WO2020155640A1 - 电磁变阻尼旋转控制系统 - Google Patents

电磁变阻尼旋转控制系统 Download PDF

Info

Publication number
WO2020155640A1
WO2020155640A1 PCT/CN2019/105651 CN2019105651W WO2020155640A1 WO 2020155640 A1 WO2020155640 A1 WO 2020155640A1 CN 2019105651 W CN2019105651 W CN 2019105651W WO 2020155640 A1 WO2020155640 A1 WO 2020155640A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic
driver
control system
rotation control
variable damping
Prior art date
Application number
PCT/CN2019/105651
Other languages
English (en)
French (fr)
Inventor
张春巍
王昊
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2020155640A1 publication Critical patent/WO2020155640A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0215Bearing, supporting or connecting constructions specially adapted for such buildings involving active or passive dynamic mass damping systems
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings

Definitions

  • the invention relates to the field of vibration suppression in a system, and in particular to an electromagnetic variable damping rotation control system.
  • Structural vibration control technology is mainly divided into the following four aspects: active control, passive control, semi-active control and hybrid control.
  • active control passive control
  • semi-active control hybrid control
  • proper installation of the vibration control system can effectively reduce the dynamic response of the structure and reduce structural damage or fatigue damage.
  • the movement of the structure is usually a combination of translation and torsion swing.
  • translational tuned mass damper English name Tuned Mass Damper, TMD
  • active mass damper/active torque output device English name Active Mass Damper/Driver, AMD
  • the existing structural vibration control system mainly has the following shortcomings: first, the translational TMD control device can only control the translational motion of the structure and is invalid for the control of the swing vibration; second, the translational AMD control device can Control the slewing vibration, but the control efficiency is extremely low, which cannot meet the requirements of use; third, the passive moment of inertia tuned damper is effective for the control of the slewing vibration, but it needs to carry out complex frequency modulation for the structure itself, and control some complex structures Low efficiency, poor effect, low robustness, low controllability, and small application range; fourth, the active invariable damping control system has a small application range, limited control force output, and limited control effects; fifth, Active damping and immutable control systems cannot guarantee energy efficiency and cannot meet economic needs.
  • the present invention was produced under this background.
  • the main purpose of the present invention is to provide an electromagnetic variable damping rotation control system for the above problems.
  • the electromagnetic variable damping rotation control system of the present invention includes an active output module and an electromagnetic variable damping module.
  • the active output module includes a driver, an encoder and a transmission fixed in the lumen of the device, and the electromagnetic variable damping module includes a permanent magnet and Electromagnetic moment of inertia wheel;
  • the driver is fixed on the inner wall of the device lumen.
  • One end of the driver is equipped with an encoder, and the other end is connected with the transmission.
  • the shaft of the driver passes through the transmission and is vertically fixed at the center of the electromagnetic moment of inertia wheel;
  • Two permanent magnetic field arms are symmetrically fixed on the outer wall of the lumen of the device.
  • the ends of the permanent magnetic field arms are equipped with high-strength permanent magnets.
  • a high-strength permanent magnetic field is formed between the two high-strength permanent magnets.
  • the high-strength permanent magnetic field is equipped with an electromagnetic moment of inertia wheel.
  • the moment of inertia wheel has a disc-shaped shell with an inwardly recessed middle. The shell is evenly distributed with electromagnetic wire nets.
  • the electromagnetic wire nets have electromagnetic wire segments tangent to the magnetic line of induction.
  • the center of the electromagnetic moment of inertia wheel is equipped with a fixed disk and a rotating shaft. It is fixedly connected with the fixed plate, the rotating shaft is sleeved with a rotating ring that rotates synchronously with the rotating shaft, and the positive and negative wires of the electromagnetic wire net are connected with the rotating ring along the rotating shaft.
  • the swivel is in contact with the brush, and the brush is connected with the power transmission wire to supply power to the electromagnetic wire network.
  • driver bracket is fixed in the device lumen, and the driver is fixed on the driver bracket.
  • controller which is connected with the driver, the encoder and the electromagnetic wire net through a line.
  • controlled structure is installed on the lumen of the device, and the electromagnetic moment of inertia wheel is parallel to the rotating surface of the controlled structure.
  • driver, transmission and encoder are coaxial.
  • the transmission is a reducer.
  • the driver is a servo motor or a stepping motor.
  • the rotation damping of the electromagnetic moment of inertia wheel of the present invention can be automatically adjusted, with high adjustment accuracy, wide adjustment range, and large system application range;
