WO2024036964A1 - 高空吊物不利摆动行为的控制系统 - Google Patents

高空吊物不利摆动行为的控制系统 Download PDF

Info

Publication number
WO2024036964A1
WO2024036964A1 PCT/CN2023/083688 CN2023083688W WO2024036964A1 WO 2024036964 A1 WO2024036964 A1 WO 2024036964A1 CN 2023083688 W CN2023083688 W CN 2023083688W WO 2024036964 A1 WO2024036964 A1 WO 2024036964A1
Authority
WO
WIPO (PCT)
Prior art keywords
controlled
rotating member
output mechanism
force output
control system
Prior art date
Application number
PCT/CN2023/083688
Other languages
English (en)
French (fr)
Inventor
张春巍
Original Assignee
沈阳工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳工业大学 filed Critical 沈阳工业大学
Publication of WO2024036964A1 publication Critical patent/WO2024036964A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B12/00Component parts, details or accessories not provided for in groups B61B7/00 - B61B11/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B12/00Component parts, details or accessories not provided for in groups B61B7/00 - B61B11/00
    • B61B12/002Cabins; Ski-lift seats

Definitions

  • the invention relates to the field of high-altitude cable car control, and in particular to a control system for the unfavorable swing behavior of high-altitude suspended objects.
  • Aerial cable cars are high-altitude working equipment and will rotate when affected by the external environment in the air.
  • the rotation of the cable cars is suppressed by setting up control devices, but traditional control devices usually use passive control methods such as tuned mass dampers for control.
  • the output mode of the tuned mass damper is limited to linear forces in the vertical and transverse directions. It cannot fully exert its control effect on the rotation of the cable car, and its output linear force cannot be completely consistent, which makes the control The device cannot form an effective control moment to effectively control the roll behavior of the cable car with a rotational component.
  • the present invention provides a control system for the unfavorable swing behavior of high-altitude hanging objects, including a passive power output mechanism and/or an active power output mechanism:
  • the passive force output mechanism includes a first rotating member and an elastic member.
  • the first rotating member is rotationally connected to the object to be controlled.
  • One end of the elastic member is connected to the object to be controlled.
  • the other end of the elastic member is connected to the object to be controlled.
  • the first rotating member is connected.
  • the object to be controlled rotates, the first rotating member can not rotate synchronously with the object to be controlled, so that the end of the elastic member away from the object to be controlled is connected to the end of the elastic member.
  • the object to be controlled generates an angular difference, and the end of the elastic member connected to the object to be controlled can rotate synchronously with the object to be controlled, so that the torsional deformation of the elastic member is opposite to the rotation direction of the object to be controlled.
  • the torque is transmitted to the object to be controlled, thereby inhibiting the rotation of the object to be controlled;
  • the active power output mechanism includes a driving member and a second rotating member, and the second rotating member is disposed on the On the object to be controlled, the second rotating member is connected to the driving member, and the driving member is used to drive the second rotating member to rotate when the object to be controlled rotates, so that the second rotating member
  • the component generates a moment opposite to the rotation direction of the object to be controlled and transmits it to the object to be controlled, thereby inhibiting the rotation of the object to be controlled.
  • the control system for the unfavorable swing behavior of high-altitude objects includes a passive force output mechanism, the passive force output mechanism also includes a mass component, and one end of the first rotating component away from the object to be controlled is connected to the mass component, One end of the elastic member away from the object to be controlled is connected to the mass member to realize the connection between the elastic member and the first rotating member.
  • the control system for the unfavorable swing behavior of high-altitude objects includes a passive force output mechanism.
  • the first rotating member can not rotate synchronously with the object to be controlled, so that the An end of the elastic member away from the object to be controlled generates an angular difference with the object to be controlled, and the end of the elastic member connected to the object to be controlled can rotate synchronously with the object to be controlled, so that the elastic member
  • the occurrence of torsional deformation generates a moment opposite to the direction of translation of the object to be controlled and is transmitted to the object to be controlled, thereby suppressing the translation of the object to be controlled.
  • the passive force output mechanism includes at least three, at least one of the passive force output mechanisms is disposed on the first plane of the object to be controlled, and at least one of the passive force output mechanisms is disposed on the second plane of the object to be controlled.
  • plane at least one of the passive force output mechanisms is arranged on the third plane of the object to be controlled, the first plane, the second plane and the third plane are perpendicular to each other, and the first plane
  • the passive force output mechanism is used to suppress the translation of the object to be controlled parallel to the first plane and the rotation of the object to be controlled around an axis perpendicular to the first plane, and all the objects on the second plane are
  • the active force output mechanism is used to suppress the translation of the object to be controlled parallel to the second plane and the rotation of the object to be controlled around an axis perpendicular to the second plane.
  • the object on the third plane The active force output mechanism is used to suppress the translation of the object to be controlled parallel to the third plane and the rotation of the object to be controlled perpendicular to
  • the control system for the unfavorable swing behavior of high-altitude objects includes a passive force output mechanism and an active force output mechanism, and the second rotating member is coaxially disposed at an end of the first rotating member away from the object to be controlled to achieve
  • the driving member is used to drive the second rotating member to rotate when the object to be controlled rotates, so that the second rotating member generates contact with the object.
  • the torque in the opposite direction of the rotation of the object to be controlled is transmitted to the first rotating member, and the first rotating member drives the elastic member to rotate, so that the elastic member generates a rotation direction in the same direction as the object to be controlled.
  • the opposite torque is transmitted to the object to be controlled, thereby inhibiting the rotation of the object to be controlled.
  • the active power output mechanism further includes a gear
  • the gear is connected to the driving member
  • the second rotating member has saw teeth
  • the second rotating member meshes with the gear through the saw teeth
  • the second rotating member meshes with the gear through the saw teeth.
  • the driving member is used to drive the gear to rotate when the object to be controlled rotates, and drives the second rotating member to rotate through the gear meshing with the saw teeth.
  • the number of the driving parts and the gears is multiple, and the plurality of gears respectively correspond to the plurality of driving parts, and each of the gears meshes with the saw teeth.
  • the control system for the adverse swing behavior of high-altitude objects also includes a sensor and a controller.
  • the sensor is used to detect the rotation angle of the object to be controlled.
  • the controller is electrically connected to the sensor and the driving member. Connected, the controller is configured to receive the rotation angle result of the object to be controlled detected by the sensor, and output corresponding control instructions to the driving member according to the rotation angle result of the object to be controlled provided by the sensor, Thus, the driving member is controlled to drive the rotation of the second rotating member.
  • the control system for the unfavorable swing behavior of high-altitude objects includes an active force output mechanism, and the driving member is also used to drive the second rotating member to rotate when the object to be controlled moves in translation, so that the third rotating member rotates.
  • the two rotating members generate a moment opposite to the translation direction of the object to be controlled and transmit it to the object to be controlled, thereby suppressing the translation of the object to be controlled.
  • the senor is also used to detect the amount of translational movement of the object to be controlled
  • the controller is also used to receive the result of the amount of translational movement of the object to be controlled detected by the sensor, and adjust the amount of translation according to the The translational movement result of the object to be controlled provided by the sensor outputs corresponding control instructions to the driving member, thereby controlling the driving member to drive the second rotating member to rotate.
  • control system for the unfavorable swing behavior of high-altitude objects includes a passive force output mechanism
  • the first rotating member can not be idle.
  • the controlled object rotates together, so that the first rotating member takes the end of the elastic member away from the object to be controlled and remains in the initial position, and the end of the elastic member connected to the object to be controlled can rotate following the object to be controlled, so that the elastic member undergoes torsional deformation.
  • the torque opposite to the rotation direction of the object to be controlled is transmitted to the object to be controlled, thereby inhibiting the rotation of the object to be controlled;
  • the control system for the unfavorable swing behavior of high-altitude objects includes an active force output mechanism, when the object to be controlled rotates, the driving member The second rotating member is driven to rotate, so that the second rotating member generates a moment opposite to the rotation direction of the object to be controlled and transmits it to the object to be controlled, thereby inhibiting the rotation of the object to be controlled; if the high-altitude hanging object is not conducive to the control of the swing behavior,
  • the control system includes a passive force output mechanism and an active force output mechanism.
  • the end of the first rotating member with the elastic member that is away from the object to be controlled remains in the initial position, and the end of the elastic member connected to the object to be controlled can follow.
  • the object to be controlled rotates, so that the elastic member undergoes torsional deformation to generate a moment opposite to the rotation direction of the object to be controlled and transmits it to the object to be controlled.
  • the driving member drives the second rotating member to rotate, so that the second rotating member generates a torque in the direction opposite to the rotation direction of the object to be controlled.
  • the torque in the opposite direction of the object's rotation is transmitted to the object to be controlled, so that the passive force output mechanism and the active force output mechanism can jointly inhibit the rotation of the object to be controlled.
  • the passive force output mechanism and/or the active force output mechanism of the present application inhibits the rotation of the object to be controlled by directly outputting torque. Compared with the existing technology, the passive force output mechanism and/or the active force output mechanism suppresses the rotation of the object to be controlled by outputting the resultant torque of two linear forces that cannot be guaranteed to be equal in size.
