WO2024031876A1 - 一种由环戊酮和甲醇一步合成甲基环戊二烯的方法 - Google Patents

一种由环戊酮和甲醇一步合成甲基环戊二烯的方法 Download PDF

Info

Publication number
WO2024031876A1
WO2024031876A1 PCT/CN2022/135841 CN2022135841W WO2024031876A1 WO 2024031876 A1 WO2024031876 A1 WO 2024031876A1 CN 2022135841 W CN2022135841 W CN 2022135841W WO 2024031876 A1 WO2024031876 A1 WO 2024031876A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclopentanone
metal salt
type composite
metal oxide
oxide catalyst
Prior art date
Application number
PCT/CN2022/135841
Other languages
English (en)
French (fr)
Inventor
李宁
邹竹帆
李广亿
张涛
王爱琴
王晓东
丛昱
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2024031876A1 publication Critical patent/WO2024031876A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/22Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/885Molybdenum and copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/02Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/08Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a five-membered ring
    • C07C13/15Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a five-membered ring with a cyclopentadiene ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the invention relates to a method for one-step synthesis of methylcyclopentadiene from cyclopentanone and methanol.
  • Methylcyclopentadiene is an important raw material for the production of gasoline additive methylcyclopentadiene manganese tricarbonyl. It can also be used to synthesize high-grade resins, surface coatings, high-grade dyes, plasticizers, curing agents and high-energy rocket fuel RJ- 4 etc.
  • cyclopentadiene there are two main methods for preparing methylcyclopentadiene in industry: one is to use cyclopentadiene as the raw material and methane as the alkylating agent to synthesize methylcyclopentadiene through an alkylation reaction; the other is to use cyclopentadiene as the raw material and methane as the alkylating agent.
  • CN101205168A discloses a method for preparing methylcyclopentadiene. Cyclopentadiene reacts with metal sodium, potassium, etc. to generate cyclopentadiene sodium and potassium salts, and then is passed into liquid methyl chloride for liquid phase methylation. The reaction produces methylcyclopentadiene.
  • the use of flammable metallic sodium and the production of flammable and explosive hydrogen make this route unsafe, highly polluting, extremely harsh reaction conditions, and high cost.
  • CN105111036A discloses a new method for separating methylcyclopentadiene from ethylene by-product C9.
  • CN113968776A discloses a method for preparing cyclopentanone from biomass raw materials. This system can prepare hemicellulose, xylan, xylose and arabinose in the raw material in one step with high yield under certain reaction conditions. of cyclopentanone.
  • cyclopentanone discloses a method for preparing cyclopentanone from biomass raw materials. This system can prepare hemicellulose, xylan, xylose and arabinose in the raw material in one step with high yield under certain reaction conditions. of cyclopentanone.
  • the object of the present invention is to provide a method for one-step synthesis of methylcyclopentadiene from cyclopentanone and methanol, specifically involving using cyclopentanone and methanol as raw materials, in a fixed bed continuous reactor, in A x B
  • the target product of methylcyclopentadiene is directly synthesized through cascade dehydrogenation/aldol condensation/selective hydrodeoxygenation reaction, which is a high additive for the synthesis of cyclopentanone and methanol.
  • the value of methylcyclopentadiene chemicals provides a new, simple and efficient method.
  • the Ax By y O z type composite metal oxide catalyst includes: C x Mo y O z , Zn x Mo y O z , N x Mo y O z , Cox Mo y O z , Mn x Mo y O z , Fe x Mo y O z , Cr x Mo y O z , Cu x W y O z , Ni x W y O z , Co x W y O z , Fe x W y O z , One or more of Zn x W y O z and Zn x V y O z ; wherein, x is 0.5-8, preferably 0.8-7, more preferably 1-6; y is 0.5-8, preferably 0.8-7 , more preferably 1-6; z is 1-16, preferably 1-14, more preferably 1-12.
  • the Ax By By Oz type composite metal oxide catalyst is prepared by hydrothermal method, sedimentation method or citric acid complex method, and is subjected to reduction treatment in hydrogen before use, wherein, reduction The conditions are: hydrogen pressure 0.001-2.0MPa (preferably 0.005-1.5MPa, more preferably 0.01-1MPa), hydrogen flow rate 2-300mL/min (preferably 5-250mL/min, more preferably 10-200mL/min), reduction temperature 400 -600°C (preferably 450-580°C, more preferably 480-570°C), reduction time 0.5-12h (preferably 0.7-10h, more preferably 1-8h).
  • hydrogen pressure 0.001-2.0MPa preferably 0.005-1.5MPa, more preferably 0.01-1MPa
  • hydrogen flow rate 2-300mL/min preferably 5-250mL/min, more preferably 10-200mL/min
  • reduction temperature 400 -600°C preferably 450-580°C, more preferably 480-570°C
  • reduction time 0.5-12h preferably 0.7-10h,
