WO2024027201A1 - 一种微型倒装芯片的转移方法 - Google Patents

一种微型倒装芯片的转移方法 Download PDF

Info

Publication number
WO2024027201A1
WO2024027201A1 PCT/CN2023/088493 CN2023088493W WO2024027201A1 WO 2024027201 A1 WO2024027201 A1 WO 2024027201A1 CN 2023088493 W CN2023088493 W CN 2023088493W WO 2024027201 A1 WO2024027201 A1 WO 2024027201A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
micro
micro flip
flip
transfer method
Prior art date
Application number
PCT/CN2023/088493
Other languages
English (en)
French (fr)
Inventor
杨旭
黄凯
李金钗
张�荣
Original Assignee
厦门大学
嘉庚创新实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学, 嘉庚创新实验室 filed Critical 厦门大学
Publication of WO2024027201A1 publication Critical patent/WO2024027201A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present application relates to the field of chip assembly technology, and specifically to a method for transferring micro flip-chips.
  • Micro-LED display technology refers to a display technology that uses self-luminous Micro-LEDs as light-emitting pixel units and assembles them onto a drive substrate to form a high-density LED array. Due to the characteristics of Micro-LED chips such as small size, high integration and self-illumination, compared with LCD and OLED, Micro-LED chips have better performance in terms of brightness, resolution, contrast, energy consumption, service life, response speed and thermal stability. It has greater advantages and is considered to be one of the most promising new display and light-emitting devices. The current industry generally expects that Micro-LED display technology can replace existing OLED and liquid crystal display technology. An important entry point is display products for medium and low resolution (PPI) display scenario applications, such as small-size wearable devices and TV displays.
  • PPI medium and low resolution
  • Transfer yield is one of the main technical difficulties in the process of mass transfer. Even if the comprehensive transfer yield rate is as high as 99.99%, transferring an 8K TV still requires repairing more than 500,000 defective chips, and most of the defective chips are randomly distributed.
  • Selective laser repair technology is the most promising technology for mass production among various Micro-LED dead pixel repair technologies. This technology uses high-speed scanning with a laser galvanometer and precise control of a displacement platform to achieve efficient removal of a large number of random defective chips.
  • the laser emitted by the selective laser repair technology can easily cause irreversible damage to the first electrical connector on the drive substrate, making it unable to be used to connect to a replacement chip, resulting in the original bonding position being unable to be reused.
  • the technical problem to be solved by this application is to overcome the defect of the existing selective laser repair technology that the original bonding position cannot be reused after the defective chip is removed, thereby providing a method for transferring micro flip-chips.
  • the present application provides a micro flip-chip transfer method, which includes: providing a driving substrate with a first electrical connector formed on one side surface of the driving substrate; and providing a temporary substrate with a first electrical connector bonded on one side surface of the temporary substrate.
  • a plurality of micro flip-chips, a second electrical connector is formed on a surface of the micro flip-chip facing away from the temporary substrate; a second electrical connector is formed on a side of the micro flip-chip facing away from the temporary substrate.
  • a first bonding member is formed on the surface, and the material of the first bonding member is conductive glue; a number of the micro flip-chips are transferred to the drive substrate, and the first bonding member is connected to the micro flip chip.
  • the second electrical connector and the first electrical connector of the chip are installed; a plurality of the micro flip-chips are detected to determine the bad pixel position of the defective chip on the driving substrate; laser irradiation is located at the dead pixel position
  • the first bonding member is used to remove the defective chip.
  • the step of forming a first bonding member on a side surface of the second electrical connector of the micro flip chip chip facing away from the temporary substrate includes: One side surface of the temporary substrate is coated with conductive glue; or, the side surface of the second electrical connector of the micro flip chip facing away from the temporary substrate is immersed in the conductive glue liquid; the micro flip chip The chip is removed from the conductive glue solution, and one side surface of the second electrical connector of the micro flip-chip is covered with conductive glue.
  • the thickness of the first bonding member is 2 ⁇ m to 10 ⁇ m.