  • the rotation of the object, this application is more effective and reliable in controlling the rotation of the object to be controlled.
  • Figure 1 is a schematic structural diagram of the control system for the unfavorable swing behavior of high-altitude hanging objects in the present invention
  • Figure 2 is a schematic structural diagram of the passive force output mechanism and the object to be controlled in an embodiment of the present invention
  • Figure 3 is a schematic structural diagram of the active power output mechanism and the passive power output mechanism in the present invention.
  • Figure 4 is a schematic structural diagram of the active power output mechanism, the passive power output mechanism and the packaging box in the present invention
  • Figure 5 is an enlarged schematic diagram of Figure 3 at A;
  • Figure 6 is another structural schematic diagram of the control system for adverse swing behavior of high-altitude objects in the present invention.
  • a control system for the adverse swing behavior of high-altitude objects includes a passive power output mechanism 1 and/or an active power output mechanism 2.
  • the passive power output mechanism 1 includes a first rotating member 11 and an elastic member. 12.
  • the first rotating member 11 is rotationally connected to the object to be controlled 100.
  • One end of the elastic member 12 is connected to the object to be controlled 100, and the other end of the elastic member 12 is connected to the first rotating member 11.
  • the first rotating member 11 can not rotate synchronously with the object to be controlled 100 , so that the end of the first rotating member 11 carrying the elastic member 12 away from the object to be controlled creates an angle difference with the object to be controlled 100 , and the elastic member 12 is connected to the object to be controlled 100
  • One end can rotate synchronously with the object 100 to be controlled, so that the elastic member 12 undergoes torsional deformation to generate a moment opposite to the rotation direction of the object 100 to be controlled and transmits it to the object 100 to be controlled.
  • the object 100 is controlled to inhibit the rotation of the object 100 to be controlled;
  • the active force output mechanism 2 includes a driving member 21 and a second rotating member 22.
  • the second rotating member 22 is provided on the object 100 to be controlled.
  • the second rotating member 22 and the driving member 21 connected, the driving member 21 is used to drive the second rotating member 22 to rotate when the object to be controlled 100 rotates, so that the second rotating member 22 generates a torque opposite to the rotation direction of the object to be controlled 100 and transmits it to the object to be controlled 100, Thereby, the rotation of the object 100 to be controlled is suppressed.
  • the object 100 to be controlled is a cable car.
  • control system for the unfavorable swing behavior of high-altitude objects includes a passive force output mechanism 1, when the object to be controlled 100 rotates, since the first rotating member 11 is rotationally connected to the object to be controlled, the first rotating member 11 can not follow the object 100 to be controlled.
  • the control system for unfavorable swing behavior of high-altitude objects includes a passive force output mechanism 1 and an active force output mechanism 2, when the object 100 to be controlled rotates, the first rotating member 11 carries the elastic member
  • the end of 12 that is away from the object to be controlled 100 has an angular difference with the object to be controlled 100, and the end of the elastic member 12 connected to the object to be controlled 100 can rotate synchronously with the object to be controlled 100, so that the elastic member 12 undergoes torsional deformation to produce a connection with the object to be controlled.
  • the torque in the opposite rotation direction of the object 100 is transmitted to the object 100 to be controlled.
  • the driving member 21 drives the second rotating member 22 to rotate, so that the second rotating member 22 generates a torque opposite to the rotation direction of the object 100 to be controlled and transmits it to the object 100 to be controlled.
  • the object 100 to be controlled so the passive force output mechanism 1 and the active force output mechanism 2 can jointly suppress the rotation of the object 100 to be controlled.
  • the passive force output mechanism 1 and/or the active force output mechanism 2 of the present application suppresses the rotation of the object to be controlled 100 by directly outputting torque. Compared with the existing technology, it suppresses the rotation of the object 100 by outputting the resultant torque of two linear forces that cannot be guaranteed to be equal in size.
  • this application can control the rotation of the object to be controlled 100 more effectively and reliably, with active and passive composite control, further saving external input energy and increasing control efficiency and control accuracy.
  • the first rotating member 11 is also used to guide the elastic member 12 to prevent the elastic member 12 from deviating relative to the object to be controlled 100 .
  • the passive force output mechanism 1 also includes a mass member 13.
  • the end of the first rotating member 11 facing away from the object 100 to be controlled is connected to the mass member 13, and the end of the elastic member 12 facing away from the object 100 to be controlled is connected to the mass member 13. 13 connection, thereby realizing the connection between the elastic member 12 and the first rotating member 11.
  • the first rotating member 11 and the mass member 13 combined together have a greater mass than only the first rotating member 11.
  • the first rotating member 11 The combination with the mass member 13 has greater inertia. Therefore, when the object to be controlled 100 undergoes translation and/or rotation to drive the end of the elastic member 12 connected to the object to be controlled 100 to rotate, the first rotating member 11 and the mass member 13 have greater inertia.
  • the elastic member 13 can more reliably bring the end of the elastic member 12 away from the object to be controlled 100 to stay in the initial position, so that the elastic member 12 generates a greater moment opposite to the rotation direction of the object to be controlled 100 and transmits it to the object to be controlled 100, thereby better to effectively inhibit the rotation of the object 100 to be controlled.
  • the passive force output mechanism 1 also includes a base plate 14.
  • the base plate 14 is installed on the object to be controlled 100.
  • the first rotating member 11 is rotationally connected to the base plate 14, and the elastic member 12 faces the object to be controlled.
  • One end of the controlled object 100 is connected to the base plate 14.
  • the passive force output mechanism 1 it is more convenient for the passive force output mechanism 1 to connect to the object to be controlled 100 through the base plate 14. There is no need to connect the first rotating member 11 and the elastic member 12 to the object to be controlled 100 respectively.
  • the projected area of the bottom plate 14 on the object 100 to be controlled is larger than the projected area of the elastic member 12 on the object 100 to be controlled. Therefore, the contact area between the bottom plate 14 and the object 100 to be controlled is larger, so that the passive force output mechanism 1 The connection with the object to be controlled 100 through the base plate 14 is more reliable.
  • the passive force output mechanism 1 is also used to suppress the translation of the object to be controlled 100.
  • the first rotating member 11 can not rotate synchronously with the object to be controlled 100, so that the first rotation
  • the end of the member 11 carrying the elastic member 12 away from the object to be controlled 100 creates an angle difference with the object to be controlled 100, and the end of the elastic member 12 connected to the object to be controlled 100 can rotate synchronously with the object to be controlled 100, so that the elastic member 12
  • the torsional deformation generates a moment opposite to the translation direction of the object to be controlled 100 and transmits it to the object to be controlled 100 , thereby suppressing the translation of the object to be controlled 100 . Therefore, the passive force output mechanism 1 can both suppress the rotation of the object to be controlled 100 and The translation of the object 100 to be controlled can be suppressed.
  • the passive force output mechanism 1 includes at least three. At least one passive force output mechanism 1 is disposed on the first plane of the object to be controlled 100 , and at least one passive force output mechanism 1 is disposed on the second plane of the object to be controlled 100 . , at least one passive force output mechanism 1 is arranged on the third plane of the object to be controlled 100, the first plane, the second plane and the third plane are perpendicular to each other, and the passive force output mechanism 1 on the first plane is used to suppress the object 100 to be controlled.
  • the object to be controlled 100 rotates parallel to the first plane and rotates around an axis perpendicular to the first plane.
  • the active force output mechanism 2 on the second plane is used to suppress the object 100 to be controlled.
  • the active force output mechanism 2 on the third plane is used to suppress the translation and rotation of the object 100 to be controlled parallel to the third plane and the rotation of the object 100 around the axis perpendicular to the second plane. Control the rotation of the object 100 perpendicular to the axis of the third plane.
  • the first plane is a plane perpendicular to the Z-axis in Figure 1
  • the second plane is a plane perpendicular to the Y-axis in Figure 1
  • the third plane is a plane perpendicular to the Z-axis in Figure 1.
  • the passive force output mechanisms 1 on the first plane, the second plane, and the third plane cooperate to inhibit the translation and/or rotation of the object 100 to be controlled in any direction.
  • the second rotating member 22 is coaxially disposed at an end of the first rotating member 11 away from the object 100 to be controlled, so as to realize the connection between the second rotating member 22 and the object 100 to be controlled.
  • the driving member 21 is used to drive the second rotating member 22 to rotate when the object to be controlled 100 rotates, so that the second rotating member 22 generates a torque opposite to the rotation direction of the object to be controlled 100 and transmits it to the first rotating member 11
  • the first rotating member 11 drives the elastic member 12 to rotate, so that the elastic member 12 generates a moment opposite to the rotation direction of the object to be controlled 100 and transmits it to the object to be controlled 100, thereby inhibiting the rotation of the object to be controlled 100.
  • the active The power output mechanism 2 and the passive power output mechanism 1 can jointly suppress the rotation of the object 100 to be controlled, and the active power output mechanism 2 can increase the control efficiency and control effect of the system.
  • the active force output mechanism 2 and the mass member 13 of the passive force output mechanism 1 are connected together.
  • the active force output mechanism 2 is equivalent to increasing the Therefore, when the object to be controlled 100 undergoes translation and/or rotation to drive the elastic member 12 to rotate toward one end of the object to be controlled, the mass member 13 can more reliably bring the other end of the elastic member 12 to stay in place. position, so that the elastic member 12 generates a greater moment opposite to the translation and/or rotation direction of the object to be controlled 100 and transmits it to the object to be controlled 100 through the bottom plate 14, thereby more reliably suppressing the translation and/or rotation of the object to be controlled 100. /or turn.
