WO2021082442A1 - 转动惯量产生力矩控制方法 - Google Patents

转动惯量产生力矩控制方法 Download PDF

Info

Publication number
WO2021082442A1
WO2021082442A1 PCT/CN2020/093919 CN2020093919W WO2021082442A1 WO 2021082442 A1 WO2021082442 A1 WO 2021082442A1 CN 2020093919 W CN2020093919 W CN 2020093919W WO 2021082442 A1 WO2021082442 A1 WO 2021082442A1
Authority
WO
WIPO (PCT)
Prior art keywords
moment
inertia
vibration
motion
controlling
Prior art date
Application number
PCT/CN2020/093919
Other languages
English (en)
French (fr)
Inventor
张春巍
王昊
徐洋
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2021082442A1 publication Critical patent/WO2021082442A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/0017Means for protecting offshore constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/023Bearing, supporting or connecting constructions specially adapted for such buildings and comprising rolling elements, e.g. balls, pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/22Compensation of inertia forces

Definitions

  • the embodiments of the present application relate to the technical field of engineering vibration suppression, and in particular, to a method for controlling the moment of inertia generated.
  • High-rise structures will vibrate under the action of wind loads. In the absence of anti-vibration measures, users in high-rise buildings will feel the shaking of the structure. In the case of high winds, the equipment and facilities inside the structure will even be affected. The damage caused by the vibration of the structure not only fails to meet people's comfort requirements for the structure, but also poses a threat to the economic property.
  • vibration control technology has been rapidly developed in recent years. Not only in the field of civil engineering, vibration control technology is also a hot spot in the fields of aerospace, automotive, machinery, marine engineering, and military engineering.
  • vibration control technology is also a hot spot in the fields of aerospace, automotive, machinery, marine engineering, and military engineering.
  • properly installing a vibration control system in the structure can effectively reduce the dynamic response of the structure, reduce structural damage or fatigue damage, so as to meet people's needs for structural safety and comfort, and achieve safety, economy, and safety. Reasonable balance of reliability.
  • a large number of studies have shown that the application of vibration control technology in civil engineering has significant effects and important significance. It can not only prevent or reduce structural damage, improve the disaster prevention performance of the structure, ensure the safety of people’s lives and properties, but also extend the life of the structure. The maintenance cost of the structure is reduced, and people's requirements for the comfort of the structure under extreme conditions are met to the greatest extent.
  • the civil engineering structure vibration control technology is mainly divided into the following four aspects: active control, passive control, semi-active control and hybrid control.
  • active control passive control
  • passive control semi-active control
  • hybrid control hybrid control
  • the research of passive control technology has been relatively mature.
  • the devices used for passively tuned energy absorption mainly include tuned mass damper (Tuned Mass Damper, TMD) and tuned liquid damper (Tuned Liquid Damper, TLD). It has been applied in civil engineering structures.
  • the principle of TMD control is to make the sub-structure resonate with the main structure by adjusting the frequency of the sub-structure, that is, the damper, and the main structure, that is, the controlled structure, and dissipate the vibration energy of the main structure through the internal damping mechanism of the sub-structure, thereby reducing the main structure Dynamic response to achieve the purpose of vibration control.
  • a large number of studies and practical applications have shown that, for example, the 60-story John Hancock Building in Boston, the Twin Towers in Kuala Lumpur, Malaysia, and the Taipei 101 Building in China are all installed with TMD vibration control systems. The later applications have proved that the passive control TMD system has Stable and good control effect.
  • the movement form of the structure has complex and diverse characteristics, usually composed of translation and torsion swing.
  • the TMD system when used to control the swing problem of the suspension quality system, it is found that when the structure suspension direction is consistent with the swing motion direction, the TMD system can play an effective control role regardless of the initial offset or the simple harmonic load excitation input;
  • the TMD system is used for the shimmy control of the structure in another direction, that is, when the suspension direction of the structure and its shimmy movement direction are perpendicular to each other, no matter how to adjust the system parameters (such as structure pendulum length, control system position, etc.), the TMD system will never work.
