WO2020155642A1 - 主动复合变阻尼转动控制装置 - Google Patents

主动复合变阻尼转动控制装置 Download PDF

Info

Publication number
WO2020155642A1
WO2020155642A1 PCT/CN2019/105657 CN2019105657W WO2020155642A1 WO 2020155642 A1 WO2020155642 A1 WO 2020155642A1 CN 2019105657 W CN2019105657 W CN 2019105657W WO 2020155642 A1 WO2020155642 A1 WO 2020155642A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
magnetorheological fluid
moment
rotation control
fluid tank
Prior art date
Application number
PCT/CN2019/105657
Other languages
English (en)
French (fr)
Inventor
张春巍
王昊
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to US16/937,492 priority Critical patent/US10962077B2/en
Publication of WO2020155642A1 publication Critical patent/WO2020155642A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/38Guiding or controlling apparatus, e.g. for attitude control damping of oscillations, e.g. nutation dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/16Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/228Damping of high-frequency vibration effects on spacecraft elements, e.g. by using acoustic vibration dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/005Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion using electro- or magnetostrictive actuation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • F16F15/027Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means comprising control arrangements
    • F16F15/0275Control of stiffness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/18Suppression of vibrations in rotating systems by making use of members moving with the system using electric, magnetic or electromagnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1005Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass
    • F16F7/1017Vibration-dampers; Shock-absorbers using inertia effect characterised by active control of the mass by fluid means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • B61F5/245Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes by active damping, i.e. with means to vary the damping characteristics in accordance with track or vehicle induced reactions, especially in high speed mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/08Inertia
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/12Fluid damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/04Fluids
    • F16F2224/045Fluids magnetorheological
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/066Variable stiffness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/36Holes, slots or the like