  • the A x B y O z type composite metal oxide catalyst is prepared by a hydrothermal method.
  • the specific preparation process is: mixing and dissolving a certain amount of the metal salt of A and the metal salt of B in deionized water. , ultrasonic at room temperature to obtain a suspension; transfer the mixed solution to a polytetrafluoroethylene-lined hydrothermal kettle, and react at 80-220°C (preferably 90-200°C, more preferably 100-180°C) for 5-48h (Preferably 6-42h, more preferably 8-36h) and then filtered and washed.
  • the obtained powder is dried at 80°C for 1-8h (preferably 2-6h, more preferably 3-5h) and then dried at 300-800°C (preferably 350-750 °C, more preferably 400-700 °C) for 0.5-6h (preferably 1-5h, more preferably 1-4h), the Ax By By O z type composite metal oxide catalyst can be obtained.
  • the A After adjusting the pH value of the solution to 8-12, use an ammonia aqueous solution of 0.5-14mol/L (preferably 1-8mol/L, more preferably 1.5-6mol/L) as a precipitant, then add the aqueous metal salt solution of A dropwise, and stir After 0.5-4h (preferably 1-3.5h, more preferably 1-3h), the obtained precipitate is filtered out, washed with deionized water and ethanol, dried in an oven at 50-120°C for 4-48h, and then By calcining at 300-800°C (preferably 350-750°C, more preferably 400-700°C) for 0.5-10h (preferably 1-8h, more preferably 1-6h), the Ax B y O z type composite metal oxide can be obtained catalyst.
  • an ammonia aqueous solution of 0.5-14mol/L preferably 1-8mol/L, more preferably 1.5-6mol/L
  • the obtained precipitate is filtered out, washed with deionized water and ethanol, dried in an
  • the Ax By By O z type composite metal oxide catalyst can also be prepared using the citric acid complex method.
  • M is the metal B in the anion and the cationic metal A.
  • the method of the invention can realize the direct synthesis of high value-added methylcyclopentadiene from cyclopentanone and methanol.
  • the beneficial effects of the present invention are: for the first time, the present invention uses cyclopentanone and methanol as raw materials, in a fixed-bed continuous reactor, through cascade dehydrogenation under the action of an Ax By By O z type composite metal oxide catalyst. /Aldol condensation/selective hydrodeoxygenation reaction, directly synthesizes methylcyclopentadiene with high added value in one step; at the same time, the catalyst preparation is simple, can be synthesized in large quantities, the reaction conditions are mild, and the cyclopentanone conversion rate is above 95%. The selectivity of methylcyclopentadiene is above 75%, the catalytic performance is good, and the stability and regeneration performance are good.
  • the process of the invention is simple, easy to operate, low in energy consumption and environmentally friendly. It is a green and efficient new catalytic method and can be used in actual industrial production. Up to now, there are no reports on the one-step synthesis of methylcyclopentadiene through cascade dehydrogenation/aldol condensation/selective hydrodeoxygenation reaction using cyclopentanone and methanol as raw materials.
  • Figure 1 is a gas chromatogram of the product of methylcyclopentadiene synthesized from cyclopentanone and methanol in Example 6.
  • Figure 2 is a mass spectrum comparison chart of the target product methylcyclopentadiene.
  • the molar ratio of methanol to cyclopentanone is 3:1, the hourly space velocity of cyclopentanone is 2.52h -1 , the conversion rate of cyclopentanone is 97%, and the selectivity of methylcyclopentadiene is 85%. .
  • a x B y O z type composite metal oxide catalyst ZnWO 4 Dissolve 0.55g zinc acetate and 0.99g sodium tungstate dihydrate in 60 mL deionized water, and ultrasonic at room temperature to obtain a suspension; Transfer to a polytetrafluoroethylene-lined hydrothermal kettle, react at 120°C for 12h, then filter and wash. The obtained powder is dried at 80°C for 3h and then roasted at 600°C for 2h to obtain ZnWO 4 composite metal oxide. physical catalyst.
  • the molar ratio of cyclopentanone is 1:1, the hourly space velocity of cyclopentanone is 0.67h -1 , the conversion rate of cyclopentanone is 99%, and the selectivity of methylcyclopentadiene is 86%.
  • Example 6 Use ZnMoO 4 in Example 6 as a catalyst, uniformly mix 0.2g of ZnMoO 4 catalyst and 2g of quartz sand (40-70 mesh), and fill it in a fixed-bed continuous reactor, using cyclopentanone and methanol as raw materials, Then reduce at a hydrogen pressure of 0.01MPa and a reduction temperature of 450°C for 0.5h, and then at a certain reaction temperature, hydrogen pressure, molar ratio of hydrogen to cyclopentanone, molar ratio of methanol to cyclopentanone, and hourly space velocity of cyclopentanone. react below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种由环戊酮和甲醇一步合成甲基环戊二烯的方法,以环戊酮和甲醇为原料,通过在A xB yO z型复合金属氧化物催化剂上的级联脱氢/羟醛缩合/选择性加氢脱氧反应,于固定床连续式反应器中合成目标产物甲基环戊二烯。本发明工艺路线简易,催化剂制备方便,对环境友好,实现了环戊酮和甲醇到高附加值甲基环戊二烯的直接转化。

