WO2024036525A1 - 一种导热结构、电子设备及终端 - Google Patents

一种导热结构、电子设备及终端 Download PDF

Info

Publication number
WO2024036525A1
WO2024036525A1 PCT/CN2022/113134 CN2022113134W WO2024036525A1 WO 2024036525 A1 WO2024036525 A1 WO 2024036525A1 CN 2022113134 W CN2022113134 W CN 2022113134W WO 2024036525 A1 WO2024036525 A1 WO 2024036525A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
insulating ring
conductive structure
thermal conductive
thermal
Prior art date
Application number
PCT/CN2022/113134
Other languages
English (en)
French (fr)
Inventor
傅三富
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/113134 priority Critical patent/WO2024036525A1/zh
Publication of WO2024036525A1 publication Critical patent/WO2024036525A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application relates to the technical field of heat dissipation structures, and in particular to a thermal conductive structure, electronic equipment and terminals.
  • a heat sink is usually used to dissipate heat from the chip.
  • a thermal conductive layer needs to be provided between the heat sink and the chip.
  • the thermal conductivity of the thermal conductive layer has an important impact on the heat dissipation capability of the chip.
  • the structural reliability of the thermal conductive layer is also important. Therefore, when the electronic device vibrates, it is necessary to make the thermal conductive layer more reliable and not easily damaged.
  • This application provides a thermally conductive structure, electronic equipment and terminals so that the insulating ring protects the thermally conductive part, so that the thermally conductive part can be made of thermally conductive materials to improve the thermal conductivity efficiency of the thermally conductive structure.
  • the present application provides a thermally conductive structure, which includes a thermally conductive part and an insulating ring.
  • the heat-conducting part is located inside the insulating ring, and the upper and lower sides of the heat-conducting part are at least partially exposed.
  • the heat-conducting part can be in contact with the heating devices and radiators on both sides to conduct heat.
  • the insulating ring can protect the heat-conducting part around the periphery of the heat-conducting part. When the heat-conducting structure is aged or damaged, it is mainly concentrated in the insulating ring, and the internal heat-conducting part is not easy to scatter.
  • the thermal conductive part can be made of a highly thermally conductive material, that is, the thermal conductive part can be prepared from a conductive material, so that the thermal conductivity of the thermal conductive structure is improved and the risk of short circuit is less likely to occur.
  • the above-mentioned insulating ring is a closed ring, or the insulating ring has an opening.
  • the above-mentioned insulating ring may be a closed ring, completely surrounding the heat conductive part.
  • the heat-conducting part is completely surrounded by an insulating ring, so that the heat-conducting part is not easy to leak out from the insulating ring, which is beneficial to improving the reliability of the heat-conducting structure.
  • the above-mentioned insulating ring can also have an opening.
  • the opening of the insulating ring can absorb deformation, so that the insulating ring is not prone to wrinkles or pulling.
  • the number of the openings may be one or more.
  • the above-mentioned thermally conductive structure includes a first side and a second side that are opposite to each other.
  • the surface of the thermally conductive part and the surface of the insulating ring are located on the same plane.
  • the surface of the thermally conductive part and the surface of the insulating ring are located on the same plane. That is to say, the thickness of the thermal conductive part is the same as the thickness of the insulating ring, and both side surfaces of the thermal conductive structure are flat.
  • This solution is suitable for scenarios where one side of the radiator is flat and the side of the heating device is also flat.
  • the thermally conductive portion and the surface of the insulating ring are located on the same plane.
  • the insulating ring protrudes from the surface of the thermally conductive part.
  • the thermal conductive structure can be adapted to the case where one side of the heating device is non-planar or the side of the heat sink is non-planar. Even if the structure on one side is not flat, the insulation ring can ensure that the thermal conductive part is sealed to protect the thermal conductive part and reduce the risk of short circuit.
  • the insulating ring protrudes from the surface of the thermally conductive part, and on the second side of the thermally conductive layer, the insulating ring protrudes from the surface of the thermally conductive part.
  • This solution is mainly suitable for situations where one side of the heating device is non-planar and one side of the heat sink is also non-planar.
  • This solution can also ensure that the insulating ring seals the heat-conducting part to protect the heat-conducting part and reduce the risk of short circuit.
  • the insulating ring and the heat conducting part may be fixedly connected. That is to say, the thermal conductive part and the insulating ring are manufactured separately and then fixed.
  • the above-mentioned insulating ring and the thermal conductive part can be fixedly bonded by bonding.
  • the above-mentioned insulating ring and the thermal conductive part have an integrally formed structure. This solution can improve the reliability of the connection between the insulating ring and the thermal conductive part, making the thermal conductive part less susceptible to damage.
  • the insulating ring there is a gap between the insulating ring and the heat conductive part.
  • This solution can absorb the deformation of the thermal conductive part and the insulating ring, or be used to adapt to the specific structure of the electronic device.
  • the heat-conducting part and the insulating ring can be two independent parts, which are prepared, transported and installed separately.
  • the material of the above-mentioned insulating ring may be at least one of foam, rubber or sealant. Lower cost and easy to prepare.
  • the above-mentioned insulating ring can also be made of a thermally conductive material, and specifically the thermally conductive material is also an insulating material.
  • This solution can increase the thermal conductive area of the thermal conductive structure, which is beneficial to improving the thermal conductive efficiency and thermal conductivity of the thermal conductive structure.
  • the material of the insulating ring may specifically include thermally conductive gel, thermally conductive insulating tape, thermally conductive glue or thermally conductive insulating film.
  • the thermal conductivity of the above thermal conductive material may be lower than that of the thermal conductive part, but it still has a certain thermal conductivity.
  • the thermal conductivity of the thermal conductive part is greater than or equal to 10W/(m ⁇ K). Specifically, the thermal conductivity of the thermal conductive part may be greater than or equal to 30W/(m ⁇ K). The thermal conductivity efficiency of the thermal conductive structure can be improved.
  • thermal conductive part examples include carbon fiber or graphene.
  • the shape of the above-mentioned heat conduction part and the shape of the insulating ring are not limited.
  • the shape of the edge of the thermal conductive part can be the same as the shape of the inner edge of the insulating ring. This solution can improve the coordination between the thermal conductive part and the insulating ring.
  • the above shape can be various possible shapes such as triangle, square, polygon, circle, ellipse, special shape, etc.
  • this application also provides an electronic device, which includes a heating device, a heat sink, and the thermal conductive structure of the first aspect.
  • the above-mentioned thermal conductive structure is disposed between the heating device and the radiator, and is used to conduct heat from the heating device to the radiator.
  • the thermal conductive structure in this solution has high thermal conductivity and good reliability, which can reduce the risk of short circuit.
  • one side of the insulating ring may be in contact with the heating device, and the other side may be in contact with the heat sink.