Definitions

  • the invention relates to the field of vibration suppression in a system, in particular to an active compound variable damping rotation control device.
  • Structural vibration control technology is mainly divided into the following four aspects: active control, passive control, semi-active control and hybrid control.
  • active control passive control
  • semi-active control hybrid control
  • proper installation of the vibration control system can effectively reduce the dynamic response of the structure and reduce structural damage or fatigue damage.
  • the movement of the structure is usually a combination of translation and torsion swing.
  • translational tuned mass damper English name Tuned Mass Damper, TMD
  • active mass damper/active torque output device English name Active Mass Damper/Driver, AMD
  • the existing structural vibration control system mainly has the following shortcomings: First, the translational TMD control device can only control the translational motion of the structure and is invalid for the control of the swing vibration; second, the translational AMD control device can Control the slewing vibration, but the control efficiency is extremely low, which cannot meet the requirements of use; third, the passive moment of inertia tuned damper is effective for the control of the slewing vibration, but it needs to carry out complex frequency modulation for the structure itself, and control some complex structures Low efficiency, poor effect, low robustness, low controllability, and small application range; fourth, the active invariable damping rotation control system has a small application range, limited control force output, and limited control effects; fifth , The energy utilization rate of the active invariable damping rotation control system cannot be guaranteed, and it cannot meet the economic needs.
  • the present invention was produced under this background.
  • the main purpose of the present invention is to provide an active compound variable damping rotation control device for the above problems.
  • the active compound variable damping rotation control device of the present invention includes a variable damping module and a power module;
  • the variable damping module includes a magnetorheological fluid tank and a moment of inertia wheel.
  • the magnetorheological fluid tank is round and filled with magnetorheological fluid.
  • the moment of inertia wheel is arranged in the magnetorheological fluid tank and surrounded by the magnetorheological fluid.
  • Electromagnetic wire nets are arranged in the two circular end faces of the magnetorheological fluid tank;
  • the power module includes the device lumen and the driver, encoder and transmission fixed in the device lumen.
  • the device lumen is cylindrical and fixed vertically at the center of the circular end surface of the magnetorheological fluid tank.
  • the driver is fixed in the device lumen. On the inner wall, one end of the driver is equipped with an encoder, and the other end is connected with the transmission.
  • the drive shaft of the driver passes through the transmission, extends into the magnetorheological fluid tank, and is fixed perpendicularly to the center of the inertia wheel.
  • the present invention also includes a driver bracket, and the driver is fixed in the lumen of the device through the driver bracket. .
  • the present invention also includes a controller, which is connected to the electromagnetic wire net, the driver and the encoder through a line.
  • the moment of inertia wheel is in the shape of a circular pie with a recess in the middle, and the outer surface is provided with strip-shaped grooves or protrusions to increase the friction and contact area with the magnetorheological fluid.
  • the drive shaft of the driver is connected with the moment of inertia wheel through a flange coupling disc.
  • controlled structure is installed on the lumen of the device, and the moment of inertia wheel is parallel to the rotating surface of the controlled structure.
  • driver, transmission and encoder are coaxial.
  • the transmission is a reducer.
  • the driver is a servo motor or a stepping motor.
  • the rotational damping of the moment of inertia wheel of the present invention can be automatically adjusted, with high adjustment accuracy, wide adjustment range, and large system application range;
  • the present invention is suitable for the situation where the structure undergoes rotation, torsion or swing vibration, and has a wide range of applications.
  • Figure 1 is a schematic diagram of the structure of the present invention
  • Figure 2 is a schematic diagram of the structure of the magnetorheological fluid tank of the present invention.
  • Figure 3 is a schematic diagram of the present invention installed in a pendulum structure
  • the above drawings include the following reference signs: 1. Magnetorheological fluid tank; 2. Moment of inertia wheel; 3. Device lumen; 4. Drive; 5. Encoder; 6. Transmission; 7. Controlled structure; 8. Magnet wire network; 9. Controller; 10. Drive bracket.
