WO2024036942A1 - 真空发生器及具有其的负压吸尘装置 - Google Patents

真空发生器及具有其的负压吸尘装置 Download PDF

Info

Publication number
WO2024036942A1
WO2024036942A1 PCT/CN2023/081650 CN2023081650W WO2024036942A1 WO 2024036942 A1 WO2024036942 A1 WO 2024036942A1 CN 2023081650 W CN2023081650 W CN 2023081650W WO 2024036942 A1 WO2024036942 A1 WO 2024036942A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative pressure
generating chamber
pressure generating
section
flow channel
Prior art date
Application number
PCT/CN2023/081650
Other languages
English (en)
French (fr)
Inventor
李洪涛
宋雷
陈胜东
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP23740919.8A priority Critical patent/EP4350152A1/en
Priority to US18/219,151 priority patent/US20240057833A1/en
Publication of WO2024036942A1 publication Critical patent/WO2024036942A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F3/00Pumps using negative pressure acting directly on the liquid to be pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/20Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating

Definitions

  • Embodiments of the present application relate to the technical field of negative pressure dust collection devices, and specifically relate to a vacuum generator and a negative pressure dust collection device having the same.
  • embodiments of the present application provide a vacuum generator and a negative pressure dust suction device having the same.
  • the vacuum generator provided by the present application can generate vacuum through the cooperation of the negative pressure generating chamber and the negative pressure suction flow channel.
  • the device provides negative pressure suction.
  • the first aspect of this application provides a vacuum generator.
  • the vacuum generator includes: a generator body, which is provided with a sequentially connected air inlet, a contraction tube section, an expansion tube section, a negative pressure generating chamber and an air outlet. In the ventilation direction from the air inlet to the air outlet, the diameter of the shrinking pipe section gradually decreases, and the diameter of the expanding pipe section gradually increases.
  • the negative pressure generating chamber is configured such that when the gas ejected from the expanding pipe section flows through the negative pressure generating chamber, a The jet in the cavity has a negative pressure; among them, the generator body is also equipped with a negative pressure suction flow channel.
  • the pressure suction flow channel includes a suction port section and a reduced diameter flow channel section.
  • One end of the reduced diameter flow channel section is connected to the negative pressure generating chamber, and the other end is connected to one end of the suction port section.
  • the other end of the suction port section runs through the generator body. side wall, and in the air inlet direction of the reduced-diameter flow channel section, the cross-sectional area of the flow channel of the reduced-diameter flow channel section gradually decreases.
  • the vacuum generator provides negative pressure suction force for the vacuum generator through the cooperation of the negative pressure generating chamber and the negative pressure suction flow channel. Specifically, when the gas ejected from the expanded pipe section flows through the negative pressure generating cavity, a jet negative pressure in the cavity is generated, and the jet negative pressure in the cavity is used to provide negative pressure suction for the vacuum generator. In the same way, after the fluid passes through the reduced-diameter flow channel section of the negative pressure suction flow channel, it can also generate intra-cavity jet negative pressure in the negative pressure generating cavity. The negative pressure generated when suctioning through the negative pressure suction flow channel further reaches The vacuum generator provides negative pressure suction, thereby improving the suction and dust removal capabilities.
  • the reduced-diameter flow channel section is an annular cavity structure arranged around the negative pressure generating cavity, and an annular cavity structure is provided on an inner surface close to the negative pressure generating cavity and arranged around the negative pressure generating cavity.
  • a first communication port is connected to the negative pressure generating chamber, and a second communication port is opened on the outer surface of the annular cavity structure away from the negative pressure generating chamber and connected to the suction port section. Therefore, the annular cavity structure can communicate with the negative pressure generating chamber from the peripheral side of the negative pressure generating chamber through the first communication port, so that gas can be sucked into the negative pressure generating chamber.
  • the flow channel cross-sectional area of the negative pressure generating chamber gradually decreases.
  • the cavity wall of the negative pressure generating chamber has a trumpet-shaped curved surface wall
  • the trumpet-shaped curved surface wall is a curved surface structure surrounded by the movement trajectory of the arc-shaped busbar when it moves around the central axis.
  • the curved surface structure has less resistance to the fluid, which can improve the circulation efficiency of the fluid at the curved surface structure.
  • the trumpet-shaped curved wall protrudes into the cavity of the negative pressure generating cavity.
  • the trumpet-shaped curved surface wall protruding into the cavity of the negative pressure generating chamber can guide fluid, so that the fluid can flow to the negative pressure generating chamber under the guidance and drainage effect of the trumpet-shaped curved surface wall.
  • the trumpet-shaped curved wall provides a Coanda effect for the fluid that flows through the reduced-diameter flow channel section and flows into the negative pressure generating chamber.
  • the Coanda effect guides the fluid to exit the negative pressure generating chamber.
  • the gas flows in the direction of the flow, thereby improving the circulation efficiency of the fluid between the negative pressure suction flow channel and the negative pressure generating cavity, and improving the negative pressure effect of the negative pressure generating cavity.
  • the reduced-diameter flow channel section is an annular cavity structure arranged around the negative pressure generating chamber; wherein, the annular cavity structure has an inner surface close to the negative pressure generating chamber with an annular cavity arranged around the negative pressure generating chamber.
  • a second communication port connected to the suction port section is provided on the outer surface of the annular cavity structure away from the negative pressure generating chamber mouth.
  • the first communication port is connected to an end of the negative pressure generating chamber close to the expanded pipe section, so that the reduced diameter flow channel section and the end of the negative pressure generating cavity close to the expanded pipe section cooperate to form a flow channel cross-sectional area that first decreases and then increases. channel structure.
  • the fluid can also generate jets after passing through the channel structure that first decreases and then increases, thereby improving the flow efficiency of the fluid between the reduced diameter flow channel section and the negative pressure generating chamber.
  • the arc radius of the arc-shaped busbar is R
  • the inner wall of the first communication port is connected to the inner wall of the negative pressure generating chamber in a smooth transition.
  • the flow channel cross-sectional area of the suction port section gradually decreases.
  • the fluid is gradually compressed through the suction port section, and finally diffuses in the negative pressure generation chamber, causing the fluid to form a higher flow rate during the process of compression and diffusion, thereby increasing the flow of fluid into the suction port section and the negative pressure generation flow velocity behind the cavity.
  • the generator body is an assembly composed of multiple detachable units.
  • each unit can be processed individually, thus reducing The manufacturing process of the vacuum generator is difficult, so that the complex flow channels and structures in the vacuum generator can be completed through simple mechanical processing.
  • the plurality of monomers includes a first monomer, a second monomer, and a third monomer that are detachably connected in sequence; wherein, the air inlet and the shrinking tube section are opened on the first unit, and the expansion tube section is opened on the first unit.
  • the negative pressure generating cavity and the air outlet are opened on the third unit.
  • the second unit and the third unit are spliced and matched to form a negative pressure suction flow channel.
  • the vacuum generator assembled from multiple monomers can individually process shrinking tube sections, expanding tube sections, negative pressure generating chambers, and negative pressure suction flow channels, thereby reducing shrinkage tube sections, expanding tube sections, negative pressure generating chambers, and negative pressure The manufacturing process of the suction runner is difficult.
  • the second aspect of the application provides a negative pressure dust suction device.
  • the negative pressure dust suction device includes: a dust suction pipe; according to the vacuum generator of the first aspect of the application, the negative pressure suction flow channel of the vacuum generator is configured For negative pressure vacuuming, the air inlet of the vacuum generator is configured to communicate with the air outlet of the air pump. Since the negative pressure dust suction device adopts the vacuum generator in the above embodiment, the vacuum generator can provide a larger vacuum suction negative pressure, thereby improving the working efficiency of the negative pressure dust suction device.
  • the negative pressure vacuum device further includes an exhaust pipe that is connected to the air outlet of the vacuum generator; wherein a filter and/or a muffler are connected in series to the exhaust pipe.
  • a filter and/or a muffler are connected in series to the exhaust pipe.
  • Figure 1 is a schematic structural diagram of a vacuum generator according to some embodiments of the present application.
  • Figure 2 is a schematic structural diagram of the negative pressure generating chamber of the vacuum generator shown in Figure 1;
  • FIG 3 is a schematic structural diagram of the extended tube section of the vacuum generator shown in Figure 1;
  • Figure 4 is a schematic structural diagram of a negative pressure vacuum device according to some embodiments of the present application.
  • Some reference numbers in the specific implementation are as follows: 100 negative pressure vacuum device; 10 vacuum generator, 11 generator body, 101 air inlet, 102 shrink pipe section, 103 expansion pipe section, 104 negative pressure generating chamber, 1041 trumpet-shaped curved wall, 105 air outlet, 106 negative pressure suction flow channel, 1061 suction Mouth section, 1062 reduced diameter flow channel section, 107 annular cavity structure, 1071 first communication port, 1072 second communication port, 110 first unit, 120 second unit, 121 first gap, 130 third unit, 131 The second gap; 20 intake pipe; 30 exhaust pipe; 40 filters, 41 pipe joints; 50 silencer, 51 adapter.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the suction force of the negative pressure dust suction device is small, and it is unable to achieve an effective dust removal effect when dust has strong adhesion.
  • the negative pressure vacuum device is provided with a vacuum generator, and the negative pressure in the vacuum generator provides negative suction for the negative pressure vacuum device, thereby sucking dust into the negative pressure vacuum device.
  • the vacuum generator The negative pressure effect directly affects the vacuuming effect of the negative pressure vacuum device.
  • some embodiments of the present application provide a vacuum generator with a negative pressure generating chamber and a negative pressure suction flow channel to provide negative pressure for the vacuum generator.
  • the pressure and suction power improves the negative pressure suction power of the vacuum generator and negative pressure vacuum device.
  • the vacuum generator disclosed in some embodiments of the present application can be used in a negative pressure vacuum device or other negative pressure equipment. Any negative pressure equipment that requires negative pressure suction falls within the scope of application of the vacuum generator in some embodiments of the present application.
  • Figure 1 is a schematic structural diagram of a vacuum generator according to some embodiments of the present application
  • Figure 2 is a schematic structural diagram of a negative pressure generating chamber of the vacuum generator shown in Figure 1
  • Figure 3 is a schematic structural diagram of the vacuum generator shown in Figure 1 Structural diagram of the extended tube section of the vacuum generator.