  • the driving member 21 is detachably fixedly connected to the mass member 13, and the driving member 21 can be installed on or detached from the mass member 13, thereby improving the control system of unfavorable swing behavior of high-altitude hanging objects.
  • the loading and unloading efficiency is high, and the driving part 21 is easy to replace when damaged.
  • the active power output mechanism 2 also includes a fixing part 23.
  • the fixing part 23 fixes the driving part 21 on the mass part 13.
  • the fixing part 23 is detachable relative to the driving part 21, so that the driving part 21 can be relative to each other.
  • the mass piece 13 is removable.
  • the active power output mechanism 2 also includes a gear 24.
  • the gear 24 is connected to the driving member 21.
  • the second rotating member 22 has saw teeth 221.
  • the second rotating member 22 is connected to the gear through the saw teeth 221.
  • 24 mesh the driving member 21 is used to drive the gear 24 to rotate when the object to be controlled 100 rotates, and drives the second rotating member 22 to rotate through the meshing of the gear 24 and the sawtooth 221.
  • the driving member 21 and the second rotating member 22 By cooperating in the form of gear meshing transmission, the driving member 21 does not need to be directly connected to the second rotating member 22 and can be arranged outside the second rotating member 22.
  • the installation position of the driving member 21 is more diverse and convenient.
  • the gear 24 and the driving member 21 are detachably fixedly connected. Specifically, when the gear 24 is damaged, only the damaged gear 24 needs to be replaced without replacing the driving member 21, thereby reducing the active power output mechanism 2 replacement cost.
  • the second rotating member 22 is annular. Specifically, in a cable car, the empty space in the middle of the annular second rotating member 22 can be used to install a door for users to enter and exit the cable car. The empty space in the middle of the second rotating member 22 can also be used to install a window for the user to observe the external environment.
  • the multiple gears 24 correspond to the multiple driving members 21 one-to-one, and each gear 24 meshes with the saw teeth 221 , specifically, the driving parts 21 include multiple ones, so that the driving efficiency of the active power output mechanism 2 is higher, and when part of the driving parts 21 fails, the remaining driving parts 21 can still work normally.
  • the number of driving parts 21 and gears 24 is four.
  • the four gears 24 correspond to the four driving parts 21 one-to-one.
  • Each gear 24 meshes with the saw teeth 221 respectively.
  • Each driving part 21 meshes with the saw teeth 221 .
  • the controller 4 is electrically connected.
  • the driving members 21 include four, so that the driving efficiency of the driving members 21 is higher, and when some of the driving members 21 fail, the remaining driving members 21 can still work normally.
  • the active output mechanism 2 also includes a connecting piece 25.
  • One end of the connecting piece 25 is connected to the object to be controlled 100, and the other end of the connecting piece 25 is connected to the second rotating member 22.
  • the second rotating member 22 The torque generated by the rotation of the second rotating member 22 is transmitted to the object to be controlled 100 through the connecting member 25 .
  • the connecting member 25 is made of elastic material.
  • the second rotating member 22 transmits the torque to the object to be controlled 100 through the connecting member 25 made of elastic material, which can alleviate the impact of the object 100 to be controlled.
  • the material of the connecting piece 25 is rubber material.
  • the shape of the connecting member 25 is adapted to the shape of the second rotating member 22 .
  • the control system for the adverse swing behavior of high-altitude objects also includes a sensor 3 and a controller 4.
  • the sensor 3 is used to detect the rotation angle of the object 100 to be controlled.
  • the controller 4, the sensor 3 and the driving member 21 Electrically connected, the controller 4 is used to receive the rotation angle result of the object 100 to be controlled detected by the sensor 3, and output a corresponding response according to the rotation angle result of the object 100 to be controlled provided by the sensor 3.
  • the control instructions are given to the driving member 21, thereby controlling the driving member 21 to drive the rotation of the second rotating member 22.
  • the controller 4 can realize automatic control of the active output mechanism 2.
  • the controller 4 controls the operation of the active force output mechanism 2 to cooperate with the passive force output mechanism 1 to jointly suppress the rotation of the object to be controlled 100 .
  • the driving member 21 is also used to drive the second rotating member 22 to rotate when the object 100 to be controlled is in translation, so that the second rotating member 22 generates a moment opposite to the translation direction of the object 100 to be controlled and
  • the sensor 3 is also used to detect the translational movement of the object 100 to be controlled.
  • the controller 4 is also configured to receive the translational movement result of the object 100 to be controlled detected by the sensor 3, and output corresponding control instructions according to the translational movement result of the object 100 to be controlled provided by the sensor 3.
  • the driving member 21 is controlled to drive the second rotating member 22 to rotate. Specifically, when the sensor 3 detects that the translational movement of the object 100 to be controlled reaches the set value, the controller 4 controls the active output mechanism 2 to work, It cooperates with the controlled output mechanism to jointly suppress the translation of the object 100 to be controlled.
  • the senor 3 is provided on the object 100 to be controlled.
  • the active power output mechanisms 2 include at least three.
  • the at least three active power output mechanisms 2 correspond to the at least three passive power output mechanisms 1 .
  • the at least three active power output mechanisms 2 and the at least three passive power output mechanisms 1 are common. The cooperation suppresses the translation and/or rotation of the object 100 to be controlled in any direction.
  • the control system for the unfavorable swing behavior of high-altitude objects also includes a first shock absorber 5.
  • the first shock absorber 5 is connected to the object 100 to be controlled.
  • the first shock absorber 5 is used to control the object 100.
  • the object to be controlled 100 is provided with supporting force when it lands or when an object is placed on the object to be controlled 100 , so as to reduce the vibration of the object to be controlled 100 when it lands or when an object is placed on the object to be controlled 100 .
  • the first damping member 5 is a spring damping member.
  • the control system for the unfavorable swing behavior of high-altitude objects also includes a second shock absorber 6.
  • the second shock absorber 6 is connected to the object 100 to be controlled.
  • the second shock absorber 6 is used as the object 100 to be controlled.
  • a force opposite to the vibration direction of the object to be controlled 100 is applied to the object to be controlled 100 to suppress the vibration of the object to be controlled 100 .
  • the second damping member 6 is a hydraulic damping member, and the second damping member 6 is filled with damping fluid.
  • the damping fluid When the object 100 to be controlled vibrates, the damping fluid will vibrate in the opposite direction of the object 100 to be controlled. The movement in the direction causes the second vibration damping member 6 to exert the same vibration as the object 100 to be controlled. Forces in opposite directions.
  • the control system for the unfavorable swing behavior of high-altitude objects also includes a packaging box 7.
  • the packaging box 7 is connected to the object to be controlled 100.
  • the passive power output mechanism 1 and the active power output mechanism 2 are both arranged in the packaging box 7.
  • the passive force output mechanism 1 is connected to one end of the packaging box 7 close to the object 100 to be controlled.
  • the bottom plate 14 of the passive force output mechanism 1 is connected to one end of the packaging box 7 close to the object 100 to be controlled.
  • the control system for the unfavorable swing behavior of high-altitude objects also includes a cover 8.
  • the cover 8 is located on the end of the packaging box 7 away from the object to be controlled 100.
  • the cover 8 can connect the passive force output mechanism 1 And the active power output mechanism 2 is covered, making the control system of the unfavorable swing behavior of high-altitude objects look more beautiful.
  • packaging boxes 7 and cover plates 8 there are at least three packaging boxes 7 and cover plates 8 , and at least three packaging boxes 7 and cover plates 8 correspond to at least three passive force output mechanisms 1 one-to-one.
  • the control system for the unfavorable swing behavior of high-altitude objects also includes a mounting component 9.
  • the first damping component 5 and the second damping component 6 are both connected to the object to be controlled 100 through the mounting component 9.
  • the mounting member 9 has a hollow structure, and the packaging box 7 that is on the same plane as the mounting member 9 is disposed inside the mounting member 9 to save installation space.
  • the base plate 14 When the object 100 to be controlled undergoes translation and/or rotation, the base plate 14 is driven to rotate synchronously. Since the first rotating member 11 is rotationally connected to the base plate 14, the first rotating member 11, the mass body and the active force output mechanism 2 will not change with the control. The object 100 translates and/or rotates together, and the first rotating member 11, the mass body and the active force output mechanism 2 produce an angular difference with the object 100 to be controlled, so that the end of the elastic member 12 away from the object 100 is brought into contact with the object 100 to be controlled.
  • the angle is different, and the end of the elastic member 12 facing the object 100 to be controlled (that is, the end where the elastic member 12 is connected to the bottom plate 14 ) can rotate synchronously with the object 100 to be controlled, so that the elastic member 12 undergoes torsional deformation to produce a rotation with the object 100 to be controlled.
  • the torque in the opposite direction of translation and/or rotation is transmitted to the object to be controlled 100 through the base plate 14, thereby inhibiting the translation and/or rotation of the object to be controlled 100;
  • the controller 4 When the sensor 3 detects that the rotation angle and/or the translational movement of the object to be controlled 100 reaches the set value, the controller 4 outputs corresponding control instructions to the driving member 21 while the passive force output mechanism 1 operates, thereby controlling the driving.
  • the member 21 drives the gear 24 to rotate in the opposite direction to the translation and/or rotation direction of the object 100 to be controlled.
  • the second rotating member 22 is driven to rotate through the gear 24 meshing with the sawtooth 221.
  • the second rotating member 22 drives the mass through the connecting member 25.
  • the component 13 rotates, and the mass component 13 drives the elastic component 12 Rotate, so that the elastic member 12 generates a moment opposite to the direction of translation and/or rotation of the object to be controlled 100 and transmits it to the object to be controlled 100 through the base plate 14, thereby better suppressing the translation and/or rotation of the object to be controlled 100.
  • the mass component 13 drives the elastic component 12 Rotate, so that the elastic member 12 generates a moment opposite to the direction of translation and/or rotation of the object to be controlled 100 and transmits it to the object to be controlled 100 through the base plate 14, thereby better suppressing the translation and/or rotation of the object to be controlled 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position Or Direction (AREA)
  • Manipulator (AREA)