  • the micro flip-chip transfer method further includes: providing a replacement chip with the second electrical connector formed on one side surface of the replacement chip; A second bonding member is formed on one side surface, and the material of the second bonding member is conductive glue; after removing the defective chip, the replacement chip is transferred to the bad pixel position, and the second bonding member is The coupling member connects the second electrical connection member of the replacement chip and the first electrical connection member located at the bad pixel position.
  • the step of forming the second bonding member on one side surface of the second electrical connector of the replacement chip includes: applying conductive glue on one side surface of the second electrical connector of the replacement chip. ; Alternatively, one side surface of the second electrical connector of the replacement chip is immersed in the conductive glue; the replacement chip is removed from the conductive glue, and the second electrical connector of the replacement chip is One side surface is covered with conductive adhesive.
  • the process of transferring the replacement chip to the dead pixel location includes a laser transfer process and an elastic stamp transfer process.
  • the thickness of the second bonding member is 2 ⁇ m to 10 ⁇ m.
  • the conductive glue includes an organic glue liquid and micro-nano-level conductive particles uniformly dispersed in the organic glue liquid, and the volume fraction of the conductive particles in the conductive glue is 10% to 40%.
  • the conductive glue includes isotropic conductive glue.
  • the conductive particles include metal particles or composite metal particles
  • the composite metal particles include a particle body and a metal layer surrounding the particle body.
  • the material of the metal particles includes silver, nickel, and copper
  • the material of the metal layer includes silver
  • the material of the particle body includes at least one of nickel, copper, and carbon nanotubes.
  • the conductive particles are in a sheet shape, and the longitudinal size of the conductive particles is smaller than the lateral size of the conductive particles, and the lateral size is 1 ⁇ m to 20 ⁇ m.
  • the material of the organic glue is a thermosetting material or a thermoplastic material.
  • the material of the organic glue is a thermosetting material.
  • thermosetting material includes epoxy resin, cyanate ester resin, and polyimide.
  • the energy density of the laser is 100mJ/cm 2 to 800mJ/cm 2 .
  • the laser is an ultraviolet laser.
  • the wavelength of the laser is 240nm ⁇ 380nm.
  • the process of transferring several of the micro flip-chips to the driving substrate includes a laser transfer process and an elastic stamp transfer process.
  • the first electrical connector includes: contact electrodes arranged in an array, the contact electrodes being located on one side surface of the driving substrate; and a first protrusion located on a side surface of the contact electrode facing away from the driving substrate. point; the second electrical connector is an electrode of the micro flip chip; or, the first electrical connector includes: an electrode of the micro flip chip and a second bump covering the electrode.
  • the micro flip chip includes a Micro-LED chip.
  • the transfer method of micro flip-chip uses conductive adhesive as the first bonding member to electrically connect the micro flip-chip and the drive substrate.
  • the conductive adhesive can ensure the stability of the micro flip-chip and the drive substrate. Bonding, on the other hand, the organic material in the conductive glue located at the defective pixel location absorbs laser energy and vaporizes during the laser irradiation process.
  • the airflow generated by the vaporization of the organic material realizes the separation of the defective chip and the driving substrate; while the laser irradiation to The conductive glue can instantly separate the defective chip from the substrate, and the energy of the laser is mainly absorbed and released by the organic material, which makes the actual energy acting on the first electrical connector of the drive substrate lower and avoids the need for the first electrical connection.
  • the parts are damaged by laser irradiation, so that the original bonding solder joints can continue to be used, and have a high removal efficiency of defective chips.
  • micro flip-chips provided by this application, and the micro flip-chips include Micro-LED chips.
  • the above-mentioned transfer method of micro flip-chip enables the first electrical connector to be used for electrical connection to replace the chip, so that the original bonding position can be used to display images, which is beneficial to improving the display effect of Micro-LED display technology.
  • the micro flip-chip transfer method provided by this application limits the thickness of the first bonding member to 2 ⁇ m to 10 ⁇ m, which not only ensures stable bonding of the micro flip chip and the driving substrate, but also shortens the laser action During the first bonding time, the efficiency of removing bad chips is guaranteed.
  • the micro flip-chip transfer method provided by this application not only ensures the stable bonding of the micro flip-chip and the driving substrate by limiting the volume fraction of the conductive particles in the conductive glue to 10% to 40%, but also ensures stable bonding between the micro flip-chip and the drive substrate. It is beneficial to the electrical connection effect between the micro flip chip and the drive substrate.