  • the first aspect of the present application provides a vacuum generator 10.
  • the vacuum generator 10 includes a generator body 11, which is provided with an air inlet 101, a shrinking tube section 102, and an expanding tube section that are connected in sequence. 103. Negative pressure generating chamber 104 and air outlet 105. In the ventilation direction from the air inlet 101 to the air outlet 105, the diameter of the shrinking pipe section 102 gradually decreases, and the diameter of the expanding pipe section 103 gradually increases.
  • the negative pressure generating cavity 104 is configured such that when the gas ejected from the expanded pipe section 103 flows through the negative pressure generating chamber 104, a jet negative pressure in the cavity is generated; wherein, the generator body 11 is also provided with a negative pressure suction flow channel 106, and the negative pressure suction flow
  • the channel 106 includes a suction port section 1061 and a reduced diameter flow channel section 1062.
  • One end of the reduced diameter flow channel section 1062 is connected to the negative pressure generating chamber 104, and the other end is connected to one end of the suction port section 1061.
  • the other end of the suction port section 1061 is connected to the negative pressure generating chamber 106.
  • the side wall of the device body 11, and in the air inlet direction of the reduced diameter flow channel section 1062, the flow channel cross-sectional area of the reduced diameter flow channel section 1062 gradually decreases.
  • an air flow channel distributed along the length direction of the generator body 11 is formed inside the generator body 11.
  • the air inlet 101 is provided at the air inlet end of the air flow channel
  • the air outlet 105 is provided at the air inlet end of the air flow channel.
  • the contraction tube section 102, the expansion tube section 103 and the negative pressure generating chamber 104 are arranged in the middle of the air flow channel, and the negative pressure suction channel 106 penetrates the side wall of the generator body 11 along the radial direction of the generator body 11 And connects the negative pressure generating chamber 104 with the atmosphere.
  • the vacuum generator 10 provided in some embodiments of the present application provides negative pressure suction for the vacuum generator 10 through the cooperation of the negative pressure generating chamber 104 and the negative pressure suction flow channel 106 .
  • a jet negative pressure in the cavity is generated, and the jet negative pressure in the cavity is used to provide negative pressure for the vacuum generator 10
  • the purpose of suction is the same.
  • the fluid After the fluid passes through the reduced diameter flow channel section 1062 of the negative pressure suction flow channel 106, it can also generate a jet negative pressure in the negative pressure generating cavity 104 and inhale through the negative pressure suction flow channel 106.
  • the negative pressure generated further provides negative pressure suction for the vacuum generator 10, thereby improving the air suction and dust removal capability.
  • the reduced diameter flow channel section 1062 is an annular cavity structure 107 arranged around the negative pressure generating chamber 104 , and the annular cavity structure 107 is close to the negative pressure generating chamber 104
  • a first communication port 1071 is provided on the inner surface surrounding the negative pressure generating chamber 104 and connected to the negative pressure generating chamber 104.
  • the annular cavity structure 107 is provided with a connected suction port on the outer surface away from the negative pressure generating chamber 104.
  • the second communication port 1072 of segment 1061 is provided.
  • the annular cavity structure 107 is disposed on the radial periphery of the negative pressure generating chamber 104.
  • the cross-sectional shape of the annular cavity structure 107 can be configured as an arc structure, a triangular structure, a rectangular structure or an irregular shape. The structures all belong to the protection scope of some embodiments of the present application.
  • the annular cavity structure 107 provided in some embodiments of the present application communicates with the negative pressure generating chamber 104 from the peripheral side of the negative pressure generating chamber 104 through the first communication port 1071, so that gas is sucked into the negative pressure generating chamber 104.
  • the annular cavity structure 107 Further, the fluid flowing through the reduced-diameter flow channel section 1062 can be guided to flow in the direction of the negative pressure generating chamber 104 through the Coanda effect, thereby improving the flow of the fluid between the negative pressure suction flow channel 106 and the negative pressure generating chamber.
  • the circulation efficiency between 104 improves the negative pressure effect of the negative pressure generating chamber 104.
  • the negative pressure generating chamber 104 communicates with one end of the expansion pipe section 103 to the negative pressure generating chamber 104 with one end of the air outlet 105 , and the flow channel of the negative pressure generating chamber 104 The cross-sectional area gradually decreases.
  • the inner wall contour of the flow channel of the negative pressure generating chamber 104 can be set as a slope, an arc surface or a stepped surface along the flow direction of the fluid, so as to achieve the purpose of gradually reducing the cross-sectional area of the flow channel of the negative pressure generating chamber 104 .
  • the flow efficiency of the fluid in the expanded pipe section 103 to the negative pressure generating cavity 104 can be improved.
  • the cavity wall of the negative pressure generating chamber 104 has a trumpet-shaped curved surface wall 1041, and the trumpet-shaped curved surface wall 1041 is the movement trajectory of the arc-shaped busbar when it moves around the central axis. formed surface structure.
  • the trumpet-shaped curved wall 1041 is disposed at the intersection of the negative pressure generating chamber 104 and the expansion pipe section 103 and the negative pressure suction flow channel 106, and the flare of the trumpet-shaped curved wall 1041 is connected to the expansion pipe section 103.
  • the radial outer edge of the curved wall 1041 is connected with the negative pressure suction flow channel 106 .
  • the negative pressure generating cavity 104 and the expanded pipe section 103 are connected in a straight line, there is no need for the negative pressure generating cavity 104 to drain the expanded pipe section 103. It is only necessary to reduce the negative pressure generating cavity 104 and the expanded pipe section through the expansion of the trumpet-shaped curved wall 1041.
  • the flow resistance between 103 is sufficient; since the negative pressure generating chamber 104 and the negative pressure suction flow channel 106 are connected at the corner, the radial outer edge of the trumpet-shaped curved wall 1041 of the negative pressure generating chamber 104 needs to resist the negative pressure.
  • the suction flow channel 106 conducts guiding and drainage, so that the fluid at the negative pressure suction flow channel 106 can smoothly flow to the negative pressure generating chamber 104 under the guidance of the radial outer edge of the trumpet-shaped curved surface wall 1041.
  • the trumpet-shaped curved wall 1041 provided in some embodiments of the present application is disposed at the confluence of the negative pressure generating chamber 104, the expansion tube section 103, and the negative pressure suction flow channel 106, thereby reducing the flow of fluid from the expansion tube section 103 to the negative pressure generating chamber. 104, and reduce the flow resistance of fluid flowing from the negative pressure suction channel 106 to the negative pressure generating chamber 104, thereby improving the overall flow efficiency of the fluid inside the vacuum generator 10.
  • the trumpet-shaped curved wall 1041 protrudes into the negative pressure generating chamber.
  • the embodiment of the present application proposes that the trumpet-shaped curved wall 1041 protrudes into the negative pressure generating chamber, thereby achieving It provides guidance and drainage for the turning of fluid, and reduces the flow resistance between the negative pressure suction flow channel 106 and the negative pressure generating chamber 104 .
  • the trumpet-shaped curved wall 1041 provided in some embodiments of the present application protrudes into the negative pressure generating chamber to guide fluid, so that the fluid can flow from the negative pressure suction flow channel 106 under the guiding and guiding effect of the trumpet-shaped curved wall 1041 to the negative pressure generating chamber.
  • the trumpet-shaped curved wall 1041 provides a Coanda effect for the fluid that flows through the reduced diameter flow channel section 1062 and flows into the negative pressure generating chamber 104, and guides the fluid to flow in the direction of the air outlet of the negative pressure generating chamber 104 through the Coanda effect, so as to This improves the circulation efficiency of fluid between the negative pressure suction flow channel 106 and the negative pressure generating chamber 104, and improves the negative pressure effect of the negative pressure generating chamber 104.
  • the reduced diameter flow channel section 1062 is an annular cavity structure 107 arranged around the negative pressure generating chamber 104; wherein the annular cavity structure 107 is close to the negative pressure generating chamber
  • a first communication port 1071 is provided on the inner surface of the negative pressure generating chamber 104 and is connected to the negative pressure generating chamber 104.
  • the first communication port 1071 is connected to the negative pressure generating chamber 104; the annular cavity structure 107 faces away from the negative pressure generating chamber 104.
  • a second communication port 1072 communicating with the suction port section 1061 is formed on the outer surface of the pressure generating chamber 104 .
  • the reduced-diameter flow channel section 1062 and the trumpet-shaped curved surface wall 1041 are integrally formed into an arc-shaped structure.
  • the trumpet-shaped curved surface wall 1041 protrudes into the negative pressure generating chamber and extends to the negative pressure suction flow channel 106 It protrudes into the cavity of the negative pressure suction flow channel 106 .
  • the integrated arc-shaped structure formed by the reduced-diameter flow channel section 1062 and the trumpet-shaped curved wall 1041 can guide the fluid through the Coanda effect for the fluid flowing through the reduced-diameter flow channel section 1062 .
  • the fluid flows in the direction of the negative pressure generating chamber 104, thereby improving the circulation efficiency of the fluid between the negative pressure suction flow channel 106 and the negative pressure generating chamber 104, and improving the negative pressure effect of the negative pressure generating chamber 104.
  • the fluid flows from the second communication port 1072 to the first communication port 1071 and out of the first communication port. In the process of flowing into the negative pressure generating chamber 104 through the port 1071, it undergoes a process of first compression and then release. Through this process, the flow rate of the fluid is increased.
  • the first communication port 1071 is connected to an end of the negative pressure generating chamber 104 close to the expanded pipe section 103 , so that the reduced diameter flow channel section 1062 and the negative pressure generating cavity 104 are close to the expanded pipe section.
  • One end of 103 cooperates to form a channel structure in which the cross-sectional area of the flow channel first decreases and then increases.
  • a cavity opening is formed at one end of the negative pressure generating cavity 104 close to the expansion pipe section 103, and an annular cavity structure 107 distributed around the periphery of the cavity opening is formed by machining on the radial periphery of the cavity opening, that is, A first communication port 1071 is formed between the annular cavity structure 107 and the negative pressure generating chamber 104 .
  • the annular cavity structure 107 can be set as a complete annular structure distributed around the periphery of the negative pressure generating chamber 104, or can be set as a section of annular structure distributed around the circumference of the negative pressure generating cavity 104, and the section of annular structure is arranged between the first and second The two communication ports 1072 are in corresponding positions, so that the fluid entering through the second communication port 1072 can flow into the negative pressure generating chamber 104 through the section of annular cavity structure 107 .
