WO2024037191A1 - 电极极片的制造方法及制造系统、电池单体 - Google Patents

电极极片的制造方法及制造系统、电池单体 Download PDF

Info

Publication number
WO2024037191A1
WO2024037191A1 PCT/CN2023/102802 CN2023102802W WO2024037191A1 WO 2024037191 A1 WO2024037191 A1 WO 2024037191A1 CN 2023102802 W CN2023102802 W CN 2023102802W WO 2024037191 A1 WO2024037191 A1 WO 2024037191A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
drying operation
compensation
areal density
drying
Prior art date
Application number
PCT/CN2023/102802
Other languages
English (en)
French (fr)
Inventor
罗宇
吴堃
肖秋华
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2024037191A1 publication Critical patent/WO2024037191A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a manufacturing method and manufacturing system for electrode pole pieces, and battery cells.
  • the battery core is an important component of the battery cell.
  • the battery core is generally composed of multiple electrode plates that are stacked or wound. Both sides of the electrode pole piece are coated to form electrode layers.
  • the electrode layer can increase the service life of the electrode, and the stability of the electrode surface coating directly determines whether the electrode can be used for a long time.
  • electrode pieces that need to be coated with composite coating slurry on both sides need to be operated in batches.
  • One side of the electrode piece is coated and dried first. , then coat and dry the other side. This drying method cannot ensure the same degree of drying on both sides. If the paint on both sides of the electrode plate is unevenly dried, the production quality of the electrode will be seriously affected.
  • This application aims to solve at least one of the technical problems existing in the prior art.
  • one purpose of this application is to propose a manufacturing method and system for electrode plates and battery cells, so as to improve the problem that traditional drying methods cannot ensure the same degree of drying on both sides of the electrode plates.
  • An embodiment of the first aspect of the present application provides a method for manufacturing an electrode pole piece, including: applying an electrode slurry to a first surface of a current collector to form a first electrode layer on the first surface; forming a first electrode layer on the first surface; The current collector of an electrode layer is subjected to a first drying operation to dry the first electrode layer; the electrode slurry is applied to the second surface of the current collector treated by the first drying operation, so that on the second surface Forming a second electrode layer, the second surface is opposite to the first surface; and performing a second drying operation on the current collector formed with the first electrode layer and the second electrode layer to dry the first electrode layer and the second electrode layer Both; and performing a compensation drying operation on the second electrode layer of the current collector.
  • the first drying operation that the second electrode layer has not experienced compared with the first electrode layer can be compensated, thereby ensuring the drying of the first electrode layer and the second electrode layer.
  • the effect is consistent. Therefore, the areal density of the electrode layers on both sides of the finally manufactured electrode pole piece is basically the same, thereby improving the quality of the finally produced battery core.
  • the compensating drying operation includes: obtaining a first areal density sum of both the first electrode layer and the second electrode layer after the second drying operation and before the compensating drying operation; based on the first areal density
  • the first difference between the sum and the target area density sum determines the relevant parameters for the compensation drying operation, where the target area density sum is the area of the first electrode layer and the second electrode layer after the compensation drying operation.
  • the expected value of the sum of densities and performing a compensation drying operation on the second electrode layer of the current collector based on relevant parameters.
  • the relevant parameters for the compensation drying operation are adjusted by the first difference between the first surface density sum and the target surface density sum, so that after the compensation drying operation, the surfaces of the first electrode layer and the second electrode layer
  • the sum of densities can reach the above target sum of surface densities, that is, the drying effects of the second electrode layer and the first electrode layer are consistent.
  • the method of this embodiment can accurately determine the relevant parameters used for the compensation drying operation, thereby improving the compensation accuracy of the second electrode layer during the compensation drying operation.
  • the relevant parameters include an operating power of a compensation drying device used to perform a compensation drying operation, and based on a first difference between the first areal density sum and the target areal density sum, the compensation drying device is determined to be used for compensating drying.
  • the relevant parameters include: determining the operating power based on the first difference and a predetermined power area density relationship, where the power area density relationship represents the operating power of the compensation drying device and the surface area of the second electrode layer during the compensation drying operation. Functional relationship between density reduction values.
  • the power areal density relationship can be predetermined to determine the exact relationship between the areal density reduction value and the operating power P of the compensation drying device. By determining the operating power value based on the power area density relationship, the operating power that should be set by the compensation drying device can be obtained more accurately, further improving the compensation accuracy of the second electrode layer in the compensation drying operation.
  • the manufacturing method further includes: in a compensation drying operation, obtaining a second areal density sum of both the first electrode layer and the second electrode layer; based at least on the sum of the second areal density sum and the target areal density sum.
  • the second difference between the two is fed back to adjust the relevant parameters used to compensate for the drying operation, where the target surface density sum is the expected value of the sum of the surface densities of the first electrode layer and the second electrode layer after the compensation drying operation; and continue to perform a compensation drying operation on the second electrode layer of the current collector based on the adjusted relevant parameters for the compensation drying operation.
  • the surface density in the compensated drying operation is used to further feedback adjust the relevant parameters used in the compensated drying operation, so that the relevant parameters finally reach the target value.
  • the relevant parameters after feedback adjustment can be used for subsequent electrode pole pieces. production process. In the subsequent production process, the relevant parameters after feedback adjustment are used to make the compensation of the second electrode layer in the compensation drying operation more accurate.
  • the relevant parameters include compensating the operating power of the drying device, wherein the relevant parameters for compensating the drying operation are feedback adjusted based on at least a second difference between the second areal density sum and the target areal density sum It includes: using the second difference value as the deviation value, using the PID control algorithm to adjust the operating power of the compensation drying device.
  • the above-mentioned second difference value can be used as a deviation value for PID control calculation to obtain more accurate values of the relevant parameters.
  • performing a compensation drying operation on the second electrode layer of the current collector further includes: determining a target areal density sum, wherein determining the target areal density sum includes: obtaining the first electrode layer after the first drying operation, The third areal density before the second drying operation; determining the areal density of the first electrode layer during the first drying operation based on the third areal density and the fourth areal density of the first electrode layer before the first drying operation. Density reduction value; determine the target area density sum based on at least the area density reduction value.
  • the reduction value of the areal density of the first electrode layer during the first drying operation can be obtained. Based on the reduction value, the target areal density and the determined The target areal density sum is closer to the expected value of the sum of the areal densities of the first electrode layer and the second electrode layer after the compensation drying operation, so that more accurate parameters related to the compensation drying operation can be obtained later.
  • performing a compensation drying operation on the second electrode layer of the current collector further includes: in response to the second difference being less than a preset difference threshold, stopping the compensation drying operation.
  • the feedback adjustment of the relevant parameters can be stopped, which can reduce the calculation amount of the relevant controller while ensuring the ideal compensated drying operation.
  • An embodiment of the second aspect of the present application provides a manufacturing system for an electrode pole piece, including: a first coating device configured to apply an electrode slurry to a first surface of a current collector to form a first surface on the first surface.
  • An electrode layer ; a first drying device for performing a first drying operation on the current collector formed with the first electrode layer to dry the first electrode layer; a second coating device configured to apply the electrode slurry to The second surface of the current collector after the first drying operation is processed to form a second electrode layer on the second surface, and the second surface is opposite to the first surface;
  • the second drying device is configured in pairs to form a first
  • the current collectors of the electrode layer and the second electrode layer perform a second drying operation to dry both the first electrode layer and the second electrode layer;
  • a compensation drying device is configured to perform compensation drying of the second electrode layer of the current collector. dry operation.
  • the first drying operation that the second electrode layer has not experienced compared with the first electrode layer can be compensated, thereby ensuring that the drying effects of the first electrode layer and the second electrode layer are consistent. Therefore, the areal density of the electrode layers on both sides of the finally manufactured electrode pole piece is basically the same, thereby improving the quality of the finally produced battery core.
  • the above-mentioned manufacturing system further includes: a first areal density detection device configured to detect the first density of both the first electrode layer and the second electrode layer after the second drying operation and before the compensation drying operation. and a control device configured to determine relevant parameters for the compensation drying operation based on a first difference between the first areal density and the target areal density, wherein the target areal density is The expected value of the sum of the area densities of the first electrode layer and the second electrode layer after the drying operation, wherein the compensation drying device is further configured to perform a compensation drying operation on the second electrode layer of the current collector based on relevant parameters.
  • the relevant parameters for the compensation drying operation are adjusted by the first difference between the first surface density sum and the target surface density sum, so that after the compensation drying operation, the surfaces of the first electrode layer and the second electrode layer
  • the sum of densities can reach the above target sum of surface densities, that is, the drying effects of the second electrode layer and the first electrode layer are consistent.
  • the method of this embodiment can accurately determine the relevant parameters used for the compensation drying operation, thereby improving the compensation accuracy of the second electrode layer during the compensation drying operation.
  • the relevant parameters include the operating power of the compensation drying device for performing the compensation drying operation
  • the control device is further configured to determine the operating power based on the first difference and a predetermined power area density relationship, wherein, The power area density relationship represents the functional relationship between the operating power of the compensation drying device and the area density reduction value of the second electrode layer during the compensation drying operation.
  • the relevant parameters for the compensation drying operation are adjusted by the first difference between the first surface density sum and the target surface density sum, so that after the compensation drying operation, the surfaces of the first electrode layer and the second electrode layer
  • the sum of densities can reach the above target sum of surface densities, that is, the drying effects of the second electrode layer and the first electrode layer are consistent.
  • the system of this embodiment can accurately determine the relevant parameters used for the compensation drying operation, thereby improving the compensation accuracy of the second electrode layer during the compensation drying operation.
  • the above-mentioned manufacturing system further includes: a second areal density detection device configured to obtain the second areal density sum of both the first electrode layer and the second electrode layer during the compensation drying process, wherein the control device , further configured to feedback adjust relevant parameters for compensating the drying operation based on at least a second difference between the second areal density sum and the target areal density sum, where the target areal density sum is the the expected value of the sum of the area densities of the first electrode layer and the second electrode layer; a compensation drying device, further configured to continue to compensate the second electrode layer of the current collector based on the adjusted relevant parameters for the compensation drying operation Drying operation.
  • a second areal density detection device configured to obtain the second areal density sum of both the first electrode layer and the second electrode layer during the compensation drying process
  • the control device further configured to feedback adjust relevant parameters for compensating the drying operation based on at least a second difference between the second areal density sum and the target areal density sum, where the target areal density sum is the the expected value of the sum of the area den
  • the surface density of the electrode pole pieces in the compensation drying operation is used to further feedback adjust the relevant parameters used for the compensation drying operation.
  • the relevant parameters after the feedback adjustment can be used in the subsequent production process of the electrode pole pieces. In the subsequent production process, the relevant parameters after feedback adjustment are used to make the compensation of the second electrode layer in the compensation drying operation more accurate.
  • the relevant parameters include the operating power of the compensation drying device
  • the control device is also configured to use the second difference as the deviation value and use the PID control algorithm to adjust the operating power of the compensation drying device so that subsequent The second difference value of the manufactured electrode pole piece is reduced.
  • the above-mentioned second difference value can be used as a deviation value for PID control calculation to obtain more accurate values of the relevant parameters.
  • the above-mentioned manufacturing system further includes: a third areal density detection device configured to detect the third areal density of the first electrode layer after the first drying operation and before the second drying operation, wherein the control device , further configured to determine the areal density reduction value of the first electrode layer during the first drying operation based on the third areal density and the fourth areal density of the first electrode layer before the first drying operation; and at least based on the areal density The reduction value determines the target area density sum.
  • the reduction value of the areal density of the first electrode layer during the first drying operation can be obtained. Based on the reduction value, the target areal density and the determined The target areal density sum is closer to the expected value of the sum of the areal densities of the first electrode layer and the second electrode layer after the compensation drying operation, so that more accurate parameters related to the compensation drying operation can be obtained later.
  • control device is further configured to stop feedback adjustment of the relevant parameter in response to the second difference being less than the preset difference threshold.
  • the control device can stop feedback adjustment of the relevant parameters, which can reduce the calculation amount of the control device while ensuring the ideal compensated drying operation.
  • the above-mentioned manufacturing system further includes: a conveying device configured to drive the electrode pole piece sequentially through the first coating device, the first drying device, the second coating device, the second drying device and the compensation drying device. device.
  • the system uses a conveyor to drive the electrode pieces to undergo various operations in sequence, so it can automate the entire electrode piece manufacturing process, thereby avoiding the need for manual transportation of electrode pieces and improving the operating efficiency of the system.
  • the above-mentioned manufacturing system further includes: an oven, the oven includes an upper section and a lower section, the first drying device is one of the upper section and the lower section, and the second drying device is one of the upper section and the lower section. of the other.
  • first drying device and the second drying device are the upper and lower layers of the oven, their lengths, dimensions, and ambient temperatures are almost identical. This can ensure that the drying effects of the first drying operation and the second drying operation are basically the same, thereby avoiding deviations in the areal density of the finally formed first electrode layer and second electrode layer.
  • the compensation drying device is an infrared lamp, wherein the infrared lamp is configured to illuminate toward the second surface of the electrode plate.
  • the system uses infrared lamps to illuminate the second surface of the electrode plate to complete the compensation drying operation. Compared with other thermal radiation drying methods that affect both sides of the electrode piece, infrared lamps can only dry the second electrode layer of the electrode piece, avoiding any impact on the first electrode layer.
  • a third embodiment of the present application provides a battery cell, including: an electrode pole piece manufactured according to the above method.
  • Figure 1 is a schematic diagram of the cell assembly of a battery cell according to some embodiments of the present application.
  • Figure 2 is a schematic diagram of a manufacturing method of electrode pole pieces according to some embodiments of the present application.
  • Figure 3 is a schematic diagram of a compensation drying method according to some embodiments of the present application.
  • Figure 4 is a schematic diagram of a method for feedback adjustment of relevant parameters in a compensated drying operation according to some embodiments of the present application
  • Figure 5 is a schematic diagram of a method for determining the target areal density sum according to some embodiments of the present application.
  • Figure 6 is a schematic diagram of a manufacturing system for electrode pole pieces according to some embodiments of the present application.
  • Battery core assembly 10 anode pole piece 11, cathode pole piece 12, separator 13, tab 14, anode tab 14a, cathode tab 14b;
  • Manufacturing system 600 first coating device 610, first nozzle 611, oven 620, first drying device 621, second coating device 630, second nozzle 631, second drying device 622, compensation drying device 640 , conveyor device 650, roller 651, first surface density detection device 661, second surface density detection device 662, third surface density detection device 663, fourth surface density detection device 664.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • Power batteries are generally composed of multiple battery cells, and the cell components of the battery cells are formed by winding or folding multiple pole pieces (positive pole pads and negative pole pads). Therefore, the electrode pole piece is the structural basis of the power battery.