Description

一种由环戊酮和甲醇一步合成甲基环戊二烯的方法 技术领域
本发明涉及一种由环戊酮和甲醇一步合成甲基环戊二烯的方法。
背景技术
甲基环戊二烯是生产汽油添加剂甲基环戊二烯三羰基锰的重要原料,同时可应用于合成高级树脂、表面涂层、高档染料、增塑剂、固化剂和高能火箭燃料RJ-4等。目前,工业上制备甲基环戊二烯的方法主要有两种:一种是以环戊二烯为原料,甲烷作为烷基化剂,通过烷基化反应合成甲基环戊二烯;另一种是从裂解乙烯的副产物C9馏分中分离得到甲基环戊二烯。CN101205168A公开了一种制备甲基环戊二烯的方法,环戊二烯与金属钠、钾等反应生成环戊二烯钠、钾盐,再通入液态一氯甲烷中进行液相甲基化反应制取甲基环戊二烯。易燃的金属钠等的使用且产生易燃易爆的氢气,使得该路线安全性差,污染大,反应条件也极其严苛,成本较高。另外,CN105111036A公开了从乙烯副产C9中分离甲基环戊二烯的新方法,采用一个高温裂解反应器和三个精馏塔串联,将乙烯副产C9及其夹带剂一起通入高温裂解反应器;高温裂解后的混和汽体通入第一精馏塔,通过精馏在塔顶分离出含有环戊二烯和甲基环戊二烯混和的馏分;进而通入第二精馏塔,塔顶采出环戊二烯,塔底采出甲基环戊二烯。虽然该路线安全可行,但是以储量有限且短时间无法再生的化石能源为原料,同时涉及反复解聚精馏过程,工艺设备复杂,能耗高。因此,开发绿色可持续合成甲基环戊二烯的新路线已经刻不容缓。
随着社会对可持续发展和环境问题的日益关注,探索利用可再生、丰富和二二氧化碳中性的生物质资源生产高性能燃料和高附加值化学品的新技术受到了广泛关注。例如,CN113968776A公开了一种生物质原料制备环戊酮的方法,该体系在一定的反应条件下可以将原生物质中的半纤维素、木聚糖、木糖、阿拉伯糖一步制备出高收率的环戊酮。但是,截止到目前,还没有文献报道过以生物质环戊酮为原料合成甲基环戊二烯。
发明内容
本发明的目的在于提供一种由环戊酮和甲醇一步合成甲基环戊二烯的方法,具体地涉及以环戊酮和甲醇为原料,在固定床连续式反应器中,在A xB yO z型复合金属氧化物催化剂的作用下,通过级联脱氢/羟醛缩合/选择性加氢脱氧反应,直接合成甲基环戊二烯目标产物,为环戊酮和甲醇合成高附加值甲基环戊二烯化学品提供一种新型、简易、高效的方法。
本发明是通过以下技术方案实现的:
一种由环戊酮和甲醇一步合成甲基环戊二烯的方法,以环戊酮和甲醇为原料,通过在 A xB yO z型复合金属氧化物催化剂上的级联脱氢/羟醛缩合/选择性加氢脱氧反应,反应温度300-500℃(优选350-480℃,更优选400-470℃),氢气压力0.0001-1MPa(优选0.0001-0.9MPa,更优选0.0001-0.8MPa),氢气与环戊酮的摩尔比为20-400:1(30-350:1,更优选50-300:1),甲醇与环戊酮的摩尔比为0.1-10:1(优选1-10:1,更优选2-10:1),环戊酮的时空速为0.01-10h -1(优选0.05-9h -1,更优选0.1-8h -1)下,在固定床连续式反应器中一步转化得到目标产物甲基环戊二烯。
上述的原料环戊酮、甲醇及目标产物甲基环戊二烯的化学结构式见表1。
表1 化合物的结构式
Figure PCTCN2022135841-appb-000001
基于上述方案,优选地,所述A xB yO z型复合金属氧化物催化剂包括:Cu xMo yO z、Zn xMo yO z、Ni xMo yO z、Co xMo yO z、Mn xMo yO z、Fe xMo yO z、Cr xMo yO z、Cu xW yO z、Ni xW yO z、Co xW yO z、Fe xW yO z、Zn xW yO z、Zn xV yO z中的一种或多种;其中,x为0.5-8,优选0.8-7,更优选1-6;y为0.5-8,优选0.8-7,更优选1-6;z为1-16,优选1-14,更优选1-12。
