WO2024027232A1 - 一种扬声器及电子设备 - Google Patents

一种扬声器及电子设备 Download PDF

Info

Publication number
WO2024027232A1
WO2024027232A1 PCT/CN2023/091074 CN2023091074W WO2024027232A1 WO 2024027232 A1 WO2024027232 A1 WO 2024027232A1 CN 2023091074 W CN2023091074 W CN 2023091074W WO 2024027232 A1 WO2024027232 A1 WO 2024027232A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
housing
welding
cavity
speaker
Prior art date
Application number
PCT/CN2023/091074
Other languages
English (en)
French (fr)
Inventor
黄嘉泽
王传果
刘卫
白琦凡
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2024027232A1 publication Critical patent/WO2024027232A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/11Aspects regarding the frame of loudspeaker transducers

Definitions

  • the present application belongs to the technical field of electronic equipment, and in particular relates to a speaker and electronic equipment.
  • a speaker is composed of a shell and a speaker core.
  • the speaker core is the core component used to form external sound
  • the shell is used to provide a sound cavity for the speaker core to achieve corresponding acoustic performance.
  • the speaker casing is formed by welding and connecting two parts of the casing.
  • the material of the speaker casing is usually made of plastic particles.
  • plastic particles use polymer composite materials composed of PC (polycarbonate) and glass fiber.
  • PC polycarbonate
  • the density of plastic particles formed by this polymer composite material is relatively high, making the prepared shell heavier.
  • the shell material prepared by using a polymer composite material composed of PC (polycarbonate) and glass fiber cannot meet the current demand for weight reduction of electronic equipment.
  • this application provides a speaker and electronic equipment.
  • the present application provides a speaker, including: a first housing, a sound outlet channel is provided on the first housing; a second housing, the second housing is fastened to the first housing. connected together to form a first cavity; a speaker core, the speaker core is arranged in the first cavity, and after the speaker core is connected to the first shell, the first cavity is divided into front cavity and a back cavity, wherein the front cavity is connected to the sound channel, and the back cavity is a sealed cavity; wherein the raw material components of the first shell and the second shell are measured by mass.
  • percentage it includes: 50-90wt% polymer composite materials, and 10-50wt% hollow sphere materials.
  • adding 10-50wt% hollow sphere material to the raw material components of the first shell and the second shell can reduce the density of the first shell and the second shell, thereby reducing the weight of the first shell and the second shell. body weight.
  • the second shell is provided with welding ribs, and when the welding ribs are used for welding, they form surface contact with the first shell; when the second shell is subjected to high frequency When vibrating, the welding rib and the first shell are used to rub against each other at the contact surface to generate heat, so that the first shell and the second shell are welded together.
  • the present application can be compatible with different characteristics of a variety of polymer materials, such as crystalline polymer materials and semi-crystalline polymer materials, so that the speakers provided by the embodiments of the present application can not only meet the reduction needs of speakers, It can also ensure the reliability of welding.
  • the cross section of the welding rib is trapezoidal, rectangular or W-shaped.
  • the contact area between the welding rib and the first shell is increased, so that greater energy can be generated during the welding process to ensure the reliability of the welding.
  • the outer surface of the welding rib is roughened.
  • the outer surface of the welding rib is roughened to increase the roughness of the outer surface of the welding rib.
  • the welding rib with increased surface roughness is more conducive to heat welding with the first shell through mutual friction.
  • This application does not limit the method of surface roughening treatment.
  • a concave and convex texture can be provided on the outer surface of the welding bar; for another example, concave and convex particles can be provided on the outer surface of the welding bar.
  • the second housing is provided with a glue overflow groove along the periphery of the welding rib, and the glue overflow groove is used to accommodate the molten material that overflows after the welding rib is melted.
  • the molten material formed after the welding ribs are melted will overflow into the glue overflow tank, thereby solving the problem of the molten material overflowing due to the increase in the interference volume of the welding ribs and affecting the appearance of the second housing.
  • the polymer composite material includes 80-100wt% polymer material and 0-20wt% fiber material.
  • polymer materials have excellent properties in terms of mechanical properties, insulation properties, and thermal insulation properties.
  • the fiber material can enhance the strength of the first shell. Therefore, the polymer composite material formed by combining the polymer material and the fiber material can ensure that the prepared first shell and the second shell have good physical properties.
  • the polymer material is selected from at least one of PA, PC, ABS, and PET
  • the fiber material is selected from at least one of glass fiber, aramid fiber, carbon fiber, silicon carbide, and carbon nanotubes.
  • the raw material components of the first shell and the second shell include: 77wt% PA, 3wt% glass fiber, and 20wt% hollow sphere material.
  • the raw material components of the first shell and the second shell include: 40wt% PA, 10wt% glass fiber, and 50wt% hollow sphere material.
  • the raw material components of the first shell and the second shell include: 81 wt% PA, 9 wt% glass fiber, and 10 wt% hollow sphere material.
  • the particle size of the hollow sphere material is 2-130 ⁇ m, and the density is 0.2-0.6 g/cm3.
  • the hollow sphere material is silica, alumina, zirconia, titanium dioxide, ferric oxide, zinc oxide, carbon nanotubes, graphene, low carbon steel, 316 stainless steel, 304 stainless steel , pure iron, and at least one of polystyrene.
  • this application also provides an electronic device, which includes the speaker as described in any one of the first aspects.
  • the electronic equipment using the speaker provided by the present application can reduce the weight by 7% compared with the electronic equipment in the prior art.
  • the speaker and electronic equipment provided by this application in order to meet the demand for weight reduction, add 10-50wt% hollow sphere material to the raw material components of the first shell and the second shell. In this way, the first shell can be reduced. The density of the casing and the second casing is reduced, thereby reducing the weight of the first casing and the second casing.
  • embodiments of the present application change the shape of the welding ribs to increase the size of the welding ribs and the first shell. The contact area is large, so that more energy can be generated during the welding process to ensure the reliability of the welding. That is to say, the speaker provided by the embodiment of the present application can not only meet the speaker reduction requirements, but also Enough to ensure the reliability of welding.
  • Figure 1 is a schematic diagram of the overall structure of a speaker provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the exploded structure of a speaker provided by an embodiment of the present application.
  • Figure 3A is a cross-sectional view of a speaker provided by an embodiment of the present application along the direction A1-A1;
  • Figure 3B is a cross-sectional view along the A2-A2 direction of a speaker provided by an embodiment of the present application;
  • Figure 4 is a flow chart of a method for preparing a shell provided by an embodiment of the present application.
  • Figure 5A is a schematic structural diagram of a second housing 200 provided by an embodiment of the present application.
  • Figure 5B is a cross-sectional view of a second housing 200 provided by an embodiment of the present application.
  • Figure 6A is a schematic structural diagram of yet another second housing 200 provided by an embodiment of the present application.
  • Figure 6B is a cross-sectional view of yet another second housing 200 provided by the embodiment of the present application.
  • Figure 6C is a partial enlarged view of M in Figure 6B.
  • PA English name Polyamide
  • Chinese name polyamide, also known as nylon.
  • ABS English name: Acrylonitrile Butadiene Styrene, Chinese name: Acrylonitrile-butadiene-styrene copolymer.
  • PET English name Polyethylene terephthalate, Chinese name: polyethylene terephthalate, also known as polyester resin.
  • a speaker is composed of a shell and a speaker core.
  • the speaker core is the core component used to form external sound
  • the shell is used to provide a sound cavity for the speaker core to achieve corresponding acoustic performance.
  • the speaker casing is formed by welding and connecting two parts of the casing.
  • FIG. 1 is a schematic diagram of the overall structure of a speaker provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an exploded structure of a speaker provided by an embodiment of the present application.
  • the speaker includes a first housing 100 , a second housing 200 and a speaker core 300 .
  • FIG. 3A is a cross-sectional view of a speaker provided in an embodiment of the present application along the direction A1-A1.
