WO2024032005A9 - 太阳能电池及其制备方法 - Google Patents

太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2024032005A9
WO2024032005A9 PCT/CN2023/084369 CN2023084369W WO2024032005A9 WO 2024032005 A9 WO2024032005 A9 WO 2024032005A9 CN 2023084369 W CN2023084369 W CN 2023084369W WO 2024032005 A9 WO2024032005 A9 WO 2024032005A9
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
solar cell
temperature
sub
cell according
Prior art date
Application number
PCT/CN2023/084369
Other languages
English (en)
French (fr)
Other versions
WO2024032005A1 (zh
Inventor
郑云龙
鲁传磊
王东
朱浩
王浩
Original Assignee
通威太阳能(安徽)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(安徽)有限公司 filed Critical 通威太阳能(安徽)有限公司
Publication of WO2024032005A1 publication Critical patent/WO2024032005A1/zh
Publication of WO2024032005A9 publication Critical patent/WO2024032005A9/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, and in particular to a solar cell and a preparation method thereof.
  • BSF cells aluminum back field cells
  • Emitter and rear passivation cell By forming a passivation layer on the back, it can capture more sunlight and Convert it into electrical energy, thereby effectively improving the efficiency of the battery.
  • PERC cells have an EL problem that needs to be solved, that is, when the battery emits light in EL (Electroluminescence), the battery emits light.
  • EL Electrode
  • the recombination center with weakened intensity shows blackening phenomenon, and the EL problem will reduce the photoelectric conversion efficiency of the solar cell.
  • the present application provides a solar cell and a preparation method thereof.
  • One aspect of this application provides a method for preparing a solar cell, including the following steps:
  • the sintering process includes a pre-sintering process and a main sintering process performed in sequence.
  • the temperature of the main sintering process is controlled so that there are While breaking the chemical H bond, the formed H is prevented from escaping, and the time of the main sintering treatment is controlled at the same time, so that the electrode and the silicon matrix form effective ohmic contact.
  • the temperature of the main sintering treatment is no higher than 790°C and the time is no less than 15 seconds.
  • the temperature of the main sintering treatment is 680°C to 750°C, and the time is 20s to 40s.
  • the temperature is 450°C to 670°C and the time is 30s to 50s.
  • the sintering process is performed in a sintering furnace, and the sintering furnace has a pre-sintering area for performing the pre-sintering process and a main sintering area for performing the main sintering process;
  • the main sintering zone includes n sub-sintering zones arranged in sequence, n is an integer not less than 4, and the temperature of each sub-sintering zone is controlled to be no higher than 790°C and the time is 2s to 5s, and all The time for describing the main burning area shall not be less than 15 seconds.
  • the main sintering area includes a first sub-sintering area, a second sub-sintering area, a third sub-sintering area and a fourth sub-sintering area arranged in sequence, and the first sub-sintering area, the The temperatures of the second sub-sintering zone, the third sub-sintering zone and the fourth sub-sintering zone are respectively 700°C ⁇ 750°C, 700°C ⁇ 750°C, 700°C ⁇ 750°C and 680°C ⁇ 750°C.
  • the corresponding sintering times in each sub-sintering zone are 2s to 5s, 2s to 5s, 2s to 5s and 2s to 5s respectively, and the time in the main sintering zone is not less than 15s.
  • the steps of forming a passivation film and/or forming an anti-reflective film are performed using coating equipment;
  • the coating equipment Before the coating equipment performs the coating process of forming a passivation film or forming an anti-reflective film, the coating equipment is controlled to perform pre-operation without the parts to be plated, and the pre-operation operation program includes:
  • the operating conditions are the same as those in the operating program during the coating process, and the operating conditions include at least one of pressure, gas flow, temperature, and electric field intensity.
  • the coating equipment is chemical vapor deposition equipment, and the operating conditions include pressure, gas flow, temperature and electric field strength.
  • the coating equipment is an atomic layer deposition equipment
  • the operating procedures of the coating equipment when performing the coating process are as follows:
  • Step (1) Material placement: control temperature 190 ⁇ 50°C, inner cavity pressure 1000mbar, material placement time 120 ⁇ 50s;
  • Step (2) Vacuuming: control the temperature to 190 ⁇ 50°C, and evacuate to the inner cavity pressure to 1mbar within 100 ⁇ 50s;
  • Step (3) Preheating: Keep the inner chamber pressure at 0.6 ⁇ 0.2mbar, the outer chamber pressure at 8 ⁇ 3mbar, control the temperature at 190 ⁇ 50°C, and preheat for 400 ⁇ 50s;
  • Step (4) Coating: control temperature 190 ⁇ 50°C, inner chamber pressure 0.6 ⁇ 0.2mbar, outer chamber pressure 8 ⁇ 3mbar, process gas flow: 18 ⁇ 3SCCM, cycle 100 ⁇ 50 cycles;
  • Step (5) Break the vacuum: control the temperature to 190 ⁇ 50°C and break the vacuum to the inner cavity pressure of 1000mbar within 120 ⁇ 50s;
  • Step (6) Discharging: control the temperature to 190 ⁇ 50°C, the inner cavity pressure to 1000mbar, and the discharging time to 50 ⁇ 30s.
  • the process gas includes trimethylaluminum and ozone.
  • the passivation film is made of Al 2 O 3 ; and/or
  • the anti-reflection film is a SiNx film.
  • the following steps are further included:
  • the silicon wafer subjected to the diffusion bonding treatment is subjected to a PSG process, and then the back surface of the silicon wafer is polished and finally annealed; and/or
  • the silicon wafer is subjected to texturing treatment.
  • Another aspect of the present application provides a solar cell produced by the solar cell preparation method of the first aspect.
  • Figure 1 is a picture of the PERC battery with EL black edges produced in Comparative Example 1.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number or order of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • the main purpose of sintering is to achieve effective ohmic contact between the electrode and the silicon matrix.
  • Sintering is generally performed at high temperatures of 800°C and above.
  • the technical staff of this application have experienced long-term production and research It was found that sintering at high temperatures of 800°C and above can make effective ohmic contact between the electrode and the silicon substrate, and can break the chemical H bonds existing in the passivation film and anti-reflection film to passivate the silicon substrate again.
  • the technical personnel of the present application obtained the solar cell preparation method of the present application, which can avoid the occurrence of EL problems and improve the photoelectric conversion efficiency of the battery.
  • One embodiment of the present application provides a method for preparing a solar cell, including the following steps S10 to S20.
  • the diffusion junction process is to generate diffusion layers of different conductivity types on the silicon wafer to form a P-N junction to convert light energy into electrical energy.
  • the above-mentioned bonding process is performed by thermal diffusion, and further, phosphorus oxychloride and oxygen are used.
  • the silicon wafer is a p-type monocrystalline silicon wafer.
  • Phosphorus oxychloride reacts with oxygen to generate P 2 O 5
  • P 2 O 5 reacts with silicon to generate SiO 2 and phosphorus.
