WO2024036971A1 - 一种基于回转原理的主动力矩驱动控制系统 - Google Patents

一种基于回转原理的主动力矩驱动控制系统 Download PDF

Info

Publication number
WO2024036971A1
WO2024036971A1 PCT/CN2023/083785 CN2023083785W WO2024036971A1 WO 2024036971 A1 WO2024036971 A1 WO 2024036971A1 CN 2023083785 W CN2023083785 W CN 2023083785W WO 2024036971 A1 WO2024036971 A1 WO 2024036971A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
rotating
motor
controlled
control system
Prior art date
Application number
PCT/CN2023/083785
Other languages
English (en)
French (fr)
Inventor
张春巍
Original Assignee
沈阳工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳工业大学 filed Critical 沈阳工业大学
Publication of WO2024036971A1 publication Critical patent/WO2024036971A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25257Microcontroller

Definitions

  • the invention relates to the technical field of bridge engineering, and in particular to an active torque drive control system based on the rotation principle.
  • the vibration control of bridges is usually controlled by passive control methods such as dampers.
  • the dampers can only output linear control force, which is equivalent to the fact that the dampers can only control the horizontal vibration and vertical vibration generated by the bridge and cannot Control of torsional vibrations produced by bridges.
  • the damper also has the following defects: 1. The tensile strength of the damper is limited and it is easy to break when trains and bridges resonate. 2. When the damper controls bridge vibration, the damping fluid inside it is easily emulsified at high temperature under the action of high-frequency reciprocation, causing its control performance to be unstable.
  • the damper controls the torsional vibration of the bridge, its linear control force characteristics are prone to chaos, and it has different control effects at different excitation frequencies.
  • the tuned damper can control the vibration of the bridge. Instead of having no control effect, it will intensify the vibration of the bridge and fail to produce the expected effect.
  • the main purpose of the present invention is to provide an active torque drive control system based on the rotation principle, aiming to solve the technical problem that the dampers in the prior art cannot effectively solve the torsional vibration of the bridge, resulting in poor stability of the bridge.
  • the technical solution provided by the present invention is:
  • An active torque drive control system based on the rotation principle, including a first motor, a first rotating shaft, a rotating component, a sensor and a controller.
  • the first motor is used to be arranged on an object to be controlled, and the first rotating shaft is rotatable.
  • the rotating component is disposed on an end of the first rotating shaft away from the object to be controlled
  • the first motor and the first rotating shaft are transmission connected
  • the controllers are respectively Connected to the sensor and the first motor
  • the sensor is used to detect the twist angle of the object to be controlled and send the twist angle to the controller
  • the controller is used to respond to the received
  • the torsion angle is processed, and corresponding control instructions are output to the first motor according to the processing results to control the first motor to drive the first rotating shaft to rotate, so that the first rotating shaft drives the rotating component to rotate.
  • the active torque drive control system based on the rotation principle also includes a first transmission component, and the first motor and the first rotating shaft are transmission connected through the first transmission component.
  • the first transmission component includes a first gear and a second gear, the first gear is sleeved on the first rotating shaft, the first motor has a second rotating shaft, and the second gear is sleeved on the first rotating shaft. On the second rotating shaft, the first gear and the second gear are meshed and connected in transmission.
  • the number of the first motors and the second gears is multiple, the multiple first motors are respectively arranged on the object to be controlled, and the multiple second gears are arranged on multiple objects in a one-to-one correspondence.
  • a plurality of second gears are meshed and transmission connected with the first gears.
  • the rotating component includes a rotating member, a second motor, a second rotating shaft and a turntable, the rotating member is arranged on an end of the first rotating shaft away from the object to be controlled, and the second motor is arranged on the The side of the rotating member facing away from the first rotating shaft, the second rotating shaft is rotatably arranged on the side of the rotating member facing away from the first rotating shaft, and the rotating disk is arranged on the side of the second rotating shaft away from the first rotating shaft.
  • the second motor is drivingly connected to the turntable, and the controller is also used to control the second motor to drive the turntable to rotate according to the processing result.
  • the rotating member includes a rotating base and a rotating arm arranged on the rotating base.
  • the rotating base is arranged on an end of the first rotating shaft away from the object to be controlled, and the second motor is arranged on the
  • the rotating arm is on a side facing away from the first rotating shaft, and the second rotating shaft is rotatably disposed on a side of the rotating base facing away from the first rotating shaft.
  • multiple rotating arms and second motors there are multiple rotating arms and second motors, multiple rotating arms are arranged at intervals on the rotating base, and multiple second motors are arranged on multiple rotating bases in one-to-one correspondence.
  • the arm faces away from the side of the first rotating shaft, and each second motor is drivingly connected to the turntable.
  • the active torque drive control system based on the rotation principle also includes a base, the base is used to be installed in the object to be controlled, the first motor is arranged on the base, and the first The rotating shaft is rotatably arranged on the base.
  • the base includes a mounting base and a connecting arm disposed on the mounting base.
  • One end of the connecting arm away from the mounting base is connected to the inner wall of the object to be controlled, and the first motor is disposed on the On the mounting base, the first rotating shaft is rotatably arranged on the mounting base.
  • the number of the connecting arms is multiple, and a plurality of the connecting arms are arranged on the mounting base at intervals, and one end of each connecting arm away from the mounting base is connected to the inner wall of the object to be controlled. .
  • the present invention has the following beneficial effects:
  • the first rotating shaft of this application is set on the object to be controlled.
  • the sensor first detects the torsion angle of the object to be controlled, and sends the torsion angle to the controller.
  • the controller then processes the received torsion angle and outputs it according to the processing result.
  • Corresponding control instructions are given to the first motor to control the first motor to drive the first rotating shaft to rotate, so that the first rotating shaft drives the rotating component to rotate, so that the rotating component can generate a torque that offsets the torsional vibration of the object to be controlled.
  • the torque generated by the rotating component is transmitted to the object to be controlled through the first rotating shaft to offset the torsional vibration generated by the object to be controlled, thereby improving the stability of the object to be controlled.