  • the present invention is suitable for the situation where the structure undergoes rotation, torsion or swing vibration, and has a wide range of applications.
  • Figure 1 is a schematic top view of the present invention
  • FIG. 2 is a schematic diagram of the structure of the electromagnetic moment of inertia wheel of the present invention.
  • Figure 3 is a schematic diagram of the present invention installed in a pendulum structure
  • the above drawings include the following reference signs: 1. Device lumen; 2. Driver; 3. Encoder; 4. Transmission; 5. High-strength permanent magnet; 6. Electromagnetic moment of inertia wheel; 7. Driver bracket; 8. Permanent magnetic field arm; 9. Electromagnetic wire network; 10. Fixed disk; 11. Swivel ring; 12. Electric brush; 13. Controlled structure; 14. Controller.
  • the electromagnetic variable damping rotation control system of the present invention includes an active output module and an electromagnetic variable damping module.
  • the active output module includes a driver 2, an encoder 3, and a transmission 4 fixed in the device lumen 1.
  • the variable damping module includes a high-strength permanent magnet 5 and an electromagnetic moment of inertia wheel 6, and the controlled structure 13 is fixed on the lumen of the device.
  • the driver is fixed on the inner wall of the device lumen through the driver bracket 7.
  • One end of the driver is installed with an encoder, and the other end is connected with the transmission.
  • the driver, transmission and encoder are coaxial.
  • the shaft of the driver passes through the center of the transmission and the electromagnetic moment of inertia.
  • Two permanent magnetic field arms 8 are symmetrically fixed on the outer wall of the lumen of the device.
  • the ends of the permanent magnetic field arms are equipped with high-strength permanent magnets.
  • a high-strength permanent magnetic field is formed between the two high-strength permanent magnets.
  • An electromagnetic moment of inertia wheel is arranged in the high-strength permanent magnetic field.
  • the electromagnetic moment of inertia wheel has a disc-shaped shell with a concave inward in the middle.
  • the shell is evenly distributed with an electromagnetic wire net 9 which has an electromagnetic line segment tangent to the magnetic line of induction.
  • a fixed disk is installed at the center of the electromagnetic moment of inertia wheel. 10.
  • the rotating shaft is fixedly connected with the fixed plate.
  • the rotating shaft is covered with a rotating ring that rotates synchronously with the rotating shaft.
  • the positive and negative wires of the magnet wire net are connected with the rotating ring along the rotating shaft.
  • the magnet wire net In order to supply power to the magnet wire net, it also includes the connecting wire
  • the brush 12 the swivel is in contact with the brush, and supplies power to the electromagnetic wire network.
  • a sensor is also provided at the hanging point to collect the rotation data of the controlled structure.
  • the sensor here can be, but is not limited to Photoelectric shaft encoder, angular acceleration sensor or gyroscope.
  • the sensor transmits the collected data to the controller 14.
  • the controller is connected to the active output module and the electromagnetic variable damping module through a line to control the rotation of the driver and the current of the electromagnetic wire network.
  • the driver drives the electromagnetic moment of inertia wheel to rotate through the shaft and accelerates And the force is generated during the deceleration process, and the force acts on the controlled structure through the lumen of the device.
  • the sensor set at the hanging point of the controlled structure collects the oscillating motion state of the controlled structure, that is, the oscillating angle and the oscillating angular acceleration data, and transmits the state data of the controlled structure to the controller.
  • the controller determines whether active control is required.
  • the controller controls the action of the driver;
  • the encoder installed at the end of the driver collects the rotation of the driver in real time and feeds it back to the controller to realize the controller and the controlled
  • the closed-loop control of the structure and the drive the drive can control the electromagnetic inertia wheel to rotate according to the real-time measurement of the structure motion state, and change the damping of the electromagnetic inertia wheel rotation by changing the size of the current to achieve the effect of variable damping, thereby changing the control
  • the output efficiency of force ensures high control efficiency while realizing structural vibration control.
  • the present invention can be applied to the following but not limited to the following basic prototype motion models of mechanical problems: free swing of a simple pendulum structure; vibration of a constrained inverted pendulum structure; fixed axis rotation of a rigid body around any axis in space, etc., in actual engineering such as :Swing of suspended structures (hooks, cranes, etc.); torsional sway vibration of irregular buildings under wind load; torsional sway vibration of offshore platforms under the coupling action of waves, wind, ice, etc.; spacecraft, space structures During the operation, the torsional sway movement caused by the adjustment of its own posture and the opening of the solar windsurfing board; the high-speed railway locomotive, during the high-speed operation, the torsional sway vibration of the body caused by the small excitation, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