基于上述方案,优选地,所述A xB yO z型复合金属氧化物催化剂采用水热法、沉积沉淀法或柠檬酸络合法制备,且使用前在氢气中进行还原处理,其中,还原条件为:氢气压力0.001-2.0MPa(优选0.005-1.5MPa,更优选0.01-1MPa),氢气流速2-300mL/min(优选5-250mL/min,更优选10-200mL/min),还原温度400-600℃(优选450-580℃,更优选480-570℃),还原时间0.5-12h(优选0.7-10h,更优选1-8h)。
基于上述方案,优选地,所述A xB yO z型复合金属氧化物催化剂采用水热法制备,具体制备过程为:将一定量A的金属盐与B的金属盐混合溶解在去离子水中,室温下超声得到悬浮液;将混合溶液转移至带聚四氟乙烯内衬的水热釜中,在80-220℃(优选90-200℃,更优选100-180℃)下反应5-48h(优选6-42h,更优选8-36h)后过滤洗涤,得到的粉末在80℃下干燥1-8h(优选2-6h,更优选3-5h)后于300-800℃(优选350-750℃,更优选400-700℃)下焙烧0.5-6h(优选1-5h,更优选1-4h),即可得到A xB yO z型复合金属氧化物催化剂。
基于上述方案,优选地,所述A xB yO z型复合金属氧化物催化剂也可以采用沉积沉淀法制备,具体制备过程为:将一定量的B的金属盐溶于去离子水中,使用浓度为0.5-14mol/L(优 选1-8mol/L,更优选1.5-6mol/L)氨水溶液作为沉淀剂调节该溶液的PH值调节为8-12后,滴加A的金属酸盐水溶液,搅拌0.5-4h(优选1-3.5h,更优选1-3h)后,将得到的沉淀过滤出来,经去离子水和乙醇洗涤后,于在50-120℃烘箱内烘干4-48h,再在300-800℃(优选350-750℃,更优选400-700℃)下焙烧0.5-10h(优选1-8h,更优选1-6h),即可得到A xB yO z型复合金属氧化物催化剂。
基于上述方案,优选地,所述A xB yO z型复合金属氧化物催化剂还可以使用柠檬酸络合法制备,具体制备过程是:按摩尔比M:柠檬酸=1:1-1:3(优选1:1.05-1:2,更优选1:1.1-1:1.5)称取B的金属酸盐、A的金属酸盐、柠檬酸,M为处于阴离子中的金属B和阳离子金属A的摩尔总和;用去离子水分别溶解后,将三者的溶液均匀混合,在蒸发皿中加热至仅有固体生成;经120℃干燥12h后在300-800℃(优选350-750℃,更优选400-700℃)下焙烧0.5-10h(优选1-8h,更优选1-6h)后,即可得到A xB yO z型复合金属氧化物催化剂。
本发明所述的方法可实现环戊酮和甲醇直接合成高附加值的甲基环戊二烯。
本发明的有益效果是:本发明首次以环戊酮和甲醇为原料,于固定床连续式反应器中,在A xB yO z型复合金属氧化物催化剂的作用下,通过级联脱氢/羟醛缩合/选择性加氢脱氧反应,一步直接合成具有高附加值的甲基环戊二烯;同时催化剂制备简单、可大量合成,反应条件温和,环戊酮转化率在95%以上,甲基环戊二烯选择性在75%以上,催化性能良好,且稳定性和再生性能好。本发明工艺路线简单,操作方便,能耗低、对环境友好,是一条绿色高效的新催化方法,可用于实际的工业化生产。截止到目前,还没有以环戊酮和甲醇为原料,通过级联脱氢/羟醛缩合/选择性加氢脱氧反应来一步合成甲基环戊二烯的相关报道。
附图说明
图1为实施例6中环戊酮和甲醇合成甲基环戊二烯的产物的气相色谱图。
图2为目标产物甲基环戊二烯的质谱对照图。
具体实施方式
以下结合具体实施例进一步详细描述本发明的技术方案,但本发明的保护范围不局限于这些实施例。
实施例1
(1)A xB yO z型复合金属氧化物催化剂MnMoO 4的制备:按摩尔比M:柠檬酸=1:1.2称取钼酸铵1.24g、50wt%的硝酸锰水溶液2.51g、柠檬酸3.53g,M为处于阴离子中的金属B和阳离子金属A的摩尔总和;用去离子水分别溶解后,将三者的溶液均匀混合,在蒸发皿中加热至仅有固体生成;经120℃干燥12h后在600℃下焙烧5h后,即得MnMoO 4复合金属氧化物 催化剂。
