WO2024032275A1 - 液冷机组、控制方法和液冷系统 - Google Patents

液冷机组、控制方法和液冷系统 Download PDF

Info

Publication number
WO2024032275A1
WO2024032275A1 PCT/CN2023/105567 CN2023105567W WO2024032275A1 WO 2024032275 A1 WO2024032275 A1 WO 2024032275A1 CN 2023105567 W CN2023105567 W CN 2023105567W WO 2024032275 A1 WO2024032275 A1 WO 2024032275A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
heat exchange
refrigeration
liquid
way valve
Prior art date
Application number
PCT/CN2023/105567
Other languages
English (en)
French (fr)
Inventor
汪峰
高强
张荣荣
Original Assignee
三花新能源热管理科技(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三花新能源热管理科技(杭州)有限公司 filed Critical 三花新能源热管理科技(杭州)有限公司
Publication of WO2024032275A1 publication Critical patent/WO2024032275A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm

Definitions

  • the present application relates to the technical field of thermal management, specifically to a liquid cooling unit and a liquid cooling system having the liquid cooling unit, and also to a control method of the liquid cooling unit.
  • the present application aims to solve, at least to a certain extent, one of the technical problems in the related art.
  • embodiments of the present application propose a liquid cooling unit.
  • This liquid cooling unit has the advantages of reduced energy consumption and easy installation and maintenance.
  • An embodiment of the present application also proposes a liquid cooling system.
  • An embodiment of the present application also provides a control method for a liquid cooling unit.
  • the liquid cooling unit in the embodiment of the present application includes a first heat exchange component, a second heat exchange component, a temperature control component and a multi-way valve.
  • the first heat exchange component is used for heat exchange with the first temperature control device; the second heat exchange component is used for heat exchange with the second temperature control device; the first heat exchange component, the Each of the second heat exchange component and the temperature control component is connected to the multi-way valve to achieve conversion of multiple working modes through the reversal of the multi-way valve.
  • the liquid cooling unit according to the embodiment of the present application has the advantages of reduced energy consumption and easy installation and maintenance.
  • the temperature control component includes a first refrigeration component and a second refrigeration component
  • the liquid cooling unit has first to third working modes, and the liquid cooling unit switches between the first to third working modes through the multi-way valve;
  • the first heat exchange component and the second heat exchange component are connected in series, and the first heat exchange component, the second heat exchange component, the second refrigeration component and the At least one of the first refrigeration components is connected through the multi-way valve to form a refrigeration circuit;
  • the first refrigeration component and the first heat exchange component are connected through part of the valve port of the multi-way valve to form a first circuit, and/or the second refrigeration component is connected with The second heat exchange component is connected through another part of the valve port of the multi-way valve to form a second circuit;
  • the first heat exchange component and the second heat exchange component form a self-heating circulation loop.
  • the refrigeration component further includes a third refrigeration component; in the first working mode, at least one of the second refrigeration component, the first refrigeration component and the third refrigeration component are connected with the first heat exchange component and the second heat exchange component to form Refrigeration circuit.
  • the refrigeration component further includes a third refrigeration component; in the second working mode, the first refrigeration component, the third refrigeration component and the first heat exchange component pass through the multi-way valve. They are connected in sequence to form a third circuit, and the second refrigeration component and the second heat exchange component are connected in sequence through the multi-way valve to form a fourth circuit.
  • the first refrigeration component and the first heat exchange component are connected in sequence through the multi-way valve to form a fifth circuit
  • the second refrigeration component, the third refrigeration component and the third refrigeration component are connected in sequence through the multi-way valve.
  • the two heat exchange components are connected in sequence through the multi-way valve to form a sixth circuit.
  • At least one of the second refrigeration component, the first refrigeration component and the third refrigeration component is connected with the first heat exchange component and the second heat exchange component to form a multiple A plurality of refrigeration circuits are switchably arranged through the multi-way valve.
  • the first loop, the second loop, the third loop, and the fourth loop are switchably provided through the multi-way valve, or the first loop, the The second circuit, the fifth circuit, and the sixth circuit are switchably provided through the multi-way valve.
  • the third loop and the fourth loop form a first loop group
  • the fifth loop and the sixth loop form a second loop group
  • the first loop group and the The second circuit group realizes conversion between channels through the valve core of the multi-way valve.
  • the multi-way valve includes a housing and a valve core disposed in the housing, the housing is provided with a plurality of valve ports, the first heat exchange component, the second heat exchanger component The thermal component and each of the temperature control components are correspondingly connected to the valve port so as to change the flow direction of the coolant through the reversal of the valve core.
  • the multi-way valve in the second working mode, includes a first multi-way valve having a first valve port, a second valve port, a third valve port, The fourth valve port, the fifth valve port, the sixth valve port, the seventh valve port and the eighth valve port, the liquid inlet of the first heat exchange component, the liquid outlet of the first heat exchange component, all The liquid inlet of the second heat exchange component, the liquid outlet of the second heat exchange component, the liquid inlet of the first refrigeration component, the liquid outlet of the first refrigeration component, the second refrigeration component The liquid inlet of the component and the liquid outlet of the second refrigeration component are connected correspondingly to the valve port of the first multi-way valve.
  • the multi-way valve in the second working mode, has a first valve port, a second valve port, a third valve port, a fourth valve port, a fifth valve port, and a sixth valve port.
  • the seventh valve port, the eighth valve port, the ninth valve port and the tenth valve port the liquid inlet of the first heat exchange component, the liquid outlet of the first heat exchange component, the second heat exchanger
  • the liquid inlet of the thermal component, the liquid outlet of the second heat exchange component, the liquid inlet of the first refrigeration component, the liquid outlet of the first refrigeration component, the liquid inlet of the second refrigeration component port, the liquid outlet of the second refrigeration component and the valve port of the first multi-way valve are connected correspondingly.
  • the multi-way valve in the second working mode, includes a first multi-way valve and a second multi-way valve, and one of the drain ports of the first multi-way valve is connected to the third multi-way valve.
  • the liquid inlet of a refrigeration component is connected through a connecting pipe, and the second multi-way valve is provided on the connecting pipe so that the first refrigeration component and the third refrigeration component can be realized through the reversal of the second multi-way valve. At least one of them is connected to the first heat exchange component in sequence to form a corresponding parallel circuit.
  • the first multi-way valve has a first valve port, a second valve port, a third valve port, a fourth valve port, a fifth valve port, a sixth valve port, a seventh valve port and a third valve port.
  • Eight valve ports, the second multi-way valve is a three-way valve, the three-way valve has a first liquid inlet valve port, a first liquid drain port and a second liquid drain port, the first valve port is connected to the The liquid inlet of the first refrigeration component is connected through a connecting pipe, the second multi-way valve is provided on the connecting pipe, the first liquid inlet valve port is connected to the first valve port, and the first row The liquid port is connected to the liquid inlet of the third refrigeration component, and the second liquid discharge port is connected to the liquid inlet of the first refrigeration component so that the first liquid inlet valve, the first drain port The opening and closing of each of the second liquid drain port enables at least one of the first refrigeration component and the third refrigeration component to be connected to the first heat exchange component.
  • the first refrigeration component is a compression refrigeration component
  • the second refrigeration component is a first dry cooler component
  • the third refrigeration component is a second dry cooler component.
  • the compression refrigeration component includes a condensation pipeline, a plate heat exchanger, a compressor, a first condenser and a first expansion valve.
  • the plate heat exchanger, the compressor, the heat exchanger The components and the first expansion valve are arranged on the condensation pipeline in sequence according to the flow direction of the condensation gas in the condensation pipeline.
  • the liquid cooling unit also has a fourth working mode
  • the temperature control component further includes a heating component.
  • the heating component communicates with the first through the multi-way valve.
  • the heat exchange component and/or the second heat exchange component realizes heating of the corresponding temperature control device and switching between the first to fourth working modes.
  • the temperature control assembly includes a heat pump assembly
  • the heat pump assembly includes a condensation end and an evaporation end, each of the condensation end and the evaporation end is a different valve from the multi-way valve.
  • the condensation end is connected to the heat pump heating circuit through the multi-way valve and the first heat exchange component and/or the second heat exchange component;
  • the evaporation end is connected to the heat pump refrigeration circuit through the multi-way valve with the first heat exchange component and/or the second heat exchange component, and the heat pump heating circuit and the heat pump refrigeration circuit are switchable.
  • the first dry cooler assembly includes a first dry cooler liquid inlet pipe, a first dry cooler body and a first dry cooler liquid outlet pipe, and the liquid inlet of the first dry cooler liquid inlet pipe is connected to the first dry cooler liquid inlet pipe.
  • the liquid outlet of the multi-way valve is connected, the liquid outlet of the first dry cooler liquid inlet pipe is connected with the liquid inlet of the first dry cooler body, and the liquid outlet of the first dry cooler body is connected with the liquid outlet of the first dry cooler body.
  • the liquid inlet of the liquid outlet pipe of the first dry cooler is connected, and the liquid outlet of the liquid outlet of the first dry cooler is connected with the liquid inlet of the multi-way valve.
  • the second dry cooler assembly includes a second dry cooler liquid inlet pipe, a second dry cooler body and a second dry cooler liquid outlet pipe, and the liquid inlet of the second dry cooler liquid inlet pipe is connected to the liquid inlet of the second dry cooler liquid inlet pipe.
  • the liquid outlet of the multi-way valve is connected, the liquid outlet of the second dry cooler liquid inlet pipe is connected with the liquid inlet of the second dry cooler body, and the liquid outlet of the second dry cooler body is connected with The liquid inlet of the liquid outlet pipe of the second dry cooler is connected, and the liquid outlet of the liquid outlet pipe of the second dry cooler is connected with the liquid inlet of the multi-way valve.
  • the liquid cooling unit also includes a condenser bypass component, and the condenser bypass component is connected to the temperature control component.
  • the condenser bypass assembly includes a condenser bypass pipeline, a second expansion valve, a dehumidification evaporator, and a dehumidification fan.
  • the second expansion valve and the dehumidification evaporator are disposed on the condenser.
  • the air inlet of the condenser side line is provided on the pipe between the condenser and the first expansion valve, and the dehumidification fan is provided opposite to the dehumidification evaporator.
  • the liquid cooling unit further includes a first fan, and the evaporator of each of the first fan, the first refrigeration component, the second refrigeration component and the third refrigeration component is configured correspondingly. ;
  • the liquid cooling unit further includes a first fan and a second fan, and an evaporator of one of the first, second and third refrigeration components is in contact with the first refrigeration component.
  • the fans are arranged correspondingly, and the evaporators of the other two of the first refrigeration component, the second refrigeration component and the third refrigeration component are arranged correspondingly to the second fan.
  • the liquid cooling unit further includes a first fan, a second fan and a third fan, and the first fan, the second fan and the third fan are provided in one-to-one correspondence.
  • a stop valve is provided between at least one of the compression refrigeration component, the first dry cooler component and the second dry cooler component and the multi-way valve.
  • the first heat exchange component includes a first heat exchange tube, a first heat exchanger body and a first pump body, and the first heat exchanger body and the first pump body are both disposed on On the first heat exchange tube, the first heat exchange tube is cyclically connected with the multi-way valve, and the second heat exchange component includes a second heat exchange tube, a second heat exchanger body and a second pump body. , the second heat exchanger body and the second pump body are both arranged on the second heat exchange tube, and the second heat exchange tube is cyclically connected to the multi-way valve.
  • the control method of the liquid cooling unit includes: obtaining the external ambient temperature, obtaining the temperature of the first heat exchange component and/or the second heat exchange component, and adjusting the working mode of the multi-way valve .
  • the external ambient temperature is T 0
  • the temperature of the first heat exchange component is T 1
  • the temperature of the second heat exchange component is T 2
  • the temperature control component includes a compression refrigeration component. , the first dry cooler assembly and the second dry cooler assembly;
  • the compression refrigeration component is connected to the first heat exchange component, and the first dry cooler component is connected to the At least one of the second dry cooler components is connected to the second heat exchange component;
  • the compression refrigeration component is connected to the first heat exchange component, and the second heat exchange component is connected to Multi-way valve forms self-circulation;
  • the preset value A 3 ⁇ T 1 -T 0 ⁇ the preset value A 2
  • T 2 -T 0 ⁇ the preset value B 1 ;
  • the first heat exchange component is connected,
  • the first dry cooler component is connected to the compression refrigeration component, and the second dry cooler component is connected to the second heat exchange component;
  • the first heat exchange component is connected to the compression refrigeration component, and the second dry cooler component is connected to The second heat exchange component is connected;
  • the first heat exchange component performs self-circulation through the multi-way valve
  • the second dry cooler component and The second heat exchange component is connected or the second heat exchange component is connected to the multi-way valve for self-circulation.
  • the temperatures of the first heat exchange component and the second heat exchange component are obtained.
  • the temperature of the external ambient temperature is T 0
  • the temperature of the first heat exchange component is T 1
  • the temperature of the second heat exchange component is T 1 .
  • the temperature is T 2 ;
  • the temperature control component includes a compression refrigeration component, a first dry cooler component, and a second dry cooler component, and the first heat exchange component and the second heat exchange component are connected in series;
  • the liquid cooling system in the embodiment of the present application may include a first temperature control device, a second temperature control device, and the liquid cooling unit described in any one of the above.
  • the first heat exchange component and the first temperature control device are The device is connected, and the second heat exchange component is connected with the second temperature-controlled device.
  • Figure 1 is a layout diagram of a liquid cooling unit according to an embodiment of the present application. It has a first refrigeration component and a second refrigeration component, and a first circulation mode inside a multi-way valve.
  • Figure 2 is a layout diagram of a liquid cooling unit according to an embodiment of the present application, with a first refrigeration component and a second refrigeration component, and a second circulation mode inside the multi-way valve.
  • Figure 3 is a layout diagram of a liquid cooling unit according to an embodiment of the present application, with a first refrigeration component and a second refrigeration component, and a third circulation mode inside the multi-way valve.
  • Figure 4 is a layout diagram of a liquid cooling unit according to an embodiment of the present application, with a first refrigeration component and a second refrigeration component, and a fourth circulation mode inside the multi-way valve.
  • Figure 5 is a layout diagram of a liquid cooling unit according to an embodiment of the present application, with a first refrigeration component and a second refrigeration component, and a fifth circulation mode inside the multi-way valve.
  • Figure 6 is a layout diagram of a liquid cooling unit according to another embodiment of the present application. It has a first refrigeration component, a second refrigeration component and a third refrigeration component, and a first circulation mode inside the multi-way valve.
  • Figure 7 is a layout diagram of a liquid cooling unit according to an embodiment of the present application, with a first refrigeration component, a second refrigeration component and a third refrigeration component, and a second circulation mode inside the multi-way valve.
  • Figure 8 is a layout diagram of the liquid cooling unit according to the embodiment of the present application, which has a first refrigeration component, a second refrigeration component and a third refrigeration component, and a third circulation mode inside the multi-way valve.
  • Figure 9 is a layout diagram of a liquid cooling unit according to an embodiment of the present application, with a first refrigeration component, a second refrigeration component and a third refrigeration component, and a fourth circulation mode inside the multi-way valve.
  • Figure 10 is a layout diagram of a liquid cooling unit according to an embodiment of the present application, with a first refrigeration component, a second refrigeration component and a third refrigeration component, and a fifth circulation mode inside the multi-way valve.
  • Figure 11 is a layout diagram of a liquid cooling unit according to another embodiment of the present application.
  • Three refrigeration components are equipped with stop valves, and the first circulation mode inside the multi-way valve.
  • Figure 12 is a layout diagram of the liquid cooling unit according to the embodiment of the present application.
  • the three refrigeration components are equipped with stop valves, and the second circulation mode inside the multi-way valve.
  • Figure 13 is a layout diagram of the liquid cooling unit according to the embodiment of the present application.
  • the three refrigeration components are equipped with stop valves and the third circulation mode inside the multi-way valve.
  • Figure 14 is a layout diagram of the liquid cooling unit according to the embodiment of the present application.
  • the three refrigeration components are equipped with stop valves and the fourth circulation mode inside the multi-way valve.
  • FIG 15 is a layout diagram of the liquid cooling unit according to the embodiment of the present application.
  • the three refrigeration components are equipped with stop valves, and the fifth circulation mode inside the multi-way valve.
  • Figure 16 is a layout diagram of a liquid cooling unit according to another embodiment of the present application.
  • the compression refrigeration component and the second dry cooler component share a fan, and the first circulation method inside the multi-way valve.
  • Figure 17 is a layout diagram of the liquid cooling unit according to the embodiment of the present application.
  • the compression refrigeration component and the second dry cooler component share a fan, and the second circulation mode inside the multi-way valve.
  • Figure 18 is a layout diagram of the liquid cooling unit according to the embodiment of the present application.
  • the compression refrigeration component and the second dry cooler component share a fan, and the third circulation mode inside the multi-way valve.
  • Figure 19 is a layout diagram of the liquid cooling unit according to the embodiment of the present application.
  • the compression refrigeration component and the second dry cooler component share a fan, and the fourth circulation method inside the multi-way valve.
  • Figure 20 is a layout diagram of the liquid cooling unit according to the embodiment of the present application.
  • the compression refrigeration component and the second dry cooler component share a fan, and the fifth circulation method inside the multi-way valve.
  • FIG. 21 is a layout diagram of a liquid cooling unit according to another embodiment of the present application.
  • the multi-way valve includes a first multi-way valve and a second multi-way valve, and the first circulation mode inside the multi-way valve.
  • FIG 22 is a layout diagram of a liquid cooling unit according to an embodiment of the present application.
  • the multi-way valve includes a first multi-way valve and a second multi-way valve, and the second flow mode inside the multi-way valve.
  • FIG 23 is a layout diagram of a liquid cooling unit according to an embodiment of the present application.
  • the multi-way valve includes a first multi-way valve and a second multi-way valve, and the third flow mode inside the multi-way valve.
  • FIG 24 is a layout diagram of a liquid cooling unit according to an embodiment of the present application.
  • the multi-way valve includes a first multi-way valve and a second multi-way valve, which is the fourth circulation mode inside the multi-way valve.
  • Figure 25 is a layout diagram of a liquid cooling unit according to another embodiment of the present application, using a nine-way valve and the first circulation mode inside the multi-way valve.
  • Figure 26 is a layout diagram of the liquid cooling unit according to the embodiment of the present application, using a nine-way valve and the second circulation mode inside the multi-way valve.
  • Figure 27 is a layout diagram of the liquid cooling unit according to the embodiment of the present application, using a nine-way valve and the third circulation mode inside the multi-way valve.
  • Figure 28 is a layout diagram of the liquid cooling unit according to the embodiment of the present application, using a nine-way valve and the fourth circulation mode inside the multi-way valve.
  • Figure 29 is a layout diagram of the liquid cooling unit according to the embodiment of the present application, using a nine-way valve and the fifth circulation mode inside the multi-way valve.
  • Figure 30 is a layout diagram of the liquid cooling unit according to the embodiment of the present application, using a nine-way valve and the sixth circulation mode inside the multi-way valve.
  • Figure 31 is a layout diagram of the liquid cooling unit according to the embodiment of the present application, using a nine-way valve and the seventh circulation mode inside the multi-way valve.
  • Figure 32 is a layout diagram of the liquid cooling unit according to the embodiment of the present application, using a nine-way valve and the eighth circulation mode inside the multi-way valve.
  • Figure 33 is a layout diagram of a liquid cooling unit according to another embodiment of the present application, using a heat pump assembly and the first circulation mode inside the multi-way valve.
  • Figure 34 is a layout diagram of the liquid cooling unit according to the embodiment of the present application, using a heat pump assembly and the second circulation mode inside the multi-way valve.
  • Figure 35 is a layout diagram of the liquid cooling unit according to the embodiment of the present application, using a heat pump assembly and the third circulation method inside the multi-way valve.
  • Figure 36 is a layout diagram of a liquid cooling unit according to an embodiment of the present application, using a heat pump component for temperature control and the fourth circulation mode inside a multi-way valve.
  • Figure 37 is a layout diagram of a liquid cooling unit according to another embodiment of the present application, with a condenser bypass component added and the first circulation method inside the multi-way valve.
  • the liquid cooling unit in the embodiment of the present application includes a first heat exchange component 1, a second heat exchange component 2, a temperature sensor, a temperature control component and a multi-way valve 4.
  • the first heat exchange component 1 is used for heat exchange with the first temperature control device; the second heat exchange component 2 is used for heat exchange with the second temperature control device; the first heat exchange component 1 and the second heat exchange component
  • Each of 2 and the temperature control component is used to connect with the multi-way valve 4 to achieve conversion of multiple working modes through corresponding parameters of the temperature sensor and the reversal of the multi-way valve 4 . It can be understood that the liquid cooling unit has multiple working modes, and conversion between the multiple working modes can be achieved.
  • the liquid cooling unit in the embodiment of the present application realizes conversion of multiple working modes through the multi-way valve 4, which can be converted according to actual working conditions, thereby improving the energy efficiency of the liquid cooling unit. This has the advantage of energy saving.
  • the conversion through the multi-way valve 4 can simplify the pipeline setting to a certain extent, which is beneficial to the installation and maintenance of the liquid cooling unit.
  • the liquid cooling unit according to the embodiment of the present application has the advantages of reduced energy consumption and easy installation and maintenance.
  • the first device to be temperature controlled can be a battery
  • the second device to be temperature controlled can be an inverter
  • the first temperature-controlled device may include multiple independent temperature-controlled units that require different temperature control requirements.
  • the second temperature-controlled device may also include multiple independent temperature-controlled units requiring different temperature control requirements.
  • multiple temperature-controlled units require different temperature control needs.
  • the units to be controlled can be connected in parallel.
  • the temperature control component includes a first refrigeration component and a second refrigeration component.
  • the liquid cooling unit has first to third working modes, and the liquid cooling unit switches between the first to third working modes through the multi-way valve 4;
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series to form a series heat exchange element.
  • the first heat exchange component 1, the second heat exchange component 2, the second refrigeration component and the first refrigeration component At least one of them is connected through the multi-way valve 4 to form a refrigeration circuit.
  • the first refrigeration component and the first heat exchange component 1 can be connected through part of the valve port of the multi-way valve 4 to form a first circuit, and the second refrigeration component and the second heat exchange component 2 can be connected through the multi-way valve 4 Another part of the valve port 4 can be connected to form a second circuit.
  • the first heat exchange component 1 and the second heat exchange component 2 form a self-heating circulation loop.
  • the liquid-cooling unit in the embodiment of the present application realizes series-parallel conversion by switching between the first to third working modes, so that the liquid-cooling unit can adopt different working modes under different working conditions. , improve the utilization rate of natural cooling, thereby improving the energy efficiency of liquid cooling units.
  • one of the heat exchange units fails, it can be switched to another heat exchange unit to achieve safe backup.
  • the temperature control component includes a first refrigeration component and a second refrigeration component; the first refrigeration component is a compression refrigeration component 31, the second refrigeration component is a first dry cooler component 32, and the multi-way valve 4 is an eight-way valve.
  • the valve has a first valve port, a second valve port, a third valve port, a fourth valve port, a fifth valve port, a sixth valve port, a seventh valve port and an eighth valve port.
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series, and the first heat exchange component 1, the second heat exchange component 2 and at least one of the second refrigeration component and the first refrigeration component The two are connected through the multi-way valve 4 to form a refrigeration circuit.
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series and form a circulation loop with the first dry cooler component 32 .
  • the liquid outlet, the fourth valve port, the fifth valve port of the first heat exchange component 1, the liquid inlet of the second heat exchange component 2, the liquid outlet and the sixth valve port of the second heat exchange component 2 , the seventh valve port, the liquid inlet of the first dry cooler component 32, the liquid outlet of the first dry cooler component 32, the eighth valve port, the third valve port and the liquid return port of the first heat exchange component 1 form a circulation Liquid channel.
  • This type of coolant circulation method is suitable for environments where the ambient temperature is less than
  • the liquid inlet and outlet of the first and second heat exchange components 2 require a temperature, and the heat exchange capacity of the first dry cooler component 32 meets the total heat demand of the first heat exchange component 1 and the second heat exchange component 2 . Only the first dry cooler assembly 32 can be started for cooling, which has the advantage of further saving energy consumption.
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series and form a circulation loop with the compression refrigeration component 31 .
  • the liquid outlet, the fourth valve port, the fifth valve port of the first heat exchange component 1, the liquid inlet of the second heat exchange component 2, the liquid outlet and the sixth valve port of the second heat exchange component 2 the first valve port, the liquid inlet of the compression refrigeration component 31, the liquid outlet of the compression refrigeration component 31, the second valve port, the third valve port and the liquid return port of the first heat exchange component 1 form a circulating liquid channel.
  • the cooling liquid circulation method of the liquid cooling unit in the embodiment of the present application has the advantage of strong temperature control capability. Moreover, when the first dry cooler component 32 fails, it can be switched as a safe backup solution.
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series and form a circulation loop with the first dry cooler component 32 and the compression refrigeration component 31 .
  • the liquid port, the second valve port, the third valve port and the liquid return port of the first heat exchange component 1 form a circulating liquid channel.
  • the cooling liquid circulation method of the liquid cooling unit in the embodiment of the present application is suitable for situations where the ambient temperature is lower than the required temperature of the inlet and outlet liquid of the first or second heat exchange component 2, and the heat exchange amount of the dry cooler does not meet the requirement of the first or second heat exchanger component 2. Total heat requirement of thermal component 2.
  • FIG. 1 , FIG. 2 and FIG. 3 can be switched by the multi-way valve 4 .
  • the liquid cooling unit by converting the circulation loops shown in Figure 1, Figure 2 and Figure 3 through the multi-way valve 4, the liquid cooling unit can be realized in different situations. Different conversion modes are adopted under different working conditions to improve the utilization rate of natural cooling, thereby improving the energy efficiency of the liquid cooling unit.
  • the first heat exchange component 1 and the second heat exchange component 2 are not connected.
  • a self-circulation is formed between the first heat exchange component 1 and the multi-way valve 4 or the first heat exchange component 1 and the multi-way valve 4 form a self-circulation.
  • At least one of the compression refrigeration assembly 31 and the first dry cooler assembly 32 forms a cooling channel, and a self-circulation is formed between the second heat exchange assembly 2 and the multi-way valve 4 or the second heat exchange assembly 2, the compression refrigeration assembly 31 and the first dry cooling At least one other cooling channel is formed in the vessel assembly 32 .
  • the compression refrigeration component 31, the first heat exchange component 1 and the multi-way valve 4 form a first loop, the first dry cooler component 32, the second heat exchange component 2 and the multi-way valve 4
  • the formation of a second loop is suitable for scenarios where the temperatures required by the first heat exchange component 1 and the second heat exchange component 2 are different. It is especially suitable for situations where the inlet and outlet liquid temperatures required by the second heat exchange component 2 are higher than the ambient temperature, and the first heat exchange component 2 requires different temperatures.
  • the required inlet and outlet liquid temperature of thermal component 1 is lower than the ambient temperature.
  • a system in which two heat exchange components are connected in parallel is conducive to the independent operation of the two heat exchange components.
  • One uses compression refrigeration and the other uses natural cooling at ambient temperature, which is beneficial to reducing the load of the compressor 313 in the compression refrigeration component 31 and maximizing the use of natural cooling. , improve the energy efficiency of the liquid cooling unit.
  • a first loop is formed in the compression refrigeration component 31, the first heat exchange component 1 and the multi-way valve 4, and a first loop is formed in the first dry cooler component 32, the second heat exchange component 2 and the multi-way valve 4. Second circuit.
  • the liquid outlet, the fourth valve port, the first valve port of the first heat exchange component 1, the liquid inlet of the compression refrigeration component 31, the liquid outlet, the second valve port, and the third valve of the compression refrigeration component 31 The liquid outlet and the liquid return port of the first heat exchange component 1 form a circulating liquid channel; the liquid outlet, the sixth valve port, the seventh valve port of the second heat exchange component 2, the liquid inlet of the first dry cooler component 32, and the The liquid outlet and eighth valve port of the dry cooler assembly 32, The fifth valve port and the liquid return port of the second heat exchange component 2 form a circulating liquid channel.
  • the first heat exchange component 1 and the second heat exchange component 2 form a self-heating circulation loop.
  • the liquid cooling unit in the embodiment of the present application forms a self-heating cycle through the first heat exchange component 1 and the second heat exchange component 2, and can be applied to scenarios where the first heat exchange component 1 and the second heat exchange component 2 do not require cooling. , such as shutdown and heat preservation scenarios. Or a scenario where the temperatures of the first heat exchange component 1 and the first heat exchange component 1 need to be balanced.
  • the heat generated by a certain component (for example, a water pump) in the first heat exchange component 1 can be used to heat or maintain the water temperature.
  • using two heat exchange components to form a self-heating circulation loop can balance the temperatures of the two systems, or use a high-temperature system to heat a low-temperature system. This has the advantage of further reducing energy consumption.
  • the liquid outlet, the fourth valve port, the fifth valve port of the first heat exchange component 1, the liquid inlet of the second heat exchange component 2, and the The liquid outlet, the sixth valve port, the third valve port and the liquid return port of the first heat exchange component 1 form a circulating liquid channel.
  • the temperature control component includes a first refrigeration component, a second refrigeration component and a third refrigeration component; in the first working mode, the series heat exchange element is connected with the second refrigeration component, the first refrigeration component and the third refrigeration component. At least one of the three refrigeration components is connected through a multi-way valve 4 to form a refrigeration circuit.
  • the first refrigeration component is a compression refrigeration component 31
  • the second refrigeration component is a first dry cooler component 32
  • the third refrigeration component is a second dry cooler component 33
  • the multi-way valve 4 is a ten-way valve, and the ten-way valve has The first valve port, the second valve port, the third valve port, the fourth valve port, the fifth valve port, the sixth valve port, the seventh valve port, the eighth valve port, the ninth valve port and the tenth valve port.
  • the liquid cooling unit in the embodiment of the present application can further improve the types of working modes of the liquid cooling unit and further improve the matching between actual working conditions and refrigeration effects.
  • the heat exchange area of the refrigeration component can be utilized to the greatest extent, increasing the refrigeration capacity and improving energy efficiency.
  • the circulating medium in the first dry cooler assembly 32 and the second dry cooler assembly uses a 50% ethylene glycol aqueous solution.
  • first heat exchange component 1 and the second heat exchange component 2 are connected in series to form a series heat exchange element, and the series heat exchange element is connected to one of the dry coolers.
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series and form a circulation loop with the first dry cooler component 32 .
  • the valve port, the liquid inlet of the first dry cooler component 32 , the liquid outlet of the first dry cooler component 32 , the eighth valve port, the third valve port and the liquid return port of the first heat exchange component 1 form a circulating liquid channel.
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series and form a circulation loop with the first dry cooler component 32, which is suitable for use when the ambient temperature is lower than the first heat exchange component 1 and the second heat exchange component 2.
  • the inlet and outlet water of the heat exchange component 2 requires a temperature, and the heat exchange capacity of the first dry cooler component 32 or the second dry cooler component 33 meets the total heat demand of the first heat exchange component 1 and the second heat exchange component 2 . Therefore, using a dry cooler for refrigeration has the advantage of low energy consumption.
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series and form a circulation loop with the compression refrigeration component 31 .
  • the liquid outlet, the fourth valve port, the fifth valve port of the first heat exchange component 1, the liquid inlet of the second heat exchange component 2, the liquid outlet and the sixth valve port of the second heat exchange component 2 the first valve port, the liquid inlet of the compression refrigeration component 31, the liquid outlet of the compression refrigeration component 31, the second valve port, the third valve port and the liquid return port of the first heat exchange component 1 form a circulating liquid channel.
  • the circulation mode of the coolant as shown in FIG. 6 and as shown in FIG. 7 can be switched through the multi-way valve 4 .
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series and form a circulation loop with the compression refrigeration component 31.
  • the series dry cooler and the series compression refrigeration can be switched, which improves the safety of the loop. .
  • another mode can be switched.
  • the series heat exchange element (the first heat exchange component 1 and the second heat exchange component 2 are connected in series) can also form a circulation loop with the second dry cooler component 33 road.
  • the series heat exchange element can form a circulation loop with the first dry cooler assembly 32 and the compression refrigeration assembly 31; the series heat exchange element can also form a circulation loop with the second dry cooler assembly 33 and the compression refrigeration assembly 31; the series heat exchange element can also form a circulation loop with the second dry cooler assembly 33 and the compression refrigeration assembly 31.
  • the first dry cooler assembly 32, the second dry cooler assembly 33 and the compression refrigeration assembly 31 form a circulation loop.
  • the series heat exchange elements correspond to at least one of the second refrigeration component, the first refrigeration component, and the third refrigeration component to form multiple refrigeration circuits.
  • the multiple refrigeration circuits can be connected through the multi-way valve 4 Conversion settings.
  • the temperature control component includes a first refrigeration component, a second refrigeration component and a third refrigeration component; wherein the first refrigeration component is the compression refrigeration component 31, and the second refrigeration component is the first dry cooler component 32.
  • the third refrigeration component is the second dry cooler component 33; in the second working mode, the first refrigeration component, the third refrigeration component and the first heat exchange component 1 are connected in sequence through the multi-way valve 4 to form a third circuit.
  • the refrigeration component and the second heat exchange component 2 are connected in sequence through the multi-way valve 4 to form a fourth circuit.
  • the first refrigeration component is the compression refrigeration component 31, the second refrigeration component is the first dry cooler component 32, and the third refrigeration component is the second dry cooler component 33; in the second working mode, the compression refrigeration component 31 and the second dry cooler component
  • the dry cooler assembly 33 and the first heat exchange assembly 1 are connected in sequence through the multi-way valve 4 to form a third circuit, and the first dry cooler assembly 32 and the second heat exchange assembly 2 are connected in sequence through the multi-way valve 4 to form a fourth circuit.
  • the liquid outlet, the fourth valve port, the ninth valve port of the first heat exchange component 1, the liquid inlet of the second dry cooler component 33, and the liquid outlet of the second dry cooler component 33 , the tenth valve port, the first valve port, the liquid inlet of the compression refrigeration component 31, the liquid outlet of the compression refrigeration component 31, the second valve port, the third valve port and the liquid return port of the first heat exchange component 1 are formed Circulation liquid channel; the liquid outlet of the second heat exchange component 2, the sixth valve port, the seventh valve port, the liquid inlet of the first dry cooler component 32, the liquid outlet of the first dry cooler component 32, and the eighth valve
  • the port, the fifth valve port, and the liquid return port of the second heat exchange component 2 form a circulating liquid channel.
  • the liquid cooling unit of the embodiment of the present application is used when the ambient temperature is lower than the required temperature of the inlet and outlet of the first heat exchange component 1 and the second heat exchange component 2 and the heat exchange amount of the first dry cooler component 32 is insufficient. Therefore, using a dry cooler for refrigeration has the advantage of low energy consumption.
  • the first heat exchange component 1 is first cooled by the first dry cooler component 32 and then enters the compression refrigeration component 31, which can reduce the load of the compressor 313 and further reduce the load of the liquid cooling unit. Advantages of energy consumption.
  • the liquid outlet, the third valve port and the liquid return port of the first heat exchange component 1 form a circulating liquid channel;
  • the liquid outlet, the sixth valve port, the seventh valve port of the second heat exchange component 2, and the first dry cooler component 32 Liquid inlet, liquid outlet of the first dry cooler assembly 32, eighth valve port, ninth valve port, liquid inlet of the second dry cooler assembly 33, liquid outlet of the second dry cooler assembly 33, tenth valve
  • the port, the fifth valve port, and the liquid return port of the second heat exchange component 2 form a circulating liquid channel.
  • the first heat exchange component 1 and the second heat exchange component 2 form a self-heating circulation loop.
  • the liquid outlet, the fourth valve port, the fifth valve port of the first heat exchange component 1, the liquid inlet of the second heat exchange component 2, and the The liquid outlet, the sixth valve port, the third valve port and the liquid return port of the first heat exchange component 1 form a circulating liquid channel.
  • the multi-way valve 4 includes a first multi-way valve 41 and a second multi-way valve 42.
  • One of the liquid discharge ports of the first multi-way valve 41 is connected to the liquid inlet of the first refrigeration component through a connecting pipe.
  • the second multi-way valve 42 is provided on the connecting pipe so that at least one of the first refrigeration component and the third refrigeration component can be connected to the first heat exchange component 1 in sequence through the reversal of the second multi-way valve 42 to form a corresponding ground parallel circuit.
  • the liquid cooling unit in the embodiment of the present application can simplify the structure of the multi-way valve 4 and the flow channel structure of each multi-way valve 4 by arranging two multi-way valves 4, thereby reducing the risk of leakage and improving feasibility.
  • the multi-way valve 4 includes a first multi-way valve 41 and a second multi-way valve 42.
  • the first multi-way valve 41 has a first valve port, a second valve port, a third valve port, a fourth valve port, and a fifth valve port.
  • the second multi-way valve 42 is a three-way valve.
  • the three-way valve has a first liquid inlet port, a first liquid discharge port and a second liquid discharge port.
  • the first valve port is connected to the liquid inlet of the first refrigeration component through a connecting pipe
  • the second multi-way valve 42 is provided on the connecting pipe
  • the first liquid inlet valve is connected to the first valve port
  • the first liquid drain port is connected with the liquid inlet of the third refrigeration component
  • the second liquid discharge port is connected with the liquid inlet of the first refrigeration component so as to pass through each of the first liquid inlet valve port, the first liquid drain port and the second liquid drain port.
  • the liquid outlet, fourth valve port, first valve port, first liquid inlet valve port, and first liquid discharge port of the first heat exchange component 1 for example, Figure 21-Fig. Port B in Figure 24
  • the second drain port for example, Port C in Figure 21- Figure 24...
  • Three different paths can be realized by controlling the closing of the three-way valve, which has the advantage of easy conversion.
  • the liquid outlet, the fourth valve port, the first valve port, the first liquid inlet valve port, and the first liquid discharge port of the first heat exchange component 1 (for example, Figures 21-24 Middle b port)
  • the liquid inlet of the second dry cooler assembly 33, the liquid outlet of the second dry cooler assembly 33, the second valve port, the third valve port and the liquid return port of the first heat exchange assembly 1 form a circulating liquid channel
  • the liquid outlet, the sixth valve port, the seventh valve port of the second heat exchange component 2 the liquid inlet of the first dry cooler component 32, the liquid outlet of the first dry cooler component 32, the eighth valve port
  • the fifth valve port and the liquid return port of the second heat exchange component 2 form a circulating liquid channel.
  • the liquid cooling unit in the embodiment of the present application is suitable for environments where the ambient temperature is lower than the inlet and outlet water temperature required by the second heat exchange component 2 .
  • the first heat exchange component 1 uses compression refrigeration or the first dry cooler component 32 for cooling
  • the second heat exchange component 2 uses the second dry cooler component 33 for cooling.
  • the two heat exchange units operate independently, which has the advantage of further improving energy efficiency.
  • the liquid outlet, sixth valve port, first valve port, first liquid inlet valve port, and first liquid discharge port of the second heat exchange component 2 for example, Figure 21-Fig. Port B in Figure 24
  • the second drain port for example, Port C in Figure 21- Figure 24...
  • Three different paths can be realized by controlling the closing of the three-way valve, which has the advantage of easy conversion.
  • the liquid outlet, sixth valve port, first valve port, first liquid inlet valve port, and first liquid discharge port of the second heat exchange component 2 (for example, Figures 21-24 Middle b port), the liquid inlet of the second dry cooler assembly 33, the liquid outlet of the second dry cooler assembly 33, the second valve port, the fifth valve port and the liquid return port of the second heat exchange assembly 2 form a circulating liquid channel; the liquid outlet, fourth valve port, third valve port of the first heat exchange component 1 and the liquid inlet of the first heat exchange component 1 form a self-circulation path of the first heat exchange component 1.
  • the liquid cooling unit in the embodiment of the present application is suitable for use when the first heat exchange component 1 does not require refrigeration, and the second heat exchange component 2 uses the first dry cooler component 32 or the compression refrigeration component 31 for compression refrigeration. As an emergency treatment when the second dry cooler component 33 fails, the reliability of the liquid cooling unit is improved.
  • the liquid outlet, the fourth valve port, the seventh valve port of the first heat exchange component 1 , the liquid inlet of the first dry cooler component 32 , and the first dry cooler component 32 The liquid outlet, eighth valve port, third valve port and the liquid return port of the first heat exchange component 1 form a circulating liquid channel; the liquid outlet, sixth valve port, fifth valve port of the second heat exchange component 2, The liquid return port of the second heat exchange component 2 forms a self-circulation passage.
  • the liquid cooling unit in the embodiment of the present application is suitable for use in the second heat exchange group that does not require refrigeration.
  • the first heat exchange component 1 is cooled by the second dry cooler component 33 and is used in places where the ambient temperature is lower than the requirements of the first heat exchange component 1.
  • the water temperature working condition is used as an emergency treatment for the failure of the first dry cooler component 32 or the compression refrigeration component to improve the reliability of the liquid cooling unit.
  • the first heat exchange component 1 and the second heat exchange component 2 form a self-heating circulation loop.
  • the liquid outlet, the fourth valve port, the fifth valve port of the first heat exchange component 1, the liquid inlet of the second heat exchange component 2, and the The liquid outlet, the sixth valve port, the third valve port and the liquid return port of the first heat exchange component 1 form a circulating liquid channel.
  • the temperature control component includes a first refrigeration component, a second refrigeration component and a third refrigeration component; in the first working mode, the heat exchange element is connected in series with the second refrigeration component, At least one of the first refrigeration component and the third refrigeration component is connected through the multi-way valve 4 to form a refrigeration circuit.
  • the first refrigeration component is a compression refrigeration component 31
  • the second refrigeration component is a first dry cooler component 32
  • the third refrigeration component is a second dry cooler component 33
  • the multi-way valve 4 is a ten-way valve, and the ten-way valve has The first valve port, the second valve port, the third valve port, the fourth valve port, the fifth valve port, the sixth valve port, the seventh valve port, the eighth valve port and the ninth valve port, the compression refrigeration component 31
  • the liquid inlet and the liquid inlet of the second dry cooler assembly 33 share the ninth valve port, the liquid outlet of the compression refrigeration assembly 31 is connected to the second valve port, and the liquid outlet of the second dry cooler assembly 33 is connected to the first valve port. connected.
  • first dry cooler assembly 32 and the second dry cooler assembly 33 share the first fan.
  • the condenser of the compression refrigeration assembly 31 is arranged opposite to the second fan.
  • the circulating medium in the first dry cooler assembly 32 and the second dry cooler assembly adopts 50% ethylene glycol aqueous solution.
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series to form a series heat exchange element, and the series heat exchange element is connected to one of the dry coolers.
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series and form a circulation loop with the compression refrigeration component 31 .
  • the liquid outlet, the fourth valve port, the fifth valve port of the first heat exchange component 1, the liquid inlet of the second heat exchange component 2, the liquid outlet and the sixth valve port of the second heat exchange component 2 , the ninth valve port, the liquid inlet of the compression refrigeration component 31 , the liquid outlet of the compression refrigeration component 31 , the second valve port, the third valve port and the liquid inlet of the first heat exchange component 1 are connected.
  • the liquid cooling unit in the embodiment of the present application uses a nine-way valve to reverse the direction of the liquid cooling unit to achieve conversion of multiple working modes. Compared with the structure using an eight-way valve + a three-way valve, it can simplify the connection between the two valve bodies. Pipe connections make the space more compact. Compared with the ten-way valve, this structure has one less valve port, which can improve the sealing performance of the valve and improve the reliability.
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series and form a circulation loop with the first dry cooler component 32 .
  • the liquid outlet, the fourth valve port, the fifth valve port of the first heat exchange component 1, the liquid inlet of the second heat exchange component 2, the liquid outlet and the sixth valve port of the second heat exchange component 2 , the seventh valve port, the liquid inlet of the first dry cooler component 32 , the liquid outlet of the first dry cooler component 32 , the eighth valve port, the third valve port and the liquid inlet of the first heat exchange component 1 are connected.
  • the liquid cooling unit in the embodiment of the present application is used when the ambient temperature is lower than the inlet and outlet water temperature required by the first and second heat exchange components 2, and the heat exchange amount of the second dry cooler component 33 meets the total heat exchange rate of the first and second heat exchange components 2. heat demand. It is beneficial to improve the energy efficiency of the liquid cooling unit, while improving safety and reliability, and serves as a backup for failure of the first dry cooler component 32 or the compression refrigeration component.
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series and form a circulation loop with the first dry cooler component 32 and the compression refrigeration component 31.
  • the liquid outlet, the fourth valve port, the fifth valve port of the first heat exchange component 1, the liquid inlet of the second heat exchange component 2, the liquid outlet and the sixth valve port of the second heat exchange component 2 the seventh valve port, the liquid inlet of the first dry cooler assembly 32, the liquid outlet of the first dry cooler assembly 32, the eighth valve port, the ninth valve port, the liquid inlet of the compression refrigeration assembly 31, the compression refrigeration assembly
  • the liquid outlet of 31, the second valve port, the third valve port and the liquid inlet of the first heat exchange component 1 are connected.
  • the liquid cooling unit in the embodiment of the present application is used when the ambient temperature is lower than the inlet and outlet water temperature required by the first and second heat exchange components 2, and the heat transfer amount of the second dry cooler component 33 is less than the total heat exchange rate of the first and second heat exchange components 2. Due to the heat demand, it needs to pass through the second dry cooler assembly 33 first and then undergo plate exchange cooling. Reduce the load of compressor 313 and improve the energy efficiency of the liquid cooling unit.
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series and form a circulation loop with the first dry cooler component 32 and the second dry cooler component 33.
  • the liquid outlet, the fourth valve port, the fifth valve port of the first heat exchange component 1, the liquid inlet of the second heat exchange component 2, the liquid outlet and the sixth valve port of the second heat exchange component 2 the seventh valve port, the liquid inlet of the first dry cooler assembly 32, the first dry cooler assembly 32, the liquid outlet, the eighth valve port, the ninth valve port, the liquid inlet of the second dry cooler assembly 33, the liquid outlet of the second dry cooler assembly 33, the first valve port, the third valve port and the first The liquid inlet of heat exchange component 1 is connected.
  • the liquid cooling unit in the embodiment of the present application is used when the ambient temperature is lower than the inlet and outlet water temperatures required by the first heat exchange component 1 and the second heat exchange component 2, and the heat exchange capacity of the first and second dry cooler components 33 meets the first requirement.
  • the total heat exchange demand of the second heat exchange component 2 is cooled by two dry coolers, and there is no need to turn on the compressor 313, thus improving the energy efficiency of the liquid cooling unit.
  • the first heat exchange component 1 and the second heat exchange component 2 are not connected.
  • a self-circulation is formed between the first heat exchange component 1 and the multi-way valve 4 or the first heat exchange component 1 and the multi-way valve 4 form a self-circulation.
  • At least one of the compression refrigeration assembly 31 and the first dry cooler assembly 32 forms a cooling channel, and a self-circulation is formed between the second heat exchange assembly 2 and the multi-way valve 4 or the second heat exchange assembly 2, the compression refrigeration assembly 31 and the first dry cooling At least one other cooling channel is formed in the vessel assembly 32 .
  • a first loop is formed in the compression refrigeration assembly 31, the first heat exchange assembly 1 and the multi-way valve 4, and a first loop is formed in the first dry cooler assembly 32, the second heat exchange assembly 2 and the multi-way valve 4. Second circuit.
  • the liquid cooling unit in the embodiment of the present application is used in working conditions where the ambient temperature is higher than the inlet and outlet water temperature required by the first heat exchange component 1 and lower than the inlet and outlet water temperature required by the second heat exchange component 2 .
  • the first heat exchange component 1 is compression refrigeration
  • the second heat exchange component 2 is dry cooler cooling. This case has two relatively independent circuits, which improves the energy efficiency of the liquid cooling unit and the two circuits do not affect each other.
  • the liquid outlet, fourth valve port, ninth valve port of the first heat exchange component 1, the liquid inlet of the compression refrigeration component 31, the liquid outlet, the second valve port, and the third valve of the compression refrigeration component 31 The liquid outlet and the liquid return port of the first heat exchange component 1 form a circulating liquid channel; the liquid outlet, the sixth valve port, the seventh valve port of the second heat exchange component 2, the liquid inlet of the first dry cooler component 32, and the The liquid outlet of the dry cooler assembly 32, the eighth valve port, the fifth valve port, and the liquid return port of the second heat exchange assembly 2 form a circulating liquid channel.
  • the second dry cooler assembly 33, the first heat exchange assembly 1 and the multi-way valve 4 form a first loop
  • the first dry cooler assembly 32, the second heat exchange assembly 2 and the multi-way valve 4 forming a second loop.
  • the liquid cooling unit in the embodiment of the present application is used when the ambient temperature is lower than the inlet and outlet water temperature required by the first and second heat exchange components 2, and the heat exchange amount of the first dry cooler component 32 meets the heat exchange requirements of the first heat exchange component 1.
  • the heat exchanged by the second dry cooler assembly 33 meets the heat exchange needs of the second heat exchange assembly 2, improving the energy efficiency of the liquid cooling unit, and the two circuits are independent and do not affect each other.
  • the liquid outlet, fourth valve port, ninth valve port of the first heat exchange component 1, the liquid inlet of the second dry cooler component 33, the liquid outlet of the second dry cooler component 33, and the first valve port , the third valve port and the liquid return port of the first heat exchange component 1 form a circulating liquid channel;
  • the liquid outlet of the second heat exchange component 2 the sixth valve port, the seventh valve port, and the inlet of the first dry cooler component 32
  • the liquid port, the liquid outlet of the first dry cooler component 32, the eighth valve port, the fifth valve port, and the liquid return port of the second heat exchange component 2 form a circulating liquid channel.
  • the first heat exchange component 1 and the multi-way valve 4 form a self-circulation loop
  • the first dry cooler component 32 , the second heat exchange component 2 and the multi-way valve 4 form a first circuit.
  • the first heat exchange component 1, the fourth valve port, the third valve port and the liquid return port of the first heat exchange component 1 form a self-circulation loop.
  • the liquid outlet of the second heat exchange component 2, the sixth valve port, the seventh valve port, the liquid inlet of the first dry cooler component 32, the liquid outlet of the first dry cooler component 32, the eighth valve port, the fifth The valve port and the liquid return port of the second heat exchange component 2 form a circulating liquid channel.
  • the liquid cooling unit in the embodiment of the present application is suitable for scenarios where the heat exchange components do not require cooling, such as shutdown scenarios for heat preservation. Or a scenario where the temperatures of the first heat exchange component 1 and the second heat exchange component 2 need to be balanced.
  • the heat generated by the water pump can be used to heat or keep the water temperature, which has the advantage of reducing energy consumption.
  • the first heat exchange component 1 and the second heat exchange component 2 form a self-heating circulation loop.
  • the liquid outlet, sixth valve port, third valve port of the second heat exchange component 2 and the liquid return port of the first heat exchange component 1 form a circulating liquid channel.
  • the liquid cooling unit also has a fourth working mode.
  • the temperature control component also includes a heating component. In the fourth working mode, the heating component communicates with the first heat exchange component 1 and/or the second heat exchange component 2 through the multi-way valve 4 to achieve control.
  • the corresponding temperature control device heats and switches between the first to fourth working modes.
  • the temperature control component includes a heat pump component.
  • the heat pump component includes a (second condenser 302) condensation end and (evaporator 303) an evaporation end. Each of the condensation end and the evaporation end is connected to different valve ports of the multi-way valve 4,
  • the condensation end communicates with the first heat exchange component 1 and/or the second heat exchange component 2 through the multi-way valve 4 to form a heat pump heating circuit.
  • the condensation end is connected to the first heat exchange component 1 through the multi-way valve 4 to form a first heat pump heating circuit
  • the condensation end is connected to the second heat exchange component 2 through the multi-way valve 4 to form a second heat pump heating circuit.
  • the multi-way valve 4 communicates with the first heat exchange component 1 and the second heat exchange component 2 to form a third heat pump heating circuit. It can be understood that the first refrigeration component and the heating component are integrated to form a heat pump component. This design has the advantages of small space occupation and low energy consumption.
  • the liquid cooling unit in the embodiment of the present application uses a heat pump for heating, which is more energy-saving and more energy-efficient than traditional electric heating.
  • switching between the first heat pump heating circuit, the second heat pump heating circuit and the third heat pump heating circuit can be achieved by switching the valve core of the multi-way valve 4 .
  • the evaporation end is connected to the heat pump refrigeration circuit through the multi-way valve 4 with the first heat exchange component 1 and/or the second heat exchange component 2, and the heat pump heating circuit and the heat pump refrigeration circuit are switchable.
  • the heat pump assembly includes a heat pump circulation pipeline, a condensation end, an evaporation end, a compressor 313 and a third expansion valve.
  • the condensation end, evaporation end, compressor 313 and the third expansion valve are sequentially arranged on the heat pump circulation pipeline. .
  • the first refrigeration component includes the evaporation end of the heat pump component
  • the second refrigeration component is the first dry cooler component 32
  • the third refrigeration component is the second dry cooler component 33
  • the heating part is the condensing end of the heat pump assembly.
  • the evaporation end and condensation end of the heat pump assembly are switchably connected to the multi-way valve 4 .
  • the multi-way valve 4 is a twelve-way valve, which has a first valve port, a second valve port, a third valve port, a fourth valve port, a fifth valve port, a sixth valve port, and a seventh valve port.
  • the difference from the above embodiment is that the evaporation end of the heat pump assembly is used instead of the compression refrigeration assembly 31 .
  • the corresponding pipelines on the condensation end connect the eleventh valve port and the twelfth valve port.
  • the corresponding pipes at the condensation end connecting the eleventh valve port and the twelfth valve port are not connected to the valve core of the multi-way valve 4 .
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series and form a circulation loop with the evaporation end of the heat pump component.
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series and form a circulation loop with the first dry cooler component 32 .
  • the first heat exchange component 1 and the second heat exchange component 2 are connected in series and form a circulation loop with the second dry cooler component 33 .
  • the liquid outlet of the first heat exchange component 1, the fourth valve port, the first valve port, the liquid inlet of the evaporation end of the heat pump component, and the outlet of the evaporation end of the heat pump component The liquid port, the second valve port, the third valve port and the liquid return port of the first heat exchange component 1 form a circulating liquid channel; the liquid outlet, the sixth valve port, the seventh valve port and the third valve port of the second heat exchange component 2
  • the liquid inlet of a dry cooler assembly 32, the liquid outlet of the first dry cooler assembly 32, the fifth valve port, and the liquid return port of the second heat exchange assembly 2 form a circulating liquid channel.
  • the first heat exchange component 1 is connected to the second dry cooler component 33
  • the second heat exchange component 2 is connected to the first dry cooler component 32
  • the liquid outlet, the fourth valve port, the ninth valve port of the first heat exchange component 1, the liquid inlet of the second dry cooler component 33, the liquid outlet of the second dry cooler component 33, and the tenth valve port , the third valve port and the liquid return port of the first heat exchange component 1 form a circulating liquid channel;
  • the liquid outlet of the second heat exchange component 2 the sixth valve port, the seventh valve port, and the inlet of the first dry cooler component 32
  • the liquid port, the liquid outlet of the first dry cooler component 32, the eighth valve port, the fifth valve port, and the liquid return port of the second heat exchange component 2 form a circulating liquid channel.
  • the first heat exchange component 1 and the second heat exchange component 2 form a self-heating circulation loop.
  • the liquid outlet, the fourth valve port, the fifth valve port of the first heat exchange component 1, the liquid inlet of the second heat exchange component 2, and the The liquid outlet, the sixth valve port, the third valve port and the liquid return port of the first heat exchange component 1 form a circulating liquid channel.
  • the liquid outlet of the first heat exchange component 1, the fourth valve port, the eleventh valve port, the liquid inlet of the condensation end of the heat pump component, and the The liquid outlet, the third valve port and the liquid return port of the first heat exchange component 1 form a heat pump heating circuit.
  • the liquid outlet of the second heat exchange component 2, the sixth valve port, the seventh valve port, the liquid inlet of the first dry cooler component 32, the liquid outlet of the first dry cooler component 32, the fifth valve port, the second The liquid return port of the heat exchange component 2 forms a circulating liquid channel.
  • the compression refrigeration component 31 includes a condensation pipeline 311 , a plate heat exchanger 312 , a compressor 313 , a first condenser 314 , a first expansion valve 315 and a first expansion valve 315 .
  • the heat exchange tube 11, the plate heat exchanger 312, the compressor 313, the heat exchange parts and the first expansion valve 315 are sequentially arranged on the condensation pipeline 311 according to the flow direction of the condensed gas in the condensation pipeline 311 and form a corresponding refrigeration cycle.
  • the first heat exchange tube 11 is connected with the plate heat exchanger 312 and the multi-way valve 4 to form a heat dissipation circulation loop.
  • the first dry cooler assembly 32 includes a first dry cooler liquid inlet pipe 321, a first dry cooler body 322, and a first dry cooler liquid outlet pipe 323.
  • the liquid inlet of the first dry cooler liquid inlet pipe 321 It is connected with the liquid outlet of the multi-way valve 4, the liquid outlet of the first dry cooler liquid inlet pipe 321 is connected with the liquid inlet of the first dry cooler body 322, and the liquid outlet of the first dry cooler body 322 is connected with the first dry cooler body 322.
  • the liquid inlet of the first dry cooler liquid outlet pipe 323 is connected to the liquid inlet of the first dry cooler liquid outlet pipe 323 and connected to the liquid inlet of the multi-way valve 4.
  • the second dry cooler assembly 33 includes a second dry cooler liquid inlet pipe 331 , a second dry cooler body 332 and a second dry cooler liquid outlet pipe 333 .
  • the liquid inlet of the second dry cooler liquid inlet pipe 331 It is connected with the liquid outlet of the multi-way valve 4, the liquid outlet of the second dry cooler liquid inlet pipe 331 is connected with the liquid inlet of the second dry cooler body 332, and the liquid outlet of the second dry cooler body 332 is connected with the second dry cooler body 332.
  • the liquid inlet of the liquid outlet pipe 333 of the second dry cooler is connected to the liquid inlet of the second dry cooler liquid outlet pipe 333.
  • the liquid outlet of the second dry cooler liquid outlet pipe 333 is connected to the liquid inlet of the multi-way valve 4.
  • the liquid cooling unit further includes a condenser bypass component, and the condenser bypass component is connected to the temperature control component.
  • the condenser bypass assembly includes a condenser bypass pipeline 71, a second expansion valve 72, a dehumidification evaporator 73 and a dehumidification fan 74.
  • the second expansion valve 72 and the dehumidification evaporator 73 are provided On the condenser side pipe 71 , the air inlet of the condenser side pipe 71 is provided on the pipe between the condenser and the first expansion valve 315 , and the dehumidification fan 74 is provided opposite to the dehumidification evaporator 73 .
  • the refrigeration system when the ambient humidity is high and dehumidification is needed, the refrigeration system can dehumidify the box to avoid condensation on electronic components, which may cause safety hazards such as electrical short circuits.
  • a condenser bypass can be set up to dehumidify temperature control components (such as condenser pipelines). This has the advantage of energy saving.
  • the liquid cooling unit further includes a first fan 51 , and the evaporator of each of the first fan 51 , the first refrigeration component, the second refrigeration component and the third refrigeration component is arranged correspondingly.
  • the evaporator of each of the first refrigeration component, the second refrigeration component and the third refrigeration component shares the same first fan 51 .
  • the shared fan method is used to ensure the function of the dry cooler or condenser based on which refrigerant passes through first.
  • the wind resistance is larger when connected in series.
  • the liquid cooling unit also includes a first fan 51 and a second fan 52 .
  • the evaporator of one of the first refrigeration component, the second refrigeration component and the third refrigeration component corresponds to the first fan 51 It is provided that the evaporators of the other two of the first refrigeration component, the second refrigeration component and the third refrigeration component are arranged corresponding to the second fan 52 .
  • the evaporator of the first refrigeration component is provided correspondingly to the first fan 51
  • the evaporator of each of the second refrigeration component and the third refrigeration component is provided correspondingly to the second fan 52 .
  • the evaporator of each of the first refrigeration component and the third refrigeration component is connected to the first refrigeration component.
  • the fans 51 are arranged correspondingly, and the evaporator of the second refrigeration component is arranged correspondingly to the second fan 52 .
  • the liquid cooling unit also includes a first fan 51 , a second fan 52 and a third fan.
  • the first fan 51 , the second fan 52 and the third fan are provided in one-to-one correspondence.
  • the first fan 51 is arranged corresponding to the evaporator of the first refrigeration component
  • the second fan 52 is arranged corresponding to the evaporator of the second refrigeration component
  • the third fan is arranged corresponding to the evaporator of the third refrigeration component. place settings.
  • a stop valve 6 is provided between at least one of the compression refrigeration assembly 31 , the first dry cooler assembly 32 and the second dry cooler assembly 33 and the multi-way valve 4 .
  • the first dry cooler assembly 32 or the second dry cooler assembly 33 can be short-circuited, thereby reducing the flow resistance and reducing the water pump power consumption.
  • a stop valve 6 is provided between one of the compression refrigeration assembly 31 , the first dry cooler assembly 32 and the second dry cooler assembly 33 and the multi-way valve 4 .
  • a stop valve 6 is provided between one of the compression refrigeration assembly 31 , the first dry cooler assembly 32 and the second dry cooler assembly 33 and the multi-way valve 4 .
  • a stop valve 6 is provided between each of the compression refrigeration assembly 31 , the first dry cooler assembly 32 and the second dry cooler assembly 33 and the multi-way valve 4 .
  • the first refrigeration component is a compression refrigeration component 31
  • the second refrigeration component is a first dry cooler component 32
  • the third refrigeration component is a second dry cooler component 33
  • the stop valve 6 includes a first stop valve 6 , a second stop valve 6 and a third stop valve 6 .
  • the first stop valve 6 is provided on the pipeline of the compression refrigeration assembly 31
  • the second stop valve 6 is provided on the pipeline of the first dry cooler assembly 32
  • the third stop valve 6 is provided on the pipeline of the second dry cooler assembly 33 .
  • the first heat exchange component 1 includes a first heat exchange tube 11, a first heat exchanger body 12 and a first pump body 13.
  • the first heat exchanger body 12 and the first pump body 13 are both arranged on the first heat exchange tube 11.
  • the first heat exchange tube 11 is cyclically connected with the multi-way valve 4;
  • the second heat exchange component 2 includes a second heat exchange tube 21, a second heat exchanger body 22 and a second pump body 23.
  • the second heat exchanger body 22 and the second pump body 23 are both arranged on the second heat exchange tube 21, and the second heat exchange tube 21 is cyclically connected to the multi-way valve 4.
  • the control method of the liquid cooling unit in the embodiment of the present application includes: obtaining the external ambient temperature, obtaining the temperature of the first heat exchange component 1 and/or the second heat exchange component 2, and adjusting the working mode of the multi-way valve 4. Therefore, the control method of the liquid cooling unit in the embodiment of the present application realizes the conversion of multiple working modes through the multi-way valve 4, which can be converted according to the actual working conditions, thereby improving the energy efficiency of the liquid cooling unit. This has the advantage of energy saving.
  • the conversion is realized through the multi-way valve 4, which can simplify the pipeline setting to a certain extent and facilitate installation and maintenance.
  • the temperatures of the first heat exchange component 1, the second heat exchange component 2 and the ambient temperature are obtained.
  • the external ambient temperature is T 0
  • the temperature of the first heat exchange component 1 is T 1
  • the temperature of the second heat exchange component 2 is T 2
  • the temperature control component includes a compression refrigeration component 31 , a first dry cooler component 32 and a second dry cooling component
  • the first refrigeration component is a compression refrigeration component 31
  • the second refrigeration component is a first dry cooler component 32
  • the third refrigeration component is a second dry cooler component 33.
  • the corresponding temperature of each of the first heat exchange component 1 and the second heat exchange component 2 can be collected by providing a temperature sensor.
  • the compression refrigeration component 31 is connected to the first heat exchange component 1
  • the first dry cooler component 32 is connected to the second dry cooler
  • At least one of the components 33 is connected to the second heat exchange component 2 .
  • the compression refrigeration component 31 is connected to the first heat exchange component 1 , and the second heat exchange component 2 is connected to the multi-way valve 4 forms a self-loop.
  • the first heat exchange component 1 is connected to the compression refrigeration component 31
  • the second dry cooler component 33 is connected to the second heat exchanger component 31 .
  • the first heat exchange component 1 performs self-circulation through the multi-way valve 4
  • the second dry cooler component 33 communicates with the second heat exchanger component 3 .
  • the thermal component 2 or the second heat exchange component 2 is connected to the multi-way valve 4 for self-circulation.
  • the temperatures of the first heat exchange component 1 and the second heat exchange component 2 are obtained.
  • the temperature of the external ambient temperature is T 0
  • the temperature of the first heat exchange component 1 is T 1
  • the temperature of the second heat exchange component 2 is T 1 .
  • the temperature of 2 is T 2 ;
  • the temperature control component includes a compression refrigeration component 31, a first dry cooler component 32, a second dry cooler component 33, and the first heat exchange component 1 and the second heat exchange component 2 are connected in series;
  • a heat exchange component 1 and a second heat exchange component 2 are connected in sequence.
  • the liquid cooling system in the embodiment of the present application includes a first temperature control device, a second temperature control device and any one of the above liquid cooling units.
  • the first heat exchange component 1 is connected to the first temperature control device
  • the second heat exchanger component 1 is connected to the first temperature control device.
  • the thermal component 2 is connected to the second temperature device to be controlled. Therefore, the control method of the liquid cooling unit in the embodiment of the present application realizes the conversion of multiple working modes through the multi-way valve 4, which can be converted according to the actual working conditions, thereby improving the energy efficiency of the liquid cooling unit. This has the advantage of energy saving.
  • the conversion is realized through the multi-way valve 4, which can simplify the pipeline setting to a certain extent and facilitate installation and maintenance.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be mechanically connected, electrically connected or communicable with each other; it can be directly connected or indirectly connected through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements. Unless otherwise expressly limited. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature “on” or “below” a second feature may be the first and second features.
  • Features are in direct contact, or the first and second features are in indirect contact through an intermediary.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • the terms “one embodiment,” “some embodiments,” “example,” “specific examples,” or “some examples” or the like mean that a specific feature, structure, material, or structure is described in connection with the embodiment or example. Features are included in at least one embodiment or example of the application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种液冷机组、具有该液冷机组的液冷系统及液冷机组的控制方法,所述的液冷机组包括第一换热组件(1)、第二换热组件(2)、控温组件和多通阀(4)。所述第一换热组件(1)用于与第一待控温装置进行热交换,所述第二换热组件(2)用于与第二待控温装置进行热交换,所述第一换热组件(1)、所述第二换热组件(2)和所述控温组件中的每一者与所述多通阀(4)连接以便通过所述多通阀(4)的换向实现多种工作模式的转换。

Description

液冷机组、控制方法和液冷系统
相关申请的交叉引用
本申请基于申请号为2022109620061、申请日为2022年8月11日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及热管理技术领域,具体涉及一种液冷机组和具有该液冷机组的液冷系统,还涉及一种液冷机组的控制方法。
背景技术
随着季节及使用阶段的变化,待控温装置与外界温度之间温度需求会随之改变,相关技术中,制冷组件与待控温装置连接固定后,往往无法再改变制冷组件内的冷却气或冷却液的流动变化,造成在使用过程中功耗大的问题。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的实施例提出一种液冷机组。该液冷机组具有减低能耗和便于安装和维修的优点。
本申请的实施例还提出一种液冷系统。
本申请的实施例还提出一种液冷机组的控制方法。
本申请实施例的液冷机组包括第一换热组件、第二换热组件、控温组件和多通阀。
所述第一换热组件用于与第一待控温装置进行热交换;所述第二换热组件用于与第二待控温装置进行热交换;所述第一换热组件、所述第二换热组件和所述控温组件中的每一者与所述多通阀连接以便通过所述多通阀的换向实现多种工作模式的转换。
根据本申请实施例的液冷机组,具有减低能耗、便于安装和维修的优点。
在一些实施例中,所述控温组件包括第一制冷组件和第二制冷组件;
所述液冷机组具有第一至第三工作模式,所述液冷机组通过所述多通阀在所述第一至第三工作模式之间转换;
其中在所述第一工作模式,所述第一换热组件和所述第二换热组件串联,所述第一换热组件、所述第二换热组件与所述第二制冷组件和所述第一制冷组件中的至少一者通过所述多通阀连接形成制冷回路;
在所述第二工作模式,所述第一制冷组件与所述第一换热组件通过所述多通阀的部分阀口连接形成以便形成第一回路,和/或所述第二制冷组件与所述第二换热组件通过所述多通阀的另一部分阀口连接以便形成第二回路;
在所述第三工作模式,所述第一换热组件和所述第二换热组件形成自热循环回路。
在一些实施例中,,所述制冷组件还包括第三制冷组件;在所述第一工作模式,所述第二制冷组件、所述第一制冷组件和所述第三制冷组件中的至少一者与所述第一换热组件、所述第二换热组件连接形成 制冷回路。
在一些实施例中,所述制冷组件还包括第三制冷组件;在所述第二工作模式,所述第一制冷组件、第三制冷组件与所述第一换热组件通过所述多通阀依次连接形成第三回路,所述第二制冷组件与所述第二换热组件通过所述多通阀依次连接形成第四回路。
在一些实施例中,所述第一制冷组件与所述第一换热组件通过所述多通阀依次连接形成第五回路,所述第二制冷组件、所述第三制冷组件与所述第二换热组件通过所述多通阀依次连接形成第六回路。
在一些实施例中,所述第二制冷组件、所述第一制冷组件和所述第三制冷组件中的至少一者与所述第一换热组件、所述第二换热组件连接形成多个制冷回路,多个所述制冷回路之间通过所述多通阀可转换地设置。
在一些实施例中,其中所述第一回路、所述第二回路、所述第三回路、所述第四回路通过所述多通阀可转换地设置,或所述第一回路、所述第二回路、所述第五回路、所述第六回路通过所述多通阀可转换地设置。
在一些实施例中,其中所述第三回路和所述第四回路形成第一回路组,与所述第五回路和所述第六回路形成第二回路组,所述第一回路组与所述第二回路组通过所述多通阀的阀芯实现通路之间的转换。
在一些实施例中,所述多通阀包括壳体和设置在所述壳体内的阀芯,所述壳体上设置有多个阀口,所述第一换热组件、所述第二换热组件与所述控温组件中的每一者对应地与所述阀口对应地连接以便通过所述阀芯的换向改变冷却液的流通方向。
在一些实施例中,其中在所述第二工作模式,所述多通阀包括第一多通阀,所述第一多通阀具有第一阀口、第二阀口、第三阀口、第四阀口、第五阀口、第六阀口、第七阀口及第八阀口,所述第一换热组件的进液口、所述第一换热组件的出液口、所述第二换热组件的进液口、所述第二换热组件的出液口、所述第一制冷组件的进液口、所述第一制冷组件的出液口、所述第二制冷组件的进液口及所述第二制冷组件的出液口与所述第一多通阀的阀口对应地连接。
在一些实施例中,其中在所述第二工作模式,所述多通阀具有第一阀口、第二阀口、第三阀口、第四阀口、第五阀口、第六阀口、第七阀口、第八阀口、第九阀口及第十阀口,所述第一换热组件的进液口、所述第一换热组件的出液口、所述第二换热组件的进液口、所述第二换热组件的出液口、所述第一制冷组件的进液口、所述第一制冷组件的出液口、所述第二制冷组件的进液口、所述第二制冷组件的出液口与所述第一多通阀的阀口对应地连接。
在一些实施例中,其中在所述第二工作模式,所述多通阀包括第一多通阀和第二多通阀,所述第一多通阀的其中一个排液口与所述第一制冷组件的进液口通过连接管连接,所述第二多通阀设置在所述连接管上以便通过所述第二多通阀的换向实现所述第一制冷组件和第三制冷组件中的至少一者与所述第一换热组件依次连接形成相应地并联回路。
在一些实施例中,所述第一多通阀具有第一阀口、第二阀口、第三阀口、第四阀口、第五阀口、第六阀口、第七阀口及第八阀口,所述第二多通阀为三通阀,所述三通阀具有第一进液阀口、第一排液口和第二排液口,所述第一阀口与所述第一制冷组件的进液口通过连接管连接,所述第二多通阀设置在所述连接管上,所述第一进液阀口与所述第一阀口连接,所述第一排液口与所述第三制冷组件的进液口连接,所述第二排液口与所述第一制冷组件的进液口连接,以便通过所述第一进液阀口、所述第一排液口 和所述第二排液口中每一者的开闭实现所述第一制冷组件和第三制冷组件中的至少一者与所述第一换热组件连接。
在一些实施例中,所述第一制冷组件为压缩制冷组件,所述第二制冷组件为第一干冷器组件,所述第三制冷组件为第二干冷器组件。
在一些实施例中,所述压缩制冷组件包括冷凝管路、板式换热器、压缩机、第一冷凝器和第一膨胀阀,所述板式换热器、所述压缩机、所述换热件及所述第一膨胀阀按照冷凝管路冷凝气的流向依次设置在所述冷凝管路上。
在一些实施例中,所述液冷机组还具有第四工作模式,所述控温组件还包括升温件,在第四工作模式下,所述升温件通过所述多通阀连通所述第一换热组件和/或所述第二换热组件实现对相应的控温装置加热,所述第一至第四工作模式之间转换。
在一些实施例中,所述控温组件包括热泵组件,所述热泵组件包括冷凝端和蒸发端,所述冷凝端和所述蒸发端中的每一者均与所述多通阀的不同阀口连通,所述冷凝端通过所述多通阀与所述第一换热组件和/或所述第二换热组件连通热泵供热回路;
或所述蒸发端通过所述多通阀与所述第一换热组件和/或所述第二换热组件连通热泵制冷回路,所述热泵供热回路和热泵制冷回路可转换。
在一些实施例中,所述第一干冷器组件包括第一干冷器进液管、第一干冷器本体和第一干冷器出液管,所述第一干冷器进液管的进液口与所述多通阀的出液口连接,所述第一干冷器进液管的出液口与所述第一干冷器本体的进液口连接,所述第一干冷器本体的出液口与所述第一干冷器出液管进液口连接,所述第一干冷器出液管出液口与所述多通阀的进液口连接。
在一些实施例中,所述第二干冷器组件包括第二干冷器进液管、第二干冷器本体和第二干冷器出液管,所述第二干冷器进液管的进液口与所述多通阀的出液口连接,所述第二干冷器进液管的出液口与所述第二干冷器本体的进液口连接,所述第二干冷器本体的出液口与所述第二干冷器出液管进液口连接,所述第二干冷器出液管出液口与所述多通阀的进液口连接。
所述的液冷机组还包括冷凝器旁路组件,所述冷凝器旁路组件与所述控温组件相连。
在一些实施例中,所述冷凝器旁路组件包括冷凝器旁管路、第二膨胀阀及除湿蒸发器和除湿风扇,所述第二膨胀阀和所述除湿蒸发器设置在所述冷凝器旁管路上,所述冷凝器旁管路的进气口设置在所述冷凝器与所述第一膨胀阀之间的管道上,所述除湿风扇与所述除湿蒸发器相对地设置。
在一些实施例中,所述的液冷机组还包括第一风扇,所述第一风扇、所述第一制冷组件、第二制冷组件和第三制冷组件中每一者的蒸发器对应地设置;
在一些实施例中,所述的液冷机组还包括第一风扇和第二风扇,所述第一制冷组件、第二制冷组件和第三制冷组件中的一者的蒸发器与所述第一风扇对应设置,所述第一制冷组件、第二制冷组件和第三制冷组件中的另两者的蒸发器与所述第二风扇对应设置。
在一些实施例中,所述的液冷机组还包括第一风扇、第二风扇和第三风扇,所述第一风扇、所述第二风扇和所述第三风扇中一一对应地设置。
在一些实施例中,所述压缩制冷组件、所述第一干冷器组件和所述第二干冷器组件中的至少一者与所述多通阀之间设置截止阀。
在一些实施例中,所述第一换热组件包括第一换热管、第一换热器本体和第一泵体,所述第一换热器本体和所述第一泵体均设置在所述第一换热管上,所述第一换热管与所述多通阀循环连接,所述第二换热组件包括第二换热管、第二换热器本体和第二泵体,所述第二换热器本体和所述第二泵体均设置在所述第二换热管上,所述第二换热管与所述多通阀循环连接。
本申请实施例的液冷机组的控制方法,所述控制方法包括:获取外部环境温度,并获取第一换热组件和/或第二换热组件的温度,调整所述多通阀的工作模式。
在一些实施例中,所述外部环境温度为T0,所述第一换热组件的温度为T1,所述第二换热组件的温度为T2,所述控温组件包括压缩制冷组件、第一干冷器组件和第二干冷器组件;
基于T0-T1≥预设值A1,且T2-T0≥预设值B1,所述压缩制冷组件与所述第一换热组件连接,所述第一干冷器组件与所述第二干冷器组件中至少一者与所述第二换热组件连接;
基于T0-T1≥预设值A1,且T2-T0<预设值B1,所述压缩制冷组件与所述第一换热组件连接,所述第二换热组件连接与多通阀形成自循环;
基于T2>T1>T0,预设值A3≤T1-T0<预设值A2,且T2-T0≥预设值B1;所述第一换热组件连接、所述第一干冷器组件及所述压缩制冷组件连接,所述第二干冷器组件与所述第二换热组件连接;
基于T1-T0<预设值A3,且T2-T0≥预设值B1;所述第一换热组件连接与所述压缩制冷组件连接,所述第二干冷器组件与所述第二换热组件连接;
T1-T0<预设值A3,且T2-T0≥预设值B1,所述第一换热组件通过所述多通阀进行自循环,所述第二干冷器组件与所述第二换热组件连接或所述第二换热组件连接与所述多通阀进行自循环。
在一些实施例中,获取第一换热组件和第二换热组件的温度,外部环境温度的温度为T0,所述第一换热组件的温度为T1,所述第二换热组件的温度为T2;所述控温组件包括压缩制冷组件、第一干冷器组件、第二干冷器组件,所述第一换热组件和所述第二换热组件串联;
基于T0>T1,T0>T2,所第一换热组件、所述第二换热组件和所述压缩制冷组件连接;
T1>T0,T2>T0,预设值A3≤T1,T1和T2的平均值-T0≤预设值A2,第一干冷器组件和第二干冷器组件中的至少一者、所述压缩制冷组件、第一换热组件、所述第二换热组件依次连接;
T1>T0,T2>T0,T1和T2的平均值-T0>预设值A2,所述第一干冷器组件和第二干冷器组件中的至少一者与所述第一换热组件、所述第二换热组件依次连接。
在一些实施例中,T1和T3的平均值-T0>预设值A3(单元1单元2不需要制冷),所述第一换热组件和所述第二换热组件形成自热循环回路。
本申请实施例的液冷系统可以包括第一待控温装置、第二待控温装置及上述任一项所述的液冷机组,所述第一换热组件与所述第一待控温装置相连,所述第二换热组件与所述第二待控温装置相连。
附图说明
图1是本申请一个实施例的液冷机组的布置图,具有第一制冷组件和第二制冷组件,多通阀内部的第一种流通方式。
图2是本申请实施例的液冷机组的布置图,具有第一制冷组件和第二制冷组件,多通阀内部的第二种流通方式。
图3是本申请实施例的液冷机组的布置图,具有第一制冷组件和第二制冷组件,多通阀内部的第三种流通方式。
图4是本申请实施例的液冷机组的布置图,具有第一制冷组件和第二制冷组件,多通阀内部的第四种流通方式。
图5是本申请实施例的液冷机组的布置图,具有第一制冷组件和第二制冷组件,多通阀内部的第五种流通方式。
图6是本申请另一个实施例的液冷机组的布置图,具有第一制冷组件、第二制冷组件和第三制冷组件,多通阀内部的第一种流通方式。
图7是本申请实施例的液冷机组的布置图,具有第一制冷组件、第二制冷组件和第三制冷组件,多通阀内部的第二种流通方式。
图8是本申请实施例的液冷机组的布置图,具有第一制冷组件、第二制冷组件和第三制冷组件,多通阀内部的第三种流通方式。
图9是本申请实施例的液冷机组的布置图,具有第一制冷组件、第二制冷组件和第三制冷组件,多通阀内部的第四种流通方式。
图10是本申请实施例的液冷机组的布置图,具有第一制冷组件、第二制冷组件和第三制冷组件,多通阀内部的第五种流通方式。
图11是本申请又一个实施例的液冷机组的布置图,三个制冷组件并设置截止阀,多通阀内部的第一种流通方式。
图12是本申请实施例的液冷机组的布置图,三个制冷组件并设置截止阀,多通阀内部的第二种流通方式。
图13是本申请实施例的液冷机组的布置图,三个制冷组件并设置截止阀,多通阀内部的第三种流通方式。
图14是本申请实施例的液冷机组的布置图,三个制冷组件并设置截止阀,多通阀内部的第四种流通方式。
图15是本申请实施例的液冷机组的布置图,三个制冷组件并设置截止阀,多通阀内部的第五种流通方式。
图16是本申请再一个实施例的液冷机组的布置图,压缩制冷组件和第二干冷器组件共用风扇,多通阀内部的第一种流通方式。
图17是本申请实施例的液冷机组的布置图,压缩制冷组件和第二干冷器组件共用风扇,多通阀内部的第二种流通方式。
图18是本申请实施例的液冷机组的布置图,压缩制冷组件和第二干冷器组件共用风扇,多通阀内部的第三种流通方式。
图19是本申请实施例的液冷机组的布置图,压缩制冷组件和第二干冷器组件共用风扇,多通阀内部的第四种流通方式。
图20是本申请实施例的液冷机组的布置图,压缩制冷组件和第二干冷器组件共用风扇,多通阀内部的第五种流通方式。
图21是本申请另一个实施例的液冷机组的布置图,所述多通阀包括第一多通阀和第二多通阀,多通阀内部的第一种流通方式。
图22是本申请实施例的液冷机组的布置图,所述多通阀包括第一多通阀和第二多通阀,多通阀内部的第二种流通方式。
图23是本申请实施例的液冷机组的布置图,所述多通阀包括第一多通阀和第二多通阀,多通阀内部的第三种流通方式。
图24是本申请实施例的液冷机组的布置图,所述多通阀包括第一多通阀和第二多通阀,多通阀内部的第四种流通方式。
图25是本申请又一个实施例的液冷机组的布置图,采用九通阀,多通阀内部的第一种流通方式。
图26是本申请实施例的液冷机组的布置图,采用九通阀,多通阀内部的第二种流通方式。
图27是本申请实施例的液冷机组的布置图,采用九通阀,多通阀内部的第三种流通方式。
图28是本申请实施例的液冷机组的布置图,采用九通阀,多通阀内部的第四种流通方式。
图29是本申请实施例的液冷机组的布置图,采用九通阀,多通阀内部的第五种流通方式。
图30是本申请实施例的液冷机组的布置图,采用九通阀,多通阀内部的第六种流通方式。
图31是本申请实施例的液冷机组的布置图,采用九通阀,多通阀内部的第七种流通方式。
图32是本申请实施例的液冷机组的布置图,采用九通阀,多通阀内部的第八种流通方式。
图33是本申请又一个实施例的液冷机组的布置图,采用热泵组件,多通阀内部的第一种流通方式。
图34是本申请实施例的液冷机组的布置图,采用热泵组件,多通阀内部的第二种流通方式。
图35是本申请实施例的液冷机组的布置图,采用热泵组件,多通阀内部的第三种流通方式。
图36是本申请实施例的液冷机组的布置图,采用热泵组件控温,多通阀内部的第四种流通方式。
图37是本申请再一个实施例的液冷机组的布置图,增设冷凝器旁路组件,多通阀内部的第一种流通方式。
附图标记:
第一换热组件1;第一换热管11;第一换热器本体12;第一泵体13;
第二换热组件2;第二换热管21;第二换热器本体22;第二泵体23;
压缩制冷组件31;冷凝管路311;板式换热器312;压缩机313;第一冷凝器314;第一膨胀阀315;
第二冷凝器(冷凝端)302;蒸发器(蒸发端)303;
第一干冷器组件32;第一干冷器进液管321;第一干冷器本体322;第一干冷器出液管323;
第二干冷器组件33;第二干冷器进液管331;第二干冷器本体332;第二干冷器出液管333;
多通阀4;第一多通阀41;第二多通阀42;
第一风扇51;第二风扇52;
截止阀6;
冷凝器旁管路71;第二膨胀阀72;除湿蒸发器73;除湿风扇74。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例 是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考图1-图37描述本申请实施例的液冷机组。
本申请实施例的液冷机组包括第一换热组件1、第二换热组件2、温度传感器、控温组件和多通阀4。
第一换热组件1用于与第一待控温装置进行热交换;第二换热组件2用于与第二待控温装置进行热交换;第一换热组件1、第二换热组件2和控温组件中的每一者用于与多通阀4连接以便通过温度传感器相应的参数和多通阀4的换向实现多种工作模式的转换。可以理解的是,液冷机组具有多种工作模式,且多种工作模式之间可以实现转换。
本申请实施例的液冷机组,通过多通阀4实现多种工作模式的转换,可以根据实际工况进行转化,提高了液冷机组的能效。由此,具有节能优势。
此外,通过多通阀4实现转换,可以在一定程度上简化管道的设置,有利于该液冷机组的安装和维修。
因此,本申请实施例的液冷机组具有减低能耗、便于安装和维修的优点。
在一些实施例中,第一待控温装置可以为电池,第二待控温装置可以逆电器。
本申请的应用不限于此,在其他实施例中,第一待控温装置可以包括多个需要不同控温需要的独立的待控温单元。相应地,第二待控温装置也可以包括多个需要不同控温需要的独立的待控温单元。在实际的应用,多个待控温单元需要不同的控温需要。例如,可以将待控温单元并联。
如图1至图5所示,控温组件包括第一制冷组件和第二制冷组件。
液冷机组具有第一至第三工作模式,液冷机组通过多通阀4在第一至第三工作模式之间转换;
其中在第一工作模式,第一换热组件1和第二换热组件2串联形成串联换热元件,第一换热组件1、第二换热组件2与第二制冷组件和第一制冷组件中的至少一者通过多通阀4连接形成制冷回路。
在第二工作模式,第一制冷组件与第一换热组件1通过多通阀4的部分阀口能够连接形成以便形成第一回路,第二制冷组件与第二换热组件2通过多通阀4的另一部分阀口能够连接以便形成第二回路。
在第三工作模式,第一换热组件1和第二换热组件2形成自热循环回路。
本申请实施例的液冷机组,通过在第一至第三工作模式之间转换,使该液冷机组实现串并联的转化,可以实现该液冷机组在不同的工况下采取不同的工作模式,提高自然冷却利用率,从而提高液冷机组能效。同时当其中某个换热单元故障时,可切换到另一个换热单元,实现安全备份。
例如,控温组件包括第一制冷组件和第二制冷组件;第一制冷组件为压缩制冷组件31,第二制冷组件为第一干冷器组件32,多通阀4为八通阀,该八通阀具有第一阀口、第二阀口、第三阀口、第四阀口、第五阀口、第六阀口、第七阀口及第八阀口。
在第一种工作模式下,第一换热组件1和第二换热组件2串联,第一换热组件1、第二换热组件2与第二制冷组件和第一制冷组件中的至少一者通过多通阀4连接形成制冷回路。
例如,图1中所示,第一换热组件1和第二换热组件2串联并与第一干冷器组件32形成循环回路。具体地,第一换热组件1的出液口、第四阀口、第五阀口、第二换热组件2的进液口、第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第八阀口、第三阀口及第一换热组件1的回液口形成循环液道。此种冷却液的流通方式,适用于环境温度小于 第一第二换热组件2的进出液要求温度,且第一干冷器组件32的换热量满足第一换热组件1及第二换热组件2的总热量需求。可以仅启动第一干冷器组件32进行制冷,具有进一步节省能耗的优点。
例如,图2中所示,第一换热组件1和第二换热组件2串联并与压缩制冷组件31形成循环回路。具体地,第一换热组件1的出液口、第四阀口、第五阀口、第二换热组件2的进液口、第二换热组件2的出液口、第六阀口、第一阀口、压缩制冷组件31的进液口、压缩制冷组件31的出液口、第二阀口、第三阀口及第一换热组件1的回液口形成循环液道。
本申请实施例的液冷机组的种冷却液的流通方式,具有控温能力强的优点。而且在当第一干冷器组件32发生故障时可作为安全备份方案切换。
例如,图3中所示,第一换热组件1和第二换热组件2串联并与第一干冷器组件32、压缩制冷组件31形成循环回路。第一换热组件1的出液口、第四阀口、第五阀口、第二换热组件2的进液口、第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第八阀口、第一阀口、压缩制冷组件31的进液口、压缩制冷组件31的出液口、第二阀口、第三阀口及第一换热组件1的回液口形成循环液道。
本申请实施例的液冷机组的种冷却液的流通方式,适用于环境温度小于第一或第二换热组件2的进出液要求温度,且干冷器的换热量不满足第一第二换热组件2的总热量需求。通过压缩制冷组和第一干冷器组件32并联,具有提升降温的速率的优点。当需要对第一换热组件1和第二换热组件2快速降温时,可以启动该种工作模式。
进一步地,图1中所示,图2中所示和图3中所示中所形成的循环回路可以通过多通阀4进行转换。
本申请实施例的液冷机组,通过将图1中所示,图2中所示和图3中所示中所形成的循环回路可以通过多通阀4进行转换,可以实现液冷机组在不同的工况下采取不同的转换模式,提高自然冷却利用率,从而提高液冷机组能效。
在第二种工作模式下,第一换热组件1与第二换热组件2不连接,换言之,第一换热组件1与多通阀4之间形成自循环或第一换热组件1与压缩制冷组件31和第一干冷器组件32中的至少形成冷却通道,第二换热组件2与多通阀4之间形成自循环或第二换热组件2与压缩制冷组件31和第一干冷器组件32中的至少形成另一冷却通道。
本申请实施例的液冷机组,将压缩制冷组件31、第一换热组件1及多通阀4中形成第一回路,第一干冷器组件32、第二换热组件2及多通阀4中形成第二回路适用于第一换热组件1和第二换热组件2要求的温度不同的场景,尤其适用于第二换热组件2要求的进出液温度高于环境温度,且第一换热组件1要求的进出液温度低于环境温度的情况。两个换热组件并联的系统,有利于两个换热组件独立运行,一个采用压缩制冷,另一个采用环境温度自然冷却,有利于降低压缩制冷组件31中压缩机313负荷,最大限度利用自然冷却,提高该液冷机组能效。
例如,如图4所示,压缩制冷组件31、第一换热组件1及多通阀4中形成第一回路,第一干冷器组件32、第二换热组件2及多通阀4中形成第二回路。
具体地,第一换热组件1的出液口、第四阀口、第一阀口、压缩制冷组件31的进液口、压缩制冷组件31的出液口、第二阀口、第三阀口及第一换热组件1的回液口形成循环液道;第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第八阀口、 第五阀口、第二换热组件2的回液口形成循环液道。
在第三工作模式,第一换热组件1和第二换热组件2形成自热循环回路。
本申请实施例的液冷机组,通过第一换热组件1和第二换热组件2形成自热循环回路,可以适用于第一换热组件1和第二换热组件2不需要制冷的场景,比如停机保温的场景。或者需要第一换热组件1和第一换热组件1平衡温度的场景。可以利用第一换热组件1中某个组件(例如,水泵)的发热对水温进行加热或保温。此外,利用两个换热组件形成自热循环回路,可以均衡两个系统的温度,或利用温度高的系统去加热温度低的系统。由此,具有进一步降低能耗的优点。
具体地,例如,如图5所示,第一换热组件1的出液口、第四阀口、第五阀口、第二换热组件2的进液口、第二换热组件2的出液口、第六阀口、第三阀口及第一换热组件1的回液口形成循环液道。
如图6至图24所示,控温组件包括第一制冷组件、第二制冷组件和第三制冷组件;在第一工作模式,串联换热元件与第二制冷组件、第一制冷组件和第三制冷组件中的至少一者通过多通阀4连接形成制冷回路。其中,第一制冷组件为压缩制冷组件31,第二制冷组件为第一干冷器组件32,第三制冷组件为第二干冷器组件33;多通阀4为十通阀,该十通阀具有第一阀口、第二阀口、第三阀口、第四阀口、第五阀口、第六阀口、第七阀口、第八阀口、第九阀口及第十阀口。
本申请实施例的液冷机组,通过设置三个制冷组件,可以更进一步的提升该液冷机组的工作模式种类,进一步提升实际工况与制冷效果的匹配度。此外,还可以最大程度利用制冷组件的换热面积,提高制冷能力,提高能效。
在一些实施例中,第一干冷器组件32和二干冷器组件中的循环介质采用50%乙二醇水溶液。
例如,第一换热组件1和第二换热组件2串联形成串联换热元件,串联换热元件与其中一个干冷器连接。
具体地,如图6所示,第一换热组件1和第二换热组件2串联并与第一干冷器组件32形成循环回路。第一换热组件1的出液口、第四阀口、第五阀口、第二换热组件2的进液口、第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第八阀口、第三阀口及第一换热组件1的回液口形成循环液道。
本申请实施例的液冷机组,第一换热组件1和第二换热组件2串联并与第一干冷器组件32形成循环回路,适用于环境温度低于第一换热组件1和第二换热组件2的进出水要求温度,且第一干冷器组件32或第二干冷器组件33的换热量满足第一换热组件1和第二换热组件2的总热量需求。由此,采用干冷器进行制冷,具有能耗低的优点。
例如,图7所示,第一换热组件1和第二换热组件2串联并与压缩制冷组件31形成循环回路。具体地,第一换热组件1的出液口、第四阀口、第五阀口、第二换热组件2的进液口、第二换热组件2的出液口、第六阀口、第一阀口、压缩制冷组件31的进液口、压缩制冷组件31的出液口、第二阀口、第三阀口及第一换热组件1的回液口形成循环液道。
进一步地,如图6所示和如图7所示的中冷却液的流通方式可以通过多通阀4转换。本申请实施例的液冷机组,第一换热组件1和第二换热组件2串联并与压缩制冷组件31形成循环回路,同时串联干冷器和串联压缩制冷可以切换,提高了回路的安全性。任意一个回路故障时,可以切换另一个模式。
串联换热元件(第一换热组件1和第二换热组件2串联)还可以与第二干冷器组件33形成循环回 路。串联换热元件可以与第一干冷器组件32和压缩制冷组件31形成循环回路;串联换热元件还可以与第二干冷器组件33和压缩制冷组件31形成循环回路;串联换热元件还可以与第一干冷器组件32、第二干冷器组件33和压缩制冷组件31形成循环回路。
在第一工作模式,串联换热元件与第二制冷组件、第一制冷组件、第三制冷组件中的至少一者对应的形成多个制冷回路,多个制冷回路之间通过多通阀4可转换地设置。
如图6至图36所示,控温组件包括第一制冷组件、第二制冷组件和第三制冷组件;其中,第一制冷组件为压缩制冷组件31,第二制冷组件为第一干冷器组件32,第三制冷组件为第二干冷器组件33;在第二工作模式,第一制冷组件、第三制冷组件与第一换热组件1通过多通阀4依次连接形成第三回路,第二制冷组件与第二换热组件2通过多通阀4依次连接形成第四回路。
具体地,第一制冷组件为压缩制冷组件31,第二制冷组件为第一干冷器组件32,第三制冷组件为第二干冷器组件33;在第二工作模式,压缩制冷组件31、第二干冷器组件33与第一换热组件1通过多通阀4依次连接形成第三回路,第一干冷器组件32与第二换热组件2通过多通阀4依次连接形成第四回路。
例如,如图8所示,第一换热组件1的出液口、第四阀口、第九阀口、第二干冷器组件33的进液口、第二干冷器组件33的出液口、第十阀口、第一阀口、压缩制冷组件31的进液口、压缩制冷组件31的出液口、第二阀口、第三阀口及第一换热组件1的回液口形成循环液道;第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第八阀口、第五阀口、第二换热组件2的回液口形成循环液道。
本申请实施例的液冷机组,应用于当环境温度低于第一换热组件1和第二换热组件2的进出液口要求温度且第一干冷器组件32的换热量不足时。由此,采用干冷器进行制冷,具有能耗低的优点。此外,本申请实施例的液冷机组,通过第一换热组件1先经过第一干冷器组件32冷却后再进入压缩制冷组件31,可以降低压缩机313的负荷,具有进一步降低该液冷机组能耗的优点。
例如,如图9所示,第一换热组件1的出液口、第四阀口、第一阀口、压缩制冷组件31的进液口、压缩制冷组件31的出液口、第二阀口、第三阀口及第一换热组件1的回液口形成循环液道;第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第八阀口、第九阀口、第二干冷器组件33的进液口、第二干冷器组件33的出液口、第十阀口、第五阀口、第二换热组件2的回液口形成循环液道。
在第三工作模式,第一换热组件1和第二换热组件2形成自热循环回路。
具体地,例如,如图10所示,第一换热组件1的出液口、第四阀口、第五阀口、第二换热组件2的进液口、第二换热组件2的出液口、第六阀口、第三阀口及第一换热组件1的回液口形成循环液道。
其中在第二工作模式,多通阀4包括第一多通阀41和第二多通阀42,第一多通阀41的其中一个排液口与第一制冷组件的进液口通过连接管连接,第二多通阀42设置在连接管上以便通过第二多通阀42的换向实现第一制冷组件和第三制冷组件中的至少一者与第一换热组件1依次连接形成相应地并联回路。
本申请实施例的液冷机组,通过设置两个多通阀4,可以简化多通阀4的结构,以及简化各多通阀4的流道结构,降低泄漏风险,提高可行性。
例如,多通阀4包括第一多通阀41和第二多通阀42,第一多通阀41具有第一阀口、第二阀口、第三阀口、第四阀口、第五阀口、第六阀口、第七阀口及第八阀口,第二多通阀42为三通阀,三通阀具有第一进液阀口、第一排液口和第二排液口,第一阀口与第一制冷组件的进液口通过连接管连接,第二多通阀42设置在连接管上,第一进液阀口与第一阀口连接,第一排液口与第三制冷组件的进液口连接,第二排液口与第一制冷组件的进液口连接,以便通过第一进液阀口、第一排液口和第二排液口中每一者的开闭实现第一制冷组件和第三制冷组件中的至少一者与第一换热组件1连接。
具体地,在第二种模式下,第一换热组件1的出液口、第四阀口、第一阀口、第一进液阀口、第一排液口(例如,图21-图24中b口)和/第二排液口(例如,图21-图24中C口)…….,依次形成三种不同的通路。三种不同的通路可以通过控制三通阀的关闭即可以实现,具有转换方便的优点。
其中,例如,图21所示,第一换热组件1的出液口、第四阀口、第一阀口、第一进液阀口、第一排液口(例如,图21-图24中b口)、第二干冷器组件33的进液口、第二干冷器组件33的出液口、第二阀口、第三阀口及第一换热组件1的回液口形成循环液道;第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第八阀口、第五阀口、第二换热组件2的回液口形成循环液道。
本申请实施例的液冷机组,适用于环境温度低于第二换热组件2要求的进出水温度。第一换热组件1采用压缩制冷或者第一干冷器组件32冷却,第二换热组件2采用第二干冷器组件33冷却。两个换热单元独立运行,具有进一步提升能效的优点。
具体地,在第二种模式下,第二换热组件2的出液口、第六阀口、第一阀口、第一进液阀口、第一排液口(例如,图21-图24中b口)和/第二排液口(例如,图21-图24中C口)…….,依次形成三种不同的通路。三种不同的通路可以通过控制三通阀的关闭即可以实现,具有转换方便的优点。
其中,例如,图22所示,第二换热组件2的出液口、第六阀口、第一阀口、第一进液阀口、第一排液口(例如,图21-图24中b口)、第二干冷器组件33的进液口、第二干冷器组件33的出液口、第二阀口、第五阀口及第二换热组件2的回液口形成循环液道;第一换热组件1的出液口、第四阀口、第三阀口及第一换热组件1的进液口形成第一换热组件1的自循环通路。
本申请实施例的液冷机组,适用于第一换热组件1不需要制冷,第二换热组件2采用第一干冷器组件32或压缩制冷组件31进行压缩制冷。作为第二干冷器组件33故障时的应急处理,提高液冷机组可靠性。
在一些实施例中,图23所示,第一换热组件1的出液口、第四阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第八阀口、第三阀口及第一换热组件1的回液口形成循环液道;第二换热组件2的出液口、第六阀口、第五阀口、第二换热组件2的回液口形成自循环通路。
本申请实施例的液冷机组,适用于第二换热组不需要制冷,第一换热组件1用第二干冷器组件33冷却,应用于环境温度低于第一换热组件1要求的进出水温度工况,作为第一干冷器组件32或压缩制冷组件故障的应急处理,提高液冷机组可靠性。
在第三工作模式,第一换热组件1和第二换热组件2形成自热循环回路。
具体地,例如,如图24所示,第一换热组件1的出液口、第四阀口、第五阀口、第二换热组件2的进液口、第二换热组件2的出液口、第六阀口、第三阀口及第一换热组件1的回液口形成循环液道。
本申请不限于此,如图25至图32所示,控温组件包括第一制冷组件、第二制冷组件和第三制冷组件;在第一工作模式,串联换热元件与第二制冷组件、第一制冷组件和第三制冷组件中的至少一者通过多通阀4连接形成制冷回路。其中,第一制冷组件为压缩制冷组件31,第二制冷组件为第一干冷器组件32,第三制冷组件为第二干冷器组件33;多通阀4为十通阀,该十通阀具有第一阀口、第二阀口、第三阀口、第四阀口、第五阀口、第六阀口、第七阀口、第八阀口及第九阀口,压缩制冷组件31的进液口和第二干冷器组件33的进液口共用第九阀口,压缩制冷组件31的出液口与第二阀口相连,第二干冷器组件33的出液口与第一阀口相连。且第一干冷器组件32和第二干冷器组件33共用第一风机。压缩制冷组件31的冷凝器与第二风机相对设置。第一干冷器组件32和二干冷器组件中的循环介质采用50%乙二醇水溶液。
在第一种工作模式下,例如,第一换热组件1和第二换热组件2串联形成串联换热元件,串联换热元件与其中一个干冷器连接。
如图25所示,第一换热组件1和第二换热组件2串联并与压缩制冷组件31形成循环回路。具体地,第一换热组件1的出液口、第四阀口、第五阀口、第二换热组件2的进液口、第二换热组件2的出液口、第六阀口、第九阀口、压缩制冷组件31的进液口、压缩制冷组件31的出液口、第二阀口、第三阀口及第一换热组件1的进液口连通。
本申请实施例的液冷机组,采用九通阀对液冷机组换向实现多种工作模式的转换,与采用八通阀+三通阀的结构相比,可以简化两个阀体之间的管路连接,使空间更紧凑。此种结构与十通阀相比,由于少一个阀口,可以提高阀的密封性,提高可靠性。
如图26所示,第一换热组件1和第二换热组件2串联并与第一干冷器组件32形成循环回路。具体地,第一换热组件1的出液口、第四阀口、第五阀口、第二换热组件2的进液口、第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第八阀口、第三阀口及第一换热组件1的进液口连通。
本申请实施例的液冷机组,应用于环境温度低于第一第二换热组件2要求的进出水温,且第二干冷器组件33换热量满足第一第二换热组件2总的换热需求。有利于提高液冷机组能效,同时提高安全可靠性,作为第一干冷器组件32或压缩制冷组件故障的备份。
如图27所示,第一换热组件1和第二换热组件2串联并与第一干冷器组件32、压缩制冷组件31形成循环回路。具体地,第一换热组件1的出液口、第四阀口、第五阀口、第二换热组件2的进液口、第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第八阀口、第九阀口、压缩制冷组件31的进液口、压缩制冷组件31的出液口、第二阀口、第三阀口及第一换热组件1的进液口连通。
本申请实施例的液冷机组,应用于环境温度低于第一第二换热组件2要求的进出水温,且第二干冷器组件33换热量小于第一第二换热组件2总的换热需求,因此需要先经过第二干冷器组件33再经过板换制冷。降低压缩机313负荷,提高液冷机组能效。
如图28所示,第一换热组件1和第二换热组件2串联并与第一干冷器组件32、第二干冷器组件33形成循环回路。具体地,第一换热组件1的出液口、第四阀口、第五阀口、第二换热组件2的进液口、第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件 32的出液口、第八阀口、第九阀口、第二干冷器组件33的进液口、第二干冷器组件33的出液口、第一阀口、第三阀口及第一换热组件1的进液口连通。
本申请实施例的液冷机组,应用于环境温度低于第一换热组件1、第二换热组件2要求的进出水温,且第一和第二干冷器组件33换热量满足第一第二换热组件2总的换热需求,采用两个干冷器冷却,不需要开启压缩机313,因此提高液冷机组能效。
在第二种工作模式下,第一换热组件1与第二换热组件2不连接,换言之,第一换热组件1与多通阀4之间形成自循环或第一换热组件1与压缩制冷组件31和第一干冷器组件32中的至少形成冷却通道,第二换热组件2与多通阀4之间形成自循环或第二换热组件2与压缩制冷组件31和第一干冷器组件32中的至少形成另一冷却通道。
例如,如图29所示,压缩制冷组件31、第一换热组件1及多通阀4中形成第一回路,第一干冷器组件32、第二换热组件2及多通阀4中形成第二回路。
本申请实施例的液冷机组,应用于环境温度高于第一换热组件1要求的进出水温,低于第二换热组件2要求的进出水温工况。第一换热组件1压缩制冷,第二换热组件2干冷器冷却。此案有两个相对独立回路,提高液冷机组能效以及两个回路相互不影响。
具体地,第一换热组件1的出液口、第四阀口、第九阀口、压缩制冷组件31的进液口、压缩制冷组件31的出液口、第二阀口、第三阀口及第一换热组件1的回液口形成循环液道;第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第八阀口、第五阀口、第二换热组件2的回液口形成循环液道。
例如,如图30所示,第二干冷器组件33、第一换热组件1及多通阀4中形成第一回路,第一干冷器组件32、第二换热组件2及多通阀4中形成第二回路。
本申请实施例的液冷机组,应用于环境温度低于第一第二换热组件2要求的进出水温,且第一干冷器组件32换热量满足第一换热组件1换热需求,第二干冷器组件33换热量满足第二换热组件2换热需求,提高液冷机组能效,且两个回路独立,相互不影响。
具体地,第一换热组件1的出液口、第四阀口、第九阀口、第二干冷器组件33的进液口、第二干冷器组件33的出液口、第一阀口、第三阀口及第一换热组件1的回液口形成循环液道;第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第八阀口、第五阀口、第二换热组件2的回液口形成循环液道。
例如,如图31所示,第一换热组件1与多通阀4形成自循环回路,第一干冷器组件32、第二换热组件2及多通阀4中形成第一回路。具体地,第一换热组件1、第四阀口、第三阀口及第一换热组件1的回液口形成自循环回路。第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第八阀口、第五阀口、第二换热组件2的回液口形成循环液道。
本申请实施例的液冷机组,应用于适用于换热组件不需要制冷的场景,比如停机保温的场景。或者需要第一换热组件1和第二换热组件2平衡温度的场景。可以利用水泵的发热量对水温进行加热或保温,具有降低能耗的优点。
在第三工作模式,第一换热组件1和第二换热组件2形成自热循环回路。
例如,如图32所示,第一换热组件1的出液口、第四阀口、第五阀口、第二换热组件2的进液口、 第二换热组件2的出液口、第六阀口、第三阀口及第一换热组件1的回液口形成循环液道。
液冷机组还具有第四工作模式,控温组件还包括升温件,在第四工作模式下,升温件通过多通阀4连通第一换热组件1和/或第二换热组件2实现对相应的控温装置加热,第一至第四工作模式之间转换。
本申请实施例的液冷机组,通过设置第四工作模式,可以进一步提升该液冷机组的应用场景。
控温组件包括热泵组件,热泵组件包括(第二冷凝器302)冷凝端和(蒸发器303)蒸发端,冷凝端和蒸发端中的每一者均与多通阀4的不同阀口连通,冷凝端通过多通阀4与第一换热组件1和/或第二换热组件2连通形成热泵供热回路。换言之,冷凝端通过多通阀4与第一换热组件1连通形成第一热泵供热回路,冷凝端通过多通阀4与第二换热组件2连通形成第二热泵供热回路,冷凝端通过多通阀4与第一换热组件1和第二换热组件2连通形成第三热泵供热回路。可以理解的是,将第一制冷组件与升温件进行集成形成热泵组件。此种设计具有占用空间小和能耗小的优点。
本申请实施例的液冷机组,通过采用热泵制热,相比传统的通过电加热制热更节能,能效更高。
在一些实施例中,第一热泵供热回路、第二热泵供热回路和第三热泵供热回路之间可通过多通阀4的阀芯的换向实现转换。
在一些实施例中,蒸发端通过多通阀4与第一换热组件1和/或第二换热组件2连通热泵制冷回路,热泵供热回路和热泵制冷回路可转换。
在一些实施例中,热泵组件包括热泵循环管路、冷凝端、蒸发端、压缩机313和第三膨胀阀,冷凝端、蒸发端、压缩机313和第三膨胀阀依次设置在热泵循环管路上。
在一些实施例中,例如,图33至图36所示,第一制冷组件包括热泵组件的蒸发端,第二制冷组件为第一干冷器组件32,第三制冷组件为第二干冷器组件33,升温件为热泵组件的冷凝端。热泵组件的蒸发端和冷凝端可转换地与多通阀4连通。多通阀4为十二通阀,该十二通阀具有第一阀口、第二阀口、第三阀口、第四阀口、第五阀口、第六阀口、第七阀口、第八阀口、第九阀口、第十阀口、第十一阀口及第十二阀口。
在第一工作模式,与上述实施例的区别是,采用热泵组件的蒸发端替代压缩制冷组件31。冷凝端的对应地管道连接第十一阀口和第十二阀口。在第一工作模式,冷凝端的对应地管道连接第十一阀口和第十二阀口与多通阀4的阀芯不连通。例如,第一换热组件1和第二换热组件2串联并与热泵组件的蒸发端形成循环回路。或,第一换热组件1和第二换热组件2串联并与第一干冷器组件32形成循环回路。第一换热组件1和第二换热组件2串联并与第二干冷器组件33形成循环回路。
在第二工作模式,例如,如图33所示,第一换热组件1的出液口、第四阀口、第一阀口、热泵组件的蒸发端的进液口、热泵组件的蒸发端的出液口、第二阀口、第三阀口及第一换热组件1的回液口形成循环液道;第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第五阀口、第二换热组件2的回液口形成循环液道。
在第二工作模式,如图34所示,例如,第一换热组件1与第二干冷器组件33相连,第二换热组件2与第一干冷器组件32相连。具体地,第一换热组件1的出液口、第四阀口、第九阀口、第二干冷器组件33的进液口、第二干冷器组件33的出液口、第十阀口、第三阀口及第一换热组件1的回液口形成循环液道;第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第八阀口、第五阀口、第二换热组件2的回液口形成循环液道。
在第三工作模式,第一换热组件1和第二换热组件2形成自热循环回路。
具体地,例如,如图35所示,第一换热组件1的出液口、第四阀口、第五阀口、第二换热组件2的进液口、第二换热组件2的出液口、第六阀口、第三阀口及第一换热组件1的回液口形成循环液道。
在第四工作模式,例如,如图36所示,第一换热组件1的出液口、第四阀口、第十一阀口、热泵组件的冷凝端的进液口、热泵组件的冷凝端的出液口、第三阀口及第一换热组件1的回液口形成热泵供热回路。第二换热组件2的出液口、第六阀口、第七阀口、第一干冷器组件32的进液口、第一干冷器组件32的出液口、第五阀口、第二换热组件2的回液口形成循环液道。
在一些实施例中,例如,图1至图32所示,压缩制冷组件31包括冷凝管路311、板式换热器312、压缩机313、第一冷凝器314、第一膨胀阀315及第一换热管11路,板式换热器312、压缩机313、换热件及第一膨胀阀315按照冷凝管路311冷凝气的流向依次设置在冷凝管路311上并形成相应地制冷循环回路,第一换热管11路与板式换热器312、多通阀4连通形成散热循环回路。
在一些实施例中,第一干冷器组件32包括第一干冷器进液管321、第一干冷器本体322和第一干冷器出液管323,第一干冷器进液管321的进液口与多通阀4的出液口连接,第一干冷器进液管321的出液口与第一干冷器本体322的进液口连接,第一干冷器本体322的出液口与第一干冷器出液管323进液口连接,第一干冷器出液管323出液口与多通阀4的进液口连接。
在一些实施例中,第二干冷器组件33包括第二干冷器进液管331、第二干冷器本体332和第二干冷器出液管333,第二干冷器进液管331的进液口与多通阀4的出液口连接,第二干冷器进液管331的出液口与第二干冷器本体332的进液口连接,第二干冷器本体332的出液口与第二干冷器出液管333进液口连接,第二干冷器出液管333出液口与多通阀4的进液口连接。
在一些实施例中,该液冷机组还包括冷凝器旁路组件,冷凝器旁路组件与控温组件相连。
在一些实施例中,图37所示,冷凝器旁路组件包括冷凝器旁管路71、第二膨胀阀72及除湿蒸发器73和除湿风扇74,第二膨胀阀72和除湿蒸发器73设置在冷凝器旁管路71上,冷凝器旁管路71的进气口设置在冷凝器与第一膨胀阀315之间的管道上,除湿风扇74与除湿蒸发器73相对地设置。
本申请实施例的液冷机组,当环境湿度较大,需要除湿时,该制冷系统可以给箱体除湿,避免电子元器件凝露,造成电器短路的安全隐患。而且设置冷凝器旁路,可以对控温组件(例如冷凝器管路)进行除湿。由此,具有节能的优点。
在一些实施例中,液冷机组还包括第一风扇51,第一风扇51、第一制冷组件、第二制冷组件和第三制冷组件中每一者的蒸发器对应地设置。换言之,第一制冷组件、第二制冷组件和第三制冷组件中每一者的蒸发器共用同一个第一风扇51。采用共用风扇方式,结合制冷剂先经过谁,保证干冷器或冷凝器的功能,另外串联时风阻较大。
本申请实施例不限于此,液冷机组还包括第一风扇51和第二风扇52,第一制冷组件、第二制冷组件和第三制冷组件中的一者的蒸发器与第一风扇51对应设置,第一制冷组件、第二制冷组件和第三制冷组件中的另两者的蒸发器与第二风扇52对应设置。
例如,图6至图15所示,第一制冷组件的蒸发器与第一风扇51对应地设置,第二制冷组件和第三制冷组件中每一者的蒸发器与第二风扇52对应地设置。
或者,例如,图16至图20所示,第一制冷组件的蒸发器与第三制冷组件中每一者的蒸发器与第一 风扇51对应地设置,第二制冷组件的蒸发器与第二风扇52对应地设置。
本申请实施例不限于此,液冷机组还包括第一风扇51、第二风扇52和第三风扇,第一风扇51、第二风扇52和第三风扇中一一对应地设置。
具体地,第一风扇51与第一制冷组件的蒸发器的对应地设置,第二风扇52与第二制冷组件的蒸发器的对应地设置,第三风扇与第三制冷组件的蒸发器的对应地设置。
在一些实施例中,例如,图11-图20所示,压缩制冷组件31、第一干冷器组件32和第二干冷器组件33中的至少一者与多通阀4之间设置截止阀6。
本申请实施例的液冷机组,通过设置截止阀6,可以短路第一干冷器组件32或第二干冷器组件33,使流阻减小,降低水泵功耗。
可以理解的是,在一些实施例中,压缩制冷组件31、第一干冷器组件32和第二干冷器组件33中的一者与多通阀4之间设置截止阀6。
本申请实施例不限于此,在另一些实施例中,压缩制冷组件31、第一干冷器组件32和第二干冷器组件33中的两者一者与多通阀4之间设置截止阀6。
本申请实施例不限于此,在另一些实施例中,压缩制冷组件31、第一干冷器组件32和第二干冷器组件33中的每一者与多通阀4之间设置截止阀6。
例如,图11-图20所示,第一制冷组件为压缩制冷组件31,第二制冷组件为第一干冷器组件32,第三制冷组件为第二干冷器组件33。截止阀6包括第一截止阀6、第二截止阀6和第三截止阀6。第一截止阀6设置在压缩制冷组件31的管道上,第二截止阀6设置在第一干冷器组件32的管道上,第三截止阀6设置在第二干冷器组件33的管道上。
第一换热组件1包括第一换热管11、第一换热器本体12和第一泵体13,第一换热器本体12和第一泵体13均设置在第一换热管11上,第一换热管11与多通阀4循环连接;第二换热组件2包括第二换热管21、第二换热器本体22和第二泵体23,第二换热器本体22和第二泵体23均设置在第二换热管21上,第二换热管21与多通阀4循环连接。
本申请实施例的液冷机组的控制方法,控制方法包括:获取外部环境温度,并获取第一换热组件1和/或第二换热组件2的温度,调整多通阀4的工作模式。由此,本申请实施例的液冷机组的控制方法,通过多通阀4实现多种工作模式的转换,可以根据实际工况进行转化,提高了液冷机组的能效。由此,具有节能优势。通过多通阀4实现转换,可以一定程度上简化了管道的设置,有利于安装和维修。
在一些实施例中,获取第一换热组件1、第二换热组件2的温度及环境温度。
外部环境温度为T0,第一换热组件1的温度为T1,第二换热组件2的温度为T2,控温组件包括压缩制冷组件31、第一干冷器组件32和第二干冷器组件33;第一制冷组件为压缩制冷组件31,第二制冷组件为第一干冷器组件32,第三制冷组件为第二干冷器组件33。在本实施例中,可以通过设置第一换热组件1和第二换热组件2中每一者的温度传感器对其相应的温度进行采集。
基于T0-T1≥预设值A1,且T2-T0≥预设值B1,压缩制冷组件31与第一换热组件1连接,第一干冷器组件32与第二干冷器组件33中至少一者与第二换热组件2连接。
基于T0-T1≥预设值A1,且T2-T0<预设值B1,压缩制冷组件31与第一换热组件1连接,第二换热组件2连接与多通阀4形成自循环。
基于T2>T1>T0,预设值A3≤T1-T0<预设值A2,且T2-T0≥预设值B1;第一换热组件1连接、第一干冷器组件32及压缩制冷组件31连接,第二干冷器组件33与第二换热组件2连接;
基于T1-T0<预设值A3,且T2-T0≥预设值B1;第一换热组件1连接与压缩制冷组件31连接,第二干冷器组件33与第二换热组件2连接;
T1-T0<预设值A3,且T2-T0≥预设值B1,第一换热组件1通过多通阀4进行自循环,第二干冷器组件33与第二换热组件2连接或第二换热组件2连接与多通阀4进行自循环。
在另一些实施例中,获取第一换热组件1和第二换热组件2的温度,外部环境温度的温度为T0,第一换热组件1的温度为T1,第二换热组件2的温度为T2;控温组件包括压缩制冷组件31、第一干冷器组件32、第二干冷器组件33,第一换热组件1和第二换热组件2串联;
基于T0>T1,T0>T2,所第一换热组件1、第二换热组件2和压缩制冷组件31连接;
T1>T0,T2>T0,预设值A3≤T1,T1和T2的平均值-T0≤预设值A2,第一干冷器组件32和第二干冷器组件33中的至少一者、压缩制冷组件31、第一换热组件1、第二换热组件2依次连接;
T1>T0,T2>T0,T1和T2的平均值-T0>预设值A2,第一干冷器组件32和第二干冷器组件33中的至少一者与第一换热组件1、第二换热组件2依次连接。
在另一些实施例中,T1和T3的平均值-T0>预设值A3,第一换热组件1和第二换热组件2形成自热循环回路。由此,可以在第一待控温装置和第二待控温装置不进行均不需要制冷的情况。由此,具有大大节约能耗的优点。
本申请实施例的液冷系统包括第一待控温装置、第二待控温装置及上述任一项的液冷机组,第一换热组件1与第一待控温装置相连,第二换热组件2与第二待控温装置相连。由此,本申请实施例的液冷机组的控制方法,通过多通阀4实现多种工作模式的转换,可以根据实际工况进行转化,提高了液冷机组的能效。由此,具有节能优势。通过多通阀4实现转换,可以一定程度上简化了管道的设置,有利于安装和维修。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连接或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二 特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本申请中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (26)

  1. 一种液冷机组,包括:
    第一换热组件,所述第一换热组件用于与第一待控温装置进行热交换;
    第二换热组件,所述第二换热组件用于与第二待控温装置进行热交换;
    控温组件和多通阀,所述第一换热组件、所述第二换热组件和所述控温组件中的每一者与所述多通阀连接以便通过所述多通阀的换向实现多种工作模式的转换。
  2. 根据权利要求1所述的液冷机组,其中,所述控温组件包括第一制冷组件和第二制冷组件;
    所述液冷机组具有第一至第三工作模式,所述液冷机组通过所述多通阀在所述第一至第三工作模式之间转换;
    其中在所述第一工作模式,所述第一换热组件和所述第二换热组件串联,所述第二制冷组件和所述第一制冷组件中的至少一者通过所述多通阀与所述第一换热组件、所述第二换热组件连接以便形成制冷回路;
    在所述第二工作模式,所述第一制冷组件与所述第一换热组件通过所述多通阀的部分阀口连接形成以便形成第一回路,和/或所述第二制冷组件与所述第二换热组件通过所述多通阀的另一部分阀口连接以便形成第二回路;
    在所述第三工作模式,所述第一换热组件和所述第二换热组件形成自热循环回路。
  3. 根据权利要求2所述的液冷机组,其中,所述制冷组件还包括第三制冷组件;在所述第一工作模式,所述第二制冷组件、所述第一制冷组件和所述第三制冷组件中的至少一者与所述第一换热组件、所述第二换热组件连接形成制冷回路。
  4. 根据权利要求2所述的液冷机组,其中,所述制冷组件还包括第三制冷组件;在所述第二工作模式,所述第一制冷组件、第三制冷组件与所述第一换热组件通过所述多通阀依次连接形成第三回路,所述第二制冷组件与所述第二换热组件通过所述多通阀依次连接形成第四回路。
  5. 根据权利要求4所述的液冷机组,其中,所述第一制冷组件与所述第一换热组件通过所述多通阀依次连接形成第五回路,所述第二制冷组件、所述第三制冷组件与所述第二换热组件通过所述多通阀依次连接形成第六回路。
  6. 根据权利要求3所述的液冷机组,其中,所述第二制冷组件、所述第一制冷组件和所述第三制冷组件中的至少一者与所述第一换热组件、所述第二换热组件连接形成多个制冷回路,多个所述制冷回路之间通过所述多通阀可转换地设置。
  7. 根据权利要求5所述的液冷机组,其中,其中所述第一回路、所述第二回路、所述第三回路、所述第四回路通过所述多通阀可转换地设置,或所述第一回路、所述第二回路、所述第五回路、所述第六回路通过所述多通阀可转换地设置。
  8. 根据权利要求7所述的液冷机组,其中,其中所述第三回路和所述第四回路形成第一回路组,与所述第五回路和所述第六回路形成第二回路组,所述第一回路组与所述第二回路组通过所述多通阀的阀芯实现通路之间的转换。
  9. 根据权利要求3所述的液冷机组,其中,所述多通阀包括壳体和设置在所述壳体内的阀芯,所 述壳体上设置有多个阀口,所述第一换热组件、所述第二换热组件和所述控温组件中的每一者对应地与所述阀口对应地连接以便通过所述阀芯的换向改变冷却液的流通方向。
  10. 根据权利要求9所述的液冷机组,其中在所述第二工作模式,所述多通阀包括第一多通阀和第二多通阀,所述第一多通阀的其中一个阀口与所述第一制冷组件的进液口通过连接管连接,所述第二多通阀设置在所述连接管上以便通过所述第二多通阀的换向实现所述第一制冷组件和第三制冷组件中的至少一者与所述第一换热组件依次连接形成相应地并联回路。
  11. 根据权利要求10所述的液冷机组,其中,所述第一多通阀具有第一阀口、第二阀口、第三阀口、第四阀口、第五阀口、第六阀口、第七阀口及第八阀口,所述第二多通阀具有第一进液阀口、第一排液口和第二排液口,所述第一阀口与所述第一制冷组件的进液口通过连接管连接,所述第二多通阀设置在所述连接管上,所述第一进液阀口与所述第一阀口连接,所述第一排液口与所述第三制冷组件的进液口连接,所述第二排液口与所述第一制冷组件的进液口连接,以便通过所述第一进液阀口、所述第一排液口和所述第二排液口中每一者的开闭实现所述第一制冷组件和所述第三制冷组件中的至少一者与所述第一换热组件连接。
  12. 根据权利要求3-11中任一项所述的液冷机组,其中,所述第一制冷组件为压缩制冷组件,所述第二制冷组件为第一干冷器组件,所述第三制冷组件为第二干冷器组件。
  13. 根据权利要求12所述的液冷机组,其中,所述压缩制冷组件包括冷凝管路、板式换热器、压缩机、第一冷凝器、第一膨胀阀及第一换热管路,所述板式换热器、所述压缩机、所述换热件及所述第一膨胀阀按照冷凝管路冷凝气的流向依次设置在所述冷凝管路上并形成相应地制冷循环回路,所述第一换热管路与板式换热器、所述多通阀连通形成散热循环回路。
  14. 根据权利要求12所述的液冷机组,其中,所述液冷机组还具有第四工作模式,所述控温组件还包括升温件,在第四工作模式下,所述升温件通过所述多通阀连通所述第一换热组件和/或所述第二换热组件实现对相应的控温装置加热,所述第一至第四工作模式之间转换。
  15. 根据权利要求14所述的液冷机组,其中,所述控温组件包括热泵组件,所述热泵组件包括冷凝端和蒸发端,所述冷凝端和所述蒸发端中的每一者的换热管均与所述多通阀的不同阀口连通,所述冷凝端通过所述多通阀与所述第一换热组件和/或所述第二换热组件连通热泵供热回路;
    或所述蒸发端通过所述多通阀与所述第一换热组件和/或所述第二换热组件连通热泵制冷回路,所述热泵供热回路和热泵制冷回路可转换。
  16. 根据权利要求12所述的液冷机组,其中,所述第一干冷器组件包括第一干冷器进液管、第一干冷器本体和第一干冷器出液管,所述第一干冷器进液管的进液口与所述多通阀的出液口连接,所述第一干冷器进液管的出液口与所述第一干冷器本体的进液口连接,所述第一干冷器本体的出液口与所述第一干冷器出液管进液口连接,所述第一干冷器出液管出液口与所述多通阀的进液口连接。
  17. 根据权利要求12所述的液冷机组,其中,所述第二干冷器组件包括第二干冷器进液管、第二干冷器本体和第二干冷器出液管,所述第二干冷器进液管的进液口与所述多通阀的出液口连接,所述第二干冷器进液管的出液口与所述第二干冷器本体的进液口连接,所述第二干冷器本体的出液口与所述第二干冷器出液管进液口连接,所述第二干冷器出液管出液口与所述多通阀的进液口连接。
  18. 根据权利要求1-11中任一项所述的液冷机组,其中所述液冷机组还包括冷凝器旁路组件,所 述冷凝器旁路组件与所述控温组件相连。
  19. 根据权利要求3-11中任一者所述的液冷机组,其中所述液冷机组还包括第一风扇,所述第一风扇、所述第一制冷组件、第二制冷组件和第三制冷组件中每一者的蒸发器对应地设置;
    或者,还包括第一风扇和第二风扇,所述第一制冷组件、第二制冷组件和第三制冷组件中的一者的蒸发器与所述第一风扇对应设置,所述第一制冷组件、第二制冷组件和第三制冷组件中的另两者的蒸发器与所述第二风扇对应设置;
    或者,还包括第一风扇、第二风扇和第三风扇,所述第一风扇、所述第二风扇和所述第三风扇中一一对应地设置。
  20. 根据权利要求12所述的液冷机组,其中,所述压缩制冷组件、所述第一干冷器组件和所述第二干冷器组件中的至少一者与所述多通阀之间设置截止阀。
  21. 根据权利要求1-11中任一项所述的液冷机组,其中,所述第一换热组件包括第一换热管、第一换热器本体和第一泵体,所述第一换热器本体和所述第一泵体均设置在所述第一换热管上,所述第一换热管与所述多通阀循环连接;
    所述第二换热组件包括第二换热管、第二换热器本体和第二泵体,所述第二换热器本体和所述第二泵体均设置在所述第二换热管上,所述第二换热管与所述多通阀循环连接。
  22. 一种根据权利要求1-21中任一项所述的液冷机组的控制方法,其中,所述控制方法包括:获取外部环境温度,并获取第一换热组件和/或第二换热组件的温度,调整所述多通阀的工作模式。
  23. 根据权利要求22所述的液冷机组的控制方法,其中,所述外部环境温度为T0,所述第一换热组件的温度为T1,所述第二换热组件的温度为T2,所述控温组件包括压缩制冷组件、第一干冷器组件和第二干冷器组件;
    基于T0-T1≥预设值A1,且T2-T0≥预设值B1,所述压缩制冷组件与所述第一换热组件连接,所述第一干冷器组件与所述第二干冷器组件中至少一者与所述第二换热组件连接;
    基于T0-T1≥预设值A1,且T2-T0<预设值B1,所述压缩制冷组件与所述第一换热组件连接,所述第二换热组件连接与多通阀形成自循环;
    基于T2>T1>T0,预设值A3≤T1-T0<预设值A2,且T2-T0≥预设值B1;所述第一换热组件连接、所述第一干冷器组件及所述压缩制冷组件连接,所述第二干冷器组件与所述第二换热组件连接;
    基于T1-T0<预设值A3,且T2-T0≥预设值B1;所述第一换热组件连接与所述压缩制冷组件连接,所述第二干冷器组件与所述第二换热组件连接;
    T1-T0<预设值A3,且T2-T0≥预设值B1,所述第一换热组件通过所述多通阀进行自循环,所述第二干冷器组件与所述第二换热组件连接或所述第二换热组件连接与所述多通阀进行自循环。
  24. 根据权利要求22所述的液冷机组的控制方法,其中,获取第一换热组件和第二换热组件的温度,外部环境温度的温度为T0,所述第一换热组件的温度为T1,所述第二换热组件的温度为T2;所述控温组件包括压缩制冷组件、第一干冷器组件、第二干冷器组件,所述第一换热组件和所述第二换热组件串联;
    基于T0>T1,T0>T2,所第一换热组件、所述第二换热组件和所述压缩制冷组件连接;
    T1>T0,T2>T0,预设值A3≤T1,T1和T2的平均值-T0≤预设值A2,第一干冷器组件和第二干冷 器组件中的至少一者、所述压缩制冷组件、第一换热组件、所述第二换热组件依次连接;
    T1>T0,T2>T0,T1和T2的平均值-T0>预设值A2,所述第一干冷器组件和第二干冷器组件中的至少一者与所述第一换热组件、所述第二换热组件依次连接。
  25. 根据权利要求23或24所述的液冷机组的控制方法,其中,T1和T3的平均值-T0>预设值A3,所述第一换热组件和所述第二换热组件形成自热循环回路。
  26. 一种液冷系统,其中,所述液冷系统包括第一待控温装置、第二待控温装置及根据权利要求1-21中任一项所述的液冷机组,所述第一换热组件与所述第一待控温装置相连,所述第二换热组件与所述第二待控温装置相连。
PCT/CN2023/105567 2022-08-11 2023-07-03 液冷机组、控制方法和液冷系统 WO2024032275A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210962006.1 2022-08-11
CN202210962006.1A CN117628751A (zh) 2022-08-11 2022-08-11 液冷机组、控制方法和液冷系统

Publications (1)

Publication Number Publication Date
WO2024032275A1 true WO2024032275A1 (zh) 2024-02-15

Family

ID=89850703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105567 WO2024032275A1 (zh) 2022-08-11 2023-07-03 液冷机组、控制方法和液冷系统

Country Status (2)

Country Link
CN (1) CN117628751A (zh)
WO (1) WO2024032275A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111196120A (zh) * 2018-11-16 2020-05-26 杭州三花研究院有限公司 换热器及热管理系统
JP2021035214A (ja) * 2019-08-27 2021-03-01 本田技研工業株式会社 車両
CN112543709A (zh) * 2020-09-22 2021-03-23 华为技术有限公司 一种热管理系统及电动汽车
CN113580871A (zh) * 2020-04-30 2021-11-02 比亚迪股份有限公司 车辆及其热管理系统
CN113580872A (zh) * 2020-04-30 2021-11-02 比亚迪股份有限公司 车辆及其热管理系统
CN113660838A (zh) * 2021-08-20 2021-11-16 江苏中科新源半导体科技有限公司 一种半导体热堆精密控温液冷源系统
CN114571955A (zh) * 2022-03-31 2022-06-03 美的集团(上海)有限公司 热管理系统、控制方法、控制装置、程序产品、存储介质和车辆
CN219014770U (zh) * 2022-12-09 2023-05-12 三花新能源热管理科技(杭州)有限公司 液冷机组和具有该液冷机组的液冷系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111196120A (zh) * 2018-11-16 2020-05-26 杭州三花研究院有限公司 换热器及热管理系统
JP2021035214A (ja) * 2019-08-27 2021-03-01 本田技研工業株式会社 車両
CN113580871A (zh) * 2020-04-30 2021-11-02 比亚迪股份有限公司 车辆及其热管理系统
CN113580872A (zh) * 2020-04-30 2021-11-02 比亚迪股份有限公司 车辆及其热管理系统
CN112543709A (zh) * 2020-09-22 2021-03-23 华为技术有限公司 一种热管理系统及电动汽车
CN113660838A (zh) * 2021-08-20 2021-11-16 江苏中科新源半导体科技有限公司 一种半导体热堆精密控温液冷源系统
CN114571955A (zh) * 2022-03-31 2022-06-03 美的集团(上海)有限公司 热管理系统、控制方法、控制装置、程序产品、存储介质和车辆
CN219014770U (zh) * 2022-12-09 2023-05-12 三花新能源热管理科技(杭州)有限公司 液冷机组和具有该液冷机组的液冷系统

Also Published As

Publication number Publication date
CN117628751A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN103068601B (zh) 加热/冷却装置和用于加热/冷却装置的加热/冷却模块
EP3553398B1 (en) Air conditioning heat pump system which uses injector, air conditioner, and air conditioner control method
WO2013135048A1 (zh) 一种热交换器及一种机柜
CN109282401A (zh) 分离式热管空调及其控制方法
US11480344B2 (en) Multi-split air conditioner and control method therefor
CN114683803A (zh) 一种基于热泵的纯电动汽车热管理系统及其控制方法
CN219014770U (zh) 液冷机组和具有该液冷机组的液冷系统
CN111251807A (zh) 整车热管理系统及具有其的车辆
WO2024032275A1 (zh) 液冷机组、控制方法和液冷系统
CN111251808B (zh) 车辆的热管理系统及车辆
CN218677306U (zh) 一种汽车电池热管理系统
CN114110833B (zh) 空调机组及其控制方法
CN111251810B (zh) 车辆的热管理系统及车辆
CN220669821U (zh) 一种热泵系统及空调
CN112797662B (zh) 热源塔热泵系统
CN109959083A (zh) 空气调节系统和空气调节装置
CN215892827U (zh) 热泵机组
CN215675393U (zh) 一种基于二氧化碳热泵的热水供暖系统和设备
CN218495212U (zh) 空气源水冷一体化冷暖双蓄空调系统
CN218763731U (zh) 一种全变频风冷模块机
CN219534654U (zh) 一种紧凑型电池液冷机组
CN218702613U (zh) 一种热管理系统及电动车辆
CN218269384U (zh) 一种带有氟泵的冷量供应系统
CN220471827U (zh) 一种空调系统及电池包热管理系统
CN216719049U (zh) 一种服务器散热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851501

Country of ref document: EP

Kind code of ref document: A1