  • the thermal conductive part is enclosed between the above-mentioned heating device, the insulating ring and the radiator, so that when the thermal conductive part is aged or damaged, it is less likely to fall into the circuit area of the electronic device, thereby reducing the risk of short circuit.
  • the above-mentioned heating device is arranged on a circuit board, one side of the insulating ring may be in contact with the circuit board, and the other side may be in contact with the heat sink.
  • This solution seals the heat-conducting part between the above-mentioned circuit board, the insulating ring and the radiator, so that when the heat-conducting part is aged or damaged, it will not easily fall into the circuit area of the electronic device, thereby reducing the risk of short circuit.
  • the above-mentioned electronic equipment is a vehicle-mounted electronic equipment. Since vibrations are prone to occur during vehicle operation, the thermal conductive structure in this solution is not prone to falling off in vibration scenarios, so it can effectively improve the heat dissipation efficiency of vehicle-mounted electronic equipment.
  • this application also provides a terminal, which includes the electronic device of the second aspect.
  • the terminal has strong heat dissipation capacity and is in good working condition.
  • Figure 1 is a schematic structural diagram of a top view of the thermal conductive structure in the embodiment of the present application.
  • Figure 2 is a schematic cross-sectional structural diagram of the thermal conductive structure in the embodiment of the present application.
  • Figure 3 is another top structural schematic diagram of the thermal conductive structure in the embodiment of the present application.
  • Figure 4 is another top structural schematic diagram of the thermal conductive structure in the embodiment of the present application.
  • Figure 5 is another top structural schematic diagram of the thermal conductive structure in the embodiment of the present application.
  • Figure 6 is another top structural schematic diagram of the thermal conductive structure in the embodiment of the present application.
  • Figure 7 is another top structural schematic diagram of the thermal conductive structure in the embodiment of the present application.
  • Figure 8 is another top structural schematic diagram of the thermal conductive structure in the embodiment of the present application.
  • Figure 9 is another top structural schematic diagram of the thermal conductive structure in the embodiment of the present application.
  • Figure 10 is another top structural schematic diagram of the thermal conductive structure in the embodiment of the present application.
  • Figure 11 is a schematic structural diagram of an electronic device in an embodiment of the present application.
  • Figure 12 is another sectional structural schematic diagram of the thermal conductive structure in the embodiment of the present application.
  • Figure 13 is another structural schematic diagram of an electronic device in an embodiment of the present application.
  • Figure 14 is another sectional structural schematic diagram of the thermal conductive structure in the embodiment of the present application.
  • Figure 15 is another schematic structural diagram of an electronic device in an embodiment of the present application.
  • the heat dissipation of the heating device is usually achieved by using a radiator.
  • a thermal conductive structure needs to be provided between the heating device and the radiator.
  • the thermal conductive structure has thermal conductivity and can conduct heat from the heating device to the radiator for heat dissipation.
  • the thermally conductive structure usually has a certain degree of flexibility, which can enable more reliable contact between the heating device and the radiator, increase the contact area, and improve the heat dissipation effect of the heating device.
  • the materials of the thermal conductive structure include insulating materials and conductive materials, and generally the thermal conductive structures with better thermal conductivity are usually thermal conductive structures made of conductive materials. Heat-generating devices such as chips are usually used in electrical structures such as circuit boards. Therefore, in some scenarios, if the heat-conducting structure is made of conductive material, short circuits may easily occur. Especially in scenarios with severe vibration and long-term use, the thermal conductive structure is easily damaged. The damaged thermal conductive structure may be partially detached. The detached thermal conductive structure may fall into circuit structures such as circuit boards, which can easily cause circuit short circuits. To this end, this application provides a thermal conductive structure and electronic equipment.
  • FIG. 1 is a schematic structural diagram of a top view of the thermal conductive structure in an embodiment of the present application
  • FIG. 2 is a schematic cross-sectional structural view of the thermal conductive structure in an embodiment of the present application.
  • the thermal conductive structure 1 in the embodiment of the present application includes a thermal conductive part 11 and an insulating ring 12 .
  • the thermal conductive part 11 is located inside the insulating ring 12 . That is to say, the insulating ring 12 is arranged around the periphery of the heat conduction part 11 , and the upper and lower sides of the heat conduction part 11 are at least partially exposed, so that the heat conduction part 11 can contact the heating devices and radiators on both sides to conduct heat conduction. .
  • the upper and lower sides of the thermal conductive portion 11 refer to the side of the thermal conductive portion 11 that contacts the heat-generating device and the side that contacts the heat sink.
  • the peripheral side of the thermal conductive part 11 is protected by an insulating ring 12. Even if the thermal conductive structure 1 is aged or damaged, it is mainly concentrated on the insulating ring 12, and the internal thermal conductive part 11 is not easily scattered. Therefore, the thermal conductive part 11 can be made of a highly thermally conductive material or made of an electrically conductive material, so that the thermal conductivity of the thermal conductive structure 1 is improved and the risk of short circuit is less likely to occur.
  • the anti-aging ability of the above-mentioned insulating ring 12 can be made stronger than the anti-aging ability of the thermal conductive part 11, so that when the thermal conductive part 11 ages, the aging degree of the insulating ring 12 is also lower, and it is not easy to be damaged.
  • thermal conductivity Part 11 has better protection effect.
  • the mechanical strength of the insulating ring 12 can be made greater than the mechanical strength of the heat conductive part 11, so that the insulating ring 12 is not easily damaged during vibration. Therefore, the vibration resistance of the heat conductive structure 1 in this solution is also better.
  • the material of the insulating ring 12 may be at least one of foam, rubber and sealant.
  • the above-mentioned materials have a certain degree of flexibility and are easy to install; on the other hand, they are easy to produce and have low cost.
  • the above-mentioned insulating ring 12 can also be made of thermally conductive material.
  • the thermal conductive material has a certain thermal conductivity. Of course, its thermal conductivity may be lower than the thermal conductivity of the thermal conductive part 11 . Therefore, the insulating ring 12 can also conduct heat to increase the heat conduction area of the heat conduction structure 1 and improve the heat conduction effect of the heat conduction structure 1 .
  • the thermally conductive material may be thermally conductive gel, thermally conductive insulating tape, thermally conductive adhesive or thermally conductive insulating film.
  • the thermally conductive adhesive may be formed by heating or room temperature curing.
  • the thermally conductive adhesive may be thermally cured thermally conductive adhesive or thermally conductive adhesive.
  • Room temperature curing thermally conductive adhesive may be provided.
  • the above-mentioned insulating ring 12 can also be prepared using thermally conductive gel or the like.
  • the above-mentioned thermal conductive part 11 can be made of conductive material, so as to have better thermal conductivity.
  • the thermal conductivity of the thermal conductive portion 11 is greater than or equal to 10 W/(m ⁇ K).
  • the thermal conductivity refers to: under stable heat transfer conditions, a 1 meter (m) thick material has a temperature difference of 1 degree (K or °C) on both sides of the material and is transmitted through an area of 1 square meter within a certain period of time. heat.
