WO2020155633A1 - 复合式桥梁扭转振动控制系统 - Google Patents

复合式桥梁扭转振动控制系统 Download PDF

Info

Publication number
WO2020155633A1
WO2020155633A1 PCT/CN2019/105642 CN2019105642W WO2020155633A1 WO 2020155633 A1 WO2020155633 A1 WO 2020155633A1 CN 2019105642 W CN2019105642 W CN 2019105642W WO 2020155633 A1 WO2020155633 A1 WO 2020155633A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
bridge
plate
control
control system
Prior art date
Application number
PCT/CN2019/105642
Other languages
English (en)
French (fr)
Inventor
张春巍
王昊
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2020155633A1 publication Critical patent/WO2020155633A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Definitions

  • the invention relates to the field of vibration suppression in a system, and in particular to a composite bridge torsional vibration control system.
  • the structure will vibrate under the action of these dynamic loads, which will generally cause Fatigue and reliability problems can cause structural damage and failure in severe cases, causing casualties and property losses.
  • dynamic loads such as earthquakes
  • the structure will collapse and be damaged and cannot be used anymore, or even if the structure has not collapsed, the internal equipment, decoration, and installation system cannot be used after being damaged. , And even cause secondary disasters, which caused huge safety threats and economic property losses to users.
  • vibration control technology has been rapidly developed in recent years. Not only in the field of civil engineering, vibration control technology is also a hot spot in the fields of aerospace, automotive, machinery, marine engineering, and military engineering.
  • vibration control technology is also a hot spot in the fields of aerospace, automotive, machinery, marine engineering, and military engineering.
  • proper safety vibration control systems in the structure can effectively reduce the dynamic response of the structure, reduce structural damage or fatigue damage, so as to meet people's needs for structural safety, comfort, and achieve safety, economy, and safety.
  • Reasonable balance of reliability A large number of studies have shown that the application of vibration control technology in civil engineering has significant effects and important significance. It can not only prevent or reduce structural damage, improve the disaster prevention performance of the structure, ensure the safety of people’s lives and properties, but also extend the life of the structure. Reduce the maintenance cost of the structure, and greatly meet people's requirements for the comfort of the structure under extreme conditions.
  • the structure vibration control technology of civil engineering is mainly divided into the following four aspects: active control, passive control, semi-active control and hybrid control.
  • active control passive control
  • passive control technology has been relatively mature.
  • the devices used for passively tuned energy absorption mainly include tuned mass dampers and tuned liquid dampers, etc., which have been applied in many civil engineering structures.
  • the principle of TMD control is to make the sub-structure resonate with the main structure by adjusting the frequency of the sub-structure, that is, the damper, and the main structure, that is, the controlled structure, and dissipate the vibration energy of the main structure through the internal damping mechanism of the sub-structure, thereby reducing the main structure Dynamic response to achieve the purpose of vibration control.
  • the movement form of the structure has complex and diverse characteristics, usually composed of a combination of translation and torsion swing.
  • the TMD system when used to control the swing of the suspension quality system, it is found that when the suspension direction of the structure is consistent with the direction of the swing motion, the TMD system can play an effective control role regardless of the initial offset or the simple harmonic load excitation input;
  • the TMD system is used for the shimmy control of the structure in another direction, that is, when the suspension direction of the structure and its shimmy movement direction are perpendicular to each other, no matter how to adjust the system parameters (such as structure pendulum length, control system position, etc.), the TMD system will not work.
  • the application of existing structural vibration control devices/systems in the field of civil engineering plays an indispensable role, and is of great significance for protecting the lives and property of structural users.
  • the existing structural vibration control devices/systems mainly exhibit the following deficiencies: First, the translational TMD control device can only control the translational motion of the structure and is invalid for the control of the swing vibration; second, the translational AMD control Although the device can control the swing vibration, the control efficiency is extremely low and cannot meet the requirements of use; third, the passive moment of inertia tuned damper is effective for the control of the swing vibration movement, but it requires complex frequency modulation for the structure itself. Complicated structures have low control efficiency, poor effect, low robustness, low controllability, and small application range.
  • the above shortcomings result in that the existing bridge vibration control device cannot well solve the bridge wind-induced flutter and other vibration problems, especially when the bridge has a combination of translational and torsional vibration, the existing vibration control device cannot meet the needs of vibration control .
  • the present invention was produced under this background.
  • the invention can control the rotational movement of the moment of inertia disc of the system through the actual movement of the structure, thereby providing a suitable force acting on the controlled bridge and achieving the purpose of vibration control.
  • the system is also matched with a passive control module to cooperate with an active control module to form a composite control system that can not only control the vertical vibration of the bridge, but also produce a good control effect on the torsional vibration of the bridge deck.
  • the system when the bridge does not have a large response, the system is used as an ordinary passive control device, and the suspended mass and elastic damping device of the passive control module play a control role; when the bridge is subject to strong external excitation, passive control can no longer meet the requirements