  • the production process of the relevant electrode pole pieces is as follows: first prepare a sheet-shaped current collector, then apply electrode slurry on both sides of the current collector, and finally dry the coated electrode slurry to form the left and right sides. All have electrode plates with electrode layers.
  • the first side of the current collector is first coated, then dried, and then the second side is coated and dried for the second time.
  • the first side will inevitably be dried once. Therefore, during the entire production process, the first side will be dried twice, which ultimately leads to inconsistent drying degrees between the first side and the second side.
  • the electrode layers formed on the two sides have different areal densities, which will ultimately affect the performance of the battery cells.
  • the applicant has designed a manufacturing method of the electrode plate after in-depth research. After the second drying, the second side is dried. Compensation drying operation can be performed on the electrode layer on the electrode plate to make the surface density of the electrode layer on both sides of the electrode pole piece consistent.
  • the areal density of the electrode layers on both sides of the electrode piece can also be detected during the production process of the electrode piece, and the relevant parameters of the compensation drying operation can be determined through the areal density of the electrode layer to improve the accuracy of the compensation drying operation. , ensure that the electrode layers on both sides are dry to the same degree.
  • the methods and systems disclosed in the embodiments of the present application can be used to manufacture electrode pole pieces.
  • the above-mentioned electrode pole pieces can be used in battery cells.
  • the battery cells can be, but are not limited to, used in electrical devices such as vehicles, ships, or aircrafts.
  • the above-mentioned battery cells, batteries, etc. can be used to form the power supply system of the electrical device.
  • FIG. 1 is a schematic diagram of a cell assembly 10 of a battery cell provided in some embodiments of the present application.
  • the battery cell assembly 10 is a component in the battery cell where electrochemical reactions occur.
  • the battery cell assembly 10 is mainly formed by winding or stacking the positive electrode sheet 11 and the negative electrode sheet 12 , and a separator 13 is usually provided between the anode electrode sheet 11 and the cathode electrode sheet 12 .
  • the portions of the anode pole piece 11 and the cathode pole piece 12 that contain active material constitute the main body of the battery assembly 10
  • the portions of the anode pole piece 11 and the cathode pole piece 12 that do not contain active material constitute the tabs 14 respectively.
  • the anode tab 14a and the cathode tab 14b may be located together at one end of the main body of the cell assembly 10 or respectively located at both ends of the main body.
  • the positive active material and the negative active material react with the electrolyte, and the tabs 14 are connected to the electrode terminals to form a current loop.
  • FIG. 2 shows a schematic diagram of a method 200 for manufacturing an electrode pole piece according to an embodiment of the present disclosure. As shown in Figure 2, the manufacturing method 200 includes the following steps:
  • Step 210 apply the electrode slurry to the first surface of the current collector to form a first electrode layer on the first surface
  • Step 220 Perform a first drying operation on the current collector on which the first electrode layer is formed to dry the first electrode layer;
  • Step 230 apply the electrode slurry to the second surface of the current collector after the first drying operation to form a second electrode layer on the second surface, and the second surface is opposite to the first surface;
  • Step 240 perform a second drying operation on the current collector formed with the second electrode layer and the second electrode layer to dry both the first electrode layer and the second electrode layer;
  • Step 250 Perform a compensation drying operation on the second electrode layer of the current collector.
  • the above-mentioned method 200 can be used to make the cathode and/or anode tab of the cell of the battery cell.
  • the slurry applied in steps 210 and 230 is the cathode slurry.
  • the slurry applied in steps 210 and 230 is an anode slurry.
  • the current collector can be copper foil or aluminum foil, and the materials of the electrode slurry include but are not limited to active materials and solvents.
  • spraying, brushing, or other suitable methods can be used to coat the first surface and the second surface of the current collector respectively.
  • the coating conditions used in these two coating operations can be the same. (For example: the coating degree, coating range and coating time are all the same) to ensure that the first electrode layer formed on the first surface and the second electrode layer formed on the second surface are substantially consistent.
  • step 220 the current collector whose first surface has been coated in step 210 can be placed in an oven for performing a drying operation for the first drying (ie, the first drying operation).
  • the surface density of the first electrode layer decreases due to being dried.
  • the above areal density reduction value is related to the operating parameters of the first drying operation, For example, parameters such as drying temperature and drying time.
  • areal density is the mass per unit area of a substance of a specified thickness.
  • the current collector whose first surface and second surface are both coated with slurry in step 230 can be placed in an oven for performing a drying operation for a second drying (i.e., second drying operate).
  • a drying operation for a second drying i.e., second drying operate
  • both the first electrode layer and the second electrode layer are dried. Therefore, the area density of the second electrode layer decreases, and the area density of the first electrode layer decreases when the area density of the first drying operation decreases. based on further reduction.
  • the above areal density reduction value is related to the operating parameters of the second drying operation, such as drying temperature, drying time and other parameters.
  • the operating parameters of the first drying operation and the second drying operation can be the same to ensure consistent drying effects in the two times.
  • step 250 it is necessary to add a compensation drying operation for the second electrode layer so that the drying effects of the first electrode layer and the second electrode layer are consistent.
  • the compensation drying operation can only dry the second electrode layer without affecting the first electrode layer.
  • the device that performs the above compensation drying operation can be, for example, an infrared device that emits infrared light. This device can only illuminate the second electrode layer to avoid affecting the first electrode layer.
  • the compensation drying operation By setting the compensation drying operation, the first drying operation that the second electrode layer has not experienced compared to the first electrode layer can be compensated, thereby ensuring that the drying effects of the first electrode layer and the second electrode layer are consistent. Therefore, the areal density of the electrode layers on both sides of the finally manufactured electrode pole piece is basically the same, thereby improving the quality of the finally produced battery core.
  • FIG. 3 shows a schematic diagram of a method 300 for compensating drying according to an embodiment of the present disclosure. As shown in Figure 3, the method 300 includes the following steps:
  • Step 310 Obtain the first areal density sum of both the first electrode layer and the second electrode layer after the second drying operation and before the compensation drying operation;
  • Step 320 Determine relevant parameters for the compensation drying operation based on the first difference between the first area density sum and the target area density sum, where the target area density sum is the first electrode after the compensation drying operation. the expected value of the sum of the areal densities of the layer and the second electrode layer; and
  • Step 330 Perform a compensation drying operation on the second electrode layer of the current collector based on relevant parameters.
  • the first sum of areal densities of both the first electrode layer and the second electrode layer can be obtained by measurement, for example, the first sum of areal densities can be detected by means of an areal density meter.
  • the surface density meter utilizes the absorption and backscattering effects of beta rays penetrating materials to achieve non-destructive and non-contact measurement of the surface density of thin film materials.
  • the areal density meter can be placed at the position where the electrode pole piece has just completed the second drying operation and is about to enter the compensation drying operation, so as to detect the above-mentioned first areal density sum.
  • the surface density meter may not be able to The method directly detects the sum of the first surface density, but it can measure the total density of the current collector, the first electrode layer and the second electrode layer. In this case, the total density of the above three can be used minus the areal density of the current collector (the areal density of the current collector can be obtained in advance and remains unchanged during various drying operations), thereby obtaining the first areal density and.
  • the target area density sum is the expected value of the sum of the area densities of the first electrode layer and the second electrode layer after the compensation drying operation.
  • the above target area density sum can be determined in advance.
  • the first difference value represents the gap existing between the sum of the areal densities of the first electrode layer and the second electrode layer and the target sum of areal densities before performing the compensation drying operation.
  • This difference will determine the relevant parameters to compensate for the drying operation.
  • the above-mentioned relevant parameters may include, for example, drying temperature, drying time, or operating power of a compensation drying device used to perform a compensation drying operation. How to determine the relevant parameters based on the first difference will be described in detail below with a specific example.
  • the relevant parameter is the operating power of the compensation drying device used to perform the compensation drying operation.
  • the compensation drying operation is used to dry the second electrode layer, so during the compensation drying operation, the areal density value of the second electrode layer will be reduced.
  • the greater the operating power of the compensation drying device the more the areal density value of the second electrode layer will be reduced.
  • represents the reduction value of the surface density of the second electrode layer
  • P represents the operating power of the compensation drying device
  • K and X are constants. Then, ⁇ can be made equal to the above-mentioned first difference, which means that the reduction value of the second electrode layer during the compensation drying operation is exactly equal to the first difference.
  • step 330 a compensation drying operation is performed on the second electrode layer of the current collector based on the relevant parameters determined in step 320 (for example, the operating power of the compensation drying device). After the compensation drying operation, the sum of the areal densities of the first electrode layer and the second electrode layer will reach the target sum of areal densities.
  • the relevant parameters for the compensation drying operation are adjusted by the first difference between the first surface density sum and the target surface density sum, so that after the compensation drying operation, the surfaces of the first electrode layer and the second electrode layer
  • the sum of densities can reach the above target sum of surface densities, that is, the drying effects of the second electrode layer and the first electrode layer are consistent.
  • the method of this embodiment can accurately determine the relevant parameters used for the compensation drying operation, thereby improving the compensation accuracy of the second electrode layer during the compensation drying operation.
  • the operating power may be determined based on the first difference and a predetermined power area density relationship, wherein the power area density relationship represents the operating power of the compensation drying device and the second electrode layer during the compensation drying operation.
  • the reduction value of the area density of the second electrode layer and the operating power of the compensation drying device are in a positive linear relationship, in other embodiments, the relationship between the two is There can also be other types of functional relationships such as quadratic relationships, exponential decay relationships, etc.
  • the power areal density relationship can be predetermined, thereby determining the exact relationship between the areal density reduction value and the operating power P of the compensation drying device.
  • FIG. 4 shows a schematic diagram of a method 400 for feedback adjustment of relevant parameters in a compensated drying operation according to an embodiment of the present disclosure. As shown in Figure 4, the method 400 includes the following steps:
  • Step 410 obtain the second areal density sum of both the first electrode layer and the second electrode layer in the compensation drying operation.
  • Step 420 Feedback and adjust relevant parameters for the compensation drying operation based on at least the second difference between the second area density sum and the target area density sum, where the target area density sum is the first area density sum after the compensation drying operation.
  • Step 430 Continue to perform a compensation drying operation on the second electrode layer of the current collector based on the adjusted relevant parameters for the compensation drying operation.
  • an area density meter may be set up at a position where the electrode piece has undergone the compensation drying operation, for detecting the second area density of both the first electrode layer and the second electrode layer during the compensation drying operation.
  • step 420 further feedback adjustment can be performed on the relevant parameters used to compensate for the drying operation.
  • the adjusted relevant parameters after feedback are used to compensate for the drying operation.
  • the compensation of the second electrode layer is more precise.
  • the relevant parameters after the above feedback adjustment can also be used in the subsequent production process of electrode pole pieces.
  • the above feedback adjustment can exist in the entire process of the compensation drying operation.
  • the second difference value of the current batch of electrode pole pieces can be used to feedback adjust the relevant parameters of the current compensation drying operation.
  • the relevant parameters will reach the target value, that is, the sum of the areal densities of the first electrode layer and the second electrode layer will be substantially equal to the target sum of areal densities after the compensated dry operation.
  • the method of this embodiment uses the areal density in the compensated drying operation to further feedback adjust the relevant parameters used for the compensated drying operation, so that the relevant parameters finally reach the target value.
  • the relevant parameters after feedback adjustment can also be used in the subsequent production process of electrode pole pieces. In the subsequent production process, the relevant parameters after feedback adjustment are used to make the compensation of the second electrode layer in the compensation drying operation more accurate.
  • the relevant parameters include compensating the operating power of the drying device.
  • the above-mentioned feedback adjustment includes: using the second difference value as the deviation value, using a PID control algorithm to adjust the operating power of the drying device so that the second difference value of the subsequently manufactured electrode pole pieces is reduced.
  • the PID control algorithm is a control algorithm that combines proportional, integral and differential links. Especially when the relationship between the relevant parameters and the reduction in surface density of the second electrode layer during the compensation drying operation is uncertain, PID control The algorithm is well suited for determining the relevant parameters mentioned above. The essence of PID control is to perform calculations according to the functional relationship of proportion, integral, and differential based on the input deviation value. The calculation results are used to control the output of the operating power of the compensation drying device.
  • the above-mentioned second difference value can be used as a deviation value for PID control. After multiple rounds of feedback adjustment, an ideal value that compensates for the operating power of the drying device is finally obtained.
  • the above-mentioned second difference value can be used as a deviation value for PID control calculation to obtain more accurate values of the relevant parameters.
  • FIG. 5 shows a schematic diagram of a method 500 for determining a target areal density sum according to an embodiment of the present disclosure.
  • the method 500 may be performed before the compensation drying operation to provide a reference for determining relevant parameters for the compensation drying operation.
  • the method 500 can also be executed in a compensation drying operation to provide a basis for feedback adjustment of relevant parameters. As shown in Figure 5, the method 500 includes the following steps:
  • Step 510 Obtain the third areal density of the first electrode layer after the first drying operation and before the second drying operation;
  • Step 520 determine the areal density reduction value of the first electrode layer during the first drying operation based on the third areal density and the fourth areal density of the first electrode layer before the first drying operation;
  • Step 530 Determine the target surface density sum at least based on the surface density reduction value.
  • an area density meter is set, so that in step 510, it is possible to obtain the results of the first electrode layer after the first drying operation and the second drying operation.
  • the fourth areal density of the first electrode layer before the first drying operation that is, the initial areal density of the first electrode layer without any drying operation, can also be detected by setting an area density meter at a corresponding position.
  • the fourth surface density can also be obtained in advance and stored as a fixed value in the memory of the relevant controller.
  • the areal density meter may not be able to directly detect the third or fourth areal density. However, it can measure both the current collector and the first electrode layer. the total density of In this case, the total density of the above two can be used minus the areal density of the current collector (the areal density of the current collector can be obtained in advance and remains unchanged during various drying operations), thereby obtaining the third areal density. Or fourth density.
  • step 520 by comparing the areal density values of the electrode piece before and after the first drying operation, the reduction value of the areal density of the first electrode layer during the first drying operation can be obtained. Since the drying effects of the second drying operation and the first drying operation are the same, it can be considered that the area density reduction value of the first electrode layer and the area density reduction value of the second electrode layer in the second drying operation are the same as those of the first drying operation. The area density reduction value of the first electrode layer during the drying operation is the same.
  • the reduction value of the areal density of the first electrode layer during the first drying operation can be obtained.
  • the target areal density sum is calculated so that the determined The target area density is closer to the expected value of the sum of the area densities of the first electrode layer and the second electrode layer after the compensation drying operation, so that more accurate parameters related to the compensation drying operation can be obtained later.
  • performing a compensation drying operation on the second electrode layer of the current collector further includes: in response to the second difference being less than a preset difference threshold, stopping the compensation drying operation. .