  • Figure 1 is a schematic diagram of an active torque drive control system based on the rotary principle according to an embodiment of the present invention.
  • Figure 2 is a partial cross-sectional view of an active torque drive control system based on the rotary principle according to an embodiment of the present invention.
  • Figure 3 is a partial schematic diagram of an active torque drive control system based on the rotary principle according to an embodiment of the present invention.
  • this embodiment provides an active torque drive control system 100 based on the rotation principle.
  • the active torque drive control system 100 based on the rotation principle includes a first motor 1, a first rotating shaft 2, and a rotating assembly. 3.
  • Sensor 4 and controller 5 the first motor 1 is used to be arranged on the object to be controlled 6, the first rotating shaft 2 is rotatably arranged on the object to be controlled 6, and the rotating component 3 is arranged away from the first rotating shaft 2 to be controlled.
  • the first motor 1 and the first rotating shaft 2 are transmission connected, and the controller 5 is connected to the sensor 4 and the first motor 1 respectively.
  • the sensor 4 is used to detect the torsion angle of the object 6 to be controlled, and generate the torsion angle.
  • the controller 5 is used to process the received torsion angle, and output corresponding control instructions to the first motor 1 according to the processing results, so as to control the first motor 1 to drive the first rotating shaft 2 to rotate, thereby causing the first rotating shaft 2 to rotate.
  • a rotating shaft 2 drives the rotating component 3 to rotate.
  • the first rotating shaft 2 of the present application is arranged on the object 6 to be controlled.
  • the sensor 4 first detects the twist angle of the object 6 and sends the twist angle to the controller 5.
  • the controller 5 then processes the received twist angle. , and output corresponding control instructions to the first motor 1 according to the processing results to control the first motor 1 to drive the first rotating shaft 2 to rotate, so that the first rotating shaft 2 drives the rotating component 3 to rotate, so that the rotating component 3 can generate offset to be controlled Object 6 Torsional moment of torsional vibration.
  • the torque generated by the rotating component 3 is transmitted to the object 6 to be controlled through the first rotating shaft 2 to offset the torsional vibration generated by the object 6 to be controlled, thereby improving the stability of the object 6 to be controlled.
  • the rotation principle means that when the rotating component 3 rotates, it can generate a moment in the opposite direction of the torsional direction of the object to be controlled 6 to offset the torsional vibration moment of the object to be controlled 6 , and this application uses the sensor 4 and the controller 5 With the cooperation, the torque generated by the rotating component 3 can be adjusted in real time, thereby offsetting the torque of the torsional vibration of the object 6 to be controlled in real time.
  • the object 6 to be controlled is a bridge.
  • the first motor 1 is a torque motor, and the torque motor can generate a large torque, so that the rotating component 3 can quickly generate a torque that offsets the torsional vibration of the object 6 to be controlled.
  • the senor 4 is provided on the object 6 to be controlled, and the controller 5 is provided on the first motor 1 .
  • the main torque drive control system 100 based on the rotation principle also includes a first transmission assembly 7 , through which the first motor 1 and the first rotating shaft 2 are transmission connected.
  • first transmission component 7 When the first transmission component 7 is damaged, only the damaged first transmission component 7 needs to be replaced without replacing the first motor 1 and/or the first rotating shaft 2 , thereby reducing the load of the main torque drive control system 100 based on the rotation principle. Replacement costs.
  • the first transmission assembly 7 includes a first gear 71 and a second gear 72.
  • the first gear 71 is sleeved on the first rotating shaft 2.
  • the first motor 1 has a second rotating shaft 011, and the second gear 72 is sleeved on the second rotating shaft 011.
  • the first gear 71 and the second gear 72 are engaged and connected in transmission.
  • the first motor 1 drives the second rotating shaft 011 to rotate
  • the second rotating shaft 011 drives the second gear 72 to rotate
  • the second gear 72 drives the first gear 71 to rotate
  • the first gear 71 drives the first rotating shaft 2 to rotate, so that the first rotating shaft 2 Drive the rotating component 3 to rotate.
  • the first transmission component 7 is configured as a first gear 71 and a second gear 72 for meshing transmission, so that the structure of the first transmission component 7 is simple and the cost is low; and the transmission efficiency of the first gear 71 and the second gear 72 is High, the first motor 1 can further accelerate the rotation of the first rotating shaft 2 .
  • first motors 1 and second gears 72 There are multiple first motors 1 and second gears 72 .
  • the multiple first motors 1 are respectively arranged on the object to be controlled 6 .
  • the multiple second gears 72 are arranged on the multiple first motors 1 in one-to-one correspondence.
  • the plurality of second gears 72 are all engaged and connected with the first gear 71 .
  • a plurality of first motors 1 are evenly distributed around the first rotating shaft 2 .
  • the number of the first motor 1 and the second gear 72 is four.
  • the main torque drive control system 100 based on the rotation principle also includes a first bearing 8.
  • the first bearing 8 is arranged on the object to be controlled 6.
  • the first rotating shaft 2 and the first bearing 8 are connected so that the first rotating shaft 2 is rotatably arranged.
  • the rotating component 3 includes a rotating member 31 , a second motor 32 , a third rotating shaft 33 and a turntable 34 .
  • the rotating member 31 is arranged on an end of the first rotating shaft 2 away from the object 6 to be controlled.
  • the second motor 32 is arranged on the opposite side of the rotating member 31 .
  • the third rotating shaft 33 is rotatably disposed on the side of the rotating member 31 facing away from the first rotating shaft 2 .
  • the rotating disk 34 is disposed on the end of the third rotating shaft 33 away from the rotating member 31 .
  • the second motor 32 Transmission connected to the turntable 34, the controller 5 is also used to control the second motor 32 to drive the turntable 34 to rotate according to the processing results.
  • the controller 5 controls the second motor 32 to drive the turntable 34 to rotate, which can accelerate the rotation of the turntable 34 so that the turntable 34 can quickly generate a torque that offsets the torsional vibration of the object to be controlled, thus improving the control effect of the active torque drive control system 100 based on the rotation principle. and control efficiency.
  • the rotating member 31 includes a rotating base 311 and a rotating arm 312 arranged on the rotating base 311.
  • the rotating base 311 is arranged on an end of the first rotating shaft 2 away from the object to be controlled 6.
  • the second motor 32 is arranged on the rotating arm 312 facing away from the first
  • the third rotating shaft 33 is rotatably disposed on the side of the rotating base 311 facing away from the first rotating shaft 2 .