  • the control system can work together through the actual motion of the bridge, the passive control unit and the active control module to provide a suitable control force on the bridge, which can control both the translational vibration and the torsional shimmy vibration Form to achieve the purpose of vibration control.
  • the system makes the force acting on the bridge appropriate through calculation, ensures the balance between the control effect and the control cost, and achieves a higher control efficiency.
  • the system can be applied to the following but not limited to the following basic prototype motion models of mechanical problems: vibration of long-span bridges; free swing of simple pendulum structures; vibration of constrained inverted pendulum structures; fixed-axis rotation of rigid bodies around any axis in space, etc. .
  • the main purpose of the present invention is to provide a composite bridge torsional vibration control system to solve the ineffectiveness of the prior art translational TMD on the control of the slewing vibration; the translational AMD has low control efficiency and poor effect; passively tuned rotational inertia damping Controller control is applicable to the problems of low robustness, complex frequency modulation technology, and small application range.
  • a composite bridge torsional vibration control system which includes an encapsulated body, an active control module and two passive control modules;
  • the package body mainly includes a side plate, a top plate, a bottom plate, two vertical partitions, a cover plate and a main force transmission plate;
  • the top plate is provided with fixing holes, the top plate and the bottom plate are parallel, and the two sides are connected by side plates respectively, the main force transmission plate
  • the cover and the cover are installed on the front and rear sides to form a closed boxed cavity.
  • the upper and lower ends of the vertical partition connect the top and bottom plates to divide the boxed cavity into three chambers;
  • the active control module is located in the middle chamber.
  • the active control module includes a mounting seat, a driver, a transmission, a shaft, a moment of inertia disk, and a flange;
  • the mounting seat is fixed on the main force transmission plate, and the mounting seat is fixed on the driver, the output end of the driver and the transmission Connection, the output end of the transmission is connected to the rotating shaft, and a rotational inertia disk is fixed on the rotating shaft through a flange;
  • the passive control modules are respectively installed in the chambers on both sides.
  • the passive control module includes an elastic damping device and a mass; the mass is connected to the end of the elastic damping device.
  • the elastic damping device includes an outer sleeve, a high-strength spring, a connecting rod, Oil seal, buffer block, piston valve and bottom valve; the connecting rod is fixed on the top plate, the end of the connecting rod is equipped with a buffer block and a piston valve, there are several through holes on the buffer block and the piston valve, the buffer block, the piston valve and the outer sleeve Cooperating installation, the top of the outer sleeve is installed with an oil seal, the bottom is installed with a bottom valve, and a high-strength spring is installed on the outside of the connecting rod.
  • One end of the high-strength spring is fixed on the top plate and the other end is connected to the top of the outer sleeve; the lower end of the outer sleeve is connected to the mass,
  • the mass block drives the outer sleeve to move up and down along the connecting rod;
  • Sensors are installed on the controlled bridge structure; used to detect the movement data of the controlled bridge structure;
  • a photoelectric encoder is installed at the bottom of the drive, and the drive is coaxially connected with the reducer and the photoelectric encoder.
  • the cavity formed between the oil seal and the buffer block, the buffer block and the piston valve, and the piston valve and the bottom valve is filled with damping fluid.
  • the driver bracket is installed outside the driver.
  • the driver bracket includes a fixed ring and a plurality of legs. The legs are mounted on the fixed ring, the fixed ring is fixed on the driver, and the legs are fixed on the main force transmission plate.
  • the driver of the active control unit is a stepper motor or a servo motor.
  • the transmission is usually a reducer.
  • the moment of inertia disc is a disc or ring with a certain mass, and the output shaft of the driver is perpendicularly connected to the moment of inertia disc.
  • controller which is respectively connected with the driver, the sensor and the encoder installed at the end of the driver.
  • the present invention combines translational control and torsional shimmy control technology, so that the control system can be installed on the underside of the controlled bridge deck, exerting the dual control effect of translational and rotation;
  • the present invention combines active and passive control technologies to combine the advantages of the suspension form TMD and the moment of inertia drive control device, and uses the mode of multiple units to cooperate to ensure the control effect to the greatest extent, and the control force can be Control, you can adjust the system control algorithm to achieve different control effects as needed;
  • the system uses a driver to realize the output of the control force, without the need to carry out a complicated frequency modulation design process, and at the same time get rid of the problem that the control cannot be achieved due to the technical limitation of frequency modulation, and has a wider application range;
  • Figure 1 is a perspective view of the overall structure of the present invention
  • Figure 2 is a top view of the overall structure of the present invention.
  • Figure 3 is a schematic diagram of the structure of an elastic damping device
  • the above drawings include the following reference signs: 1. side plate; 2. top plate; 3. bottom plate; 4. vertical partition plate; 5. cover plate; 6. main force transmission plate; 7. mounting seat; 8. Driver; 9, transmission; 10, shaft; 11, rotational inertia disc; 12, flange; 13, elastic damping device; 131, outer sleeve; 132, high-strength spring; 133, connecting rod; 134, oil seal; 135, buffer Block; 136, piston valve; 137, bottom valve; 14, mass block; 15, driver bracket.
  • the composite bridge torsional vibration control system of the present invention includes a packaged body, an active control module and two passive control modules;
  • the package body mainly includes a side plate 1, a top plate 2, a bottom plate 3, two vertical partitions 4, a cover plate 5, and a main force transmission plate 6.