  • the difference threshold may be a preset value.
  • the second difference is less than the difference threshold, it means that the sum of the surface densities of the first electrode layer and the second electrode layer of the currently produced electrode sheet during the compensation drying operation has been Close enough to the target surface Density sum, there is no need for feedback adjustment, therefore, the relevant parameters of the current compensation drying operation can be kept unchanged during the subsequent generation of electrode pole pieces.
  • the feedback adjustment of the relevant parameters can be stopped, which can reduce the calculation amount of the relevant controller while ensuring the ideal compensated drying operation.
  • FIG. 6 shows a schematic diagram of a manufacturing system 600 for electrode pole pieces according to an embodiment of the present disclosure.
  • the system 600 includes: a first coating device 610, a first drying device 621, a second coating device device 630, the second drying device 622 and the compensation drying device 640.
  • the first coating device 610 is configured to apply the electrode slurry to the first surface of the current collector to form a first electrode layer on the first surface;
  • the first drying device 621 is configured to apply the first electrode layer on the first surface of the current collector.
  • the current collector performs a first drying operation to dry the first electrode layer;
  • the second coating device 630 is configured to apply the electrode slurry to the second surface of the current collector processed by the first drying operation, so as to A second electrode layer is formed on the second surface, and the second surface is opposite to the first surface;
  • the second drying device 622 is configured to perform a second drying operation on the current collector formed with the first electrode layer and the second electrode layer.
  • the compensation drying device 640 is configured to perform a compensation drying operation on the second electrode layer of the current collector.
  • the first coating device 610 is provided with a storage box for storing electrode slurry and a first nozzle 611 for discharging the electrode slurry.
  • a storage box for storing electrode slurry
  • a first nozzle 611 for discharging the electrode slurry.
  • the first drying device 621 may be a device such as an oven, an oven, or the like that dries the electrode pole pieces by raising the ambient temperature.
  • the entire electrode piece enters the first drying device 621, and the first drying device 621 performs the first drying operation on the current collector to dry the first electrode layer.
  • the second coating device 630 is provided with a storage box for storing electrode slurry and a second nozzle 631 for discharging the electrode slurry.
  • a storage box for storing electrode slurry
  • a second nozzle 631 for discharging the electrode slurry.
  • the second drying device 622 may also be a device such as an oven, an oven, or the like that dries the electrode pieces by raising the ambient temperature.
  • the entire electrode piece enters the second drying device 622, and the second drying device 622 performs the second drying operation on the current collector formed with the first electrode layer and the second electrode layer, so as to Both the first electrode layer and the second electrode layer are dried.
  • the size and model of the first drying device 621 and the second drying device 622 can be exactly the same, so that the drying effects of the first drying operation and the second drying operation are completely consistent.
  • the compensation drying device 640 may be a heat radiation device. When performing a compensation drying operation, the compensation drying device 640 only faces the second electrode layer of the current collector and is configured to perform a compensation drying operation on the second electrode layer of the current collector.
  • the first drying operation that the second electrode layer has not experienced compared with the first electrode layer can be compensated, thereby ensuring that the drying effects of the first electrode layer and the second electrode layer are consistent. Therefore, the areal density of the electrode layers on both sides of the finally manufactured electrode pole piece is basically the same, thereby improving the quality of the finally produced battery core.
  • the electrode pole piece manufacturing system 600 further includes: a first surface density detection device 661 and a control device.
  • the first areal density detection device 661 is configured to detect the first areal density sum of both the first electrode layer and the second electrode layer after the second drying operation and before the compensation drying operation.
  • the control device is configured to determine relevant parameters for compensating the drying operation based on a first difference between the first areal density sum and the target areal density sum.
  • the target areal density sum is an expected value of the sum of the areal densities of the first electrode layer and the second electrode layer after the compensation drying operation, wherein the compensation drying device 640 is further configured to conduct the second electrode layer of the current collector based on the relevant parameters. Compensate for drying operations.
  • the first areal density detection device 661 may be an areal density meter.
  • the areal density meter utilizes the absorption and backscattering effects of ⁇ -rays when penetrating materials to achieve non-destructive and non-contact measurement of the areal density of thin film materials.
  • the control device is a device with a computing function, and the control device is used to determine relevant parameters for the compensation drying operation, so that the compensation drying device 640 operates according to the determined relevant parameters.
  • the relevant parameters for the compensation drying operation are adjusted by the first difference between the first surface density sum and the target surface density sum, so that after the compensation drying operation, the surfaces of the first electrode layer and the second electrode layer
  • the sum of densities can reach the above target sum of surface densities, that is, the drying effects of the second electrode layer and the first electrode layer are consistent.
  • the method of this embodiment can accurately determine the relevant parameters used for the compensation drying operation, thereby improving the compensation accuracy of the second electrode layer during the compensation drying operation.
  • the relevant parameters include the operating power of the compensation drying device 640 for performing the compensation drying operation.
  • the control device is further configured to determine the operating power based on the first difference and the predetermined power areal density relationship.
  • the power area density relationship represents a functional relationship between the operating power of the compensation drying device 640 and the area density reduction value of the second electrode layer during the compensation drying operation.
  • the operating power of the compensation drying device 640 is directly related to the drying intensity of the compensation drying operation. Generally speaking, the higher the operating power, the higher the drying intensity of the compensated drying operation. Therefore, the greater the operating power of the compensation drying device, the more the areal density value of the second electrode layer will be reduced.
  • the relevant parameters for the compensation drying operation are adjusted by the first difference between the first surface density sum and the target surface density sum, so that after the compensation drying operation, the surfaces of the first electrode layer and the second electrode layer The sum of densities can reach The above target surface density sum makes the drying effect of the second electrode layer and the first electrode layer consistent.
  • the system of this embodiment can accurately determine the relevant parameters used for the compensation drying operation, thereby improving the compensation accuracy of the second electrode layer during the compensation drying operation.
  • the manufacturing system further includes: a second areal density detection device 662 configured to detect the second areal density sum of both the first electrode layer and the second electrode layer in the compensation drying operation.
  • the control device is further configured to feedback-adjust relevant parameters for compensating the drying operation based on at least a second difference between the second areal density sum and the target areal density sum.
  • the compensation drying device continues to perform a compensation drying operation on the second electrode layer of the current collector based on the adjusted relevant parameters for the compensation drying operation.
  • the system can also perform further feedback adjustment on the relevant parameters used to compensate for the drying operation.
  • the feedback-adjusted relevant parameters make the compensation of the second electrode layer by the compensation drying operation more accurate.
  • the relevant parameters after the above feedback adjustment will be used in the subsequent production process of electrode pole pieces.
  • the system of this embodiment uses the surface density of the finally produced electrode pieces to further perform feedback adjustment on the relevant parameters used to compensate for the drying operation.
  • the relevant parameters after feedback adjustment can be used in the subsequent production process of the electrode pieces. In the subsequent production process, the relevant parameters after feedback adjustment are used to make the compensation of the second electrode layer in the compensation drying operation more accurate.
  • the relevant parameters include the operating power of the compensation drying device 640.
  • the control device is also configured to use the second difference as the deviation value and use the PID control algorithm to adjust the operating power of the compensation drying device so that subsequent The compensation drying reduces the second difference of the electrode pole piece.
  • the above-mentioned second difference value can be used as a deviation value for PID control calculation to obtain more accurate values of the relevant parameters.
  • the manufacturing system further includes: a third areal density detection device 663 configured to detect the third areal density of the first electrode layer after the first drying operation and before the second drying operation.
  • the control device is further configured to determine the areal density reduction value of the first electrode layer during the first drying operation based on the third areal density and the fourth areal density of the first electrode layer before the first drying operation, and at least based on The area density reduction value determines the target area density sum.
  • the reduction value of the areal density of the first electrode layer during the first drying operation can be obtained. Based on the reduction value, the target areal density and the determined The target areal density sum is closer to the expected value of the sum of the areal densities of the first electrode layer and the second electrode layer after the compensation drying operation, so that more accurate parameters related to the compensation drying operation can be obtained later.
  • control device is further configured to stop the compensation drying operation in response to the second difference being less than the preset difference threshold.
  • the control device can stop the feedback adjustment of the relevant parameters, which can reduce the calculation of the control device while ensuring the ideal compensated drying operation. quantity.
  • the manufacturing system further includes: a conveying device 650 configured to drive the electrode pole piece through the first coating device 610, the first drying device 621, the second coating device 630, the second drying device in sequence. Drying device 622 and compensation drying device 640.
  • the conveying device 650 may be a conveyor belt, for example.
  • the electrode pole pieces (or current collector pieces) are placed on the conveyor belt and move along with the conveyor belt.
  • the conveyor belt drives the electrode pole pieces through the first coating device 610, the first drying device 621, the second coating device 630, the second drying device 622 and the compensation drying device 640 in sequence, so that the electrode pole pieces sequentially undergo the first a coating operation, a first drying operation, a second coating operation, a second drying operation and a compensation drying operation.
  • the system further includes an areal density detection device (for example, the first areal density detection device 661 and the second areal density detection device 662, etc.)
  • the conveyor belt also drives the electrode pole piece through the detection area of the areal density detection device.
  • the conveyor 650 is described as a conveyor belt, it can be understood that in other embodiments, the conveyor 650 can also be other forms of conveyor 650 such as transport rails. In this case, the electrodes The pole piece can be held by some clamping devices and moved along the transportation track to undergo the above operation processes in sequence.
  • the system of this embodiment uses the transmission device 650 to drive the electrode pieces to undergo various operations in sequence, so it can automate the entire electrode piece manufacturing process, thereby avoiding the need for manual transportation of the electrode pieces and improving the operating efficiency of the system.
  • the manufacturing system further includes an oven 620, which includes an upper section and a lower section.
  • the first drying device 621 is one of the upper section and the lower section
  • the second drying device 622 is the other one of the upper section and the lower section.
  • the oven includes upper and lower sections, and the space sizes of these two sections are exactly the same.
  • the first drying device 621 and the second drying device 622 may be the lower section and the upper section of the oven 620 respectively.
  • the conveyor belt first extends into the lower section along the X-axis direction shown in FIG. 6 and travels along the length direction of the lower section to drive the electrode pieces to undergo the first drying operation. Subsequently, the conveyor belt travels upward (Y-axis direction shown in Figure 6), and then extends into the upper section along the negative X-axis direction shown in Figure 6 and travels along the length direction of the upper section to drive the electrode pole pieces through the second Drying operation.
  • first drying device 621 and the second drying device 622 are the upper and lower layers of the oven 620, their lengths, sizes, and ambient temperatures are almost identical.
  • first drying device 621 and the second drying device 622 are respectively shown as The oven 620 has a lower section and an upper section, but in other embodiments, the first drying device 621 can be the upper section, and the second drying device 622 can be the lower section.
  • first drying device 621 and the second drying device 622 are the upper and lower layers of the oven, their lengths, sizes, and ambient temperatures are almost identical. This can ensure that the drying effects of the first drying operation and the second drying operation are basically the same, thereby avoiding deviations in the areal density of the finally formed first electrode layer and second electrode layer.
  • the compensation drying device 640 is an infrared lamp.
  • the infrared lamp tube is configured to illuminate toward the second surface of the electrode pole piece.
  • the transport device 650 is, for example, a conveyor belt, when the electrode pieces are transported to the compensation drying device 640, their second electrode layer faces the infrared lamp, so the infrared lamp only dries the second electrode layer.
  • the system of this embodiment uses an infrared lamp to illuminate the second surface of the electrode plate to complete the compensation drying operation. Compared with other thermal radiation drying methods that affect both sides of the electrode piece, infrared lamps can only dry the second electrode layer of the electrode piece, avoiding any impact on the first electrode layer.
  • the present disclosure also provides a battery cell.
  • the battery cell includes an electrode pole piece manufactured by the above method, for example, an electrode pole piece manufactured using the method 200 .
  • an electrode pole piece manufactured using the method 200 for example, an electrode pole piece manufactured using the method 200 .
  • Figure 6 shows a schematic diagram of a manufacturing system 600 for electrode pole pieces according to an embodiment of the present disclosure.
  • the system 600 includes: a first coating device 610, a fourth surface density detection Device 664, oven 620, third surface density detection device 663, second coating device 630, first surface density detection device 661, second surface density detection device 662, conveyor device 650 and compensation drying device 640.
  • the conveying device 650 includes a conveyor belt and a plurality of rollers 651 for sequentially conveying the preforms (current collectors) of the electrode pole pieces to the above-mentioned plurality of devices.
  • the oven 620 includes an upper section and a lower section.
  • the first coating device 610 applies the electrode slurry to the first surface of the current collector to form a first electrode layer on the first surface.
  • the lower section of the oven 620 performs a first drying operation on the current collector formed with the first electrode layer to dry the first electrode layer.
  • the second coating device 630 applies the electrode slurry to the second surface of the current collector processed by the first drying operation to form a second electrode layer on the second surface.
  • the upper section of the oven 620 is configured to perform a second drying operation on the current collector formed with the first electrode layer and the second electrode layer, so as to dry both the first electrode layer and the second electrode layer.
  • the compensation drying device 640 is configured to perform a compensation drying operation on the second electrode layer of the current collector.
  • the first surface density detection device 661, the second surface density detection device 662, the third surface density detection device 663 and the fourth surface density detection device 664 may all be surface density meters, and these surface density meters are used to detect the third surface density at the corresponding position.
  • the electrode pole piece manufacturing method 200 of the present application can be applied to the above-mentioned system 600.
  • the method 200 can include the following steps:
  • Step 210 apply the electrode slurry to the first surface of the current collector to form a first electrode layer on the first surface
  • Step 220 Perform a first drying operation on the current collector on which the first electrode layer is formed to dry the first electrode layer;
  • Step 230 apply the electrode slurry to the second surface of the current collector after the first drying operation to form a second electrode layer on the second surface, and the second surface is opposite to the first surface;
  • Step 240 perform a second drying operation on the current collector formed with the second electrode layer to dry both the first electrode layer and the second electrode layer;
  • Step 250 Perform a compensation drying operation on the second electrode layer of the current collector.
  • the compensation drying operation By setting the compensation drying operation, the first drying operation that the second electrode layer has not experienced compared to the first electrode layer can be compensated, thereby ensuring that the drying effects of the first electrode layer and the second electrode layer are consistent. Therefore, the areal density of the electrode layers on both sides of the finally manufactured electrode pole piece is basically the same, thereby improving the quality of the finally produced battery core.
  • first surface density detection device 661, the second surface density detection device 662, the third surface density detection device 663 and the fourth surface density detection device 664 are used to detect the surface density or the first surface density of the first electrode layer at the corresponding position.
  • the surface densities of the electrode layer and the second electrode layer are summed, so that the relevant operating parameters for the compensation drying operation can be adjusted subsequently based on these surface densities and data, thereby improving the compensation accuracy of the compensation drying operation.
  • the specific adjustment method has been described in detail in the above-mentioned methods 300-500, and will not be described again here.