  • the active compound variable damping rotation control device of the present invention includes a variable damping module and a power module;
  • the variable damping module includes a magnetorheological fluid tank 1 and a moment of inertia wheel 2
  • the power module includes a device lumen 3 and
  • the driver 4, the encoder 5 and the transmission 6 are fixed in the lumen of the device, the controlled structure 7 is installed on the lumen of the device, and the inertia wheel is parallel to the surface of the controlled structure where the torsional vibration occurs.
  • the magnetorheological fluid tank is a round tube, and a sealed space is enclosed by two circular end faces and a cylinder.
  • the interior is filled with magnetorheological fluid.
  • the moment of inertia wheel is set in the magnetorheological fluid tank and is covered by the magnetorheological fluid. Surrounded, the moment of inertia wheel is in the shape of a circular pie with a depression in the middle, and the outer surface is provided with strip grooves or protrusions. These strip grooves or protrusions can increase the friction and contact area with the magnetorheological fluid;
  • Electromagnetic wire nets 8 are arranged in the two circular end faces of the rheological fluid tank. The electromagnetic wire nets are connected to the controller 9 through lines, and the controller is also connected to the driver and the encoder.
  • the lumen of the device is cylindrical and is vertically fixed at the center of the circular end surface of the magnetorheological fluid tank.
  • the driver is fixed on the inner wall of the lumen of the device through the driver bracket 10.
  • One end of the driver is installed with an encoder and the other end is connected with the transmission.
  • the driver, the transmission and the encoder are coaxial.
  • the drive shaft of the driver passes through the transmission, extends into the magnetorheological fluid tank and is vertically fixedly connected with the center of the moment of inertia wheel through a flange coupling disc.
  • a sensor is also provided at the hanging point to collect the rotation data of the controlled structure.
  • the sensor here can be, but is not limited to Photoelectric shaft encoder, angular acceleration sensor or gyroscope.
  • the sensor set at the hanging point of the controlled structure collects the oscillating motion state of the controlled structure, that is, the oscillating angle and the oscillating angular acceleration data, and transmits the state data of the controlled structure to the controller.
  • the controller determines whether active control is required.
  • the controller controls the action of the drive;
  • the encoder installed at the end of the drive collects the rotation of the drive in real time, and feeds it back to the controller to realize the controller and the controlled
  • the closed-loop control of the structure and the drive the drive can control the rotation of the inertia wheel according to the real-time measured structure motion state, and at the same time, by controlling the current of the electromagnetic wire network, adjust the appropriate magnetic field strength to match the damping of the rotation of the inertia wheel.
  • the reaction force generated by the rotation of the moment of inertia wheel acts on the lumen of the device, and then is transmitted to the controlled structure connected with the lumen of the device to inhibit the swing of the controlled structure.
  • the invention utilizes the magnetic effect of the current and the basic principles of magnetorheological fluids, collects the swing amplitude and frequency of the controlled structure in real time, changes the rotation and rotational damping of the moment of inertia wheel controlled by the driver in real time, and regulates the effect on the controlled structure Control torque, adjust the output of driving energy, control the vibration of the structure, and ensure higher control efficiency.
  • the device can be applied to the following but not limited to the following basic prototype motion models of mechanical problems: free swing of a single pendulum structure; vibration of a constrained inverted pendulum structure; fixed axis rotation of a rigid body around any axis in space, etc., in actual engineering such as :Swing of suspended structures (hooks, cranes, etc.); torsional sway vibration of irregular buildings under wind load; torsional sway vibration of offshore platforms under the coupling action of waves, wind, ice, etc.; spacecraft, space structures During the operation, the torsional sway movement caused by the adjustment of its own posture and the opening of the solar windsurfing board; the high-speed railway locomotive, during the high-speed operation, the torsional sway vibration of the body caused by the small excitation, etc.