  • the top plate is provided with a fixing hole 21, the top plate and the bottom plate are parallel, and the sides are used separately. Plate connection, the main force transmission plate and the cover plate are respectively installed on the front and rear sides to form a closed boxed cavity.
  • the upper and lower ends of the vertical partition connect the top and bottom plates to divide the boxed cavity into three chambers.
  • the package body is the carrier of the active control module and the passive control module, and is connected to the underside of the bridge deck of the controlled bridge.
  • the active control module is located in the middle chamber.
  • the active control module includes a mounting base 7, a driver 8, a transmission 9, a shaft 10, a moment of inertia disk 11, and a flange 12;
  • the mounting base is fixed on the main force transmission plate, and the driver is fixed on the mounting base ,
  • the output end of the driver is connected with the transmission, the output end of the transmission is connected with the rotating shaft, and the rotating inertia disk is fixed on the rotating shaft through the flange;
  • a photoelectric encoder is installed at the bottom of the drive.
  • the drive is coaxially connected with the reducer and the photoelectric encoder.
  • a drive support 15 is also installed outside the drive.
  • the drive support includes a fixed ring and several legs. The legs are mounted on the fixed ring and fixed The ring is fixed on the driver, and the legs are fixed on the main force transmission plate to better support the driver and the entire active control module.
  • the driver is a stepper motor or a servo motor.
  • the transmission is usually a reducer to reduce the speed to meet the force output.
  • the plane where the moment of inertia disk is located is perpendicular to the bridge surface, and the two passive control modules are also perpendicular to the bridge surface.
  • the moment of inertia disk is a disc or ring of a certain mass, and the material is usually metal or other materials with higher density.
  • the output of the driver The shaft is connected perpendicularly to the moment of inertia disk.
  • the passive control modules are installed in the chambers on both sides respectively.
  • the passive control module includes an elastic damping device 13 and a mass 14; the mass is connected to the end of the elastic damping device, which includes an outer sleeve 131 and a high-strength spring 132 , Connecting rod 133, oil seal 134, buffer block 135, piston valve 136 and bottom valve 137; the connecting rod is fixed on the top plate, the end of the connecting rod is equipped with a buffer block and a piston valve, the buffer block and the piston valve are provided with a number of through holes, The buffer block and the piston valve are installed in cooperation with the outer sleeve.
  • the top of the outer sleeve is equipped with an oil seal, the bottom is installed with a bottom valve, and a high-strength spring is installed on the outside of the connecting rod.
  • One end of the high-strength spring is fixed on the top plate and the other end is connected to the top of the outer sleeve.
  • the lower end of the outer sleeve is connected with a mass block, which drives the outer sleeve to move up and down along the connecting rod; the cavity formed between the oil seal and the buffer block, the buffer block and the piston valve, the piston valve and the bottom valve is filled with damping fluid.
  • the moment of inertia disc in the active control module and the elastic damping device in the passive control module are both perpendicular to the deck of the controlled bridge.
  • the composite bridge torsional vibration control system of the present invention also includes a controller, which is respectively connected with the driver, the sensor and the encoder installed at the end of the driver.
  • the controller receives the signals of the encoder installed at the end of the drive and the sensor installed on the controlled structure, and transmits control signals to the drive to control the swing state of the rotational inertia disk.
  • the system acts as a passive control device, and the suspended mass and elastic damping device play a control role; under the action of the high-strength spring, the bridge deck vibrates vertically, and the passive device plays a role.
  • the outer sleeve to vibrate up and down along the connecting rod.
  • the buffer block and the piston valve move in simple harmonic motion on the inner wall of the outer sleeve.
  • the buffer block and the piston valve have through holes, and the damping fluid enters differently during the vibration process. In the chamber, the damping fluid hinders the movement of the piston and the buffer block, reducing the frequency of their reciprocating motion, so that the energy consumption is gradually reduced until the vibration is eliminated.
  • the vibration response of the bridge structure brings a better suppression effect.
  • the bottom valve at the bottom of the outer sleeve can reduce the impact of the outer sleeve on the bottom of the connecting rod when the vertical vibration of the bridge is strong, and protect the device from damage.
  • the control system can work together through the actual motion of the bridge, the passive control module and the active control module to provide a suitable effect on the bridge.
  • the control force can control both the translational vibration form and the torsional shimmy vibration form.
  • the sensor collects the shimmy motion state of the controlled bridge structure, and transmits the vibration data to the controller.
  • the controller controls the driver's action, and the driver can be based on
  • the real-time measurement of the structure motion state controls the rotation of the moment of inertia disc, and the force generated by the rotation of the moment of inertia disc acts on the main force transmission plate, which is then transmitted to the controlled bridge to restrain the controlled bridge deck from torsion.
  • An encoder is installed coaxially at the end of the drive, which collects the rotation of the drive in real time and feeds it back to the controller to realize the closed-loop control device of the controller and the controlled bridge system and the drive.
  • the passive control module mainly acts on the vertical vibration of the bridge deck.
  • the passive control module will also affect the torsion of the bridge at this time.
  • the corresponding auxiliary control function The passive control module mainly acts on the vertical vibration of the bridge deck.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