  • Phosphorus diffuses into the silicon wafer, forming an n layer on the surface. The surface n layer forms a PN junction with the base p layer.
  • the temperature of the above-mentioned bonding treatment is 750°C to 880°C.
  • the surface After the silicon wafer is texturized, the surface obtains a good texture structure, thereby achieving the purpose of increasing the specific surface area to accept more photons (energy), and at the same time reducing the reflection of incident light.
  • the above-mentioned texturing process can adopt texturing processes commonly used in this field.
  • Specific examples include but are not limited to: organic solution corrosion, such as using tetramethylammonium hydroxide for texturing; inorganic solvent corrosion texturing, such as using Inorganic alkali solution or inorganic acid solution, the inorganic alkali can be selected from potassium hydroxide, sodium hydroxide, etc., and the inorganic acid can be selected from hydrochloric acid, etc.
  • the solvent in the inorganic alkali solution or inorganic acid solution can be water or alcohol solution such as ethanol. .
  • a step of cleaning the texturing-processed silicon wafer is also included to clean away residual materials used in the texturing process.
  • Step S20 Form a passivation film on the back side of the prefabricated silicon wafer, form an anti-reflection film on both the surface of the passivation film and the front side of the prefabricated silicon wafer, and then form an electrode and perform a sintering process to obtain a solar cell.
  • the sintering process includes a pre-sintering process and a main sintering process performed in sequence.
  • the temperature of the main sintering process is controlled to break the chemical H bonds existing in the passivation film and/or the anti-reflection film. Prevent the formed H from escaping, and at the same time adjust the time of the main sintering process to form an effective ohmic contact between the electrode and the silicon substrate.
  • the silicon wafer is subjected to diffusion bonding treatment to obtain a prefabricated silicon wafer; then a passivation film is formed on the back of the prefabricated silicon wafer, and a passivation film is formed on both the surface of the passivation film and the front of the prefabricated silicon wafer.
  • the reflective film is then formed into an electrode and subjected to a sintering process.
  • the temperature of the main sintering process is controlled so that the chemical H bonds existing in the passivation film and the anti-reflection film are broken during the main sintering process, thereby achieving passivation again.
  • the temperature of the above-mentioned main sintering treatment is no higher than 790°C, and the time is no less than 15 seconds.
  • Sintering under this temperature and time condition can break the chemical H bonds existing in the passivation film and anti-reflection film, thereby re-passivating the dangling bonds and defects of the silicon matrix, and under this lower temperature condition, it can At the same time, it avoids passivation defects caused by H escape caused by the breakage of chemical H bonds, and prolongs the time of the main sintering process. time, thereby ensuring effective ohmic contact between the electrode and the silicon matrix, while reducing the probability of recombination centers to avoid the occurrence of EL problems and improve the photoelectric conversion efficiency of the battery.
  • step S20 there is no specific sequence between the steps of forming an anti-reflective film on the surface of the passivation film and the step of forming an anti-reflective film on the front side of the prefabricated silicon wafer.
  • the passivation film can be formed first.
  • the step of forming an anti-reflective film on the surface and then forming an anti-reflective film on the front surface of the prefabricated silicon wafer can also be performed first, and then forming an anti-reflective film on the surface of the passivation film. step.
  • Forming an anti-reflective film on the front side can not only reduce reflection, but also play a passivation role. Forming an anti-reflective film on the surface of the passivation film protects the passivation film while reducing reflection on the back side, thereby increasing the light absorption rate of the battery. .
  • the temperature of the above-mentioned main sintering treatment is no higher than 680°C to 750°C, and the time is no less than 15 seconds.
  • the temperature of the above-mentioned main sintering treatment is 680°C to 750°C, and the time is 20s to 40s.
  • the sintering process is performed in a sintering furnace, and the sintering furnace has a pre-sintering zone for performing the pre-sintering process and a main sintering zone for performing the main sintering process.
  • the main sintering zone includes n sub-sintering zones arranged in sequence, and the temperature of each sub-sintering zone is controlled to be no higher than 790°C, the time is 2s to 5s, and n is an integer not less than 4.
  • the temperature of the main sintering area will reach 800°C and above, setting up three sintering peaks.
  • the chemical H bonds will quickly escape after breaking, causing passivation defects to form composites. center, reducing the passivation effect of the passivation film and anti-reflection film, which in turn leads to the occurrence of EL problems.
  • the main sintering temperature is further reduced, and 4 or more main sintering peaks are set to extend the main sintering time, so as to While ensuring effective ohmic contact between the electrode and the silicon matrix, it reduces the probability of recombination centers to avoid EL problems, improves the yield of the solar cells produced, and improves the photoelectric conversion efficiency of the solar cells.
  • the main sintering area includes a first sub-sintering area, a second sub-sintering area, a third sub-sintering area and a fourth sub-sintering area arranged in sequence.
  • the first sub-sintering area, the second sub-sintering area, The temperatures of the third sub-sintering zone and the fourth sub-sintering zone are 700°C ⁇ 750°C respectively.
  • the sintering times in the corresponding sub-sintering zones are 2s ⁇ 5s, 2s ⁇ 5s, 2s ⁇ 5s and 2s ⁇ 5s respectively, and the main sintering zone The time is no less than 15s.
  • each sub-sintering zone is independently selected from any value from 2s to 5s, and the time of each sub-sintering zone is controlled so that the sintering time experienced in the entire main sintering zone is no less than 15s.
  • the sintering furnace adopts a chain-type dynamic sintering furnace, that is, by setting up a dynamic transmission furnace belt to drive the sintered objects to be sintered through each area, and by controlling the transmission speed of the furnace belt, the sintered objects can be controlled in each area.
  • the time of the sintering process is, by setting up a dynamic transmission furnace belt to drive the sintered objects to be sintered through each area, and by controlling the transmission speed of the furnace belt, the sintered objects can be controlled in each area.
  • the conveying speed of the furnace belt is controlled at 9.5min/m ⁇ 10.5min/m.
  • the preset temperature in the sintering furnace and the actual temperature reached in the sintering furnace may be inconsistent.
  • a stretching temperature meter can be used to determine that the actual temperature of the sintering furnace reaches the required temperature.
  • the temperature is 450°C to 670°C and the time is 30s to 50s.