(2)将上述MnMoO 4催化剂0.2g与2g石英砂(40-70目)均匀混合,填装于固定床连续式反应器中,然后在氢气压力0.01MPa、氢气流量150mL/min、还原温度400℃下还原2h,然后控制反应温度400℃,氢气压力0.01MPa,氢气与环戊酮的摩尔比为100:1,甲醇与环戊酮的摩尔比为3:1,环戊酮的时空速为1.26h -1,其环戊酮的转化率为100%,甲基环戊二烯的选择性为79%。
实施例2
(1)A xB yO z型复合金属氧化物催化剂CoMoO 4的制备:称取2.47g钼酸铵,溶于200mL去离子水中。使用浓度为2mol/L的氨水溶液作为沉淀剂将该溶液的PH值调节为9.5,滴加硝酸钴(4.07g溶于100mL去离子水中)水溶液,搅拌2h后,将得到的沉淀过滤出来,经去离子水和乙醇洗涤后,于在50℃烘箱内烘干4h,再在500℃下焙烧2h,即得CoMoO 4复合金属氧化物催化剂。
(2)将上述CoMoO 4催化剂0.4g与2g石英砂(40-70目)均匀混合,填装于固定床连续式反应器中,然后在氢气压力0.05MPa、氢气流量90mL/min、还原温度450℃下还原0.5h,然后控制反应温度450℃,氢气压力0.005MPa,氢气与环戊酮的摩尔比为50:1,甲醇与环戊酮的摩尔比为1:1,环戊酮的时空速为0.63h -1,其环戊酮的转化率为96%,环戊二烯的选择性为83%。
实施例3
(1)A xB yO z型复合金属氧化物催化剂Cr 2(MoO 4) 3的制备:按摩尔比M:柠檬酸=1:1.2称取钼酸铵1.24g、九水合硝酸铬1.87g、柠檬酸2.94g,M为处于阴离子中的金属B和阳离子金属A的摩尔总和;用去离子水分别溶解后,将三者的溶液均匀混合,在蒸发皿中加热至仅有固体生成;经120℃干燥12h后在650℃下焙烧3h后,即得Cr 2(MoO 4) 3复合金属氧化物催化剂。
(2)将上述Cr 2(MoO 4) 3催化剂0.1g与实施例2中合成的CoMoO 4催化剂0.1g机械混合后,再与2g石英砂(40-70目)均匀混合,填装于固定床连续式反应器中,然后在氢气压力0.001MPa、氢气流量120mL/min、还原温度425℃下还原1h,然后控制反应温度425℃,氢气压力0.001MPa,氢气与环戊酮的摩尔比为100:1,甲醇与环戊酮的摩尔比为3:1,环戊酮的时空速为2.52h -1,其环戊酮的转化率为97%,甲基环戊二烯的选择性为85%。
实施例4
(1)A xB yO z型复合金属氧化物催化剂ZnWO 4的制备:将0.55g醋酸锌与0.99g二水合钨 酸钠溶解在60mL去离子水中,室温下超声得到悬浮液;将混合溶液转移至带聚四氟乙烯内衬的水热釜中,在120℃下反应12h后过滤洗涤,得到的粉末于80℃烘干3h后于600℃下焙烧2h,即可得到ZnWO 4复合金属氧化物催化剂。
(2)将上述ZnWO 4催化剂0.2g与2g石英砂(40-70目)均匀混合,填装于固定床连续式反应器中,然后在氢气压力0.01MPa、氢气流量150mL/min、还原温度400℃下还原2h,然后控制反应温度450℃,氢气压力0.01MPa,氢气与环戊酮的摩尔比为75:1,甲醇与环戊酮的摩尔比为2:1,环戊酮的时空速为1.26h -1,其环戊酮的转化率为97%,甲基环戊二烯的选择性为82%。
实施例5
(1)A xB yO z型复合金属氧化物催化剂CuMoO 4的制备:按摩尔比M:柠檬酸=1:1.2称取钼酸铵1.24g、硝酸铜1.69g、柠檬酸3.53g,M为处于阴离子中的金属B和阳离子金属A的摩尔总和;用去离子水分别溶解后,将三者的溶液均匀混合,在蒸发皿中加热至仅有固体生成;经120℃干燥12h后在600℃下焙烧5h后,即得CuMoO 4催化剂。