本发明涉及系统中振动的抑制领域,具体而言,涉及一种复合式桥梁扭转振动控制系统,其包括封装机体、主动控制模块以及两个被动控制模块;封装机体主要包括侧板、顶板、底板、两个竖向隔板、盖板以及主传力板;主动控制模块包括安装座、驱动器、变速器、转轴、转动惯量盘、以及法兰;被动控制模块包括悬吊阻尼器和质量块;本发明可以通过结构的实际运动情况,控制系统的转动惯量旋转,从而提供合适的作用于受控桥梁上的力,达到振动控制的目的,同时本系统还搭配被动控制模块来配合主动控制模块,组合形成一套复合式的,既可以对桥梁平面振动,又可以对桥梁扭转摆振产生良好控制效果的控制系统。

Description

复合式桥梁扭转振动控制系统 技术领域
本发明涉及系统中振动的抑制领域,具体而言,涉及一种复合式桥梁扭转振动控制系统。
背景技术
近年来,随着经济的发展和社会的进步,人们对生活空间的要求也不断提高,国家在基础设施方面的投入不断增大。国家在土木工程的投入越来越大,高速公路、铁路、桥梁、高层建筑、大跨度空间结构等不断兴建。除此之外,人们还探索开发更广阔的空间,向“深海”、“深空”探索,海洋平台、宇宙空间站等结构也发展迅速。这些空间结构,在施工以及后期运行使用过程中,都不可避免地受到各种荷载的作用,包括静荷载和动荷载。在结构的使用过程中,对结构影响较大的往往是动载作用,如地震、风、浪、流、冰、爆炸等,结构在这些动力荷载的作用下会产生振动,一般情况下会引起疲劳与可靠性问题,严重时会造成结构的破坏失效,造成人员伤亡及财产损失。结构在使用过程中,遭受动载作用后,如地震作用,结构产生倒塌破坏,无法继续使用,或者即使结构没有倒塌,但其内部的设备设施、装饰装修、安装系统受到破坏之后也无法继续使用,甚至造成次生灾害,这给使用人员造成了巨大的安全威胁和经济财产损失。
另一方面,随着经济的发展和技术的不断进步,人们对结构的要求已不再仅仅局限于可用,还在结构安全性、耐久性等方面提出了更高的要求。人们在结构的使用过程中,结构物不仅需要确保人们的生命安全,还需要满足人们对舒适度等方面的要求。如,高层结构在风荷载作用下,会产生振动,在没有减隔震措施的情况下,处于高层的使用者会感到结构物的晃动,风力较大的情况下,结构物内部的设备设施甚至会受到由结构物振动引起的破坏,这不仅无法满足人们对结构物的舒适要求,也对经济财产造成威胁。
为了解决由结构物振动引起的各种问题,消除或减轻由外部荷载引起的振动,振动控制技术近年来得到了迅速的发展。不仅是在土木工程领域,振动控制技术在航空航天、汽车、机械、海洋工程、军事工程等领域也是热点方向。 对于土木工程结构,在结构中恰当地安全振动控制系统能够有效地减轻结构的动力响应,减轻结构的破坏或者疲劳损伤,从而满足人们对结构的安全、舒适等需求,达到安全性、经济性、可靠性的合理平衡。大量研究表明,振动控制技术在土木工程的应用具有显著的效果和重要的意义,不仅可以防止或减轻结构的破坏,提高结构的防灾性能,保证人们的生命财产安全,还可以延长结构寿命,降低结构的维护成本,极大限度的满足人们对结构在极端条件下的舒适度要求。
土木工程结构振动控制技术主要分为以下四个方面:主动控制、被动控制、半主动控制以及混合控制。其中,被动控制技术的研究已经较为成熟,其中用于被动调谐吸能的装置主要包括调谐质量阻尼器和调谐液体阻尼器等,已经在诸多土木工程结构中得到了应用。TMD控制的原理是通过调整子结构即阻尼器的频率与主结构即受控结构一致或相近,使子结构与主结构共振,通过子结构内部阻尼机制耗散主结构振动能量,从而消减主结构动力响应,达到振动控制的目的。大量的研究和实际应用已经表明,例如:美国波士顿60层的John Hancock大楼、马来西亚吉隆坡的双子塔、中国台北101大楼均安装了TMD振动控制系统,通过在后期的应用证明了被动控制TMD系统具有稳定、良好的控制效果。
结构的运动形式具有复杂多样的特性,通常由平动以及扭转摆动组合而成。然而采用TMD系统控制悬吊质量体系摆动问题时发现:当结构悬挂方向与其摆振运动方向一致时,无论是在初始偏移还是简谐荷载激励输入下,TMD系统都能发挥有效的控制作用;当把TMD系统用于结构另一个方向摆振控制即当结构悬挂方向与其摆振运动方向相互垂直时,无论怎样调整系统参数(如结构摆长、控制系统位置等),TMD系统始终无法工作。经过大量的理论分析和试验探索,提出了平动TMD控制系统只能控制结构的平动运动而对回转摆振控制无效的结论。经过学者的研究表明,其根本原因在于此时TMD、TLD等被动控制系统处于离心状态而失去作用,系统质量块(或TLD水箱中的水)根本不运动,甚至主动质量阻尼器/驱动器(英文名Active Mass Damper/Driver,AMD)控制系统主动控制力因需要克服质量块重力分量而使其控制效率大大折扣。然而具有回转摆振运动特性的结构运动形式极为常见,如:大跨度桥梁的风致颤振;悬吊结构的摆动;不规则建筑在风荷载作用下的扭转摆振;海洋平台在海浪、 风、冰等耦合作用下的扭转摆振等。因此需要设计一种特殊的结构振动/运动控制系统,使其可以自动克服(或摆脱)重力场对控制系统自身的影响(离心力作用),或者使控制系统自身的工作/运动规律与重力场解耦,系统自振不受重力影响,以上两个方面均可以达到使控制系统充分运动起来的目的,从而发挥控制系统对结构运动/振动的有效控制作用。