Abstract

一种主动复合变阻尼转动控制装置,其包括变阻尼模块和动力模块;变阻尼模块包括磁流变液箱(1)和转动惯量轮(2),磁流变液箱(1)内部填充满磁流变液,转动惯量轮(2)设置于磁流变液箱(1)内,磁流变液箱(1)的两个圆形端面内设置有电磁线网(8);动力模块包括装置管腔(3)、驱动器(4)、编码器(5)和变速器(6),驱动器(4)固定在装置管腔(3)内壁上,驱动器(4)的一端安装有编码器(5),另一端与变速器(6)连接,驱动器(4)的驱动轴穿过变速器(6)、伸入磁流变液箱(1)与转动惯量轮(2)的中心垂直固定。转动惯量轮(2)的转动阻尼可以自动调节,其调节精度高,调节范围广,系统应用范围大,该装置具有更大的鲁棒性,控制效果不会因结构形式改变以及外部荷载作用的改变而受到较大影响。

Description

主动复合变阻尼转动控制装置 技术领域
本发明涉及系统中振动的抑制领域,具体而言,涉及一种主动复合变阻尼转动控制装置。
背景技术
近年来,高速公路、铁路、桥梁、高层建筑、大跨度空间结构等不断兴建,海洋平台、宇宙空间站等结构也迅速发展。这些工程设施、结构在使用过程中往往会在外部荷载的作用下产生振动,严重的会产生摇摆,甚至发生破坏。为了解决由结构物振动引起的各种问题,振动控制技术应运而生。
结构振动控制技术主要分为以下四个方面:主动控制、被动控制、半主动控制以及混合控制。对于各种工程结构,恰当地安装振动控制系统能够有效地减轻结构的动力响应,减轻结构的破坏或者疲劳损伤。
结构的运动通常由平动以及扭转摆动组合而成。研究表明平动调谐质量阻尼器(英文名Tuned Mass Damper,TMD)、主动质量阻尼器/主动扭矩输出装置(英文名Active Mass Damper/Driver,AMD)由于在扭转摆动中需要提供向心力而大大减弱控制效果甚至完全失去作用,因此对回转摆振控制几乎无效。然而具有回转摆振运动特性的结构运动形式极为常见,如:悬吊结构(吊钩、吊车等)的摆动;不规则建筑在风荷载作用下的扭转摆振;海洋平台在海浪、风、冰等耦合作用下的扭转摆振;宇宙飞船、空间结构在运行过程中,由于自身姿势调整以及太阳能帆板打开引起的扭转摆振运动;高速铁路机车,由于微小激励引起的车身的扭转摆振运动等。因此需要一种特殊的控制系统, 使其可以自动克服(或摆脱)重力场对控制系统自身的影响(离心力作用),或者使控制系统自身的工作/运动规律与重力场解耦,系统自振不受重力影响,从而发挥控制系统有效控制作用。
总体来讲,现有的结构振动控制系统主要具有以下不足:第一,平动TMD控制装置只能控制结构的平动运动而对回转摆振控制无效;第二,平动AMD控制装置虽然可以控制回转摆振,但是控制效率极低,无法满足使用要求;第三,被动转动惯量调谐阻尼器对回转摆振运动控制有效,但是其需要针对结构自身进行复杂的调频,对某些复杂结构控制效率较低,效果不佳,存在鲁棒性低,可控性低,适用范围小等缺点;第四,主动不可变阻尼旋转控制系统适用范围小,控制力输出有限,控制效果有限;第五,主动不可变阻尼旋转控制系统能源利用率无法保证,无法满足经济性的需求。
本发明就是在这样的背景下产生的。
发明内容
本发明的主要目的在于针对以上问题提供一种主动复合变阻尼转动控制装置。
为了实现上述目的,本发明的主动复合变阻尼转动控制装置包括变阻尼模块和动力模块;
变阻尼模块包括磁流变液箱和转动惯量轮,磁流变液箱为圆管状,内部填充满磁流变液,转动惯量轮设置于磁流变液箱内,被磁流变液包围,磁流变液箱的两个圆形端面内设置有电磁线网;
动力模块包括装置管腔和固定在装置管腔内的驱动器、编码器和变速器,装置管腔为圆筒状,垂直固定在磁流变液箱圆形端面的中心处,驱动器固定 在装置管腔内壁上,驱动器的一端安装有编码器,另一端与变速器连接,驱动器的驱动轴穿过变速器、伸入磁流变液箱与转动惯量轮的中心垂直固定。