  • a first cavity 400 is formed.
  • the speaker core 300 is located in the first cavity 400 Inside.
  • the speaker core 300 includes an upper surface 310 facing the first housing 100 and a lower surface 320 facing the second housing.
  • the first cavity 400 is divided into a front cavity 410 and a rear cavity 420.
  • the upper surface 310 of the speaker core 300 is enclosed with the first shell 100 to form a front cavity 410; the first shell 100, the second shell 200 and the lower surface 320 and side surfaces of the speaker core 300 are enclosed to form a rear cavity. 420.
  • the speaker core 300 and the first shell 100 can be sealed by glue dispensing, and the first shell 100 and the second shell 200 can be hermetically connected by welding.
  • FIG. 3B is a cross-sectional view along the A2-A2 direction of the speaker provided by the embodiment of the present application.
  • the first housing 100 is provided with a protruding portion 120 that protrudes away from the second housing 200 .
  • a sound passage 110 is provided on the side of the protruding portion 120 .
  • the sound passage 110 is connected with the front cavity 410 , but not connected with the back cavity 420. In this way, when the speaker core 300 is working, it can push the air in the front cavity 410 to vibrate, and the vibrating air in the front cavity 410 is led out from the sound outlet channel 110 to form sound.
  • the direction of the arrow in Figure 3B is the sound emission direction.
  • the sound channel 110 can be connected with the sound hole on the frame of the electronic device, so that the sound can be further exported to the outside of the electronic device to be received by the user.
  • the back cavity 420 is a sealed cavity. Since the sound wave generated by the upper surface 310 of the speaker core 300 is 180° different from the sound wave generated by the lower surface 320, if the rear cavity 420 is an unsealed cavity, the sound wave generated by the upper surface 310 and the sound wave generated by the lower surface 320 will interfere due to phase difference. The sound disappears. Therefore, the rear cavity 420 is designed as a sealed cavity, which can eliminate phase difference interference.
  • connection area between the first housing 100 and the second housing 200 is located in the back cavity 420 .
  • the back cavity 420 is required to be a sealed cavity. Therefore, this application requires that the connection area between the first housing 100 and the second housing 200 be sealed to avoid the problem of sound leakage.
  • the material of the first housing 100 and the second housing 200 is a polymer composite material composed of PC (polycarbonate) and glass fiber.
  • PC polycarbonate
  • the density of plastic particles formed by this polymer composite material is relatively high, making the first shell 100 and the second shell 200 produced heavier. Therefore, the demand for weight reduction of electronic devices cannot be met.
  • embodiments of the present application provide a speaker.
  • the weight of the formed speaker is reduced to meet the demand for weight reduction in electronic equipment.
  • the shell material provided by the embodiment of the present application is described below.
  • the raw material components of the first housing 100 and the second housing 200 are the same.
  • the first housing 100 is taken as an example to describe the raw material components of the housing.
  • the raw material components of the first shell 100 include polymer composite materials and hollow sphere materials.
  • the mass percentage (wt%) of the polymer composite material in the raw material components is 50-90 wt%
  • the mass percentage of the hollow sphere material in the raw material components is 10-50 wt%.
  • the values of each component mentioned above include an upper limit value, a lower limit value, and any value between the upper limit value and the lower limit value.
  • the value of polymer composite material is 50-90wt%, specifically including 50wt%, 90wt% and any value between 50wt% and 90wt%.
  • the value of polymer composite material can be 60wt%, 65wt% , 70wt%, 75wt%, 80wt%, 85wt%, etc.
  • the value of the hollow sphere material is 10-50wt%, specifically including 10wt%, 50wt% and any value between 10wt% and 50wt%.
  • the value of the hollow sphere material can be 15wt%, 20wt%, 25wt%, 30wt%, 35wt%, 40wt%, etc.
  • hollow sphere materials are incorporated into the raw material components of the first shell 100, which can reduce the density of the first shell 100, thereby reducing the weight of the first shell 100.
  • the polymer composite material in the embodiment of the present application can ensure that the raw material components have good processability and ensure the mechanical properties of the first shell 100, such as tensile strength, elongation at break, flexural strength, flexural modulus, etc.
  • the polymer composite material may use two composite materials: polymer material and fiber material.
  • Polymer materials have excellent properties in terms of mechanical properties, insulation properties, and thermal insulation properties.
  • the fiber material can enhance the strength of the first housing 100 .
  • the mass percentage of the polymer material in the polymer composite material is 80-100 wt%, and the mass percentage of the fiber material in the polymer composite material is 0-20 wt%.
  • the values of each component mentioned above include an upper limit value, a lower limit value, and any value between the upper limit value and the lower limit value.
  • the value of polymer material is 80-100wt%, specifically including 80wt%, 100wt% and any value between 80wt% and 100wt%.
  • the value of polymer material can be 85wt%, 90wt%, 95wt %wait.
  • the value of fiber material is 0-20wt%, specifically including 0wt%, 20wt% and any value between 0wt% and 20wt%.
  • the value of fiber material can be 0.5wt%, 5wt%, 10wt %, 15wt%, etc.
  • the polymer material can be at least one of PA, PC, ABS, and PET.
  • the fiber material can be at least one of glass fiber, aramid fiber, carbon fiber, silicon carbide, and carbon nanotubes.
  • hollow sphere materials are incorporated into the raw material components to reduce the density of the first shell 100 and the second shell 200, thereby achieving the effect of reducing the weight of the speaker.
  • the particle size of the hollow sphere material can be 2-130 ⁇ m, and the density can be 0.2-0.6g/cm 3 .
  • the embodiment of the present application does not limit the material selection of the hollow sphere.
  • the hollow sphere material can be any one or more of ceramics, carbon materials, metals, and polymer materials.
  • the hollow sphere material can be silica, alumina, zirconia, titanium dioxide, ferroferrite, zinc oxide, carbon nanotubes, graphene, low carbon steel, 316 stainless steel, 304 stainless steel, pure iron, polyethylene, etc. At least one type of styrene.
  • the particle sizes of the hollow sphere materials incorporated into the raw material components may be the same or different.
  • the raw material components include hollow sphere materials with two particle sizes, one hollow sphere material has a particle size of 2 ⁇ m, and the other hollow sphere material has a particle size of 10 ⁇ m.
  • the raw material components include a hollow sphere material with a particle size of 13 ⁇ m.
  • the materials of the hollow spheres blended into the raw material components may be the same or different.
  • the raw material components include three types of hollow sphere materials.
  • the first hollow sphere material is silica
  • the second hollow sphere material is carbon nanotubes
  • the third hollow sphere material is Low-carbon steel.
  • the raw material components include a selected hollow sphere material, and the selected hollow sphere material is alumina.
  • FIG. 4 is a flow chart of a method for manufacturing a casing according to an embodiment of the present application. As shown in Figure 4, the embodiment of the present application provides a method for preparing a shell, which may include the following steps:
  • Step S1 Prepare raw materials according to the following proportions.
  • the raw material components include: 50-90 wt% polymer composite materials, and 10-50 wt% hollow sphere materials.
  • Step S2 After mixing the above raw material components evenly, plastic particles are formed through a granulation process.
  • step S3 the prepared plastic particles are used to prepare the first shell 100 and the second shell 200 through an injection molding process or a molding process.
  • the embodiments of the present application also provide a method for preparing a shell.
  • the raw material components include: 50-90wt% polymer composite. material, and, 10-50wt% hollow sphere material.
  • plastic particles are formed through a granulation process.
  • the first shell 100 and the second shell 200 are respectively prepared by using the plastic particles prepared above through an injection molding process or a molding process.
  • the first housing 100 and the second housing 200 can be prepared directly through an injection molding process or a molding process after the above-mentioned raw material components are evenly mixed, which is not limited in this application.
  • Example 1 In terms of mass percentage, the raw material components for preparing the first shell 100 and the second shell 200 include: 77wt% PA, 3wt% glass fiber, and 20wt% hollow sphere material.
  • Example 2 In terms of mass percentage, the raw material components for preparing the first shell 100 and the second shell 200 include: 40wt% PA, 10wt% glass fiber, and 50wt% hollow sphere material.