  • the material of the organic glue can be selected as a thermosetting material, that is, the organic material in the first bonding part and the second bonding part can be selected as a thermosetting material,
  • the thermosetting material obtains a stable structure after the first heating and solidification, and will not soften due to excessive ambient temperature during use, ensuring stable bonding of the micro flip chip and the drive substrate.
  • Figures 1-2 are schematic diagrams of a selective laser repair technology
  • Figure 3 is a process flow chart of a micro flip-chip transfer method provided by an embodiment of the present application.
  • Figures 4 to 16 are schematic structural diagrams of the transfer process of micro flip-chips according to the embodiment of the present application.
  • the first electrical connector includes a contact electrode 11 ′ located on one side surface of the driving substrate 1 ′ and a side of the contact electrode 11 ′ facing away from the driving substrate 1 ′.
  • the first bump 13' on the surface, the first electrical connector includes an electrode (not shown in the figure) of the micro flip chip 3' and a second bump 31' covering the electrode, the first bump An alloy is formed at the connection between the point 13' and the second bump 31', and the alloy is irradiated with laser 5'; as shown in Figure 2, after the laser irradiates the alloy for a certain period of time, the alloy melts and destroys to achieve a defective chip 32' At this time, the first electrical connector does not have its original shape, that is, the shape of the first electrical connector is damaged and cannot be used to connect replacement chips to meet the requirements for repair bonding, that is, the original bonding The position cannot be reused; at the same time, due to the high melting point of the alloy, it takes a relatively long time for laser irradiation to cause welding rupture, which limits the removal efficiency of bad chips to a certain extent.
  • this embodiment provides a micro flip chip transfer method, including:
  • S1 Provide a driving substrate, with a first electrical connector formed on one side surface of the driving substrate;
  • S2 Provide a temporary substrate.
  • a number of micro flip-chips are bonded to one side surface of the temporary substrate, and a second electrical connector is formed on a side surface of the micro flip-chip away from the temporary substrate;
  • the above-mentioned transfer method of micro flip-chip uses conductive adhesive as the first bonding member to electrically connect the micro flip-chip and the drive substrate.
  • the conductive adhesive can ensure the stable bonding of the micro flip-chip and the drive substrate.
  • the conductive adhesive can ensure the stable bonding of the micro flip-chip and the drive substrate.
  • the organic material in the conductive adhesive located at the defective pixel position absorbs laser energy and vaporizes during the laser irradiation process.
  • the airflow generated by the vaporization of the organic material separates the defective chip from the driving substrate; and the moment the laser irradiates the conductive adhesive, the The defective chip can be separated from the substrate, and the energy of the laser is mainly absorbed and released by the organic material, which makes the actual energy acting on the first electrical connector of the driving substrate lower and avoids the first electrical connector being exposed to laser radiation. Therefore, the original bonding solder joints can continue to be used, and the defective chip removal efficiency is high.
  • the specific principle of laser irradiation to detach defective chips is as follows: after the laser irradiates the first bonding part, the organic material in the first bonding part absorbs photons, and the photons cause the chemical bonds of the organic macromolecules to break to form small organic molecules. Due to the high photon density in the laser, the breakage rate of the chemical bonds in the first bonding part exceeds the recombination rate of the chemical bonds, causing the organic macromolecules in the first bonding part to rapidly decompose into small organic molecules. The existence of these small organic molecules causes the specific volume of the first bonding part to suddenly increase, the pressure to rise sharply, the volume to expand rapidly, and eventually a body explosion occurs, causing the defective chip to detach and take away the excess heat.
  • micro flip chip includes a Micro-LED chip.
  • the above-mentioned transfer method of micro flip-chip enables the first electrical connector to be used for electrical connection to replace the chip, so that the original bonding position can be used to display images, which is beneficial to improving the display effect of Micro-LED display technology.
  • the first electrical connector includes: contact electrodes arranged in an array, the contact electrodes are located on one side surface of the driving substrate; and a first bump is located on the side surface of the contact electrode facing away from the driving substrate.