Abstract

本申请提供一种电极极片的制造方法及制造系统、电池单体,其中,制造方法包括:将电极浆料涂覆到集流体的第一表面,以在第一表面上形成第一电极层;对形成有第一电极层的集流体进行第一烘干操作,以烘干第一电极层;将电极浆料涂覆到经第一烘干操作处理后的集流体的第二表面,以在第二表面上形成第二电极层,第二表面与第一表面相对;以及对形成有第一电极层和第二电极层的集流体进行第二烘干操作,以烘干第一电极层和第二电极层两者;以及对集流体的第二电极层进行补偿烘干操作。

Description

电极极片的制造方法及制造系统、电池单体
交叉引用
本申请引用于2022年8月17日递交的名称为“电极极片的制造方法及制造系统、电池单体”的第202210988890.6号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及电池技术领域,尤其涉及一种电极极片的制造方法及制造系统、电池单体。
背景技术
电芯是构成电池单体的重要部件,电芯一般由多个电极极片通过叠加或卷绕的方式构成。电极极片的两面通过涂覆的方式形成电极层。电极层能够提高电极的使用寿命,电极表面涂层的稳定性直接决定了电极能否长期的使用。
然而现有涂层电极在加工制作过程中存在的以下问题:需要双面涂覆复合涂层浆料的电极极片需要进行分批次操作,先针对电极极片的其中一面进行涂覆、干燥,然后再对另一面进行涂覆、干燥。这种干燥方式无法确保双面的干燥程度相同,若电极极片两面涂料干燥不均匀,将严重影响电极的生产质量。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出电极极片的制造方法及制造系统、电池单体,以改善传统的干燥方式无法确保电极极片双面的干燥程度相同的问题。
本申请第一方面的实施例提供一种电极极片的制造方法,包括:将电极浆料涂覆到集流体的第一表面,以在第一表面上形成第一电极层;对形成有第一电极层的集流体进行第一烘干操作,以烘干第一电极层;将电极浆料涂覆到经第一烘干操作处理后的集流体的第二表面,以在第二表面上形成第二电极层,第二表面与第一表面相对;以及对形成有第一电极层和第二电极层的集流体进行第二烘干操作,以烘干第一电极层和第二电极层两者;以及对集流体的第二电极层进行补偿烘干操作。
本申请实施例的技术方案中,通过设置补偿干燥操作可以补偿第二电极层相较于第一电极层未经历的第一烘干操作,从而确保第一电极层和第二电极层的烘干效果一致。因此,最终制造出的电极极片两侧的电极层的面密度基本一致,从而提高最终生产的电芯的质量。
在一些实施例中,补偿烘干操作包括:获取在第二烘干操作之后、补偿烘干操作之前的第一电极层和第二电极层两者的第一面密度和;基于第一面密度和与目标面密度和之间的第一差值,确定用于补偿烘干操作的相关参数,其中,目标面密度和为在补偿烘干操作之后的第一电极层和第二电极层的面密度之和的期望值;以及基于相关参数对集流体的第二电极层进行补偿烘干操作。
通过第一面密度和与目标面密度和之间的第一差值对用于补偿烘干操作的相关参数进行调节,使得在补偿烘干操作后,第一电极层和第二电极层的面密度之和可以达到上述目标面密度和,也就是使得第二电极层和第一电极层的烘干效果一致。本实施例的方法能够准确确定用于补偿烘干操作的相关参数,从而提高了补偿烘干操作对第二电极层的补偿精度。
在一些实施例中,相关参数包括用于执行补偿烘干操作的补偿烘干装置的运行功率,基于第一面密度和与目标面密度和之间的第一差值,确定用于补偿烘干的相关参数包括:基于第一差值和预先确定的功率面密度关系确定运行功率,其中,功率面密度关系表示补偿烘干装置的运行功率和第二电极层在补偿烘干操作过程中的面密度减少值之间的函数关系。
可以预先确定的功率面密度关系,从而确定面密度减少值和补偿烘干装置的运行功率P之间的确切关系。基于功率面密度关系来确定运行功率值,可以更加确切地得到补偿烘干装置应当设置的运行功率,进一步提高了补偿烘干操作对第二电极层的补偿精度。
在一些实施例中,制造方法还包括:在补偿烘干操作中,获取第一电极层和第二电极层两者的第二面密度和;至少基于第二面密度和与目标面密度和之间的第二差值,反馈调节用于补偿烘干操作的相关参数,其中,目标面密度和为在补偿烘干操作之后的第一电极层和第二电极层的面密度之和的期望值;以及基于经调节后的用于补偿烘干操作的相关参数对集流体的第二电极层继续进行补偿烘干操作。
利用补偿烘干操作中的面密度对用于补偿烘干操作的相关参数进行进一步地反馈调节,使得相关参数最终达到目标值。反馈调节后的相关参数可以用于后续电极极片的 生产过程。在后续的生产过程中,使用反馈调节后的相关参数使得补偿烘干操作对第二电极层的补偿更加精确。
在一些实施例中,相关参数包括补偿烘干装置的运行功率,其中,至少基于第二面密度和与目标面密度和之间的第二差值,反馈调节用于补偿烘干操作的相关参数包括:以第二差值为偏差值,利用PID控制算法对补偿烘干装置的运行功率进行调节。
对于相关参数是诸如运行功率或温度等可以表示为数值的参数,可以将上述第二差值作为偏差值进行PID控制计算,以得到相关参数更加准确的数值。
在一些实施例中,对集流体的第二电极层进行补偿烘干操作还包括:确定目标面密度和,其中,确定目标面密度和包括:获取第一电极层在第一烘干操作之后、在第二烘干操作之前的第三面密度;根据第三面密度和第一电极层在第一烘干操作之前的第四面密度确定在第一烘干操作过程中第一电极层的面密度减少值;至少根据面密度减少值确定目标面密度和。
通过比对电极极片历经第一烘干操作前后的面密度值,可以得到在第一烘干操作过程中第一电极层的面密度减少值,基于减少值计算得到目标面密度和使得确定的目标面密度和更接近在补偿烘干操作之后的第一电极层与第二电极层的面密度之和的期望值,从而后续能够得到更加精确的补偿烘干操作的相关参数。
在一些实施例中,在对集流体的第二电极层进行补偿烘干操作还包括:响应于第二差值小于预设的差值阈值,停止进行补偿烘干操作。
在确定第二差值小于预设的差值阈值时,可以停止对相关参数的反馈调节,这样在保证达到理想的补偿烘干操作的同时,可以减少相关控制器的计算量。
本申请第二方面的实施例提供一种电极极片的制造系统,包括:第一涂覆装置,配置成将电极浆料涂覆到集流体的第一表面,以在第一表面上形成第一电极层;第一烘干装置,对形成有第一电极层的集流体进行第一烘干操作,以烘干第一电极层;第二涂覆装置,配置成将电极浆料涂覆到经第一烘干操作处理后的集流体的第二表面,以在第二表面上形成第二电极层,第二表面与第一表面相对;第二烘干装置,配置成对形成有第一电极层和第二电极层的集流体进行第二烘干操作,以烘干第一电极层和第二电极层两者;补偿烘干装置,配置成对集流体的第二电极层进行补偿烘干操作。
通过设置补偿干燥装置可以补偿第二电极层相较于第一电极层未经历的第一烘干操作,从而确保第一电极层和第二电极层的烘干效果一致。因此,最终制造出的电极极片两侧的电极层的面密度基本一致,从而提高最终生产的电芯的质量。
在一些实施例中,上述制造系统还包括:第一面密度检测装置,配置成检测在第二烘干操作之后、补偿烘干操作之前的第一电极层和第二电极层两者的第一面密度和;以及控制装置,配置成基于第一面密度和与目标面密度和之间的第一差值,确定用于补偿烘干操作的相关参数,其中,目标面密度和为在补偿烘干操作之后的第一电极层和第二电极层的面密度之和的期望值,其中补偿烘干装置,还配置成基于相关参数对集流体的第二电极层进行补偿烘干操作。
通过第一面密度和与目标面密度和之间的第一差值对用于补偿烘干操作的相关参数进行调节,使得在补偿烘干操作后,第一电极层和第二电极层的面密度之和可以达到上述目标面密度和,也就是使得第二电极层和第一电极层的烘干效果一致。本实施例的方法能够准确确定用于补偿烘干操作的相关参数,从而提高了补偿烘干操作对第二电极层的补偿精度。
在一些实施例中,相关参数包括用于执行补偿烘干操作的补偿烘干装置的运行功率,控制装置,还配置成基于第一差值和预先确定的功率面密度关系确定运行功率,其中,功率面密度关系表示补偿烘干装置的运行功率和第二电极层在补偿烘干操作过程中的面密度减少值之间的函数关系。
通过第一面密度和与目标面密度和之间的第一差值对用于补偿烘干操作的相关参数进行调节,使得在补偿烘干操作后,第一电极层和第二电极层的面密度之和可以达到上述目标面密度和,也就是使得第二电极层和第一电极层的烘干效果一致。本实施例的系统能够准确确定用于补偿烘干操作的相关参数,从而提高了补偿烘干操作对第二电极层的补偿精度。
在一些实施例中,上述制造系统还包括:第二面密度检测装置,配置成在补偿烘干过程中,获取第一电极层和第二电极层两者的第二面密度和,其中控制装置,还配置成至少基于第二面密度和与目标面密度和之间的第二差值,反馈调节用于补偿烘干操作的相关参数,其中,目标面密度和为在补偿烘干操作之后的第一电极层和第二电极层的面密度之和的期望值;补偿烘干装置,还配置成基于经调节后的用于补偿烘干操作的相关参数对集流体的第二电极层继续进行补偿烘干操作。
利用补偿烘干操作中的电极极片的面密度对用于补偿烘干操作的相关参数进行进一步地反馈调节,反馈调节后的相关参数可以用于后续电极极片的生产过程。在后续的生产过程中,使用反馈调节后的相关参数使得补偿烘干操作对第二电极层的补偿更加精确。
在一些实施例中,相关参数包括补偿烘干装置的运行功率,控制装置,还配置成以第二差值为偏差值,利用PID控制算法对补偿烘干装置的运行功率进行调节,以使得后续制造的电极极片的第二差值减小。
对于相关参数是诸如运行功率或温度等可以表示为数值的参数,可以将上述第二差值作为偏差值进行PID控制计算,以得到相关参数更加准确的数值。
在一些实施例中,上述制造系统还包括:第三面密度检测装置,配置成检测第一电极层在第一烘干操作之后、在第二烘干操作之前的第三面密度,其中控制装置,还配置成根据第三面密度和第一电极层在第一烘干操作之前的第四面密度确定在第一烘干操作过程中第一电极层的面密度减少值;以及至少根据面密度减少值确定目标面密度和。
通过比对电极极片历经第一烘干操作前后的面密度值,可以得到在第一烘干操作过程中第一电极层的面密度减少值,基于减少值计算得到目标面密度和使得确定的目标面密度和更接近在补偿烘干操作之后的第一电极层与第二电极层的面密度之和的期望值,从而后续能够得到更加精确的补偿烘干操作的相关参数。
在一些实施例中,控制装置,还配置成响应于第二差值小于预设的差值阈值,停止对相关参数的反馈调节。
在确定第二差值小于预设的差值阈值时,控制装置可以停止对相关参数的反馈调节,这样在保证达到理想的补偿烘干操作的同时,可以减少控制装置的计算量。
在一些实施例中,上述制造系统还包括:传送装置,配置成驱动电极极片依次通过第一涂覆装置、第一烘干装置、第二涂覆装置、第二烘干装置以及补偿烘干装置。
系统利用传送装置驱动电极极片依次经历各种操作,因此能够自动化进行整个电极极片制造的流程,从而避免了使用人工运输电极极片,提高了系统的运行效率。
在一些实施例中,上述制造系统还包括:烘箱,烘箱包括上层区间和下层区间,第一烘干装置为上层区间和下层区间中的一者,第二烘干装置为上层区间和下层区间中的另一者。
由于第一烘干装置和第二烘干装置是烤箱的上下两层,因此,它们的长度、尺寸、环境温度几乎完全相同。这样可以确保第一烘干操作和第二烘干操作的烘干效果基本一致,从而避免最终形成的第一电极层和第二电极层的面密度出现偏差。
在一些实施例中,补偿烘干装置为红外灯管,其中,红外灯管被配置成朝向电极极片的第二表面照射。
系统利用红外灯管朝向电极极片的第二表面照射,以完成补偿烘干操作。相较于其他热辐射干燥会影响电极极片的两面,红外灯管可以仅对电极极片的第二电极层进行干燥,避免了对第一电极层造成影响。
本申请第三方面的实施例提供一电池单体,包括:根据上述的方法制造的电极极片。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
在附图中,除非另外规定,否则贯穿多个附图相同的附图标记表示相同或相似的部件或元素。这些附图不一定是按照比例绘制的。应该理解,这些附图仅描绘了根据本申请公开的一些实施方式,而不应将其视为是对本申请范围的限制。为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例的电池单体的电芯组件的示意图;
图2为本申请一些实施例的电极极片的制造方法的示意图;