本发明涉及系统中振动的抑制领域,公开了一种电磁变阻尼旋转控制系统,包括主动出力模块和电磁变阻尼模块,主动出力模块包括固定在装置管腔内的驱动器、编码器和变速器,电磁变阻尼模块包括永磁铁和电磁转动惯量轮;装置管腔上对称固定有两个永磁场臂,永磁场臂的端部安装有高强永磁铁,两个高强永磁铁之间形成高强永磁场,电磁转动惯量轮设置于高强永磁场内。本发明的电磁转动惯量轮的转动阻尼可以自动调节,调节精度高,调节范围广,系统应用范围大,本发明具有更大的鲁棒性,控制效果不会因结构形式改变以及外部荷载作用的改变而受到较大影响。

Description

电磁变阻尼旋转控制系统 技术领域
本发明涉及系统中振动的抑制领域,具体而言,涉及一种电磁变阻尼旋转控制系统。
背景技术
近年来,高速公路、铁路、桥梁、高层建筑、大跨度空间结构等不断兴建,海洋平台、宇宙空间站等结构也迅速发展。这些工程设施、结构在使用过程中往往会在外部荷载的作用下产生振动,严重的会产生摇摆,甚至发生破坏。为了解决由结构物振动引起的各种问题,振动控制技术应运而生。
结构振动控制技术主要分为以下四个方面:主动控制、被动控制、半主动控制以及混合控制。对于各种工程结构,恰当地安装振动控制系统能够有效地减轻结构的动力响应,减轻结构的破坏或者疲劳损伤。
结构的运动通常由平动以及扭转摆动组合而成。研究表明平动调谐质量阻尼器(英文名Tuned Mass Damper,TMD)、主动质量阻尼器/主动扭矩输出装置(英文名Active Mass Damper/Driver,AMD)由于在扭转摆动中需要提供向心力而大大减弱控制效果甚至完全失去作用,因此对回转摆振控制几乎无效。然而具有回转摆振运动特性的结构运动形式极为常见,如:悬吊结构(吊钩、吊车等)的摆动;不规则建筑在风荷载作用下的扭转摆振;海洋平台在海浪、风、冰等耦合作用下的扭转摆振;宇宙飞船、空间结构在运行过程中,由于自身姿势调整以及太阳能帆板打开引起的扭转摆振运动;高速铁路机车,由于微小激励引起的车身的扭转摆振运动等。因此需要一种特殊的控制系统,使其可以自动克服(或摆脱)重力场对控制系统自身的影响(离心力 作用),或者使控制系统自身的工作/运动规律与重力场解耦,系统自振不受重力影响,从而发挥控制系统有效控制作用。
总体来讲,现有的结构振动控制系统主要具有以下不足:第一,平动TMD控制装置只能控制结构的平动运动而对回转摆振控制无效;第二,平动AMD控制装置虽然可以控制回转摆振,但是控制效率极低,无法满足使用要求;第三,被动转动惯量调谐阻尼器对回转摆振运动控制有效,但是其需要针对结构自身进行复杂的调频,对某些复杂结构控制效率较低,效果不佳,存在鲁棒性低,可控性低,适用范围小等缺点;第四,主动不可变阻尼控制系统适用范围小,控制力输出有限,控制效果有限;第五,主动阻尼不可变的控制系统能源利用率无法保证,无法满足经济性的需求。
本发明就是在这样的背景下产生的。
发明内容
本发明的主要目的在于针对以上问题提供一种电磁变阻尼旋转控制系统。
为了实现上述目的,本发明的电磁变阻尼旋转控制系统包括主动出力模块和电磁变阻尼模块,主动出力模块包括固定在装置管腔内的驱动器、编码器和变速器,电磁变阻尼模块包括永磁铁和电磁转动惯量轮;
驱动器固定在装置管腔内壁上,驱动器的一端安装有编码器,另一端与变速器连接,驱动器的转轴穿过变速器与电磁转动惯量轮的中心处垂直固定;