  • the application of existing structural vibration control devices/systems in the field of civil engineering plays an indispensable role, and is of great significance for protecting the lives and property of structural users.
  • the existing structural vibration control device/system mainly exhibits the following shortcomings: the control device can only generate a control force of a linear force, or a torque composed of two linear forces, but cannot directly generate a control torque for control.
  • the linear force and the force couple cannot be equivalent to each other.
  • the motion characteristics of the controlled object determine that the form of rotational motion must be controlled by torque, and the control device that uses force or linear motion will fail.
  • the main purpose of the present invention is to provide a method for controlling the moment of inertia to generate a moment to solve the problems in the prior art.
  • a method for controlling a moment of inertia to generate a moment which realizes the moment control through a moment generating mechanism, the moment generating mechanism including a moment of inertia mass body, a central rotating shaft and a rotation restoring force providing mechanism;
  • the acceleration or deceleration movement of the mass body with the moment of inertia directly generates the control torque, and the control torque directly controls the controlled object.
  • the rotation restoring force providing mechanism includes any one of three types of suspension modes: passive suspension, semi-active suspension, and active suspension.
  • the torque generating mechanism is fixedly connected to the controlled object.
  • the shape of the mass body with the moment of inertia is a circle, a disc or a torus.
  • the mass body of moment of inertia is parallel to the rotating surface of the controlled object to generate a rotational movement
  • the rotation restoring force providing mechanism is connected perpendicularly to the central shaft
  • the central shaft is connected perpendicularly to the mass body of moment of inertia.
  • the method can be applied to the following mechanical motion models: the free swing of a simple pendulum structure, the vibration of a constrained inverted pendulum structure, or the fixed axis rotation of a rigid body around any axis in space.
  • the method is suitable for the shimmy motion control of the suspension structure under the action of gravity;
  • the method is suitable for the fixed-axis rotational motion of a rigid body around a space axis, and the vibration and coupled vibration control with rotational motion components.
  • the method is suitable for rolling, nodding and shaking head motions and coupled vibrations of a long-span bridge under the action of wind load and external force.
  • the method is suitable for the rocking motion of an ocean platform under the combined action of waves, wind and undercurrent; or,
  • the method is suitable for the swaying motion of a ship under the combined action of sea waves and wind; or,
  • the method is suitable for the rocking motion of aerospace satellites under the action of external force for attitude adjustment;
  • the rocking motion includes rolling, pitching, swaying and their coupled vibrations.
  • the method is suitable for the movement of a vehicle with a rotating component under the action of road irregularities and its coupled vibration;
  • the method is suitable for torsional vibration motion and coupled vibration of high-rise civil engineering structures under the action of earthquake or wind force;
  • the method is suitable for swing vibration of antennas or masts on top of high-rise buildings and super high-rise buildings, as well as swing vibration of swing walls in the structures of high-rise buildings and super high-rise buildings.
  • the method for controlling the moment of inertia generated by the present invention realizes the moment control by a moment generating mechanism.
  • the moment generating mechanism includes a moment of inertia mass body, a central shaft and a rotation restoring force providing mechanism; the acceleration or deceleration movement of the moment of inertia mass body directly generates control Torque, the control torque directly controls the controlled object.
  • the basic principle of the present invention comes from the basic concept of mechanics: force and force couple cannot be equivalent to each other. In some cases, the motion characteristics of the controlled object determine that the form of rotational motion must be controlled by torque. Therefore, traditional control systems that use force or linear motion will fail.
  • the present invention proposes to directly apply control torque to the controlled object. The method makes up for the vacancy of the existing vibration control technology.