图3为本申请一些实施例的补偿烘干的方法的示意图;
图4为本申请一些实施例的在补偿烘干操作中对相关参数进行反馈调节的方法的示意图;
图5为本申请一些实施例的确定目标面密度和的方法的示意图;
图6本申请一些实施例的电极极片的制造系统的示意图。
附图标记说明:
电芯组件10,阳极极片11,阴极极片12,隔膜13,极耳14,阳极极耳14a,阴极极耳14b;
制造系统600,第一涂覆装置610,第一喷嘴611,烘箱620,第一烘干装置621,第二涂覆装置630,第二喷嘴631,第二烘干装置622,补偿烘干装置640,传送装置650,辊651,第一面密度检测装置661,第二面密度检测装置662,第三面密度检测装置663,第四面密度检测装置664。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
动力电池一般由多个电池单体构成,而电池单体的电芯组件又是由多个极片(正极极片和负极极片)卷绕或折叠而形成。因此,电极极片是动力电池的构造基础。相关的电极极片的生产流程如下:首先预备一个片状的集流体,然后在集流体的两个侧面分别涂覆电极浆料,最后对涂覆的电极浆料进行烘干从而形成左右两侧都带有电极层的电极极片。
本申请人注意到,在相关的电极极片的生产流程中,首先对集流体的第一面进行涂覆,然后进行干燥处理,然后涂覆第二面,并进行第二次干燥。在进行第二次干燥时,第一面也会不可避免地被干燥一次,因此,在整个生产流程中,第一面被干燥两次,最终导致第一面和第二面的干燥程度不一致,两个侧面上形成的电极层的面密度不同,这最终将会影响电池单体的性能。
为了缓解电芯膨胀力的问题,申请人研究发现,可以在第二次干燥之后,对第二面上的电极层进行补偿烘干操作,以使得第一面上的电极层和第二面上的电极层的干燥程度保持一致,从而使得上述两个电极层的面密度一致,以提高最终得到的电池单体的性能。
基于以上考虑,为了解决电极极片两个侧面的电极层干燥程度不一致的问题,申请人经过深入研究,设计了一种电极极片的制造方法,通过在第二次干燥之后,对第二面上的电极层进行补偿烘干操作,可以使得电极极片两个侧面的电极层的面密度一致。
另外,还可以在电极极片的生产过程中检测电极极片两个侧面的电极层的面密度,通过电极层的面密度确定补偿烘干操作的相关参数,以提高补偿烘干操作的精确度,确保两个侧面的电极层干的燥程度一致。
本申请实施例公开的方法及系统可以用于制造电极极片,上述电极极片可以用于电池单体,电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用上述电池单体、电池等组成该用电装置的电源系统。
请参照图1,图1为本申请一些实施例提供的电池单体的电芯组件10的示意图。电芯组件10是电池单体中发生电化学反应的部件。电芯组件10主要由正极片11和负极片12卷绕或层叠放置形成,并且通常在阳极极片11与阴极极片12之间设有隔膜13。阳极极片11和阴极极片12具有活性物质的部分构成电芯组件10的主体部,阳极极片11和阴极极片12不具有活性物质的部分各自构成极耳14。阳极极耳14a和阴极极耳14b可以共同位于电芯组件10主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳14连接电极端子以形成电流回路。
图2示出了根据本公开实施例的电极极片的制造方法200的示意图。如图2所示,该制造方法200包括以下步骤:
步骤210,将电极浆料涂覆到集流体的第一表面,以在第一表面上形成第一电极层;
步骤220,对形成有第一电极层的集流体进行第一烘干操作,以烘干第一电极层;
步骤230,将电极浆料涂覆到经第一烘干操作处理后的集流体的第二表面,以在第二表面上形成第二电极层,第二表面与第一表面相对;以及
步骤240,对形成有第二电极层和第二电极层的集流体进行第二烘干操作,以烘干第一电极层和第二电极层两者;以及
步骤250,对集流体的第二电极层进行补偿烘干操作。
上述方法200可以用于制作电池单体的电芯的阴极和/或阳极极片。当制作阴极极片时,步骤210和步骤230所涂覆的浆料是阴极浆料,当制作阳极极片时,步骤210和步骤230所涂覆的浆料是阳极浆料。集流体可以是铜箔或铝箔,电极浆料的材料包括但不限于活性材料和溶剂。在步骤210和步骤230中,可以采用喷涂、涂刷或其他合适的方式分别对集流体的第一表面和第二表面进行涂覆,这两次的涂覆操作过程采用的涂覆条件可以相同(例如:涂覆程度、涂覆范围以及涂覆时间均相同),以确保第一表面上形成的第一电极层和第二表面上形成的第二电极层基本一致。
在步骤220中,可以将步骤210中第一表面已经涂覆好的集流体放置于用于执行烘干操作的烘箱中进行第一次烘干(即,第一烘干操作)。在第一烘干操作中,第一电极层由于被干燥,其面密度值减少。上述面密度减少值和第一烘干操作的运行参数相关, 例如和干燥的温度、干燥的时间等参数。在工程材料领域,面密度是指定厚度的物质单位面积的质量。
在步骤240中,可以将步骤230中第一表面和第二表面均已涂覆浆料的集流体放置于用于执行烘干操作的烘箱中进行第二次烘干(即,第二烘干操作)。在第二烘干操作中,第一电极层和第二电极层均被干燥,因此,第二电极层的面密度值减少,第一电极层的面密度在第一烘干操作面密度减少的基础上进一步减少。上述面密度减少值和第二烘干操作的运行参数相关,例如和干燥的温度、干燥的时间等参数。第一烘干操作和第二烘干操作的运行参数可以相同,以确保两次烘干的效果一致。
由于第一电极层经历了两次烘干(即,第一烘干操作和第二烘干操作),而第二电极层仅经历了一次烘干(即,第二烘干操作),因此,在步骤250中,需要为第二电极层增加补偿烘干操作,以使得第一电极层和第二电极层的干燥效果一致。补偿烘干操作可以仅对第二电极层进行干燥,而不影响第一电极层。执行上述补偿烘干操作的装置例如可以是发射红外光线的红外装置,该装置可以仅对第二电极层进行照射,以避免影响第一电极层。
通过设置补偿干燥操作可以补偿第二电极层相较于第一电极层未经历的第一烘干操作,从而确保第一电极层和第二电极层的烘干效果一致。因此,最终制造出的电极极片两侧的电极层的面密度基本一致,从而提高最终生产的电芯的质量。
图3示出了根据本公开实施例的补偿烘干的方法300的示意图。如图3所示,该方法300包括以下步骤:
步骤310,获取在第二烘干操作之后、补偿烘干操作之前的第一电极层和第二电极层两者的第一面密度和;
步骤320,基于第一面密度和与目标面密度和之间的第一差值,确定用于补偿烘干操作的相关参数,其中,目标面密度和为在补偿烘干操作之后的第一电极层和第二电极层的面密度之和的期望值;以及
步骤330,基于相关参数对集流体的第二电极层进行补偿烘干操作。
在步骤310中,第一电极层和第二电极层两者的第一面密度和可以通过测量得到,例如可以借助于面密度仪来检测上述第一面密度和。面密度仪利用β射线穿透物质时的吸收、反散射效应实现无损非接触式测量薄膜类材料的面密度。面密度仪可以放置在电极极片刚完成第二烘干操作、即将进入补偿烘干操作的位置上,从而用于检测上述第一面密度和。需要补充说明的是,由于集流体也存在一定的厚度,因此,面密度仪可能无 法直接检测出第一面密度和,但是,其能够测出集流体、第一电极层和第二电极层这三者的总密度。在这种情况下,可以使用上述三者的总密度减去集流体的面密度(集流体的面密度可以提前获得,并且在各种烘干操作中保持不变),从而得到第一面密度和。
目标面密度和为在补偿烘干操作之后的第一电极层和第二电极层的面密度之和的期望值,上述目标面密度和可以预先确定,当补偿烘干操作之后的第一电极层和第二电极层的面密度之和能够达到目标面密度和时,证明第二电极层达到了和第一电极层相同的干燥程度。
在步骤320中,第一差值表示在执行补偿烘干操作之前,第一电极层和第二电极层的面密度之和与目标面密度和之间存在的差距。该差距将决定补偿烘干操作的相关参数。上述相关参数例如可以包括干燥温度、干燥时间或用于执行补偿干燥操作的补偿干燥装置的运行功率等。下面将结合一具体示例详细说明如何基于第一差值确定相关参数。
在示例中,相关参数为用于执行补偿干燥操作的补偿干燥装置的运行功率。如上文所述,补偿干燥操作用于干燥第二电极层,因此在补偿干燥操作中,第二电极层的面密度值将会减少。一般而言,补偿干燥装置的运行功率越大,第二电极层的面密度值将会减少的越多,假设存在以下关系:
△ρ=K×P+X,………………………………(1)
其中,△ρ表示第二电极层的面密度的减少值,P表示补偿干燥装置的运行功率,K和X为常数。那么,可以令△ρ等于上述第一差值,即表示使得第二电极层在补偿干燥操作中的减少值刚好等于第一差值。通过求解上述公式(1)得到补偿干燥装置应当设置的运行功率P。
在步骤330中,基于步骤320中确定的相关参数(例如,补偿干燥装置的运行功率)对集流体的第二电极层进行补偿烘干操作。补偿烘干操作后,第一电极层和第二电极层的面密度之和将达到目标面密度和。
通过第一面密度和与目标面密度和之间的第一差值对用于补偿烘干操作的相关参数进行调节,使得在补偿烘干操作后,第一电极层和第二电极层的面密度之和可以达到上述目标面密度和,也就是使得第二电极层和第一电极层的烘干效果一致。本实施例的方法能够准确确定用于补偿烘干操作的相关参数,从而提高了补偿烘干操作对第二电极层的补偿精度。
在一些实施例中,可以基于第一差值和预先确定的功率面密度关系确定运行功率,其中,功率面密度关系表示补偿烘干装置的运行功率和第二电极层在补偿烘干操作过程中的面密度减少值之间的函数关系。
如上述公式(1)所示,补偿烘干装置的运行功率P和第二电极层在补偿烘干操作过程中的面密度减少值△ρ存在线性关系,因此,可以基于上述预先确定的功率面密度关系确定运行功率。公式(1)中的K和X等常数可以通过实验数据拟合确定。
需要补充说明的是,虽然在本实施例中,第二电极层的面密度的减少值和补偿干燥装置的运行功率是呈正向线性关系的,但是,在另外一些实施例中,这两者之间也可以是诸如二次关系、指数衰减关系等其他类型的函数关系。
在本实施例中,可以预先确定的功率面密度关系,从而确定面密度减少值和补偿烘干装置的运行功率P之间的确切关系。基于功率面密度关系来确定运行功率值,可以更加确切地得到补偿烘干装置应当设置的运行功率,进一步提高了补偿烘干操作对第二电极层的补偿精度。
图4示出了根据本公开实施例的在补偿烘干操作中对相关参数进行反馈调节的方法400的示意图。如图4所示,该方法400包括以下步骤:
步骤410,获取在补偿烘干操作中的第一电极层和第二电极层两者的第二面密度和;以及
步骤420,至少基于第二面密度和与目标面密度和之间的第二差值,反馈调节用于补偿烘干操作的相关参数,其中,目标面密度和为在补偿烘干操作之后的第一电极层和第二电极层的面密度之和的期望值。
步骤430,基于经调节后的用于补偿烘干操作的相关参数对集流体的第二电极层继续进行补偿烘干操作。
在步骤410中,可以在电极极片经历完补偿烘干操作的位置设置面密度仪,以用于检测在补偿烘干操作中的第一电极层和第二电极层两者的第二面密度和。
在补偿烘干操作中,第一电极层和第二电极层的面密度之和可能与目标面密度和仍然存在差距。即使在补偿烘干操作时对相关参数进行调节,也不能完全确保在补偿烘干操作之后,第一电极层和第二电极层的面密度之和与目标面密度和完全一致,比如,上述功率面密度关系不准确可能会导致的这种问题。因此,在步骤420,可以对用于补偿烘干操作的相关参数进行进一步地反馈调节,反馈调节后的相关参数使得补偿烘干操作 对第二电极层的补偿更加精确。上述反馈调节后的相关参数也可以用于后续电极极片的生产过程。
上述反馈调节可以存在于整个补偿烘干操作的过程,在每一时刻,均可以利用当前批次电极极片的第二差值来反馈调节当前补偿烘干操作的相关参数。在多次反馈调节之后,相关参数将达到目标值,即,在补偿干操作之后第一电极层和第二电极层的面密度和将基本上等于目标面密度和。
本实施例的方法利用补偿烘干操作中的面密度对用于补偿烘干操作的相关参数进行进一步地反馈调节,使得相关参数最终达到目标值。反馈调节后的相关参数还可以用于后续电极极片的生产过程。在后续的生产过程中,使用反馈调节后的相关参数使得补偿烘干操作对第二电极层的补偿更加精确。
在一些实施例中,相关参数包括补偿烘干装置的运行功率。上述反馈调节包括:以第二差值为偏差值,利用PID控制算法对烘干装置的运行功率进行调节,以使得后续制造的电极极片的第二差值减小。