  • the pre-sintering zone includes n1 sub-sintering zones, the sintering time of each sub-sintering zone is controlled to be 2 to 4 s, and n1 is selected from an integer of 3 to 6.
  • the above-mentioned sintering process further includes a cooling process performed after the main sintering process step.
  • the temperature of the cooling process is lower than the temperature of the main sintering process; further, it can be specifically selected in the range of 600°C to 700°C, and the time is 10s to 30s.
  • the above-mentioned sintering furnace also includes a cooling zone for cooling processing.
  • the above-mentioned steps of forming a passivation film and/or forming a back anti-reflective film are performed using coating equipment;
  • the coating equipment Before the coating equipment performs the coating process of forming a passivation film and/or forming an anti-reflective film, the coating equipment is controlled to pre-run without the parts to be plated.
  • the operating conditions in the pre-run operation program are the same as those during the coating process.
  • the operating conditions in the operating program are the same, and the operating conditions include at least one of pressure, gas flow, temperature and electric field intensity.
  • the technical personnel of this application found that during mass production, the process of forming the passivation film and/or the formation of the back anti-reflective film is unstable, which will also cause problems in the produced batteries.
  • the technical personnel of this application found that, In the mass production process, when the coating equipment is on standby or shut down for maintenance for a period of time, when the coating is processed again, the internal environment of the coating equipment cannot reach the environment required for coating in time, which will cause the coating effect to be unstable. Therefore, the coating equipment does not perform coating.
  • the coating equipment is controlled to perform pre-operation without the parts to be plated.
  • At least one operating condition in the pre-operation operating program is the same as the operating condition in the operating program during coating treatment.
  • the operating conditions include pressure and gas flow. , at least one condition among temperature and electric field strength.
  • the state of the above-mentioned coating equipment before the coating process of forming a passivation film and/or forming an anti-reflective film includes but is not limited to a state of standby, shutdown for maintenance, etc.
  • the operating program settings of the pre-run are set with reference to the operating program during the coating process.
  • the operating conditions in the pre-run operating program are controlled to be the same as those in the operating program during the coating process, so that the coating equipment can be in standby or shutdown.
  • the internal environment of the coating equipment can remain similar to the internal environment during coating, improving the stability of the coating.
  • the coating equipment is an atomic layer deposition equipment
  • the operating conditions include pressure, gas flow, and temperature. That is, when the coating equipment is atomic layer deposition equipment, the pressure, gas flow and temperature in the pre-operation operating program are the same as those during the coating process.
  • the coating equipment is a chemical vapor deposition equipment
  • the operating conditions include pressure, gas flow, temperature, and electric field strength. That is, when the coating equipment is a chemical vapor deposition equipment, the pressure, gas flow, temperature and electric field in the operating program for controlling the pre-operation are the same as those during the coating process.
  • the coating equipment is atomic layer deposition equipment
  • the operating procedures of the coating equipment when performing coating processing are as follows:
  • Step (1) Material placement: control temperature 190 ⁇ 50°C, inner cavity pressure 1000mbar, material placement time 120 ⁇ 50s;
  • Step (2) Vacuuming: control the temperature to 190 ⁇ 50°C, and evacuate to the inner cavity pressure to 1mbar within 100 ⁇ 50s;
  • Step (3) Preheating: Keep the inner chamber pressure at 0.6 ⁇ 0.2mbar, the outer chamber pressure at 8 ⁇ 3mbar, control the temperature at 190 ⁇ 50°C, and preheat for 400 ⁇ 50s;
  • Step (4) Coating: control temperature 190 ⁇ 50°C, inner chamber pressure 0.6 ⁇ 0.2mbar, outer chamber pressure 8 ⁇ 3mbar, process gas flow: 18 ⁇ 3SCCM, cycle 100 ⁇ 50 cycles;
  • Step (5) Break the vacuum: control the temperature to 190 ⁇ 50°C and break the vacuum to the inner cavity pressure of 1000mbar within 120 ⁇ 50s;
  • Step (6) Discharging: control the temperature to 190 ⁇ 50°C, the inner cavity pressure to 1000mbar, and the discharging time to 50 ⁇ 30s.
  • the coating equipment is controlled to perform pre-operation without the parts to be plated.
  • the pre-operation operation procedure is the same as the operation procedure during the above-mentioned coating processing.
  • the process gas refers to the gas material required for coating, including protective gas or coating raw material gas.
  • the process gas includes trimethylaluminum. and ozone, the coating process in step (4) is as follows:
  • the control temperature is 190 ⁇ 50°C
  • the inner chamber pressure is 0.6 ⁇ 0.2mbar
  • the outer chamber pressure is 8 ⁇ 3mbar
  • the gas trimethylaluminum flow rate: 18 ⁇ 3SCCM the O 3 flow rate: 18 ⁇ 3SCCM
  • the cycle is 100 ⁇ 50 cycles.
  • the process gas when forming a SiNx anti-reflection film, includes ammonia gas and silane gas.
  • the following steps are further included:
  • the diffusion-bonded silicon wafer is de-PSGed, then the backside of the prefabricated silicon wafer is polished, and finally annealed.
  • PSG phosphosilicate glass
  • the surface is required to have good flatness, so polishing is performed.
  • the above-mentioned annealing treatment is performed under aerobic conditions, and the polished silicon wafer is annealed to form a silicon dioxide layer on its surface.
  • the temperature of the above-mentioned annealing treatment is 650°C to 720°C, and the time is 20min to 40min.
  • the above-mentioned step of forming electrodes adopts a screen printing process, specifically including the following steps:
  • Laser grooves are performed on the anti-reflection film on the back, and linear grooves with a width of 30 to 35 microns are cut out.
  • Silver paste (Ag) is then printed and dried to form a back electrode, and then the aluminum paste is screen-printed onto the back electrode. The other areas are dried to form an aluminum back field, and then silver paste (Ag) is printed on the anti-reflective film on the front and dried to form a positive electrode.
  • Silver-containing slurries are used to form electrodes, mainly because silver has good conductivity, solderability and low diffusion properties in silicon.
  • the above-mentioned solar cell preparation method further includes the following steps:
  • the solar cells obtained by the sintering process are subjected to electrical injection and classification detection processes.
  • Electrical injection uses a light attenuation furnace or electric injection furnace to reduce the light-induced attenuation of the battery; the classification and testing process is to measure the performance parameters of the solar cells through test instruments and classify them according to the electrical performance parameters after the solar cells are produced.
  • Parameters that generally need to be measured include optimal operating voltage, optimal operating current, maximum power (also called peak power), conversion efficiency, open circuit voltage, short circuit current, fill factor, etc.