  • the embodiment of the present application proposes that the fluid can also generate a jet after passing through a channel structure that first decreases and then increases, thereby improving the flow efficiency of the fluid between the reduced diameter flow channel section 1062 and the negative pressure generating cavity 104 .
  • the arc radius of the arc-shaped busbar is R
  • the flow of fluid at the first communication port 1071 will be blocked. If the size of the first communication port 1071 is too large, the first communication port 1071 will not be reached.
  • the fluid at the negative pressure generating cavity 104 forms a jet effect; if the arc radius R of the arc-shaped busbar is too small, the more abrupt arc bulge will also block the flow of fluid at the first communication port 1071. If the arc If the arc radius R of the arc-shaped bus bar is too large, the fluid at the first communication port 1071 will not achieve the effect of forming a Coanda effect at the arc-shaped bus bar.
  • the embodiment of the present application proposes a method for the first communication port 1071 by comprehensively considering the size of the first communication port 1071 and the arc radius R of the arc-shaped bus bar.
  • the ratio of L and R can be determined according to the size of the first communication port 1071, the size of the negative pressure generating chamber 104, and the size of the fluid.
  • the characteristics and fluid temperature can be flexibly set, so I will not give examples one by one here.
  • the embodiment of the present application proposes to improve the diversion and guiding effect of the arc-shaped busbar of the trumpet-shaped curved surface wall 1041 on the fluid without affecting the circulation efficiency of the fluid at the first communication port 1071, making full use of the Coanda effect to improve The suction performance of the negative pressure suction flow channel 106.
  • the inner wall of the first communication port 1071 is connected to the inner wall of the negative pressure generating chamber in a smooth transition.
  • the circulation efficiency of the fluid between the negative pressure suction flow channel 106 and the negative pressure generating chamber can be improved, thereby increasing the The flow velocity of the fluid in the negative pressure suction flow channel 106 and the negative pressure generating cavity increases the negative pressure effect of the negative pressure generating cavity.
  • Some embodiments of the present application can improve the smoothness and flow of fluid between the first communication port 1071 and the negative pressure generating chamber by arranging a smooth transition connection between the inner wall of the first communication port 1071 and the negative pressure generating chamber. efficiency.
  • one end of the suction port section 1061 passes through the side wall of the generator body 11 and the suction port section 1061 is connected to one end of the reduced diameter flow channel section 1062.
  • the suction port section The cross-sectional area of the flow channel of 1061 is gradually reduced.
  • the inner wall contour of the flow channel of the suction port section 1061 can be set as a slope, an arc surface or a stepped surface along the flow direction of the fluid, so as to achieve the purpose of gradually reducing the cross-sectional area of the flow channel of the suction port section 1061 .
  • the embodiment of the present application gradually compresses the fluid through the suction port section 1061, and finally diffuses it in the negative pressure generating chamber 104, so that the fluid forms a higher flow rate during the process of compression and diffusion, thereby improving the suction port section.
  • the generator body 11 is an assembled body composed of multiple detachable and assembled units.
  • multiple monomers are arranged to be spliced together in sequence along the length direction of the generator body 11.
  • the multiple monomers can be arranged as hollow columnar structures, and multiple channels or cavities are formed inside the multiple monomers. , after multiple monomers are spliced together in sequence along the length direction of the generator body 11, multiple channels or cavities inside the multiple monomers are connected in sequence, and then the multiple monomers are connected together through fasteners.
  • each unit can be processed separately, thereby reducing the difficulty of the manufacturing process of the vacuum generator 10 and enabling the complex flow channels and structures in the vacuum generator 10 to be processed. Completed by simple machining.
  • the plurality of monomers includes a first monomer 110, a second monomer 120, and a third monomer 130 that are detachably connected in sequence; wherein, the air inlet 101 and the shrink tube section 102 are opened in the first monomer. 110, the expansion pipe section 103 is opened on the second unit 120, the negative pressure generating chamber 104 and the air outlet 105 are opened on the third unit 130, the second unit 120 and the third unit 130 are spliced and matched to form a negative pressure unit. Pressure suction flow channel 106.
  • the shrinking pipe section 102 is configured as a tapered channel extending inward from the air inlet 101 and with a gradually decreasing inner diameter
  • the expansion pipe section 103 is configured as a tapered channel extending inward from the air outlet 105 with a gradually decreasing inner diameter.
  • the shrinking tube section 102 and the expanding tube section 103 are both arranged to gradually reduce the inner diameter from the outside to the inside, and the shrinking tube section 102 and the expanding tube section 103 are connected through a narrow channel. If the first monomer 110 and the second If the monomer 120 is configured as an integrated structure, the depth and accuracy of the boring will increase, which increases the manufacturing difficulty of the shrink pipe section 102 and the expansion pipe section 103.
  • the embodiment of the present application proposes to combine the first monomer 110 with the second
  • the monomer 120 is configured as a split structure, which will reduce the depth and accuracy of the boring hole, thereby reducing the manufacturing difficulty of the shrinking tube section 102 and the expanding tube section 103 .
  • a first gap 121 is formed at the first end of the second unit 120 and the third unit 130
  • a second gap 131 is formed at the second end of the third unit 130 and the second unit 120 .
  • the gap between the second gap 131 and the first gap 121 forms the suction port section 1061 of the negative pressure suction flow channel 106 .
  • the second gap 131 and the first gap 121 are both configured as fan-shaped gaps.
  • the angle ranges of the second gap 131 and the first gap 121 are determined according to the sizes of the expansion pipe section 103 and the negative pressure generating chamber 104, and the specific values are not limited here.
  • the embodiment of the present application proposes a vacuum generator 10 assembled from multiple monomers.
  • the shrinkable tube section 102, the expanded tube section 103, the negative pressure generating chamber 104 and the negative pressure suction flow channel 106 can be processed separately to reduce shrinkage.
  • the manufacturing process of the pipe section 102, the expanded pipe section 103, the negative pressure generating chamber 104 and the negative pressure suction flow channel 106 is difficult.
  • the inner walls of the shrinking tube section 102 , the expanding tube section 103 , the negative pressure generating chamber 104 and the negative pressure suction channel 106 are all provided with polished surfaces, which can improve the smoothness of fluid flow in the vacuum generator 10 , thus Increase the negative pressure suction power of the vacuum generator 10.
  • the air inlet 101, the shrinking pipe section 102, the expanding pipe section 103, the negative pressure generating chamber 104 and the air outlet 105 form a Laval nozzle structure.
  • the first half of the Laval nozzle shrinks from large to small to a narrow throat in the middle.
  • the throat then expands from small to large and expands outward to the outlet of the rear half.
  • the fluid flows into the front half of the Laval nozzle under high pressure. After passing through the narrow throat, it accelerates and escapes from the rear half.
  • This structure can increase the speed of the fluid. Due to the change of the spray cross-sectional area, the fluid changes from subsonic speed to sonic speed until it accelerates to supersonic speed.
  • the fluid flowing to the vacuum generator 10 through the air inlet 101 can first be compressed through the shrinking tube section 102 of the Laval nozzle structure, and then expanded through the expansion tube section 103 of the Laval nozzle structure, when the gas velocity reaches the maximum At the position, a break is formed in the passage between the shrinking pipe section 102 and the expanding pipe section 103 and is sprayed to the expanding pipe section 103.
  • the fluid sprayed to the expanding pipe section 103 drives the fluid in the negative pressure generating chamber 104 to flow out quickly from the air outlet 105, causing the negative pressure to flow out quickly.
  • the pressure generating chamber 104 forms a negative pressure.
  • the second aspect of the application provides a negative pressure vacuum device 100.
  • the negative pressure vacuum device 100 includes a dust suction pipe and a vacuum generator 10 according to the first aspect of the application.
  • the vacuum generator 10 The negative pressure suction flow channel 106 is configured for negative pressure dust suction, and the air inlet 101 of the vacuum generator 10 is configured to communicate with the air outlet 105 of the air pump.
  • the air inlet 101 is also provided with an air inlet pipe 20, and the air inlet pipe 20 is also provided with a control
  • the valve controls the opening and closing of the air inlet pipe 20 and the suction force through the control valve, thereby improving the adaptability of the negative pressure vacuum device 100 to various environments.
  • the negative pressure vacuum device 100 provided in some embodiments of the present application adopts the vacuum generator 10 of some embodiments of the present application, and can provide a larger negative vacuum pressure through the vacuum generator 10, thereby improving the negative pressure suction.
  • the working efficiency of the dust device 100 is not limited to the above.
  • the negative pressure vacuum device 100 further includes an exhaust pipe 30 that is connected to the air outlet 105 of the vacuum generator 10; wherein a filter 40 and/or a muffler 50 are connected in series to the exhaust pipe 30.
  • the filter 40 can be configured as a mesh filter 40 or a honeycomb filter 40 , and the filter 40 is detachably installed to the exhaust pipe 30 through a pipe joint 41 , and the muffler 50 is detachable through an adapter 51 Installed to the exhaust pipe 30 and located at the outlet of the end of the exhaust pipe 30, it is used to eliminate noise at the outlet of the exhaust pipe 30.
  • the embodiment of the present application absorbs dust and other impurities in the exhaust pipe 30 through the filter 40 , thereby reducing the phenomenon that the dust and other impurities in the exhaust pipe 30 flow out of the negative pressure vacuum device 100 to pollute the air, and absorbs them through the muffler 50 The noise at the outlet of the exhaust pipe 30 is reduced, thereby reducing the noise of the negative pressure vacuum device 100.
  • the fluid flowing to the vacuum generator 10 through the air inlet 101 can first pass through the shrinking tube section 102 of the Laval nozzle structure for compression, and then pass through the expansion tube section 103 of the Laval nozzle structure. Expansion, when the gas velocity reaches the maximum position, a break is formed in the passage between the shrinking tube section 102 and the expanding tube section 103 and is injected into the negative pressure generating chamber 104. The fluid injected into the negative pressure generating chamber 104 drives the inside of the negative pressure generating chamber 104.
  • the fluid flows out quickly from the air outlet 105; the external air enters the negative pressure generating chamber 104 of the vacuum generator 10 from the negative pressure suction flow channel 106 of the vacuum generator 10, and the fluid in the negative pressure suction flow channel 106 drives the negative pressure to generate
  • the fluid in the cavity 104 is discharged from the air outlet 105 .
  • the negative pressure vacuum device 100 is based on the working principle of the Laval nozzle and forms a negative pressure at the air inlet 101.
  • pressure the maximum jet velocity of the air outlet 105 can reach 650m/s
  • the maximum flow velocity of the negative pressure suction flow channel 106 can reach 130m/s
  • the negative pressure at the air inlet 101 can reach 0.8MPa, at the air inlet 101
  • the wind speed at the location can reach 130m/s, which is better than the existing vacuum equipment (the negative pressure wind speed of the existing vacuum equipment is ⁇ 25m/s).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