  • Example 3 In terms of mass percentage, the raw material components for preparing the first shell 100 and the second shell 200 include: 81 wt% PA, 9 wt% glass fiber, and 10 wt% hollow sphere material.
  • the applicant According to the component ratios shown in Examples 1 to 3 in Table 1 and the comparative examples, and according to the preparation method of the housing provided above, the first housing 100 and the second housing 200 are prepared. Since the raw material components of the first shell 100 and the second shell 200 are the same, the properties of the prepared first shell 100 and the second shell 200 are also the same. Therefore, this application only discusses the prepared first shell Body 100 for performance testing. Please refer to Table 1 for the test results of the performance test on the first housing 100 .
  • the density of the first shell 100 prepared by using the raw material component ratios in Examples 1 to 3 is smaller than that of the first shell 100 prepared by using the raw material component ratios in Comparative Example 1. density. That is to say, the embodiment of the present application can reduce the weight of the prepared first shell 100 by adding hollow sphere materials to the raw material components. Specifically, the weight of the first housing 100 prepared in Example 1 can be reduced by 27% compared to the first housing prepared in Comparative Example 1. For the electronic device as a whole, the first shell and the second shell prepared by using the above-mentioned Example 1 can reduce the weight by 7% compared with the first shell 100 and the second shell 200 prepared by using the Comparative Example 1. %.
  • the first shell 100 is prepared and has good tensile strength, elongation at break, flexural strength, flexural modulus and other physical properties. performance, the first housing 100 prepared in this way can meet the requirements for application in electronic equipment.
  • connection area between the first housing 100 and the second housing 200 is located in the rear cavity 420 .
  • the rear cavity 420 is required to be a sealed cavity. Therefore, this application requires that the connection area between the first housing 100 and the second housing 200 be sealed to avoid the problem of sound leakage.
  • the first housing 100 and the second housing 200 can be welded by ultrasonic welding, hot air welding, hot plate welding, etc. way to connect.
  • ultrasonic welding refers to using high-frequency vibration energy to melt the material at the joint, and then using the melted material to cool and solidify again to achieve the purpose of connecting the first housing 100 and the second housing 200 .
  • FIG. 5A is a schematic structural diagram of a second housing 200 provided by an embodiment of the present application.
  • FIG. 5B is a cross-sectional view of a second housing 200 provided by an embodiment of the present application.
  • the first housing 100 or the second housing 200 may be connected in advance.
  • Welding ribs 510 are provided on the casing 200, so that the first casing 100 and the second casing 200 can be connected by melting the welding ribs.
  • the welding ribs 510 may be disposed in an area of the edge of the second housing 200 for connection with the first housing 100 , and may be distributed in a closed annular shape around the edge of the second housing 200 .
  • the cross section of the welding rib 510 is triangular, and the width of the cross section gradually decreases in the direction approaching the first housing 100 .
  • the welding ribs 510 on the second housing 200 are in contact and aligned with the corresponding connection positions of the first housing 100.
  • the second housing 100 and the second housing 200 are connected.
  • the welding ribs 510 on the second housing 200 form line contact with the first housing 100 .
  • the second housing 200 is subjected to high-frequency vibration energy, and the welding ribs 510 and the first housing 100 generate heat through mutual friction, causing the materials to melt and thereby weld together.
  • the above-mentioned triangular structure welding rib 510 is mainly suitable for situations where the raw material components include crystalline polymer materials.
  • the raw material components of the first housing 100 and the second housing 200 include PC. Since PC is a crystalline material, it requires less energy during the ultrasonic welding process. In this way, even if the welding rib 510 with a triangular structure is used, the reliability of the welding can be ensured.
  • the raw material components of the first shell 100 and the second shell 200 include semi-crystalline high content such as PA, Sub-materials, because during the ultrasonic welding process, semi-crystalline polymer materials require more energy than crystalline polymer materials. If the triangular-structured welding rib 510 is still used, since the triangular-structured welding rib 510 is in line contact with the first housing 100 and the contact area is small, welding cracking may occur, resulting in air leakage.
  • this application further improves the structure of the welding rib 510.
  • FIG. 6A is a schematic structural diagram of yet another second housing 200 provided by an embodiment of the present application.
  • FIG. 6B is a cross-sectional view of yet another second housing 200 provided by an embodiment of the present application.
  • a circle of welding ribs 520 in a prism structure is provided on the second housing 200 in the area used to connect with the first housing 100 .
  • the cross section of the welding rib 520 is trapezoidal, and the width of the cross section gradually decreases in the direction approaching the first housing 100 .
  • the welding ribs 520 on the second housing 200 are in contact and aligned with the corresponding connection positions of the first housing 100.
  • the second housing 100 and the second housing 200 are connected.
  • the welding ribs 510 on the second housing 200 are in surface contact with the first housing 100 .
  • the second housing 200 is subjected to high-frequency vibration energy, and the welding ribs 520 are in full contact with the first housing 100 and generate heat through mutual friction, thereby being welded together.
  • the welding rib 510 with a triangular cross-section is modified into a welding rib 520 with a trapezoidal cross-section, thereby increasing the contact area between the welding rib 510 and the first shell 100.
  • the friction area between the welding rib 520 and the first shell 100 is increased, thereby generating greater energy to ensure the reliability of welding.
  • Figure 6C is a partial enlarged view of M in Figure 6B.
  • the width of the area of the first housing 100 used for connection with the second housing 200 is L1
  • the width of the welding rib 520 in contact with the first housing 100 is L2.
  • the width L2 can be designed to be 10%-100% of the width L1.
  • the outer surface of the welding rib 510 or the welding rib 520 can also be roughened to increase the roughness of the outer surface of the welding rib 510 or the welding rib 520.
  • the welding rib 510 or the welding rib 520 with increased surface roughness can be more conducive to generating heat with the first housing 100 through mutual friction, thereby being welded together.
  • a concave and convex texture can be provided on the outer surface of the welding rib 510 or 520; for another example, concave and convex particles can be provided on the outer surface of the welding rib 510 or 520.
  • the trapezoidal welding rib 520 increases the interference volume, so that the molten material formed after the welding rib melts can easily overflow to the surface of the second housing 200 , affecting the appearance of the second housing 200.
  • the present application provides a glue overflow groove 600 on the second housing 200 along the periphery of the welding rib 520 .
  • the molten material formed after the welding ribs 520 are melted will overflow into the glue overflow tank 600 , thereby solving the problem that the molten material overflows due to the increase in the interference volume of the welding ribs 520 and affects the appearance of the second housing 200 .
  • the above embodiment only takes the welding rib 520 with a trapezoidal cross-section as an example for illustrative description, and does not limit the structure of the welding rib 520 .
  • the contact area between the welding rib 520 and the first housing 100 is Just increase it.
  • the cross section of the welding rib 520 in the embodiment of the present application may also be rectangular, W-shaped, or other regular or irregular shapes.
  • 10-50wt% hollow sphere material is added to the raw material components of the first shell 100 and the second shell 200.
  • the density of the body 100 and the second shell 200 is reduced, thereby reducing the weight of the first shell 100 and the second shell 200 .
  • the embodiment of the present application increases the contact area between the welding ribs and the first shell 100 by changing the shape of the welding ribs. In this way, during welding During the process, greater energy can be generated to ensure the reliability of welding.
  • the speaker provided by the embodiment of the present application can not only meet the reduction requirements of the speaker, but also ensure the reliability of welding.
  • An embodiment of the present application also provides an electronic device, which includes the speaker provided by the embodiment of the present application.
  • the electronic device in the embodiment of the present application can be any terminal device with a speaker, such as a personal computer, tablet, mobile phone, bracelet, watch, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