  • the multiple rotating arms 312 and second motors 32 There are multiple rotating arms 312 and second motors 32 .
  • the multiple rotating arms 312 are arranged on the rotating base 311 at intervals.
  • the multiple second motors 32 are arranged in one-to-one correspondence on the side of the multiple rotating arms 312 facing away from the first rotating shaft 2 .
  • On one side each second motor 32 is drivingly connected to the turntable 34 .
  • the plurality of second motors 32 can drive the corresponding third rotating shafts 33 to rotate, so that the third rotating shafts 33 can drive the turntable 34 to quickly generate a torque that offsets the torsional vibration of the object 6 to be controlled, thereby further improving the active torque drive based on the rotation principle.
  • the control system 100 generates torque in real time.
  • the number of the rotating arms 312 and the second motor 32 is four.
  • the main torque drive control system 100 based on the rotation principle also includes a second bearing 9.
  • the second bearing 9 is provided on the side of the rotating seat 311 facing away from the first rotating shaft 2.
  • the third rotating shaft 33 is connected to the second bearing 9, so that the third rotating shaft 33 is connected to the second bearing 9.
  • the three rotating shafts 33 are rotatably arranged on the side of the rotating base 311 facing away from the first rotating shaft 2 .
  • the active torque drive control system 100 based on the rotation principle also includes a connecting member 10.
  • the rotating member 31 and the end of the first rotating shaft 2 away from the object to be controlled 6 are connected through the connecting member 10.
  • the connecting member 10 can increase the height of the rotating member 31 and the first rotating shaft. 2 The reliability of the connection at the end far away from the object 6 to be controlled.
  • the second motor 32 is a high-speed motor, and the high-speed motor has a relatively fast rotation speed. It can be understood that high-speed motors refer to motors with a speed exceeding 10,000r/min.
  • the turntable 34 has any one of a circular shape, a square shape, and an elliptical shape.
  • the main torque drive control system 100 based on the rotation principle also includes a second transmission component 11 , through which the second motor 32 and the turntable 34 are transmission connected.
  • the transmission assembly includes a third gear 111.
  • the second motor 32 has a fourth rotating shaft 321.
  • the third gear 111 is sleeved on the fourth rotating shaft 321.
  • a ring of gear teeth is provided on the outer wall of the turntable 34.
  • the third gear 111 meshes with the turntable 34. Transmission connection.
  • Each third gear 111 is meshed and connected with the turntable 34 .
  • the number of third gears 111 is four.
  • the active torque drive control system 100 based on the rotation principle also includes a base 12 for installation in the object 6 to be controlled.
  • the first motor 1 is disposed on the base 12 and the first rotating shaft 2 is rotatably disposed on the base.
  • the base 12 is installed in the object to be controlled 6 so that the torque generated by the rotating assembly 3 can be transmitted to the object 6 through the first rotating shaft 2 and the base 12 in sequence, so that the torque generated by the turntable 34 can be better offset.
  • the torsional vibration generated by the object 6 to be controlled thereby improves the stability of the object 6 to be controlled.
  • the base 12 includes a mounting base 121 and a connecting arm 122 disposed on the mounting base 121. One end of the connecting arm 122 away from the mounting base 121 is connected to the inner wall of the object 6 to be controlled.
  • the first motor 1 is disposed on the mounting base 121.
  • the rotating shaft 2 is rotatably mounted on the mounting base 121 .
  • the connecting arm 122 has a flat strip structure. Compared with the plate-shaped connecting arm 122 with a larger area, such an arrangement can not only reduce the cost, but also reduce the weight of the active torque drive control system 100 based on the rotation principle. , thereby reducing the load of the active torque drive control system 100 based on the rotation principle on the object 6 to be controlled, thereby improving the safety of the object 6 to be controlled.
  • each connecting arm 122 There are multiple connecting arms 122 , and the plurality of connecting arms 122 are spaced apart on the mounting base 121 .
  • One end of each connecting arm 122 away from the mounting base 121 is connected to the inner wall of the object 6 to be controlled.
  • the multiple connecting arms 122 can not only improve the connection reliability between the mounting base 121 and the object to be controlled 6 , but also can transmit the torque generated by the rotating component 3 to different parts of the object 6 to be controlled, so that the torque generated by the rotating component 3 can The torsional vibration generated by the object 6 to be controlled can be better offset, thereby improving the stability of the object 6 to be controlled.
  • the number of connecting arms 122 is three.
  • the active torque drive control system 100 based on the rotation principle also includes a first fixing part 13.
  • the first fixing part 13 is detachably disposed on the base 12.
  • the first motor 1 is disposed on the first fixing part 13 facing away from the base 12.
  • the first rotating shaft 2 is rotatably disposed on an end of the first fixing member 13 facing away from the base 12 .
  • the first bearing 8 is disposed on the side of the first fixing member 13 facing away from the base 12 , and the first rotating shaft 2 is connected to the first bearing 8 .
  • the active torque drive control system 100 based on the rotation principle also includes a second fixing part 14.
  • the second fixing part 14 is set on the first fixing part 13.
  • the first motor 1 is set on the second fixing part 14 facing away from the first fixing part 13. one side.
  • the sensor 4 When the object 6 to be controlled undergoes torsional vibration, the sensor 4 first monitors the torsion angle of the object 6 to be controlled in real time, and sends the torsion angle to the controller 5 .
  • the controller 5 receives the twist angle sent by the sensor 4, processes the twist angle through a built-in algorithm, and outputs corresponding control instructions according to the processing results to the first motor 1 and the second motor 32 for rotation.
  • the first motor 1 drives the first motor 32 to rotate.
  • the rotating shaft 2 rotates, so that the first rotating shaft 2 drives the rotating member 31 to generate a rotational motion
  • the second motor 32 drives the fourth rotating shaft 321 to generate a rotating motion, so that the fourth rotating shaft 321 drives the second transmission component 11 to rotate, so that the second transmission assembly 11 rotates.
  • the component 11 drives the turntable 34 to accelerate rotation, thereby increasing its control effect and efficiency, so that the rotating member 31 and the turntable 34 jointly generate a torque in the opposite direction of the torsion of the object 6 to be controlled.
  • the torque generated by the turntable 34 is finally transmitted to the object to be controlled 6 through the third rotating shaft 33, the rotating member 31 and the first rotating shaft 2; the torque generated by the rotating member 31 is transmitted to the object to be controlled through the first rotating shaft 2 in turn. within 6 to jointly offset the torsional vibration generated by the object 6 to be controlled, thereby improving the of stability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