  • the second electrical connector is an electrode of the micro flip chip; or, the first electrical connector includes: an electrode of the micro flip chip and a second bump covering the electrode.
  • a driving substrate 1 is provided, and contact electrodes 11 arranged in an array are formed on one side surface of the driving substrate 1 .
  • a first initial bump 12 is formed on a side surface of the contact electrode 11 facing away from the driving substrate 1 .
  • the material of the first initial bump 12 includes but is not limited to at least one of In, Sn, Ag, Au, and Cu.
  • the first initial bumps 12 are reflowed to form the first bumps 13 .
  • a temporary substrate 2 is provided, with an adhesive layer 21 formed on one side surface of the temporary substrate 2 .
  • the array of micro flip-chips 3 is transferred to the temporary substrate 2 in categories, the micro flip-chips 3 are bonded to the adhesive layer 21, and the electrodes of the micro flip-chips 3 and the second bumps covering the electrodes are 31 are all facing away from the temporary substrate 2, and the electrodes and the second bumps 31 constitute the second electrical connection.
  • a first bonding member 4 is formed on the side surface of the second electrical connection member of the micro flip chip 3 away from the temporary substrate 2.
  • the material of the first bonding member 4 is Conductive plastic.
  • the step of forming the first bonding member 4 on the side surface of the second electrical connection member of the micro flip chip 3 away from the temporary substrate 2 includes: referring to Figure 9, placing the micro flip chip 3 The side surface of the second bump 31 facing away from the temporary substrate is dipped into the conductive glue 41; see Figure 10, remove the micro flip chip 3 from the conductive glue 41 Moving out, one side surface of the second bump 31 of the micro flip chip 3 is covered with conductive glue.
  • the conductive glue includes an organic glue liquid and micro-nano-level conductive particles uniformly dispersed in the organic glue liquid.
  • the material of the organic glue can be thermosetting material or thermoplastic material, such as epoxy resin, cyanate resin, polyimide, polyimide, cyanoacrylate, silica gel;
  • the conductive particles include metal particles or Composite metal particles, the composite metal particles include a particle body and a metal layer wrapping the particle body, the materials of the metal particles include but are not limited to silver, nickel, copper, the material of the metal layer includes silver, the particles
  • the material of the main body includes but is not limited to at least one of nickel, copper, and carbon nanotubes.
  • the material of the organic glue liquid is a thermosetting material, that is, the organic material in the first bonding member 4 can be selected as a thermosetting material.
  • the thermosetting material obtains a stable structure after the first heating and solidification, and will not soften due to excessive ambient temperature during use, ensuring stable bonding of the micro flip chip 3 and the drive substrate 1 .
  • the volume fraction of conductive particles in the conductive adhesive is 10% to 40%.
  • the volume fraction of the conductive particles may be 10%, 15%, 20%, 25%, 30%, 35% or 40%. If the volume fraction of the conductive particles is too small, the volume fraction of the organic glue will be too large. Although this is beneficial to the stable bonding of the micro flip chip 3 and the drive substrate 1, it results in poor conductivity of the bonded parts, thus limiting the The electrical connection effect between the micro flip chip 3 and the drive substrate 1; if the volume fraction of the conductive particles is too large, the volume fraction of the organic glue is too small, which is beneficial to the electrical connection effect between the micro flip chip 3 and the drive substrate 1, but It is not conducive to the connection stability between the micro flip chip 3 and the driving substrate 1 . By limiting the volume fraction of conductive particles in the conductive glue to 10% to 40%, it not only ensures the stable bonding of the micro flip chip 3 and the drive substrate 1, but also facilitates the electrical connection between the micro flip chip 3 and the drive substrate 1. connection effect.
  • the conductive particles are in a sheet shape, and the longitudinal size of the conductive particles is smaller than the lateral size of the conductive particles, and the lateral size is 1 ⁇ m to 20 ⁇ m.
  • the lateral size of the conductive particles is 1 ⁇ m, 2.5 ⁇ m, 5 ⁇ m, 7.5 ⁇ m, 10 ⁇ m, 12.5 ⁇ m, 15 ⁇ m, 17.5 ⁇ m or 20 ⁇ m.
  • the conductive glue can be isotropic conductive glue or anisotropic conductive glue.