一种真空发生器(10),包括:发生器本体(11),开设有顺次连通的进气口(101)、收缩管段(102)、扩展管段(103)、负压发生腔(104)及出气口(105),在由进气口(101)到出气口(105)的通气方向上,收缩管段(102)的管径逐渐缩小,扩展管段(103)的管径逐渐增大,负压发生腔(104)被构造成扩展管段(103)喷出的气体流经负压发生腔(104)时,产生腔内射流负压;其中,发生器本体(11)上还开设有负压吸气流道(106),负压吸气流道(106)包括吸气口段(1061)和缩径流道段(1062),缩径流道段(1062)的一端连通负压发生腔(104),另一端连通吸气口段(1061)的一端,吸气口段(1061)的另一端贯通发生器本体(11)的侧壁,且在缩径流道段(1062)的进气方向上,缩径流道段(1062)的流道截面面积逐渐缩小。真空发生器(10)能够通过负压发生腔(104)与负压吸气流道(106)的配合为真空发生器(10)提供负压吸力。

Description

真空发生器及具有其的负压吸尘装置
相关申请的交叉引用
本申请要求享有2022年8月17日提交的名称为“真空发生器及具有其的负压吸尘装置”的中国专利申请202210989186.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请实施例涉及负压吸尘装置技术领域,具体涉及一种真空发生器及具有其的负压吸尘装置。
背景技术
现有技术中,负压吸尘设备的吸力小,对于粉尘粘附力强的情况,无法达到有效的除尘效果。
发明内容
鉴于上述问题,本申请实施例提供了一种真空发生器及具有其的负压吸尘装置,本申请提供的真空发生器能够通过负压发生腔与负压吸气流道的配合为真空发生器提供负压吸力。
本申请的第一方面提供了一种真空发生器,真空发生器包括:发生器本体,其开设有顺次连通的进气口、收缩管段、扩展管段、负压发生腔及出气口,在由进气口到出气口的通气方向上,收缩管段的管径逐渐缩小,扩展管段的管径逐渐增大,负压发生腔被构造成扩展管段喷出的气体流经负压发生腔时,产生腔内射流负压;其中,发生器本体上还开设有负压吸气流道,负 压吸气流道包括吸气口段和缩径流道段,缩径流道段的一端连通负压发生腔,另一端连通吸气口段的一端,吸气口段的另一端贯通发生器本体的侧壁,且在缩径流道段的进气方向上,缩径流道段的流道截面面积逐渐缩小。
由此,真空发生器通过负压发生腔与负压吸气流道的配合为真空发生器提供负压吸力。具体地,通过负压发生腔被构造成扩展管段喷出的气体流经负压发生腔时,产生腔内射流负压,通过腔内射流负压达到为真空发生器提供负压吸力的目的,同理,流体在经过负压吸气流道的缩径流道段后,同样能够在负压发生腔产生腔内射流负压,通过负压吸气流道吸气时产生的负压进一步达到为真空发生器提供负压吸力,进而提高吸气除尘能力。
在一些实施例中,缩径流道段为环绕布置于负压发生腔周侧的环形腔体结构,环形腔体结构靠近负压发生腔的内侧面上开设有环绕布置于负压发生腔周侧且连通所述负压发生腔的第一连通口,环形腔体结构背离负压发生腔的外侧面上开设有连通吸气口段的第二连通口。由此,环形腔体结构能够通过第一连通口从负压发生腔的周侧连通负压发生腔,使得气体吸入负压发生腔内。
在一些实施例中,由负压发生腔连通扩展管段的一端向负压发生腔连通出气口的一端,负压发生腔的流道截面面积逐渐缩小。通过将负压发生腔连通扩展管段的一端的流道截面面积设置为较大尺寸,可以提高扩展管段内流体流向负压发生腔的流通效率。
在一些实施例中,负压发生腔的腔壁为具有喇叭状曲面壁,喇叭状曲面壁为圆弧形母线绕中心轴线运动时的运动轨迹围成的曲面结构。曲面结构对流体的阻力较小,可以提高流体在曲面结构处的流通效率。
在一些实施例中,喇叭状曲面壁向负压发生腔的腔内凸起。喇叭状曲面壁向负压发生腔的腔内凸起能够为流体引流,使流体能够在喇叭状曲面壁的导向引流作用下流至负压发生腔。喇叭状曲面壁为流经缩径流道段并流入负压发生腔内的流体提供附壁效应,通过附壁效应引导流体向负压发生腔的出 气的方向流动,以此提高流体在负压吸气流道与负压发生腔之间的流通效率,提高负压发生腔的负压效果。
在一些实施例中,缩径流道段为环绕布置于负压发生腔周侧的环形腔体结构;其中,环形腔体结构靠近负压发生腔的内侧面上开设有环绕布置于负压发生腔周侧且连通所述负压发生腔的第一连通口,第一连通口连通负压发生腔;环形腔体结构背离负压发生腔的外侧面上开设有连通吸气口段的第二连通口。流体在由第二连通口流至第一连通口并流出第一连通口而流入到负压发生腔的过程中,经历了先压缩后释放的过程,通过该过程提高了流体的流通速度。
在一些实施例中,第一连通口与负压发生腔靠近扩展管段的一端连通,以使缩径流道段与负压发生腔靠近扩展管段的一端配合形成流道截面面积先减小再增大的通道结构。流体在经过先减小再增大的通道结构后,同样能够产生射流,以此提高流体在缩径流道段与负压发生腔之间的流通效率。
在一些实施例中,圆弧形母线的圆弧半径为R,第一连通口在缩径流道段的中心轴线方向上的宽度尺寸为L,其中,L/R=0.1。由此,在不影响流体在第一连通口处流通效率的基础上,提高了喇叭状曲面壁的圆弧形母线对流体的引流导向效果,充分利用附壁效应,提高负压吸气流道的吸气性能。
在一些实施例中,第一连通口的内壁与负压发生腔的内壁圆滑过渡连接。通过将第一连通口的内壁与负压发生腔的内壁设置为圆滑过渡连接,可以提高流体在第一连通口与负压发生腔之间的流通顺畅性和流通效率。
在一些实施例中,由吸气口段贯通发生器本体的侧壁的一端向吸气口段连通缩径流道段的一端,吸气口段的流道截面面积逐渐缩小。由此,通过吸气口段逐步压缩流体,最终在负压发生腔内扩散,使流体在压缩和扩散的过程中形成较高的流速,以此提高吸气口段内的流体流入负压发生腔后的流速。
在一些实施例中,发生器本体为由多个单体可拆卸拼装组成的拼装体。通过将真空发生器设置为拼接体,可以对各个单体进行单独加工,以此降低 真空发生器的制造工艺难度,使真空发生器内复杂的流道和结构能够通过简单的机械加工完成。
在一些实施例中,多个单体包括依次可拆卸连接的第一单体、第二单体以及第三单体;其中,进气口和收缩管段开设于第一单体上,扩展管段开设于第二单体上,负压发生腔和出气口开设于第三单体上,第二单体以及第三单体之间拼接配合形成负压吸气流道。通过多个单体拼装而成的真空发生器,可以单独加工收缩管段、扩展管段、负压发生腔以及负压吸气流道,以此降低收缩管段、扩展管段、负压发生腔以及负压吸气流道的制造工艺难度。
本申请的第二方面提供了一种负压吸尘装置,负压吸尘装置包括:吸尘管;根据本申请第一方面的真空发生器,真空发生器的负压吸气流道被配置为负压吸尘,真空发生器的进气口被配置为与气泵的出气口连通。负压吸尘装置由于采用了上述实施例中的真空发生器,可以通过真空发生器提供较大的吸尘负压力,以此提高负压吸尘装置的工作效率。
在一些实施例中,负压吸尘装置还包括排气管,与真空发生器的出气口连通;其中,排气管上串接有过滤器和/或消音器。由此,通过过滤器吸收排气管中的灰尘等杂质,以此减少排气管内的灰尘等杂质流出负压吸尘装置污染空气的现象,以及通过消音器吸收排气管出口处的噪音,以此降低负压吸尘装置的噪音。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一些实施例的真空发生器的结构示意图;
图2为图1所示真空发生器的负压发生腔的结构示意图;
图3为图1所示真空发生器的扩展管段的结构示意图;
图4为本申请一些实施例的负压吸尘装置的结构示意图。
具体实施方式中的部分附图标号如下:
100负压吸尘装置;
10真空发生器,11发生器本体,101进气口,102收缩管段,103扩展管
段,104负压发生腔,1041喇叭状曲面壁,105出气口,106负压吸气流道,1061吸气口段,1062缩径流道段,107环形腔体结构,1071第一连通口,1072第二连通口,110第一单体,120第二单体,121第一豁口,130第三单体,131第二豁口;
20进气管;
30排气管;
40过滤器,41管接头;
50消音器,51转接头。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同 对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“垂直”“平行”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具 体情况理解上述术语在本申请实施例中的具体含义。