本发明公开了一种基于回转原理的主动力矩驱动控制系统,包括第一电机、第一转轴、旋转组件、传感器以及控制器,第一电机用于设置在待控对象上,第一转轴可转动地设置在所述待控对象上,旋转组件设置在第一转轴上,第一电机和第一转轴传动连接。先通过传感器检测待控对象的扭转角度,控制器对接收到的扭转角度进行处理,并根据处理结果输出相应的控制指令给第一电机,以控制第一电机驱动第一转轴旋转,从而使第一转轴带动旋转组件旋转,使得旋转组件能够产生抵消待控对象扭转振动的力矩。旋转组件产生的力矩又通过第一转轴传递到待控对象上,以抵消待控对象产生的扭转振动,从而提高待控对象的平稳性。

Description

一种基于回转原理的主动力矩驱动控制系统 技术领域
本发明涉及桥梁工程技术领域,特别涉及一种基于回转原理的主动力矩驱动控制系统。
背景技术
在现有技术中,当列车在桥梁上行驶时,一旦列车遇到桥面轨道不平顺的情况,将导致列车发生振动,振动的列车又会反作用在轨道上,长期如此,将导致轨道发生形变。轨道的形变越大,列车对轨道的振动也会随之越大,从而间接加剧列车对桥梁的振动,严重时将导致桥梁发生坍塌。
为了解决上述问题,桥梁的振动控制通常采用阻尼器等被动控制方式进行控制,但是阻尼器只能输出直线的控制力,相当于阻尼器只能对桥梁产生的水平振动和垂直振动进行控制,无法对桥梁产生的扭转振动进行控制。阻尼器还具有以下缺陷:1、阻尼器的抗拉强度有限,在列车和桥梁发生共振时容易发生断裂。2、阻尼器在控制桥梁振动时,其内部的阻尼液在高频往复作用下容易高温乳化,导致其控制性能不稳定,并且由于调谐质量阻尼器的位移和摆角之间的耦合效应,并不能用于带有旋转特性的振动形式,因此在控制桥梁扭转振动时往往失效。3、阻尼器在控制桥梁扭转振动时,其直线控制力的特性容易发生混沌现象,在不同的激励频率下具有不同的控制效果,但是在某种激励频率下,调谐阻尼器对于桥梁的振动控制非但没有控制效果,反而会加剧桥梁的振动,从而无法产生预期的效果。
发明内容
本发明的主要目的在于提供一种基于回转原理的主动力矩驱动控制系统,旨在解决现有技术中的阻尼器无法有效解决桥梁的扭转振动,导致桥梁的稳定性较差的技术问题。
为了解决上述技术问题,本发明提供的技术方案为:
一种基于回转原理的主动力矩驱动控制系统,包括第一电机、第一转轴、旋转组件、传感器以及控制器,所述第一电机用于设置在待控对象上,所述第一转轴可转动地设置在所述待控对象上,所述旋转组件设置在所述第一转轴远离所述待控对象的一端上,所述第一电机和所述第一转轴传动连接,所述控制器分别与所述传感器和所述第一电机连接,所述传感器用于检测所述待控对象的扭转角度,并将所述扭转角度发送给所述控制器,所述控制器用于对接收的所述扭转角度进行处理,并根据处理结果输出相应的控制指令给所述第一电机,以控制所述第一电机驱动所述第一转轴旋转,从而使所述第一转轴带动所述旋转组件旋转。
其中,所述基于回转原理的主动力矩驱动控制系统还包括第一传动组件,所述第一电机和所述第一转轴通过所述第一传动组件传动连接。
其中,所述第一传动组件包括第一齿轮和第二齿轮,所述第一齿轮套设在所述第一转轴上,所述第一电机具有第二转轴,所述第二齿轮套设在所述第二转轴上,所述第一齿轮和所述第二齿轮啮合传动连接。
其中,所述第一电机和所述第二齿轮的数量均为多个,多个所述第一电机分别设置在所述待控对象上,多个所述第二齿轮一一对应设置在多个所述第一电机上,多个所述第二齿轮均与所述第一齿轮啮合传动连接。
其中,所述旋转组件包括旋转件、第二电机、第二转轴以及转盘,所述旋转件设置在所述第一转轴远离所述待控对象的一端上,所述第二电机设置在所述旋转件背对所述第一转轴的一侧,所述第二转轴可旋转地设置在所述旋转件背对所述第一转轴的一侧,所述转盘设置在所述第二转轴远离所述旋转件的一端上,所述第二电机和所述转盘传动连接,所述控制器还用于根据所述处理结果控制所述第二电机驱动所述转盘转动。
其中,所述旋转件包括旋转座以及设置在所述旋转座上的旋转臂,所述旋转座设置在所述第一转轴远离所述待控对象的一端上,所述第二电机设置在所述旋转臂背对所述第一转轴的一侧,所述第二转轴可旋转地设置在所述旋转座背对所述第一转轴的一侧。
其中,所述旋转臂和所述第二电机数量均为多个,多个所述旋转臂间隔设置在所述旋转座上,多个所述第二电机一一对应设置在多个所述旋转臂背对所述第一转轴的一侧,每个所述第二电机均与所述转盘传动连接。
其中,所述基于回转原理的主动力矩驱动控制系统还包括基座,所述基座用于安装在所述待控对象内,所述第一电机设置在所述基座上,所述第一转轴可转动地设置在所述基座上。
其中,所述基座包括安装座以及设置在所述安装座上的连接臂,所述连接臂远离所述安装座的一端与所述待控对象的内壁连接,所述第一电机设置在所述安装座上,所述第一转轴可转动地设置在所述安装座上。
其中,所述连接臂的数量为多个,多个所述连接臂间隔设置在所述安装座上,每个所述连接臂远离所述安装座的一端均与所述待控对象的内壁连接。
与现有技术相比,本发明具有以下有益效果:
本申请的第一转轴设置在待控对象上,先通过传感器检测待控对象的扭转角度,并将扭转角度发送给控制器,再通过控制器对接收的扭转角度进行处理,并根据处理结果输出相应的控制指令给第一电机,以控制第一电机驱动第一转轴旋转,从而使第一转轴带动旋转组件旋转,使得旋转组件能够产生抵消待控对象扭转振动的力矩。旋转组件产生的力矩又通过第一转轴传递到待控对象上,以抵消待控对象产生的扭转振动,从而提高待控对象的平稳性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是根据本发明的一个实施例的基于回转原理的主动力矩驱动控制系统的示意图。
图2是根据本发明的一个实施例的基于回转原理的主动力矩驱动控制系统的局部剖视图。
图3是根据本发明的一个实施例的基于回转原理的主动力矩驱动控制系统的局部示意图。
100、基于回转原理的主动力矩驱动控制系统;1、第一电机;011、第二 转轴;2、第一转轴;3、旋转组件;31、旋转件;311、旋转座;312、旋转臂;32、第二电机;321、第四转轴;33、第三转轴;34、转盘;4、传感器;5、控制器;6、待控对象;7、第一传动组件;71、第一齿轮;72、第二齿轮;8、第一轴承;9、第二轴承;10、连接件;11、第二传动组件;111、第三齿轮;12、基座;121、安装座;122、连接臂;13、第一固定件;14、第二固定件。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中的“和/或”包括三个方案,以A和/或B为例,包括A技术方案、B技术方案,以及A和B同时满足的技术方案;另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
如图1-3所示,本实施例提供了一种基于回转原理的主动力矩驱动控制系统100,该基于回转原理的主动力矩驱动控制系统100包括第一电机1、第一转轴2、旋转组件3、传感器4以及控制器5,第一电机1用于设置在待控对象6上,第一转轴2可转动地设置在待控对象6上,旋转组件3设置在第一转轴2远离待控对象6的一端上,第一电机1和第一转轴2传动连接,控制器5分别与传感器4和第一电机1连接,传感器4用于检测待控对象6的扭转角度,并将扭转角度发 送给控制器5,控制器5用于对接收的扭转角度进行处理,并根据处理结果输出相应的控制指令给第一电机1,以控制第一电机1驱动第一转轴2旋转,从而使第一转轴2带动旋转组件3旋转。
本申请的第一转轴2设置在待控对象6上,先通过传感器4检测待控对象6的扭转角度,并将扭转角度发送给控制器5,再通过控制器5对接收的扭转角度进行处理,并根据处理结果输出相应的控制指令给第一电机1,以控制第一电机1驱动第一转轴2旋转,从而使第一转轴2带动旋转组件3旋转,使得旋转组件3能够产生抵消待控对象6扭转振动的力矩。旋转组件3产生的力矩又通过第一转轴2传递到待控对象6上,以抵消待控对象6产生的扭转振动,从而提高待控对象6的平稳性。
在本实施例中,回转原理指的是旋转组件3旋转时能够产生与待控对象6扭转方向相反的力矩,以抵消待控对象6扭转振动的力矩,且本申请在传感器4和控制器5的配合下,能够使得旋转组件3产生的力矩实时调整,从而实时抵消待控对象6扭转振动的力矩。
在本实施例中,待控对象6为桥梁。
在本实施例中,第一电机1为力矩电机,力矩电机能够产生较大的扭矩,从而使旋转组件3能够快速产生抵消待控对象6扭转振动的力矩。
在本实施例中,传感器4设置在待控对象6上,控制器5设置在第一电机1上。
基于回转原理的主动力矩驱动控制系统100还包括第一传动组件7,第一电机1和第一转轴2通过第一传动组件7传动连接。当第一传动组件7发生损坏时,只需更换损坏的第一传动组件7即可,无需更换第一电机1和/或第一转轴2,从而降低基于回转原理的主动力矩驱动控制系统100的更换成本。
第一传动组件7包括第一齿轮71和第二齿轮72,第一齿轮71套设在第一转轴2上,第一电机1具有第二转轴011,第二齿轮72套设在第二转轴011上,第一齿轮71和第二齿轮72啮合传动连接。第一电机1驱动第二转轴011旋转,第二转轴011带动第二齿轮72旋转,第二齿轮72带动第一齿轮71旋转,第一齿轮71带动第一转轴2旋转,以使第一转轴2带动旋转组件3旋转。将第一传动组件7设置为啮合传动的第一齿轮71和第二齿轮72,使得第一传动组件7的结构简单,成本低;而且第一齿轮71和第二齿轮72的传动效率 高,能够进一步使第一电机1加速第一转轴2旋转。
第一电机1和第二齿轮72的数量均为多个,多个第一电机1分别设置在待控对象6上,多个第二齿轮72一一对应设置在多个第一电机1上,多个第二齿轮72均与第一齿轮71啮合传动连接。通过多个第一电机1和多个第二齿轮72的配合,能够加速第一转轴2旋转,从而使第一转轴2能够带动旋转组件3快速产生抵消待控对象6扭转振动的力矩。
多个第一电机1均布在第一转轴2的四周。
第一电机1和第二齿轮72的数量均为四个。