  • the conductive glue is an isotropic conductive glue, and the isotropic conductive glue can ensure the electrical connection capability of the first bonding member 4 .
  • first bonding part 4 may also be formed by coating conductive glue on the surface of the second bump 31 , or the first bonding part 4 may be formed by other micro-nano processing methods.
  • the thickness of the first bonding member 4 is 2 ⁇ m to 10 ⁇ m.
  • the thickness of the first bonding member 4 may be 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m or 10 ⁇ m.
  • the thickness of the first bonding member 4 By limiting the thickness of the first bonding member 4 to 2 ⁇ m to 10 ⁇ m, it not only ensures stable bonding of the micro flip chip 3 and the driving substrate 1, but also shortens the time for the laser 5 to act on the first bonding member 4. The efficiency of removing bad chips is guaranteed.
  • a plurality of the micro flip-chips 3 are transferred to the drive substrate 1, and the first bonding member 4 connects the second electrical connector of the micro flip-chip 3 with the The first electrical connector enables the micro flip chip 3 and the driving substrate 1 to be bonded together.
  • the temporary substrate 2 and the drive substrate 1 are arranged opposite each other, so that the first bonding member 4 on one side of the micro flip chip 3 is bonded to the first bump 13 on the surface of the drive substrate 1; see Figure 12 , remove the temporary substrate 2, and the adhesive layer 21 on one side surface of the temporary substrate 2 is also removed.
  • the process of transferring several of the micro flip-chips 3 to the driving substrate 1 includes, but is not limited to, laser transfer process and elastic stamp transfer process.
  • the detection includes optical detection and electrical detection; after determining the bad pixel position of the defective chip on the driving substrate 1, the coordinate value of the bad pixel position on the driving substrate 1 is obtained, and the coordinate system is The edge of the drive substrate 1 serves as the coordinate axis.
  • the laser 5 irradiates the first bonding member 4 located at the defective pixel position to remove the defective chip 32 .
  • the laser 5 is irradiated to the first bonding member 4 through the defective chip 32, and the size of the laser spot is adapted to the size of the micro flip chip 3, that is, the size of the laser spot is greater than or equal to the size of the micro flip chip. size and covers only one micro flip chip.
  • the energy density of the laser 5 is 100mJ/cm 2 to 800mJ/cm 2 .
  • the energy density of the laser 5 can be 100mJ/cm 2 , 200mJ/cm 2 , 300mJ/cm 2 , 400mJ/cm 2 , 500mJ/cm 2 , 600mJ/cm 2 , 700mJ/cm 2 or 800mJ/ cm 2 .
  • the laser 5 may be an ultraviolet laser.
  • the organic material in the first bonding member 4 has a strong absorption effect on ultraviolet light, so that the defective chip 32 has a high detachment efficiency.
  • the wavelength of the laser 5 is 240nm to 380nm; for example, the wavelength of the laser 5 can be 248nm, 266nm, 280nm, 355nm, 365nm or 375nm.
  • the laser 5 is a single-pulse laser, and the pulse width is in the order of nanoseconds or picoseconds.
  • a replacement chip 6 is provided.
  • the second electrical connector is formed on one side surface of the replacement chip;
  • a second bonding member 7 is formed on one side surface of the second electrical connector of the replacement chip 6.
  • the material of the second bonding member 7 is conductive glue.
  • the replacement chip 6 has the same structure as the original micro flip-chip at the location of the dead pixel.
  • the step of forming the second bonding member 7 on one side surface of the second electrical connector of the replacement chip 6 includes: dipping one side surface of the second bump of the replacement chip 6 into a conductive In the glue liquid 41; remove the replacement chip 6 from the conductive glue liquid 41, and one side surface of the second bump of the replacement chip 6 is covered with conductive glue.
  • the second bonding member 7 may also be formed by coating one side surface of the second bump of the replacement chip 6 with conductive glue. Methods for forming the second bonding member 7 include but are not limited to the above methods.
  • the second bonding member 7 can be made of the same material as the first bonding member 4, which will not be described again.
  • the thickness of the second bonding member 7 is 2 ⁇ m to 10 ⁇ m.