现有技术中,负压吸尘装置的吸力小,对于粉尘粘附力强的情况,无法达到有效的除尘效果。具体地,负压吸尘装置设置有真空发生器,通过真空发生器内的负压为负压吸尘装置提供负压吸力,以此达到将灰尘吸入至负压吸尘设备,真空发生器的负压效果直接影响负压吸尘装置的吸尘效果。
为了解决负压吸尘装置的吸力小导致负压清洁效果差的技术问题,本申请的一些实施例提供的真空发生器负压发生腔与负压吸气流道的配合为真空发生器提供负压吸力,提高了真空发生器以及负压吸尘装置的负压吸力。
本申请的一些实施例公开的真空发生器可以用于负压吸尘装置或者其他负压设备,只要需要负压吸力的负压设备均属于本申请的一些实施例的真空发生器的应用范围。
请参看图1至图3,图1为本申请一些实施例的真空发生器的结构示意图;图2为图1所示真空发生器的负压发生腔的结构示意图;图3为图1所示真空发生器的扩展管段的结构示意图。
如图1至图3,本申请的第一方面提供了一种真空发生器10,真空发生器10包括发生器本体11,其开设有顺次连通的进气口101、收缩管段102、扩展管段103、负压发生腔104及出气口105,在由进气口101到出气口105的通气方向上,收缩管段102的管径逐渐缩小,扩展管段103的管径逐渐增大,负压发生腔104被构造成扩展管段103喷出的气体流经负压发生腔104时,产生腔内射流负压;其中,发生器本体11上还开设有负压吸气流道106,负压吸气流道106包括吸气口段1061和缩径流道段1062,缩径流道段1062的一端连通负压发生腔104,另一端连通吸气口段1061的一端,吸气口段1061的另一端贯通发生器本体11的侧壁,且在缩径流道段1062的进气方向上,缩径流道段1062的流道截面面积逐渐缩小。
在本实施例中,发生器本体11的内部形成有沿发生器本体11的长度方向分布的气流通道,进气口101设置于气流通道的进气端,出气口105设置 于气流通道的出气端,收缩管段102、扩展管段103以及负压发生腔104设置于气流通道的中部,负压吸气流道106沿发生器本体11的径向贯穿发生器本体11的侧壁并连通负压发生腔104与大气。
本申请的一些实施例提供的真空发生器10通过负压发生腔104与负压吸气流道106的配合为真空发生器10提供负压吸力。具体地,通过负压发生腔104被构造成扩展管段103喷出的气体流经负压发生腔104时,产生腔内射流负压,通过腔内射流负压达到为真空发生器10提供负压吸力的目的,同理,流体在经过负压吸气流道106的缩径流道段1062后,同样能够在负压发生腔104产生腔内射流负压,通过负压吸气流道106吸气时产生的负压进一步达到为真空发生器10提供负压吸力,进而提高吸气除尘能力。
如图1至图3所示,在一些实施例中,缩径流道段1062为环绕布置于负压发生腔104周侧的环形腔体结构107,环形腔体结构107靠近负压发生腔104的内侧面上开设有环绕布置于负压发生腔104周侧且连通负压发生腔104的第一连通口1071,环形腔体结构107背离负压发生腔104的外侧面上开设有连通吸气口段1061的第二连通口1072。
在本实施例中,环形腔体结构107设置于负压发生腔104的径向外围,环形腔体结构107的横截面形状可以设置为弧面结构、三角形结构、矩形结构或者不规则形状,这些结构均属于本申请的一些实施例的保护范围。
本申请的一些实施例提供的环形腔体结构107通过第一连通口1071从负压发生腔104的周侧连通负压发生腔104,使得气体吸入负压发生腔104内,环形腔体结构107进一步能够为流经缩径流道段1062的流体通过附壁效应,通过附壁效应引导流体向负压发生腔104的方向流动,以此提高流体在负压吸气流道106与负压发生腔104之间的流通效率,提高负压发生腔104的负压效果。
如图1至图3所示,在一些实施例中,由负压发生腔104连通扩展管段103的一端向负压发生腔104连通出气口105的一端,负压发生腔104的流道 截面面积逐渐缩小。
在本实施例中,负压发生腔104的流道内壁轮廓沿流体的流动方向可以设置为斜线、弧面或者阶梯面,以此达到负压发生腔104的流道截面面积逐渐缩小的目的。
本申请的实施例通过将负压发生腔104连通扩展管段103的一端的流道截面面积设置为较大尺寸,可以提高扩展管段103内流体流向负压发生腔104的流通效率。
如图1至图3所示,在一些实施例中,负压发生腔104的腔壁为具有喇叭状曲面壁1041,喇叭状曲面壁1041为圆弧形母线绕中心轴线运动时的运动轨迹围成的曲面结构。
在本实施例中,喇叭状曲面壁1041设置于负压发生腔104与扩展管段103和负压吸气流道106的汇合处,且喇叭状曲面壁1041的扩口与扩展管段103连通,喇叭状曲面壁1041的径向外沿部与负压吸气流道106连通。
由于负压发生腔104与扩展管段103为直线连通,因此,不需要负压发生腔104对扩展管段103进行引流,只需要通过喇叭状曲面壁1041的扩口降低负压发生腔104与扩展管段103之间的流通阻力即可;由于负压发生腔104与负压吸气流道106为拐角连通,因此,需要负压发生腔104的喇叭状曲面壁1041的径向外沿部对负压吸气流道106进行导向引流,使负压吸气流道106处的流体能够在喇叭状曲面壁1041的径向外沿部的引流下顺利地流至负压发生腔104。
本申请的一些实施例提供的喇叭状曲面壁1041设置于负压发生腔104与扩展管段103和负压吸气流道106的汇合处,以此降低流体从扩展管段103流至负压发生腔104的流通阻力,以及降低流体从负压吸气流道106流至负压发生腔104的流通阻力,以此提高真空发生器10内部流体的整体流通效率。
如图1至图3所示,在一些实施例中,喇叭状曲面壁1041向负压发生腔的腔内凸起。
在本实施例中,由于负压发生腔104沿发生器本体11的长度方向分布,而负压吸气流道106沿发生器本体11的径向分布,因此,流体在负压吸气流道106与负压发生腔104之间流动的过程中会发生转弯,为了降低流体的转弯阻力,本申请的实施例提出了喇叭状曲面壁1041向负压发生腔的腔内凸起,以此达到为流体的转弯提供导向和引流目的,降低负压吸气流道106与负压发生腔104之间的流通阻力。
本申请的一些实施例提供的喇叭状曲面壁1041向负压发生腔的腔内凸起为流体引流,使流体能够在喇叭状曲面壁1041的导向引流作用下从负压吸气流道106流至负压发生腔。具体地,喇叭状曲面壁1041为流经缩径流道段1062并流入负压发生腔104内的流体提供附壁效应,通过附壁效应引导流体向负压发生腔104的出气的方向流动,以此提高流体在负压吸气流道106与负压发生腔104之间的流通效率,提高负压发生腔104的负压效果。
如图1至图3所示,在一些实施例中,缩径流道段1062为环绕布置于负压发生腔104周侧的环形腔体结构107;其中,环形腔体结构107靠近负压发生腔104的内侧面上开设有环绕布置于负压发生腔104周侧且连通负压发生腔104的第一连通口1071,第一连通口1071连通负压发生腔104;环形腔体结构107背离负压发生腔104的外侧面上开设有连通吸气口段1061的第二连通口1072。
在本实施例中,缩径流道段1062与喇叭状曲面壁1041一体成型的弧形结构,喇叭状曲面壁1041向负压发生腔的腔内凸起,并延伸至负压吸气流道106向负压吸气流道106的腔内凸起。
本申请的一些实施例提供的由缩径流道段1062与喇叭状曲面壁1041形成的一体成型的弧形结构能够为流经缩径流道段1062的流体通过附壁效应,通过附壁效应引导流体向负压发生腔104的方向流动,以此提高流体在负压吸气流道106与负压发生腔104之间的流通效率,提高负压发生腔104的负压效果。且流体在由第二连通口1072流至第一连通口1071并流出第一连通 口1071而流入到负压发生腔104的过程中,经历了先压缩后释放的过程,通过该过程提高了流体的流通速度。
如图1至图3所示,在一些实施例中,第一连通口1071与负压发生腔104靠近扩展管段103的一端连通,以使缩径流道段1062与负压发生腔104靠近扩展管段103的一端配合形成流道截面面积先减小再增大的通道结构。
在本实施例中,负压发生腔104靠近扩展管段103的一端形成腔口,通过在腔口的径向外围通过机加工的方式形成环绕腔口的周边分布的环形腔体结构107,即可形成环形腔体结构107与负压发生腔104之间的第一连通口1071。
具体地,环形腔体结构107可以设置为环绕负压发生腔104的周边分布的完整环形结构,还可以设置为负压发生腔104的周边分布的一段环形结构,该一段环形结构设置于与第二连通口1072对应的位置,从而使通过第二连通口1072进入的流体能够经过该一段环形腔体结构107流入至负压发生腔104。
本申请的实施例提出了流体在经过先减小再增大的通道结构后,同样能够产生射流,以此提高流体在缩径流道段1062与负压发生腔104之间的流通效率。