PID控制算法是结合比例、积分和微分三种环节于一体的控制算法,特别是在相关参数与补偿干燥操作中第二电极层的面密度减少值之间的关系不确定的情况下,PID控制算法十分适合用于确定上述相关参数。PID控制的实质就是根据输入的偏差值,按照比例、积分、微分的函数关系进行运算,运算结果用以控制补偿烘干装置的运行功率的输出。
在本实施例中,可以将上述第二差值作为偏差值进行PID控制,在多轮反馈调节后,最终得到补偿烘干装置的运行功率的理想值。
对于相关参数是诸如运行功率或温度等可以表示为数值的参数,可以将上述第二差值作为偏差值进行PID控制计算,以得到相关参数更加准确的数值。
图5示出了根据本公开实施例的确定目标面密度和的方法500的示意图。该方法500可以在补偿烘干操作之前执行,以便为补偿烘干操作提供确定相关参数的参照。该方法500也可以在补偿烘干操作中执行,以便为相关参数的反馈调节提供依据。如图5所示,该方法500包括以下步骤:
步骤510,获取第一电极层在第一烘干操作之后、在第二烘干操作之前的第三面密度;
步骤520,根据第三面密度和第一电极层在第一烘干操作之前的第四面密度确定在第一烘干操作过程中第一电极层的面密度减少值;
步骤530,至少根据面密度减少值确定目标面密度和。
在电极极片经历第一烘干操作之后、在第二烘干操作之前的位置设置面密度仪,从而在步骤510中,能够获取到第一电极层在第一烘干操作之后、在第二烘干操作之前的第三面密度。第一电极层在第一烘干操作之前的第四面密度,即,第一电极层未经任何烘干操作的初始面密度,也可以通过在相应位置设置面密度仪检测获得。另外,第四面密度也可以提前获得,并作为一个定值存储在相关控制器的内存中。
需要补充说明的是,由于集流体也存在一定的厚度,因此,面密度仪可能无法直接检测出第三面密度或第四面密度,但是,其能够测出集流体和第一电极层这两者的总密度。在这种情况下,可以使用上述两者的总密度减去集流体的面密度(集流体的面密度可以提前获得,并且在各种烘干操作中保持不变),从而得到第三面密度或第四面密度。
在步骤520中,通过比对电极极片历经第一烘干操作前后的面密度值,可以得到在第一烘干操作过程中第一电极层的面密度减少值。由于第二烘干操作和第一烘干操作的烘干效果相同,因此可以认为在第二烘干操作中的第一电极层的面密度减少值、第二电极层的面密度减少值与第一烘干操作过程中第一电极层的面密度减少值相同。
假设第四面密度(即第一电极层未经烘干的初始面密度)为ρ4,第三面密度为ρ3,那么第一烘干操作过程中第一电极层的面密度减少值ρh=ρ4-ρ3。由于第二烘干操作和第一烘干操作的烘干效果相同,第一电极层在第二烘干操作过程中的面密度减少值也为ρh。因此,电极极片的第一电极层最终的面密度为ρ4-2ρh。在补偿烘干操作之后,第二电极层的面密度应该与第一电极层的面密度一致,因此,电极极片的第二电极层所期望的最终的面密度也应为ρ4-2ρh。那么目标面密度和则为2(ρ4-2ρh)。
通过比对电极极片历经第一烘干操作前后的面密度值,可以得到在第一烘干操作过程中第一电极层的面密度减少值,基于减少值计算得到目标面密度和使得所确定的目标面密度和更接近在补偿烘干操作之后的第一电极层与第二电极层的面密度之和的期望值,从而后续能够得到更加精确的补偿烘干操作的相关参数。
在一些对相关参数进行反馈调节的实施例中,在对集流体的第二电极层进行补偿烘干操作还包括:响应于第二差值小于预设的差值阈值,停止进行补偿烘干操作。
差值阈值可以是预先设定的数值,当第二差值小于差值阈值时,说明当前生产的电极极片在补偿烘干操作中的第一电极层和第二电极层的面密度和已经足够接近目标面 密度和,无需再进行反馈调节,因此,在后续的电极极片的生成过程中可以保持当前的补偿烘干操作的相关参数不变。
在确定第二差值小于预设的差值阈值时,可以停止对相关参数的反馈调节,这样可以在保证达到理想的补偿烘干操作的同时,减少相关控制器的计算量。
本公开还提供了一种电极极片的制造系统。图6示出了根据本公开实施例的电极极片的制造系统600的示意图,如图6所示,该系统600包括:第一涂覆装置610、第一烘干装置621、第二涂覆装置630、第二烘干装置622以及补偿烘干装置640。第一涂覆装置610,配置成将电极浆料涂覆到集流体的第一表面,以在第一表面上形成第一电极层;第一烘干装置621,对形成有第一电极层的集流体进行第一烘干操作,以烘干第一电极层;第二涂覆装置630,配置成将电极浆料涂覆到经第一烘干操作处理后的集流体的第二表面,以在第二表面上形成第二电极层,第二表面与第一表面相对;第二烘干装置622,配置成对形成有第一电极层和第二电极层的集流体进行第二烘干操作,以烘干第一电极层和第二电极层两者;补偿烘干装置640,配置成对集流体的第二电极层进行补偿烘干操作。
第一涂覆装置610设置有用于存储电极浆料的存储盒和排出电极浆料的第一喷嘴611,当集流体经过该第一喷嘴611时,集流体的第一表面面对第一喷嘴611。第一喷嘴611用于将电极浆料涂覆到集流体的第一表面,以在第一表面上形成第一电极层。
第一烘干装置621可以是诸如烘箱、烤炉等通过升高环境温度来对电极极片进行干燥的装置。在进行第一烘干操作时,电极极片整体进入第一烘干装置621,第一烘干装置621对集流体进行第一烘干操作,以烘干第一电极层。
第二涂覆装置630设置有用于存储电极浆料的存储盒和排出电极浆料的第二喷嘴631,当集流体经过该第二喷嘴631时,集流体的第二表面面对第二喷嘴631。第二喷嘴631配置成将电极浆料涂覆到经第一烘干操作处理后的集流体的第二表面,以在第二表面上形成第二电极层。
第二烘干装置622也可以是诸如烘箱、烤炉等通过升高环境温度来对电极极片进行干燥的装置。在进行第二烘干操作时,电极极片整体进入第二烘干装置622,第二烘干装置622对形成有第一电极层、第二电极层的集流体进行第二烘干操作,以烘干第一电极层和第二电极层两者。第一烘干装置621和第二烘干装置622的大小和型号可以完全相同,以使得第一烘干操作和第二烘干操作的烘干效果完全一致。
补偿烘干装置640可以是热辐射装置,在进行补偿烘干操作时,补偿烘干装置640仅朝向集流体的第二电极层,配置成对集流体的第二电极层进行补偿烘干操作。
通过设置补偿干燥装置可以补偿第二电极层相较于第一电极层未经历的第一烘干操作,从而确保第一电极层和第二电极层的烘干效果一致。因此,最终制造出的电极极片两侧的电极层的面密度基本一致,从而提高最终生产的电芯的质量。
在一些实施例中,电极极片的制造系统600还包括:第一面密度检测装置661和控制装置。第一面密度检测装置661配置成检测在第二烘干操作之后、补偿烘干操作之前的第一电极层和第二电极层两者的第一面密度和。控制装置配置成基于第一面密度和与目标面密度和之间的第一差值,确定用于补偿烘干操作的相关参数。目标面密度和为在补偿烘干操作之后的第一电极层和第二电极层的面密度之和的期望值,其中补偿烘干装置640还配置成基于相关参数对集流体的第二电极层进行补偿烘干操作。
第一面密度检测装置661可以是面密度仪,面密度仪利用β射线穿透物质时的吸收、反散射效应实现无损非接触式测量薄膜类材料的面密度。控制装置为具有计算功能的设备,控制装置用于确定用于补偿烘干操作的相关参数,以使得补偿烘干装置640按照确定好的相关参数运行。
通过第一面密度和与目标面密度和之间的第一差值对用于补偿烘干操作的相关参数进行调节,使得在补偿烘干操作后,第一电极层和第二电极层的面密度之和可以达到上述目标面密度和,也就是使得第二电极层和第一电极层的烘干效果一致。本实施例的方法能够准确确定用于补偿烘干操作的相关参数,从而提高了补偿烘干操作对第二电极层的补偿精度。
在一些实施例中,相关参数包括用于执行补偿烘干操作的补偿烘干装置640的运行功率。控制装置还配置成基于第一差值和预先确定的功率面密度关系确定运行功率。功率面密度关系表示补偿烘干装置640的运行功率和第二电极层在补偿烘干操作过程中的面密度减少值之间的函数关系。
补偿烘干装置640的运行功率和补偿烘干操作的烘干强度直接相关。一般而言,运行功率越高,补偿烘干操作的烘干强度也就越高。因此,补偿干燥装置的运行功率越大,第二电极层的面密度值将会减少的越多。第二电极层的面密度的减少值△ρ和补偿干燥装置的运行功率P之间存在函数对应关系,例如上文所述的式(1)的函数对应关系。关于如何基于预先确定的功率面密度关系确定运行功率以在上文进行了详细描述,这里不再赘述。
通过第一面密度和与目标面密度和之间的第一差值对用于补偿烘干操作的相关参数进行调节,使得在补偿烘干操作后,第一电极层和第二电极层的面密度之和可以达到 上述目标面密度和,也就是使得第二电极层和第一电极层的烘干效果一致。本实施例的系统能够准确确定用于补偿烘干操作的相关参数,从而提高了补偿烘干操作对第二电极层的补偿精度。
在一些实施例中,制造系统还包括:第二面密度检测装置662,配置成检测在补偿烘干操作中的第一电极层和第二电极层两者的第二面密度和。控制装置还配置成至少基于第二面密度和与目标面密度和之间的第二差值,反馈调节用于补偿烘干操作的相关参数。补偿烘干装置基于经调节后的用于补偿烘干操作的相关参数对集流体的第二电极层继续进行补偿烘干操作。
系统还可以对用于补偿烘干操作的相关参数进行进一步地反馈调节,反馈调节后的相关参数使得补偿烘干操作对第二电极层的补偿更加精确。上述反馈调节后的相关参数将用于后续电极极片的生产过程。
本实施例的系统利用最终产出的电极极片的面密度对用于补偿烘干操作的相关参数进行进一步地反馈调节,反馈调节后的相关参数可以用于后续电极极片的生产过程。在后续的生产过程中,使用反馈调节后的相关参数使得补偿烘干操作对第二电极层的补偿更加精确。
在一些实施例中,相关参数包括补偿烘干装置640的运行功率,控制装置还配置成以第二差值为偏差值,利用PID控制算法对补偿烘干装置的运行功率进行调节,以使得后续的补偿干燥使得电极极片的第二差值减小。
对于相关参数是诸如运行功率或温度等可以表示为数值的参数,可以将上述第二差值作为偏差值进行PID控制计算,以得到相关参数更加准确的数值。
在一些实施例中,制造系统还包括:第三面密度检测装置663,配置成检测第一电极层在第一烘干操作之后、在第二烘干操作之前的第三面密度。控制装置,还配置成根据第三面密度和第一电极层在第一烘干操作之前的第四面密度确定在第一烘干操作过程中第一电极层的面密度减少值,以及至少根据面密度减少值确定目标面密度和。
通过比对电极极片历经第一烘干操作前后的面密度值,可以得到在第一烘干操作过程中第一电极层的面密度减少值,基于减少值计算得到目标面密度和使得确定的目标面密度和更接近在补偿烘干操作之后的第一电极层与第二电极层的面密度之和的期望值,从而后续能够得到更加精确的补偿烘干操作的相关参数。
在一些实施例中,控制装置,还配置成响应于第二差值小于预设的差值阈值,停止进行补偿烘干操作。
本实施例的系统在确定第二差值小于预设的差值阈值时,控制装置可以停止对相关参数的反馈调节,这样在保证达到理想的补偿烘干操作的同时,可以减少控制装置的计算量。
在一些实施例中,制造系统还包括:传送装置650,传送装置650配置成驱动电极极片依次通过第一涂覆装置610、第一烘干装置621、第二涂覆装置630、第二烘干装置622以及补偿烘干装置640。
传送装置650例如可以是传送带,电极极片(或集流片)被放置在传送带上,并随着传送带运动。传送带驱动电极极片依次通过第一涂覆装置610、第一烘干装置621、第二涂覆装置630、第二烘干装置622以及补偿烘干装置640,以使得电极极片依次经历第一涂覆操作、第一烘干操作、第二涂覆操作、第二烘干操作以及补偿烘干操作。在系统还包括面密度检测装置(例如:第一面密度检测装置661和第二面密度检测装置662等)的情况下,传送带还驱动电极极片通过面密度检测装置的检测区域。虽然在本实施例中,传送装置650被描述为传送带,但是,可以理解,在另外一些实施例中,传送装置650还可以是运输轨道等其他形式的传送装置650,在这种情况下,电极极片可以被一些夹持装置保持并沿着运输轨道运动,以依次经历上述操作过程。
本实施例的系统利用传送装置650驱动电极极片依次经历各种操作,因此能够自动化进行整个电极极片制造的流程,从而避免了使用人工运输电极极片,提高了系统的运行效率。
在一些实施例中,制造系统还包括:烘箱620,所烘箱620包括上层区间和下层区间。第一烘干装置621为上层区间和下层区间中的一者,第二烘干装置622为上层区间和下层区间中的另一者。