  • One embodiment of the present application provides a solar cell, which is produced by using the above-mentioned solar cell preparation method.
  • the preparation method of the solar cell can avoid the occurrence of EL problems and improve the photoelectric conversion efficiency of the cell.
  • the textured single crystal silicon wafer is subjected to diffusion bonding treatment: phosphorus oxychloride and oxygen are used for thermal diffusion bonding to form a PN junction, and then the etching process is used to clean and remove the remaining residues on the surface and edges of the silicon wafer. phosphosilicate glass, then polishing the back, and finally debonding under oxygen conditions at 700°C. Fire treatment for 40 minutes.
  • Step (1) Material placement: control temperature 190 ⁇ 50°C, inner cavity pressure 1000mbar, material placement time 120 ⁇ 50s;
  • Step (2) Vacuuming: control the temperature to 190 ⁇ 50°C, and evacuate to the inner cavity pressure to 1mbar within 100 ⁇ 50s;
  • Step (3) Preheating: Keep the inner chamber pressure at 0.6 ⁇ 0.2mbar, the outer chamber pressure at 8 ⁇ 3mbar, control the temperature at 190 ⁇ 50°C, and preheat for 400 ⁇ 50s;
  • Step (4) Coating: control temperature 190 ⁇ 50°C, inner chamber pressure 0.6 ⁇ 0.2mbar, outer chamber pressure 8 ⁇ 3mbar, trimethylaluminum gas flow: 18 ⁇ 3SCCM, ozone gas flow: 18 ⁇ 3SCCM, cycle 100 ⁇ 50 laps;
  • Step (5) Break the vacuum: control the temperature to 190 ⁇ 50°C and break the vacuum to the inner cavity pressure of 1000mbar within 120 ⁇ 50s;
  • Step (6) Discharging: control the temperature to 190 ⁇ 50°C, the inner cavity pressure to 1000mbar, and the discharging time to 50 ⁇ 30s.
  • PECVD equipment is used to deposit a layer of silicon nitride film on the front side of the silicon wafer and the surface of the aluminum oxide passivation film.
  • the specific operating equation is as follows: SiH4+NH3 ⁇ SixNyHz.
  • the main operating steps and reaction conditions are as follows:
  • Step (1) Open the furnace door and enter the boat: time 60s ⁇ 120s, temperature 480-560°C, nitrogen 100sccm ⁇ 2000sccm, pressure 10000mttor;
  • Step (2) Temperature rise: time 300s ⁇ 500s, temperature 480°C ⁇ 560°C, pressure 10000mttor;
  • Step (3) Constant temperature: time 200s ⁇ 300s, temperature 480°C ⁇ 560°C, pressure 10000mttor;
  • Step (4) Vacuuming: time 200s ⁇ 400s, temperature 480°C ⁇ 560°C, pressure 0mttor;
  • Step (5) Leak test: time 20s ⁇ 60s, temperature 480°C ⁇ 560°C, pressure 10000mttor;
  • Step (6) Vacuuming: time 20s ⁇ 60s, temperature 480°C ⁇ 560°C, pressure 0mttor;
  • Step (7) Pre-pass gas: time 10s ⁇ 30s, temperature 480°C ⁇ 560°C, pressure 1000mttor ⁇ 2000mttor, silane 600sccm ⁇ 2000sccm, ammonia 4000sccm ⁇ 8000sccm, power 0, duty cycle 0;
  • Step (8) Deposition: time 500s ⁇ 1000s, temperature 480°C ⁇ 560°C, pressure 1000mttor ⁇ 2000mttor, ammonia 4000sccm ⁇ 8000sccm, silane 500sccm ⁇ 2000sccm, power 8000w ⁇ 20000w, pulse switching ratio 1/8-1/20;
  • Step (15) Vacuuming: time 20s ⁇ 60s, temperature 480°C ⁇ 560°C, pressure 0mttor;
  • Step (17) Vacuuming: time 20s ⁇ 60s, temperature 480°C ⁇ 560°C, pressure 0mttor;
  • Step (18) Break the vacuum: time 60s ⁇ 150s, temperature 480°C ⁇ 560°C, pressure 10000mttor, nitrogen 8000sccm ⁇ 20000sccm;
  • Step (19) Open the furnace door and get out of the boat: time 60-120s, temperature 480-560°C, nitrogen 100-2000sccm, pressure 10000mttor.
  • the prefabricated battery is placed on the conveyor belt of the chain dynamic sintering furnace and enters the sintering furnace for sintering treatment. It passes through the pre-sintering zone, the main firing zone and the cooling zone in sequence.
  • the pre-sintering zone includes the pre-sintering zone one, which are set in sequence.
  • the actual temperatures in each zone are controlled by the stretching thermometer to be 450°C, 560°C, and 660°C respectively.
  • the sintering time is controlled to be 5s, 5s, and 5s in sequence.
  • the main sintering area includes the first sub-sintering area, the second sub-sintering area, the third sub-sintering area and the fourth sub-sintering area which are arranged in sequence.
  • the first sub-sintering area, the second sub-sintering area, the third sub-sintering area are controlled by the stretching temperature meter.
  • the actual temperatures of the third sub-sintering zone and the fourth sub-sintering zone are 730°C, 730°C, 730°C and 700°C respectively.
  • the sintering times are controlled to 5s, 5s, 5s and 5s.
  • the temperature in the cooling zone is greater than 600°C and less than 700°C.
  • the cooling time is controlled to 30s.
  • the sintered battery is placed in a light attenuation furnace for electricity injection to prepare a solar battery.
  • step (2) when the coating equipment is not performing coating processing, the coating equipment is controlled to perform pre-operation without the parts to be plated, and the pre-operation operation is The procedure is the same as that used for coating.
  • Defective rate number of defective products/total number of solar cells ⁇ 100%
  • Uoc open circuit voltage (mV)
  • Isc short circuit current (A)
  • FF fill factor
  • Eta light conversion efficiency (%)
  • Rs series resistance
  • Rsh parallel resistance
  • Irev2 reverse current.
  • Embodiment 2 is basically the same as Embodiment 1, and the only difference is that in step (3) of Embodiment 1, the actual conditions of controlling the first sub-sintering zone, the second sub-sintering zone, the third sub-sintering zone and the fourth sub-sintering zone are The temperatures are 700°C, 700°C, 700°C and 680°C respectively, and the sintering times are controlled to 5s, 5s, 5s and 5s respectively.
  • the temperature in the cooling zone is greater than 600°C and less than 680°C
  • Embodiment 3 is basically the same as Embodiment 1, and the only difference is that in step (3) of Embodiment 1, the actual conditions of controlling the first sub-sintering zone, the second sub-sintering zone, the third sub-sintering zone and the fourth sub-sintering zone are The temperatures are 780°C, 780°C, 780°C and 780°C respectively, and the sintering times are controlled to 4s, 4s, 4s and 4s respectively.
  • Example 4 is basically the same as Example 1, except that in Example 4, the above steps (1) to (3) are repeated to prepare 13965 pieces (pcs) of solar cells.
  • the reflective film step when the coating equipment is performing coating processing, no pre-operation is performed.
  • Comparative Example 1 is basically the same as Example 1, except that the pre-sintering zone includes a pre-sintering zone 1, a pre-sintering zone 2, a pre-sintering zone 3 and a pre-sintering zone 4, which are arranged in sequence.
  • Thermometer controls the actual temperatures of each zone to 450°C, 520°C, 590°C, and 660°C respectively.
  • the sintering time is controlled to 5s, 5s, 5s, and 5s in sequence.
  • the main sintering area includes the first sub-sintering area, the second sub-sintering area and the third sub-sintering area which are arranged in sequence.
  • the actual temperature of the first sub-sintering area, the second sub-sintering area and the third sub-sintering area is controlled by the stretching temperature meter.
  • the temperatures are 820°C, 820°C and 820°C respectively.
  • the sintering time is controlled to 4s, 4s, and 4s in sequence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳能电池及其制备方法。对硅片进行扩散制结处理,得到预制硅片;在预制硅片的背面形成钝化膜,在钝化膜的表面及在预制硅片的正面均形成减反射膜,再形成电极并进行烧结处理,得到太阳能电池;其中,烧结处理包括依次进行的预烧结处理及主烧结处理,在进行主烧结处理时,调控主烧结处理的温度,使钝化膜和/或减反射膜中存在的化学H键断裂的同时,防止形成的H逸出,并同时调控主烧结处理的时间,以使电极和硅基体形成有效的欧姆接触,避免EL问题的产生,提高电池的光电转换效率。