  • FIG. 1 is a schematic structural diagram of a torque generating mechanism inside the structure of a method for controlling a moment of inertia generating torque according to an embodiment of the present invention.
  • the terms “connected”, “fixed”, etc. should be interpreted broadly.
  • “fixed” can be a fixed connection, a detachable connection, or a whole; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be an internal communication between two components or an interaction relationship between two components, unless specifically defined otherwise.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • the moment of inertia generating torque control method of the present invention is different from the control method of the prior art suspension system. It directly generates the control torque acting on the controlled object and realizes the controlled object with rotational dynamic behavior. inhibition;
  • the method for controlling the moment of inertia produced by the present invention is realized by directly installing on the plane where the controlled object 1 undergoes rotational movement, and driving the moment of inertia body 5 to rotate through the rotation restoring force providing mechanism 3.
  • the rotation deceleration is generated, thereby generating the control torque, which directly acts on the controlled object 1.
  • the moment of inertia body 5 with a circular outer contour is connected to the rotation restoring force providing mechanism 3 through the central rotating shaft 4, and the rotation restoring force providing mechanism 3 is fixedly connected to the surface of the controlled object 1 through the connecting plate 2 that responds to the movement in the form of rotation.
  • rotation restoring force providing mechanism 3 includes any one of three types of suspension modes: passive suspension, semi-active suspension, and active suspension.
  • the torque generating mechanism is fixedly connected to the controlled object 1.
  • the shape of the mass body 5 with moment of inertia is a circle, a disc or a torus.
  • the mass body 5 with moment of inertia is parallel to the rotating surface of the controlled object 1 to generate a rotational movement
  • the rotation restoring force providing mechanism 3 is perpendicularly connected with the central shaft 4
  • the central shaft 4 is connected with the mass body with moment of inertia. 5 Vertical connection.
  • the present invention is suitable for the movement (rolling, nodding and shaking of the head) and coupled vibration of the long-span bridge under the action of external forces such as wind load.
  • the present invention is suitable for the rocking motion (rolling, pitching and swaying) and coupled vibration of the ocean platform under the combined action of sea waves, wind, undercurrent, etc.;
  • the present invention is applicable to the rolling motion (rolling, pitching and swaying) and coupled vibration of the ship under the combined action of sea waves, wind, etc.;
  • the present invention is suitable for high-speed train swaying motion (nodding, shaking and rolling) and its coupled vibration in dynamic behaviors caused by track irregularities, air pressure difference when the train meets, and external factors such as wind, rain, snow, etc.;
  • the present invention is suitable for the motion of a vehicle with rotational components such as pitching under the action of road irregularities and the coupled vibration thereof;
  • the present invention is suitable for the rocking motion (rolling, pitching, and yaw) and coupled vibration of aerospace satellite under the action of external forces such as attitude adjustment;
  • the present invention is suitable for the torsional vibration motion and coupled vibration of a civil engineering high-rise structure under the action of external forces such as earthquake and wind;
  • the present invention is suitable for the vibration of antennas and masts on top of high towers and super high-rise towers, and the vibration of rocking walls in structures;
  • the present invention is suitable for the shimmy (single pendulum) motion control of the suspension structure under the action of gravity;
  • the present invention is suitable for the fixed-axis rotational motion of a rigid body around a space axis, and the vibration and coupled vibration control with rotational motion components.
  • the basic principle of the present invention comes from the basic concept of mechanics: force and force couple cannot be equivalent to each other.
  • the motion characteristics of the controlled object determine that the form of rotational motion must be controlled by torque. Therefore, the traditional control system that uses force or linear motion will fail.
  • the present invention proposes to directly apply control torque to the controlled object. The method makes up for the vacancy of the existing vibration control technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

