的电磁波;
    如权利要求1-7任一项所述的射频前端,所述输出端口与所述天线连接;
    控制器,用于控制所述L个输入端口与所述发射支路和所述接收支路之间的导通状态。
  9. 一种载波聚合方法,应用于如权利要求8所述的终端设备,其特征在于,包括:
    确定进行载波聚合的至少两个频段;
    在下行载波聚合时,控制所述L个输入端口同时导通所述至少两个频段对应的接收支路以及所述至少两个频段中的其中一个频段对应的发射支路;
    在上行载波聚合时,控制所述L个输入端口同时导通所述至少两个频段对应的发射支路以及所述至少两个频段中的其中一个频段对应的接收支路。
  10. 如权利要求9所述的方法,其特征在于,所述确定进行载波聚合的至少两个频段,包括:
    根据接收的网络侧设备的指示信息确定所述至少两个频段,所述指示信息用于指示所述至少两个频段。
  11. 如权利要求10所述的方法,其特征在于,所述指示信息还用于指示 所述至少两个频段中的主频段,所述其中一个频段为所述主频段。
PCT/CN2016/080662 2016-04-29 2016-04-29 一种射频前端、终端设备及载波聚合方法 WO2017185328A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2016/080662 WO2017185328A1 (zh) 2016-04-29 2016-04-29 一种射频前端、终端设备及载波聚合方法
JP2018526896A JP6683406B2 (ja) 2016-04-29 2016-04-29 無線周波数フロントエンド、端末デバイス、およびキャリアアグリゲーション方法
US15/770,969 US10567012B2 (en) 2016-04-29 2016-04-29 Radio frequency front end, terminal device, and carrier aggregation method
CN201680011513.XA CN107836084A (zh) 2016-04-29 2016-04-29 一种射频前端、终端设备及载波聚合方法
EP16899840.9A EP3352378B1 (en) 2016-04-29 2016-04-29 Radio frequency front end, terminal apparatus, and carrier aggregation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/080662 WO2017185328A1 (zh) 2016-04-29 2016-04-29 一种射频前端、终端设备及载波聚合方法

Publications (1)

Publication Number Publication Date
WO2017185328A1 true WO2017185328A1 (zh) 2017-11-02

Family

ID=60161609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080662 WO2017185328A1 (zh) 2016-04-29 2016-04-29 一种射频前端、终端设备及载波聚合方法

Country Status (5)