本申请公开一种扬声器及电子设备,包括:第一壳体,所述第一壳体上设有出音通道;第二壳体,所述第二壳体与所述第一壳体连接,形成第一空腔;扬声器内核,所述扬声器内核设置在所述第一空腔内,且所述扬声器内核与所述第一壳体连接后,将所述第一空腔分成前腔和后腔,其中,所述前腔与所述出音通道连通,所述后腔为密封空腔;其中,所述第一壳体与所述第二壳体的原料组分包括:50-90wt%的高分子复合材料,以及,10-50wt%的空心球体材料。在第一壳体与第二壳体的原料组分中加入10-50wt%空心球体材料,这样,可以降低第一壳体与第二壳体的密度,从而减轻第一壳体与第二壳体的重量。

Description

一种扬声器及电子设备
本申请要求于2022年8月1日提交到国家知识产权局、申请号为202210914268.0、发明名称为“一种扬声器及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电子设备技术领域,尤其涉及一种扬声器及电子设备。
背景技术
目前,诸如个人电脑、平板、手机等电子设备都具有声音播放功能,其中,用于实现声音播放功能的器件为扬声器。一般的,扬声器由壳体和扬声器内核组成,其中,扬声器内核是用于形成外放声音的核心部件,壳体用于为扬声器内核提供音腔,以实现对应的声学性能。其中,扬声器的壳体通过两部分壳体焊接连接形成。
扬声器中壳体的材料,通常采用塑胶粒子制备而成。目前,为了满足良好的焊接性能,塑胶粒子采用由PC(聚碳酸酯)和玻璃纤维组成的高分子复合材料。但是,这种高分子复合材料形成的塑胶粒子密度较大,使制备得到的壳体的质量较重。
因此,采用PC(聚碳酸酯)和玻璃纤维组成的高分子复合材料制备得到的壳体材料,不能满足于目前对电子设备减重的需求。
发明内容
为解决现有技术中壳体材料不能满足于目前对电子设备减重的需求,本申请提供一种扬声器及电子设备。
第一方面,本申请提供一种扬声器,包括:第一壳体,所述第一壳体上设有出音通道;第二壳体,所述第二壳体与所述第一壳体扣合连接,形成第一空腔;扬声器内核,所述扬声器内核设置在所述第一空腔内,且所述扬声器内核与所述第一壳体连接后,将所述第一空腔分成前腔和后腔,其中,所述前腔与所述出音通道连通,所述后腔为密封空腔;其中,所述第一壳体与所述第二壳体的原料组分,以质量百分比计,包括:50-90wt%的高分子复合材料,以及,10-50wt%的空心球体材料。
这样,在第一壳体与第二壳体的原料组分中加入10-50wt%空心球体材料,可以降低第一壳体与第二壳体的密度,从而减轻第一壳体与第二壳体的重量。
在一种可实现方式中,所述第二壳体上设有焊接筋,所述焊接筋用于焊接时,与所述第一壳体形成面接触;在所述第二壳体受到高频振动时,所述焊接筋与所述第一壳体用于在接触面相互摩擦而产生热量,使所述第一壳体与所述第二壳体熔接在一起。
这样,通过改变焊接筋的形状,增大焊接筋与第一壳体的接触面积,这样,在焊接过程中,可以产生更大的能量,以保证焊接的可靠性。因此,本申请可以兼容多种高分子材料的不同特性,如,结晶态的高分子材料和半结晶态的高分子材料,从而使本申请实施例提供的扬声器,既能够满足扬声器的减需求,又能够保证焊接的可靠性。
在一种可实现方式中,所述焊接筋的横截面为梯形、矩形或W形。
这样,通过改变焊接筋的形状,增大焊接筋与第一壳体的接触面积,这样,在焊接过程中,可以产生更大的能量,以保证焊接的可靠性。
在一种可实现方式中,所述焊接筋的外表面经过粗糙处理。
这样,对焊接筋的外表面进行粗糙处理,以增大焊接筋的外表面的粗糙度,这样,表面粗糙度增大的焊接筋,更有利于与第一壳体通过相互摩擦而产生热量熔接。本申请对表面粗糙处理的方式不进行限定。例如,可以在焊接筋的外表面设置凹凸状的纹理;又例如,可以在焊接筋的外表面设置凹凸状的颗粒。
在一种可实现方式中,所述第二壳体上沿所述焊接筋外围设有溢胶槽,所述溢胶槽用于容纳所述焊接筋熔化后,溢流出的熔料。
这样,焊接筋熔化后形成的熔料,会溢流到溢胶槽内,从而解决了由于焊接筋干涉体积增大,导致的熔料外溢,影响第二壳体外观的问题。
在一种可实现方式中,所述高分子复合材料包括80-100wt%的高分子材料,以及,0-20wt%的纤维材料。
这样,高分子材料在力学性能、绝缘性能、隔热性能等方面具有优良的性能。纤维材料能够使第一壳体的强度增强。因此,高分子材料与纤维材料复合形成的高分子复合材料,能够保证制备得到的第一壳体和第二壳体具有良好的物理性能。
在一种可实现方式中,所述高分子材料选用PA、PC、ABS、PET中至少一种,所述纤维材料选用玻璃纤维、芳纶纤维、碳纤维、碳化硅、碳纳米管中至少一种。
在一种可实现方式中,所述第一壳体与所述第二壳体的原料组分包括:77wt%的PA、3wt%的玻璃纤维、以及20wt%的空心球体材料。
在一种可实现方式中,所述第一壳体与所述第二壳体的原料组分包括:40wt%的PA、10wt%的玻璃纤维、以及50wt%的空心球体材料。
在一种可实现方式中,所述第一壳体与所述第二壳体的原料组分包括:81wt%的PA、9wt%的玻璃纤维、以及10wt%的空心球体材料。在一种可实现方式中,所述空心球体材料的粒径为2-130μm,密度为0.2-0.6g/cm3。
在一种可实现方式中,所述空心球体材料选用二氧化硅、氧化铝、氧化锆、二氧化钛、四氧化三铁、氧化锌、碳纳米管、石墨烯、低碳钢、316不锈钢、304不锈钢、纯铁、聚苯乙烯中至少一种。
第二方面,本申请还提供一种电子设备,所述电子设备包括如第一方面任一所述的扬声器。
这样,采用本申请提供的扬声器的电子设备,相比于现有技术中电子设备,可以减重7%。
综上,本申请提供的一种扬声器及电子设备,为满足减重需求,在第一壳体与第二壳体的原料组分中加入10-50wt%空心球体材料,这样,可以降低第一壳体与第二壳体的密度,从而减轻第一壳体与第二壳体的重量。另外,为了兼容多种高分子材料的不同特性,如,结晶态的高分子材料和半结晶态的高分子材料,本申请实施例通过改变焊接筋的形状,增大焊接筋与第一壳体的接触面积,这样,在焊接过程中,可以产生更大的能量,以保证焊接的可靠性。也就是说,本申请实施例提供的扬声器,既能够满足扬声器的减需求,又能 够保证焊接的可靠性。
附图说明
图1为本申请实施例提供的一种扬声器的整体结构示意图;
图2为本申请实施例提供的一种扬声器的分解结构示意图;
图3A为本申请实施例提供的一种扬声器的A1-A1向剖视图;
图3B为本申请实施例提供的一种扬声器的A2-A2向剖视图;
图4为本申请实施例提供的一种壳体的制备方法的流程图;
图5A为本申请实施例提供的一种第二壳体200的结构示意图;
图5B为本申请实施例提供的一种第二壳体200的剖视图;
图6A为本申请实施例提供的又一种第二壳体200的结构示意图;
图6B为本申请实施例提供的又一种第二壳体200的剖视图;
图6C为图6B中M处的局部放大图。
附图标记说明
100-第一壳体,110-出音通道,120-突出部,200-第二壳体,300-扬声器内核,310-上表面,320-下表面,400-第一空腔,410-前腔,420-后腔,510-焊接筋,520-焊接筋,600-溢胶槽。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的其他实施例,都属于本申请的保护范围。
为便于理解,下面先对本申请实施例所涉及的英文简写和有关技术术语进行解释和描述。
PA:英文名称Polyamide,中文名称:聚酰胺,也称尼龙。
PC:英文名称Polycarbonate,中文名称:聚碳酸酯。
ABS:英文名称Acrylonitrile Butadiene Styrene,中文名称:丙烯腈-丁二烯-苯乙烯共聚物。
PET:英文名称Polyethylene terephthalate,中文名称:聚对苯二甲酸乙二醇酯,也称涤纶树脂。
目前,诸如个人电脑、平板、手机等电子设备都具有声音播放功能,其中,用于实现声音播放功能的器件为扬声器。一般的,扬声器由壳体和扬声器内核组成,其中,扬声器内核是用于形成外放声音的核心部件,壳体用于为扬声器内核提供音腔,以实现对应的声学性能。其中,扬声器的壳体通过两部分壳体焊接连接形成。
图1为本申请实施例提供的一种扬声器的整体结构示意图,图2为本申请实施例提供的一种扬声器的分解结构示意图。如图1和图2所示,扬声器包括第一壳体100、第二壳体200和扬声器内核300。