如图6所示,烤箱包括上下两层区间,这两层区间的空间大小完全相同。第一烘干装置621和第二烘干装置622可以分别为烘箱620的下层区间和上层区间。在传送装置650例如是传送带的情况下,传送带先沿着图6所示的X轴方向延伸进入下层区间并沿着下层区间的长度方向行进以带动电极极片历经第一烘干操作。随后,传送带向上(图6所示的Y轴方向)行进,然后再沿着图6所示的X轴负方向延伸进入上层区间并沿着上层区间的长度方向行进以带动电极极片历经第二烘干操作。可以理解,由于第一烘干装置621和第二烘干装置622是烘箱620的上下两层,因此,它们的长度、尺寸、环境温度几乎完全相同。在本实施例中,第一烘干装置621和第二烘干装置622分别示出为 烘箱620的下层区间和上层区间,但是在另外一些实施例中,第一烘干装置621可以是上层区间,第二烘干装置622可以是下层区间。
由于第一烘干装置621和第二烘干装置622是烤箱的上下两层,因此,它们的长度、尺寸、环境温度几乎完全相同。这样可以确保第一烘干操作和第二烘干操作的烘干效果基本一致,从而避免最终形成的第一电极层和第二电极层的面密度出现偏差。
在一些实施例中,补偿烘干装置640为红外灯管。红外灯管被配置成朝向电极极片的第二表面照射。在传送装置650例如是传送带的情况下,当电极极片被运输到补偿烘干装置640时,其第二电极层面向红外灯管,因此,红外灯管仅对第二电极层进行烘干。
本实施例的系统利用红外灯管朝向电极极片的第二表面照射,以完成补偿烘干操作。相较于其他热辐射干燥会影响电极极片的两面,红外灯管可以仅对电极极片的第二电极层进行干燥,避免了对第一电极层造成影响。
本公开还提供了一种电池单体。电池单体包括上述的方法制造的电极极片,例如使用方法200制造的电极极片。关于电池单体的详细结构可以参照关于图1所示实施例的描述,这里不再赘述。
如图6所示,图6示出了根据本公开实施例的电极极片的制造系统600的示意图,如图6所示,该系统600包括:第一涂覆装置610、第四面密度检测装置664、烘箱620、第三面密度检测装置663、第二涂覆装置630、第一面密度检测装置661、第二面密度检测装置662、传送装置650以及补偿烘干装置640。传送装置650包括传送带和多个辊651,用于将电极极片的预制件(集流体)依次运送到上述多个装置,烘箱620包括上层区间和下层区间。第一涂覆装置610将电极浆料涂覆到集流体的第一表面,以在第一表面上形成第一电极层。烘箱620的下层区间对形成有第一电极层的集流体进行第一烘干操作,以烘干第一电极层。第二涂覆装置630将电极浆料涂覆到经第一烘干操作处理后的集流体的第二表面,以在第二表面上形成第二电极层。烘箱620的上层区间配置成对形成有第一电极层和第二电极层的集流体进行第二烘干操作,以烘干第一电极层和第二电极层两者。补偿烘干装置640配置成对集流体的第二电极层进行补偿烘干操作。第一面密度检测装置661、第二面密度检测装置662、第三面密度检测装置663和第四面密度检测装置664都可以是面密度仪,这些面密度仪用于检测对应位置处的第一电极层的面密度或第一电极层和第二电极层的面密度和。
本申请的电极极片的制造方法200可以应用于上述系统600,参照图2,该方法200可以包括如下步骤:
步骤210,将电极浆料涂覆到集流体的第一表面,以在第一表面上形成第一电极层;
步骤220,对形成有第一电极层的集流体进行第一烘干操作,以烘干第一电极层;
步骤230,将电极浆料涂覆到经第一烘干操作处理后的集流体的第二表面,以在第二表面上形成第二电极层,第二表面与第一表面相对;以及
步骤240,对形成有第二电极层的集流体进行第二烘干操作,以烘干第一电极层和第二电极层两者;以及
步骤250,对集流体的第二电极层进行补偿烘干操作。
通过设置补偿干燥操作可以补偿第二电极层相较于第一电极层未经历的第一烘干操作,从而确保第一电极层和第二电极层的烘干效果一致。因此,最终制造出的电极极片两侧的电极层的面密度基本一致,从而提高最终生产的电芯的质量。
另外,第一面密度检测装置661、第二面密度检测装置662、第三面密度检测装置663和第四面密度检测装置664用于检测对应位置处的第一电极层的面密度或第一电极层和第二电极层的面密度和,从而后续可以根据这些面密度和数据来调节用于补偿烘干操作的相关运行参数,从而提高补偿烘干操作的补偿精度。具体的调节方法已经在上文所述的方法300-500中进行了详细说明,这里不再赘述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种电极极片的制造方法,包括:
    将电极浆料涂覆到集流体的第一表面,以在所述第一表面上形成第一电极层;
    对形成有所述第一电极层的所述集流体进行第一烘干操作,以烘干所述第一电极层;
    将电极浆料涂覆到经所述第一烘干操作处理后的所述集流体的第二表面,以在所述第二表面上形成第二电极层,所述第二表面与所述第一表面相对;以及
    对形成有所述第一电极层和所述第二电极层的所述集流体进行第二烘干操作,以烘干所述第一电极层和所述第二电极层两者;以及
    对所述集流体的所述第二电极层进行补偿烘干操作。
  2. 根据权利要求1所述的制造方法,其中,所述补偿烘干操作包括:
    获取在所述第二烘干操作之后、所述补偿烘干操作之前的所述第一电极层和第二电极层两者的第一面密度和;
    基于所述第一面密度和与目标面密度和之间的第一差值,确定用于所述补偿烘干操作的相关参数,其中,所述目标面密度和为在所述补偿烘干操作之后的所述第一电极层和所述第二电极层的面密度之和的期望值;以及
    基于所述相关参数对所述集流体的所述第二电极层进行补偿烘干操作。
  3. 根据权利要求2所述的制造方法,其中,所述相关参数包括用于执行所述补偿烘干操作的补偿烘干装置的运行功率,所述基于所述第一面密度和与目标面密度和之间的第一差值,确定用于补偿烘干的相关参数包括:
    基于所述第一差值和预先确定的功率面密度关系,确定所述运行功率,其中,所述功率面密度关系表示所述补偿烘干装置的运行功率和所述第二电极层在所述补偿烘干操作过程中的面密度减少值之间的函数关系。
  4. 根据权利要求2或3所述的制造方法,其中,还包括:
    在补偿烘干过程中,获取所述第一电极层和第二电极层两者的第二面密度和;
    至少基于所述第二面密度和与目标面密度和之间的第二差值,反馈调节用于补偿烘干操作的相关参数,其中,所述目标面密度和为在所述补偿烘干操作之后的所述第一电极层和所述第二电极层的面密度之和的期望值;以及
    基于经调节后的用于补偿烘干操作的相关参数对所述集流体的所述第二电极层继续进行补偿烘干操作。
  5. 根据权利要求4所述的制造方法,其中,所述相关参数包括所述补偿烘干装置的运行功率,其中,至少基于所述第二面密度和与所述目标面密度和之间的第二差值,反馈调节用于补偿烘干操作的相关参数,包括:
    以所述第二差值为偏差值,利用PID控制算法对所述补偿烘干装置的运行功率进行调节。
  6. 根据权利要求2-5中任一项所述的制造方法,其中,对所述集流体的所述第二电极层进行补偿烘干操作还包括:
    确定目标面密度和,其中,所述确定目标面密度和包括:
    获取所述第一电极层在所述第一烘干操作之后、在所述第二烘干操作之前的第三面密度;
    根据所述第三面密度和所述第一电极层在所述第一烘干操作之前的第四面密度,确定在所述第一烘干操作过程中所述第一电极层的面密度减少值;以及
    至少根据所述面密度减少值确定所述目标面密度和。
  7. 根据权利要求4-5中任一项所述的制造方法,其中,对所述集流体的所述第二电极层进行补偿烘干操作还包括:
    响应于所述第二差值小于预设的差值阈值,停止进行补偿烘干操作。
  8. 一种电极极片的制造系统,包括:
    第一涂覆装置,配置成将电极浆料涂覆到集流体的第一表面,以在所述第一表面上形成第一电极层;
    第一烘干装置,配置成对形成有所述第一电极层的所述集流体进行第一烘干操作,以烘干所述第一电极层;
    第二涂覆装置,配置成将电极浆料涂覆到经所述第一烘干操作处理后的所述集流体的第二表面,以在所述第二表面上形成第二电极层,所述第二表面与所述第一表面相对;
    第二烘干装置,配置成对形成有所述第一电极层和所述第二电极层的所述集流体进行第二烘干操作,以烘干所述第一电极层和所述第二电极层两者;
    补偿烘干装置,配置成对所述集流体的所述第二电极层进行补偿烘干操作。
  9. 根据权利要求8所述的制造系统,其中,还包括:
    第一面密度检测装置,配置成检测在所述第二烘干操作之后、所述补偿烘干操作之前的所述第一电极层和第二电极层两者的第一面密度和;以及
    控制装置,配置成基于所述第一面密度和与目标面密度和之间的第一差值,确定用于所述补偿烘干操作的相关参数,其中,所述目标面密度和为在所述补偿烘干操作之后的所述第一电极层和所述第二电极层的面密度之和的期望值,其中
    所述补偿烘干装置,还配置成基于所述相关参数对所述集流体的所述第二电极层进行补偿烘干操作。
  10. 根据权利要求9所述的制造系统,其中,所述相关参数包括用于执行所述补偿烘干操作的补偿烘干装置的运行功率,
    所述控制装置,还配置成基于所述第一差值和预先确定的功率面密度关系确定所述运行功率,其中,所述功率面密度关系表示所述补偿烘干装置的运行功率和所述第二电极层在所述补偿烘干操作过程中的面密度减少值之间的函数关系。
  11. 根据权利要求9或10所述的制造系统,其中,还包括:
    第二面密度检测装置,配置成在补偿烘干过程中,获取所述第一电极层和第二电极层两者的第二面密度和,其中
    所述控制装置,还配置成至少基于所述第二面密度和与目标面密度和之间的第二差值,反馈调节用于补偿烘干操作的相关参数,其中,所述目标面密度和为在所述补偿烘干操作之后的所述第一电极层和所述第二电极层的面密度之和的期望值;
    所述补偿烘干装置,还配置成基于经调节后的用于补偿烘干操作的相关参数对所述集流体的所述第二电极层继续进行补偿烘干操作。
  12. 根据权利要求11所述的制造系统,其中,所述相关参数包括所述补偿烘干装置的运行功率,
    所述控制装置,还配置成以所述第二差值为偏差值,利用PID控制算法对所述补偿烘干装置的运行功率进行调节。
  13. 根据权利要求9-12中任一项所述的制造系统,其中,还包括:
    第三面密度检测装置,配置成检测所述第一电极层在所述第一烘干操作之后、在所述第二烘干操作之前的第三面密度,其中
    所述控制装置,还配置成根据所述第三面密度和所述第一电极层在所述第一烘干操作之前的第四面密度确定在所述第一烘干操作过程中所述第一电极层的面密度减少值;以及至少根据所述面密度减少值确定所述目标面密度和。
  14. 根据权利要求11-13中任一项所述的制造系统,其中,
    所述控制装置,还配置成响应于所述第二差值小于预设的差值阈值,停止进行补偿烘干操作。
  15. 根据权利要求9-14中任一项所述的制造系统,其中,还包括:
    传送装置,配置成驱动所述电极极片依次通过所述第一涂覆装置、所述第一烘干装置、所述第二涂覆装置、所述第二烘干装置以及所述补偿烘干装置。
  16. 根据权利要求8-15中任一项所述的制造系统,其中,还包括:
    烘箱,所述烘箱包括上层区间和下层区间,所述第一烘干装置为所述上层区间和所述下层区间中的一者,所述第二烘干装置为所述上层区间和所述下层区间中的另一者。
  17. 根据权利要求8-16中任一项所述的制造系统,其中,
    所述补偿烘干装置为红外灯管,其中,所述红外灯管被配置成朝向所述电极极片的所述第二表面照射。
  18. 一种电池单体,包括:
    至少一个根据权利要求1-7中任一项所述的方法制造的电极极片。
PCT/CN2023/102802 2022-08-17 2023-06-27 电极极片的制造方法及制造系统、电池单体 WO2024037191A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210988890.6A CN115842085A (zh) 2022-08-17 2022-08-17 电极极片的制造方法及制造系统、电池单体
CN202210988890.6 2022-08-17