如图1至图3所示,在一些实施例中,圆弧形母线的圆弧半径为R,第一连通口1071在缩径流道段1062的中心轴线方向上的宽度尺寸为L,其中,L/R=0.1。
在本实施例中,如果第一连通口1071的尺寸过小,则会阻挡第一连通口1071处流体的流通,如果第一连通口1071的尺寸过大,则达不到第一连通口1071处的流体在负压发生腔104形成喷射的效果;如果圆弧形母线的圆弧半径R过小,较为突兀的弧面凸起同样会阻挡第一连通口1071处流体的流通,如果圆弧形母线的圆弧半径R过大,则达不到第一连通口1071处流体在圆弧形母线处形成附壁效应的效果。因此,本申请的实施例通过综合考虑第一连通口1071的尺寸以及圆弧形母线的圆弧半径R,提出了第一连通口1071的 尺寸与圆弧形母线的圆弧半径R之间的尺寸关系,以此达到在不影响流体在第一连通口1071处流通效率的基础上,提高了流体通过圆弧形母线流向负压发生腔104的流通效果。
具体地,L/R=0.1只是本申请的优选实施例,并不是对L与R比值的限定,L与R比值可以根据第一连通口1071的尺寸、负压发生腔104的尺寸、流体的特性以及流体的温度进行灵活设置,在此不再一一举例阐述。
本申请的实施例提出了在不影响流体在第一连通口1071处流通效率的基础上,提高了喇叭状曲面壁1041的圆弧形母线对流体的引流导向效果,充分利用附壁效应,提高负压吸气流道106的吸气性能。
如图1至图3所示,在一些实施例中,第一连通口1071的内壁与负压发生腔的内壁圆滑过渡连接。
在本实施例中,通过第一连通口1071的内壁与负压发生腔的内壁圆滑过渡连接,能够提高流体在负压吸气流道106与负压发生腔之间的流通效率,以此增加流体在负压吸气流道106和负压发生腔的流通速度,增加负压发生腔的负压效果。
本申请的一些实施例通过将第一连通口1071的内壁与负压发生腔的内壁设置为圆滑过渡连接,可以提高流体在第一连通口1071与负压发生腔之间的流通顺畅性和流通效率。
如图1至图3所示,在一些实施例中,由吸气口段1061贯通发生器本体11的侧壁的一端向吸气口段1061连通缩径流道段1062的一端,吸气口段1061的流道截面面积逐渐缩小。
在本实施例中,吸气口段1061的流道内壁轮廓沿流体的流动方向可以设置为斜线、弧面或者阶梯面,以此达到吸气口段1061的流道截面面积逐渐缩小的目的。
本申请的实施例通过吸气口段1061逐步压缩流体,最终在负压发生腔104内扩散,使流体在压缩和扩散的过程中形成较高的流速,以此提高吸气口段 1061内的流体流入负压发生腔后的流速。
如图1至图3所示,在一些实施例中,发生器本体11为由多个单体可拆卸拼装组成的拼装体。
在本实施例中,多个单体设置为沿发生器本体11的长度方向依次拼接而成,多个单体可以设置为中空的柱状结构,多个单体的内部形成多个通道或者腔体,在将多个单体沿发生器本体11的长度方向依次拼接在一起后,多个单体内部的多个通道或者腔体依次连通,然后将多个单体通过紧固件连接在一起。
本申请的实施例通过将真空发生器10设置为拼接体,可以对各个单体进行单独加工,以此降低真空发生器10的制造工艺难度,使真空发生器10内复杂的流道和结构能够通过简单的机械加工完成。
在一些实施例中,多个单体包括依次可拆卸连接的第一单体110、第二单体120以及第三单体130;其中,进气口101和收缩管段102开设于第一单体110上,扩展管段103开设于第二单体120上,负压发生腔104和出气口105开设于第三单体130上,第二单体120以及第三单体130之间拼接配合形成负压吸气流道106。
在本实施例中,收缩管段102设置为由进气口101向内部延伸且内径逐渐减小的锥形通道,扩展管段103设置为由出气口105向内部延伸且内径逐渐减小的锥形通道,也就是说,收缩管段102和扩展管段103均设置为由外而内内径逐渐减小,而且,收缩管段102和扩展管段103之间通过狭窄通道连接,如果将第一单体110与第二单体120设置为一体式结构,则镗孔的深度和精度均会增加,增加了收缩管段102和扩展管段103的制造难度,因此,本申请的实施例提出将第一单体110与第二单体120设置为分体式结构,会减小镗孔的深度和精度,以此降低收缩管段102和扩展管段103的制造难度。
具体地,第二单体120与第三单体130配合的第一端部形成有第一豁口121,第三单体130与第二单体120配合的第二端部形成有第二豁口131,第 二豁口131与第一豁口121之间的间隙形成负压吸气流道106的吸气口段1061。第二豁口131和第一豁口121均设置为扇形豁口,第二豁口131和第一豁口121的角度范围根据扩展管段103和负压发生腔104的尺寸而定,具体数值在此不进行限定。
本申请的实施例提出了通过多个单体拼装而成的真空发生器10,可以单独加工收缩管段102、扩展管段103、负压发生腔104以及负压吸气流道106,以此降低收缩管段102、扩展管段103、负压发生腔104以及负压吸气流道106的制造工艺难度。
在一些实施例中,收缩管段102、扩展管段103、负压发生腔104以及负压吸气流道106的内壁均设置为抛光面,可以提高流体在真空发生器10内的流通顺畅性,从而提高真空发生器10的负压吸力。
进气口101、收缩管段102、扩展管段103、负压发生腔104及出气口105形成拉瓦尔喷管结构,拉瓦尔喷管的前半部是由大变小向中间收缩至一个窄喉,窄喉之后又由小变大向外扩张至后半部的出口,流体受高压流入拉瓦尔喷管的前半部,穿过窄喉后由后半部加速逸出,这一架构可使流体的速度因喷截面积的变化而变化,使流体从亚音速到音速,直至加速至超音速。
具体地,通过进气口101流至真空发生器10的流体能够先经过拉瓦尔喷管结构的收缩管段102进行压缩,再经过拉瓦尔喷管结构的扩展管段103进行扩张,在气体速度达到最大位置处,在收缩管段102与扩展管段103之间的过道形成破口喷射至扩展管段103,通过喷射至扩展管段103的流体带动负压发生腔104内的流体从出气口105快速流出,使负压发生腔104形成负压。
如图4所示,本申请的第二方面提供了一种负压吸尘装置100,负压吸尘装置100包括吸尘管以及根据本申请第一方面的真空发生器10,真空发生器10的负压吸气流道106被配置为负压吸尘,真空发生器10的进气口101被配置为与气泵的出气口105连通。
在本实施例中,进气口101处还设置有进气管20,进气管20还设置有控 制阀,通过控制阀控制进气管20的通断以及吸力,以此来提高负压吸尘装置100对多种环境的适应能力。
本申请的一些实施例提供的负压吸尘装置100由于采用了本申请的一些实施例的真空发生器10,可以通过真空发生器10提供较大的吸尘负压力,以此提高负压吸尘装置100的工作效率。
在一些实施例中,负压吸尘装置100还包括排气管30,与真空发生器10的出气口105连通;其中,排气管30上串接有过滤器40和/或消音器50。
在本实施例中,过滤器40可以设置为滤网过滤器40或者蜂窝过滤器40,且过滤器40通过管接头41可拆卸地安装至排气管30,消音器50通过转接头51可拆卸地安装至排气管30,且位于排气管30端部的出口,用于消除排气管30出口处的噪音。
本申请的实施例通过过滤器40吸收排气管30中的灰尘等杂质,以此减少排气管30内的灰尘等杂质流出负压吸尘装置100污染空气的现象,以及通过消音器50吸收排气管30出口处的噪音,以此降低负压吸尘装置100的噪音。
下面通过一个具体实施例阐述本申请的一些实施例的负压吸尘装置100的工作过程:
当负压吸尘装置100工作时,通过进气口101流至真空发生器10的流体能够先经过拉瓦尔喷管结构的收缩管段102进行压缩,再经过拉瓦尔喷管结构的扩展管段103进行扩张,在气体速度达到最大位置处,在收缩管段102与扩展管段103之间的过道形成破口喷射至负压发生腔104,通过喷射至负压发生腔104的流体带动负压发生腔104内的流体从出气口105快速流出;外部空气从真空发生器10的负压吸气流道106进入真空发生器10的负压发生腔104,负压吸气流道106内的流体带动负压发生腔104内的流体从出气口105排出。
负压吸尘装置100基于拉瓦尔喷管的工作原理,在进气口101处形成负 压,出气口105的最大射流速度能够达到650m/s,负压吸气流道106的最大引流速度能够达到130m/s,进气口101处的负压能够达到0.8MPa,在进气口101位置的风速能够达到130m/s,优于现有吸尘设备(现有吸尘设备的负压风速<25m/s)。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参看前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (14)