基于回转原理的主动力矩驱动控制系统100还包括第一轴承8,第一轴承8设置在待控对象6上,第一转轴2和第一轴承8连接,以使第一转轴2可转动地设置在待控对象6上。
旋转组件3包括旋转件31、第二电机32、第三转轴33以及转盘34,旋转件31设置在第一转轴2远离待控对象6的一端上,第二电机32设置在旋转件31背对第一转轴2的一侧,第三转轴33可旋转地设置在旋转件31背对第一转轴2的一侧,转盘34设置在第三转轴33远离旋转件31的一端上,第二电机32和转盘34传动连接,控制器5还用于根据处理结果控制第二电机32驱动转盘34转动。通过控制器5控制第二电机32驱动转盘34旋转,可加速转盘34旋转,使得转盘34能够快速产生抵消待控对象扭转振动的力矩,从而提高基于回转原理的主动力矩驱动控制系统100的控制效果和控制效率。
旋转件31包括旋转座311以及设置在旋转座311上的旋转臂312,旋转座311设置在第一转轴2远离待控对象6的一端上,第二电机32设置在旋转臂312背对第一转轴2的一侧,第三转轴33可旋转地设置在旋转座311背对第一转轴2的一侧。
旋转臂312和第二电机32数量均为多个,多个旋转臂312间隔设置在旋转座311上,多个第二电机32一一对应设置在多个旋转臂312背对第一转轴2的一侧,每个第二电机32均与转盘34传动连接。通过多个第二电机32能够驱动各自对应地第三转轴33旋转,从而使第三转轴33能够带动转盘34快速产生抵消待控对象6扭转振动的力矩,从而进一步提高基于回转原理的主动力矩驱动控制系统100产生力矩的实时性。
旋转臂312和第二电机32的数量均为四个。
基于回转原理的主动力矩驱动控制系统100还包括第二轴承9,第二轴承9设置在旋转座311背对第一转轴2的一侧,第三转轴33和第二轴承9连接,以使第三转轴33可转动地设置在旋转座311背对第一转轴2的一侧。
基于回转原理的主动力矩驱动控制系统100还包括连接件10,旋转件31和第一转轴2远离待控对象6的一端通过连接件10连接,通过连接件10能够提高旋转件31和第一转轴2远离待控对象6的一端连接的可靠性。
在本实施例中,第二电机32为高速电机,高速电机具有较快的转速。可以了解,高速电机是指转速超过10000r/min的电机。
转盘34为圆形状、方形状以及椭圆形状中的任一种。
基于回转原理的主动力矩驱动控制系统100还包括第二传动组件11,第二电机32和转盘34之间通过第二传动组件11传动连接。
传动组件包括第三齿轮111,第二电机32具有第四转轴321,第三齿轮111套设在第四转轴321上,转盘34的外壁上设有一圈轮齿,第三齿轮111和转盘34啮合传动连接。
第三齿轮111的数量为多个,多个第三齿轮111一一对应设置在多个第四转轴321上,每个第三齿轮111均与转盘34啮合传动连接。
第三齿轮111的数量为四个。
基于回转原理的主动力矩驱动控制系统100还包括基座12,基座12用于安装在待控对象6内,第一电机1设置在基座12上,第一转轴2可转动地设置在基座12上。将基座12安装在待控对象6内,以使旋转组件3产生的力矩能够依次通过第一转轴2、基座12传递到待控对象6内,使得转盘34产生的力矩能够更好地抵消待控对象6产生的扭转振动,从而提高待控对象6的平稳性。
基座12包括安装座121以及设置在安装座121上的连接臂122,连接臂122远离安装座121的一端与待控对象6的内壁连接,第一电机1设置在安装座121上,第一转轴2可转动地设置在安装座121上。
在本实施例中,连接臂122呈扁平条形结构,相对于面积较大的板状连接臂122,如此设置,不仅能够降低成本,而且能够降低基于回转原理的主动力矩驱动控制系统100的重量,从而降低基于回转原理的主动力矩驱动控制系统100对待控对象6的负荷,进而提高待控对象6的安全性。
连接臂122的数量为多个,多个连接臂122间隔设置在安装座121上,每个连接臂122远离安装座121的一端均与待控对象6的内壁连接。通过多个连接臂122不仅能够提高安装座121和待控对象6的连接可靠性,而且能够将旋转组件3产生的力矩分别传递到待控对象6的不同部位上,使得旋转组件3产生的力矩能够更好地抵消待控对象6产生的扭转振动,从而提高待控对象6的平稳性。
连接臂122的数量为三个。
基于回转原理的主动力矩驱动控制系统100还包括第一固定件13,第一固定件13可拆卸地设置在基座12上,第一电机1设置在第一固定件13背对基座12的一端上,第一转轴2可转动地设置在第一固定件13背对基座12的一端上。通过装卸第一固定件13,即可将第一电机1和第一转轴2安装到基座12上或者从基座12上拆卸下来,从而提高基于回转原理的主动力矩驱动控制系统100的装卸效率。
第一轴承8设置在第一固定件13背对基座12的一侧,第一转轴2和第一轴承8连接。
基于回转原理的主动力矩驱动控制系统100还包括第二固定件14,第二固定件14设置第一固定件13上,第一电机1设置在第二固定件14背对第一固定件13的一侧。
工作原理:
当待控对象6发生扭转振动时,先通过传感器4实时监测待控对象6的扭转角度,并将该扭转角度发送给控制器5。控制器5接收传感器4发送的扭转角度,并通过内置的算法对扭转角度进行处理,并根据处理结果输出相应的控制指令给第一电机1和第二电机32旋转,第一电机1驱动第一转轴2进行旋转,以使第一转轴2带动旋转件31产生回转运动,第二电机32驱动第四转轴321产生回转运动,以使第四转轴321带动第二传动组件11回转,使得第二传动组件11带动转盘34加速回转,增加其控制效果和控制效率,从而使旋转件31和转盘34共同产生与待控对象6扭转方向相反的力矩。其中,转盘34产生的力矩又依次通过第三转轴33、旋转件31以及第一转轴2最终传递到待控对象6内;旋转件31产生的力矩又依次通过第一转轴2传递到待控对象6内,以共同抵消待控对象6产生的扭转振动,从而提高待控对象6 的平稳性。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种基于回转原理的主动力矩驱动控制系统,其特征在于,包括第一电机、第一转轴、旋转组件、传感器以及控制器,所述第一电机用于设置在待控对象上,所述第一转轴可转动地设置在所述待控对象上,所述旋转组件设置在所述第一转轴远离所述待控对象的一端上,所述第一电机和所述第一转轴传动连接,所述控制器分别与所述传感器和所述第一电机连接,所述传感器用于检测所述待控对象的扭转角度,并将所述扭转角度发送给所述控制器,所述控制器用于对接收的所述扭转角度进行处理,并根据处理结果输出相应的控制指令给所述第一电机,以控制所述第一电机驱动所述第一转轴旋转,从而使所述第一转轴带动所述旋转组件旋转。
  2. 根据权利要求1所述的基于回转原理的主动力矩驱动控制系统,其特征在于,所述基于回转原理的主动力矩驱动控制系统还包括第一传动组件,所述第一电机和所述第一转轴通过所述第一传动组件传动连接。
  3. 根据权利要求2所述的基于回转原理的主动力矩驱动控制系统,其特征在于,所述第一传动组件包括第一齿轮和第二齿轮,所述第一齿轮套设在所述第一转轴上,所述第一电机具有第二转轴,所述第二齿轮套设在所述第二转轴上,所述第一齿轮和所述第二齿轮啮合传动连接。
  4. 根据权利要求3所述的基于回转原理的主动力矩驱动控制系统,其特征在于,所述第一电机和所述第二齿轮的数量均为多个,多个所述第一电机分别设置在所述待控对象上,多个所述第二齿轮一一对应设置在多个所述第一电机上,多个所述第二齿轮均与所述第一齿轮啮合传动连接。
  5. 根据权利要求1所述的基于回转原理的主动力矩驱动控制系统,其特征在于,所述旋转组件包括旋转件、第二电机、第二转轴以及转盘,所述旋转件设置在所述第一转轴远离所述待控对象的一端上,所述第二电机设置在所述旋转件背对所述第一转轴的一侧,所述第二转轴可旋转地设置在所述旋转件背对所述第一转轴的一侧,所述转盘设置在所述第二转轴远离所述旋转件的一端上,所述第二电机和所述转盘传动连接,所述控制器还用于根据所述处理结果控制所述第二电机驱动所述转盘转动。
  6. 根据权利要求5所述的基于回转原理的主动力矩驱动控制系统,其特 征在于,所述旋转件包括旋转座以及设置在所述旋转座上的旋转臂,所述旋转座设置在所述第一转轴远离所述待控对象的一端上,所述第二电机设置在所述旋转臂背对所述第一转轴的一侧,所述第二转轴可旋转地设置在所述旋转座背对所述第一转轴的一侧。
  7. 根据权利要求6所述的基于回转原理的主动力矩驱动控制系统,其特征在于,所述旋转臂和所述第二电机数量均为多个,多个所述旋转臂间隔设置在所述旋转座上,多个所述第二电机一一对应设置在多个所述旋转臂背对所述第一转轴的一侧,每个所述第二电机均与所述转盘传动连接。
  8. 根据权利要求1所述的基于回转原理的主动力矩驱动控制系统,其特征在于,所述基于回转原理的主动力矩驱动控制系统还包括基座,所述基座用于安装在所述待控对象内,所述第一电机设置在所述基座上,所述第一转轴可转动地设置在所述基座上。
  9. 根据权利要求8所述的基于回转原理的主动力矩驱动控制系统,其特征在于,所述基座包括安装座以及设置在所述安装座上的连接臂,所述连接臂远离所述安装座的一端与所述待控对象的内壁连接,所述第一电机设置在所述安装座上,所述第一转轴可转动地设置在所述安装座上。
  10. 根据权利要求9所述的基于回转原理的主动力矩驱动控制系统,其特征在于,所述连接臂的数量为多个,多个所述连接臂间隔设置在所述安装座上,每个所述连接臂远离所述安装座的一端均与所述待控对象的内壁连接。
PCT/CN2023/083785 2022-08-15 2023-03-24 一种基于回转原理的主动力矩驱动控制系统 WO2024036971A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210973820.3A CN115421411A (zh) 2022-08-15 2022-08-15 一种基于回转原理的主动力矩驱动控制系统
CN202210973820.3 2022-08-15