本申请实施例的转动惯量产生力矩控制方法,所述高速列车包括控制装置,所述控制装置包括车尾控制模块、列车侧向控制模块和车顶及车底控制模块,三个控制模块之间相互配合作用,产生对应方向的控制力矩,直接作用在列车车体,分别对高速列车的侧滚、点头、摇头动态行为进行抑制。该方法直接产生作用在车体上的控制力矩,实现列车带有转动动态行为如侧滚、点头、摇头的抑制。

Description

转动惯量产生力矩控制方法 技术领域
本申请实施例涉及工程振动抑制技术领域,尤其涉及转动惯量产生力矩控制方法。
背景技术
高速公路、铁路、桥梁、高层建筑、大跨度空间结构等结构的使用过程中,对结构影响较大的往往是动载作用,如地震、风、浪、流、冰、爆炸等,结构在这些动力荷载的作用下会产生振动,一般情况下会引起疲劳与可靠性问题,严重时会造成结构的破坏失效,造成人员伤亡及财产损失。结构在使用过程中,遭受动载作用后,如地震作用,结构产生倒塌破坏,无法继续使用,或者即使结构没有倒塌,但其内部的设备设施、装饰装修、安装系统受到破坏之后也无法继续使用,甚至造成次生灾害,这给使用人员造成了巨大的安全威胁和经济财产损失。
高层结构在风荷载作用下,会产生振动,在没有减隔震措施的情况下,处于高层的使用者会感到结构物的晃动,风力较大的情况下,结构物内部的设备设施甚至会受到由结构物振动引起的破坏,这不仅无法满足人们对结构物的舒适要求,也对经济财产造成威胁。
为了解决由结构物振动引起的各种问题,消除或减轻由外部荷载引起的振动,振动控制技术近年来得到了迅速的发展。不仅是在土木工程领域,振动控制技术在航空航天、汽车、机械、海洋工程、军事工程等领域也是热点方向。 对于土木工程结构,在结构中恰当地安装振动控制系统能够有效地减轻结构的动力响应,减轻结构的破坏或者疲劳损伤,从而满足人们对结构的安全、舒适等需求,达到安全性、经济性、可靠性的合理平衡。大量研究表明,振动控制技术在土木工程的应用具有显著的效果和重要的意义,不仅可以防止或减轻结构的破坏,提高结构的防灾性能,保证人们的生命财产安全,还可以延长结构寿命,降低结构的维护成本,极大限度的满足人们对结构在极端条件下的舒适度要求。
土木工程结构振动控制技术主要分为以下四个方面:主动控制、被动控制、半主动控制以及混合控制。其中,被动控制技术的研究已经较为成熟,其中用于被动调谐吸能的装置主要包括调谐质量阻尼器(Tuned Mass Damper,TMD)和调谐液体阻尼器(Tuned Liquid Damper,TLD)等,已经在诸多土木工程结构中得到了应用。TMD控制的原理是通过调整子结构即阻尼器的频率与主结构即受控结构一致或相近,使子结构与主结构共振,通过子结构内部阻尼机制耗散主结构振动能量,从而消减主结构动力响应,达到振动控制的目的。大量的研究和实际应用已经表明,例如:美国波士顿60层的John Hancock大楼、马来西亚吉隆坡的双子塔、中国台北101大楼均安装了TMD振动控制系统,通过在后期的应用证明了被动控制TMD系统具有稳定、良好的控制效果。