  • the thickness of the second bonding member 7 may be 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m or 10 ⁇ m.
  • the replacement chip 6 is transferred to the bad pixel position, and the second bonding member 7 is connected to the second electrical connection member of the replacement chip 6 and located at The first electrical connector at the dead pixel location.
  • the process of transferring the replacement chip 6 to the dead pixel location includes, but is not limited to, laser transfer process and elastic stamp transfer process.
  • the second bonding member 7 can be formed on the surface of the second bump of the replacement chip 6 before the defective chip 32 is removed; after the defective chip 32 is removed, directly Transferring the replacement chip 6 to the defective pixel position is beneficial to shortening the time.
  • the detection of micro flip-chips on the driving substrate, removal of defective chips and transfer of replacement chips constitute the in-situ repair step. After the replacement chip is transferred to the location of the bad pixel, the in-situ repair step can be repeated. Until there are no dead spots on the surface of the drive substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)

Abstract

本申请提供一种微型倒装芯片的转移方法,包括:提供驱动基板和临时基板,临时基板的一侧表面粘接有若干微型倒装芯片;在微型倒装芯片的第二电连接件背离临时基板的一侧表面形成第一键合件,第一键合件的材料为导电胶;将若干微型倒装芯片转移至驱动基板上,且第一键合件连接微型倒装芯片的第二电连接件与驱动基板的第一电连接件;对若干微型倒装芯片进行检测,确定不良芯片在驱动基板上的坏点位置;激光照射位于坏点位置的第一键合件,移除不良芯片。上述方法能够保证微型倒装芯片与驱动基板的稳定键合,能在避免第一电连接件受到激光辐照的损伤,使原键合焊点可继续使用,具有较高的不良芯片去除效率。

Description

一种微型倒装芯片的转移方法
相关申请的交叉引用
本申请要求在2022年08月02日提交中国专利局、申请号为202210922999.X、发明名称为“一种微型倒装芯片的转移方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及芯片组装技术领域,具体涉及一种微型倒装芯片的转移方法。
背景技术
Micro-LED显示技术是指以自发光的Micro-LED为发光像素单元,将其组装到驱动基板上形成高密度LED阵列的显示技术。由于Micro-LED芯片尺寸小、集成度高和自发光等特点,与LCD、OLED相比,Micro-LED芯片在亮度、分辨率、对比度、能耗、使用寿命、响应速度和热稳定性等方面具有更大的优势,被认为是最具有前途的新型显示与发光器件之一。当前产业界普遍预期Micro-LED显示技术能够替代现有OLED与液晶显示技术的一个重要切入点是面向于中低分辨率(PPI)显示场景应用的显示产品,如小尺寸可穿戴设备、电视显示与超大显示墙等。对于中低PPI显示产品,在完成Micro-LED芯片晶圆与驱动基板制造之后,需要通过巨量转移技术把数百万甚至数千万颗Micro-LED芯片移动到驱动基板上,使驱动基板上的第一电连接件与Micro-LED芯片上的第二电连接件电学连接。