Description

太阳能电池及其制备方法
本申请要求于2022年08月12日提交中国专利局、申请号为202210969847.5、发明名称为“太阳能电池及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,特别是涉及一种太阳能电池及其制备方法。
背景技术
随着传统化石能源的日益枯竭,太阳能作为一种储量无限、环保绿色的清洁能源,成为近年来研究的热点。常规的BSF电池(铝背场电池)会产生较多光电损失,因此在光电转换效率方面具有局限性。从常规铝背场电池(BSF)结构衍生而来的PERC电池(Passivated Emitterand Rear Cell),全称为“发射极和背面钝化电池”,通过在背面形成钝化层,可以捕获更多的阳光并将其转化为电能,从而使电池的效率得到有效提升。
低成本高效率的PERC电池的量产优势显著,可以较大程度减少光电损失,从而提升光电转换效率,然而PERC电池存在待解决的EL问题,即电池在EL(Electroluminescence)发光时,电池出现发光强度减弱的复合中心,表现出发黑的现象,EL问题会降低太阳能电池的光电转换效率。
因此,传统技术仍有待改进。
发明内容
根据本申请的各种实施例,本申请提供一种太阳能电池及其制备方法。
本申请是通过如下的技术方案实现的。
本申请的一个方面,提供了一种太阳能电池的制备方法,包括如下步骤:
对硅片进行扩散制结处理,得到预制硅片;
在所述预制硅片的背面形成钝化膜,在所述钝化膜的表面及在所述预制硅片的正面均形成减反射膜,再形成电极并进行烧结处理,得到太阳能电池;
其中,所述烧结处理包括依次进行的预烧结处理及主烧结处理,在进行所述主烧结处理时,调控所述主烧结处理的温度,使所述钝化膜和/或减反射膜中存在的化学H键断裂的同时,防止形成的H逸出,并同时调控所述主烧结处理的时间,以使所述电极和硅基体形成有效的欧姆接触。
在其中一些实施例中,所述主烧结处理的温度不高于790℃,时间不少于15s。
在其中一些实施例中,所述主烧结处理的温度为680℃~750℃,时间为20s~40s。
在其中一些实施例中,所述预烧结处理中,温度为450℃~670℃,时间为30s~50s。
在其中一些实施例中,所述烧结处理在烧结炉中进行,所述烧结炉具有进行所述预烧结处理的预烧区及进行所述主烧结处理的主烧区;
其中,所述主烧区包括依次设置的n个子烧结区,n为不小于4的整数,并控制每个所述子烧结区的温度不高于790℃、时间为2s~5s,且使所述主烧区的时间不少于15s。
在其中一些实施例中,所述主烧区包括依次设置的第一子烧结区、第二子烧结区、第三子烧结区及第四子烧结区,所述第一子烧结区、所述第二子烧结区、所述第三子烧结区及所述第四子烧结区的温度分别为700℃~750℃、700℃~750℃、700℃~750℃及680℃~750℃,在对应各子烧结区内的烧结时间分别为2s~5s、2s~5s、2s~5s及2s~5s,且使所述主烧区的时间不少于15s。
在其中一些实施例中,所述形成钝化膜和/或所述形成减反射膜的步骤采用镀膜设备进行;
所述镀膜设备在进行所述形成钝化膜或所述形成减反射膜的镀膜处理之前,控制所述镀膜设备在没有待镀件的情况下进行预运行,所述预运行的运行程序中的运行条件与进行镀膜处理时的运行程序中的运行条件相同,所述运行条件包括压力、气体流量、温度及电场强度中的至少一个。
在其中一些实施例中,所述镀膜设备为原子层沉积设备,所述运行条件包括压力、气体流量和温度;或
所述镀膜设备为化学气相沉积设备,所述运行条件包括压力、气体流量、温度及电场强度。
在其中一些实施例中,所述镀膜设备为原子层沉积设备,所述镀膜设备在进行所述镀膜处理时的运行程序如下:
步骤(1)置料:控制温度190±50℃,内腔压力1000mbar,置料时间120±50s;
步骤(2)抽真空:控制温度190±50℃,于100±50s内抽真空至内腔压力为1mbar;
步骤(3)预热:保持内腔压力为0.6±0.2mbar,外腔压力8±3mbar,控制温度190±50℃,预热400±50s;
步骤(4)镀膜:控制温度190±50℃,内腔压力0.6±0.2mbar,外腔压力8±3mbar,工艺气体流量:18±3SCCM,循环100±50圈;
步骤(5)破真空:控制温度190±50℃,时间120±50s内破真空至内腔压力1000mbar;
步骤(6)出料:控制温度190±50℃,内腔压力1000mbar,出料时间50±30s。
在其中一些实施例中,所述工艺气体包括三甲基铝和臭氧。
在其中一些实施例中,所述钝化膜的材质为Al2O3;和/或
所述减反射膜为SiNx膜。
在其中一些实施例中,在所述扩散制结处理之后、且在所述形成钝化膜的步骤之前,还包括如下步骤:
对经所述扩散制结处理的硅片进行去PSG处理,然后对所述硅片的背面进行抛光处理,最后进行退火处理;和/或
在所述扩散制结处理之前,还包括如下步骤:
对所述硅片进行制绒处理。
本申请的又一方面,提供第一方面的太阳能电池的制备方法制得的太阳能电池。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明本申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为对比例1制得的出现EL黑边的PERC电池的图片。
为了更好地描述和说明这里公开的那些申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的申请、目前描述的实施例和/或示例以及目前理解的那些申请的最佳模式中的任何一者的范围的限制。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或顺序。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
综上背景技术所述,传统的太阳能电池存在待解决的EL问题,这是因为传统的太阳能电池的制备过程中,在沉积背面氧化铝钝化膜时,没有工装夹具可以做到完全保护好正面,因此在高温环境下不可避免地会在电池片正面上绕度沉 积一层很薄的氧化铝薄膜,易导致正面掺杂表面的化学钝化不一,出现EL问题。
由此,传统技术中太阳能电池的光电转换效率已经达到瓶颈,很难进一步提升,即使是提升零点几个百分点,都难以实现。
在传统的太阳能电池的烧结过程中,烧结的目的主要是为了电极和硅基体进行有效欧姆接触作用,一般在800℃及以上的高温下进行烧结,然而,本申请技术人员在长期的生产及研究中发现:在800℃及以上的高温下进行烧结,虽然能使电极和硅基体进行有效欧姆接触作用,且能断裂钝化膜及减反射膜中存在的化学H键,达到再次钝化硅基体的悬挂键和缺陷的作用,但是在高温条件下,化学H键断裂后形成的H就会迅速逃逸出来,反而造成钝化缺陷形成复合中心,降低钝化膜及减反射膜的钝化效果,进而也会导致EL问题的产生,降低了太阳能电池的光电转换效率。
基于此,本申请的技术人员在上述研究发现的基础上,在经过大量创造性实验探究后,获得本申请的太阳能电池的制备方法,其能避免EL问题的产生,提高电池的光电转换效率。
本申请一实施方式提供了一种太阳能电池的制备方法,包括如下步骤S10~S20。
S10、对硅片进行扩散制结处理,得到预制硅片。
扩散制结处理是在硅片上生成不同导电类型的扩散层,形成P-N结,以实现光能到电能的转换。
在其中一些实施例中,上述制结处理采用热扩散法,进一步地,采用三氯氧磷和氧气进行。
在其中一些实施例中,硅片为p型单晶硅片。
三氯氧磷和氧气反应生成P2O5,P2O5与硅反应生成SiO2和磷,磷扩散进入硅片,在表面形成n层,表面n层与基底p层形成P-N结。
进一步地,上述制结处理的温度为750℃~880℃。
在其中一些实施例中,在上述扩散制结处理之前,还包括如下步骤:
对硅片进行制绒处理。
硅片经制绒处理后,表面获得良好的绒面结构,从而实现增大比表面积以接受更多光子(能量)的目的,同时也能减少入射光的反射。
上述制绒处理的工艺可采用本领域常用的制绒处理工艺,具体示例包括但不限于:有机溶液腐蚀,例如采用四甲基氢氧化氨等进行腐蚀制绒;无机溶剂腐蚀制绒,例如采用无机碱液或无机酸液,无机碱可选自氢氧化钾及氢氧化钠等,无机酸选自盐酸等,无机碱液或无机酸液中的溶剂可采用水,也可采用乙醇等醇溶液。
进一步的,制绒处理后,还包括对制绒处理后的硅片进行清洗的步骤,以清洗掉残余的制绒处理采用的物料。
步骤S20、在预制硅片的背面形成钝化膜,在钝化膜的表面及在预制硅片的正面均形成减反射膜,再形成电极并进行烧结处理,得到太阳能电池。