装置管腔外壁上对称固定有两个永磁场臂,永磁场臂的端部安装有高强永磁铁,两个高强永磁铁之间形成高强永磁场,高强永磁场内设置有电磁转动惯量轮,电磁转动惯量轮具有中间向内凹陷的圆饼状外壳,外壳内均布有 电磁线网,电磁线网具有和磁感线相切的电磁线段,电磁转动惯量轮的中心处安装有固定盘,转轴与固定盘固定连接,转轴上套有与转轴同步转动的转环,电磁线网的正负接线沿转轴与转环连接。
进一步的,还包括电刷,转环与电刷保持接触,电刷与输电导线连接,为电磁线网供电。
进一步的,还包括驱动器支架,驱动器支架固定在装置管腔内,驱动器固定在驱动器支架上。
进一步的,还包括控制器,控制器通过线路与驱动器、编码器和电磁线网连接。
进一步的,被控结构安装于装置管腔上,电磁转动惯量轮平行于被控结构的转动面。
进一步的,驱动器、变速器和编码器同轴。
进一步的,变速器为减速器。
进一步的,驱动器为伺服电机或步进电机。
本发明具有以下有益效果:
(1)本发明的电磁转动惯量轮的转动阻尼可以自动调节,调节精度高,调节范围广,系统应用范围大;
(2)本发明具有更大的鲁棒性,控制效果不会因结构形式改变以及外部荷载作用的改变而受到较大影响;
(3)本发明适用于适合结构发生转动、扭转或回转摆振运动的情况,适用范围广。
附图说明
图1是本发明俯视结构示意图;
图2是本发明电磁转动惯量轮结构示意图;
图3是本发明在单摆结构中安装示意图;
附图标记
其中,上述附图包括以下附图标记:1、装置管腔;2、驱动器;3、编码器;4、变速器;5、高强永磁铁;6、电磁转动惯量轮;7、驱动器支架;8、永磁场臂;9、电磁线网;10、固定盘;11、转环;12、电刷;13、被控结构;14、控制器。
具体实施方式
下面结合附图对本发明作进一步说明。
本实施例以单摆结构模型为基本力学模型原型的结构为例;
如图1-3所示,本发明的电磁变阻尼旋转控制系统包括主动出力模块和电磁变阻尼模块,主动出力模块包括固定在装置管腔1内的驱动器2、编码器3和变速器4,电磁变阻尼模块包括高强永磁铁5和电磁转动惯量轮6,被控结构13固定在装置管腔上。
驱动器通过驱动器支架7固定在装置管腔内壁上,驱动器的一端安装有编码器,另一端与变速器连接,驱动器、变速器和编码器同轴,驱动器的转 轴穿过变速器与电磁转动惯量轮的中心处垂直固定;
装置管腔外壁上对称固定有两个永磁场臂8,永磁场臂的端部安装有高强永磁铁,两个高强永磁铁之间形成高强永磁场,高强永磁场内设置有电磁转动惯量轮,电磁转动惯量轮具有中间向内凹陷的圆饼状外壳,外壳内均布有电磁线网9,电磁线网具有和磁感线相切的电磁线段,电磁转动惯量轮的中心处安装有固定盘10,转轴与固定盘固定连接,转轴上套有与转轴同步转动的转环11,电磁线网的正负接线沿转轴与转环连接,为了给电磁线网供电,还包括与输电导线连接的电刷12,转环与电刷保持接触,为电磁线网供电。
本实施例中,除了设置于驱动器尾端用于采集转动惯量转动数据的编码器,吊点处也设置有一个传感器,用来采集被控结构的转动数据,此处的传感器可以采用但不限于光电轴角编码器、角加速度传感器或者陀螺仪。传感器将采集到的数据传输给控制器14,控制器通过线路与主动出力模块和电磁变阻尼模块连接,控制驱动器转动以及电磁线网的电流大小,驱动器通过转轴带动电磁转动惯量轮转动,在加速以及减速过程中产生作用力,作用力通过装置管腔作用在被控结构上。
本发明的作用原理如下:
被控结构吊点处设置的传感器采集被控结构的摆振运动状态即摆角以及摆角加速度数据,并把被控结构状态数据传送给控制器,控制器判断是否需要进行主动控制,当被控结构发生回转摆振运动数据超出之前所设定的阈值的时候,控制器控制驱动器动作;驱动器末端同轴安装的编码器实时采集驱动器的转动情况,反馈给控制器,实现控制器与被控结构以及驱动器的闭环控制;驱动器可以根据实时测量的结构运动状态,控制电磁转动惯量轮发生 回转转动,通过改变电流的大小来改变电磁转动惯量轮转动的阻尼,实现变阻尼的效果,从而改变控制力的输出效率,在实现结构振动控制的同时保证较高的控制效率。
