WO2024032116A1 - 一种恒温冷水机组 - Google Patents

一种恒温冷水机组 Download PDF

Info

Publication number
WO2024032116A1
WO2024032116A1 PCT/CN2023/098254 CN2023098254W WO2024032116A1 WO 2024032116 A1 WO2024032116 A1 WO 2024032116A1 CN 2023098254 W CN2023098254 W CN 2023098254W WO 2024032116 A1 WO2024032116 A1 WO 2024032116A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
temperature
heat
solenoid valve
heat exchanger
Prior art date
Application number
PCT/CN2023/098254
Other languages
English (en)
French (fr)
Inventor
高启军
Original Assignee
上海能源建设工程设计研究有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海能源建设工程设计研究有限公司 filed Critical 上海能源建设工程设计研究有限公司
Publication of WO2024032116A1 publication Critical patent/WO2024032116A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the invention relates to the field of chillers, and in particular to a constant temperature chiller.
  • the existing constant temperature chiller adopts the method of single refrigeration plus auxiliary electric heating.
  • the auxiliary electric heating starts, and the auxiliary electric heating offsets part of the cooling amount to keep the water temperature in the water tank of the constant-temperature chiller constant at the set value.
  • the technical problems to be solved by the present invention are the energy consumption of the existing chiller, the uneven heating of the heater, and the continuous turning on and off of the equipment, which affects the life of the equipment.
  • the present invention provides a constant temperature chiller, including a refrigerant circulation system, a water-cooling auxiliary regulation system, a heat supplement branch regulation system and a controller.
  • the water cooling auxiliary regulation system and the heat supplement branch regulation system The system is connected to the controller respectively, where,
  • the refrigerant circulation system includes a compressor, an air-cooled heat exchanger, a liquid storage tank, a dry filter, an expansion valve and an evaporation heat exchanger connected in sequence;
  • the water-cooling auxiliary regulation system includes a water tank, a water pump, a regulating water-cooling heat exchanger, a temperature sensor, a control valve and a second one-way valve.
  • the temperature sensor is installed at the water outlet of the water tank. The temperature sensor is used to Monitor the water temperature at the outlet of the water tank; the water in the water tank reaches the regulating water-cooling heat exchanger after passing through the water pump, absorbs heat and returns to the water tank, increasing the heat of the water in the water tank;
  • the heat supplement branch adjustment system includes a heat supplement solenoid valve. One end of the heat supplement branch adjustment system is connected between the compressor and the air-cooled heat exchanger, and the other end is connected to the liquid storage tank; the heat supplement branch adjustment system controls the opening of the heat supplement solenoid valve through the controller to control the internal cooling capacity;
  • the controller collects the temperature value of the temperature sensor, controls the cooling capacity of the refrigerant circulation system and the heat exchange amount supplemented by the water-cooling auxiliary regulating system and the heat supplement branch regulating system, so that the water tank outlet temperature It achieves a dynamic equilibrium state and achieves precise control.
  • the water-cooling auxiliary regulating system also includes a bypass solenoid valve and a first one-way valve.
  • One end of the bypass solenoid valve is connected to the regulating water-cooling heat exchanger, and the other end is connected in series between the compressor and the Between the air-cooled heat exchangers, one end of the first one-way valve is connected to the regulating water-cooled heat exchanger, and the other end is connected in series between the air-cooled heat exchanger and the liquid storage tank.
  • controller performs algorithmic control on the collected temperature, and controls the opening or closing of the bypass solenoid valve and the heat supplement solenoid valve according to the set temperature control threshold to achieve dynamic control of the water tank outlet temperature.
  • control specific control methods include:
  • the heat exchange amount of the water-cooling auxiliary regulating system is controlled by controlling the opening of the bypass solenoid valve, and by controlling the heat supplement solenoid valve.
  • the opening degree is used to control the amount of heat replenishment and reduce the cooling capacity from the source;
  • the opening of the bypass solenoid valve When it is detected that the water tank outlet temperature is higher than the temperature control threshold, close or reduce the opening of the bypass solenoid valve to reduce the heat exchange of the water-cooling auxiliary regulating system, and close or reduce the supplementary valve.
  • the opening of the thermal solenoid valve increases the cooling capacity.
  • the algorithm control performed by the controller on the collected temperature includes at least one of proportional, integral, and differential algorithm control on the temperature, and supports setting of the temperature control threshold.
  • controller adopts a PID controller.
  • bypass solenoid valve is a solenoid valve with an adjustable opening.
  • controller in the constant temperature chiller controls the opening and closing of the water pump and the control valve.
  • the bypass solenoid valve When the bypass solenoid valve is opened, the water pump and the control valve will also be opened at the same time. .
  • the evaporative heat exchanger is embedded in the water tank, and when working, the evaporative heat exchanger absorbs the heat of the water in the water tank.
  • the regulating water-cooling heat exchanger adopts a small tube type or plate type heat exchanger to realize heat exchange between the refrigerant and the water circuit.
  • heating solenoid valve is a solenoid valve with an adjustable opening.
  • the present invention compared with the existing technology, the present invention has the following technical effects:
  • the chiller of the present invention adopts an air-cooled heat exchanger, and adds a small regulating water circuit heat exchanger bypass and a liquid storage tank refrigerant heat supplement branch.
  • the water circuit heat exchanger is used to accurately and reliably adjust the temperature changes in the water tank. ;
  • the present invention uses the refrigerant heating branch to increase or reduce the cooling capacity, and balances the temperature through the balance of internal refrigeration and water circuit heat exchange.
  • the constant temperature chiller of the present invention uses the unit's own adjustment, has low power consumption and more accurate adjustment. The advantages.
  • Figure 1 is a schematic diagram of the system composition of a constant temperature chiller according to a preferred embodiment of the present invention
  • Figure 2 is a schematic diagram of the normal internal cooling direction of the constant temperature chiller according to a preferred embodiment of the present invention
  • Figure 3 is a schematic diagram of the internal refrigeration direction of the constant-temperature chiller with a regulating water path heat exchanger and a liquid storage tank heat supplement branch according to a preferred embodiment of the present invention
  • Figure 4 is a schematic diagram of the water circuit circulation adjustment direction of the constant temperature chiller unit according to a preferred embodiment of the present invention.
  • 1-Compressor 2-Bypass solenoid valve, 3-Adjusting water-cooled heat exchanger, 4-First one-way valve, 5-Air-cooled heat exchanger, 6-Liquid storage tank, 7-Drying filter, 8-Expansion valve, 9-Evaporative heat exchanger, 10-Temperature sensor, 11-Water tank, 12-Second one-way valve, 13-Water pump, 14-Control valve, 15-Heating solenoid valve, 16-Controller.
  • an embodiment of the present invention provides a constant temperature chiller, including a refrigerant circulation system, a water-cooling auxiliary regulation system, a heat supplement branch regulation system and a controller, a water cooling auxiliary regulation system and a heat supplement branch regulation system. are connected to the controller respectively, where,
  • the refrigerant circulation system includes a compressor 1 connected end to end, an air-cooled heat exchanger 5, a liquid storage tank 6, an expansion valve 8 and an evaporation heat exchanger 9.
  • the evaporation heat exchanger 9 is embedded in the water tank 11; constant temperature cold water
  • the unit also includes a drying filter 7, which is installed between the liquid storage tank 6 and the expansion valve 8 to remove impurities and water vapor in the pipeline.
  • the refrigerant forms a high-temperature and high-pressure gaseous refrigerant after passing through the compressor 1. After dissipating heat through the air-cooled heat exchanger 5, it condenses into a low-temperature and high-pressure liquid refrigerant.
  • the low-temperature and high-pressure liquid refrigerant After being throttled by the expansion valve 8, the low-temperature and high-pressure liquid refrigerant forms a low-temperature and low-pressure refrigerant.
  • the low-temperature and low-pressure refrigerated liquid absorbs heat through the evaporation heat exchanger 9 and evaporates to form a gaseous refrigerant.
  • the gaseous refrigerant then enters the compressor 1, thereby forming a refrigeration cycle.
  • the water-cooling auxiliary regulating system includes a water tank 11, a second one-way valve 12, a water pump 13, a regulating water-cooling heat exchanger 3, a control valve 14, a bypass solenoid valve 2, a first one-way valve 4 and a temperature sensor 10.
  • the temperature sensor 10 It is installed at the water outlet of the water tank 11 and is used to monitor the water temperature in the water tank 11.
  • the bypass solenoid valve 2 is a solenoid valve with an adjustable opening.
  • the water tank 11, the second one-way valve 12, the water pump 13, the regulating water-cooling heat exchanger 3 and the control valve 14 are connected in sequence to form a water circulation loop.
  • the water in the water tank 11 passes through the second one-way valve 12 and the water pump 13 and reaches the regulating water-cooling exchanger.
  • the heater 3 absorbs heat and returns it to the water tank 11 through the control valve 14 to increase the heat of the water in the water tank 11.
  • the bypass solenoid valve 2, the regulating water-cooling heat exchanger 3, the first one-way valve 4 and the liquid storage tank 6 form a heat supplement bypass.
  • the refrigerant passes through the compressor 1, it forms a high-temperature and high-pressure gaseous refrigerant, which passes through the bypass solenoid valve 2.
  • the liquid tank 6 increases heat exchange for the water circuit, thereby regulating the water temperature in the water tank 11.
  • the controller 16 controls the opening and closing of the water pump 13 and the control valve 14. When the bypass solenoid valve 2 is opened, the water pump 13 and the control valve 14 will also be opened at the same time.
  • the regulating water-cooled heat exchanger 3 adopts a small tubular or plate heat exchanger to realize heat exchange between the refrigerant and the water circuit.
  • the heat supplement branch adjustment system includes a heat supplement solenoid valve 15.
  • the heat supplement solenoid valve 15 is a solenoid valve with an adjustable opening.
  • One end of the heat supplement branch adjustment system is connected between the compressor 1 and the air-cooled heat exchanger 5. time, the other end is connected to the liquid storage tank 6.
  • the heat supplement solenoid valve 15 By opening or closing the heat supplement solenoid valve 15, the heat in the heat supplement branch is adjusted to adjust the system, thereby adjusting the internal cooling capacity.
  • the heat supplement solenoid valve 15 is opened, and the high temperature and high pressure gaseous refrigerant will be formed after passing through the compressor 1 and flow into this heat supplement branch, and the high temperature and high pressure gaseous refrigerant will flow directly into the heat supplement branch. into the liquid storage tank 6, thereby reducing the internal cooling capacity and raising the temperature of the water tank 11.
  • the controller 16 is connected to the temperature sensor 10, the bypass solenoid valve 2 and the heating solenoid valve 15. It can collect the temperature value of the temperature sensor 10 and control the opening and closing of the bypass solenoid valve 2 and the heating solenoid valve 15 as needed. , by controlling the cooling capacity of the refrigerant circulation system and the heat exchange amount supplemented by the water-cooling auxiliary regulating system and the heat supplement branch regulating system, the outlet temperature of the water tank 11 reaches a dynamic equilibrium state and precise control is achieved.
  • the embodiment of the present invention provides a constant-temperature chiller that adopts a PID controller in the controller 16, detects the outlet temperature in real time through real-time collection of the temperature sensor 10 provided at the outlet of the water tank 11, and controls the temperature with proportional, integral, and differential algorithms. According to the set temperature control threshold, the outlet temperature of the water tank 11 is accurately controlled to achieve a dynamic equilibrium state.
  • the specific control methods are as follows:
  • the constant-temperature chiller of the present invention adopts an air-cooled heat exchanger 5 and adds a small regulating water circuit heat exchanger bypass and a liquid storage tank refrigerant heat supplement branch.
  • the water circuit heat exchanger is used to accurately and reliably adjust the temperature inside the water tank.
  • the temperature changes, on the other hand, the refrigerant heating branch is used to increase or decrease the cooling capacity, and the temperature in the water tank is balanced through the balance of internal refrigeration and waterway heat exchange.
  • the constant temperature chiller of the present invention uses the unit to adjust itself, and has the power consumption The beneficial effect of low power and more precise adjustment.
  • FIG. 2 a schematic diagram of the normal internal refrigeration trend of a constant temperature chiller according to a preferred embodiment of the present invention, wherein:
  • the refrigerant After the refrigerant is compressed by the compressor 1, it forms a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant condenses into a low-temperature and high-pressure liquid refrigerant after being dissipated by the air-cooled radiator 5.
  • the low-temperature and high-pressure liquid refrigerant flows into the storage liquid.
  • the impurities and moisture in the tank 6 and filter dryer 7 are removed through the filter dryer 7.
  • the low-temperature and high-pressure liquid refrigerant flows into the expansion valve 8. After throttling, it forms a low-temperature and low-pressure refrigerant liquid.
  • the low-temperature and low-pressure refrigerant liquid passes through the evaporation heat exchanger.
  • FIG. 3 a schematic diagram of the internal refrigeration direction of the constant temperature chiller with a regulating water path heat exchanger and a liquid storage tank heating branch according to a preferred embodiment of the present invention, including the normal interior of the constant temperature chiller as shown in Figure 2 Refrigeration cycle and heating process with regulating water path heat exchanger 3 and heating branch regulating system, in which,
  • the refrigerant is compressed by the compressor 1 to form a high-temperature and high-pressure gaseous refrigerant.
  • the high-temperature and high-pressure gaseous refrigerant flows into the air-cooled radiator 5. After being dissipated by the air-cooled radiator 5, it condenses into a low-temperature and high-pressure liquid refrigerant. Liquid refrigerant flows into the liquid storage tank 6;
  • the controller 16 opens the bypass solenoid valve 2 according to the relationship between the outlet temperature of the water tank 11 and the set temperature control threshold, and the high-temperature and high-pressure gaseous refrigerant formed after the refrigerant is compressed by the compressor 1,
  • the refrigerant will flow into the bypass solenoid valve 2, adjust the heat exchange in the water-cooled heat exchanger 3, and then flow into the liquid storage tank 6 through the first one-way valve 4; or the controller 16 opens the heat supplement solenoid valve 15, and the refrigerant passes through the compressor 1
  • the high-temperature and high-pressure gaseous refrigerant formed after compression will flow into the liquid storage tank 6 through the heat supplement solenoid valve 15, thereby reducing the internal cooling capacity.
  • the low-temperature and high-pressure liquid refrigerant merged in the liquid storage tank 6 flows into the drying filter 7. After passing through the drying filter 7 to remove impurities and moisture, the low-temperature and high-pressure liquid refrigerant flows into the expansion valve 8 and forms a low-temperature and low-pressure refrigerant liquid after throttling. , the low-temperature and low-pressure refrigerant liquid absorbs heat from the evaporation heat exchanger 9 and evaporates to form gaseous refrigerant, and the gaseous refrigerant flows back to the compressor 1.
  • the constant-temperature chiller provided by the embodiment of the present invention can automatically adjust according to the deviation between the temperature of the water tank 11 and the set temperature control threshold through the normal internal refrigeration cycle and the heat exchanger with adjusted water path and the liquid storage tank. Through precise control, it can be ensured that the temperature of the constant temperature chiller is within the set temperature control threshold range.
  • the water tank 11 includes a water outlet and a water inlet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

提供一种恒温冷水机组,包括制冷剂循环系统、水冷辅助调节系统、补热支路调节系统和控制器(16),水冷辅助调节系统和补热支路调节系统分别和控制器(16)相连;制冷剂循环系统包括首尾依次相连的压缩机(1)、风冷换热器(5)、储液罐(6)、膨胀阀(8)和蒸发换热器(9);水冷辅助调节系统包括水箱(11)、水泵(13)、调节水冷换热器(3)和温度传感器(10),温度传感器(10)安装在水箱(11)的出水口处;补热支路调节系统包括补热电磁阀(15),一端连接在压缩机(1)和风冷换热器(5)之间,另一端连接到储液罐(6),控制内部的制冷量;控制器(16)采集温度传感器(10)的温度值,控制制冷量和换热量,使水箱(11)出口温度达到动态的平衡状态。

Description

一种恒温冷水机组 技术领域
本发明涉及冷水机组领域,尤其涉及一种恒温冷水机组。
背景技术
恒温冷水机组运行时,由于被冷却对象的不同,受冷却对象及环境温度变化影响,当制冷量大于用冷量时,被冷却对象温度的波动持续低温等影响恒温冷水机组的应用效果。现有恒温冷水机组为了保证冷冻水温度的恒定,采用单制冷加辅助电加热的方式,当恒温冷水机组水箱内的水温低于设定值下限时,辅助电加热启动,辅助电加热抵消部分制冷量,使恒温冷水机组水箱内的水温恒定在设定值,单一电加热的热量一部分散发到环境中,使能耗大大增加,另外,普通电加热器加热不均匀,电热器的使用寿命有限,存在一定的安全隐患、同时现有设备通过时间模式控制温度、反复开启关闭设备及压缩机影响设备寿命。
因此,本领域的技术人员致力于开发一种恒温冷水机组。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是现有冷水机组能耗稿,加热器加热不均匀、设备持续开启关闭影响设备寿命的问题。
为实现上述目的,本发明提供了一种恒温冷水机组,包括制冷剂循环系统、水冷辅助调节系统、补热支路调节系统和控制器,所述水冷辅助调节系统和所述补热支路调节系统分别和所述控制器相连,其中,
所述制冷剂循环系统,包括首尾依次相连的压缩机、风冷换热器、储液罐、干燥过滤器、膨胀阀和蒸发换热器;
所述水冷辅助调节系统,包括水箱、水泵、调节水冷换热器、温度传感器、控制阀和第二单向阀,所述温度传感器安装在所述水箱的出水口处,所述温度传感器用于监测所述水箱出口的水温;所述水箱内的水通过所述水泵后到达所述调节水冷换热器,吸收热量后返回所述水箱,增加所述水箱中水的热量;
所述补热支路调节系统,包括补热电磁阀,所述补热支路调节系统的一端连接在所述压缩机和所述风冷换热器之间,另一端连接到所述储液罐;所述补热支路调节系统通过所述控制器控制所述补热电磁阀的开度,来控制内部的制冷量;
所述控制器,采集所述温度传感器的温度值,控制所述制冷剂循环系统的制冷量和所述水冷辅助调节系统及所述补热支路调节系统补充的换热量,使所述水箱出口温 度达到动态的平衡状态,实现精确控制。
进一步地,所述水冷辅助调节系统还包括旁通电磁阀和第一单向阀,所述旁通电磁阀一端和所述调节水冷换热器连接,另一端串接在所述压缩机和所述风冷换热器之间,所述第一单向阀一端和所述调节水冷换热器连接,另一端串接在所述风冷换热器和所述储液罐之间。
进一步地,所述控制器对采集的温度进行算法控制,根据设定的温度控制阈值,控制所述旁通电磁阀和所述补热电磁阀的开启或关闭,实现所述水箱出口温度的动态控制,具体控制方式包括:
当检测到所述水箱出口温度低于所述温度控制阈值时,通过控制所述旁通电磁阀的开度来控制所述水冷辅助调节系统的换热量,以及通过控制所述补热电磁阀的开度来控制补热量,从源头上降低制冷量;
当检测到所述水箱出口温度高于所述温度控制阈值时,关闭或减小所述旁通电磁阀的开度减少所述水冷辅助调节系统的换热量,以及关闭或减小所述补热电磁阀的开度增加制冷量。
进一步地,所述控制器对采集的温度进行的所述算法控制,包括对所述温度进行比例、积分、微分算法控制中的至少一种,并支持设置所述温度控制阈值。
进一步地,所述控制器采用PID控制器。
进一步地,所述旁通电磁阀为开度可调节的电磁阀。
进一步地,所述恒温冷水机组中的所述控制器控制所述水泵和所述控制阀的开启和关闭,当所述旁通电磁阀开启时,所述水泵和所述控制阀也将同时开启。
进一步地,所述蒸发换热器内嵌于所述水箱内,所述蒸发换热器工作时吸收所述水箱内的水的热量。
进一步地,所述调节水冷换热器采用小型管式或板式换热器,实现制冷剂与水路的换热。
进一步地,所述补热电磁阀为开度可调节的电磁阀。
在本发明的较佳实施方式中,相对于现有技术,本发明具有如下技术效果:
1、本发明的冷水机组采用风冷换热器,并增加小型调节水路换热器旁路,储液罐制冷剂补热支路,利用水路换热器进行精准可靠的调节水箱内温度的变化;
2、本发明利用制冷剂补热支路增加或减少制冷量,通过内部制冷及水路换热的平衡来平衡温度,本发明的恒温冷水机组使用机组自身调节,具有耗电功率小,调节更精准的优点。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的一个较佳实施例的恒温冷水机组系统组成示意图;
图2是本发明的一个较佳实施例的恒温冷水机组正常内部制冷走向示意图;
图3是本发明的一个较佳实施例的恒温冷水机组带调节水路换热器和储液罐补热支路的内部制冷走向示意图;
图4是本发明的一个较佳实施例的恒温冷水机组水路循环调节走向示意图;
其中:1-压缩机、2-旁通电磁阀、3-调节水冷换热器、4-第一单向阀、5-风冷换热器、6-储液罐、7-干燥过滤器、8-膨胀阀、9-蒸发换热器、10-温度传感器、11-水箱、12-第二单向阀、13-水泵、14-控制阀、15-补热电磁阀、16-控制器。
具体实施方式
以下参考说明书附图介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
如图1所示,本发明实施例提供的一种恒温冷水机组,包括制冷剂循环系统、水冷辅助调节系统、补热支路调节系统和控制器,水冷辅助调节系统和补热支路调节系统分别和控制器相连,其中,
制冷剂循环系统,包括首尾依次相连的压缩机1、风冷换热器5、储液罐6、膨胀阀8和蒸发换热器9,蒸发换热器9内嵌与水箱11内;恒温冷水机组还包括干燥过滤器7,干燥过滤器7安装在储液罐6和膨胀阀8之间,实现去除管路中的杂质和水汽。制冷剂经过压缩机1后形成高温高压气态制冷剂,经风冷换热器5散热后,冷凝为低温高压液态制冷剂,低温高压液态制冷剂经膨胀阀8节流后,形成低温低压制冷剂液体,该低温低压制冷液体经蒸发换热器9吸热而蒸发形成气态制冷剂,气态制冷剂再进入压缩机1,从而形成一个制冷循环。
水冷辅助调节系统,包括水箱11、第二单向阀12、水泵13、调节水冷换热器3、控制阀14、旁通电磁阀2、第一单向阀4和温度传感器10,温度传感器10安装在水箱11的出水口处,用于监测水箱11中的水温,旁通电磁阀2为开度可调节的电磁阀。水箱11、第二单向阀12、水泵13、调节水冷换热器3和控制阀14依次连接,形成水循环回路,水箱11内的水通过第二单向阀12、水泵13后到达调节水冷换热器3,吸收热量后经过控制阀14返回水箱11,增加水箱11中水的热量。旁通电磁阀2、调节水冷换热器3、第一单向阀4和储液罐6形成补热旁路,制冷剂经过压缩机1后形成高温高压气态制冷剂,通过旁通电磁阀2、调节水冷换热器3和第一单向阀4,流入储 液罐6,为水路增加换热量,进而调节水箱11中的水温。控制器16控制水泵13和控制阀14的开启和关闭,当旁通电磁阀2开启时,水泵13和控制阀14也将同时开启。
在本发明的优选实施例中,调节水冷换热器3采用小型管式或板式换热器,实现制冷剂与水路的换热。
补热支路调节系统,包括补热电磁阀15,补热电磁阀15为开度可调节的电磁阀,该补热支路调节系统的一端连接在压缩机1和风冷换热器5之间,另一端连接到储液罐6,通过开启或关闭补热电磁阀15,调整补热支路调节系统中的热量,从而调整内部的制冷量。具体的,当检测到水箱11的温度下降时,打开补热电磁阀15,将经过压缩机1后形成高温高压气态制冷剂,流入这条补热支路,将高温高压的气态制冷剂直接流入到储液罐6中,从而降低内部的制冷量,提升水箱11的温度。
控制器16,和温度传感器10、旁通电磁阀2和补热电磁阀15相连,可以采集温度传感器10的温度值,根据需要来控制旁通电磁阀2和补热电磁阀15的开启和关闭,从实现控制制冷剂循环系统的制冷量和水冷辅助调节系统及所述补热支路调节系统补充的换热量,使水箱11出口温度达到动态的平衡状态,实现精确控制。
本发明实施例提供的一种恒温冷水机组,在控制器16采用PID控制器,通过实时采集水箱11出口处设置的温度传感器10,实时检测出口温度,对温度进行比例、积分、微分算法控制,根据设定温度控制阈值,对水箱11出口温度实现精确控制,达到动态的平衡状态。具体的控制方法如下:
(1)当检测到水箱11的出口温度低于温度控制阈值时,打开水冷辅助调节系统中的旁通电磁阀2,打开内部循环水泵13,开启控制阀14,通过控制旁通电磁阀2的开度,来控制水冷辅助调节系统中调节水冷换热器3的换热量,并根据需要打开补热电磁阀15,通过控制补热电磁阀15的开度控制补热量,从而从源头上降低制冷量,保证水箱11出口温度在温度控制阈值范围内。
(2)当检测到水箱11出口温度高于温度控制阈值时,关闭或减小旁通电磁阀2的开度,从而减少水冷辅助调节系统中的换热量,并根据需要关闭或减小补热电磁阀15的开度,增加制冷量,保证水箱11出口温度在温度控制阈值范围内。
本发明的恒温冷水机组通过采用风冷换热器5,并增加小型调节水路换热器旁路和储液罐制冷剂补热支路,一方面利用水路换热器进行精准可靠的调节水箱内温度的变化,另一方面利用制冷剂补热支路增加或减少制冷量,通过内部制冷及水路换热的平衡来平衡水箱内的温度,本发明的恒温冷水机组使用机组自身调节,具有耗电功率小,调节更精准的有益效果。
如图2所示,本发明的一个较佳实施例的恒温冷水机组正常内部制冷走向示意图,其中,
制冷剂经过压缩机1压缩后,形成高温高压气态制冷剂,高温高压气态制冷剂经过风冷散热器5的散热后冷凝为低温高压液态制冷剂,低温高压液态制冷剂流入储液 罐6和干燥过滤器7,经过干燥过滤器7去除其中的杂质和水分,低温高压液态制冷剂流入膨胀阀8,节流后形成低温低压制冷剂液体,低温低压制冷剂液体经过蒸发换热器9的吸热而蒸发形成气态制冷剂,气态制冷剂再流回压缩机1,形成恒温冷水机组正常内部制冷循环。在本次的正常内部制冷循环过程中,通过内嵌与水箱11中的蒸发换热器9的吸热,从而调节水箱11中的水的温度。
如图3所示,本发明的一个较佳实施例的恒温冷水机组带调节水路换热器和储液罐补热支路的内部制冷走向示意图,包括如图2所示的恒温冷水机组正常内部制冷循环和带调节水路换热器3和补热支路调节系统的补热流程,其中,
一方面,制冷剂经过压缩机1压缩后,形成高温高压气态制冷剂,高温高压气态制冷剂流入风冷散热器5,经过风冷散热器5的散热后冷凝为低温高压液态制冷剂,低温高压液态制冷剂流入储液罐6;
另一方面,在控制器16根据水箱11的出口温度和设定的温度控制阈值的关系,控制器16开启旁通电磁阀2,制冷剂经过压缩机1压缩后形成的高温高压气态制冷剂,将流入旁通电磁阀2,经过调节水冷换热器3的换热,再经过第一单向阀4流入储液罐6;或者控制器16开启补热电磁阀15,制冷剂经过压缩机1压缩后形成的高温高压气态制冷剂,将经过补热电磁阀15流入储液罐6,从而降低内部的制冷量。
在储液罐6汇合后的低温高压液态制冷剂流入干燥过滤器7,经过干燥过滤器7去除其中的杂质和水分,低温高压液态制冷剂流入膨胀阀8,节流后形成低温低压制冷剂液体,低温低压制冷剂液体经过蒸发换热器9的吸热而蒸发形成气态制冷剂,气态制冷剂再流回压缩机1。
本发明实施例提供的恒温冷水机组,通过正常内部制冷循环和带调节水路换热器和储液罐补热支路,可以根据水箱11温度和设置的温度控制阈值的偏差,来自动进行调节,通过精准控制,可以保证恒温冷水机组的温度在设置的温度控制阈值范围内。
如图4所示,本发明的一个较佳实施例的恒温冷水机组水路循环调节走向示意图,其中,
外部的水流入水箱11,经过第二单向阀12和水泵13的作用下,流入到调节水冷换热器3进行换热,换热的热水经过开关阀14再流回水箱11。水箱11包括出水口和入水口。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (10)

  1. 一种恒温冷水机组,其特征在于,包括制冷剂循环系统、水冷辅助调节系统、补热支路调节系统和控制器,所述水冷辅助调节系统和所述补热支路调节系统分别和所述控制器相连,其中,
    所述制冷剂循环系统,包括首尾依次相连的压缩机、风冷换热器、储液罐、干燥过滤器、膨胀阀和蒸发换热器;
    所述水冷辅助调节系统,包括水箱、水泵、调节水冷换热器、温度传感器、控制阀和第二单向阀,所述温度传感器安装在所述水箱的出水口处,所述温度传感器用于监测所述水箱出口的水温;所述水箱内的水通过所述水泵后到达所述调节水冷换热器,吸收热量后返回所述水箱,增加所述水箱中水的热量;
    所述补热支路调节系统,包括补热电磁阀,所述补热支路调节系统的一端连接在所述压缩机和所述风冷换热器之间,另一端连接到所述储液罐;所述补热支路调节系统通过所述控制器控制所述补热电磁阀的开度,来控制内部的制冷量;
    所述控制器,采集所述温度传感器的温度值,控制所述制冷剂循环系统的制冷量和所述水冷辅助调节系统及所述补热支路调节系统补充的换热量,使所述水箱出口温度达到动态的平衡状态,实现精确控制。
  2. 如权利要求1所述的恒温冷水机组,其特征在于,所述水冷辅助调节系统还包括旁通电磁阀和第一单向阀,所述旁通电磁阀一端和所述调节水冷换热器连接,另一端串接在所述压缩机和所述风冷换热器之间,所述第一单向阀一端和所述调节水冷换热器连接,另一端串接在所述风冷换热器和所述储液罐之间。
  3. 如权利要求2所述的恒温冷水机组,其特征在于,所述控制器对采集的温度进行算法控制,根据设定的温度控制阈值,控制所述旁通电磁阀和所述补热电磁阀的开启或关闭,实现所述水箱出口温度的动态控制,具体控制方式包括:
    当检测到所述水箱出口温度低于所述温度控制阈值时,通过控制所述旁通电磁阀的开度来控制所述水冷辅助调节系统的换热量,以及通过控制所述补热电磁阀的开度来控制补热量,从源头上降低制冷量;
    当检测到所述水箱出口温度高于所述温度控制阈值时,关闭或减小所述旁通电磁阀的开度减少所述水冷辅助调节系统的换热量,以及关闭或减小所述补热电磁阀的开度增加制冷量。
  4. 如权利要求3所述的恒温冷水机组,其特征在于,所述控制器对采集的温度进行的所述算法控制,包括对所述温度进行比例、积分、微分算法控制中的至少一种,并支持设置所述温度控制阈值。
  5. 如权利要求4所述的恒温冷水机组,其特征在于,所述控制器采用PID控制器。
  6. 如权利要求2所述的恒温冷水机组,其特征在于,所述旁通电磁阀为开度可调 节的电磁阀。
  7. 如权利要求1所述的恒温冷水机组,其特征在于,所述恒温冷水机组中的所述控制器控制所述水泵和所述控制阀的开启和关闭,当所述旁通电磁阀开启时,所述水泵和所述控制阀也将同时开启。
  8. 如权利要求1所述的恒温冷水机组,其特征在于,所述蒸发换热器内嵌于所述水箱内,所述蒸发换热器工作时吸收所述水箱内的水的热量。
  9. 如权利要求1所述的恒温冷水机组,其特征在于,所述调节水冷换热器采用小型管式或板式换热器,实现制冷剂与水路的换热。
  10. 如权利要求1所述的恒温冷水机组,其特征在于,所述补热电磁阀为开度可调节的电磁阀。
PCT/CN2023/098254 2022-08-08 2023-06-05 一种恒温冷水机组 WO2024032116A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210942504.XA CN115200242A (zh) 2022-08-08 2022-08-08 一种恒温冷水机组
CN202210942504.X 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024032116A1 true WO2024032116A1 (zh) 2024-02-15

Family

ID=83586101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098254 WO2024032116A1 (zh) 2022-08-08 2023-06-05 一种恒温冷水机组

Country Status (2)

Country Link
CN (1) CN115200242A (zh)
WO (1) WO2024032116A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115200242A (zh) * 2022-08-08 2022-10-18 上海燃气工程设计研究有限公司 一种恒温冷水机组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916914A2 (en) * 1997-11-14 1999-05-19 TGK CO., Ltd. A refrigerating cycle
JP2005049073A (ja) * 2003-07-31 2005-02-24 Ckd Corp 流体冷却装置
JP2006284035A (ja) * 2005-03-31 2006-10-19 Mitsubishi Heavy Ind Ltd 空気調和装置およびその制御方法
CN200940967Y (zh) * 2006-08-08 2007-08-29 李家龙 冷水机
CN101738029A (zh) * 2009-12-09 2010-06-16 泰豪科技股份有限公司 一种可低温环境下运行的风冷冷水机组
JP2010236830A (ja) * 2009-03-31 2010-10-21 Mitsubishi Heavy Ind Ltd 輸送用冷凍装置
CN216644600U (zh) * 2021-12-17 2022-05-31 江阴市索创工业精密制冷设备有限公司 恒温冷水机组
CN115200242A (zh) * 2022-08-08 2022-10-18 上海燃气工程设计研究有限公司 一种恒温冷水机组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201028886Y (zh) * 2007-04-26 2008-02-27 江苏格朗灵空调有限公司 一种能量再利用及节能型冷热水机系统
CN201396865Y (zh) * 2009-05-15 2010-02-03 上海安本电子科技有限公司 一种节能型高精度恒温恒湿实验室空调系统
CN102022858B (zh) * 2010-11-30 2012-02-29 广东欧科空调制冷有限公司 一种热回收型风冷热泵机组
CN201935475U (zh) * 2010-11-30 2011-08-17 广东欧科空调制冷有限公司 一种可部分热回收型风冷冷水机组
CN206583130U (zh) * 2017-03-08 2017-10-24 广东顺德长朗节能设备有限公司 一种高能效热回收热泵空调热水机
CN216924818U (zh) * 2022-03-24 2022-07-08 杭州海奥绿建科技有限公司 一种基于余热回收的制冷制热一体化系统
CN217952737U (zh) * 2022-08-08 2022-12-02 上海燃气工程设计研究有限公司 一种恒温冷水机组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916914A2 (en) * 1997-11-14 1999-05-19 TGK CO., Ltd. A refrigerating cycle
JP2005049073A (ja) * 2003-07-31 2005-02-24 Ckd Corp 流体冷却装置
JP2006284035A (ja) * 2005-03-31 2006-10-19 Mitsubishi Heavy Ind Ltd 空気調和装置およびその制御方法
CN200940967Y (zh) * 2006-08-08 2007-08-29 李家龙 冷水机
JP2010236830A (ja) * 2009-03-31 2010-10-21 Mitsubishi Heavy Ind Ltd 輸送用冷凍装置
CN101738029A (zh) * 2009-12-09 2010-06-16 泰豪科技股份有限公司 一种可低温环境下运行的风冷冷水机组
CN216644600U (zh) * 2021-12-17 2022-05-31 江阴市索创工业精密制冷设备有限公司 恒温冷水机组
CN115200242A (zh) * 2022-08-08 2022-10-18 上海燃气工程设计研究有限公司 一种恒温冷水机组

Also Published As

Publication number Publication date
CN115200242A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2024032116A1 (zh) 一种恒温冷水机组
KR100716706B1 (ko) 1중 2중 효용 흡수 냉동기의 운전 방법
JP4248099B2 (ja) 冷凍機又は冷温水機の制御方法
WO2021115137A1 (zh) 一种lng空调制冷系统
CN109830785A (zh) 一种新能源汽车电池冷却系统控制装置
CN217952737U (zh) 一种恒温冷水机组
CN109341125B (zh) 一种制冷系统和控制方法
CN112965547B (zh) 温控系统
WO2021052331A1 (zh) 一种带热回收功能的小型制冷设备
CN105115186B (zh) 一种热泵热水机试验室冷热平衡装置
CN109341126B (zh) 一种制冷系统和控制方法
CN209085106U (zh) 一种制冷系统
JP3999893B2 (ja) 吸収冷温水機の制御装置
JP2858922B2 (ja) 吸収冷温水機の制御装置
JPS6021721Y2 (ja) 吸収冷凍機の制御装置
CN208332734U (zh) 一种多功能降噪散热效果好的冷冻机组
JP3157349B2 (ja) 吸収式冷凍機の制御装置
KR100402086B1 (ko) 흡수식 냉동기용 자동 용액결정 방지장치 및 방법
CN113932466A (zh) 空调机组及其控制方法
JPH04217757A (ja) 吸収冷温水装置
JPS6110139Y2 (zh)
JPS6277567A (ja) 吸収冷凍機
CN111023251A (zh) 制冷、供暖、生活热水、保温食物多联系统及其控制方法
JPH03294758A (ja) 吸収冷凍機・冷温水機におけるサイクル・コントロール方法
JPS6113547B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851344

Country of ref document: EP

Kind code of ref document: A1