  1. 一种真空发生器,其特征在于,包括:
    发生器本体,其开设有顺次连通的进气口、收缩管段、扩展管段、负压发生腔及出气口,在由所述进气口到所述出气口的通气方向上,所述收缩管段的管径逐渐缩小,所述扩展管段的管径逐渐增大,所述负压发生腔被构造成所述扩展管段喷出的气体流经所述负压发生腔时,产生腔内射流负压;
    其中,所述发生器本体上还开设有负压吸气流道,所述负压吸气流道包括吸气口段和缩径流道段,所述缩径流道段的一端连通所述负压发生腔,另一端连通吸气口段的一端,所述吸气口段的另一端贯通所述发生器本体的侧壁,且在所述缩径流道段的进气方向上,所述缩径流道段的流道截面面积逐渐缩小。
  2. 根据权利要求1所述的真空发生器,其特征在于,所述缩径流道段为环绕布置于所述负压发生腔周侧的环形腔体结构,所述环形腔体结构靠近所述负压发生腔的内侧面上开设有环绕布置于所述负压发生腔周侧且连通所述负压发生腔的第一连通口,所述环形腔体结构背离所述负压发生腔的外侧面上开设有连通所述吸气口段的第二连通口。
  3. 根据权利要求1或2所述的真空发生器,其特征在于,由所述负压发生腔连通所述扩展管段的一端向所述负压发生腔连通所述出气口的一端,所述负压发生腔的流道截面面积逐渐缩小。
  4. 根据权利要求3所述的真空发生器,其特征在于,所述负压发生腔的腔壁为具有喇叭状曲面壁,所述喇叭状曲面壁为圆弧形母线绕中心轴线运动时的运动轨迹围成的曲面结构。
  5. 根据权利要求4所述的真空发生器,其特征在于,所述喇叭状曲面壁向所述负压发生腔的腔内凸起。
  6. 根据权利要求4或5所述的真空发生器,其特征在于,所述缩径流道段为环绕布置于所述负压发生腔周侧的环形腔体结构;
    其中,所述环形腔体结构靠近所述负压发生腔的内侧面上开设有环绕布置于所述负压发生腔周侧且连通所述负压发生腔的第一连通口,所述第一连通口连通所述负压发生腔;
    所述环形腔体结构背离所述负压发生腔的外侧面上开设有连通所述吸气口段的第二连通口。
  7. 根据权利要求6所述的真空发生器,其特征在于,所述第一连通口与所述负压发生腔靠近所述扩展管段的一端连通,以使所述缩径流道段与所述负压发生腔靠近所述扩展管段的一端配合形成流道截面面积先减小再增大的通道结构。
  8. 根据权利要求7所述的真空发生器,其特征在于,所述圆弧形母线的圆弧半径为R,所述第一连通口在所述缩径流道段的中心轴线方向上的宽度尺寸为L,其中,L/R=0.1。
  9. 根据权利要求7或8所述的真空发生器,其特征在于,所述第一连通口的内壁与所述负压发生腔的内壁圆滑过渡连接。
  10. 根据权利要求1至9任一项所述的真空发生器,其特征在于,由所述吸气口段贯通所述发生器本体的侧壁的一端向所述吸气口段连通所述缩径流道段的一端,所述吸气口段的流道截面面积逐渐缩小。
  11. 根据权利要求1至10任一项所述的真空发生器,其特征在于,所述发生器本体为由多个单体可拆卸拼装组成的拼装体。
  12. 根据权利要求11所述的真空发生器,其特征在于,所述多个单体包括依次可拆卸连接的第一单体、第二单体以及第三单体;
    其中,所述进气口和所述收缩管段开设于所述第一单体上,所述扩展管段开设于所述第二单体上,所述负压发生腔和所述出气口开设于所述第三单体上,所述第二单体以及所述第三单体之间拼接配合形成所述负压吸气流道。
  13. 一种负压吸尘装置,其特征在于,所述负压吸尘装置包括根据权利要求1至12中任一项所述的真空发生器,所述真空发生器的所述负压吸气流道 被配置为负压吸尘,所述真空发生器的所述进气口被配置为与气泵的出气口连通。
  14. 根据权利要求13所述的负压吸尘装置,其特征在于,所述负压吸尘装置还包括排气管,与所述真空发生器的所述出气口连通;
    其中,所述排气管上串接有过滤器和/或消音器。
PCT/CN2023/081650 2022-08-17 2023-03-15 真空发生器及具有其的负压吸尘装置 WO2024036942A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23740919.8A EP4350152A1 (en) 2022-08-17 2023-03-15 Vacuum generator and negative-pressure dust suction device having same
US18/219,151 US20240057833A1 (en) 2022-08-17 2023-07-07 Vacuum generator and negative pressure dust suction device having same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210989186.2 2022-08-17
CN202210989186.2A CN115813255B (zh) 2022-08-17 2022-08-17 真空发生器及具有其的负压吸尘装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/219,151 Continuation US20240057833A1 (en) 2022-08-17 2023-07-07 Vacuum generator and negative pressure dust suction device having same