结构的运动形式具有复杂多样的特性,通常由平动以及扭转摆动组合而成。然而采用TMD系统控制悬吊质量体系摆动问题时发现:当结构悬挂方向与其摆振运动方向一致时,无论是在初始偏移还是简谐荷载激励输入下,TMD系统都能发挥有效的控制作用;当把TMD系统用于结构另一个方向摆振控制即当结构悬挂方向与其摆振运动方向相互垂直时,无论怎样调整系统参数(如结构摆长、控制系统位置等),TMD系统始终无法工作。经过大量的理论分析和试验探索, 提出了平动TMD控制系统只能控制结构的平动运动而对回转摆振控制无效的结论。经过学者的研究表明,其根本原因在于此时TMD、TLD等被动控制系统处于离心状态而失去作用,系统质量块(或TLD水箱中的水)根本不运动,甚至主动质量阻尼器/驱动器(英文名Active Mass Damper/Driver,AMD)控制系统主动控制力因需要克服质量块重力分量而使其控制效率大大折扣。然而具有回转摆振运动特性的结构运动形式极为常见,如:悬吊结构(吊钩、吊车等)的摆动;不规则建筑在风荷载作用下的扭转摆振;海洋平台在海浪、风、冰等耦合作用下的扭转摆振等。因此需要设计一种特殊的结构振动/运动控制系统,使其可以自动克服(或摆脱)重力场对控制系统自身的影响(离心力作用),或者使控制系统自身的工作/运动规律与重力场解耦,系统自振不受重力影响,以上两个方面均可以达到使控制系统充分运动起来的目的,从而发挥控制系统对结构运动/振动的有效控制作用。
综上所述,现有的结构振动控制装置/系统在土木工程领域的应用具有不可或缺的作用,并且对保障结构使用者的生命和财产具有非常重要的意义。但是现有的结构振动控制装置/系统主要表现出以下的不足:控制装置只能产生直线力的控制力,或者由两个直线力组成的力矩,而不能直接产生控制力矩进行控制。而直线力和力偶不能相互等效,某些情况下受控对象的运动特征决定了转动运动形式必须由力矩来控制,以出力方式或线性运动的控制装置均会失效。
发明内容
有鉴于此,本发明的主要目的在于提供转动惯量产生力矩控制方法,以解决现有技术中存在的问题。
本申请实施例解决上述技术问题所采用的技术方案如下:
一种转动惯量产生力矩控制方法,通过力矩产生机构实现力矩控制,所述力矩产生机构包括转动惯量质量体、中心转轴和转动恢复力提供机构;
通过转动惯量质量体加速或减速运动直接产生控制力矩,所述控制力矩直接对被控对象进行控制。
进一步地,所述转动恢复力提供机构包括被动悬挂、半主动悬挂、主动悬挂三种类型悬挂方式中的任意一种。
进一步地,所述力矩产生机构与被控对象固定连接。
进一步地,所述转动惯量质量体形状为圆形、圆盘或者为圆环。
进一步地,所述转动惯量质量体平行于被控对象产生转动运动的转动面,所述转动恢复力提供机构与所述中心转轴垂直连接,所述中心转轴与转动惯量质量体垂直连接。
进一步地,所述方法可应用到以下力学运动模型中:单摆结构的自由摆动、受约束倒立摆结构的振动或刚体绕空间任意轴的定轴转动。
进一步地,所述方法适用于悬挂结构在重力作用下的摆振运动控制;或者
所述方法适用于刚体绕空间轴的定轴转动运动,具有转动运动成分的振动及耦合振动控制。
进一步地,所述方法适用于大跨度桥梁在风荷载外力作用下的具有转动成为的侧滚、点头和摇头运动及其耦合振动。
进一步地,所述方法适用于海洋平台在海浪、风和暗流联合作用下的摇摆运动;或者,
所述方法适用于船舶在海浪和风联合作用下的摇摆运动;或者,
所述方法适用于航天卫星在姿态调整外力作用下的摇摆运动;
其中,所述摇摆运动包括横摇、纵摇和首摇及其耦合振动。
进一步地,所述方法适用于车辆在道路不平顺作用下的具有转动成分的运动及其耦合振动;或者
所述方法适用于土木工程高层结构在地震或风外力作用下的扭转振动运动及其耦合振动;或者
所述方法适用于高层建筑、超高层建筑顶部的天线或桅杆的摆振,以及所述高层建筑、超高层建筑结构中的摇摆墙摆振。