Abstract

一种高空吊物不利摆动行为的控制系统,包括被动出力机构(1)和/或主动出力机构(2),被动出力机构(1)能够在待控对象(100)发生转动时,产生与待控对象(100)的转动方向相反的力矩并传递给待控对象(100),从而抑制待控对象(100)的转动;主动出力机构(2)包括驱动件(21)和第二转动件(22),第二转动件(22)设置于待控对象(100)上,驱动件(21)用于在待控对象(100)发生转动时驱动第二转动件(22)旋转,以使第二转动件(22)产生与待控对象(100)的转动方向相反的力矩并传递给待控对象(100),从而抑制待控对象(100)的转动。

Description

高空吊物不利摆动行为的控制系统 技术领域
本发明涉及高空缆车控制领域,特别涉及一种高空吊物不利摆动行为的控制系统。
背景技术
高空缆车属于高空作业设备,在空中受到外界环境的影响会发生转动,现有技术,通过设置控制装置对缆车的转动进行抑制,但传统的控制装置通常采用调谐质量阻尼器等被动控制方式进行控制,调谐质量阻尼器的出力方式仅限于垂向和横向两个方向的直线作用力,针对缆车的转动并不能充分发挥其控制作用,且其输出的直线力大小不能完全保持一致,这使得该控制装置无法形成有效的控制力矩以实现对缆车具有转动成分的侧倾行为发挥有效的控制作用。
发明内容
基于此,有必要提供一种能够有效控制缆车的转动的高空吊物不利摆动行为的控制系统。
为解决上述技术问题,本发明提供一种高空吊物不利摆动行为的控制系统,包括被动出力机构和/或主动出力机构:
所述被动出力机构包括第一转动件及弹性件,所述第一转动件与待控对象转动连接,所述弹性件的一端与所述待控对象连接,所述弹性件的另一端与所述第一转动件连接,在所述待控对象发生转动时,所述第一转动件能够不随所述待控对象同步转动,以使所述弹性件背离所述待控对象的一端与所述待控对象产生角度差,且所述弹性件与所述待控对象连接的一端能够跟随所述待控对象同步转动,以使所述弹性件发生扭转形变产生与所述待控对象转动方向相反的力矩并传递给所述待控对象,从而以抑制所述待控对象的转动;
所述主动出力机构包括驱动件和第二转动件,所述第二转动件设置于所 述待控对象上,所述第二转动件与所述驱动件连接,所述驱动件用于在所述待控对象发生转动时驱动所述第二转动件旋转,以使所述第二转动件产生与所述待控对象的转动方向相反的力矩并传递给所述待控对象,从而以抑制所述待控对象的转动。
优选地,所述高空吊物不利摆动行为的控制系统包括被动出力机构,所述被动出力机构还包括质量件,所述第一转动件背离所述待控对象的一端与所述质量件连接,所述弹性件背离所述待控对象的一端与所述质量件连接,以实现所述弹性件与所述第一转动件的连接。
优选地,所述高空吊物不利摆动行为的控制系统包括被动出力机构,在所述待控对象发生平动时,所述第一转动件能够不随所述待控对象同步转动,以使所述弹性件背离所述待控对象的一端与所述待控对象产生角度差,且所述弹性件与所述待控对象连接的一端能够跟随所述待控对象同步转动,以使所述弹性件发生扭转形变产生与所述待控对象的平动方向相反的力矩并传递给所述待控对象,从而以抑制所述待控对象的平动。
优选地,所述被动出力机构包括至少三个,至少一个所述被动出力机构设置在所述待控对象的第一平面上,至少一个所述被动出力机构设置在所述待控对象的第二平面上,至少一个所述被动出力机构设置在所述待控对象的第三平面上,所述第一平面、所述第二平面及所述第三平面两两垂直,所述第一平面上的所述被动出力机构用于抑制所述待控对象平行于所述第一平面的平动及所述待控对象绕垂直于所述第一平面的轴线转动,所述第二平面上的所述主动出力机构用于抑制所述待控对象平行于所述第二平面的平动及所述待控对象绕垂直于所述第二平面的轴线的转动,所述第三平面上的所述主动出力机构用于抑制所述待控对象平行于所述第三平面的平动及所述待控对象垂直于所述第三平面的轴线的转动。
优选地,所述高空吊物不利摆动行为的控制系统包括被动出力机构和主动出力机构,所述第二转动件同轴设置于所述第一转动件背离所述待控对象的一端,以实现所述第二转动件与所述待控对象的连接,所述驱动件用于在所述待控对象发生转动时驱动所述第二转动件旋转,以使所述第二转动件产生与所述待控对象的转动方向相反的力矩并传递给所述第一转动件,所述第一转动件带动所述弹性件转动,以使所述弹性件产生与所述待控对象转动方 向相反的力矩并传递给所述待控对象,从而以抑制所述待控对象的转动。
优选地,所述主动出力机构还包括齿轮,所述齿轮与所述驱动件连接,所述第二转动件具有锯齿,所述第二转动件通过所述锯齿与所述齿轮相啮合,所述驱动件用于在所述待控对象发生转动时驱动所述齿轮旋转,通过所述齿轮与所述锯齿啮合传动带动所述第二转动件旋转。
优选地,所述驱动件和所述齿轮的数量均为多个,多个所述齿轮分别与多个所述驱动件一一对应,每个所述齿轮均与所述锯齿啮合。
优选地,所述高空吊物不利摆动行为的控制系统还包括传感器和控制器,所述传感器用于检测所述待控对象的转动角度,所述控制器与所述传感器及所述驱动件电连接,所述控制器用于接收所述传感器检测的所述待控对象的转动角度结果,并根据所述传感器提供的所述待控对象的转动角度结果输出相应的控制指令给所述驱动件,从而控制所述驱动件驱动所述第二转动件的旋转。
优选地,所述高空吊物不利摆动行为的控制系统包括主动出力机构,所述驱动件还用于在所述待控对象发生平动时驱动所述第二转动件旋转,以使所述第二转动件产生与所述待控对象的平动方向相反的力矩并传递给所述待控对象,从而以抑制所述待控对象的平动。
优选地,所述传感器还用于检测所述待控对象的平动移动量,所述控制器还用于接收所述传感器检测的所述待控对象的平动移动量结果,并根据所述传感器提供的所述待控对象的平动移动量结果输出相应的控制指令给所述驱动件,从而控制所述驱动件驱动所述第二转动件旋转。
本发明技术方案的有益效果:若高空吊物不利摆动行为的控制系统包括被动出力机构,当待控对象发生转动时,由于第一转动件与待控对象转动连接,第一转动件能够不随待控对象一起转动,从而第一转动件带着弹性件背离待控对象的一端保持在初始位置,且弹性件与待控对象连接的一端能够跟随待控对象转动,以使弹性件发生扭转形变产生与待控对象转动方向相反的力矩并传递给待控对象,从而以抑制待控对象的转动;若高空吊物不利摆动行为的控制系统包括主动出力机构,当待控对象发生转动时,驱动件驱动第二转动件旋转,以使第二转动件产生与待控对象的转动方向相反的力矩并传递给待控对象,从而以抑制待控对象的转动;若高空吊物不利摆动行为的控 制系统包括被动出力机构和主动出力机构,当待控对象发生转动时,第一转动件带着弹性件背离待控对象的一端保持在初始位置,且弹性件与待控对象连接的一端能够跟随待控对象转动,以使弹性件发生扭转形变产生与待控对象转动方向相反的力矩并传递给待控对象,同时,驱动件驱动第二转动件旋转,以使第二转动件产生与待控对象的转动方向相反的力矩并传递给待控对象,从而被动出力机构和主动出力机构能够共同抑制待控对象的转动。本申请的被动出力机构和/或主动出力机构通过直接输出力矩的方式来抑制待控对象的转动,相对于现有技术通过输出无法保证大小相等的两个直线力合成力矩的方式来抑制待控对象的转动,本申请对待控对象的转动的控制更加有效可靠。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明中高空吊物不利摆动行为的控制系统的结构示意图;