其中,烧结处理包括依次进行的预烧结处理及主烧结处理,在进行主烧结处理时,调控主烧结处理的温度,使钝化膜和/或减反射膜中存在的化学H键断裂的同时,防止形成的H逸出,并同时调控主烧结处理的时间,以使电极和硅基体形成有效的欧姆接触。
上述太阳能电池的制备方法中,对硅片进行扩散制结处理,得到预制硅片;然后在预制硅片的背面形成钝化膜,在钝化膜的表面及在预制硅片的正面均形成减反射膜,再形成电极并进行烧结处理,在烧结处理中,控制主烧结处理的温度使在主烧结过程中,使钝化膜及减反射膜中存在的化学H键断裂,由此达到再次钝化硅基体的悬挂键和缺陷的作用的同时,防止因化学H键的形成的H逃逸出来造成钝化缺陷,同时调控主烧结处理的时间,从而在保证电极和硅基体进行有效欧姆接触作用,如此,可降低复合中心的产生概率,以避免EL问题的产生,提高电池的光电转换效率。
在其中一些实施例中,上述主烧结处理的温度不高于790℃,时间不少于15s。
在该温度及时间条件下烧结,能断裂钝化膜及减反射膜中存在的化学H键,达到再次钝化硅基体的悬挂键和缺陷的作用,且在该较低的温度条件下,能同时避免因化学H键的断裂导致H逃逸造成的钝化缺陷,同时延长主烧结处理的时 间,从而在保证电极和硅基体进行有效欧姆接触作用的同时,降低复合中心的产生概率,以避免EL问题的产生,提高电池的光电转换效率。
需要说明的是,步骤S20中,在钝化膜的表面形成减反射膜的步骤及在预制硅片的正面形成减反射膜的步骤,两者没有特定的先后顺序,可以先在钝化膜的表面形成减反射膜,然后再在预制硅片的正面形成减反射膜的步骤,也可以先在预制硅片的正面形成减反射膜,然后再进行在在钝化膜的表面形成减反射膜的步骤。
在正面形成减反射膜,既可以减少反射,同时也起到钝化作用,在钝化膜的表面形成减反射膜,在保护钝化膜的同时减少背面的反射,从而提高电池的光吸收率。
在其中一些实施例中,上述主烧结处理的温度不高于680℃~750℃,时间不少于15s。
在其中一些实施例中,上述主烧结处理的温度为680℃~750℃,时间为20s~40s。
在其中一些实施例中,烧结处理在烧结炉中进行,烧结炉具有进行预烧结处理的预烧区及用于进行主烧结处理的主烧区。
其中,主烧区包括依次设置的n个子烧结区,控制每个子烧结区的温度不高于790℃,时间为2s~5s,n为不小于4的整数。
传统的PERC电池的烧结过程中,主烧结区域的温度会达到800℃及以上,设置3个烧结峰,但高温条件下,化学H键断裂后就会迅速逃逸出来,反而造成钝化缺陷形成复合中心,降低钝化膜及减反射膜的钝化效果,进而导致EL问题的产生,而本申请中进一步降低主烧结温度,设置4个及以上的主烧结峰,以延长主烧结时间,从而在保证电极和硅基体进行有效欧姆接触作用的同时,降低复合中心的产生概率,以避免EL问题的产生,提高制得的太阳电池的良率,并提高太阳能电池的光电转换效率。在其中一些实施例中,主烧区包括依次设置的第一子烧结区、第二子烧结区、第三子烧结区及第四子烧结区,第一子烧结区、第二子烧结区、第三子烧结区及第四子烧结区的温度分别为700℃~750℃、 700℃~750℃、700℃~750℃及680~750℃,在对应各子烧结区内的烧结时间分别为2s~5s、2s~5s、2s~5s及2s~5s,且使主烧区的时间不少于15s。
可理解,每个子烧结区的时间独立地选自2s~5s任一数值,并调控各个子烧结区的时间,以使在整个主烧区的经历的烧结时间不少于15s。
进一步地,烧结炉采用链式动态烧结炉,即通过设置动态传输的炉带,以带动被烧结物经各区域进行烧结,通过控制炉带的传输速度即可控制被烧结物在各区域中进行烧结处理的时间。
在其中一些实施例中,炉带的传输速度控制在9.5min/m~10.5min/m。
需要说明的是,采用烧结炉进行烧结时,烧结炉中预先设定温度和烧结炉中实际达到的温度可能不一致,此时可使用拉温仪,以确定烧结炉的实际温度达到所需的温度。
在其中一些实施例中,预烧结处理中,温度为450℃~670℃,时间为30s~50s。
在其中一些实施例中,预烧区包括n1个子烧结区,控制每个子烧结区的烧结时间为2s~4s,n1选自3~6的整数。
在其中一些实施例中,上述烧结处理还包括在主烧结处理步骤之后进行的冷却处理。
进一步地,冷却处理的温度低于主烧结处理的温度;进一步地,具体可在600℃~700℃范围选择,时间为10s~30s。
进一步地,上述烧结炉还包括进行冷却处理的冷却区。
在其中一些实施例中,上述形成钝化膜和/或形成背面减反射膜的步骤采用镀膜设备进行;
镀膜设备在进行形成钝化膜和/或形成减反射膜的镀膜处理之前,控制镀膜设备在没有待镀件的情况下进行预运行,预运行的运行程序中的运行条件与进行镀膜处理时的运行程序中的运行条件相同,运行条件包括压力、气体流量、温度及电场强度中的至少一个。
本申请的技术人员发现:在批量生产时,形成钝化膜和/或形成背面减反射膜的工艺不稳定,也会导致制得的电池出现问题,本申请的技术人员研究发现, 在批量生产过程中,镀膜设备在待机或停机检修一段时间后再次进行镀膜处理时,由于镀膜设备内部环境无法及时达到镀膜所需的环境,会导致镀膜效果不稳定,故镀膜设备在不进行镀膜处理时,控制镀膜设备在没有待镀件的情况下进行预运行,预运行的运行程序中的至少一个运行条件与进行镀膜处理时的运行程序中的运行条件相同,运行条件包括压力、气体流量、温度及电场强度中的至少一个条件。
可理解,上述镀膜设备在进行形成钝化膜和/或形成减反射膜的镀膜处理之前的状态包括但不限于待机、停机检修等状态。预运行的运行程序设定参照镀膜处理时的运行程序进行设定,控制预运行的运行程序中的运行条件与进行镀膜处理时的运行程序中的运行条件相同,从而使镀膜设备在待机或停机时,镀膜设备内部环境能保持与镀膜时的内部环境相似,提高镀膜的稳定性。
需要说明的是,具体预运行的运行程序中的运行条件控制可根据具体所采用的镀膜设备类型调控。
在其中一些实施例中,镀膜设备为原子层沉积设备,运行条件包括压力、气体流量和温度。即当镀膜设备为原子层沉积设备,控制预运行的运行程序中的压力、气体流量和温度均与进行镀膜处理时的运行程序相同。
在其中一些实施例中,镀膜设备为化学气相沉积设备,运行条件包括压力、气体流量、温度及电场强度。即当镀膜设备为化学气相沉积设备时,控制预运行的运行程序中的压力、气体流量、温度及电场均与进行镀膜处理时的运行程序相同。
在其中一些实施例中,镀膜设备为原子层沉积设备,镀膜设备进行镀膜处理时的运行程序如下:
步骤(1)置料:控制温度190±50℃,内腔压力1000mbar,置料时间120±50s;
步骤(2)抽真空:控制温度190±50℃,于100±50s内抽真空至内腔压力为1mbar;
步骤(3)预热:保持内腔压力为0.6±0.2mbar,外腔压力8±3mbar,控制温度190±50℃,预热400±50s;
步骤(4)镀膜:控制温度190±50℃,内腔压力0.6±0.2mbar,外腔压力8±3mbar,工艺气体流量:18±3SCCM,循环100±50圈;
步骤(5)破真空:控制温度190±50℃,时间120±50s内破真空至内腔压力1000mbar;
步骤(6)出料:控制温度190±50℃,内腔压力1000mbar,出料时间50±30s。
同理,上述镀膜设备在不进行镀膜处理时,控制镀膜设备在没有待镀件的情况下进行预运行,预运行的运行程序与上述镀膜处理时的运行程序相同。
上述步骤(4)镀膜中,工艺气体是指镀膜使所需的气体物料,包括保护性气体或镀膜原料气体,例如形成材质为Al2O3的钝化膜时,工艺气体包括三甲基铝和臭氧,步骤(4)镀膜工艺如下:
控制温度190±50℃,内腔压力0.6±0.2mbar,外腔压力8±3mbar,气体三甲基铝流量:18±3SCCM,O3流量:18±3SCCM,循环100±50圈。
又如,形成SiNx减反射膜时,工艺气体包括氨气和硅烷气体。
形成SiNx减反射膜时,会产生N-H/S-H等含H键的官能键。
在其中一些实施例中,在扩散制结处理之后、且在形成钝化膜的步骤之前,还包括如下步骤:
对经扩散制结处理的硅片进行去PSG处理,然后对预制硅片的背面进行抛光处理,最后进行退火处理。
扩散制结处理时,硅片表面和边缘会残留磷硅玻璃(PSG),故需将硅片表面和边缘残留的磷硅玻璃(PSG)去除,可采用本领域常用的去PSG处理工艺,例如刻蚀法。
进一步地,背面形成钝化膜时,要求表面具有良好的平整性,故进行抛光处理。
进一步地,上述退火处理在有氧条件下进行,对抛光后的硅片进行退火处理,以使其表面形成二氧化硅层。
在其中一些实施例中,上述退火处理的温度为650℃~720℃,时间为20min~40min。
在其中一些实施例中,上述形成电极的步骤采用丝网印刷工艺,具体包括如下步骤:
在背面的减反射膜上进行激光开槽,开出宽度在30~35微米的线状槽,然后进行银浆(Ag)印刷、烘干形成背电极,然后通过丝网印刷铝浆至背电极以外的区域,烘干形成铝背场,再在正面的减反射膜上进行银浆(Ag)印刷、烘干形成正电极。
形成电极采用含银的浆料,主要是因为银具有良好的导电性、可焊性和在硅中的低扩散性能。
在其中一些实施例中,上述太阳能电池的制备方法还包括如下步骤:
在烧结处理步骤之后,对烧结处理得到的太阳能电池进行电注入及分类检测工序。
电注入是通过光衰炉或者电注入炉,减少电池的光致衰减;分类检测工序是在太阳能电池制作完成后,通过测试仪器测量其性能参数并按电性能参数分档。一般需要测量的参数有最佳工作电压、最佳工作电流、最大功率(也称峰值功率)、转换效率、开路电压、短路电流、填充因子等。
本申请一实施方式,提供一种太阳能电池,采用上述太阳能电池的制备方法制得的太阳能电池。该太阳能电池的制备方法能避免EL问题的产生,提高电池的光电转换效率。
下面将结合具体的实施例对本申请进行了说明,但本申请并不局限于下述实施例,应当理解,所附权利要求概括了本申请的范围,在本申请构思的引导下本领域的技术人员应意识到,对本申请的各实施例所进行的一定的改变,都将被本申请的权利要求书的精神和范围所覆盖。
以下为具体实施例。
实施例1
(1)将制绒处理后的单晶硅片进行扩散制结处理:采用三氯氧磷和氧气进行热扩散制结形成P-N结,然后通过刻蚀工序,清洗去除硅片表面和边缘残留的磷硅玻璃,再对背面进行抛光处理,最后在然后在氧气条件下、700℃下进行退 火处理40min。
(2)采用原子层沉积设备对硅片背面进行镀膜形成Al2O3钝化膜,运行程序如下:
步骤(1)置料:控制温度190±50℃,内腔压力1000mbar,置料时间120±50s;
步骤(2)抽真空:控制温度190±50℃,于100±50s内抽真空至内腔压力为1mbar;
步骤(3)预热:保持内腔压力为0.6±0.2mbar,外腔压力8±3mbar,控制温度190±50℃,预热400±50s;
步骤(4)镀膜:控制温度190±50℃,内腔压力0.6±0.2mbar,外腔压力8±3mbar,三甲基铝气体流量:18±3SCCM,臭氧气体流量:18±3SCCM,循环100±50圈;
步骤(5)破真空:控制温度190±50℃,时间120±50s内破真空至内腔压力1000mbar;
步骤(6)出料:控制温度190±50℃,内腔压力1000mbar,出料时间50±30s。
然后采用PECVD设备分别在硅片正面及三氧化二铝钝化膜表面沉积一层氮化硅薄膜,具体运行方程式如下:SiH4+NH3→SixNyHz,其主要运行步骤及其反应条件如下:
步骤(1)开炉门进舟:时间60s~120s,温度480-560℃,氮气100sccm~2000sccm,压力10000mttor;
步骤(2)升温:时间300s~500s,温度480℃~560℃,压力10000mttor;
步骤(3)恒温:时间200s~300s,温度480℃~560℃,压力10000mttor;
步骤(4)抽真空:时间200s~400s,温度480℃~560℃,压力0mttor;
步骤(5)测漏:时间20s~60s,温度480℃~560℃,压力10000mttor;
步骤(6)抽真空:时间20s~60s,温度480℃~560℃,压力0mttor;
步骤(7)预通气体:时间10s~30s,温度480℃~560℃,压力1000mttor~2000mttor,硅烷600sccm~2000sccm,氨气4000sccm~8000sccm,功率为0,占空比为0;
步骤(8)淀积:时间500s~1000s,温度480℃~560℃,压力1000mttor ~2000mttor,氨气4000sccm~8000sccm,硅烷500sccm~2000sccm,功率为8000w~20000w,脉冲开关比1/8-1/20;
步骤(15)抽真空:时间20s~60s,温度480℃~560℃,压力0mttor;
步骤(16)氮气吹扫:时间20s~60s,温度480℃~560℃,压力10000mttor,氮气8000-20000sccm;
步骤(17)抽真空:时间20s~60s,温度480℃~560℃,压力0mttor;
步骤(18)破真空:时间60s~150s,温度480℃~560℃,压力10000mttor,氮气8000sccm~20000sccm;
步骤(19)开炉门出舟:时间60-120s,温度480-560℃,氮气100-2000sccm,压力10000mttor。
(3)利用激光在背面开槽,开出宽度在30~35微米的线状槽,然后丝网印刷银浆(Ag)、烘干形成背电极,然后通过丝网印刷铝浆至电极以外的区域,烘干形成铝背场,再在正表面的减反射膜上进行银浆(Ag)印刷、烘干形成正电极,得到预制电池。
然后将预制电池置于链式动态烧结炉的传输炉带上进入烧结炉进行烧结处理,依次经过预烧区、主烧区和冷却区,其中,预烧区包括依次设置的预烧结一区、预烧结二区、预烧结三区,通过拉温仪控制各区的实际温度分别为450℃、560℃、660℃,同时通过控制传输炉带的速度,控制烧结时间依次为5s、5s及5s。
主烧区包括依次设置的第一子烧结区、第二子烧结区、第三子烧结区及第四子烧结区,通过拉温仪,控制第一子烧结区、第二子烧结区、第三子烧结区及第四子烧结区的实际温度分别为730℃、730℃、730℃及700℃,同时通过控制传输炉带的速度,控制烧结时间依次为5s、5s、5s及5s。
冷却区温度大于600℃且小于700℃,通过控制传输炉带的速度,控制冷却时间为30s。
将烧结处理后的电池置于光衰炉中进行电注入,制得太阳能电池。
重复进行上述步骤(1)~(3)制备13965件(pcs)太阳能电池,其中,在 步骤(2)中形成钝化膜和形成背面减反射膜的步骤中,在镀膜设备在不进行镀膜处理时,控制所述镀膜设备在没有待镀件的情况下进行预运行,预运行的运行程序与进行镀膜处理时的运行程序相同。
(4)对制得的太阳能电池进行分析检测,具体包括如下步骤:
1、对制得的太阳能电池进行EL检测,观察其是否出现黑边现象,将出现黑边现象的太阳能电池记为不良品,按照下述公式计算不良率:
不良率=不良品数量/太阳能电池总数量×100%
具体结果请见表1。
2、对制得的未出现黑边现象太阳能电池进行的光伏性能进行测试,并计算各参数平均值,具体测试请参考中国计量科学研究院转换效率一级标准,结果请见表1。
其中,Uoc:开路电压(mV),Isc:短路电流(A),FF:填充因子,Eta:光转换效率(%),Rs:串联电阻,Rsh:并联电阻,Irev2:反向电流。
实施例2
实施例2与实施例1基本相同,不同之处仅在于:实施例1步骤(3)中控制第一子烧结区、第二子烧结区、第三子烧结区及第四子烧结区的实际温度分别为700℃、700℃、700℃及680℃,控制烧结时间依次为5s、5s、5s及5s。冷却区温度大于600℃且小于680℃
其余步骤与实施例1相同。
实施例3
实施例3与实施例1基本相同,不同之处仅在于:实施例1步骤(3)中控制第一子烧结区、第二子烧结区、第三子烧结区及第四子烧结区的实际温度分别为780℃、780℃、780℃及780℃,控制烧结时间依次为4s、4s、4s及4s。
其余步骤与实施例1相同。
实施例4
实施例4与实施例1基本相同,不同之处在于:实施例4重复进行上述步骤(1)~(3)制备13965件(pcs)太阳能电池时,其中,在形成钝化膜和形成背面减反射膜的步骤中,在镀膜设备在进行镀膜处理时,不进行预运行。
其余步骤与实施例1相同。
对比例1
对比例1与实施例1基本相同,不同之处仅在于:预烧区包括依次设置的预烧结一区、预烧结二区、预烧结三区和预烧结四区,四个温区,通过拉温仪,控制各区的实际温度分别为450℃、520℃、590℃、660℃,同时通过控制传输炉带的速度,控制烧结时间依次为5s、5s、5s及5s。
主烧区包括依次设置的第一子烧结区、第二子烧结区及第三子烧结区,通过拉温仪,控制第一子烧结区、第二子烧结区及第三子烧结区的实际温度分别为820℃、820℃及820℃,同时通过控制传输炉带的速度,控制烧结时间依次为4s、4s、4s。
其余步骤与实施例1相同。
各实施例及对比例的具体结果请见表1。
表1
其中对比例1制得的出现EL黑边的PERC电池的图片如图1所示,图1中(a)与(b)中的PERC电池的边缘不同区域均出现EL黑边现象。
由表1中数据可知,采用本申请的技术方案,能避免EL问题的产生,降低制得的太阳能电池出现EL黑边的概率,同时提高电池的光电转换效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准,说明书及附图可以用于解释权利要求的内容。