综上所述,现有的结构振动控制装置/系统在土木工程领域的应用具有不可或缺的作用,并且对保障结构使用者的生命和财产具有非常重要的意义。但是现有的结构振动控制装置/系统主要表现出以下几方面的不足:第一,平动TMD控制装置只能控制结构的平动运动而对回转摆振控制无效;第二,平动AMD控制装置虽然可以控制回转摆振,但是控制效率极低,无法满足使用要求;第三,被动转动惯量调谐阻尼器对回转摆振运动控制有效,但是其需要针对结构自身进行复杂的调频,对某些复杂结构控制效率较低,效果不佳,存在鲁棒性低,可控性低,适用范围小等缺点。以上不足,导致现有的桥梁振动控制装置无法很好的解决桥梁风致颤振等振动问题,尤其是当桥梁发生平动及扭转复合振动形势时,现有的振动控制装置无法满足振动控制的需求。
本发明就是在这样的背景下产生的。
发明内容
本发明可以通过结构的实际运动情况,控制系统的转动惯量盘回转运动,从而提供合适的作用于受控桥梁上的力,达到振动控制的目的。同时本系统还搭配被动控制模块来配合主动控制模块,组合形成一套复合式的,既可以对桥梁竖向振动,又可以对桥面扭转摆振产生良好控制效果的控制系统。
一般桥梁不发生较大响应情况下,系统作为普通被动控制装置,被动控制模块的悬吊质量块和弹性阻尼装置发挥控制作用;当桥梁受到外部较强的激励作用,发生被动控制已经无法满足要求的响应时,控制系统可以通过桥梁实际运动情况,被动控制单元以及主动控制模块共同发挥作用,从而提供合适的作用于桥梁上的控制力,既可以控制平动振动形式也可以控制扭转摆振振动形式,达到振动控制的目的。
该系统通过运算使得作用于桥梁的力恰当,保证了控制效果和控制代价的平衡关系,实现了较高的控制效率。该系统可以应用到以下但不限于以下的力 学问题基本原型运动模型中:大跨度桥梁的振动;单摆结构的自由摆动;受约束倒立摆结构的振动;刚体绕空间任意轴的定轴转动等。
本发明的主要目的在于提供一种复合式桥梁扭转振动控制系统,以解决现有技术中平动TMD对回转摆振运动控制失效;平动AMD控制效率低、效果较差;被动调谐转动惯量阻尼器控制适用鲁棒性低、调频技术复杂、适用范围小的问题。
为了实现上述目的,本发明采用以下的技术方案:
一种复合式桥梁扭转振动控制系统,其包括封装机体、主动控制模块以及两个被动控制模块;
封装机体主要包括侧板、顶板、底板、两个竖向隔板、盖板以及主传力板;顶板上设有固定孔,顶板和底板平行,两侧分别用侧板连接,主传力板和盖板分别安装在前后两侧,形成一个封闭的盒装腔体,竖向隔板的上下端连接顶板和底板,将盒装腔体分割成三个腔室;
主动控制模块位于中间腔室,主动控制模块包括安装座、驱动器、变速器、转轴、转动惯量盘、以及法兰;安装座固定在主传力板上,安装座上固定驱动器,驱动器输出端与变速器连接,变速器输出端连接转轴,转轴上通过法兰固定有转动惯量盘;
被动控制模块分别安装在两侧腔室中,被动控制模块包括弹性阻尼装置和质量块;质量块连接在弹性阻尼装置的端部,所述弹性阻尼装置包括外套筒、高强弹簧、连杆、油封、缓冲块、活塞阀以及底阀;连杆固定在顶板上,连杆末端安装有缓冲块以及活塞阀,缓冲块和活塞阀上带有若干通孔,缓冲块以及活塞阀与外套筒配合安装,外套筒的顶部安装有油封,底部安装有底阀,连杆外侧安装有高强弹簧,高强弹簧一端固定在顶板上,另一端连接在外套筒顶部;外套筒下端连接质量块,质量块带动外套筒沿着连杆上下运动;
被控桥梁结构上安装有传感器;用于检测被控桥梁结构的运动数据;
驱动器底部安装有光电编码器,驱动器与减速器、光电编码器同轴相连。
进一步的,油封与缓冲块、缓冲块与活塞阀、活塞阀与底阀之间形成的腔室内充满阻尼液。
进一步的,驱动器外还安装有驱动器支架,驱动器支架包括固定圆环以及若干支腿,支腿安装在固定圆环上,固定圆环固定在驱动器上,支腿固定在主传力板上。
进一步的,所述主动控制单元的驱动器为步进电机或者伺服电机。
进一步的,所述变速器通常为减速器。
进一步的,所述转动惯量盘为一定质量的圆盘或圆环,驱动器的输出轴与转动惯量盘垂直连接。
进一步的,还包括控制器,控制器分别与驱动器、传感器以及安装在驱动器末端的编码器连接。
本发明具有以下有益效果:
(1)本发明结合平动控制和扭转摆振控制技术,使得控制系统可以安装在受控桥面下侧,发挥平动及转动双重控制效果;
(2)本发明结合主动和被动控制技术,将悬吊形式的TMD以及转动惯量驱动控制装置的优点结合起来,利用多个单元相配合的模式,最大程度的保证了控制的效果,控制力可控,可以根据需要仅通过调整系统控制算法以实现不同的控制效果;
(3)该系统采用驱动器,实现控制力的输出,无需进行复杂的调频设计过程,同时也摆脱了由于调频的技术限制而无法实现控制的问题,适用范围更广;
(4)该系统具有更大的鲁棒性,不受结构形式变化以及外部荷载作用的变化而使控制效果受到过大影响。
附图说明
图1是本发明整体结构立体图;
图2是本发明整体结构俯视图;
图3是弹性阻尼装置结构示意图;