图3A为本申请实施例提供的一种扬声器的A1-A1向剖视图。如图3A所示,第一壳体100与第二壳体200配合连接后,形成第一空腔400。扬声器内核300位于第一空腔400 内。扬声器内核300包括面向第一壳体100的上表面310和面向第二壳体的下表面320。扬声器内核300与第一壳体100配合连接后,将第一空腔400分成前腔410和后腔420。其中,扬声器内核300的上表面310与第一壳体100围合,形成前腔410;第一壳体100、第二壳体200和扬声器内核300的下表面320以及侧面围合,形成后腔420。其中,扬声器内核300与第一壳体100可以通过点胶粘接密封,第一壳体100与第二壳体200可以通过焊接的方式密封连接。
图3B为本申请实施例提供的扬声器的A2-A2向剖视图。如图3B所示,第一壳体100上设有向远离第二壳体200的方向突出的突出部120,突出部120的侧面设有出音通道110,出音通道110与前腔410连通,但不与后腔420连通。这样,扬声器内核300工作时,可以推动前腔410内的空气振动,前腔410内振动的空气由出音通道110导出,形成声音。图3B中箭头方向为出音方向。其中,出音通道110可以与电子设备上的边框上的出音孔连通,由此可以进一步将声音导出至电子设备外,以被用户接收到。
本申请实施例中,后腔420为密封腔体。由于扬声器内核300上表面310产生的声波与下表面320产生的声波相差180°,如果后腔420为非密封腔体,则上表面310产生的声波与下表面320产生的声波就会由于相差干扰而使声音消失,因此,将后腔420设计为密封腔体,可以消除相差干扰。
如图3A所示,第一壳体100与第二壳体200的连接区域位于后腔420内,为满足上述声学性能要求,要求后腔420为密封腔体。因此,本申请要求第一壳体100与第二壳体200连接区域为密封连接,以避免出现漏音的问题。
目前,为了保证可靠的焊接性能,第一壳体100和第二壳体200的材料,采用的是由PC(聚碳酸酯)和玻璃纤维组成的高分子复合材料。但是,这种高分子复合材料形成的塑胶粒子密度较大,使制备得到的第一壳体100和第二壳体200的质量较重。因此,无法满足对电子设备减重的需求。
为此,本申请实施例提供一种扬声器,通过改变第一壳体100和第二壳体200的原料组分,使形成的扬声器重量有所减轻,满足对电子设备减重的需求。
下面对本申请实施例提供的壳体材料进行说明。
本申请实施例中第一壳体100和第二壳体200的原料组分相同,以下以第一壳体100为例,对壳体原料组分进行说明。
本申请实施例中,第一壳体100的原料组分包括高分子复合材料和空心球体材料。在原料组分中,高分子复合材料占原料组分的质量百分比(wt%)为50-90wt%,空心球体材料占原料组分的质量百分比为10-50wt%。
其中,上述各组分的取值中,均包括上限值、下限值以及位于上限值和下限值之间的任意值。例如:高分子复合材料的取值为50-90wt%,具体包括50wt%、90wt%以及位于50wt%和90wt%之间的任意值,如高分子复合材料的取值可以为60wt%、65wt%、70wt%、75wt%、80wt%、85wt%等。又例如:空心球体材料的取值为10-50wt%,具体包括10wt%、50wt%以及位于10wt%和50wt%之间的任意值,如空心球体材料的取值可以为15wt%、20wt%、25wt%、30wt%、35wt%、40wt%等。
本申请实施例在第一壳体100的原料组分中掺入空心球体材料,可以降低第一壳体100的密度,从而降低第一壳体100的重量。
本申请实施例中高分子复合材料能够保证原料组分具有较好的加工成型性以及保证第一壳体100的力学性能,如拉伸强度、断裂伸长率、弯曲强度和弯曲模量等。
本申请实施例中高分子复合材料可以采用高分子材料和纤维材料两个复合材料。高分子材料在力学性能、绝缘性能、隔热性能等方面具有优良的性能。纤维材料能够使第一壳体100的强度增强。
在一具体实施例中,高分子材料占高分子复合材料的质量百分比为80-100wt%,纤维材料占高分子复合材料的质量百分比为0-20wt%。
其中,上述各组分的取值中,均包括上限值、下限值以及位于上限值和下限值之间的任意值。例如:高分子材料的取值为80-100wt%,具体包括80wt%、100wt%以及位于80wt%和100wt%之间的任意值,如高分子材料的取值可以为85wt%、90wt%、95wt%等。又例如:纤维材料的取值为0-20wt%,具体包括0wt%、20wt%以及位于0wt%和20wt%之间的任意值,如纤维材料的取值可以为0.5wt%、5wt%、10wt%、15wt%等。
可选的,高分子材料可以选用PA、PC、ABS、PET中至少一种。
可选的,纤维材料可以选用玻璃纤维、芳纶纤维、碳纤维、碳化硅、碳纳米管中至少一种。
本申请实施例,通过在原料组分中掺入空心球体材料,以减轻第一壳体100和第二壳体200的密度,实现扬声器重量减轻的效果。
可选的,空心球体材料的粒径可以为2-130μm,密度可以为0.2-0.6g/cm3
本申请实施例对空心球体材料的选材不进行限定,空心球体材料可以选用陶瓷类、碳材料类、金属类、高分子类材料中任一种或几种。
可选的,空心球体材料可以选用二氧化硅、氧化铝、氧化锆、二氧化钛、四氧化三铁、氧化锌、碳纳米管、石墨烯、低碳钢、316不锈钢、304不锈钢、纯铁、聚苯乙烯中至少一种。
需要说明的是,本申请实施例中,掺入原料组分中的空心球体材料的粒径可以相同,也可以不同。例如,原料组分中包括两种粒径的空心球体材料,一种空心球体材料的粒径为2μm,另一种空心球体材料的粒径为10μm。又例如,原料组分中包括一种粒径的空心球体材料,该空心球体材料的粒径为13μm。
还需要说明的是,本申请实施例中,掺入原料组分中的空心球体材料的选材可以相同,也可以不同。例如,原料组分中包括三种选材的空心球体材料,第一种空心球体材料的选材为二氧化硅,第二种空心球体材料的选材为碳纳米管,第三种空心球体材料的选材为低碳钢。又例如,原料组分中包括一种选材的空心球体材料,该空心球体材料的选材为氧化铝。
图4为本申请实施例提供一种壳体的制备方法的流程图。如图4所示,本申请实施例提供一种壳体的制备方法,可以包括以下步骤:
步骤S1,按照如下配比准备原料,原料组分包括:50-90wt%的高分子复合材料,以及,10-50wt%的空心球体材料。
步骤S2,将上述原料组分混合均匀后,通过造粒工艺形成塑胶粒子。
步骤S3,利用制备得到的塑胶粒子,通过注塑工艺或模压工艺,分别制备得到第一壳体100和第二壳体200。
综上,本申请实施例还提供一种壳体的制备方法,先将本申请实施例提供的原料组分,按照配比称重,其中,原料组分包括:50-90wt%的高分子复合材料,以及,10-50wt%的空心球体材料。然后,将上述原料组分混合均匀后,通过造粒工艺形成塑胶粒子。最后,利用上述制备得到的塑胶粒子,通过注塑工艺或模压工艺,分别制备得到第一壳体100和第二壳体200。当然,也可以将上述原料组分混合均匀后,直接通过注塑工艺或模压工艺,分别制备得到第一壳体100和第二壳体200,本申请对此不进行限定。
下面是本申请提供的各原料组分的质量百分比的部分实施例:
实施例1:按质量百分比计,制备第一壳体100与第二壳体200的原料组分包括:77wt%的PA、3wt%的玻璃纤维、以及20wt%的空心球体材料。
实施例2:按质量百分比计,制备第一壳体100与第二壳体200的原料组分包括:40wt%的PA、10wt%的玻璃纤维、以及50wt%的空心球体材料。
实施例3:按质量百分比计,制备第一壳体100与第二壳体200的原料组分包括:81wt%的PA、9wt%的玻璃纤维、以及10wt%的空心球体材料。
为了说明本申请中第一壳体100和第二壳体200的原料组分有利于减轻重量,并且具有良好的拉伸强度、断裂伸长率、弯曲强度和弯曲模量等物理性能,申请人依照表1中实施例1-实施例3,以及对比例所示的各组分配比,按照上述提供的壳体的制备方法,制备得到第一壳体100和第二壳体200。由于第一壳体100和第二壳体200的原料组分相同,制备得到的第一壳体100和第二壳体200的性能也是相同的,因此,本申请仅对制备得到的第一壳体100进行性能测试。对第一壳体100进行性能测试的测试结果,请参见表1。
表1第一壳体100的性能测试结果