(2)将上述CuMoO 4催化剂0.2g与2g石英砂(40-70目)均匀混合,填装于固定床连续式反应器中,然后在氢气压力0.05MPa、氢气流量100mL/min、还原温度400℃下还原2h,然后控制反应温度400℃,反应压力0.05MPa,氢气与环戊酮的摩尔比为70:1,甲醇与环戊酮的摩尔比为1:1,环戊酮的时空速为2.52h -1,其环戊酮的转化率为95%,甲基环戊二烯的选择性为81%。
实施例6
(1)A xB yO z型复合金属氧化物催化剂ZnMoO 4的制备:称取2.47g钼酸铵,溶于200mL去离子水中。使用浓度为2mol/L的氨水溶液作为沉淀剂调节该溶液的PH值调节为8.9后,滴加硝酸锌(4.16g溶于100mL去离子水中)水溶液,搅拌2h后,将得到的沉淀过滤出来,经去离子水和乙醇洗涤后,于在100℃烘箱内烘干5h,再在450℃下焙烧2h,即得ZnMoO 4复合金属氧化物催化剂。
(2)将上述ZnMoO 4催化剂0.2g与实施例4中合成的ZnWO 4催化剂0.2g机械混合,然后再与2g石英砂(40-70目)均匀混合,填装于固定床连续式反应器中,然后在氢气压力0.01MPa、氢气流量120mL/min、还原温度450℃下还原0.5h,然后控制反应温度470℃,氢气压力0.01MPa,氢气与环戊酮的摩尔比为50:1,甲醇与环戊酮的摩尔比为1:1,环戊酮的时空速为0.67h -1,其环戊酮的转化率为99%,甲基环戊二烯的选择性为86%。
上述的实施例1-6的实验结果见表2。
表2 由环戊酮和甲醇通过级联脱氢/羟醛缩合/选择性加氢脱氧反应合成甲基环戊二烯
Figure PCTCN2022135841-appb-000002
以实施例6中的ZnMoO 4作为催化剂,将ZnMoO 4催化剂0.2g与2g石英砂(40-70目)均匀混合,填装于固定床连续式反应器中,以环戊酮和甲醇为原料,然后在氢气压力0.01MPa,还原温度450℃下还原0.5h,然后在一定的反应温度、氢气压力、氢气与环戊酮的摩尔比、甲醇与环戊酮的摩尔比以及环戊酮的时空速下进行反应。
表3 ZnMoO 4催化环戊酮和甲醇经级联脱氢/羟醛缩合/选择性加氢脱氧反应合成甲基环戊二烯
Figure PCTCN2022135841-appb-000003
实施例23
(1)A xB yO z型复合金属氧化物催化剂Zn 3Mo 2O 9的制备:称取2.47g钼酸铵,溶于200mL去离子水中。使用浓度为4mol/L的氨水溶液作为沉淀剂调节该溶液的PH值调节为9.2后,滴加硝酸锌(4.16g溶于100mL去离子水中)水溶液,搅拌2h后,将得到的沉淀过滤出来,经去离子水和乙醇洗涤后,于在50℃烘箱内烘干6h,再在400℃下焙烧2h,即得Zn 3Mo 2O 9复合金属氧化物催化剂。
(2)将上述Zn 3Mo 2O 9催化剂0.2g与2g石英砂(40-70目)均匀混合,填装于固定床连续式反应器中,然后在氢气压力0.01MPa、氢气流量150mL/min、还原温度450℃下还原0.5h,然后控制反应温度450℃,氢气压力0.01MPa,氢气与环戊酮的摩尔比为100:1,甲醇与环戊酮的摩尔比为3:1,环戊酮的时空速为1.26h -1,其环戊酮的转化率为98%,甲基环戊二烯的选择性为86%。
在实施例23中的Zn 3Mo 2O 9催化剂的制备过程中,其他条件不变,通过改变所加入钼酸铵的质量来得到不同Zn/Mo比的Zn xMo yO z复合金属氧化物催化剂,即为实施例24-28。将所得Zn xMo yO z催化剂0.2g与2g石英砂(40-70目)均匀混合,填装于固定床连续式反应器中,在氢气压力0.01MPa、氢气流量150mL/min、还原温度450℃下还原0.5h,然后在反应温度450℃,氢气压力0.01MPa,氢气与环戊酮的摩尔比为100:1,甲醇与环戊酮的摩尔比为3:1,环戊酮的时空速为1.26h -1的条件下进行反应。
表4 不同Zn/Mo比的Zn xMo yO z催化环戊酮和甲醇通过级联脱氢/羟醛缩合/选择性加氢脱氧反应合成甲基环戊二烯
Figure PCTCN2022135841-appb-000004