进一步的,本发明还包括驱动器支架,驱动器通过驱动器支架固定在装置管腔内。。
进一步的,本发明还包括控制器,控制器通过线路与电磁线网、驱动器和编码器连接。
进一步的,转动惯量轮为中间向内凹陷的圆饼状,外表面设置有条形凹槽或凸起,以增大与磁流变液的摩擦和接触面积。
进一步的,驱动器的驱动轴通过法兰联轴盘与转动惯量轮连接。
进一步的,被控结构安装于装置管腔上,转动惯量轮平行于被控结构的转动面。
进一步的,驱动器、变速器和编码器同轴。
进一步的,变速器为减速器。
进一步的,驱动器为伺服电机或步进电机。
本发明具有以下有益效果:
(1)本发明的转动惯量轮的转动阻尼可以自动调节,调节精度高,调节范围广,系统应用范围大;
(2)本发明具有更大的鲁棒性,控制效果不会因结构形式改变以及外部荷载作用的改变而受到较大影响;
(3)本发明适用于适合结构发生转动、扭转或回转摆振运动的情况,适用范围广。
附图说明
图1是本发明结构示意图;
图2是本发明磁流变液箱结构示意图;
图3是本发明在单摆结构中安装示意图;
附图标记
其中,上述附图包括以下附图标记:1、磁流变液箱;2、转动惯量轮;3、装置管腔;4、驱动器;5、编码器;6、变速器;7、被控结构;8、电磁线网;9、控制器;10、驱动器支架。
具体实施方式
下面结合附图对本发明作进一步说明。
本实施例以单摆结构模型为基本力学模型原型的结构为例;
如图1-3所示,本发明的主动复合变阻尼转动控制装置包括变阻尼模块和动力模块;变阻尼模块包括磁流变液箱1和转动惯量轮2,动力模块包括装置管腔3和固定在装置管腔内的驱动器4、编码器5和变速器6,被控结构7安装于装置管腔上,转动惯量轮平行于被控结构的发生扭转摆振的面。
磁流变液箱为圆管状,由两个圆形端面和一个圆筒围成一个密封空间,内部填充满磁流变液,转动惯量轮设置于磁流变液箱内,被磁流变液包围,转动惯量轮为中间向内凹陷的圆饼状,外表面设置有条形凹槽或凸起,这些条形凹槽或凸起可以增大与磁流变液的摩擦和接触面积;磁流变液箱的两个圆形端面内设置有电磁线网8,电磁线网通过线路与控制器9连接,控制器还 与驱动器和编码器连接。
装置管腔为圆筒状,垂直固定在磁流变液箱圆形端面的中心处,驱动器通过驱动器支架10固定在装置管腔内壁上,驱动器的一端安装有编码器,另一端与变速器连接,驱动器、变速器和编码器同轴,驱动器的驱动轴穿过变速器、伸入磁流变液箱与转动惯量轮的中心通过法兰联轴盘垂直固定连接。
本实施例中,除了设置于驱动器尾端用于采集转动惯量转动数据的编码器,吊点处也设置有一个传感器,用来采集被控结构的转动数据,此处的传感器可以采用但不限于光电轴角编码器、角加速度传感器或者陀螺仪。
本发明的作用原理如下:
被控结构吊点处设置的传感器采集被控结构的摆振运动状态即摆角以及摆角加速度数据,并把被控结构状态数据传送给控制器,控制器判断是否需要进行主动控制,当被控结构发生回转摆振运动数据超出之前所设定的阈值的时候,控制器控制驱动器动作;驱动器末端同轴安装的编码器实时采集驱动器的转动情况,反馈给控制器,实现控制器与被控结构以及驱动器的闭环控制;驱动器可以根据实时测量的结构运动状态,控制转动惯量轮发生回转转动,同时通过控制电磁线网电流的大小,调节合适的磁场强度,匹配转动惯量轮转动的阻尼。转动惯量轮转动产生的反作用力作用在装置管腔上,进而传递给与装置管腔连接的被控结构上,抑制被控结构的摆动。
本发明利用了电流的磁效应和磁流变液的基本原理,通过实时采集被控结构的摆动幅度以及频率,实时更改驱动器控制的转动惯量轮的转动和转动阻尼,调节作用在被控结构上的控制力矩,调节驱动能源输出大小,控制结构的振动,保证较高的控制效率。