  • the unit of thermal conductivity is Watt/meter ⁇ degree (W/(m ⁇ K), where K can be replaced by °C.
  • the thermal conductivity of the above-mentioned thermal conductive part 11 can be 11W/(m ⁇ K), 15W/(m ⁇ K), 18W/(m ⁇ K), 20W/(m ⁇ K), 22W/(m ⁇ K), 25W/(m ⁇ K), 26W/(m ⁇ K), 30W/(m ⁇ K ), 35W/(m ⁇ K) or 40W/(m ⁇ K), etc., we will not list them one by one here.
  • the material of the thermal conductive part 11 includes carbon fiber or graphene, and the above two materials have strong thermal conductivity. , which is conducive to improving the thermal conductivity of the thermal conductive structure 1.
  • the above-mentioned insulating ring 12 may be a closed ring. That is to say, the insulating ring 12 does not have the opening 121 and is completely arranged around the heat conductive portion 11 . In this solution, the heat conductive part 11 is completely surrounded by the insulating ring 12 , so the heat conductive part 11 is not easy to leak out from the insulating ring 12 , which is beneficial to improving the reliability of the heat conductive structure 1 .
  • the insulating ring 12 serves as an integral structure and is easy to install.
  • the above-mentioned insulating ring 12 may be an integrally formed structure, that is, a closed ring is prepared using a one-time molding process. This embodiment is beneficial to simplifying the preparation process of the insulating ring 12, and the overall strength of the insulating ring 12 is greater.
  • the above-mentioned insulating ring 12 can also be fixedly connected by bonding or other methods to form a closed ring.
  • this application does not limit the formation method of the closed ring, as long as the closed ring can be formed.
  • FIG 3 is another top structural schematic diagram of the thermal conductive structure in the embodiment of the present application.
  • the above-mentioned insulating ring 12 also has an opening 121.
  • the opening of the insulating ring 12 can absorb deformation, so that the insulating ring 12 is not prone to wrinkles or pulling.
  • the size of the above-mentioned opening is not limited.
  • the width of the above-mentioned opening can be between 0 mm and 5 mm. That is to say, the width of the above-mentioned opening can be between 0 mm and 5 mm.
  • the above-mentioned opening 121 is only a gap, or the insulating ring 12 is not connected to form a closed ring.
  • the edge shape of the opening 121 is not limited. As shown in FIG. 3 , the edge of the opening 121 may be linear.
  • FIG. 4 is a schematic structural diagram of another top view of the thermal conductive structure in an embodiment of the present application. As shown in FIG. 4 , in another embodiment, the edge of the opening 121 may also be in a zigzag shape. In this solution, the opening 121 is provided. At the same time, it is also helpful to reduce the risk of leakage of the internal heat conduction part 11 and improve the reliability of the heat conduction structure 1 .
  • the edge of the opening 121 may also be arc-shaped or wavy-shaped, which will not be listed here.
  • the specific position of the above-mentioned opening 121 is not limited. Taking the shape of the thermal conductive structure 1 as a square as an example, as shown in Figure 3 or Figure 4, in one embodiment, the above-mentioned opening 121 can be provided at the edge of the thermal conductive structure 1; Figure 5 shows the thermal conductive structure in the embodiment of the present application. Another top view of the structure is shown in FIG. 5 . In another embodiment, the above-mentioned opening 121 can also be provided at a corner of the thermally conductive structure 1 .
  • the number of openings 121 included in the insulating ring 12 is not limited. As shown in FIGS. 3 to 5 , in one embodiment, the above-mentioned insulating ring 12 may include one opening 121 .
  • Figure 6 is another schematic top view of the thermal conductive structure in the embodiment of the present application. As shown in Figure 6, in another embodiment, the above-mentioned insulating ring 12 can also include two openings 121, and the two openings 121 can be disposed in Opposite sides. Of course, in other embodiments, the above-mentioned insulating ring 12 may also be provided with multiple openings 121 , such as three, four or more openings 121 .
  • the specific shape of the above-mentioned thermal conductive structure 1 is not limited.
  • the shape of the edge of the above-mentioned thermal conductive part 11, the inner edge shape of the insulating ring 12, and the outer edge shape of the insulating ring 12 are all the same.
  • the shape of each of the above edges is not limited. In one embodiment, as shown in FIG. 6 , each of the above-mentioned edges is square; in another embodiment, as shown in FIG. 7 , each of the above-mentioned edges are in a circular shape.
  • FIG. 8 is another top structural schematic diagram of the thermal conductive structure in the embodiment of the present application.
  • the outer edge shape of the insulating ring 12 may be different from the above-mentioned shape.
  • the edge shape of the thermal conductive portion 11 and the inner edge shape of the insulating ring 12 are both circular, while the outer edge shape of the insulating ring 12 is square.
  • the heat conducting part 11 and the insulating ring 12 can be connected more reliably, and the insulating ring 12 can protect the heat conducting part 11 so that the heat conducting part 11 is not easy to leak out from the insulating ring 12 .
  • the shapes of the thermal conductive portion 11 and the insulating ring 12 can be designed according to the shape and installation position of the heating device, and this application will not list them one by one.
  • the insulating ring 12 of the thermally conductive structure 1 is fixedly connected to the thermally conductive portion 11 , for example, by gluing or interference assembly.
  • This solution allows the thermally conductive structure 1 to be an integrated structure, thereby facilitating transportation and installation of the thermally conductive structure 1 .
  • the above-mentioned insulating ring 12 and the thermal conductive part 11 can also be an integrally formed structure, that is, the thermal conductive structure 1 is formed in one process.
  • the insulating ring 12 and the heat-conducting part 11 are fixed more reliably, which is beneficial to improving the reliability of the heat-conducting structure 1 and the heat-conducting part 11 is not easy to leak from the insulation.
  • FIG. 9 is another top structural schematic diagram of the thermal conductive structure in the embodiment of the present application.
  • the specific width of the above-mentioned gap 13 is not limited, and can be, for example, 0 to 5 mm.
  • This solution can absorb the deformation of the thermal conductive part 11 and the insulating ring 12, or be used to adapt to the specific structure of the electronic device.
  • the heat conductive part 11 and the insulating ring 12 can be two independent components, which are prepared, transported and installed separately.
  • FIG. 10 is another top structural schematic diagram of the thermal conductive structure in the embodiment of the present application.
  • the above-mentioned gap 13 may be set to not completely surround the thermal conductive part 11 .
  • the gap 13 is disposed at any one, two or three sides and does not form a closed annular gap, for example, as shown in Figure 10
  • the above-mentioned slits 13 are located at two opposite sides of the quadrangular heat conduction portion 11 .
  • the above-mentioned gap 13 can be used not only to absorb the deformation of the thermal conductive part 11 and the insulating ring 12, but also to fix the thermal conductive part 11 and the insulating ring 12 to facilitate the installation and transportation of the thermal conductive structure.
  • FIG. 11 is a schematic structural diagram of an electronic device in an embodiment of the present application.
  • the electronic device includes a heating device 2, a heat dissipation device device 3 and the thermal conductive structure 1 in any of the above embodiments.
  • the thermal conductive structure 1 is disposed between the heating device 2 and the heat sink 3. Specifically, both sides of the thermal conductive portion 11 can be in contact with the heating device 2 and the heat sink respectively, so as to transfer heat between the heating device 2 and the heat sink.
  • the thermal conductive structure 1 in this embodiment has strong thermal conductivity, so the electronic device has strong heat dissipation capability.
  • the thermally conductive structure 1 is less likely to cause a short circuit of the electronic equipment, which is beneficial to improving the reliability of the electronic equipment.
  • one side of the above-mentioned insulating ring 12 is in contact with the heating device 2 , and the other side is in contact with the heat sink 3 .
  • This solution enables the thermal conductive part 11 to be sealed between the heating device 2, the heat sink 3 and the insulating ring 12, thereby effectively reducing the probability of the thermal conductive part 11 leaking to the outside and improving the structural reliability of the electronic device.
  • the thermal conductive structure 1 includes a first side 14 and a second side 15 that are opposite to each other.
  • the thermal conductive structure 1 is specifically a sheet-like structure.
  • the thermal conductive structure 1 includes the first side 14 and the second side 15 that are opposite to each other.
  • the surfaces of the thermal conductive portion 11 and the insulating ring 12 are located on the same plane.
  • the surfaces of the thermal conductive portion 11 and the insulating ring 12 are located on the same plane.
  • the preparation process of the thermally conductive structure 1 in this solution is relatively simple, which is conducive to simplifying the preparation process of the thermally conductive structure 1. In addition, it is also beneficial to storage and transportation of the thermally conductive structure 1.
  • This solution is mainly applicable when one side of the heating device 2 has a planar structure, and one side of the heat sink 3 also has a planar structure.
  • Figure 12 is a schematic cross-sectional structural diagram of another thermal conductive structure in an embodiment of the present application.
  • the thermal conductive portion 11 and the insulating ring The surfaces of 12 are located on the same plane.
  • the insulating ring 12 protrudes from the surface of the thermally conductive portion 11.
  • the thermal conductive structure 1 can be adapted to situations where one side of the heating device 2 is non-planar, or one side of the heat sink 3 is non-planar.
  • This solution is mainly applicable to the situation where one side of the heating device 2 has a planar structure and one side of the heat sink 3 has a first protrusion 31; or, one side of the heating device 2 has a second protrusion 21 and the heat sink 3 One side of the heat sink 3 has a planar structure; or, the heating device 2 is disposed on the circuit board 4, the heating device 2 itself protrudes from the circuit board 4, and one side of the heat sink 3 has a planar structure.
  • FIG 13 is another structural schematic diagram of an electronic device in an embodiment of the present application.
  • the above-mentioned heating device 2 is disposed on the circuit board 4, and the heating device 2 protrudes from the circuit board 4. , then the heating device 2 corresponds to the above-mentioned second protrusion 21.
  • the thermal conductive structure 1 can be as shown in Figure 12.
  • the above-mentioned insulating ring 12 protrudes from the thermal conductive part 11, so that the second side 15 of the above-mentioned thermal conductive structure 1 faces one side of the circuit board 4. side.
  • the heat conduction part 11 and the insulating ring 12 on the first side 14 of the heat conduction structure 1 are both arranged in contact with the radiator 3; on the second side 15 of the heat conduction structure 1, the heat conduction part 11 is in contact with the heating device 2 and is insulated.
  • the ring 12 is arranged in contact with the circuit board 4 .
  • This solution can also seal the heat conductive part 11 between the heat sink 3, the circuit board 4 and the insulating ring 12, so that the heat conductive part 11 is not easy to leak.
  • the thermal conductive structure 1 in the embodiment shown in FIG. 11 when applied to electronic equipment, it can also be shown in FIG. 11 .
  • the insulating ring 12 has a certain degree of elasticity and is compressed when it is between the heating device 2 and the heat sink 3 . This solution is conducive to improving the reliability of the insulating ring 12 in protecting the heat conductive part 11 .
  • Figure 14 is a schematic cross-sectional view of another thermal conductive structure in an embodiment of the present application.
  • the thermal conductive structure 1 can be adapted to the shape of one side of the heating device 2 or the shape of one side of the heat sink 3 .
  • This solution is mainly applicable to the situation where one side of the heating device 2 has a second protrusion 21 and one side of the heat sink 3 has a first protrusion 31; or, the heating device 2 is arranged on the circuit board 4, and the heating device 2 itself has a protrusion. This is due to the fact that the circuit board 4 is installed and one side of the heat sink 3 has a planar structure.
  • FIG. 15 is another schematic structural diagram of an electronic device in an embodiment of the present application.
  • the above-mentioned heating device 2 is provided on the circuit board 4 , and the heating device 2 itself has a second protrusion 21 , and in addition, the heat sink 3 has a first protrusion 31 .
  • the thermal conductive structure 1 in this embodiment is shown in Figure 14. When the thermal conductive structure 1 is disposed between the heating device 2 and the radiator 3, the first side 14 of the thermal conductive structure 1 faces the side of the radiator 3 to conduct heat.
  • the portion 11 is in contact with the first protrusion 31 of the radiator 3, and the insulating ring 12 is in contact with the position of the radiator 3 that does not have the first protrusion 31; the second side 15 of the above-mentioned thermal conductive structure 1 is disposed toward the heating device 2 to conduct heat.
  • the part 11 is in contact with the heating device 2, and the insulating ring 12 is in contact with the circuit board 4.
  • This solution can also seal the heat conductive part 11 between the heat sink 3, the circuit board 4 and the insulating ring 12, so that the heat conductive part 11 is not easy to leak.
  • the thermal conductive structure 1 in the embodiment shown in FIG. 14 when applied to electronic equipment, it can also be shown in FIG. 11 .
  • the insulating ring 12 has a certain degree of elasticity and is compressed when it is between the heating device 2 and the heat sink 3 . This solution is conducive to improving the reliability of the insulating ring 12 in protecting the heat conductive part 11 .
  • the “contact setting” in the embodiment of the present application may include direct contact or indirect contact, which mainly means that there is no gap between the two.
  • a and B are in contact
  • a and B can be in direct contact
  • a transition piece C can be provided between A and B, that is to say, A and C are in direct contact
  • C and B are in direct contact, so that A and B There is no gap between them.
  • the thickness of the insulating ring 12 is greater than the thickness of the thermal conductive layer, so the strength of the insulating ring 12 is also greater, and its ability to resist earthquakes and aging is stronger. This solution is beneficial to improving the service life and reliability of the thermal conductive structure 1.
  • the above-mentioned heating device 2 may be a chip, which is not specifically limited in this application.
  • the above-mentioned electronic equipment can be vehicle-mounted electronic equipment. During the operation of the vehicle, vibrations and other situations are prone to occur.
  • the insulating ring 12 can protect the heat-conducting portion 11. Therefore, it can better adapt to scenarios with poor vibration, which is beneficial to Improve the heat dissipation performance of the vehicle's on-board electronic equipment, thereby improving the service life and performance of the vehicle's on-board electronic equipment.
  • This application also provides a terminal, which includes the above electronic device.
  • the specific type of the terminal is not limited.
  • it can be a communication terminal such as a server or a memory, a mobile terminal such as a notebook computer or a tablet computer, or other terminals such as a vehicle or home equipment.
  • the terminal has strong heat dissipation capacity and good working ability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请提供了一种导热结构、电子设备及终端,该导热结构包括导热部和绝缘环。上述导热部的上下两侧至少部分裸露,导热部可以与两侧的发热器件以及散热器接触,进行热量的传导。绝缘环可以在导热部的周侧保护导热部,导热结构出现老化或者损坏等情况,内部的导热部不易散落。因此,导热部可以设置为高导热材质的导热部,具体可以为导电材质制备的导热部,使得导热结构的导热能力得到提升,且不易造成短路风险。具体设置上述导热结构时,上述绝缘环为封闭环,或者所述绝缘环具有开口。

Description

一种导热结构、电子设备及终端 技术领域
本申请涉及散热结构技术领域,尤其涉及到一种导热结构、电子设备及终端。
背景技术
随着电子技术的发展,芯片的计算能力不断提升,功耗也大幅上升,芯片尺寸也朝向小型化的方向发展。因此,芯片产生的热量也越来越多,热量的密度也越来越大,这对芯片的散热能力提出了较高的挑战。
现有技术中,通常利用散热器为芯片散热,为了保证将芯片的热量高效的传导至散热器,需要在散热器与芯片之间设置导热层。导热层的导热能力对于芯片的散热能力具有较为重要的影响。此外,导热层的结构可靠性也较为重要,从而在电子设备发生振动等情况下,需要使得导热层能够较为可靠,而不易损坏。
发明内容
本申请提供了一种导热结构、电子设备及终端,以使绝缘环保护导热部,从而导热部可以采用导热材料制备,以提升导热结构的导热效率。
第一方面,本申请提供了一种导热结构,该导热结构包括导热部和绝缘环。上述导热部位于所述绝缘环的内部,上述导热部的上下两侧至少部分裸露,导热部可以与两侧的发热器件以及散热器接触,进行热量的传导。绝缘环可以在导热部的周侧保护导热部,导热结构出现老化或者损坏等情况,也主要集中在绝缘环,而内部的导热部不易散落。因此,导热部可以设置为高导热材质的导热部,也就是可以为导电材质制备的导热部,使得导热结构的导热能力得到提升,且不易造成短路风险。具体的技术方案中,上述绝缘环为封闭环,或者所述绝缘环具有开口。上述绝缘环可以为封闭环,完全围绕导热部设置。该方案中的导热部被绝缘环完全包围设置,则导热部不易从绝缘环内泄漏出来,有利于提升导热结构的可靠性。上述绝缘环还可以具有开口,当将导热结构安装至电子设备后,绝缘环的开口可以吸收变形,从而绝缘环不易出现褶皱或者拉扯。具体的,所述开口的数量可以为一个或多个。
具体设置上述导热结构时,上述导热结构包括相背的第一侧和第二侧。在导热结构的第一侧,导热部的表面与绝缘环的表面位于同一平面。在导热结构的第二侧,导热部的表面与绝缘环的表面位于同一平面。也就是说,上述导热部的厚度与绝缘环的厚度相同,且导热结构的两个侧面都为平面。该方案适用于散热器一侧为平面,发热器件一侧也为平面的场景。
另一种技术方案中,上述在上述导热结构的第一侧,上述导热部与绝缘环的表面位于同一平面。在上述导热层的第二侧,上述绝缘环凸出于上述导热部的表面。该实施例中,可以使导热结构适用于发热器件一侧为非平面的情况,或者散热器一侧为非平面的情况。即使某一侧的结构不是平面,也可以保证绝缘环将导热部密封,以保护导热部,降低短路风险。
再一种技术方案中,上述导热结构的第一侧,上述绝缘环凸出于上述导热部的表面, 在上述导热层的第二侧,上述绝缘环凸出于上述导热部的表面。该方案主要适用于发热器件的一侧为非平面,且散热器的一侧也为非平面的情况。该方案也可以保证绝缘环将导热部密封,以保护导热部,降低短路风险。
具体设置上述绝缘环与导热部时,可以使上述绝缘环与所述导热部固定连接。也就是说,上述导热部和绝缘环分别制造,再进行固定。具体的技术方案中,可以使上述绝缘环和导热部通过粘接的方式固定粘接。
另一种技术方案中,上述绝缘环与导热部为一体成型结构。该方案可以提升绝缘环与导热部之间连接可靠性,使得导热部更加不易损坏。
再一种技术方案中,上述绝缘环与所述导热部之间具有缝隙。该方案可以吸收导热部与绝缘环的变形,或者,用于适应电子设备的具体结构。此外,导热部和绝缘环可以为独立的两个部件,分别进行制备、运输和安装。
具体制备上述绝缘环时,上述绝缘环的材料可以为泡棉、橡胶或密封胶中的至少一种。成本较低且便于制备。
或者,还可以使上述绝缘环为导热材料制备,该导热材料具体也为绝缘材料。该方案可以提升导热结构的导热面积,有利于提升导热结构的导热效率以及导热能力。
当绝缘环为导热材料制备时,上述绝缘环的材料具体可以包括导热凝胶、导热绝缘胶带、导热胶或者导热绝缘膜。上述导热材料的导热系数可能低于导热部,但是仍然具有一定的导热性。
具体的,上述导热部的导热系数大于或等于10W/(m·K)。具体的,上述导热部的导热系数还可以大于或者等于30W/(m·K)。可以提升导热结构的导热效率。
上述导热部的具体材料包括碳纤维或者石墨烯。
此外,上述导热部的形状和绝缘环的形状均不作限制。一种具体的技术方案中,可以使导热部的边缘的形状与绝缘环的内边缘形状相同。该方案可以提升导热部与绝缘环之间的配合度。可选的,上述形状可以为三角形、方形、多边形、圆形、椭圆形、异形等各种可能的形状。
第二方面,本申请还提供了一种电子设备,该电子设备包括发热器件、散热器和上述第一方面的导热结构。上述导热结构设置于所述发热器件与所述散热器之间,用于将发热器件的热量传导至散热器。该方案中的导热结构导热效率较高,且可靠性较好,可以降低短路风险。
具体设置上述导热结构时,可以使所述绝缘环的一侧与所述发热器件接触设置,另一侧与所述散热器接触设置。从而使得导热部封闭于上述发热器件、绝缘环和散热器之间,使得导热部出现老化或者损坏时也不易落至电子设备的电路区,降低短路风险。
另一种技术方案中,上述发热器件设置于电路板,则可以时所述绝缘环的一侧与所述电路板接触设置,另一侧与所述散热器接触设置。该方案使得导热部封闭于上述电路板、绝缘环和散热器之间,使得导热部出现老化或者损坏时也不易落至电子设备的电路区,降低短路风险。
具体的技术方案中,上述电子设备为车载电子设备。由于车辆运行过程中容易出现振动等情况,而该方案中的导热结构在振动的场景下也不易出现脱落,因此可以有效的提升车载电子设备的散热效率。
第三方面,本申请还提供了一种终端,该终端包括上述第二方面的电子设备。终端的 散热能力较强,工作状态较好。
附图说明
图1为本申请实施例中导热结构的一种俯视结构示意图;
图2为本申请实施例中导热结构的一种剖视结构示意图;
图3为本申请实施例中导热结构的另一种俯视结构示意图;
图4为本申请实施例中导热结构的另一种俯视结构示意图;
图5为本申请实施例中导热结构的另一种俯视结构示意图;
图6为本申请实施例中导热结构的另一种俯视结构示意图;
图7为本申请实施例中导热结构的另一种俯视结构示意图;
图8为本申请实施例中导热结构的另一种俯视结构示意图;
图9为本申请实施例中导热结构的另一种俯视结构示意图;
图10为本申请实施例中导热结构的另一种俯视结构示意图;
图11为本申请实施例中电子设备的一种结构示意图;
图12为本申请实施例中导热结构的另一种剖视结构示意图;
图13为本申请实施例中电子设备的另一种结构示意图;
图14为本申请实施例中导热结构的另一种剖视结构示意图;
图15为本申请实施例中电子设备的另一种结构示意图。
附图标记:
1-导热结构;
11-导热部;
12-绝缘环;
121-开口;
13-缝隙;
14-第一侧;
15-第二侧;
2-发热器件;
21-第二凸起;
3-散热器;
31-第一凸起;
4-电路板。
具体实施方式
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的 不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为了方便理解本申请实施例提供的可折叠终端,下面首先介绍一下其应用场景。随着电子技术的发展,对于芯片等发热器件的散热需求越来越明显。现有技术中,对于发热器件的散热通常利用散热器来实现,而为了保证散热效果,需要在发热器件与散热器之间设置导热结构。该导热结构具有导热性,可以将发热器件的热量传导至散热器以进行散热。此外,导热结构通常具有一定的柔性,可以使得发热器件和散热器之间较为可靠的接触,提升接触面积,以提升发热器件的散热效果。导热结构的材质包括绝缘材质和导电材质,而通常导热性能较好的导热结构通常为导电材质的导热结构。而芯片等发热器件通常应用于电路板等电结构中,因此,在一些场景下,若导热结构为导电材质,容易出现短路的情况。特别是振动恶劣以及长时间使用的场景下,导热结构易于损坏,损坏后的导热结构可能部分脱离,脱落后的导热结构落在电路板等电路结构中,很容易导致电路短路。为此本申请提供了一种导热结构及电子设备。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
图1为本申请实施例中导热结构的一种俯视结构示意图,图2为本申请实施例中导热结构的一种剖视结构示意图。请参考图1和图2,本申请实施例中的导热结构1包括导热部11和绝缘环12,上述导热部11位于绝缘环12的内部。也就是说,绝缘环12围绕于导热部11的周侧设置,且导热部11的上下两侧至少部分裸露,以使得导热部11可以与两侧的发热器件以及散热器接触,进行热量的传导。上述导热部11的上下两侧指的是导热部11与发热器件接触的一侧,以及与散热器接触的一侧。本实施例中,导热部11的周侧具有绝缘环12的保护,即使导热结构1出现老化或者损坏等情况,也主要集中在绝缘环12,而内部的导热部11不易散落。因此,导热部11可以设置为高导热材质的导热部11,可以为导电材质制备的导热部11,使得导热结构1的导热能力得到提升,且不易造成短路风险。
具体的实施例中,可以使上述绝缘环12的抗老化能力强于导热部11的抗老化能力,从而当导热部11老化时,绝缘环12的老化程度也较低,则不易损坏,对于导热部11的保护效果较好。此外,还可以使绝缘环12的机械强度大于导热部11的机械强度,从而在振动过程中,绝缘环12不易损坏,因此,该方案中导热结构1的抗振动能力也较好。
具体的实施例中,上述绝缘环12的材料可以为泡棉、橡胶和密封胶中的至少一种。上述材料一方面具有一定的柔性,便于安装;另一方面,易于制作且成本较低。
另一种具体的实施例中,上述绝缘环12还可以采用导热材料制备。该导热材料具有一定的导热性,当然,其导热性可能低于导热部11的导热性。从而绝缘环12也可以进行导热,以提升导热结构1的导热面积,提升导热结构1的导热效果。例如,上述导热材料可以为导热凝胶、导热绝缘胶带、导热胶或者导热绝缘膜,上述导热胶可以采用加热固化或者室温固化的方式形成,也就是说,上述导热胶可以为加热固化导热胶或者室温固化导热胶。此外,还可以利用导热凝胶等来制备上述绝缘环12。
上述导热部11具体可以采用导电材质制备,从而具有较好的导热性能。例如,上述导热部11的导热系数大于或等于10W/(m·K)。其中,导热系数指的是:在稳定传热条件下, 1米(m)厚的材料,两侧表面的温差为1度(K或℃),在一定时间内,通过1平方米面积传递的热量。导热系数的单位为瓦/米·度(W/(m·K),此处为K可用℃代替。例如,上述导热部11的导热系数可以为11W/(m·K)、15W/(m·K)、18W/(m·K)、20W/(m·K)、22W/(m·K)、25W/(m·K)、26W/(m·K)、30W/(m·K)、35W/(m·K)或者40W/(m·K)等,此处不进行一一列举。例如,上述导热部11的材料包括碳纤维或者石墨烯,上述两种材质的导热能力较强,有利于提升导热结构1的导热能力。
请继续参考图1,具体设置上述绝缘环12时,上述绝缘环12可以为封闭环。也就是说绝缘环12不具有开口121,完全围绕导热部11设置。该方案中的导热部11被绝缘环12完全包围设置,则导热部11不易从绝缘环12内泄漏出来,有利于提升导热结构1的可靠性。此外绝缘环12作为一个整体结构,便于安装。
具体的实施例中,上述绝缘环12可以为一体成型结构,也就是说,采用一次成型的工艺就制备形成封闭环。该实施例有利于简化绝缘环12的制备工艺,且绝缘环12的整体强度较大。
或者,另一种具体的实施例中,上述绝缘环12还可以通过粘接等固定连接的方式形成封闭环。总之,本申请对于封闭环的形成方式不做限制,只要能够形成封闭环即可。
图3为本申请实施例中导热结构的另一种俯视结构示意图,如图3所示,另一种实施例中,上述绝缘环12还具有开口121。该实施例中,当将导热结构1安装至电子设备后,绝缘环12的开口可以吸收变形,从而绝缘环12不易出现褶皱或者拉扯。
上述开口的尺寸不做限制,例如,上述开口的宽度可以为0毫米至5毫米之间,也就是说上述开口的宽度可以为0mm~5mm。一种实施例中,上述开口121仅仅为一个缝隙,或者说绝缘环12并未连接成封闭环。
具体设置上述开口121时,上述开口121的边缘形状不做限制,如图3所示,上述开口121的边缘可以为直线型。或者,图4为本申请实施例中导热结构的另一种俯视结构示意图,如图4所示,另一种实施例中,上述开口121的边缘还可以为锯齿形,该方案在设置开口121的同时,还有利于减少内部的导热部11泄漏的风险,提升导热结构1的可靠性。此外,上述开口121的边缘还可以为弧形或者波浪形等,此处不进行一一列举。
具体设置上述开口121时,上述开口121的具体位置也不做限制。以导热结构1的形状为方形为例,如图3或图4所示,一种实施例中,可以将上述开口121设置于导热结构1的边的位置;图5为本申请实施例中导热结构的另一种俯视结构示意图,如图5所示,另一种实施例中,还可以将上述开口121设置于导热结构1的角的位置。
此外,具体的实施例中,绝缘环12包括的开口121数量也不做限制,如图3~图5所示,一种实施例中,上述绝缘环12可以包括一个开口121。图6为本申请实施例中导热结构的另一种俯视结构示意图,如图6所示,另一种实施例中,上述绝缘环12还可以包括两个开口121,两个开口121可以设置于相对的两侧。当然,在其他实施例中,上述绝缘环12还可以设置有多个开口121,例如三个、四个或者更多的开口121。
具体的实施例中,上述导热结构1的具体形状不做限制,一种实施例中,上述导热部11的边缘的形状、绝缘环12的内边缘形状和绝缘环12的外边缘形状均相同,但是上述各个边缘的形状不做限制。一种实施例如图6所示,上述各个边缘均为方形;另一种实施例如图7所示,上述各个边缘均为圆形。
或者,图8为本申请实施例中导热结构的另一种俯视结构示意图,如图8所示,另一 种实施例中,仅导热部11的边缘的形状和绝缘环12的内边缘形状相同,绝缘环12的外边缘形状与上述形状可以不同。如图8所示的实施例中,上述导热部11的边缘的形状和绝缘环12的内边缘形状均为圆形,而绝缘环12的外边缘形状为方形。该实施例中,可以使得导热部11与绝缘环12较为可靠的连接,且有利于使得绝缘环12保护导热部11,使得导热部11不易从绝缘环12中泄漏出来。
具体的实施例中,上述导热部11和绝缘环12的形状可以根据发热器件的形状以及安装位置的情况进行设计,本申请不进行一一列举。
具体的实施例中,如图1~图8所示,上述导热结构1的绝缘环12与导热部11固定连接,例如可以通过胶粘或者过盈装配的方式将绝缘环12和导热固定连接。该方案可以使得导热结构1为一体结构,从而便于运输和安装上述导热结构1。
或者,另一种实施例中,上述绝缘环12与导热部11还可以为一体成型结构,也就是采用一次工艺制备形成导热结构1。该方案中的绝缘环12与导热部11之间较为可靠的固定,从而有利于提升导热结构1的可靠性,导热部11不易从绝缘泄漏。
图9为本申请实施例中导热结构的另一种俯视结构示意图,如图9所示,另一种实施例中,上述导热部11与绝缘环12之间还具有缝隙13。上述缝隙13的具体宽度不做限制,例如可以为0~5mm等,该方案可以吸收导热部11与绝缘环12的变形,或者,用于适应电子设备的具体结构。该实施例中,导热部11和绝缘环12可以为独立的两个部件,分别进行制备、运输和安装。
图10为本申请实施例中导热结构的另一种俯视结构示意图,如图10所示,可选的设计中,上述缝隙13可以设置为不完全环绕导热部11。例如,上述缝隙13在导热部11外边缘形状为四边形的情况下,缝隙13设置在任一个、任两个或者任三个边的位置,并未形成闭合的环状缝隙,例如,图10所示的实施例中,上述缝隙13位于四边形的导热部11的相对的两个边。该方案中,既可以利用上述缝隙13来吸收导热部11与绝缘环12的变形,还可以使得导热部11与绝缘环12固定,以便于安装和运输导热结构。
基于相同的发明构思,本申请还提供了一种电子设备,具体的,图11为本申请实施例中电子设备的一种结构示意图,如图11所示,该电子设备包括发热器件2、散热器3和上述任一实施例中的导热结构1。该导热结构1设置于发热器件2与散热器3之间,具体可以使导热部11的两侧分别与上述发热器件2和散热接触,以在上述发热器件2与散热之间传输热量。该实施例中的导热结构1的导热能力较强,因此电子设备的散热能力较强。此外,导热结构1不易造成电子设备的短路,有利于提升电子设备的可靠性。
具体的实施例中,如图11所示,上述绝缘环12的一侧与发热器件2接触,另一侧与散热器3接触设置。该方案使得导热部11密封于发热器件2、散热器3以及绝缘环12之间,从而可以有效的减小导热部11泄漏至外部的概率,提升电子设备的结构可靠性。
请结合图2和图11,具体的实施例中,导热结构1包括相背的第一侧14和第二侧15。上述导热结构1具体为片状结构,沿垂直于导热部11的表面的方向,导热结构1包括上述相背的第一侧14和第二侧15。在上述导热结构1的第一侧14,上述导热部11与绝缘环12的表面位于同一平面,在上述导热层的第二侧15,上述导热部11与绝缘环12的表面位于同一平面。该方案中的导热结构1制备工艺较为简单,有利于简化导热结构1的制备工艺,此外,还有利于储存和运输上述导热结构1。该方案主要适用于发热器件2一侧为平面结构,且散热器3的一侧也为平面结构。
图12为本申请实施例中导热结构的另一种剖视结构示意图,如图12所示,另一种实施例中,在上述导热结构1的第一侧14,上述导热部11与绝缘环12的表面位于同一平面,在上述导热结构1的第二侧15,上述绝缘环12凸出于上述导热部11的表面。该实施例中,可以使导热结构1适用于发热器件2一侧为非平面的情况,或者散热器3一侧为非平面的情况。该方案主要适用于发热器件2的一侧为平面结构,而散热器3的一侧具有第一凸起31的情况;或者,发热器件2的一侧具有第二凸起21,而散热器3的一侧为平面结构的情况;再或者,发热器件2设置于电路板4,发热器件2本身凸出于电路板4设置,而散热器3的一侧为平面结构的情况。
图13为本申请实施例中电子设备的另一种结构示意图,如图13所示,另一种实施例中,上述发热器件2设置于电路板4,发热器件2凸出于电路板4设置,则发热器件2相当于上述第二凸起21。此时,导热结构1可以如图12所示,在导热结构1的第二侧15,上述绝缘环12凸出于导热部11,使上述导热结构1的第二侧15朝向电路板4的一侧。具体的,使上述导热结构1的第一侧14的导热部11和绝缘环12均与散热器3接触设置;上述导热结构1的第二侧15,导热部11与发热器件2接触设置,绝缘环12与电路板4接触设置。该方案同样可以使导热部11被封闭于散热器3、电路板4和绝缘环12之间,使得导热部11不易泄漏。
当然,图11所示实施例中的导热结构1,应用至电子设备时,也可以如图11所示。该实施例中,绝缘环12具有一定的弹性,在发热器件2与散热器3之间时被压缩,该方案有利于提升绝缘环12保护导热部11的可靠性。
图14为本申请实施例中导热结构的另一种剖视结构示意图,如图14所示,另一种实施例中,在上述导热结构1的第一侧14,上述绝缘环12凸出于上述导热部11的表面,在上述导热层的第二侧15,上述绝缘环12凸出于上述导热部11的表面。该实施例中,可以使导热结构1适应于发热器件2一侧的形状,或者散热器3一侧的形状。该方案主要适用于发热器件2的一侧具有第二凸起21,且散热器3的一侧具有第一凸起31的情况;或者,发热器件2设置于电路板4,发热器件2本身凸出于电路板4设置,而散热器3的一侧为平面结构的情况。
图15为本申请实施例中电子设备的另一种结构示意图。如图15所示,另一种实施例中,上述发热器件2设置于电路板4,且发热器件2自身具有第二凸起21,此外,散热器3具有第一凸起31。该实施例中的导热结构1如图14所示,将上述导热结构1设置于发热器件2与散热器3之间时,上述导热结构1的第一侧14朝向散热器3的一侧,导热部11与散热器3的第一凸起31接触设置,绝缘环12与散热器3不具有第一凸起31的位置接触设置;上述导热结构1的第二侧15朝向发热器件2设置,导热部11与发热器件2接触设置,绝缘环12与电路板4接触设置。该方案同样可以使导热部11被封闭于散热器3、电路板4和绝缘环12之间,使得导热部11不易泄漏。
当然,图14所示实施例中的导热结构1,应用至电子设备时,也可以如图11所示。该实施例中,绝缘环12具有一定的弹性,在发热器件2与散热器3之间时被压缩,该方案有利于提升绝缘环12保护导热部11的可靠性。
值得说明的是,本申请实施例中的“接触设置”可以包括直接接触或者间接接触,主要指两者之间不具有缝隙。例如,A与B接触设置,则A与B可以直接接触;或者,A与B之间还可以设置有过渡件C,也就是说A与C直接接触,C与B直接接触,使得A 与B之间不具有缝隙。
上述图12和图14所示的实施例中,上述绝缘环12的厚度大于导热层的厚度,则绝缘环12的强度也较大,抗震和抗老化的能力均较强。该方案有利于提升导热结构1的使用寿命,以及可靠性。
具体的实施例中,上述发热器件2可以为芯片,本申请对此不做具体限制。上述电子设备可以为车载电子设备,车辆在运行过程中,容易出现振动等情况,本申请实施例中,绝缘环12可以保护导热部11,因此,可以较好的适应振动劣的场景,有利于提升车辆的车载电子设备的散热性能,进而提升车载电子设备的使用寿命和性能等。
本申请还提供了一种终端,该终端包括上述电子设备。该终端的具体类型不做限制,例如可以为服务器或者存储器等通信终端,也可以为笔记本电脑或者平板电脑等移动终端,还可以为车辆、家居设备等其它终端。该终端的散热能力较强,则具有较好的工作能力。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种导热结构,其特征在于,包括导热部和绝缘环,所述导热部位于所述绝缘环的内部,所述绝缘环为封闭环,或者所述绝缘环具有开口。
  2. 如权利要求1所述的导热结构,其特征在于,所述导热结构包括相背的第一侧和第二侧,在所述导热结构的所述第一侧,所述导热部的表面与所述绝缘环的表面位于同一平面;在所述导热结构的第二侧,所述导热部的表面与所述绝缘环的表面位于同一平面。
  3. 如权利要求1所述的导热结构,其特征在于,所述导热结构包括相背的第一侧和第二侧,在所述导热结构的所述第一侧,所述导热部的表面与所述绝缘环的表面位于同一平面,在所述导热结构的所述第二侧,所述绝缘环凸出于所述导热部。
  4. 如权利要求1所述的导热结构,其特征在于,所述导热结构包括相背的第一侧和第二侧,在所述导热结构的所述第一侧,所述绝缘环凸出于所述导热部,在所述导热结构的所述第二侧,所述绝缘环凸出于所述导热部。
  5. 如权利要求1~4任一项所述的导热结构,其特征在于,所述绝缘环与所述导热部固定连接。
  6. 如权利要求1~4任一项所述的导热结构,其特征在于,所述绝缘环与所述导热部为一体成型结构。
  7. 如权利要求1~4任一项所述的导热结构,其特征在于,所述绝缘环与所述导热部之间具有缝隙。
  8. 如权利要求1~7任一项所述的导热结构,其特征在于,所述绝缘环的材料包括泡棉、橡胶或密封胶。
  9. 如权利要求1~7任一项所述的导热结构,其特征在于,所述绝缘环为导热材料制备。
  10. 如权利要求9所述的导热结构,其特征在于,所述绝缘环的材料包括导热凝胶、导热绝缘胶带、导热胶或者导热绝缘膜。
  11. 如权利要求1~10任一项所述的导热结构,其特征在于,所述导热部的导热系数大于或等于10W/(m·K)。
  12. 如权利要求1~11任一项所述的导热结构,其特征在于,所述导热部的材料包括碳纤维或者石墨烯。
  13. 如权利要求1~12任一项所述的导热结构,其特征在于,所述导热部的边缘的形状与所述绝缘环的内边缘形状相同。
  14. 一种电子设备,其特征在于,包括发热器件、散热器和如权利要求1~13任一项所述的导热结构,所述导热结构设置于所述发热器件与所述散热器之间。
  15. 如权利要求14所述的电子设备,其特征在于,所述绝缘环的一侧与所述发热器件接触设置,另一侧与所述散热器接触设置。
  16. 如权利要求14或15所述的电子设备,其特征在于,所述发热器件设置于电路板,所述绝缘环的一侧与所述电路板接触设置,另一侧与所述散热器接触设置。
  17. 如权利要求14~16任一项所述的电子设备,其特征在于,所述电子设备为车载电子设备。
  18. 一种终端,其特征在于,所述终端包括如权利要求14~17任一项所述的电子设备。
PCT/CN2022/113134 2022-08-17 2022-08-17 一种导热结构、电子设备及终端 WO2024036525A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113134 WO2024036525A1 (zh) 2022-08-17 2022-08-17 一种导热结构、电子设备及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113134 WO2024036525A1 (zh) 2022-08-17 2022-08-17 一种导热结构、电子设备及终端

Publications (1)

Publication Number Publication Date
WO2024036525A1 true WO2024036525A1 (zh) 2024-02-22

Family

ID=89940434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113134 WO2024036525A1 (zh) 2022-08-17 2022-08-17 一种导热结构、电子设备及终端

Country Status (1)

Country Link
WO (1) WO2024036525A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392890B1 (en) * 2000-12-20 2002-05-21 Nortel Networks Limited Method and device for heat dissipation in an electronics system
CN101052291A (zh) * 2007-04-25 2007-10-10 陈鸿文 一种预先成形的板状体散热元件
CN106455419A (zh) * 2016-09-05 2017-02-22 珠海格力电器股份有限公司 一种电子设备散热结构
CN111675880A (zh) * 2019-11-28 2020-09-18 哈尔滨理工大学 一种新型软性绝缘导热垫
CN211831630U (zh) * 2020-03-21 2020-10-30 宁波吉品科技有限公司 散热式射频测试平台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6392890B1 (en) * 2000-12-20 2002-05-21 Nortel Networks Limited Method and device for heat dissipation in an electronics system
CN101052291A (zh) * 2007-04-25 2007-10-10 陈鸿文 一种预先成形的板状体散热元件
CN106455419A (zh) * 2016-09-05 2017-02-22 珠海格力电器股份有限公司 一种电子设备散热结构
CN111675880A (zh) * 2019-11-28 2020-09-18 哈尔滨理工大学 一种新型软性绝缘导热垫
CN211831630U (zh) * 2020-03-21 2020-10-30 宁波吉品科技有限公司 散热式射频测试平台

Similar Documents

Publication Publication Date Title
JP5511621B2 (ja) 半導体装置
US20030067069A1 (en) Method of improving thermal performance in flip chip/integral heat spreader packages using low modulus thermal interface material
US11980010B2 (en) Thermal-control system of a media-streaming device and associated media-streaming devices
WO2017206682A1 (zh) 移动显示设备
WO2020088595A1 (zh) 电子设备及其散热装置和车辆设备
WO2017185960A1 (zh) 一种终端设备以及相关方法
WO2024036525A1 (zh) 一种导热结构、电子设备及终端
CN107509365B (zh) 一种超薄微波组件及热管散热装置
JP2006196593A (ja) 半導体装置およびヒートシンク
CN209845602U (zh) 弹性导热结构
WO2016131296A1 (zh) 导热件和电子终端
WO2022228208A1 (zh) 芯片封装结构及电子设备
CN215264349U (zh) 用于投影设备的散热系统及投影设备
WO2017020624A1 (zh) 一种射频拉远单元、安装件及射频通信系统
CN221102066U (zh) 一种芯片结构、功率器件及电子设备
CN219780747U (zh) 汽车中央域控制器及其汽车
CN217884248U (zh) 机箱及电子设备
CN221057411U (zh) 一种半导体芯片封装结构
CN214316024U (zh) 散热组件、显示屏装置和冰箱
CN219204935U (zh) 一种基于fpga的信号发生器防护装置
CN219919518U (zh) 电源变换器
CN218526489U (zh) 一种高散热芯片板体结构
CN216650098U (zh) 印制电路板结构及电子装置
CN219660251U (zh) 一种散热模组、触控面板及超声设备
CN212992803U (zh) 一种散热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955306

Country of ref document: EP

Kind code of ref document: A1