本申请实施例具有以下有益效果:
本发明的转动惯量产生力矩控制方法,通过力矩产生机构实现力矩控制,所述力矩产生机构包括转动惯量质量体、中心转轴和转动恢复力提供机构;通过转动惯量质量体加速或减速运动直接产生控制力矩,所述控制力矩直接对被控对象进行控制。本发明的基本原理来自力学基本概念:力和力偶不能相互等效。某些情况下受控对象的运动特征决定了转动运动形式必须由力矩来控制,因此传统的以出力方式或线性运动的控制系统均将失效,本发明提出直接对被控对象施加控制力矩的控制方法,弥补了现有振动控制技术的空缺。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是本发明实施例转动惯量产生力矩控制方法的结构内部力矩产生机构的结构示意图。
其中,上述附图包括以下附图标记:1、被控对象;2、连接板;3、转动恢复力提供机构;4、中心转轴;5、转动惯量质量体。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不 是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
如图1所示,本发明的一种转动惯量产生力矩控制方法与现有技术悬挂系统的控制方法不同,直接产生作用在被控对象上的控制力矩,实现被控对象带有转动动态行为的抑制;
如图1所示,本发明提出的转动惯量产生力矩控制方法实现通过直接安装在被控对象1发生转动形式运动的平面上,通过转动恢复力提供机构3驱动转 动惯量体5发生回转运动,在其加速及减速转动过程中产生转动减速度,从而产生控制力矩,直接作用在被控对象1上。圆形外轮廓的转动惯量体5通过中心转轴4与转动恢复力提供机构3连接,转动恢复力提供机构3通过连接板2与被控对象1发生转动形式运动响应的表面固定连接。
进一步地,所述转动恢复力提供机构3包括被动悬挂、半主动悬挂、主动悬挂三种类型悬挂方式中的任意一种。
进一步地,所述力矩产生机构与被控对象1固定连接。
进一步地,所述转动惯量质量体5形状为圆形、圆盘或者为圆环。
进一步地,所述转动惯量质量体5平行于被控对象1产生转动运动的转动面,所述转动恢复力提供机构3与所述中心转轴4垂直连接,所述中心转轴4与转动惯量质量体5垂直连接。
进一步的,本发明适用于大跨度桥梁在风荷载等外力作用下的具有转动成为的运动(侧滚、点头和摇头)及其耦合振动;
进一步的,本发明适用于海洋平台在海浪、风、暗流等联合作用下的摇摆运动(横摇、纵摇和首摇)及其耦合振动;
进一步的,本发明适用于船舶在海浪、风等联合作用下的摇摆运动(横摇、纵摇和首摇)及其耦合振动;
进一步的,本发明适用于高速列车在轨道不平顺、列车会车气压差以及风、雨、雪等外界因素引起的动态行为中摇摆运动(点头、摇头和侧滚)及其耦合振动;
进一步的,本发明适用于车辆在道路不平顺等作用下的俯仰等具有转动成分的运动及其耦合振动;
进一步的,本发明适用于航天卫星在姿态调整等外力作用下的摇摆运动(横 摇、纵摇和首摇)及其耦合振动;
进一步的,本发明适用于土木工程高层结构在地震、风等外力作用下的扭转振动运动及其耦合振动;
进一步的,本发明适用于高耸、超高层塔顶部的天线、桅杆的摆振,结构中的摇摆墙摆振;
进一步的,本发明适用于悬挂结构在重力作用下的摆振(单摆)运动控制;