该装置可以应用到以下但不限于以下的力学问题基本原型运动模型中:单摆结构的自由摆动;受约束倒立摆结构的振动;刚体绕空间任意轴的定轴转动等,在实际工程中如:悬吊结构(吊钩、吊车等)的摆动;不规则建筑在风荷载作用下的扭转摆振;海洋平台在海浪、风、冰等耦合作用下的扭转摇摆振动等;宇宙飞船、空间结构在运行过程中,由于自身姿势调整以及太阳能帆板打开引起的扭转摆振运动;高速铁路机车,在高速运行过程中,由于微小激励引起的车身的扭转摇摆振动运动等。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种主动复合变阻尼转动控制装置,其特征在于,
    包括变阻尼模块和动力模块;
    变阻尼模块包括磁流变液箱(1)和转动惯量轮(2),磁流变液箱(1)为圆管状,内部填充满磁流变液,转动惯量轮(2)设置于磁流变液箱(1)内,被磁流变液包围,磁流变液箱(1)的两个圆形端面内设置有电磁线网(8);
    动力模块包括装置管腔(3)和固定在装置管腔(3)内的驱动器(4)、编码器(5)和变速器(6),装置管腔(3)为圆筒状,垂直固定在磁流变液箱(1)圆形端面的中心处,驱动器(4)固定在装置管腔(3)内壁上,驱动器(4)的一端安装有编码器(5),另一端与变速器(6)连接,驱动器(4)的驱动轴穿过变速器(6)、伸入磁流变液箱(1)与转动惯量轮(2)的中心垂直固定。
  2. 根据权利要求1所述的主动复合变阻尼转动控制装置,其特征在于,还包括驱动器支架(10),驱动器(4)通过驱动器支架(10)固定在装置管腔(3)内。
  3. 根据权利要求1所述的主动复合变阻尼转动控制装置,其特征在于,还包括控制器(9),控制器(9)通过线路与电磁线网(8)、驱动器(4)和编码器(5)连接。
  4. 根据权利要求1所述的主动复合变阻尼转动控制装置,其特征在于,转动惯量轮(2)为中间向内凹陷的圆饼状,外表面设置有条形凹槽或凸起,以增大与磁流变液的摩擦和接触面积。
  5. 根据权利要求1所述的主动复合变阻尼转动控制装置,其特征在于,驱动器(4)的驱动轴通过法兰联轴盘与转动惯量轮(2)连接。
  6. 根据权利要求1所述的主动复合变阻尼转动控制装置,其特征在于, 被控结构(7)安装于装置管腔(3)上,转动惯量轮(2)平行于被控结构(7)的发生扭转摆振的面。
  7. 根据权利要求1所述的主动复合变阻尼转动控制装置,其特征在于,驱动器(4)、变速器(6)和编码器(5)同轴。
  8. 根据权利要求1所述的主动复合变阻尼转动控制装置,其特征在于,变速器(6)为减速器。
  9. 根据权利要求1所述的主动复合变阻尼转动控制装置,其特征在于,驱动器(4)为伺服电机或步进电机。
PCT/CN2019/105657 2019-02-01 2019-09-12 主动复合变阻尼转动控制装置 WO2020155642A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/937,492 US10962077B2 (en) 2019-02-01 2020-07-23 Active composite variable damping rotational control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910103443.6A CN109654162B (zh) 2019-02-01 2019-02-01 主动复合变阻尼转动控制装置
CN201910103443.6 2019-02-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/937,492 Continuation US10962077B2 (en) 2019-02-01 2020-07-23 Active composite variable damping rotational control device