Publications (1)

Publication Number Publication Date
WO2024036971A1 true WO2024036971A1 (zh) 2024-02-22

Family

ID=84198323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083785 WO2024036971A1 (zh) 2022-08-15 2023-03-24 一种基于回转原理的主动力矩驱动控制系统

Country Status (2)

Country Link
CN (1) CN115421411A (zh)
WO (1) WO2024036971A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115366927B (zh) * 2022-08-15 2024-06-11 沈阳工业大学 高空吊物不利摆动行为的控制系统
CN115421411A (zh) * 2022-08-15 2022-12-02 沈阳工业大学 一种基于回转原理的主动力矩驱动控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214844A (ja) * 1992-01-31 1993-08-24 Taisei Corp 構造物の振動制御装置
JP2001099225A (ja) * 1999-09-30 2001-04-10 Ishikawajima Harima Heavy Ind Co Ltd 制振装置
CN109610302A (zh) * 2019-02-01 2019-04-12 青岛理工大学 复合式桥梁扭转振动控制系统
CN110318751A (zh) * 2019-07-26 2019-10-11 智导灵(苏州)智能科技有限公司 一种多电机集成驱动式机电一体化采煤机截割头驱动总成
CN110778641A (zh) * 2019-10-31 2020-02-11 青岛理工大学 高速列车动态行为主动控制系统
CN115387201A (zh) * 2022-08-15 2022-11-25 沈阳工业大学 一种工程结构或机械系统减摇止摆的主动控制系统
CN115421411A (zh) * 2022-08-15 2022-12-02 沈阳工业大学 一种基于回转原理的主动力矩驱动控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214844A (ja) * 1992-01-31 1993-08-24 Taisei Corp 構造物の振動制御装置
JP2001099225A (ja) * 1999-09-30 2001-04-10 Ishikawajima Harima Heavy Ind Co Ltd 制振装置
CN109610302A (zh) * 2019-02-01 2019-04-12 青岛理工大学 复合式桥梁扭转振动控制系统
CN110318751A (zh) * 2019-07-26 2019-10-11 智导灵(苏州)智能科技有限公司 一种多电机集成驱动式机电一体化采煤机截割头驱动总成
CN110778641A (zh) * 2019-10-31 2020-02-11 青岛理工大学 高速列车动态行为主动控制系统
CN115387201A (zh) * 2022-08-15 2022-11-25 沈阳工业大学 一种工程结构或机械系统减摇止摆的主动控制系统
CN115421411A (zh) * 2022-08-15 2022-12-02 沈阳工业大学 一种基于回转原理的主动力矩驱动控制系统

Also Published As

Publication number Publication date
CN115421411A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024036971A1 (zh) 一种基于回转原理的主动力矩驱动控制系统
WO2024036967A1 (zh) 一种工程结构或机械系统减摇止摆的主动控制系统
WO2024036965A1 (zh) 一种回转力矩主被动复合控制系统
WO2024036968A1 (zh) 抑制桥梁多模态耦合振动的主被动混合控制系统
CN109630612B (zh) 自供能式主被动复合转动惯量驱动控制系统
WO1986005470A1 (en) Joint driving apparatus for industrial robots
WO2020155642A1 (zh) 主动复合变阻尼转动控制装置
JP2000509780A (ja) 偏揺れ装置及び偏揺れ装置を有する風力プラント
WO2024109329A1 (zh) 飞行器及其驱动机构
WO2020155644A1 (zh) 自适应机械驱动调节转动惯量式控制系统
US20190284800A1 (en) Tuned dynamic damper and method for reducing the amplitude of oscillations
CN111406018B (zh) 可变旋转式摆动型质量块振动抑制系统
EP2280868B1 (en) Helicopter vibration control system and circular force generation system for canceling vibrations
JPH11159191A (ja) 制振装置
CN209509215U (zh) 自适应机械驱动调节转动惯量式控制系统
CN105042007B (zh) 一种tbm主驱动系统
WO2019086482A1 (en) Device for damping vibrations in a structure
JPH0513794B2 (zh)
JP5192928B2 (ja) 磁気軸受及びこのシステムを用いた回転機械
WO2020155639A1 (zh) 自走式全方向转动惯量驱动控制系统
WO2016153329A1 (en) Video cameras linear oscillation stabilizer
WO2020155640A1 (zh) 电磁变阻尼旋转控制系统
CN108036024B (zh) 一种万吨级船舶用的防振型动力输出系统
JP2534231B2 (ja) 産業ロボツトの関節駆動装置
JPH0513795B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853884

Country of ref document: EP

Kind code of ref document: A1