Claims (16)

  1. 一种太阳能电池的制备方法,其特征在于,包括如下步骤:
    对硅片进行扩散制结处理,得到预制硅片;
    在所述预制硅片的背面形成钝化膜,在所述钝化膜的表面及在所述预制硅片的正面均形成减反射膜,再形成电极并进行烧结处理,得到太阳能电池;
    其中,所述烧结处理包括依次进行的预烧结处理及主烧结处理,在进行所述主烧结处理时,调控所述主烧结处理的温度,使所述钝化膜和/或所述减反射膜中存在的化学H键断裂的同时,防止形成的H逸出,并同时调控所述主烧结处理的时间,以使所述电极和硅基体形成有效的欧姆接触。
  2. 如权利要求1所述的太阳能电池的制备方法,其特征在于,所述主烧结处理的温度不高于790℃,时间不少于15s。
  3. 如权利要求1~2任一项所述的太阳能电池的制备方法,其特征在于,所述主烧结处理的温度为680℃~750℃,时间为20s~40s。
  4. 如权利要求1~3任一项所述的太阳能电池的制备方法,其特征在于,所述预烧结处理中,温度为450℃~670℃,时间为30s~50s。
  5. 如权利要求1~4任一项所述的太阳能电池的制备方法,其特征在于,所述烧结处理在烧结炉中进行,所述烧结炉具有进行所述预烧结处理的预烧区及进行所述主烧结处理的主烧区;
    其中,所述主烧区包括依次设置的n个子烧结区,n为不小于4的整数,并控制每个所述子烧结区的温度不高于790℃、时间为2s~5s,且使所述主烧区的时间不少于15s。
  6. 如权利要求5所述的太阳能电池的制备方法,其特征在于,所述主烧区包括依次设置的第一子烧结区、第二子烧结区、第三子烧结区及第四子烧结区,所述第一子烧结区、所述第二子烧结区、所述第三子烧结区及所述第四子烧结区的温度分别为700℃~750℃、700℃~750℃、700℃~750℃及680℃~750℃,在对应各子烧结区内的烧结时间分别为2s~5s、2s~5s、2s~5s及2s~5s,且使所述主烧区的时间不少于15s。
  7. 如权利要求1~6任一项所述的太阳能电池的制备方法,其特征在于,所述形成钝化膜和所述形成减反射膜的步骤中的至少一个步骤采用镀膜设备进行;
    所述镀膜设备在进行所述形成钝化膜或所述形成减反射膜的镀膜处理之前,控制所述镀膜设备在没有待镀件的情况下进行预运行,所述预运行的运行程序中的运行条件与进行镀膜处理时的运行程序中的运行条件相同,所述运行条件包括压力、气体流量、温度及电场强度中的至少一个。
  8. 如权利要求7所述的太阳能电池的制备方法,其特征在于,所述镀膜设备为原子层沉积设备,所述运行条件包括压力、气体流量和温度。
  9. 如权利要求7~8任一项所述的太阳能电池的制备方法,其特征在于,所述镀膜设备为化学气相沉积设备,所述运行条件包括压力、气体流量、温度及电场强度。
  10. 如权利要求7~9任一项所述的太阳能电池的制备方法,其特征在于,所述镀膜设备为原子层沉积设备,所述镀膜设备在进行所述镀膜处理时的运行程序如下:
    步骤(1)置料:控制温度190±50℃,内腔压力1000mbar,置料时间120±50s;
    步骤(2)抽真空:控制温度190±50℃,于100±50s内抽真空至内腔压力为1mbar;
    步骤(3)预热:保持内腔压力为0.6±0.2mbar,外腔压力8±3mbar,控制温度190±50℃,预热400±50s;
    步骤(4)镀膜:控制温度190±50℃,内腔压力0.6±0.2mbar,外腔压力8±3mbar,工艺气体流量:18±3SCCM,循环100±50圈;
    步骤(5)破真空:控制温度190±50℃,时间120±50s内破真空至内腔压力1000mbar;
    步骤(6)出料:控制温度190±50℃,内腔压力1000mbar,出料时间50±30s。
  11. 如权利要求10所述的太阳能电池的制备方法,其特征在于,所述工艺气体包括三甲基铝和臭氧。
  12. 如权利要求1~11任一项所述的太阳能电池的制备方法,其特征在于,所述钝化膜的材质为Al2O3。
  13. 如权利要求1~12任一项所述的太阳能电池的制备方法,其特征在于,
    所述减反射膜为SiNx膜。
  14. 如权利要求1~13任一项所述的太阳能电池的制备方法,其特征在于,在所述扩散制结处理之后、且在所述形成钝化膜的步骤之前,还包括如下步骤:
    对经所述扩散制结处理的硅片进行去PSG处理,然后对所述硅片的背面进行抛光处理,最后进行退火处理。
  15. 如权利要求1~14任一项所述的太阳能电池的制备方法,其特征在于,在所述扩散制结处理之前,还包括如下步骤:
    对所述硅片进行制绒处理。
  16. 如权利要求1~15任一项所述的太阳能电池的制备方法制得的太阳能电池。
PCT/CN2023/084369 2022-08-12 2023-03-28 太阳能电池及其制备方法 WO2024032005A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210969847.5A CN115332390A (zh) 2022-08-12 2022-08-12 太阳能电池及其制备方法
CN202210969847.5 2022-08-12

Publications (2)

Publication Number Publication Date
WO2024032005A1 WO2024032005A1 (zh) 2024-02-15
WO2024032005A9 true WO2024032005A9 (zh) 2024-03-14

Family

ID=83923058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084369 WO2024032005A1 (zh) 2022-08-12 2023-03-28 太阳能电池及其制备方法

Country Status (2)

Country Link
CN (1) CN115332390A (zh)
WO (1) WO2024032005A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115332390A (zh) * 2022-08-12 2022-11-11 通威太阳能(安徽)有限公司 太阳能电池及其制备方法
CN117393654B (zh) * 2023-12-06 2024-04-09 浙江晶科能源有限公司 光伏电池制备方法和光伏电池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100927725B1 (ko) * 2008-01-25 2009-11-18 삼성에스디아이 주식회사 태양 전지 및 이의 제조 방법
DE102009034594A1 (de) * 2009-02-24 2010-08-26 Bosch Solar Energy Ag Verfahren zur Herstellung einer kristallinen Silizium-Solarzelle mit ganzflächiger, legierter Rückseitenmetallisierung
CN102479883A (zh) * 2009-11-27 2012-05-30 无锡尚德太阳能电力有限公司 太阳电池正面电极的形成方法
KR20130011696A (ko) * 2011-07-22 2013-01-30 에스티엑스 솔라주식회사 태양전지 전극 및 그 제조방법
CN104966761B (zh) * 2015-07-08 2017-04-05 四川银河星源科技有限公司 一种晶体硅太阳能电池的制造方法
CN109473504A (zh) * 2017-09-06 2019-03-15 镇江大全太阳能有限公司 一种双面氧化铝钝化背面局部接触高效率晶体硅太阳能电池的制作方法
CN107993940A (zh) * 2017-10-31 2018-05-04 泰州隆基乐叶光伏科技有限公司 p型太阳能电池的制备方法
CN110459469B (zh) * 2018-09-25 2022-05-27 协鑫集成科技股份有限公司 太阳能电池的烧结方法、制备方法、太阳能电池和烧结炉
CN110828607A (zh) * 2019-08-27 2020-02-21 横店集团东磁股份有限公司 一种高转换效率se-perc太阳能电池的制备方法
CN112825340B (zh) * 2019-11-15 2022-08-19 苏州阿特斯阳光电力科技有限公司 一种钝化接触电池及其制备方法和应用
CN112670370A (zh) * 2020-12-24 2021-04-16 横店集团东磁股份有限公司 一种太阳能电池片的烧结方法和应用
CN113013291A (zh) * 2021-02-19 2021-06-22 横店集团东磁股份有限公司 一种perc双面电池及其烧结方法
CN115332390A (zh) * 2022-08-12 2022-11-11 通威太阳能(安徽)有限公司 太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN115332390A (zh) 2022-11-11
WO2024032005A1 (zh) 2024-02-15

Similar Documents

Publication Publication Date Title
US11545588B2 (en) Solar cell, method for manufacturing solar cell, and solar cell module
WO2024032005A9 (zh) 太阳能电池及其制备方法
WO2021031500A1 (zh) 一种复合介电钝化层结构太阳电池及其制备工艺
TWI459577B (zh) 具改良表面保護膜之結晶矽太陽電池的製造方法
US8916768B2 (en) Surface passivation of silicon based wafers
WO2021004525A1 (zh) 一种异质结电池分层氢钝化方法、氢钝化装置、电池、电池组件及太阳能供电站
US20130061926A1 (en) Solar cell element and method for producing the same, and solar cell module
JP2012253356A (ja) ブリスターを伴わずにシリコン表面をパッシベーションする方法
TWI673883B (zh) 太陽電池元件及太陽電池元件之製造方法
TW201351672A (zh) 太陽能電池及其製造方法
Kunz et al. 5% efficient evaporated solid‐phase crystallised polycrystalline silicon thin‐film solar cells
TWI650872B (zh) 太陽能電池及其製造方法、太陽能電池模組及太陽能電池發電系統
CN103474501A (zh) 一种选择性发射极锑化镓红外电池及其制备方法
Basu et al. 19% efficient inline-diffused large-area screen-printed Al-LBSF silicon wafer solar cells
CN114613881B (zh) 太阳能电池及其制备方法、光伏组件
KR101151413B1 (ko) 이중 반사 방지막을 갖는 태양 전지 및 그 제조 방법
JP2013222794A (ja) 太陽電池の製造方法
WO2011033072A2 (en) High-efficiency amorphous silicon photovoltaic devices
JP5516611B2 (ja) 太陽電池の製造方法及び太陽電池
TW202114246A (zh) 雙面太陽能電池之製造製程
JP2014212219A (ja) 太陽電池及びその製造方法
Benick et al. Passivation quality of wet oxides grown from purified steam
Rohatgi et al. University Crystalline Silicon Photovoltaics Research and Development
WO2011033071A2 (en) High efficiency micromorph tandem cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851237

Country of ref document: EP

Kind code of ref document: A1