其中,上述附图包括以下附图标记:1、侧板;2、顶板;3、底板;4、竖向隔板;5、盖板;6、主传力板;7、安装座;8、驱动器;9、变速器;10、转轴;11、转动惯量盘;12、法兰;13、弹性阻尼装置;131、外套筒;132、高强弹簧;133、连杆;134、油封;135、缓冲块;136、活塞阀;137、底阀;14、质量块;15、驱动器支架。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1-3所示,本发明所述的复合式桥梁扭转振动控制系统包括封装机体、主动控制模块以及两个被动控制模块;
封装机体主要包括侧板1、顶板2、底板3、两个竖向隔板4、盖板5以及主传力板6;顶板上设有固定孔21,顶板和底板平行,两侧分别用侧板连接,主传力板和盖板分别安装在前后两侧,形成一个封闭的盒装腔体,竖向隔板的上下端连接顶板和底板,将盒装腔体分割成三个腔室,封装机体是主动控制模块以及被动控制模块的载体,与被控桥梁的桥面下侧连接。
主动控制模块位于中间腔室,主动控制模块包括安装座7、驱动器8、变速器9、转轴10、转动惯量盘11、以及法兰12;安装座固定在主传力板上,安装座上固定驱动器,驱动器输出端与变速器连接,变速器输出端连接转轴,转轴上通过法兰固定有转动惯量盘;
驱动器底部安装有光电编码器,驱动器与减速器、光电编码器同轴相连,驱动器外还安装有驱动器支架15,驱动器支架包括固定圆环以及若干支腿,支腿安装在固定圆环上,固定圆环固定在驱动器上,支腿固定在主传力板上,更好的支撑驱动器以及整个主动控制模块,驱动器为步进电机或者伺服电机。
由于本发明所需求的不是高转速输出而是力的输出,变速器通常为减速器,以减小转速满足力的输出。
转动惯量盘所在平面与桥面垂直,两个被动控制模块也与桥面垂直,转动惯量盘为一定质量的圆盘或圆环,材料通常为金属材料或者密度较高的其他材料,驱动器的输出轴与转动惯量盘垂直连接。
被动控制模块分别安装在两侧腔室中,被动控制模块包括弹性阻尼装置13和质量块14;质量块连接在弹性阻尼装置的端部,所述弹性阻尼装置包括外套筒131、高强弹簧132、连杆133、油封134、缓冲块135、活塞阀136以及底阀137;连杆固定在顶板上,连杆末端安装有缓冲块以及活塞阀,缓冲块和活塞阀上带有若干通孔,缓冲块以及活塞阀与外套筒配合安装,外套筒的顶部安装有油封,底部安装有底阀,连杆外侧安装有高强弹簧,高强弹簧一端固定在顶板上,另一端连接在外套筒顶部;外套筒下端连接质量块,质量块带动外套 筒沿着连杆上下运动;油封与缓冲块、缓冲块与活塞阀、活塞阀与底阀之间形成的腔室内充满阻尼液。
主动控制模块中的转动惯量盘和被动控制模块中弹性阻尼装置均与被控桥梁的桥面垂直。
本发明所述的复合式桥梁扭转振动控制系统还包括控制器,控制器分别与驱动器、传感器以及安装在驱动器末端的编码器连接。控制器接收安装在驱动器末端的编码器以及安装在被控结构上的传感器的信号,并传递控制信号给驱动器,对转动惯量盘的回转摆振状态加以控制。
本发明的使用过程如下所述:
一般桥梁不发生较大响应情况下,系统作为被动控制装置,悬吊的质量块和弹性阻尼装置发挥控制作用;在高强弹簧的作用下,桥面发生竖向振动,被动装置发挥作用,质量块带动外套筒沿着连杆上下振动,振动过程中,缓冲块和活塞阀在外套筒内壁做简谐运动,缓冲块和活塞阀上带有通孔,阻尼液在振动的过程中进入到不同的腔室中,阻尼液对活塞、缓冲块的运动产生阻碍运动,降低它们发生往复运动的频率,从而耗能逐渐减小桥面直至消除振动,因此,较小的振动幅度就可以为被控桥梁结构的振动响应带来比较好的抑制效果,外套筒底部的底阀可以减小桥面竖向振动强烈时外套筒对连杆底部的撞击,保护装置不受损坏。
当桥梁受到外部较强的激励作用,发生被动控制已经无法满足要求的响应时,控制系统可以通过桥梁实际运动情况,被动控制模块以及主动控制模块共同发挥作用,从而提供合适的作用于桥梁上的控制力,既可以控制平动振动形式也可以控制扭转摆振振动形式,首先传感器采集被控桥梁结构的摆振运动状态,并把振动数据传送给控制器,控制器控制驱动器动作,驱动器可以根据实时测量的结构运动状态,控制转动惯量盘发生回转转动,转动惯量盘转动产生的作用力作用在主传力板上,进而给传递给与被控桥梁,抑制被控桥面扭转。驱动器末端同轴安装有编码器,实时采集驱动器的转动情况,反馈给控制器,实现控制器与被控桥梁系统以及驱动器的闭环控制装置,通过实时采集被控桥梁结构的桥面扭转的幅度以及频率,实时更改驱动器控制的转动质量盘的转动,调节作用在被控桥梁结构上的控制力矩,调节驱动能源输出大小,控制结构的振动,保证较高的控制效率,达到振动控制的目的。
被动控制模块主要对桥面的竖向振动起作用,在被控桥梁发生扭转时,因为扭转过程中也伴有小幅度的竖向位移,因此被动控制模块在此时也会对桥梁扭转起到相应的辅助控制作用。
当然,上述内容仅为本发明的较佳实施例,不能被认为用于限定对本发明的实施例范围。本发明也并不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的均等变化与改进等,均应归属于本发明的专利涵盖范围内。