如表1所示,采用实施例1至实施例3中原料组分配比,制备得到的第一壳体100的密度小于采用对比例1中原料组分配比,制备得到的第一壳体100的密度。也就是说,本申请实施例可以通过在原料组分中加入空心球体材料,使制备得到的第一壳体100的重量减轻。具体的,实施例1制备得到的第一壳体100,相对于对比例1制备得到的第一壳体可以减重27%。对于电子设备整体来说,采用上述实施例1制备得到的第一壳体和第二壳体,相对于采用对比例1制备得到的第一壳体100和第二壳体200,可以减重7%。
请继续参见表1,采用实施例1至实施例3中原料组分配比,制备得到的第一壳体100,同时具有良好的拉伸强度、断裂伸长率、弯曲强度和弯曲模量等物理性能,这样制备得到的第一壳体100能够满足在电子设备中应用的需求。
如图3A所示,第一壳体100与第二壳体200的连接区域位于后腔420内,为满足声学性能要求,要求后腔420为密封腔体。因此,本申请要求第一壳体100与第二壳体200连接区域为密封连接,以避免出现漏音的问题。
本申请实施对第一壳体100与第二壳体200的具体密封连接方式不进行限定,例如,第一壳体100与第二壳体200可以通过超声焊接、热风焊接、热板焊接等焊接的方式连接。以超声焊接为例,超声焊接是指使用高频振动能量熔化接缝处的材料,然后利用熔化的材料再次冷却凝固,以达到将第一壳体100与第二壳体200连接的目的。
图5A为本申请实施例提供的一种第二壳体200的结构示意图。
图5B为本申请实施例提供的一种第二壳体200的剖视图。
如图5A和图5B所示,在一种可实现方式中,采用超声焊接连接第一壳体100与第二壳体200时,为增强焊接强度,会预先在第一壳体100或第二壳体200上设置焊接筋510,这样,可以通过融化焊接筋,将第一壳体100与第二壳体200连接。焊接筋510可以设置在第二壳体200边缘的用于与第一壳体100连接的区域,并且为围绕第二壳体200边缘闭合的环形分布。
如图5B所示,焊接筋510的横截面为三角形,其横截面的宽度在靠近第一壳体100的方向上逐渐减小。这样,在通过焊接筋510,连接第一壳体100与第二壳体200时,第二壳体200上的焊接筋510与第一壳体100对应的连接位置接触对齐,接触对齐后,第二壳体200上的焊接筋510与第一壳体100形成线接触。超声焊接过程中,第二壳体200受到高频振动能量,焊接筋510与第一壳体100通过相互摩擦而产生热量,使材料熔化,从而熔接在一起。
需要说明的是,上述三角形构造的焊接筋510,主要适用于原料组分中包括结晶态高分子材料的情况,例如,第一壳体100与第二壳体200的原料组分中包括PC。由于PC为结晶态材料,因此其在超声焊接过程中所需要的能量较小,这样,即使采用三角形构造的焊接筋510,也能够保证焊接的可靠性。
但是,如果第一壳体100与第二壳体200的原料组分中包括如PA这种半结晶态高分 子材料,由于在超声焊接过程中,半结晶态高分子材料相比于结晶态高分子材料需要更多的能量。如果依然使用三角形构造的焊接筋510,由于三角形构造的焊接筋510与第一壳体100之间是线接触,接触面积小,则可能会出现焊接开裂,导致漏气的问题。
为了改善半结晶态高分子材料焊接后,可能会出现焊接开裂的问题,本申请对焊接筋510的结构做出进一步改进。
图6A为本申请实施例提供的又一种第二壳体200的结构示意图。
图6B为本申请实施例提供的又一种第二壳体200的剖视图。
如图6A和图6B所示,在另一种可实现方式中,在第二壳体200上、用于与第一壳体100连接的区域上设有一圈棱台构造的焊接筋520。
如图6B所示,焊接筋520的横截面为梯形,其横截面的宽度在靠近第一壳体100的方向上逐渐减小。这样,在通过焊接筋520,连接第一壳体100与第二壳体200时,第二壳体200上的焊接筋520与第一壳体100对应的连接位置接触对齐,接触对齐后,第二壳体200上的焊接筋510与第一壳体100形成面接触。超声焊接过程中,第二壳体200受到高频振动能量,焊接筋520与第一壳体100充分接触,通过相互摩擦而产生热量,从而熔接在一起。
本申请实施例中,将横截面为三角形的焊接筋510改进为横截面为梯形的焊接筋520,从而增大焊接筋510与第一壳体100的接触面积,这样,可以在焊接过程中,增大焊接筋520与第一壳体100的摩擦面积,从而产生更大的能量,以保证焊接的可靠性。
图6C为图6B中M处的局部放大图。如图6C所示,第一壳体100中用于与第二壳体200连接的区域的宽度为L1,焊接筋520与第一壳体100接触的宽度为L2。为了在焊接过程中,产生更大的能量,保证焊接的可靠性,可以设计宽度L2为宽度L1的10%-100%。
本申请实施例还可以对焊接筋510或焊接筋520的外表面进行粗糙处理,以增大焊接筋510或焊接筋520的外表面的粗糙度,这样,表面粗糙度增大的焊接筋510或焊接筋520,更有利于与第一壳体100通过相互摩擦而产生热量,从而熔接在一起。
需要说明的是,本申请对表面粗糙处理的方式不进行限定。例如,可以在焊接筋510或焊接筋520的外表面设置凹凸状的纹理;又例如,可以在焊接筋510或焊接筋520的外表面设置凹凸状的颗粒。
如图5B和6B所示,相比于三角形构造的焊接筋510,梯形的焊接筋520增大了干涉体积,这样焊接筋熔化后形成的熔料,容易溢流到第二壳体200的表面,影响第二壳体200的外观。为此,如图6B所示,本申请在第二壳体200上沿焊接筋520外围设置溢胶槽600。这样,焊接筋520熔化后形成的熔料,会溢流到溢胶槽600内,从而解决了由于焊接筋520干涉体积增大,导致的熔料外溢,影响第二壳体200外观的问题。
需要说明的是,上述实施例仅以横截面为梯形的焊接筋520为例进行示例性说明,并不表示对焊接筋520结构的限定,只要使焊接筋520与第一壳体100的接触面积有所增大即可。例如,本申请实施例中的焊接筋520的横截面还可以是矩形、W形或其他规则或不规则形状。
综上,本申请实施例提供的扬声器,为满足减重需求,在第一壳体100与第二壳体200的原料组分中加入10-50wt%空心球体材料,这样,可以降低第一壳体100与第二壳体200的密度,从而减轻第一壳体100与第二壳体200的重量。另外,为了兼容多种高分子材料 的不同特性,如,结晶态的高分子材料和半结晶态的高分子材料,本申请实施例通过改变焊接筋的形状,增大焊接筋与第一壳体100的接触面积,这样,在焊接过程中,可以产生更大的能量,以保证焊接的可靠性。也就是说,本申请实施例提供的扬声器,既能够满足扬声器的减需求,又能够保证焊接的可靠性。
本申请实施例还提供一种电子设备,该电子设备包括本申请实施例提供的扬声器。本申请实施例中的电子设备可以是任何具有扬声器的终端设备,如个人电脑、平板、手机、手环、手表等。
在本申请的描述中,需要说明的是,术语“上”、“下”、“内”、“外”、“前”、“后”、“左”和“右”等指示的方位或位置关系为基于本申请工作状态下的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
需要补充说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。
本申请的范围仅由所附的权利要求来限制。