Publications (1)

Publication Number Publication Date
WO2024036942A1 true WO2024036942A1 (zh) 2024-02-22

Family

ID=85523111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081650 WO2024036942A1 (zh) 2022-08-17 2023-03-15 真空发生器及具有其的负压吸尘装置

Country Status (2)

Country Link
CN (1) CN115813255B (zh)
WO (1) WO2024036942A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295800A (ja) * 1999-12-08 2001-10-26 Myotoku Ltd エゼクタ式真空発生器
US20090317691A1 (en) * 2008-06-13 2009-12-24 Keihin Corporation Ejector for fuel cell system
CN102312869A (zh) * 2011-08-23 2012-01-11 捷锐企业(上海)有限公司 一种气体射流式负压发生器和气体射流式负压调节器
CN103883568A (zh) * 2014-04-04 2014-06-25 天津格威莱德科技发展有限公司 一种工业吸尘器用真空发生器
CN105757008A (zh) * 2016-04-15 2016-07-13 南通宏大机电制造有限公司 一种真空发生器
CN108317108A (zh) * 2018-04-12 2018-07-24 微可为(厦门)真空科技有限公司 一种超音速真空管
CN209557359U (zh) * 2018-09-30 2019-10-29 浙江艾迪贝尔科技有限公司 紧凑型真空发生器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202348796U (zh) * 2011-08-23 2012-07-25 捷锐企业(上海)有限公司 一种气体射流式负压发生器和气体射流式负压调节器
CN102730445B (zh) * 2012-06-29 2015-07-29 四川长虹电器股份有限公司 一种真空吸取装置
DE102017120521A1 (de) * 2017-09-06 2019-03-07 Neoperl Gmbh Strahlregler
CN109798268A (zh) * 2018-12-30 2019-05-24 珠海市广源信科技有限公司 一种工业吸尘用真空发生器
CN210541299U (zh) * 2019-05-17 2020-05-19 天津格威莱德科技发展有限公司 一种新型无源气动工业吸尘器
CN113144797B (zh) * 2021-04-06 2022-06-17 中国矿业大学(北京) 可调式真空射流卷吸工业粉尘净化方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295800A (ja) * 1999-12-08 2001-10-26 Myotoku Ltd エゼクタ式真空発生器
US20090317691A1 (en) * 2008-06-13 2009-12-24 Keihin Corporation Ejector for fuel cell system
CN102312869A (zh) * 2011-08-23 2012-01-11 捷锐企业(上海)有限公司 一种气体射流式负压发生器和气体射流式负压调节器
CN103883568A (zh) * 2014-04-04 2014-06-25 天津格威莱德科技发展有限公司 一种工业吸尘器用真空发生器
CN105757008A (zh) * 2016-04-15 2016-07-13 南通宏大机电制造有限公司 一种真空发生器
CN108317108A (zh) * 2018-04-12 2018-07-24 微可为(厦门)真空科技有限公司 一种超音速真空管
CN209557359U (zh) * 2018-09-30 2019-10-29 浙江艾迪贝尔科技有限公司 紧凑型真空发生器

Also Published As

Publication number Publication date
CN115813255B (zh) 2023-12-12
CN115813255A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2017152565A1 (zh) 一种离心压缩机扩稳装置
CN109939989B (zh) 一种基于空化射流技术的螺旋式空化清洗器及使用方法
WO2024036942A1 (zh) 真空发生器及具有其的负压吸尘装置
US4926638A (en) Negative pressure air stream accelerator of suction type air cooling mechanism for internal combustion engine
CN110608203A (zh) 带有蜗壳螺旋式二次流的引射器装置
TW202116141A (zh) 工業設備及氣旋式排風裝置
US20240057833A1 (en) Vacuum generator and negative pressure dust suction device having same
CN207161224U (zh) 一种提高脉冲爆轰发动机推力系数的非定常环形射流喷管
CN104500155A (zh) 带旁通流道的废气涡轮增压器压壳
TWM623718U (zh) 氣體導流裝置
TWM624775U (zh) 除塵裝置
CN215570428U (zh) 一种音速喷嘴
TWI557023B (zh) 噴水推進裝置增加推力之方法
WO2020192189A1 (zh) 气流管道和气体处理设备
CN220213640U (zh) 一种负压吸收装置及呼吸麻醉机
CN217401300U (zh) 射流式增程节能泵
CN204371433U (zh) 带旁通流道的废气涡轮增压器压壳
CN217989669U (zh) 吹气头及气枪
CN219878876U (zh) 一种负压吸收装置及呼吸麻醉机
CN216477546U (zh) 一种排气管加速结构及真空泵
CN214617244U (zh) 一种真空发生器
CN112879349B (zh) 一种进风装置、应用有该进风装置的风机系统和清洁机
CN115388037B (zh) 一种具有宽频降噪效果的增压器进气整流结构
TWI791308B (zh) 氣體導流裝置
TWI835420B (zh) 氣體導流裝置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023740919

Country of ref document: EP

Effective date: 20230811