本发明可以应用到以下但不限于以下的力学问题基本原型运动模型中:单摆结构的自由摆动;受约束倒立摆结构的振动;刚体绕空间任意轴的定轴转动等,在实际工程中如:悬吊结构(吊钩、吊车等)的摆动;不规则建筑在风荷载作用下的扭转摆振;海洋平台在海浪、风、冰等耦合作用下的扭转摇摆振动等;宇宙飞船、空间结构在运行过程中,由于自身姿势调整以及太阳能帆板打开引起的扭转摆振运动;高速铁路机车,在高速运行过程中,由于微小激励引起的车身的扭转摇摆振动运动等。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种电磁变阻尼旋转控制系统,其特征在于,包括主动出力模块和电磁变阻尼模块,主动出力模块包括固定在装置管腔(1)内的驱动器(2)、编码器(3)和变速器(4),电磁变阻尼模块包括高强永磁铁(5)和电磁转动惯量轮(6);
    驱动器(2)固定在装置管腔(1)内壁上,驱动器(2)的一端安装有编码器(3),另一端与变速器(4)连接,驱动器(2)的转轴穿过变速器(4)与电磁转动惯量轮(6)的中心处垂直固定;
    装置管腔(1)外壁上对称固定有两个永磁场臂(8),永磁场臂(8)的端部安装有高强永磁铁(5),两个高强永磁铁(5)之间形成高强永磁场,高强永磁场内设置有电磁转动惯量轮(6),电磁转动惯量轮(6)具有中间向内凹陷的圆饼状外壳,外壳内均布有电磁线网(9),电磁线网(9)具有和磁感线相切的电磁线段,电磁转动惯量轮(6)的中心处安装有固定盘(10),转轴与固定盘(10)固定连接,转轴上套有与转轴同步转动的转环(11),电磁线网(9)的正负接线沿转轴与转环(11)连接。
  2. 根据权利要求1所述的电磁变阻尼旋转控制系统,其特征在于,还包括电刷(12),转环(11)与电刷(12)保持接触,电刷(12)与输电导线连接,为电磁线网(9)供电。
  3. 根据权利要求1所述的电磁变阻尼旋转控制系统,其特征在于,还包括驱动器(2)支架,驱动器支架(7)固定在装置管腔(1)内,驱动器(2)固定在驱动器支架(7)上。
  4. 根据权利要求1所述的电磁变阻尼旋转控制系统,其特征在于,还包括控制器(14),控制器(14)通过线路与驱动器(2)、编码器(3)和电磁线网(9)连接。
  5. 根据权利要求1所述的电磁变阻尼旋转控制系统,其特征在于,被控结构(13)安装于装置管腔(1)上,电磁转动惯量轮(6)平行于被控结构(13)的转动面。
  6. 根据权利要求1所述的电磁变阻尼旋转控制系统,其特征在于,驱动器(2)、变速器(4)和编码器(3)同轴。
  7. 根据权利要求1所述的电磁变阻尼旋转控制系统,其特征在于,变速器(4)为减速器。
  8. 根据权利要求1所述的电磁变阻尼旋转控制系统,其特征在于,驱动器(2)为伺服电机或步进电机。
PCT/CN2019/105651 2019-02-01 2019-09-12 电磁变阻尼旋转控制系统 WO2020155640A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910103432.8 2019-02-01
CN201910103432.8A CN109610676B (zh) 2019-02-01 2019-02-01 电磁变阻尼旋转控制系统