Claims (13)

  1. 一种扬声器,其特征在于,包括:
    第一壳体,所述第一壳体上设有出音通道;
    第二壳体,所述第二壳体与所述第一壳体扣合连接,形成第一空腔;
    扬声器内核,所述扬声器内核设置在所述第一空腔内,且所述扬声器内核与所述第一壳体连接后,将所述第一空腔分成前腔和后腔,其中,所述前腔与所述出音通道连通,所述后腔为密封空腔;
    其中,所述第一壳体与所述第二壳体的原料组分,以质量百分比计,包括:50-90wt%的高分子复合材料,以及,10-50wt%的空心球体材料。
  2. 根据权利要求1所述的扬声器,其特征在于,所述第二壳体上设有焊接筋,所述焊接筋用于焊接时,与所述第一壳体形成面接触;在所述第二壳体受到高频振动时,所述焊接筋与所述第一壳体用于在接触面相互摩擦而产生热量,使所述第一壳体与所述第二壳体熔接在一起。
  3. 根据权利要求2所述的扬声器,其特征在于,所述焊接筋的横截面为梯形、矩形或W形。
  4. 根据权利要求2所述的扬声器,其特征在于,所述焊接筋的外表面经过粗糙处理。
  5. 根据权利要求2所述的扬声器,其特征在于,所述第二壳体上沿所述焊接筋外围设有溢胶槽,所述溢胶槽用于容纳所述焊接筋熔化后,溢流出的熔料。
  6. 根据权利要求1所述的扬声器,其特征在于,所述高分子复合材料包括80-100wt%的高分子材料,以及,0-20wt%的纤维材料。
  7. 根据权利要求6所述的扬声器,其特征在于,所述高分子材料选用PA、PC、ABS、PET中至少一种,所述纤维材料选用玻璃纤维、芳纶纤维、碳纤维、碳化硅、碳纳米管中至少一种。
  8. 根据权利要求7所述的扬声器,其特征在于,所述第一壳体与所述第二壳体的原料组分包括:77wt%的PA、3wt%的玻璃纤维、以及20wt%的空心球体材料。
  9. 根据权利要求7所述的扬声器,其特征在于,所述第一壳体与所述第二壳体的原料组分包括:40wt%的PA、10wt%的玻璃纤维、以及50wt%的空心球体材料。
  10. 根据权利要求7所述的扬声器,其特征在于,所述第一壳体与所述第二壳体的原料组分包括:81wt%的PA、9wt%的玻璃纤维、以及10wt%的空心球体材料。
  11. 根据权利要求1所述的扬声器,其特征在于,所述空心球体材料的粒径为2-130μm,密度为0.2-0.6g/cm3
  12. 根据权利要求1所述的扬声器,其特征在于,所述空心球体材料选用二氧化硅、氧化铝、氧化锆、二氧化钛、四氧化三铁、氧化锌、碳纳米管、石墨烯、低碳钢、316不锈钢、304不锈钢、纯铁、聚苯乙烯中至少一种。
  13. 一种电子设备,其特征在于,所述电子设备包括如权利要求1-12任一所述的扬声器。
PCT/CN2023/091074 2022-08-01 2023-04-27 一种扬声器及电子设备 WO2024027232A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210914268.0A CN115623395B (zh) 2022-08-01 2022-08-01 一种扬声器及电子设备
CN202210914268.0 2022-08-01