Publications (1)

Publication Number Publication Date
WO2020155642A1 true WO2020155642A1 (zh) 2020-08-06

Family

ID=66122661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105657 WO2020155642A1 (zh) 2019-02-01 2019-09-12 主动复合变阻尼转动控制装置

Country Status (4)

Country Link
US (1) US10962077B2 (zh)
CN (1) CN109654162B (zh)
AU (1) AU2019101724A4 (zh)
WO (1) WO2020155642A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109654162B (zh) * 2019-02-01 2024-04-12 青岛理工大学 主动复合变阻尼转动控制装置
CN109610673B (zh) * 2019-02-01 2023-11-24 青岛理工大学 主动转动惯量驱动控制系统
CN110155099A (zh) * 2019-05-27 2019-08-23 中国科学技术大学 磁浮车辆控制系统
CN110778641B (zh) * 2019-10-31 2021-06-22 青岛理工大学 高速列车动态行为主动控制系统
CN115177997B (zh) * 2022-07-01 2023-11-10 上海亿鼎电子系统集成有限公司 一种精细化工用的提纯系统
CN115404758A (zh) * 2022-08-15 2022-11-29 沈阳工业大学 一种回转力矩主被动复合控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230255A (ja) * 1998-02-12 1999-08-27 Nok Corp イナーシャダンパ
CN101576141A (zh) * 2009-06-04 2009-11-11 重庆大学 基于旋转型磁流变器件的纵向直线振动抑制方法与装置
US20110017556A1 (en) * 2005-11-02 2011-01-27 Ford Global Technologies, Llc Magnetorheological Damping Device for Reduction or Elimination of Vibration in Steering Systems
CN102052423A (zh) * 2009-11-10 2011-05-11 上海工程技术大学 磁流变扭转减振装置
CN106051025A (zh) * 2016-07-13 2016-10-26 上海工程技术大学 一种基于磁流变弹性体与磁流变液的盘式阻尼器
CN109654162A (zh) * 2019-02-01 2019-04-19 青岛理工大学 主动复合变阻尼转动控制装置
CN209511004U (zh) * 2019-02-01 2019-10-18 青岛理工大学 主动复合变阻尼转动控制装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5553514A (en) * 1994-06-06 1996-09-10 Stahl International, Inc. Active torsional vibration damper
KR100236919B1 (ko) * 1997-10-09 2000-01-15 윤덕용 자기유변유체를 이용한 각도제한 회전감쇠기
EP1255935A1 (en) * 2000-01-31 2002-11-13 Delphi Technologies, Inc. Tuneable steering damper using magneto-rheological fluid
KR100943338B1 (ko) * 2007-07-13 2010-02-19 부경대학교 산학협력단 차량용 시트의 진동감쇄장치
CN103277454B (zh) * 2013-05-09 2016-05-18 张春巍 调谐转动惯量阻尼减振装置
CN203834722U (zh) * 2014-04-11 2014-09-17 湖南科技大学 自供电式半主动调谐质量阻尼器
CN104896007B (zh) * 2015-04-02 2017-05-24 国电联合动力技术有限公司 一种传动系统扭振减振方法及其应用
CN105782339B (zh) * 2016-02-29 2017-12-12 重庆大学 变惯量变阻尼扭转减振器
CN106870621B (zh) * 2017-03-15 2019-01-18 上海工程技术大学 一种自适应型磁流变液扭转减振器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230255A (ja) * 1998-02-12 1999-08-27 Nok Corp イナーシャダンパ
US20110017556A1 (en) * 2005-11-02 2011-01-27 Ford Global Technologies, Llc Magnetorheological Damping Device for Reduction or Elimination of Vibration in Steering Systems
CN101576141A (zh) * 2009-06-04 2009-11-11 重庆大学 基于旋转型磁流变器件的纵向直线振动抑制方法与装置
CN102052423A (zh) * 2009-11-10 2011-05-11 上海工程技术大学 磁流变扭转减振装置
CN106051025A (zh) * 2016-07-13 2016-10-26 上海工程技术大学 一种基于磁流变弹性体与磁流变液的盘式阻尼器
CN109654162A (zh) * 2019-02-01 2019-04-19 青岛理工大学 主动复合变阻尼转动控制装置
CN209511004U (zh) * 2019-02-01 2019-10-18 青岛理工大学 主动复合变阻尼转动控制装置

Also Published As

Publication number Publication date
CN109654162B (zh) 2024-04-12
CN109654162A (zh) 2019-04-19
AU2019101724A4 (en) 2020-04-23
US20200355237A1 (en) 2020-11-12
US10962077B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2020155642A1 (zh) 主动复合变阻尼转动控制装置
WO2020155643A1 (zh) 自供能式主被动复合转动惯量驱动控制系统
CN109610673B (zh) 主动转动惯量驱动控制系统
WO2020155633A1 (zh) 复合式桥梁扭转振动控制系统
CN102409775B (zh) 调谐质量阻尼器减振控制装置
CN209509214U (zh) 带阻尼液箱的转动惯量主动控制装置
CN110761432B (zh) 转动惯量产生力矩控制方法
WO2020155635A1 (zh) 能源供应型海洋平台转动惯量驱动控制系统
WO2020155644A1 (zh) 自适应机械驱动调节转动惯量式控制系统
CN105926796A (zh) 压电阻尼智能调谐减振控制装置
WO2023040055A1 (zh) 一种复合调谐减振装置及其减振方法
CN209509216U (zh) 主动转动惯量驱动控制系统
WO2020155640A1 (zh) 电磁变阻尼旋转控制系统
WO2020155639A1 (zh) 自走式全方向转动惯量驱动控制系统
CN209509215U (zh) 自适应机械驱动调节转动惯量式控制系统
CN209511004U (zh) 主动复合变阻尼转动控制装置
WO2020155641A1 (zh) 液压调节转动惯量主动控制装置
CN109667357B (zh) 带阻尼液箱的转动惯量主动控制装置
CN209568566U (zh) 自走式全方向转动惯量驱动控制系统
CN209509218U (zh) 液压调节转动惯量主动控制装置
JPH05193580A (ja) ヘリコプタの振動軽減装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913899

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19913899

Country of ref document: EP

Kind code of ref document: A1