Claims (7)

  1. 一种复合式桥梁扭转振动控制系统,其特征在于,包括封装机体、主动控制模块以及两个被动控制模块;
    封装机体主要包括侧板(1)、顶板(2)、底板(3)、两个竖向隔板(4)、盖板(5)以及主传力板(6);顶板(2)上设有固定孔(21),顶板(2)和底板(3)平行,两侧分别用侧板(1)连接,主传力板(6)和盖板(5)分别安装在前后两侧,形成一个封闭的盒装腔体,竖向隔板(4)的上下端连接顶板(2)和底板(3),将盒装腔体分割成三个腔室;
    主动控制模块位于中间腔室,主动控制模块包括安装座(7)、驱动器(8)、变速器(9)、转轴(10)、转动惯量盘(11)、以及法兰(12);安装座(7)固定在主传力板(6)上,安装座(7)上固定驱动器(8),驱动器(8)输出端与变速器(9)连接,变速器(9)输出端连接转轴(10),转轴(10)上通过法兰(12)固定有转动惯量盘(11);
    被动控制模块分别安装在两侧腔室中,被动控制模块包括弹性阻尼装置(13)和质量块(14);质量块(14)连接在弹性阻尼装置(13)的端部,所述弹性阻尼装置(13)包括外套筒(131)、高强弹簧(132)、连杆(133)、油封(134)、缓冲块(135)、活塞阀(136)以及底阀(137);连杆(133)固定在顶板(2)上,连杆(133)末端安装有缓冲块(135)以及活塞阀(136),缓冲块(135)和活塞阀(136)上带有若干通孔,缓冲块(135)以及活塞阀(136)与外套筒(131)配合安装,外套筒(131)的顶部安装有油封(134),底部安装有底阀(137),连杆(133)外侧安装有高强弹簧(132),高强弹簧(132)一端固定在顶板上,另一端连接在外套筒(131)顶部;外套筒(131)下端连接质量块(14),质量块(14)带动外套筒(131)沿着连杆上下运动;
    被控桥梁上安装有传感器;用于检测被控桥梁的运动数据;
    驱动器(8)末端安装有编码器,驱动器(8)与减速器、编码器同轴相连。
  2. 根据权利要求1所述的复合式桥梁扭转振动控制系统,其特征在于,油封(134)与缓冲块(135)、缓冲块(135)与活塞阀(136)、活塞阀(136)与底阀(137)之间形成的腔室内充满阻尼液。
  3. 根据权利要求1所述的复合式桥梁扭转振动控制系统,其特征在于,驱动器(8)外还安装有驱动器支架(15),驱动器支架(15)包括固定圆环以及 若干支腿,支腿安装在固定圆环上,固定圆环固定在驱动器上,支腿固定在主传力板(6)上。
  4. 根据权利要求1所述的复合式桥梁扭转振动控制系统,其特征在于,所述主动控制单元的驱动器(8)为步进电机或者伺服电机。
  5. 根据权利要求1所述的复合式桥梁扭转振动控制系统,其特征在于,所述变速器(9)通常为减速器。
  6. 根据权利要求1所述的复合式桥梁扭转振动控制系统,其特征在于,所述转动惯量盘(11)为一定质量的圆盘或圆环,转动惯量盘(11)与被控桥梁的桥面垂直,驱动器(8)的输出轴与转动惯量盘(11)垂直连接。
  7. 根据权利要求1所述的复合式桥梁扭转振动控制系统,其特征在于,还包括控制器,控制器分别与驱动器(8)、传感器以及安装在驱动器(8)末端的编码器连接。
PCT/CN2019/105642 2019-02-01 2019-09-12 复合式桥梁扭转振动控制系统 WO2020155633A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910103487.9A CN109610302B (zh) 2019-02-01 2019-02-01 复合式桥梁扭转振动控制系统
CN201910103487.9 2019-02-01

Publications (1)

Publication Number Publication Date
WO2020155633A1 true WO2020155633A1 (zh) 2020-08-06

Family

ID=66019495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105642 WO2020155633A1 (zh) 2019-02-01 2019-09-12 复合式桥梁扭转振动控制系统

Country Status (3)

Country Link
CN (1) CN109610302B (zh)
AU (1) AU2019101722A4 (zh)
WO (1) WO2020155633A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114197290A (zh) * 2021-12-29 2022-03-18 同济大学 一种用于分体式箱梁桥梁的抑涡装置及分体式箱梁桥梁