Claims (10)

  1. 一种由环戊酮和甲醇一步合成甲基环戊二烯的方法,其特征在于,所述方法如下:以环戊酮和甲醇为原料,通过在A xB yO z型复合金属氧化物催化剂上的级联脱氢/羟醛缩合/选择性加氢脱氧反应,反应温度300-500℃,氢气压力0.0001-1MPa,氢气与环戊酮的摩尔比为20-400:1,甲醇与环戊酮/的摩尔比为0.1-10:1,环戊酮的时空速为0.01-10h -1,在固定床连续式反应器中一步转化直接得到甲基环戊二烯。
  2. 按照权利要求1所述的方法,其特征在于:反应温度350-480℃,氢气压力0.0001-0.9MPa,氢气与环戊酮的摩尔比为30-350:1,甲醇与环戊酮/的摩尔比为1-10:1,环戊酮的时空速为0.05-9h -1
  3. 按照权利要求2所述的方法,其特征在于:反应温度400-470℃,氢气压力0.0001-0.8MPa,氢气与环戊酮的摩尔比为50-300:1,甲醇与环戊酮/的摩尔比为2-10:1,环戊酮的时空速为0.1-8h -1
  4. 按照权利要求1所述的方法,其特征在于:所述A xB yO z型复合金属氧化物催化剂包括:Cu xMo yO z、Zn xMo yO z、Ni xMo yO z、Co xMo yO z、Mn xMo yO z、Fe xMo yO z、Cr xMo yO z、Cu xW yO z、Ni xW yO z、Co xW yO z、Fe xW yO z、Zn xW yO z、Zn xV yO z中的一种或多种;其中,x为0.5-8,优选0.8-7,更优选1-6;y为0.5-8,优选0.8-7,更优选1-6;z为1-16,优选1-14,更优选1-12。
  5. 按照权利要求1或4所述的方法,其特征在于:所述A xB yO z型复合金属氧化物催化剂采用水热法、沉积沉淀法或柠檬酸络合法制备,且使用前在氢气中进行还原处理;其中,还原处理的条件为:氢气压力0.001-2.0MPa,氢气流速2-300mL/min,温度400-600℃,时间0.5-12h。
  6. 按照权利要求5所述的方法,其特征在于,所述还原处理的条件为:氢气压力0.005-1.5MPa,氢气流速5-250mL/min,温度450-580℃,时间0.7-10h。
  7. 按照权利要求6所述的方法,其特征在于,所述还原处理的条件为:氢气压力0.01-1MPa,氢气流速10-200mL/min,温度480-570℃,时间1-8h。
  8. 按照权利要求5所述的方法,其特征在于,所述水热法包括以下步骤:将A的金属盐与B的金属盐混合溶解在去离子水中,室温下超声得到悬浮液;将所述悬浮液转移至水热釜中,在80-220℃下反应5-48h,然后过滤、洗涤,80℃下干燥1-8h,然后于300-800℃下焙烧0.5-6h,得到所述A xB yO z型复合金属氧化物催化剂;
    所述沉积沉淀法包括以下步骤:将B的金属盐溶于去离子水中,使用浓度为0.5-14mol/L氨水溶液作为沉淀剂将PH值调节为8-12,滴加A的金属酸盐水溶液,搅拌0.5-4h(优选1-3.5h,更优选1-3h)后,将得到的沉淀过滤出来,经去离子水和乙醇洗涤后,在50-120℃烘干 4-48h,再在300-800℃下焙烧0.5-10h,得到所述A xB yO z型复合金属氧化物催化剂;
    所述柠檬酸络合法包括以下步骤:按摩尔比M:柠檬酸=1:1~1:3称取B的金属酸盐、A的金属酸盐、柠檬酸,M为金属B和金属A的摩尔总和;用去离子水分别溶解后,将三者的溶液均匀混合,在蒸发皿中加热至仅有固体生成;经120℃干燥12h后在300-800℃下焙烧0.5-10h后,得到所述A xB yO z型复合金属氧化物催化剂。
  9. 按照权利要求8所述的方法,其特征在于,所述水热法包括以下步骤:将A的金属盐与B的金属盐混合溶解在去离子水中,室温下超声得到悬浮液;将所述悬浮液转移至水热釜中,在90-200℃下反应6-42h,然后过滤、洗涤,80℃下干燥2-6h,然后于350-750℃下焙烧1-5h,得到所述A xB yO z型复合金属氧化物催化剂;
    所述沉积沉淀法包括以下步骤:将B的金属盐溶于去离子水中,使用浓度为0.5-14mol/L1-8mol/L氨水溶液作为沉淀剂将PH值调节为8-12,滴加A的金属酸盐水溶液,搅拌1-3.5h后,将得到的沉淀过滤出来,经去离子水和乙醇洗涤后,在50-120℃烘干4-48h,再在350-750℃下焙烧1-8h,得到所述A xB yO z型复合金属氧化物催化剂;
    所述柠檬酸络合法包括以下步骤:按摩尔比M:柠檬酸=1:1.05~1:2称取B的金属酸盐、A的金属酸盐、柠檬酸,M为金属B和金属A的摩尔总和;用去离子水分别溶解后,将三者的溶液均匀混合,在蒸发皿中加热至仅有固体生成;经120℃干燥12h后在350-750℃下焙烧1-8h后,得到所述A xB yO z型复合金属氧化物催化剂。
  10. 按照权利要求9所述的方法,其特征在于,所述水热法包括以下步骤:将A的金属盐与B的金属盐混合溶解在去离子水中,室温下超声得到悬浮液;将所述悬浮液转移至水热釜中,在100-180℃下反应8-36h,然后过滤、洗涤,80℃下干燥3-5h,然后于400-700℃下焙烧1-4h,得到所述A xB yO z型复合金属氧化物催化剂;
    所述沉积沉淀法包括以下步骤:将B的金属盐溶于去离子水中,使用浓度为1.5-6mol/L氨水溶液作为沉淀剂将PH值调节为8-12,滴加A的金属酸盐水溶液,搅拌1-3h后,将得到的沉淀过滤出来,经去离子水和乙醇洗涤后,在50-120℃烘干4-48h,再在400-700℃下焙烧1-6h,得到所述A xB yO z型复合金属氧化物催化剂;
    所述柠檬酸络合法包括以下步骤:按摩尔比M:柠檬酸=1:1.1~1:1.5称取B的金属酸盐、A的金属酸盐、柠檬酸,M为金属B和金属A的摩尔总和;用去离子水分别溶解后,将三者的溶液均匀混合,在蒸发皿中加热至仅有固体生成;经120℃干燥12h后在400-700℃下焙烧1-6h后,得到所述A xB yO z型复合金属氧化物催化剂。
PCT/CN2022/135841 2022-08-10 2022-12-01 一种由环戊酮和甲醇一步合成甲基环戊二烯的方法 WO2024031876A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210956520.4A CN117623852A (zh) 2022-08-10 2022-08-10 一种由环戊酮和甲醇一步合成甲基环戊二烯的方法
CN202210956520.4 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024031876A1 true WO2024031876A1 (zh) 2024-02-15