Country Link
US (1) US10567012B2 (zh)
EP (1) EP3352378B1 (zh)
JP (1) JP6683406B2 (zh)
CN (1) CN107836084A (zh)
WO (1) WO2017185328A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560833A (zh) * 2019-01-28 2019-04-02 惠州Tcl移动通信有限公司 一种下行载波聚合射频电路、天线装置和电子设备
CN110809332A (zh) * 2018-07-19 2020-02-18 阿里巴巴集团控股有限公司 一种基站及基站的通信方法
EP3739762A4 (en) * 2018-01-10 2021-01-27 Xi'an Yep Telecommunication Technology, Ltd. TERMINAL DEVICE
CN112335183A (zh) * 2018-06-18 2021-02-05 三星电子株式会社 经由开关使用多个载波频率执行载波聚合的电子装置及其操作方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6760537B2 (ja) * 2018-03-15 2020-09-23 株式会社村田製作所 アンテナ装置
CN112994734B (zh) * 2021-02-10 2022-04-12 西南电子技术研究所(中国电子科技集团公司第十研究所) K频段射频前端四通道天线接口单元板
CN116707564A (zh) * 2022-02-25 2023-09-05 华为技术有限公司 射频前端电路和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090093270A1 (en) * 2006-03-31 2009-04-09 Christian Block Mobile Radio Module for Multiband-Multimode Operation
CN102811032A (zh) * 2011-06-01 2012-12-05 太阳诱电株式会社 电子电路和电子模块
CN103684481A (zh) * 2012-09-12 2014-03-26 索尼移动通信株式会社 Rf前端模块和移动无线装置
CN104247149A (zh) * 2012-04-11 2014-12-24 高通股份有限公司 用于切换天线的设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130043946A1 (en) 2011-08-16 2013-02-21 Qualcomm Incorporated Low noise amplifiers with combined outputs
WO2013041146A1 (en) 2011-09-22 2013-03-28 Epcos Ag Frontend circuit for band aggregation modes
US9240811B2 (en) 2012-10-23 2016-01-19 Intel Deutschland Gmbh Switched duplexer front end
US9231552B2 (en) * 2013-07-09 2016-01-05 Sony Corporation RF front-end module and mobile wireless terminal
JP2016039432A (ja) 2014-08-06 2016-03-22 株式会社Nttドコモ ユーザ装置及び能力情報報告方法
JP6619742B2 (ja) 2014-09-26 2019-12-11 京セラ株式会社 基地局及びユーザ端末
US10476530B2 (en) * 2015-10-12 2019-11-12 Qorvo Us, Inc. Hybrid-coupler-based radio frequency multiplexers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090093270A1 (en) * 2006-03-31 2009-04-09 Christian Block Mobile Radio Module for Multiband-Multimode Operation
CN102811032A (zh) * 2011-06-01 2012-12-05 太阳诱电株式会社 电子电路和电子模块
CN104247149A (zh) * 2012-04-11 2014-12-24 高通股份有限公司 用于切换天线的设备
CN103684481A (zh) * 2012-09-12 2014-03-26 索尼移动通信株式会社 Rf前端模块和移动无线装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3352378A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3739762A4 (en) * 2018-01-10 2021-01-27 Xi'an Yep Telecommunication Technology, Ltd. TERMINAL DEVICE
CN112335183A (zh) * 2018-06-18 2021-02-05 三星电子株式会社 经由开关使用多个载波频率执行载波聚合的电子装置及其操作方法
CN112335183B (zh) * 2018-06-18 2022-08-05 三星电子株式会社 电子装置及其操作方法
US11817891B2 (en) 2018-06-18 2023-11-14 Samsung Electronics Co., Ltd Electronic device for performing carrier aggregation using plurality of carrier frequencies via switch and operating method thereof
CN110809332A (zh) * 2018-07-19 2020-02-18 阿里巴巴集团控股有限公司 一种基站及基站的通信方法
CN109560833A (zh) * 2019-01-28 2019-04-02 惠州Tcl移动通信有限公司 一种下行载波聚合射频电路、天线装置和电子设备

Also Published As

Publication number Publication date
US20180331716A1 (en) 2018-11-15
JP2019500781A (ja) 2019-01-10
JP6683406B2 (ja) 2020-04-22
US10567012B2 (en) 2020-02-18
EP3352378B1 (en) 2022-05-25
EP3352378A4 (en) 2018-08-15
CN107836084A (zh) 2018-03-23
EP3352378A1 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
WO2017185328A1 (zh) 一种射频前端、终端设备及载波聚合方法
US11218286B2 (en) Reducing intermodulation distortion for intra-band dual connectivity
KR102325670B1 (ko) 집성된 반송파의 개별적인 반송파의 전력을 검출하는 방법들
WO2019137145A1 (zh) 一种终端设备
TWI672912B (zh) 電子系統、功率放大器系統、封裝模組、行動器件、提供射頻信號至一天線之電子實施方法、及前端
US10582557B2 (en) RFFE for dual connectivity
JP6363722B2 (ja) マルチモードワイヤレス端末
WO2018036102A1 (zh) 一种非异频上行载波聚合电路及装置
CN105376872A (zh) 一种支持载波聚合的方法及终端
TW202408176A (zh) 用於增強之交互調變失真性能之切換的終端的前端系統
WO2017220027A1 (zh) 射频前端发射方法及发射模块、芯片和通信终端
WO2012126248A1 (zh) 消除终端模式间互扰的方法及终端
US20120108277A1 (en) Design and Method to Enable Single Radio Handover
WO2024067406A1 (zh) 射频电路和电子设备
US9628137B2 (en) Wireless communication device, wireless communication method, and recording medium
US20240172281A1 (en) Apparatus, system, and method of multi-link operation (mlo) with a millimeter wave (mmwave) link
JPWO2014157330A1 (ja) 無線通信システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016899840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15770969

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018526896

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE