WO2024032093A1 - 一种干法制备的疏水性固态电解质及其制备方法和应用 - Google Patents

一种干法制备的疏水性固态电解质及其制备方法和应用 Download PDF

Info

Publication number
WO2024032093A1
WO2024032093A1 PCT/CN2023/096445 CN2023096445W WO2024032093A1 WO 2024032093 A1 WO2024032093 A1 WO 2024032093A1 CN 2023096445 W CN2023096445 W CN 2023096445W WO 2024032093 A1 WO2024032093 A1 WO 2024032093A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanate
solid electrolyte
isopropyl
powder
solid
Prior art date
Application number
PCT/CN2023/096445
Other languages
English (en)
French (fr)
Inventor
沈德赟
申彤
曹文卓
张新华
李婷
Original Assignee
宜宾南木纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宜宾南木纳米科技有限公司 filed Critical 宜宾南木纳米科技有限公司
Publication of WO2024032093A1 publication Critical patent/WO2024032093A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of new energy material preparation, and in particular to a hydrophobic solid electrolyte prepared by dry method and its preparation method and application.
  • solid electrolytes instead of liquid electrolytes and developing solid-state batteries is considered the ultimate solution to the above problems. Due to the advantages of no leakage and good thermal stability, solid electrolytes have high safety and reliability. Most importantly, the solid electrolyte has high mechanical strength and can effectively inhibit the growth of dendrites during battery cycling. At the same time, solid-state batteries have a simple structure, and the electrodes and electrolytes are solid, which facilitates battery processing and packaging. Therefore, solid-state batteries have the characteristics of high safety and high energy density at the same time, and are the most ideal solution for developing a new generation of energy storage batteries.
  • solid electrolytes are highly sensitive to water. After the solid electrolyte comes into contact with water, the ionic conductivity will decrease significantly, and even micro-cracks, grain shape deformation, and the formation of nanoparticles may occur. Chemical composition transformations, unit cell shrinkage, internal structural polyhedra, and strain changes. Since the surface of the nano solid electrolyte contains polar hydrophilic groups that are easy to absorb water, and has a very small particle size and extremely high specific surface area, and there is a pore structure between the particles, the nano solid electrolyte is very easy to absorb water, which affects the solid state battery. final performance. Therefore, we need to find a method to prepare a hydrophobic solid electrolyte to prevent contact adsorption with moisture in the environment and maintain a stable and high-performance state of the solid electrolyte.
  • the embodiments of the present invention provide a hydrophobic solid electrolyte prepared by dry method and its preparation method and application.
  • the dry preparation method of the hydrophobic solid electrolyte of the present invention the contact adsorption between the solid electrolyte and moisture in the environment can be blocked, and the high performance and stability of the solid electrolyte can be maintained.
  • the dry modification method of the present invention greatly improves operability.
  • embodiments of the present invention provide a dry preparation method for hydrophobic solid electrolytes, including:
  • the wet powder is placed in a vacuum drying box and dried at a second set temperature to obtain a hydrophobic solid electrolyte.
  • the dosage of the silicate treatment agent is 1%-20% of the mass of the solid electrolyte material
  • the mass ratio of titanate coupling agent to solvent is 1:1-10:1;
  • the mass ratio of the titanate coupling agent to the silicate treatment agent is 1:1-1:10.
  • the solid electrolyte material includes: garnet type solid electrolyte, sulfide solid electrolyte At least one of a solid state electrolyte, a sodium fast ion conductor NASICON type solid electrolyte, a lithium phosphorus oxygen nitrogen LiPON type electrolyte or a perovskite type solid electrolyte;
  • the silicate treatment agent includes: one or more of tetramethyl silicate, tetraethyl silicate, and tetrapropyl silicate;
  • the titanate coupling agent includes: isopropyl dioleic acid acyloxy (dioctyl phosphate acyloxy) titanate, isopropyl tris (dioctyl phosphate acyloxy) titanate, isopropyl dioleic acid acyloxy (dioctyl phosphate acyloxy) titanate, Propyl trioleyl acyloxy titanate, isopropyl tris(dioctyl pyrophosphate acyloxy) titanate, isopropyl triisostearate titanate, bis(dioctyloxy pyrophosphate) Ethylene titanate, tetraisopropyl di(dioctylphosphite acyloxy) titanate, trihydroxyacyl isopropyl titanate, tristearyl isopropyl titanate, tris(di- Octylphosphoryloxy)isopropyl titanate, di(
  • the solvent includes: one or more isopropyl alcohol, acetone, ethyl acetate, paraffin oil, dioctyl phthalate, xylene, toluene or mineral oil;
  • the acidic auxiliary agent includes one or more of hydrochloric acid, citric acid, and glacial acetic acid.
  • the stirring rate of the stirring and dispersion is 800rpm-1600rpm; the first preset time is 0.5-3 hours;
  • the first set temperature is 80°C-100°C, and the second preset time is 1-24 hours;
  • the second set temperature is 70°C-200°C, and the drying time is 1-24 hours.
  • the solid electrolyte material contains moisture adsorbed from the environment, and the silicate treatment agent reacts with the moisture to hydrolyze to form an active alcohol that condenses with the hydroxyl groups on the surface of the first powder, and the titanium The acid ester coupling agent condenses with the free groups on the surface of the first powder, thereby surface-modifying the solid electrolyte material to form the hydrophobic solid electrolyte.
  • embodiments of the present invention provide a hydrophobic solid electrolyte prepared by the dry preparation method of the hydrophobic solid electrolyte described in the first aspect.
  • embodiments of the present invention provide an all-solid-state battery, including the hydrophobic solid-state electrolyte described in the second aspect.
  • embodiments of the present invention provide a semi-solid battery including the hydrophobic solid electrolyte described in the second aspect.
  • embodiments of the present invention provide a supercapacitor including the hydrophobic solid electrolyte described in the second aspect.
  • the dry preparation method of the hydrophobic solid electrolyte uses a dry process to modify the surface of the solid electrolyte. Not only can the modification prevent the solid electrolyte from contacting and adsorbing moisture in the environment, but it can also further reduce the solid electrolyte.
  • the moisture adsorbed from the environment contained in the material itself is hydrolyzed by the action of the silicate treatment agent and the moisture to form an active alcohol that condenses with the hydroxyl group on the surface of the solid electrolyte powder, and the titanate coupling agent is used to condense the water on the surface of the solid electrolyte powder.
  • the free groups condense to obtain a hydrophobic solid electrolyte.
  • This method enhances the hydrophobicity of the material without changing the original particle size of the solid electrolyte material particles, blocks the adsorption of moisture in the environment by the solid electrolyte material, and makes the solid electrolyte material have a stable and high-performance state.
  • the dry modification method of the present invention greatly improves operability.
  • Figure 1 is a flow chart of a dry method for preparing a hydrophobic solid electrolyte according to an embodiment of the present invention
  • Figure 2 is an X-ray diffraction (XRD) pattern of the hydrophobically modified NASICON type solid electrolyte LATP nanoparticles prepared in Example 1 of the present invention and an XRD pattern of untreated LATP nanoparticles.
  • XRD X-ray diffraction
  • the present invention proposes a dry preparation method of hydrophobic solid electrolyte.
  • the method steps are shown in Figure 1 and include:
  • Step 110 put the solid electrolyte material into the mixing equipment, stir and disperse
  • the mixing equipment can use equipment commonly used in the industry for mixing and dispersing powders, such as high-speed dispersers, planetary mixers, mixers, etc., which are not limited here.
  • Solid electrolyte materials that can be used in the present invention include: garnet type solid electrolyte, sulfide solid electrolyte, sodium fast ion conductor (NASICON) type solid electrolyte, lithium phosphorus oxygen nitrogen (LiPON) type electrolyte or perovskite type solid electrolyte. At least one.
  • the solid electrolyte material is in powder form when added.
  • solid electrolytes tend to agglomerate, they are stirred and dispersed first to make subsequent spraying more uniform.
  • Step 120 during the stirring and dispersion process, spray the silicate treatment agent on the surface of the solid electrolyte material, and continue stirring for a first preset time to form a first powder material;
  • the stirring rate for stirring and dispersion is 800rpm-1600rpm; the first preset time is 0.5-3 hours;
  • the silicate treatment agent includes: one or more of tetramethyl silicate, tetraethyl silicate, and tetrapropyl silicate.
  • the dosage of silicate treatment agent is 1%-20% of the mass of the solid electrolyte material.
  • Step 130 use titanate coupling agent and solvent to prepare a mixed solution, and add acidic additives to adjust the pH value to 3-6 to form a spray solution;
  • Titanate coupling agents include: isopropyl dioleic acid acyloxy (dioctyl phosphate acyloxy) titanate, isopropyl tris (dioctyl phosphate acyloxy) titanate, isopropyl Trioleic acid acyloxy titanate, isopropyl tris(dioctyl pyrophosphate acyloxy) titanate, triisostearic acid isopropyl titanate, bis(dioctyloxy pyrophosphate) Ethylene titanate, tetraisopropylbis(dioctylphosphiteoxy)titanate Ester, trihydroxyacyl isopropyl titanate, tristearyl isopropyl titanate, tris(dioctylphosphoryloxy)isopropyl titanate, di(dioctylphosphoryloxy)ethylene glycol Ethylene titanate, tris(di
  • Solvents include: one or more of isopropyl alcohol, acetone, ethyl acetate, paraffin oil, dioctyl phthalate, xylene, toluene or mineral oil;
  • the acidic auxiliary agent includes one or more of hydrochloric acid, citric acid, and glacial acetic acid.
  • This step can be completed before the entire method is executed, or can be executed simultaneously with any of the steps 110 and 120 mentioned above in this method, as long as it is completed before spraying.
  • the mass ratio of titanate coupling agent to solvent is 1:1-10:1.
  • the mass ratio of titanate coupling agent to silicate treatment agent is 1:1-1:10.
  • Step 140 Spray the spray solution on the surface of the first powder material in a spray form, and continue stirring at the first set temperature for a second preset time to obtain moist powder;
  • the first set temperature is 80°C-100°C
  • the second preset time for continuous stirring is 1-24 hours.
  • Step 150 Put the wet powder into a vacuum drying box and dry it at the second set temperature to obtain a hydrophobic solid electrolyte.
  • the second set temperature is 70°C-200°C, and the drying time is 1-24 hours.
  • the solid electrolyte material contains moisture adsorbed from the environment, it is hydrolyzed by the action of the silicate treatment agent and the moisture to form an active alcohol that condenses with the hydroxyl groups on the surface of the first powder, and is then passed through titanic acid.
  • the ester coupling agent condenses with free groups on the surface of the first powder, thereby surface-modifying the solid electrolyte material to form a hydrophobic solid electrolyte.
  • the titanate coupling agent can further consume the moisture in the first powder to undergo a hydrolysis reaction to generate titanium oxide. Alkanes and react with silicate hydrolysis products.
  • the hydrophobic solid electrolyte prepared by the invention can be used in all-solid batteries, semi-solid batteries or supercapacitors.
  • the ester treatment agent is hydrolyzed by the action of moisture to form an active alcohol that condenses with the hydroxyl groups on the surface of the solid electrolyte powder.
  • the titanate coupling agent is used to condense with the free groups on the surface of the solid electrolyte powder to obtain a hydrophobic solid electrolyte. .
  • This method enhances the hydrophobicity of the material without changing the original particle size of the solid electrolyte material particles, blocks the adsorption of moisture in the environment by the solid electrolyte material, and makes the solid electrolyte material have a stable and high-performance state.
  • the dry modification method of the present invention greatly improves operability.
  • Figure 2 is an X-ray diffraction (XRD) pattern of the hydrophobically modified NASICON type solid electrolyte LATP nanoparticles prepared in Example 1 of the present invention and an XRD pattern of untreated LATP nanoparticles, and is compared with the standard card PDF#82- 0297 for comparison, it can be seen from the chart that the XRD diffraction peak of the untreated LATP solid electrolyte matches the standard diffraction peak of the standard card, indicating that the untreated LATP is pure phase LATP; the XRD of the hydrophobic LATP solid electrolyte obtained in the example The diffraction peaks are consistent with the XRD diffraction peaks of untreated LATP solid electrolyte, indicating that the phase of the hydrophobic LATP solid electrolyte has not changed.
  • XRD X-ray diffraction
  • the particle size and static contact angle with water of the hydrophobic solid electrolyte prepared in the above three embodiments are shown in Table 1.
  • the particle size of the prepared hydrophobic solid electrolyte was detected using a Malvern particle size analyzer. Through particle size detection, it can be seen that the particle size of the solid electrolyte has not changed before and after modification.
  • the static contact angle of solid electrolyte nanoparticles with water was tested by OCA 40Micro contact angle measuring instrument.
  • the hydrophobic performance of solid electrolyte particles is characterized by the static contact angle between the particles and water. The greater the static contact angle with water, the better the hydrophobic performance of the nano solid electrolyte. It can be seen from the measurement that after the dry hydrophobic modification of the present invention, the static antennae become significantly larger, indicating that the hydrophobicity of the material becomes significantly better.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)

Abstract

本发明涉及一种干法制备的疏水性固态电解质及其制备方法和应用。所述疏水性固态电解质的干法制备方法包括:将固态电解质材料放入混合设备中,进行搅拌分散;在搅拌分散过程中,将硅酸酯类处理剂喷雾在固态电解质材料的表面,并继续搅拌第一预设时间,形成第一粉体材料;用钛酸酯偶联剂和溶剂配置混合溶液,并加入酸性助剂调节pH值为3-6,形成喷涂溶液;将所述喷涂溶液以喷雾形式喷涂在所述第一粉体材料的表面,在第一设定温度下持续搅拌第二预设时间,得到潮湿粉体;将所述潮湿粉体放入真空干燥箱中,在第二设定温度下进行干燥,得到疏水性固态电解质。

Description

一种干法制备的疏水性固态电解质及其制备方法和应用
本申请要求于2022年08月09日提交中国专利局、申请号为202210951615.7、发明名称为“一种干法制备的疏水性固态电解质及其制备方法和应用”的中国专利申请的优先权。
技术领域
本发明涉及新能源材料制备技术领域,尤其涉及一种干法制备的疏水性固态电解质及其制备方法和应用。
背景技术
目前商业化的锂离子电池主要使用有机电解液以及石墨碳负极,其能量密度几乎已经达到了理论极限值,难以满足日益增长的能量储存需求。金属锂作为理想的负极材料,具有最高的比能量和最低的还原电势。但是金属锂负极在反复的充-放电过程中出现的粉化、枝晶生长、体积膨胀以及持续与电解液的反应等问题,更重要的是,传统液态的电解液易挥发、易泄露、易燃烧等特点,使得锂电池容易发生着火甚至爆炸,可能引发重大的安全事故。
使用固体电解质代替液体电解液,开发固态电池是被认为解决上述问题的最终方案。由于不泄露,热稳定性好等优点,固体电解质具有较高的安全可靠性。最重要的是,固体电解质具有较高的机械强度,能在电池循环过程有效地抑制枝晶的生长。同时,固态电池结构简单,电极和电解质均为固体,便于电池的加工、封装。因此,固态电池同时兼具高安全性、高能量密度的特点,是发展新一代储能电池最理想的方案。
然而,固态电解质对水的敏感性很高。固态电解质在接触水后,离子电导率会显著下降,甚至还会发生微裂纹、晶粒形状变形、纳米颗粒的形成、 化学成分转变、晶胞收缩、内部结构多面体和应变变化。而由于纳米固态电解质表面含有极性亲水基团易吸水,而且有着极小的粒径和极高的比表面积,且微粒间存在着孔隙结构,导致纳米固态电解质极易吸水,导致影响固态电池的最终性能。因此,我们需要找到一种制备疏水型固态电解质的方法,从而阻绝与环境中水分的接触吸附,保持固态电解质一种稳定高性能的状态。
发明内容
本发明实施例提供了一种干法制备的疏水性固态电解质及其制备方法和应用。通过本发明的疏水性固态电解质的干法制备方法,能够阻绝固态电解质与环境中水分的接触吸附,保持固态电解质的高性能稳定。本发明的干法改性方法极大的提高了可操作性。
第一方面,本发明实施例提供了一种疏水性固态电解质的干法制备方法,包括:
将固态电解质材料放入混合设备中,进行搅拌分散;
在搅拌分散过程中,将硅酸酯类处理剂喷雾在固态电解质材料的表面,并继续搅拌第一预设时间,形成第一粉体材料;
用钛酸酯偶联剂和溶剂配置混合溶液,并加入酸性助剂调节pH值为3-6,形成喷涂溶液;
将所述喷涂溶液以喷雾形式喷涂在所述第一粉体材料的表面,在第一设定温度下持续搅拌第二预设时间,得到潮湿粉体;
将所述潮湿粉体放入真空干燥箱中,在第二设定温度下进行干燥,得到疏水性固态电解质。
优选的,所述硅酸酯类处理剂的用量为固态电解质材料质量的1%-20%;
所述混合溶液中,钛酸酯偶联剂与溶剂的质量比为1:1-10:1;
所述钛酸酯偶联剂与所述硅酸酯类处理剂质量比为1:1-1:10。
优选的,所述固态电解质材料包括:石榴石型固态电解质、硫化物固 态电解质、钠快离子导体NASICON型固态电解质、锂磷氧氮LiPON型电解质或钙钛矿型固态电解质中的至少一种;
所述硅酸酯类处理剂包括:硅酸四甲酯、硅酸四乙酯、硅酸四丙酯中的一种或者多种;
所述钛酸酯偶联剂包括:异丙基二油酸酰氧基(二辛基磷酸酰氧基)钛酸酯、异丙基三(二辛基磷酸酰氧基)钛酸酯、异丙基三油酸酰氧基钛酸酯、异丙基三(二辛基焦磷酸酰氧基)钛酸酯、三异硬酯酸钛酸异丙酯、双(二辛氧基焦磷酸酯基)乙撑钛酸酯、四异丙基二(二辛基亚磷酸酰氧基)钛酸酯、三羟酰基钛酸异丙酯、三硬脂酯基钛酸异丙酯、三(二辛基磷酰氧基)钛酸异丙酯、二(二辛基磷酰氧基)乙二撑钛酸酯、三(二辛基焦磷酰氧基)钛酸异丙酯、二(二辛基焦磷酰氧基)羟乙酸钛酸酯、二羟酰基乙二撑钛酸脂、醇胺二磷酰氧基羟乙酸钛酸酯、醇胺二焦磷酰氧基羟乙酸钛酸酯、三(十二烷基苯磺酰基)钛酸异丙酯、异丙基三(异硬脂酰基)钛酸酯、异丙基三(焦磷酸二辛酯)钛酸酯、四异丙基二(亚磷酸二月桂酯)钛酸酯中的一种或者多种;
所述溶剂包括:异丙醇、丙酮、乙酸乙酯、石蜡油、邻苯二甲酸二辛酯、二甲苯、甲苯或矿物油一种或者多种;
所述酸性助剂包括盐酸、柠檬酸、冰醋酸中的一种或者多种。
优选的,所述搅拌分散的搅拌速率为800rpm-1600rpm;所述第一预设时间为0.5-3小时;
所述第一设定温度为80℃-100℃,所述第二预设时间为1-24小时;
所述第二设定温度为70℃-200℃,所述干燥的时间为1-24小时。
优选的,所述固态电解质材料中含有从环境中吸附的水分,所述硅酸酯类处理剂与所述水分作用发生水解形成活性醇与所述第一粉体表面的羟基缩合,所述钛酸酯偶联剂与所述第一粉体表面的游离基团发生缩合,从而对所述固态电解质材料进行表面改性,形成所述疏水性固态电解质。
第二方面,本发明实施例提出了一种上述第一方面所述的疏水性固态电解质的干法制备方法制备得到的疏水性固态电解质。
第三方面,本发明实施例提出了一种全固态电池,包括上述第二方面所述的疏水性固态电解质。
第四方面,本发明实施例提出了一种半固态电池,包括上述第二方面所述的疏水性固态电解质。
第五方面,本发明实施例提出了一种超级电容器,包括上述第二方面所述的疏水性固态电解质。
本发明实施例提供的疏水性固态电解质的干法制备方法,采用干法工艺对固态电解质表面进行改性,不但通过改性能够阻绝固态电解质与环境中水分的接触吸附,还能进一步降低固态电解质材料本身所含有的从环境中吸附的水分,利用硅酸酯类处理剂与水分作用发生水解形成活性醇与固态电解质粉体表面的羟基缩合,利用钛酸酯偶联剂与固态电解质粉体表面的游离基团发生缩合,来得到具有疏水性的固态电解质。本方法在不改变固态电解质材料颗粒原本粒径的条件下,增强了材料的疏水性,阻隔了固态电解质材料对环境中的水分吸附,使得固态电解质材料具有一种稳定、高性能的状态。此外,本发明的干法改性方法极大的提高了可操作性。
附图说明
下面通过附图和实施例,对本发明实施例的技术方案做进一步详细描述。
图1为本发明实施例的疏水性固态电解质的干法制备方法流程图;
图2为本发明实施例1所制备的疏水改性的NASICON型固态电解质LATP纳米颗粒的X射线衍射(XRD)图和未处理过的LATP纳米颗粒的XRD图。
具体实施方式
下面通过附图和具体的实施例,对本发明进行进一步的说明,但应当理解为这些实施例仅仅是用于更详细说明之用,而不应理解为用以任何形式限制本发明,即并不意于限制本发明的保护范围。
本发明提出一种疏水性固态电解质的干法制备方法,其方法步骤如图1所示,包括:
步骤110,将固态电解质材料放入混合设备中,进行搅拌分散;
具体的,混合设备可采用业内常用的粉体搅拌分散用的设备,如高速分散机、行星式搅拌机、混合机等,在此不进行限定。
可用于本发明的固态电解质材料包括:石榴石型固态电解质、硫化物固态电解质、钠快离子导体(NASICON)型固态电解质、锂磷氧氮(LiPON)型电解质或钙钛矿型固态电解质中的至少一种。
优选的,在加入时,固态电解质材料即是粉体形态。但是因为固态电解质容易团聚,因此先行进行搅拌分散,使得后续的喷涂能够更加均匀。
步骤120,在搅拌分散过程中,将硅酸酯类处理剂喷雾在固态电解质材料的表面,并继续搅拌第一预设时间,形成第一粉体材料;
优选的,搅拌分散的搅拌速率为800rpm-1600rpm;第一预设时间为0.5-3小时;
硅酸酯类处理剂包括:硅酸四甲酯、硅酸四乙酯、硅酸四丙酯中的一种或者多种。硅酸酯类处理剂的用量为固态电解质材料质量的1%-20%。
步骤130,用钛酸酯偶联剂和溶剂配置混合溶液,并加入酸性助剂调节pH值为3-6,形成喷涂溶液;
钛酸酯偶联剂包括:异丙基二油酸酰氧基(二辛基磷酸酰氧基)钛酸酯、异丙基三(二辛基磷酸酰氧基)钛酸酯、异丙基三油酸酰氧基钛酸酯、异丙基三(二辛基焦磷酸酰氧基)钛酸酯、三异硬酯酸钛酸异丙酯、双(二辛氧基焦磷酸酯基)乙撑钛酸酯、四异丙基二(二辛基亚磷酸酰氧基)钛酸 酯、三羟酰基钛酸异丙酯、三硬脂酯基钛酸异丙酯、三(二辛基磷酰氧基)钛酸异丙酯、二(二辛基磷酰氧基)乙二撑钛酸酯、三(二辛基焦磷酰氧基)钛酸异丙酯、二(二辛基焦磷酰氧基)羟乙酸钛酸酯、二羟酰基乙二撑钛酸脂、醇胺二磷酰氧基羟乙酸钛酸酯、醇胺二焦磷酰氧基羟乙酸钛酸酯、三(十二烷基苯磺酰基)钛酸异丙酯、异丙基三(异硬脂酰基)钛酸酯、异丙基三(焦磷酸二辛酯)钛酸酯、四异丙基二(亚磷酸二月桂酯)钛酸酯中的一种或者多种;
溶剂包括:异丙醇、丙酮、乙酸乙酯、石蜡油、邻苯二甲酸二辛酯、二甲苯、甲苯或矿物油一种或者多种;
酸性助剂包括盐酸、柠檬酸、冰醋酸中的一种或者多种。
本步骤可以在整个方法执行之前完成,或者与本方法上述步骤110、120任意步骤同步执行,只要在喷涂前完成即可。
混合溶液中,钛酸酯偶联剂与溶剂的质量比为1:1-10:1。此外,钛酸酯偶联剂与硅酸酯类处理剂质量比为1:1-1:10。
步骤140,将喷涂溶液以喷雾形式喷涂在第一粉体材料的表面,在第一设定温度下持续搅拌第二预设时间,得到潮湿粉体;
优选的,第一设定温度为80℃-100℃,持续搅拌的第二预设时间为1-24小时。
步骤150,将潮湿粉体放入真空干燥箱中,在第二设定温度下进行干燥,得到疏水性固态电解质。
优选的,第二设定温度为70℃-200℃,干燥的时间为1-24小时。
在上述制备过程中,因为固态电解质材料中含有从环境中吸附的水分,通过硅酸酯类处理剂与水分作用发生水解形成活性醇与所述第一粉体表面的羟基缩合,然后通过钛酸酯偶联剂与第一粉体表面的游离基团发生缩合,从而对固态电解质材料进行表面改性,形成疏水性固态电解质。此外,钛酸酯偶联剂还可以进一步消耗第一粉体中的水分发生水解反应生成钛氧 烷,并与硅酸酯水解产物进行反应。
本发明制备得到的疏水性固态电解质能够应用于全固态电池、半固态电池或超级电容器中。
通过采用干法工艺对固态电解质表面进行改性,不但通过改性能够阻绝固态电解质与环境中水分的接触吸附,还能进一步降低固态电解质材料本身所含有的从环境中吸附的水分,利用硅酸酯类处理剂与水分作用发生水解形成活性醇与固态电解质粉体表面的羟基缩合,利用钛酸酯偶联剂与固态电解质粉体表面的游离基团发生缩合,来得到具有疏水性的固态电解质。本方法在不改变固态电解质材料颗粒原本粒径的条件下,增强了材料的疏水性,阻隔了固态电解质材料对环境中的水分吸附,使得固态电解质材料具有一种稳定、高性能的状态。此外,本发明的干法改性方法极大的提高了可操作性。
为更好的理解本发明提供的技术方案,下述以多个具体实例分别说明应用本发明上述实施例提供的方法制备疏水性固态电解质的具体过程以及特性。
实施例1
将1000g NASICON型固态电解质磷酸钛铝锂(LATP)纳米颗粒放入混合机SHR100A中在1200rpm的转速下搅拌分散1小时得到粉体;
将10g的硅酸四甲酯以喷雾形式喷在粉体表面,并继续搅拌1小时,得到待喷涂粉体;
配置10g异丙基三(二辛基焦磷酸酰氧基)钛酸酯和10g异丙醇混合液,添加冰醋酸调节pH至4,装入喷雾瓶中备用;
将喷雾瓶中溶液喷涂在待喷涂粉体上,保持90℃恒温环境搅拌2小时,搅拌速率同上,得到潮湿的改性LATP粉末;
将潮湿的改性LATP粉末放入真空干燥箱中保持80℃干燥12小时,即可得到一种疏水性LATP纳米颗粒。
图2为本发明实施例1所制备的疏水改性的NASICON型固态电解质LATP纳米颗粒的X射线衍射(XRD)图和未处理过的LATP纳米颗粒的XRD图,并与标准卡片PDF#82-0297进行对比,由图谱可知,未经处理的LATP固态电解质的XRD衍射峰与标准卡片的标准衍射峰相匹配,说明未经处理的LATP为纯相LATP;实施例所得疏水型LATP固态电解质的XRD衍射峰与未经处理的LATP固态电解质的XRD衍射峰相吻合,表明疏水型LATP固态电解质的物相未发生改变。
实施例2
将1000g石榴石型锂镧锆氧化物(LLZO)纳米颗粒放入混合机SHR100A中在1200rpm的转速下搅拌分散1小时得到粉体;
将12g的硅酸四甲酯以喷雾形式喷在在粉体表面继续,并搅拌1小时,得到待喷涂粉体;
配置12g双(二辛氧基焦磷酸酯基)乙撑钛酸酯和12g甲苯混合液,添加冰醋酸调节pH至4,装入喷雾瓶中备用;
将喷雾瓶中溶液喷涂在待喷涂粉体上,保持85℃恒温环境搅拌4小时,搅拌速率同上,得到潮湿的改性LLZO粉末;
将潮湿的改性LLZO粉末放入真空干燥箱中保持100℃干燥8小时,即可得到一种疏水性LLZO纳米颗粒。
实施例3
将1500g石榴石型锂镧钛氧化物(LLTO)纳米颗粒放入混合机SHR100A中1400rpm的转速下搅拌分散1小时得到粉体;
将20g的硅酸四甲酯以喷雾形式喷在粉体表面,并继续搅拌1小时,得到待喷涂粉体;
配置22g双(二辛氧基焦磷酸酯基)乙撑钛酸酯和26g异丙醇混合液, 添加冰醋酸调节pH至4,装入喷雾瓶中备用;
将喷雾瓶中溶液喷涂在待喷涂粉体上,保持90℃恒温环境搅拌4小时,搅拌速率同上,得到潮湿的改性LLZO粉末;
将潮湿的改性LLZO粉末放入真空干燥箱中保持150℃干燥10小时,即可得到一种疏水性LLTO纳米颗粒。
对以上述三个实施例中改性前后的固态电解质材料分别进行对比。以原始固态电解质作为对比例样本,以改型后的固态电解质作为实施例样本,进行对比。结果如下。
表1
可以看到,上述3个实施例中制备的疏水性固态电解质的粒径及与水的静态接触角如表1所示。其中,制得的疏水性固态电解质的粒径采用马尔文粒度分析仪进行检测。通过粒度检测可知,改性前后固态电解质的粒径未发生改变。固态电解质纳米颗粒与水的静态接触角通过OCA 40Micro接触角测量仪进行测试。通过粒子与水的静态接触角表征固态电解质粒子的疏水性能,与水的静态触角越大,纳米固态电解质的疏水性能越好。而通过测量可知,在经过本发明的干法疏水改性后,静态触角显著变大,表明材料的疏水性明显变好。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种疏水性固态电解质的干法制备方法,其特征在于,所述制备方法包括:
    将固态电解质材料放入混合设备中,进行搅拌分散;
    在搅拌分散过程中,将硅酸酯类处理剂喷雾在固态电解质材料的表面,并继续搅拌第一预设时间,形成第一粉体材料;
    用钛酸酯偶联剂和溶剂配置混合溶液,并加入酸性助剂调节pH值为3-6,形成喷涂溶液;
    将所述喷涂溶液以喷雾形式喷涂在所述第一粉体材料的表面,在第一设定温度下持续搅拌第二预设时间,得到潮湿粉体;
    将所述潮湿粉体放入真空干燥箱中,在第二设定温度下进行干燥,得到疏水性固态电解质。
  2. 根据权利要求1所述的干法制备方法,其特征在于,所述硅酸酯类处理剂的用量为固态电解质材料质量的1%-20%;
    所述混合溶液中,钛酸酯偶联剂与溶剂的质量比为1:1-10:1;
    所述钛酸酯偶联剂与所述硅酸酯类处理剂质量比为1:1-1:10。
  3. 根据权利要求1所述的干法制备方法,其特征在于,所述固态电解质材料包括:石榴石型固态电解质、硫化物固态电解质、钠快离子导体NASICON型固态电解质、锂磷氧氮LiPON型电解质或钙钛矿型固态电解质中的至少一种;
    所述硅酸酯类处理剂包括:正硅酸四甲酯、正硅酸四乙酯、正硅酸四丙酯中的一种或者多种;
    所述钛酸酯偶联剂包括:异丙基二油酸酰氧基(二辛基磷酸酰氧基)钛酸酯、异丙基三(二辛基磷酸酰氧基)钛酸酯、异丙基三油酸酰氧基钛酸酯、异丙基三(二辛基焦磷酸酰氧基)钛酸酯、三异硬酯酸钛酸异丙酯、双(二辛氧基焦磷酸酯基)乙撑钛酸酯、四异丙基二(二辛基亚磷酸酰氧基) 钛酸酯、三羟酰基钛酸异丙酯、三硬脂酯基钛酸异丙酯、三(二辛基磷酰氧基)钛酸异丙酯、二(二辛基磷酰氧基)乙二撑钛酸酯、三(二辛基焦磷酰氧基)钛酸异丙酯、二(二辛基焦磷酰氧基)羟乙酸钛酸酯、二羟酰基乙二撑钛酸脂、醇胺二磷酰氧基羟乙酸钛酸酯、醇胺二焦磷酰氧基羟乙酸钛酸酯、三(十二烷基苯磺酰基)钛酸异丙酯、异丙基三(异硬脂酰基)钛酸酯、异丙基三(焦磷酸二辛酯)钛酸酯、四异丙基二(亚磷酸二月桂酯)钛酸酯中的一种或者多种;
    所述溶剂包括:异丙醇、丙酮、乙酸乙酯、石蜡油、邻苯二甲酸二辛酯、二甲苯、甲苯或矿物油一种或者多种;
    所述酸性助剂包括盐酸、柠檬酸、冰醋酸中的一种或者多种。
  4. 根据权利要求1所述的干法制备方法,其特征在于,
    所述搅拌分散的搅拌速率为800rpm-1600rpm;所述第一预设时间为0.5-3小时;
    所述第一设定温度为80℃-100℃,所述第二预设时间为1-24小时;
    所述第二设定温度为70℃-200℃,所述干燥的时间为1-24小时。
  5. 根据权利要求1所述的干法制备方法,其特征在于,所述固态电解质材料中含有从环境中吸附的水分,所述硅酸酯类处理剂与所述水分作用发生水解形成活性醇与所述第一粉体表面的羟基缩合,所述钛酸酯偶联剂与所述第一粉体表面的游离基团发生缩合,从而对所述固态电解质材料进行表面改性,形成所述疏水性固态电解质。
  6. 一种上述权利要求1-5任一所述的疏水性固态电解质的干法制备方法制备得到的疏水性固态电解质。
  7. 一种全固态电池,其特征在于,所述全固态电池包括上述权利要求6所述的疏水性固态电解质。
  8. 一种半固态电池,其特征在于,所述半固态电池包括上述权利要求6所述的疏水性固态电解质。
  9. 一种超级电容器,其特征在于,所述超级电容器包括上述权利要求5所述的疏水性固态电解质。
PCT/CN2023/096445 2022-08-09 2023-05-26 一种干法制备的疏水性固态电解质及其制备方法和应用 WO2024032093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210951615.7A CN115224352A (zh) 2022-08-09 2022-08-09 一种干法制备的疏水性固态电解质及其制备方法和应用
CN202210951615.7 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024032093A1 true WO2024032093A1 (zh) 2024-02-15

Family

ID=83615779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096445 WO2024032093A1 (zh) 2022-08-09 2023-05-26 一种干法制备的疏水性固态电解质及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115224352A (zh)
WO (1) WO2024032093A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115224352A (zh) * 2022-08-09 2022-10-21 南木纳米科技(北京)有限公司 一种干法制备的疏水性固态电解质及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129579A (zh) * 2019-12-12 2020-05-08 桑德新能源技术开发有限公司 一种硫化物固态电解质材料及其制备方法与固态电池
CN111342117A (zh) * 2020-02-02 2020-06-26 江苏大学 一种锂空气电池超疏水固态电解质及其制备方法
CN112421119A (zh) * 2020-11-23 2021-02-26 成都新柯力化工科技有限公司 一种用于锂离子电池的全固态硫化物电解质的制备方法
CN112701345A (zh) * 2020-12-29 2021-04-23 长三角物理研究中心有限公司 一种可传导锂离子的超疏水材料及其制备方法及应用
US20220131184A1 (en) * 2020-10-23 2022-04-28 Battelle Memorial Institute Air-stable solid-state sulfide electrolyte
CN115224352A (zh) * 2022-08-09 2022-10-21 南木纳米科技(北京)有限公司 一种干法制备的疏水性固态电解质及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129579A (zh) * 2019-12-12 2020-05-08 桑德新能源技术开发有限公司 一种硫化物固态电解质材料及其制备方法与固态电池
CN111342117A (zh) * 2020-02-02 2020-06-26 江苏大学 一种锂空气电池超疏水固态电解质及其制备方法
US20220131184A1 (en) * 2020-10-23 2022-04-28 Battelle Memorial Institute Air-stable solid-state sulfide electrolyte
CN112421119A (zh) * 2020-11-23 2021-02-26 成都新柯力化工科技有限公司 一种用于锂离子电池的全固态硫化物电解质的制备方法
CN112701345A (zh) * 2020-12-29 2021-04-23 长三角物理研究中心有限公司 一种可传导锂离子的超疏水材料及其制备方法及应用
CN115224352A (zh) * 2022-08-09 2022-10-21 南木纳米科技(北京)有限公司 一种干法制备的疏水性固态电解质及其制备方法和应用

Also Published As

Publication number Publication date
CN115224352A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
Li et al. A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO 2-inlaid LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a high-performance cathode material for lithium ion batteries
Ma et al. Enhanced electrochemical performance of LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode via wet-chemical coating of MgO
Wang et al. In situ sulfur deposition route to obtain sulfur–carbon composite cathodes for lithium–sulfur batteries
CN107293719B (zh) 一种用于锂离子电池负极的硅-碳复合材料制备方法
TWI725904B (zh) 複合式固態電解質膜之製備方法、及使用該複合式固態電解質膜之全固態鋰電池
Feng et al. Effect of Zr doping on LiNi0. 5Mn1. 5O4 with ordered or disordered structures
CN110710045A (zh) 碳材料、全固态电池用正极、全固态电池用负极以及全固态电池
WO2010072140A1 (en) Lithium titanate composite material, preparation method thereof, negative active substance and lithium ion secondary battery containing the same
WO2024032093A1 (zh) 一种干法制备的疏水性固态电解质及其制备方法和应用
Zhang et al. Li4Ti5O12/Reduced Graphene Oxide composite as a high rate capability material for lithium ion batteries
KR101965516B1 (ko) 리튬 이온 이차 전지용 정극의 제조 방법 및 리튬 이온 이차 전지용 정극
CN112993233A (zh) 一种锂离子电池的补锂材料及其制备方法与应用
CN114079086A (zh) 正极补锂添加剂、正极极片、其制备方法及锂离子电池
Mao et al. Improved cycling stability of high nickel cathode material for lithium ion battery through Al-and Ti-based dual modification
CN111370755A (zh) 一种阴离子掺杂的离子导体材料及其制备方法和应用
Zhang et al. Synthesis of spherical Al-doping LiMn 2 O 4 via a high-pressure spray-drying method as cathode materials for lithium-ion batteries
Xie et al. LaF 3-coated Li [Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 as cathode material with improved electrochemical performance for lithium ion batteries
Qian et al. A separator modified by spray-dried hollow spherical cerium oxide and its application in lithium sulfur batteries
CN106207128A (zh) 一种Zr(OH)4包覆镍钴铝三元正极材料的制备方法
Guo et al. Enhanced electrochemical performance of LiMn 2 O 4 by SiO 2 modifying via electrostatic attraction forces method
CN108808075B (zh) 一种柔性无机固态电解质薄膜及其制备和应用
TW202134173A (zh) 用於固態電解質之磷酸鋰鋁鈦的製備方法
An et al. Low-cost synthesis of LiMn 0.7 Fe 0.3 PO 4/C cathode materials with Fe 2 O 3 and Mn 3 O 4 via two-step solid-state reaction for lithium-ion battery
CN115117436A (zh) 降低纳米离子导体固态电解质的水分含量的方法和电池
Zheng et al. Influence of dry‐and wet‐milled LLZTO particles on the sintered pellets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851321

Country of ref document: EP

Kind code of ref document: A1