Publications (1)

Publication Number Publication Date
WO2024037191A1 true WO2024037191A1 (zh) 2024-02-22

Family

ID=85575375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102802 WO2024037191A1 (zh) 2022-08-17 2023-06-27 电极极片的制造方法及制造系统、电池单体

Country Status (2)

Country Link
CN (1) CN115842085A (zh)
WO (1) WO2024037191A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115842085A (zh) * 2022-08-17 2023-03-24 宁德时代新能源科技股份有限公司 电极极片的制造方法及制造系统、电池单体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054510A1 (en) * 2000-12-29 2002-07-11 Allied Ray Technology Co., Ltd. Apparatus for drying electrode, system for manufacturing electrode using the apparatus, and method of drying electrode
US20040149207A1 (en) * 2002-07-10 2004-08-05 Murata Manufacturing Co., Ltd. Apparatus for manufacturing a dry sheet from a slurry
KR20060111848A (ko) * 2005-04-25 2006-10-30 삼성에스디아이 주식회사 이차 전지의 전극 활물질 도포 방법
CN107819105A (zh) * 2017-10-17 2018-03-20 合肥国轩高科动力能源有限公司 一种硅碳负极极片的制作方法
CN113764610A (zh) * 2020-06-04 2021-12-07 恒大新能源技术(深圳)有限公司 电池极片及其制备方法和应用
CN115842085A (zh) * 2022-08-17 2023-03-24 宁德时代新能源科技股份有限公司 电极极片的制造方法及制造系统、电池单体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7098872B2 (ja) * 2016-11-09 2022-07-12 日産自動車株式会社 二次電池用電極の製造方法
CN110495024B (zh) * 2017-04-04 2023-09-15 日本电气株式会社 制造二次电池用电极的方法和制造二次电池的方法
CN109786654B (zh) * 2018-12-26 2021-04-23 惠州亿纬锂能股份有限公司 多孔电极锂离子电池及其制备方法
CN110379997B (zh) * 2019-06-05 2022-03-15 江西力能新能源科技有限公司 一种用于锂离子电池正负极片的涂布工艺
CN113903878B (zh) * 2021-09-27 2023-10-03 湖北亿纬动力有限公司 一种电池极片压辊、电池极片辊压方法、电池极片及电池
CN216850049U (zh) * 2021-11-15 2022-06-28 宁德时代新能源科技股份有限公司 叠片式电芯、电池单体、电池及用电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054510A1 (en) * 2000-12-29 2002-07-11 Allied Ray Technology Co., Ltd. Apparatus for drying electrode, system for manufacturing electrode using the apparatus, and method of drying electrode
US20040149207A1 (en) * 2002-07-10 2004-08-05 Murata Manufacturing Co., Ltd. Apparatus for manufacturing a dry sheet from a slurry
KR20060111848A (ko) * 2005-04-25 2006-10-30 삼성에스디아이 주식회사 이차 전지의 전극 활물질 도포 방법
CN107819105A (zh) * 2017-10-17 2018-03-20 合肥国轩高科动力能源有限公司 一种硅碳负极极片的制作方法
CN113764610A (zh) * 2020-06-04 2021-12-07 恒大新能源技术(深圳)有限公司 电池极片及其制备方法和应用
CN115842085A (zh) * 2022-08-17 2023-03-24 宁德时代新能源科技股份有限公司 电极极片的制造方法及制造系统、电池单体

Also Published As

Publication number Publication date
CN115842085A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2024037191A1 (zh) 电极极片的制造方法及制造系统、电池单体
KR101467640B1 (ko) 전극 건조 방법 및 전극 건조 장치
JP5834898B2 (ja) 電極製造方法及び電極製造装置
JP2020533171A (ja) ウェブコーティング及びカレンダー加工システム並びに方法
KR101550487B1 (ko) 전극 건조 방법 및 전극 건조 장치
WO2023072058A1 (zh) 极片干燥装置和涂布装置
JP2001176502A (ja) 電池用電極の製造方法
CN210220540U (zh) 锂电池极片微波烘干装置
JP2012212873A (ja) 電極製造装置、電極製造方法、プログラム及びコンピュータ記憶媒体
KR20180079841A (ko) 언와인더 및 리와인더를 포함하는 전극 건조 장치
KR20220057296A (ko) 전극 슬러리의 코팅 균일성이 우수한 전극 제조 시스템 및 이를 이용한 전극 제조 방법
KR102481359B1 (ko) 이차전지 전극 제조 시스템 및 방법
JP2014086151A (ja) 電池用電極の製造方法及び装置
JP2003178752A (ja) シート状電極の乾燥評価方法
CN114551779A (zh) 电极的制造方法和电极浆料涂覆装置
CN114678527A (zh) 一种电池
KR102358767B1 (ko) 전극 롤 프레스 공정 시 전극 롤 두께를 균일하게 유지시키는 방법
KR20230068783A (ko) 전극 제조 장치 및 방법
KR102559371B1 (ko) 이차전지 전극 제조 시스템 및 방법
US20230143349A1 (en) Electrode Drying System and Electrode Drying Method
US20230128999A1 (en) Electrode Drying System and Electrode Drying Method
KR20220074758A (ko) 전극 건조 시스템 및 전극 건조 방법
US20230155102A1 (en) Electrode manufacturing apparatus
CN115159213B (zh) 电极组件的制造装置
CN219419135U (zh) 一种快充电芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854096

Country of ref document: EP

Kind code of ref document: A1