图2为本发明中一实施例中被动出力机构和待控对象的结构示意图;
图3为本发明中主动出力机构及被动出力机构的结构示意图;
图4为本发明中主动出力机构、被动出力机构及封装盒的结构示意图;
图5为图3在A处的放大示意图;
图6为本发明中高空吊物不利摆动行为的控制系统的又一结构示意图。
其中,1.被动出力机构;11.第一转动件;12.弹性件;13.质量件;14.底板;2.主动出力机构;21.驱动件;22.第二转动件;221.锯齿;23.固定件;24.齿轮;25.连接件;3.传感器;4.控制器;5.第一减振件;6.第二减振件;7.封装盒;8.盖板;9.安装件;100.待控对象。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面结合附图和示例性实施例对本发明作进一步地描述,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。此外,如果已知技术的详细描述对于示出本发明的特征是不必要的,则将其省略。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
以下将主要描述一实施例中的高空吊物不利摆动行为的控制系统的具体结构。
如图1、图2及图4所示,一种高空吊物不利摆动行为的控制系统,包括被动出力机构1和/或主动出力机构2,被动出力机构1包括第一转动件11及弹性件12,第一转动件11与待控对象100转动连接,弹性件12的一端与待控对象100连接,弹性件12的另一端与第一转动件11连接,在待控对象100发生转动时,第一转动件11能够不随待控对象100同步转动,从而第一转动件11带着弹性件12背离待控对象的一端与待控对象100产生角度差,且弹性件12与待控对象100连接的一端能够跟随待控对象100同步转动,以使弹性件12发生扭转形变产生与待控对象100转动方向相反的力矩并传递给待控 对象100,从而以抑制待控对象100的转动;主动出力机构2包括驱动件21和第二转动件22,第二转动件22设置于待控对象100上,第二转动件22与驱动件21连接,驱动件21用于在待控对象100发生转动时驱动第二转动件22旋转,以使第二转动件22产生与待控对象100的转动方向相反的力矩并传递给待控对象100,从而以抑制待控对象100的转动,在本实施例中,待控对象100为缆车。
若高空吊物不利摆动行为的控制系统包括被动出力机构1,当待控对象100发生转动时,由于第一转动件11与待控对象100转动连接,第一转动件11能够不随待控对象100一起转动,从而第一转动件11带着弹性件12背离待控对象100的一端与待控对象100产生角度差,且弹性件12与待控对象100连接的一端能够跟随待控对象100同步转动,以使弹性件12发生扭转形变产生与待控对象100转动方向相反的力矩并传递给待控对象100,从而以抑制待控对象100的转动;若高空吊物不利摆动行为的控制系统包括主动出力机构2,当待控对象100发生转动时,驱动件21驱动第二转动件22旋转,以使第二转动件22产生与待控对象100的转动方向相反的力矩并传递给待控对象100,从而以抑制待控对象100的转动;若高空吊物不利摆动行为的控制系统包括被动出力机构1和主动出力机构2,当待控对象100发生转动时,第一转动件11带着弹性件12背离待控对象100的一端与待控对象100产生角度差,且弹性件12与待控对象100连接的一端能够跟随待控对象100同步转动,以使弹性件12发生扭转形变产生与待控对象100转动方向相反的力矩并传递给待控对象100,同时,驱动件21驱动第二转动件22旋转,以使第二转动件22产生与待控对象100的转动方向相反的力矩并传递给待控对象100,从而被动出力机构1和主动出力机构2能够共同抑制待控对象100的转动。本申请的被动出力机构1和/或主动出力机构2通过直接输出力矩的方式来抑制待控对象100的转动,相对于现有技术通过输出无法保证大小相等的两个直线力合成力矩的方式来抑制待控对象100的转动,本申请对待控对象100的转动的控制更加有效可靠,主被动复合控制,进一步节省外界输入能量,增加控制效率和控制精度。
在一实施例中,第一转动件11还用于对弹性件12起导向作用,以避免弹性件12相对于待控对象100偏离。
如图1和图3所示,被动出力机构1还包括质量件13,第一转动件11背离待控对象100的一端与质量件13连接,弹性件12背离待控对象100的一端与质量件13连接,进而实现弹性件12与第一转动件11的连接,具体地,第一转动件11和质量件13组合在一起相对于只有第一转动件11的质量更大,第一转动件11和质量件13组合在一起具有更大的惯性,因此,在待控对象100发生平动和/或转动带动弹性件12与待控对象100连接的一端转动时,第一转动件11和质量件13能够更可靠带着弹性件12背离待控对象100的一端停留在初始位置,以使弹性件12产生更大地与待控对象100转动方向相反的力矩并传递给待控对象100,从而更好地抑制待控对象100的转动。
如图1和图3所示,在一实施例中,被动出力机构1还包括底板14,底板14安装在待控对象100上,第一转动件11与底板14转动连接,弹性件12朝向待控对象100的一端与底板14连接,具体地,被动出力机构1通过底板14与待控对象100连接更加便捷,不需要将第一转动件11及弹性件12分别与待控对象100连接。
在一实施例中,底板14在待控对象100上的投影面积比弹性件12在待控对象100上的投影面积大,因此底板14与待控对象100接触面积更大,使得被动出力机构1通过底板14与待控对象100的连接更加可靠。
在一实施例中,被动出力机构1还用于抑制待控对象100的平动,在待控对象100发生平动时,第一转动件11能够不随待控对象100同步转动,从而第一转动件11带着弹性件12背离待控对象100的一端与待控对象100产生角度差,且弹性件12与待控对象100连接的一端能够跟随待控对象100同步转动,以使弹性件12发生扭转形变产生与待控对象100的平动方向相反的力矩并传递给待控对象100,从而以抑制待控对象100的平动,因此,被动出力机构1既可以抑制待控对象100的转动也可以抑制待控对象100的平动。
在一实施例中,被动出力机构1包括至少三个,至少一个被动出力机构1设置在待控对象100的第一平面上,至少一个被动出力机构1设置在待控对象100的第二平面上,至少一个被动出力机构1设置在待控对象100的第三平面上,第一平面、第二平面及第三平面两两垂直,第一平面上的被动出力机构1用于抑制待控对象100平行于第一平面的平动及待控对象100绕垂直于第一平面的轴线转动,第二平面上的主动出力机构2用于抑制待控对象100 平行于第二平面的平动及待控对象100绕垂直于第二平面的轴线的转动,第三平面上的主动出力机构2用于抑制待控对象100平行于第三平面的平动及待控对象100垂直于第三平面的轴线的转动,具体地,第一平面为与图1中Z轴垂直的平面,第二平面为与图1中Y轴垂直的平面,第三平面为与图1中X轴垂直的平面。