进一步的,本发明适用于刚体绕空间轴的定轴转动运动,具有转动运动成分的振动及耦合振动控制。
本发明具有以下有益效果:
本发明的基本原理来自力学基本概念:力和力偶不能相互等效。某些情况下被控对象的运动特征决定了转动运动形式必须由力矩来控制,因此传统的以出力方式或线性运动的控制系统均将失效,本发明提出直接对被控对象施加控制力矩的控制方法,弥补了现有振动控制技术的空缺。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种转动惯量产生力矩控制方法,其特征在于,通过力矩产生机构实现力矩控制,所述力矩产生机构包括转动惯量质量体、中心转轴和转动恢复力提供机构;
    通过转动惯量质量体加速或减速运动直接产生控制力矩,所述控制力矩直接对被控对象进行控制。
  2. 如权利要求1所述的转动惯量产生力矩控制方法,其特征在于,所述转动恢复力提供机构包括被动悬挂、半主动悬挂、主动悬挂三种类型悬挂方式中的任意一种。
  3. 如权利要求1或2所述的转动惯量产生力矩控制方法,其特征在于,所述力矩产生机构与被控对象固定连接。
  4. 如权利要求3所述的转动惯量产生力矩控制方法,其特征在于,所述转动惯量质量体形状为圆形、圆盘或者为圆环。
  5. 如权利要求4所述的转动惯量产生力矩控制方法,其特征在于,所述转动惯量质量体平行于被控对象产生转动运动的转动面,所述转动恢复力提供机构与所述中心转轴垂直连接,所述中心转轴与转动惯量质量体垂直连接。
  6. 如权利要求5所述的转动惯量产生力矩控制方法,其特征在于,所述方法可应用到以下力学运动模型中:单摆结构的自由摆动、受约束倒立摆结构的振动或刚体绕空间任意轴的定轴转动。
  7. 如权利要求5所述的转动惯量产生力矩控制方法,其特征在于,所述方法适用于悬挂结构在重力作用下的摆振运动控制;或者
    所述方法适用于刚体绕空间轴的定轴转动运动,具有转动运动成分的振动及耦合振动控制。
  8. 如权利要求5所述的转动惯量产生力矩控制方法,其特征在于, 所述方法适用于大跨度桥梁在风荷载外力作用下的具有转动成为的侧滚、点头和摇头运动及其耦合振动。
  9. 如权利要求5所述的转动惯量产生力矩控制方法,其特征在于,所述方法适用于海洋平台在海浪、风和暗流联合作用下的摇摆运动;或者,
    所述方法适用于船舶在海浪和风联合作用下的摇摆运动;或者,
    所述方法适用于航天卫星在姿态调整外力作用下的摇摆运动;
    其中,所述摇摆运动包括横摇、纵摇和首摇及其耦合振动。
  10. 如权利要求5所述的转动惯量产生力矩控制方法,其特征在于,所述方法适用于车辆在道路不平顺作用下的具有转动成分的运动及其耦合振动;或者
    所述方法适用于土木工程高层结构在地震或风外力作用下的扭转振动运动及其耦合振动;或者
    所述方法适用于高层建筑、超高层建筑顶部的天线或桅杆的摆振,以及所述高层建筑、超高层建筑结构中的摇摆墙摆振。
PCT/CN2020/093919 2019-10-31 2020-06-02 转动惯量产生力矩控制方法 WO2021082442A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911054561.9 2019-10-31
CN201911054561.9A CN110761432B (zh) 2019-10-31 2019-10-31 转动惯量产生力矩控制方法