Publications (1)

Publication Number Publication Date
WO2024027232A1 true WO2024027232A1 (zh) 2024-02-08

Family

ID=84856650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091074 WO2024027232A1 (zh) 2022-08-01 2023-04-27 一种扬声器及电子设备

Country Status (2)

Country Link
CN (2) CN115623395B (zh)
WO (1) WO2024027232A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115623395B (zh) * 2022-08-01 2023-10-20 荣耀终端有限公司 一种扬声器及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011038428A1 (de) * 2009-10-01 2011-04-07 Karl Vorlicek Verfahren zur herstellung von lautsprechergehäuseelementen und lautsprechergehäusen
JP2018050169A (ja) * 2016-09-21 2018-03-29 東レプラスチック精工株式会社 スピーカー用部品およびその製造方法、並びにスピーカー
CN207968934U (zh) * 2018-02-01 2018-10-12 瑞声科技(新加坡)有限公司 扬声器箱
CN208029078U (zh) * 2018-02-01 2018-10-30 瑞声科技(新加坡)有限公司 扬声器箱
CN114381037A (zh) * 2020-10-16 2022-04-22 中国科学院理化技术研究所 具有三层球壳结构的复合型中空微球及其制备方法和应用
CN114806034A (zh) * 2022-04-29 2022-07-29 歌尔股份有限公司 用于发声装置的壳体和发声装置
CN115623395A (zh) * 2022-08-01 2023-01-17 荣耀终端有限公司 一种扬声器及电子设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046104A (en) * 1989-11-30 1991-09-03 Cambridge Soundworks, Inc. Loudspeaker system
KR101197524B1 (ko) * 2004-02-27 2012-11-09 도레이 카부시키가이샤 탄소섬유강화 복합재료용 에폭시수지 조성물, 프리프레그,일체화 성형품, 섬유강화 복합재료판, 및 전기/전자기기용케이싱
JP4258510B2 (ja) * 2005-09-26 2009-04-30 オンキヨー株式会社 音響機器周辺部品
JP5052850B2 (ja) * 2006-09-21 2012-10-17 豊達電機(香港)有限公司 スピーカキャビネットの超音波溶着接合方法、およびそれによって作製されたスピーカキャビネット
CN206524960U (zh) * 2017-01-20 2017-09-26 瑞声科技(新加坡)有限公司 发声器及电子设备
CN107820171B (zh) * 2017-10-23 2020-02-18 上海润欣科技股份有限公司 扬声器模组
CN209201268U (zh) * 2018-12-27 2019-08-02 瑞声光电科技(常州)有限公司 扬声器箱
WO2021127691A1 (en) * 2019-12-17 2021-06-24 Google Llc Engineered surface finish of plastic part having a microbead surface coating
CN212367514U (zh) * 2020-05-21 2021-01-15 瑞声科技(新加坡)有限公司 扬声器模组
CN113173335A (zh) * 2021-04-14 2021-07-27 深圳市固源塑胶制品有限公司 一种半球形导能筋的超声焊接结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011038428A1 (de) * 2009-10-01 2011-04-07 Karl Vorlicek Verfahren zur herstellung von lautsprechergehäuseelementen und lautsprechergehäusen
JP2018050169A (ja) * 2016-09-21 2018-03-29 東レプラスチック精工株式会社 スピーカー用部品およびその製造方法、並びにスピーカー
CN207968934U (zh) * 2018-02-01 2018-10-12 瑞声科技(新加坡)有限公司 扬声器箱
CN208029078U (zh) * 2018-02-01 2018-10-30 瑞声科技(新加坡)有限公司 扬声器箱
CN114381037A (zh) * 2020-10-16 2022-04-22 中国科学院理化技术研究所 具有三层球壳结构的复合型中空微球及其制备方法和应用
CN114806034A (zh) * 2022-04-29 2022-07-29 歌尔股份有限公司 用于发声装置的壳体和发声装置
CN115623395A (zh) * 2022-08-01 2023-01-17 荣耀终端有限公司 一种扬声器及电子设备

Also Published As

Publication number Publication date
CN117499846A (zh) 2024-02-02
CN115623395B (zh) 2023-10-20
CN115623395A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
WO2024027232A1 (zh) 一种扬声器及电子设备
JP2010155993A (ja) 樹脂組成物
CN110294857B (zh) 一种协同增强电磁屏蔽薄膜及其制备方法
CN207070312U (zh) 用于扬声器的振膜、扬声器单体以及电子设备
CN204948344U (zh) 扬声器振膜及扬声器
US20220007113A1 (en) Reinforcing part for diaphragm of speaker, and the diaphragm
CN101588709A (zh) 屏蔽结构
KR20070041226A (ko) 음향 진동판 및 이를 구비하는 스피커
CN207665190U (zh) 扬声器模组及电子设备
WO2021254428A1 (zh) 导电泡棉和电子设备
WO2016155328A1 (zh) 一种扬声器模组
JP2019513203A (ja) 圧縮性ガスケット、その製造方法、及びそれを備える電子製品
CN206821001U (zh) 扬声器模组以及电子设备
CN102970643B (zh) 微型扬声器
CN206024101U (zh) 扬声器模组以及移动终端
WO2020093549A1 (zh) 一种应用于扬声器振膜的补强部、振膜及扬声器
CN114257899A (zh) 扬声器壳体、扬声器及电子设备
US20220021981A1 (en) Reinforcing part for diaphragm of speaker, the diaphragm and the speaker
CN204442660U (zh) 一种扬声器模组
JPH0841247A (ja) 電子部品用樹脂組成物
CN208509259U (zh) 一种扬声器模组
CN202949562U (zh) 微型扬声器
CN109266005A (zh) 一种振膜的制备方法和发声装置
CN204810534U (zh) 耳机线控装置及耳机
CN207070291U (zh) 扬声器模组以及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848943

Country of ref document: EP

Kind code of ref document: A1