在一实施例中,第一平面、第二平面及第三平面上的被动出力机构1共同配合能够抑制待控对象100在任意方向的平动和/或转动。
如图1和图4所示,在一实施例中,第二转动件22同轴设置于第一转动件11背离待控对象100的一端,以实现第二转动件22与待控对象100的连接,驱动件21用于在待控对象100发生转动时驱动第二转动件22旋转,以使第二转动件22产生与待控对象100的转动方向相反的力矩并传递给第一转动件11,第一转动件11带动弹性件12转动,以使弹性件12产生与待控对象100转动方向相反的力矩并传递给待控对象100,从而以抑制待控对象100的转动,具体地,主动出力机构2与被动出力机构1能够一起抑制待控对象100的转动,并且主动出力机构2能够增加系统的控制效率和控制效果。
在本实施例中,主动出力机构2和被动出力机构1的质量件13连接在一起,在被动出力机构1抑制待控对象100的平动和/或转动时,主动出力机构2相当于增加了质量件13的质量,因此,在待控对象100发生平动和/或转动带动弹性件12朝向待控对象100的一端转动时,质量件13能够更可靠带着弹性件12的另一端留在原处,以使弹性件12产生更大地与待控对象100的平动和/或转动方向相反的力矩并通过底板14传递给待控对象100,从而更可靠地抑制待控对象100的平动和/或转动。
在一实施例中,驱动件21与质量件13可拆卸的固定连接,可将驱动件21安装到质量件13上或者从质量件13上拆卸下来,从而提高高空吊物不利摆动行为的控制系统的装卸效率,且驱动件21发生损坏时便于更换。
如图1和图5所示,主动出力机构2还包括固定件23,固定件23将驱动件21固定在质量件13上,固定件23相对于驱动件21可拆卸,从而实现驱动件21相对于质量件13可拆卸。
如图1和图5所示,主动出力机构2还包括齿轮24,齿轮24与驱动件21连接,第二转动件22具有锯齿221,第二转动件22通过锯齿221与齿轮 24相啮合,驱动件21用于在待控对象100发生转动时驱动齿轮24旋转,通过齿轮24与锯齿221啮合传动带动第二转动件22旋转,具体地,驱动件21与第二转动件22以齿轮啮合传动的方式配合,驱动件21不需要与第二转动件22直接连接,可以设置在第二转动件22的外侧,驱动件21的设置位置更加多样便捷。
在一实施例中,齿轮24和驱动件21可拆卸的固定连接,具体地,当齿轮24发生损坏时,只需更换损坏的齿轮24即可,无需更换驱动件21,从而降低主动出力机构2的更换成本。
在一实施例中,第二转动件22为环状,具体地,在缆车中,环状的第二转动件22的中间空的位置可以用于安装门以供使用者进出缆车,环状的第二转动件22的中间空的位置也可以用于安装窗户以供使用者观察外界的环境。
如图1和4所示,在一实施例中,驱动件21和齿轮24的数量均为多个,多个齿轮24与多个驱动件21一一对应,每个齿轮24均与锯齿221啮合,具体地,驱动件21包括多个,使得主动出力机构2的驱动效率更高,且在部分驱动件21发生故障时,剩余的驱动件21依然可以正常工作。
在本实施例中,驱动件21和齿轮24的数量均为四个,四个齿轮24与四个驱动件21一一对应,每个齿轮24分别与锯齿221啮合,每个驱动件21均与控制器4电连接,具体地,驱动件21包括四个使得驱动件21的驱动效率更高,且在部分驱动件21发生故障时,剩余的驱动件21依然可以正常工作。
如图1和图3所示,主动出力机构2还包括连接件25,连接件25的一端与待控对象100连接,连接件25的另一端与第二转动件22连接,第二转动件22通过连接件25将第二转动件22旋转产生的力矩传递给待控对象100。
在一实施例中,连接件25的材质为弹性材质,第二转动件22通过弹性材质的连接件25将力矩传递给待控对象100,能够缓和待控对象100受到冲击,在本实施例中,连接件25的材质为橡胶材质。
在一实施例中,连接件25的形状与第二转动件22的形状相适配。
如图1和图4所示,高空吊物不利摆动行为的控制系统还包括传感器3和控制器4,传感器3用于检测待控对象100的转动角度,控制器4与传感器3及驱动件21电连接,控制器4用于接收传感器3检测的待控对象100的转动角度结果,并根据传感器3提供的待控对象100的转动角度结果输出相应 的控制指令给驱动件21,从而控制驱动件21驱动第二转动件22的旋转,通过控制器4能够实现主动出力机构2的自动控制,具体地,当传感器3检测到待控对象100的转动角度达到设定值时,控制器4控制主动出力机构2工作,以与被动出力机构1配合共同抑制待控对象100的转动。
在一实施例中,驱动件21还用于在待控对象100发生平动时驱动第二转动件22旋转,以使第二转动件22产生与待控对象100的平动方向相反的力矩并传递给待控对象100,从而以抑制待控对象100的平动,传感器3还用于检测待控对象100的平动移动量。
在一实施例中,控制器4还用于接收传感器3检测的待控对象100的平动移动量结果,并根据传感器3提供的待控对象100的平动移动量结果输出相应的控制指令给驱动件21,从而控制驱动件21驱动第二转动件22旋转,具体地,当传感器3检测到待控对象100的平动移动量达到设定值时,控制器4控制主动出力机构2工作,以与被控出力机构配合共同抑制待控对象100的平动。
如图1所示,在一实施例中,传感器3设置在待控对象100上。
在一实施例中,主动出力机构2包括至少三个,至少三个主动出力机构2与至少三个被动出力机构1一一对应,至少三个主动出力机构2与至少三个被动出力机构1共同配合抑制待控对象100在任意方向的平动和/或转动。
如图1所示,高空吊物不利摆动行为的控制系统还包括第一减振件5,第一减振件5与待控对象100连接,第一减振件5用于在待控对象100落地时或在待控对象100上放置物体时给待控对象100提供支撑力,以减弱待控对象100落地时或在待控对象100上放置物体时的振动。
在一实施例中,第一减振件5为弹簧减振件。
如图1所示,高空吊物不利摆动行为的控制系统还包括第二减振件6,第二减振件6与待控对象100连接,第二减振件6用于当待控对象100在空中发生上下振动时给待控对象100施加一与待控对象100的振动方向相反的作用力,以抑制待控对象100的振动。
在一实施例中,第二减振件6为液压减振件,第二减振件6内填充有阻尼液,待控对象100发生振动时,阻尼液会朝待控对象100振动方向相反的方向的移动,使得第二减振件6给待控对象100施加与待控对象100的振动 方向相反的作用力。
如图1和图4所示,高空吊物不利摆动行为的控制系统还包括封装盒7,封装盒7与待控对象100连接,被动出力机构1及主动出力机构2均设置于封装盒7内,被动出力机构1与封装盒7靠近待控对象100的一端连接,具体地,被动出力机构1的底板14与封装盒7靠近待控对象100的一端连接。
如图1和图6所示,高空吊物不利摆动行为的控制系统还包括盖板8,盖板8盖设在封装盒7背离待控对象100的一端,盖板8能够将被动出力机构1及主动出力机构2遮住,使得高空吊物不利摆动行为的控制系统看起来更加美观。
在一实施例中,封装盒7及盖板8均包括至少三个,至少三个封装盒7及盖板8与至少三个被动出力机构1一一对应。
如图1所示,高空吊物不利摆动行为的控制系统还包括安装件9,第一减振件5和第二减振件6均通过安装件9与待控对象100连接。