Publications (1)

Publication Number Publication Date
WO2021082442A1 true WO2021082442A1 (zh) 2021-05-06

Family

ID=69335095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093919 WO2021082442A1 (zh) 2019-10-31 2020-06-02 转动惯量产生力矩控制方法

Country Status (2)

Country Link
CN (1) CN110761432B (zh)
WO (1) WO2021082442A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110761432B (zh) * 2019-10-31 2021-04-20 青岛理工大学 转动惯量产生力矩控制方法
CN115387593B (zh) * 2022-08-15 2024-04-02 沈阳工业大学 悬吊物体摇摆止振的主被动复合控制系统
CN115233540A (zh) * 2022-08-15 2022-10-25 沈阳工业大学 抑制桥梁多模态耦合振动的主被动混合控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024428A (ja) * 2017-10-18 2018-02-15 公益財団法人鉄道総合技術研究所 車両の転覆防止装置
CN108944974A (zh) * 2018-07-27 2018-12-07 同济大学 一种抑制高速列车车体蛇行的控制装置
CN109610673A (zh) * 2019-02-01 2019-04-12 青岛理工大学 主动转动惯量驱动控制系统
CN109629544A (zh) * 2019-02-01 2019-04-16 青岛理工大学 能源供应型海洋平台转动惯量驱动控制系统
CN209509216U (zh) * 2019-02-01 2019-10-18 青岛理工大学 主动转动惯量驱动控制系统
CN110761432A (zh) * 2019-10-31 2020-02-07 青岛理工大学 转动惯量产生力矩控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043162B2 (en) * 2010-01-28 2011-10-25 Joseph Sery Golf training device
CN103277454B (zh) * 2013-05-09 2016-05-18 张春巍 调谐转动惯量阻尼减振装置
CN209509214U (zh) * 2019-02-01 2019-10-18 青岛理工大学 带阻尼液箱的转动惯量主动控制装置
CN209508798U (zh) * 2019-02-01 2019-10-18 青岛理工大学 复合式桥梁扭转振动控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024428A (ja) * 2017-10-18 2018-02-15 公益財団法人鉄道総合技術研究所 車両の転覆防止装置
CN108944974A (zh) * 2018-07-27 2018-12-07 同济大学 一种抑制高速列车车体蛇行的控制装置
CN109610673A (zh) * 2019-02-01 2019-04-12 青岛理工大学 主动转动惯量驱动控制系统
CN109629544A (zh) * 2019-02-01 2019-04-16 青岛理工大学 能源供应型海洋平台转动惯量驱动控制系统
CN209509216U (zh) * 2019-02-01 2019-10-18 青岛理工大学 主动转动惯量驱动控制系统
CN110761432A (zh) * 2019-10-31 2020-02-07 青岛理工大学 转动惯量产生力矩控制方法

Also Published As

Publication number Publication date
CN110761432A (zh) 2020-02-07
CN110761432B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2021082442A1 (zh) 转动惯量产生力矩控制方法
AU2019101723A4 (en) Active rotary inertia driver control system
Zhang The active rotary inertia driver system for flutter vibration control of bridges and various promising applications
US10889982B2 (en) Translation-rotation hybrid vibration control system for buildings
WO2020155633A1 (zh) 复合式桥梁扭转振动控制系统
CN107268431B (zh) 自复位摩擦阻尼减震支座及减震桥梁
WO2020155643A1 (zh) 自供能式主被动复合转动惯量驱动控制系统
WO2020155632A1 (zh) 悬吊式复合调谐转动惯量驱动控制系统
WO2020155642A1 (zh) 主动复合变阻尼转动控制装置
WO2020155635A1 (zh) 能源供应型海洋平台转动惯量驱动控制系统
CN103277454A (zh) 调谐转动惯量阻尼减振装置
CN102677792B (zh) 一种高耸结构风致振动的综合控制装置
CN209508798U (zh) 复合式桥梁扭转振动控制系统
CN209509216U (zh) 主动转动惯量驱动控制系统
CN109667357B (zh) 带阻尼液箱的转动惯量主动控制装置
Rai et al. Seismic Response Control Systems for Structures.
WO2020155639A1 (zh) 自走式全方向转动惯量驱动控制系统
CN201605530U (zh) 内置有阻尼器的桥梁减震支座
CN109516386B (zh) 一种用于海上钢梁吊装的减振缓冲方法及系统
黄致谦 et al. Optimal control of MTMD in floating wind turbine stability based on MIGA
CN205155018U (zh) 复合式高精度复位隔振系统
CN117167201B (zh) 一种混合式风电塔架系统
CN210482045U (zh) 一种设置冗余抗震柱及调谐质量阻尼器的悬索桥桥塔构造
CN115875578A (zh) 一种中央斗屏减震平台
Alam et al. Application of tuned mass dampers in torsionally coupled buildings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881618

Country of ref document: EP

Kind code of ref document: A1