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109610302B (zh) * 2019-02-01 2023-09-29 青岛理工大学 复合式桥梁扭转振动控制系统
CN110654412B (zh) * 2019-10-31 2021-04-09 青岛理工大学 抑制高速列车侧滚、点头、摇头行为的主被动复合控制系统
CN114323549A (zh) * 2021-12-14 2022-04-12 大连理工大学 一种风洞模型振动惯性作动抑制装置
CN115404758B (zh) * 2022-08-15 2024-07-16 沈阳工业大学 一种回转力矩主被动复合控制系统
CN115233540B (zh) * 2022-08-15 2024-09-24 沈阳工业大学 抑制桥梁多模态耦合振动的主被动混合控制系统
CN115387201A (zh) * 2022-08-15 2022-11-25 沈阳工业大学 一种工程结构或机械系统减摇止摆的主动控制系统
CN115421411A (zh) * 2022-08-15 2022-12-02 沈阳工业大学 一种基于回转原理的主动力矩驱动控制系统
CN115387593B (zh) * 2022-08-15 2024-04-02 沈阳工业大学 悬吊物体摇摆止振的主被动复合控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102409775A (zh) * 2011-09-07 2012-04-11 江苏金风风电设备制造有限公司 调谐质量阻尼器减振控制装置
CN103277454A (zh) * 2013-05-09 2013-09-04 张春巍 调谐转动惯量阻尼减振装置
CN104179118A (zh) * 2014-08-20 2014-12-03 重庆邮电大学 抗冲隔振型桥墩磁流变支座-阻尼器的设计方法及装置
KR20160118201A (ko) * 2016-10-04 2016-10-11 알엠에스테크놀러지(주) 통합제진 디지털 제어 시스템
CN109610302A (zh) * 2019-02-01 2019-04-12 青岛理工大学 复合式桥梁扭转振动控制系统
CN209508798U (zh) * 2019-02-01 2019-10-18 青岛理工大学 复合式桥梁扭转振动控制系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027934A (ja) * 1998-07-10 2000-01-25 Tokai Rubber Ind Ltd 能動型制振器
CN101024982B (zh) * 2007-03-22 2013-06-12 武汉理工大学 一种结构物的三向振动控制方法及三向振动控制器
KR200440317Y1 (ko) * 2007-06-11 2008-06-09 (주) 케이 이엔씨 교량의 진동감쇠 구조
GB2483443A (en) * 2010-09-07 2012-03-14 Royal Shakespeare Company An oscillation damping system
CN103758028B (zh) * 2014-01-07 2015-08-19 中铁大桥局集团武汉桥梁科学研究院有限公司 一种低频质量调谐减振装置及其调节方法
CN103775549B (zh) * 2014-01-22 2015-10-28 青岛科而泰环境控制技术有限公司 偏心式电涡流调谐质量阻尼装置
CN205639427U (zh) * 2016-03-17 2016-10-12 同济大学 一种悬挂式双自由度电涡流调谐质量阻尼器
CN205976053U (zh) * 2016-08-31 2017-02-22 四川省建筑科学研究院 一种盘式消能减振器
CN207032558U (zh) * 2017-08-14 2018-02-23 山东大学 多维调谐电磁耗能减振装置
CN108547914B (zh) * 2018-05-18 2019-10-15 东北大学 一种带有分段线性杆的扭转吸振器
CN108505436A (zh) * 2018-06-26 2018-09-07 辽宁工业大学 一种具有竖向位移的扭转支座

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102409775A (zh) * 2011-09-07 2012-04-11 江苏金风风电设备制造有限公司 调谐质量阻尼器减振控制装置
CN103277454A (zh) * 2013-05-09 2013-09-04 张春巍 调谐转动惯量阻尼减振装置
CN104179118A (zh) * 2014-08-20 2014-12-03 重庆邮电大学 抗冲隔振型桥墩磁流变支座-阻尼器的设计方法及装置
KR20160118201A (ko) * 2016-10-04 2016-10-11 알엠에스테크놀러지(주) 통합제진 디지털 제어 시스템
CN109610302A (zh) * 2019-02-01 2019-04-12 青岛理工大学 复合式桥梁扭转振动控制系统
CN209508798U (zh) * 2019-02-01 2019-10-18 青岛理工大学 复合式桥梁扭转振动控制系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114197290A (zh) * 2021-12-29 2022-03-18 同济大学 一种用于分体式箱梁桥梁的抑涡装置及分体式箱梁桥梁
CN114197290B (zh) * 2021-12-29 2023-02-03 同济大学 一种用于分体式箱梁桥梁的抑涡装置及分体式箱梁桥梁

Also Published As

Publication number Publication date
CN109610302A (zh) 2019-04-12
CN109610302B (zh) 2023-09-29
AU2019101722A4 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
WO2020155633A1 (zh) 复合式桥梁扭转振动控制系统
CN109610673B (zh) 主动转动惯量驱动控制系统
CN109610675B (zh) 平转复合式建筑振动控制系统
WO2020155632A1 (zh) 悬吊式复合调谐转动惯量驱动控制系统
CN209509214U (zh) 带阻尼液箱的转动惯量主动控制装置
CN209508798U (zh) 复合式桥梁扭转振动控制系统
WO2020155643A1 (zh) 自供能式主被动复合转动惯量驱动控制系统
WO2020155642A1 (zh) 主动复合变阻尼转动控制装置
WO2021082442A1 (zh) 转动惯量产生力矩控制方法
CN108916317B (zh) 一种基于减速机的棘轮齿条惯容器
WO2020155635A1 (zh) 能源供应型海洋平台转动惯量驱动控制系统
WO2020155644A1 (zh) 自适应机械驱动调节转动惯量式控制系统
CN209509216U (zh) 主动转动惯量驱动控制系统
CN109667357B (zh) 带阻尼液箱的转动惯量主动控制装置
CN110725557A (zh) 一种用于历史建筑的sma复合悬摆减震装置
CN108412069B (zh) 超长周期tmd控制系统
CN209509219U (zh) 悬吊式复合调谐转动惯量驱动控制系统
CN210859661U (zh) 带自平衡的三维隔震抗摇摆装置
CN211548160U (zh) 一种用于建筑物的sma悬摆减震装置
Dong et al. Vibration control device and its performance under wind load in high-rise buildings
JPH0333524A (ja) 構造物制振装置
CN115875578A (zh) 一种中央斗屏减震平台
JPH0419440A (ja) 制振装置
JPH03239836A (ja) 制振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913005

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19913005

Country of ref document: EP

Kind code of ref document: A1