Publications (1)

Publication Number Publication Date
WO2020155640A1 true WO2020155640A1 (zh) 2020-08-06

Family

ID=66019497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105651 WO2020155640A1 (zh) 2019-02-01 2019-09-12 电磁变阻尼旋转控制系统

Country Status (2)

Country Link
CN (1) CN109610676B (zh)
WO (1) WO2020155640A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109610676B (zh) * 2019-02-01 2023-11-24 青岛理工大学 电磁变阻尼旋转控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967794A (en) * 1974-01-21 1976-07-06 Foehl Artur Device for initiating the blocking of a reel shaft for a safety belt winding-up automat
CN104671009A (zh) * 2013-11-28 2015-06-03 海洋王(东莞)照明科技有限公司 绕线盘及其电磁阻尼结构
CN106573520A (zh) * 2014-07-30 2017-04-19 天纳克汽车经营有限公司 电磁飞轮阻尼器及其方法
CN107401112A (zh) * 2017-09-07 2017-11-28 湖南科技大学 一种电磁旋转惯性质量阻尼器
CN109610676A (zh) * 2019-02-01 2019-04-12 青岛理工大学 电磁变阻尼旋转控制系统
CN209568567U (zh) * 2019-02-01 2019-11-01 青岛理工大学 电磁变阻尼旋转控制系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103696909B (zh) * 2013-12-24 2016-03-30 常州容大结构减振股份有限公司 具有发电功能的抗风型tmd系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967794A (en) * 1974-01-21 1976-07-06 Foehl Artur Device for initiating the blocking of a reel shaft for a safety belt winding-up automat
CN104671009A (zh) * 2013-11-28 2015-06-03 海洋王(东莞)照明科技有限公司 绕线盘及其电磁阻尼结构
CN106573520A (zh) * 2014-07-30 2017-04-19 天纳克汽车经营有限公司 电磁飞轮阻尼器及其方法
CN107401112A (zh) * 2017-09-07 2017-11-28 湖南科技大学 一种电磁旋转惯性质量阻尼器
CN109610676A (zh) * 2019-02-01 2019-04-12 青岛理工大学 电磁变阻尼旋转控制系统
CN209568567U (zh) * 2019-02-01 2019-11-01 青岛理工大学 电磁变阻尼旋转控制系统

Also Published As

Publication number Publication date
CN109610676A (zh) 2019-04-12
CN109610676B (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
WO2020155642A1 (zh) 主动复合变阻尼转动控制装置
WO2020155643A1 (zh) 自供能式主被动复合转动惯量驱动控制系统
JP6899492B2 (ja) 能動回転慣性量駆動制御システム
WO2020155644A1 (zh) 自适应机械驱动调节转动惯量式控制系统
WO2020155635A1 (zh) 能源供应型海洋平台转动惯量驱动控制系统
CN105926796A (zh) 压电阻尼智能调谐减振控制装置
WO2023040055A1 (zh) 一种复合调谐减振装置及其减振方法
CN109610672A (zh) 悬吊式复合调谐转动惯量驱动控制系统
CN110761432A (zh) 转动惯量产生力矩控制方法
WO2020155640A1 (zh) 电磁变阻尼旋转控制系统
CN115421411A (zh) 一种基于回转原理的主动力矩驱动控制系统
CN209509215U (zh) 自适应机械驱动调节转动惯量式控制系统
WO2020155639A1 (zh) 自走式全方向转动惯量驱动控制系统
CN209568567U (zh) 电磁变阻尼旋转控制系统
CN209509216U (zh) 主动转动惯量驱动控制系统
CN209511004U (zh) 主动复合变阻尼转动控制装置
CN209568566U (zh) 自走式全方向转动惯量驱动控制系统
CN209509218U (zh) 液压调节转动惯量主动控制装置
WO2020155641A1 (zh) 液压调节转动惯量主动控制装置
CN109667357B (zh) 带阻尼液箱的转动惯量主动控制装置
CN209509219U (zh) 悬吊式复合调谐转动惯量驱动控制系统
CN209585004U (zh) 能源供应型海洋平台转动惯量驱动控制系统
CN103762537B (zh) 一种架空输电线路主动防舞执行机构
JP3601854B2 (ja) ジャイロ機構による制振方法
JPH06341485A (ja) 吊下物用回転揺れ制振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913136

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19913136

Country of ref document: EP

Kind code of ref document: A1