在一实施例中,安装件9为中空结构,和安装件9在同一平面的封装盒7设置在安装件9内,以节省安装空间。
参照图1-6,高空吊物不利摆动行为的控制系统各结构之间的配合和动作过程如下:
当待控对象100发生平动和/或转动时,带动底板14同步转动,由于第一转动件11与底板14转动连接,第一转动件11、质量体及主动出力机构2不会随待控对象100一起平动和/或转动,第一转动件11、质量体及主动出力机构2与待控对象100产生角度差,从而带着弹性件12背离待控对象的一端与待控对象100产生角度差,且弹性件12朝向待控对象100的一端(即弹性件12与底板14连接的一端)能够跟随待控对象100同步转动,以使弹性件12发生扭转形变产生与待控对象100的平动和/或转动方向相反的力矩并通过底板14传递给待控对象100,从而以抑制待控对象100的平动和/或转动;
当传感器3检测到待控对象100的转动角度和/或平动移动量达到设定值时,在被动出力机构1动作的同时,控制器4输出相应的控制指令给驱动件21,从而控制驱动件21驱动齿轮24朝待控对象100的平动和/或转动方向相反的方向旋转,通过齿轮24与锯齿221啮合传动带动第二转动件22旋转,第二转动件22通过连接件25带动质量件13旋转,质量件13带动弹性件12 转动,以使弹性件12产生与待控对象100的平动和/或转动方向相反的力矩并通过底板14传递给待控对象100,从而更好地抑制待控对象100的平动和/或转动。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种高空吊物不利摆动行为的控制系统,其特征在于,包括被动出力机构和/或主动出力机构:
    所述被动出力机构包括第一转动件及弹性件,所述第一转动件与待控对象转动连接,所述弹性件的一端与所述待控对象连接,所述弹性件的另一端与所述第一转动件连接,在所述待控对象发生转动时,所述第一转动件能够不随所述待控对象同步转动,以使所述弹性件背离所述待控对象的一端与所述待控对象产生角度差,且所述弹性件与所述待控对象连接的一端能够跟随所述待控对象同步转动,以使所述弹性件发生扭转形变产生与所述待控对象转动方向相反的力矩并传递给所述待控对象,从而以抑制所述待控对象的转动;
    所述主动出力机构包括驱动件和第二转动件,所述第二转动件设置于所述待控对象上,所述第二转动件与所述驱动件连接,所述驱动件用于在所述待控对象发生转动时驱动所述第二转动件旋转,以使所述第二转动件产生与所述待控对象的转动方向相反的力矩并传递给所述待控对象,从而以抑制所述待控对象的转动。
  2. 根据权利要求1所述的高空吊物不利摆动行为的控制系统,其特征在于,所述高空吊物不利摆动行为的控制系统包括被动出力机构,所述被动出力机构还包括质量件,所述第一转动件背离所述待控对象的一端与所述质量件连接,所述弹性件背离所述待控对象的一端与所述质量件连接,以实现所述弹性件与所述第一转动件的连接。
  3. 根据权利要求1所述的高空吊物不利摆动行为的控制系统,其特征在于,所述高空吊物不利摆动行为的控制系统包括被动出力机构,在所述待控对象发生平动时,所述第一转动件能够不随所述待控对象同步转动,以使所述弹性件背离所述待控对象的一端与所述待控对象产生角度差,且所述弹性件与所述待控对象连接的一端能够跟随所述待控对象同步转动,以使所述弹性件发生扭转形变产生与所述待控对象的平动方向相反的力矩并传递给所述待控对象,从而以抑制所述待控对象的平动。
  4. 根据权利要求3所述的高空吊物不利摆动行为的控制系统,其特征在 于,所述被动出力机构包括至少三个,至少一个所述被动出力机构设置在所述待控对象的第一平面上,至少一个所述被动出力机构设置在所述待控对象的第二平面上,至少一个所述被动出力机构设置在所述待控对象的第三平面上,所述第一平面、所述第二平面及所述第三平面两两垂直,所述第一平面上的所述被动出力机构用于抑制所述待控对象平行于所述第一平面的平动及所述待控对象绕垂直于所述第一平面的轴线转动,所述第二平面上的所述主动出力机构用于抑制所述待控对象平行于所述第二平面的平动及所述待控对象绕垂直于所述第二平面的轴线的转动,所述第三平面上的所述主动出力机构用于抑制所述待控对象平行于所述第三平面的平动及所述待控对象垂直于所述第三平面的轴线的转动。
  5. 根据权利要求1所述的高空吊物不利摆动行为的控制系统,其特征在于,所述高空吊物不利摆动行为的控制系统包括被动出力机构和主动出力机构,所述第二转动件同轴设置于所述第一转动件背离所述待控对象的一端,以实现所述第二转动件与所述待控对象的连接,所述驱动件用于在所述待控对象发生转动时驱动所述第二转动件旋转,以使所述第二转动件产生与所述待控对象的转动方向相反的力矩并传递给所述第一转动件,所述第一转动件带动所述弹性件转动,以使所述弹性件产生与所述待控对象转动方向相反的力矩并传递给所述待控对象,从而以抑制所述待控对象的转动。
  6. 根据权利要求1所述的高空吊物不利摆动行为的控制系统,其特征在于,所述主动出力机构还包括齿轮,所述齿轮与所述驱动件连接,所述第二转动件具有锯齿,所述第二转动件通过所述锯齿与所述齿轮相啮合,所述驱动件用于在所述待控对象发生转动时驱动所述齿轮旋转,通过所述齿轮与所述锯齿啮合传动带动所述第二转动件旋转。
  7. 根据权利要求6所述的高空吊物不利摆动行为的控制系统,其特征在于,所述驱动件和所述齿轮的数量均为多个,多个所述齿轮分别与多个所述驱动件一一对应,每个所述齿轮均与所述锯齿啮合。
  8. 根据权利要求1所述的高空吊物不利摆动行为的控制系统,其特征在于,所述高空吊物不利摆动行为的控制系统还包括传感器和控制器,所述传感器用于检测所述待控对象的转动角度,所述控制器与所述传感器及所述驱动件电连接,所述控制器用于接收所述传感器检测的所述待控对象的转动角 度结果,并根据所述传感器提供的所述待控对象的转动角度结果输出相应的控制指令给所述驱动件,从而控制所述驱动件驱动所述第二转动件的旋转。
  9. 根据权利要求8所述的高空吊物不利摆动行为的控制系统,其特征在于,所述高空吊物不利摆动行为的控制系统包括主动出力机构,所述驱动件还用于在所述待控对象发生平动时驱动所述第二转动件旋转,以使所述第二转动件产生与所述待控对象的平动方向相反的力矩并传递给所述待控对象,从而以抑制所述待控对象的平动。
  10. 根据权利要求9所述的高空吊物不利摆动行为的控制系统,其特征在于,所述传感器还用于检测所述待控对象的平动移动量,所述控制器还用于接收所述传感器检测的所述待控对象的平动移动量结果,并根据所述传感器提供的所述待控对象的平动移动量结果输出相应的控制指令给所述驱动件,从而控制所述驱动件驱动所述第二转动件旋转。
PCT/CN2023/083688 2022-08-15 2023-03-24 高空吊物不利摆动行为的控制系统 WO2024036964A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210976279.1A CN115366927A (zh) 2022-08-15 2022-08-15 高空吊物不利摆动行为的控制系统
CN202210976279.1 2022-08-15