Family

ID=89850486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135841 WO2024031876A1 (zh) 2022-08-10 2022-12-01 一种由环戊酮和甲醇一步合成甲基环戊二烯的方法

Country Status (2)

Country Link
CN (1) CN117623852A (zh)
WO (1) WO2024031876A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932518A (en) * 1972-11-24 1976-01-13 Hoechst Aktiengesellschaft Methylation of cyclohexanone with simultaneous dehydrogenation
US4567308A (en) * 1984-03-26 1986-01-28 Asahi Chemical Co., Ltd. Process for preparing alkylcyclopentadiene derivatives
CN113860987A (zh) * 2020-06-30 2021-12-31 中国科学院大连化学物理研究所 一种甲醇和共进料物种共进料备环戊二烯类化合物的方法
CN114315504A (zh) * 2020-09-29 2022-04-12 中国科学院大连化学物理研究所 AxByOz型复合金属氧化物催化制备甲基环戊二烯的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932518A (en) * 1972-11-24 1976-01-13 Hoechst Aktiengesellschaft Methylation of cyclohexanone with simultaneous dehydrogenation
US4567308A (en) * 1984-03-26 1986-01-28 Asahi Chemical Co., Ltd. Process for preparing alkylcyclopentadiene derivatives
CN113860987A (zh) * 2020-06-30 2021-12-31 中国科学院大连化学物理研究所 一种甲醇和共进料物种共进料备环戊二烯类化合物的方法
CN114315504A (zh) * 2020-09-29 2022-04-12 中国科学院大连化学物理研究所 AxByOz型复合金属氧化物催化制备甲基环戊二烯的方法

Also Published As

Publication number Publication date
CN117623852A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN101811047B (zh) 一种费托合成用铁基催化剂、其制备方法和应用
CN106031871B (zh) 一种co2加氢制取低碳烯烃的铁基催化剂及其制备和应用
CN114315504B (zh) AxByOz型复合金属氧化物催化制备甲基环戊二烯的方法
CN104368345A (zh) 一种负载型高分散镍基合金催化剂的制备方法及其催化应用
CN102489340B (zh) 一种共沉淀法制备用于一碳化学反应的催化剂的方法
CN101579631A (zh) 一种用于低碳烯烃选择氧化制备不饱和醛反应的催化剂的制备方法
CN108380216B (zh) 用于催化二氧化碳制乙醇的钴基催化剂的制备方法及应用
CN106607036B (zh) 草酸酯加氢催化剂、制备方法及用途
CN105209168B (zh) 不饱和醛和/或不饱和羧酸制造用催化剂、其制造方法以及不饱和醛和/或不饱和羧酸的制造方法
JPH0336571B2 (zh)
CN112871200B (zh) 一种从合成气制备轻质芳烃的催化剂体系及其应用
CN103130604A (zh) 一种改性分子筛催化剂用于异丁烷催化裂解的方法
CN110280261A (zh) 一种由合成气直接合成乙醇的催化剂及其制法和应用
Gu et al. Insight into the role of PEG on Mo-Bi based catalyst in isobutene selective oxidation to methacrolein
CN104707646B (zh) 一种二甲醚氧化脱氢制备甲苯的催化剂及其制备方法和应用
CN102744085A (zh) 一种含纳米Ru催化剂和碱式硫酸锌盐的催化体系及其催化苯选择加氢制环己烯方法
WO2024031876A1 (zh) 一种由环戊酮和甲醇一步合成甲基环戊二烯的方法
WO2016180000A1 (zh) 一种纤维素两步法制备乙二醇和1,2-丙二醇的方法
CN109603837B (zh) 一种用于糠醛液相加氢的Cu/Ce/Co催化剂的制备方法
CN112844390B (zh) 制备低碳烯烃的铁镍双金属费托催化剂及制备方法与应用
WO2024031877A1 (zh) 环戊酮合成环戊二烯的方法
CN111420657B (zh) 一种用于乙烯转化合成3-戊酮的Ru基催化剂及其制备方法和应用
CN112619662B (zh) 一种生产低碳烯烃的催化剂及其制备方法和应用
CN103157484B (zh) 催化剂及其制备方法
CN104190457A (zh) 一种醋酸加氢合成异丙醇的催化剂及其制法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954814

Country of ref document: EP

Kind code of ref document: A1