Publications (1)

Publication Number Publication Date
WO2024036964A1 true WO2024036964A1 (zh) 2024-02-22

Family

ID=84065099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083688 WO2024036964A1 (zh) 2022-08-15 2023-03-24 高空吊物不利摆动行为的控制系统

Country Status (2)

Country Link
CN (1) CN115366927A (zh)
WO (1) WO2024036964A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115366927A (zh) * 2022-08-15 2022-11-22 沈阳工业大学 高空吊物不利摆动行为的控制系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102114842A (zh) * 2010-12-31 2011-07-06 贵州云马飞机制造厂 架空索道厢体防摆动装置
CN104482812A (zh) * 2014-12-09 2015-04-01 江西洪都航空工业集团有限责任公司 一种悬挂物防摆止动装置
CN109630612A (zh) * 2019-02-01 2019-04-16 青岛理工大学 自供能式主被动复合转动惯量驱动控制系统
CN110654412A (zh) * 2019-10-31 2020-01-07 青岛理工大学 抑制高速列车侧滚、点头、摇头行为的主被动复合控制系统
CN115233540A (zh) * 2022-08-15 2022-10-25 沈阳工业大学 抑制桥梁多模态耦合振动的主被动混合控制系统
CN115366927A (zh) * 2022-08-15 2022-11-22 沈阳工业大学 高空吊物不利摆动行为的控制系统
CN115387593A (zh) * 2022-08-15 2022-11-25 沈阳工业大学 悬吊物体摇摆止振的主被动复合控制系统
CN115387201A (zh) * 2022-08-15 2022-11-25 沈阳工业大学 一种工程结构或机械系统减摇止摆的主动控制系统
CN115404758A (zh) * 2022-08-15 2022-11-29 沈阳工业大学 一种回转力矩主被动复合控制系统
CN115421411A (zh) * 2022-08-15 2022-12-02 沈阳工业大学 一种基于回转原理的主动力矩驱动控制系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109775583B (zh) * 2019-02-27 2020-03-31 长沙海川自动化设备有限公司 塔机回转传动机构、回转控制装置及塔机
TWM590506U (zh) * 2019-08-02 2020-02-11 冠億齒輪股份有限公司 具旋轉換向機構的動力扳手
CN111173910B (zh) * 2019-11-05 2023-07-25 杨成强 一种扭力放大机构及驱动机构

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102114842A (zh) * 2010-12-31 2011-07-06 贵州云马飞机制造厂 架空索道厢体防摆动装置
CN104482812A (zh) * 2014-12-09 2015-04-01 江西洪都航空工业集团有限责任公司 一种悬挂物防摆止动装置
CN109630612A (zh) * 2019-02-01 2019-04-16 青岛理工大学 自供能式主被动复合转动惯量驱动控制系统
CN110654412A (zh) * 2019-10-31 2020-01-07 青岛理工大学 抑制高速列车侧滚、点头、摇头行为的主被动复合控制系统
CN115233540A (zh) * 2022-08-15 2022-10-25 沈阳工业大学 抑制桥梁多模态耦合振动的主被动混合控制系统
CN115366927A (zh) * 2022-08-15 2022-11-22 沈阳工业大学 高空吊物不利摆动行为的控制系统
CN115387593A (zh) * 2022-08-15 2022-11-25 沈阳工业大学 悬吊物体摇摆止振的主被动复合控制系统
CN115387201A (zh) * 2022-08-15 2022-11-25 沈阳工业大学 一种工程结构或机械系统减摇止摆的主动控制系统
CN115404758A (zh) * 2022-08-15 2022-11-29 沈阳工业大学 一种回转力矩主被动复合控制系统
CN115421411A (zh) * 2022-08-15 2022-12-02 沈阳工业大学 一种基于回转原理的主动力矩驱动控制系统

Also Published As

Publication number Publication date
CN115366927A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2024036964A1 (zh) 高空吊物不利摆动行为的控制系统
WO2020155643A1 (zh) 自供能式主被动复合转动惯量驱动控制系统
CN201891793U (zh) 惯性质量蓄能式直升机机身反共振隔振装置
CA2665700C (en) Vibration-attenuating hard-mounted pylon
CN104176251B (zh) 一种用于小型倾转旋翼机的发动机小角度倾转机构
CN109610302B (zh) 复合式桥梁扭转振动控制系统
WO2020155642A1 (zh) 主动复合变阻尼转动控制装置
CN108916317B (zh) 一种基于减速机的棘轮齿条惯容器
JPH07505843A (ja) ヘリコプターのアクティブ騒音制御システム
WO2024036963A1 (zh) 悬吊物体摇摆止振的主被动复合控制系统
WO2020155644A1 (zh) 自适应机械驱动调节转动惯量式控制系统
WO2024036971A1 (zh) 一种基于回转原理的主动力矩驱动控制系统
US20190284800A1 (en) Tuned dynamic damper and method for reducing the amplitude of oscillations
CN109869439A (zh) 一种新型Stewart减振器
WO2008084195A3 (en) Gyroscopic torque converter
CN110145567B (zh) 一种非线性能量汇
CN113606279B (zh) 一种具有交变阻尼的减振装置
CN214461389U (zh) 离合型惯容质量阻尼器
CN213839408U (zh) 一种减振器单体及嵌套式减振器
JP5024838B2 (ja) モーターの重力補償器
CN209852582U (zh) 单旋翼无人机伺服控制系统的缓冲保护可调摆臂位置装置
WO2020155639A1 (zh) 自走式全方向转动惯量驱动控制系统
CN102777526B (zh) 一种适合航天器在轨应用的密封型粘弹性阻尼器
Bushnell et al. Flight test of an international space station active rack isolation prototype system
WO2020155640A1 (zh) 电磁变阻尼旋转控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853877

Country of ref document: EP

Kind code of ref document: A1