转移良率为巨量转移过程中存在的主要技术难点之一。即使综合转移良率高为99.99%,转移一台8K电视仍需要修复50余万颗的不良芯片,且不良芯片多呈随机分布。选择性激光修复技术为多种Micro-LED坏点修复技术中最具潜力实现量产的技术,该技术通过激光振镜高速扫描并搭配位移平台精密控制,可实现大量随机不良芯片的高效去除。
然而,选择性激光修复技术所发射的激光容易对驱动基板上的第一电连接件造成不可逆破坏,使其无法用于连接替换芯片,进而导致原键合位置无法重复使用。
发明内容
因此,本申请要解决的技术问题在于克服现有选择性激光修复技术不良芯片去除后原键合位置无法重复使用的缺陷,从而提供一种微型倒装芯片的转移方法。
本申请提供一种微型倒装芯片的转移方法,包括:提供驱动基板,所述驱动基板的一侧表面形成有第一电连接件;提供临时基板,所述临时基板的一侧表面粘接有若干微型倒装芯片,所述微型倒装芯片背离所述临时基板的一侧表面形成有第二电连接件;在所述微型倒装芯片的第二电连接件背离所述临时基板的一侧表面形成第一键合件,所述第一键合件的材料为导电胶;将若干所述微型倒装芯片转移至所述驱动基板上,且所述第一键合件连接所述微型倒装芯片的第二电连接件与所述第一电连接件;对若干所述微型倒装芯片进行检测,确定不良芯片在所述驱动基板上的坏点位置;激光照射位于所述坏点位置的所述第一键合件,移除所述不良芯片。
可选的,在所述微型倒装芯片的第二电连接件背离所述临时基板的一侧表面形成第一键合件的步骤包括:在所述微型倒装芯片的第二电连接件背离所述临时基板的一侧表面涂覆导电胶;或者,将所述微型倒装芯片的第二电连接件背离所述临时基板的一侧表面浸渍至导电胶液中;将所述微型倒装芯片从所述导电胶液中移出,所述微型倒装芯片的第二电连接件的一侧表面包覆有导电胶。
可选的,所述第一键合件的厚度为2μm~10μm。
可选的,所述微型倒装芯片的转移方法还包括:提供替换芯片,所述替换芯片的一侧表面形成有所述第二电连接件;在所述替换芯片的第二电连接件的一侧表面形成第二键合件,所述第二键合件的材料为导电胶;在移除所述不良芯片之后,将所述替换芯片转移至所述坏点位置,所述第二键合件连接所述替换芯片的第二电连接件与位于所述坏点位置的第一电连接件。
可选的,在所述替换芯片的第二电连接件的一侧表面形成所述第二键合件的步骤包括:在所述替换芯片的第二电连接件的一侧表面涂覆导电胶;或者,将所述替换芯片的第二电连接件的一侧表面浸渍至导电胶液中;将所述替换芯片从所述导电胶液中移出,所述替换芯片的第二电连接件的一侧表面包覆有导电胶。
可选的,将所述替换芯片转移至所述坏点位置的工艺包括激光转移工艺、弹性印章转移工艺。
可选的,所述第二键合件的厚度为2μm~10μm。
可选的,所述导电胶包括有机胶液和均匀分散在所述有机胶液中的微纳级的导电颗粒,所述导电胶内导电颗粒的体积分数为10%~40%。
可选的,所述导电胶包括各向同性导电胶。
可选的,所述导电颗粒包括金属颗粒或复合金属颗粒,所述复合金属颗粒包括颗粒主体以及包裹所述颗粒主体的金属层。
可选的,所述金属颗粒的材料包括银、镍、铜,所述金属层的材料包括银,所述颗粒主体的材料包括镍、铜、碳纳米管中的至少一种。
可选的,所述导电颗粒呈片状,所述导电颗粒的纵向尺寸小于所述导电颗粒的横向尺寸,所述横向尺寸为1μm~20μm。
可选的,所述有机胶液的材料为热固性材料或热塑性材料。
可选的,所述有机胶液的材料为热固性材料。
可选的,所述热固性材料包括环氧树脂、氰酸酯树脂、聚酰亚胺。
可选的,所述激光的能量密度为100mJ/cm2~800mJ/cm2
可选的,所述激光为紫外激光。
可选的,所述激光的波长为240nm~380nm。
可选的,将若干所述微型倒装芯片转移至驱动基板的工艺包括激光转移工艺、弹性印章转移工艺。
可选的,所述第一电连接件包括:阵列排布的接触电极,所述接触电极位于所述驱动基板的一侧表面;位于所述接触电极背离驱动基板的一侧表面的第一凸点;所述第二电连接件为所述微型倒装芯片的电极;或者,所述第一电连接件包括:所述微型倒装芯片的电极以及覆盖所述电极的第二凸点。
可选的,所述微型倒装芯片包括Micro-LED芯片。
本申请技术方案,具有如下优点:
1.本申请提供的微型倒装芯片的转移方法,采用导电胶作为电学连接微型倒装芯片与驱动基板的第一键合件,一方面,导电胶能够保证微型倒装芯片与驱动基板的稳定键合,另一方面,位于坏点位置的导电胶中的有机材料在激光照射过程中吸收激光能量发生气化,有机材料气化产生的气流实现不良芯片与驱动基板的分离;而激光照射至导电胶瞬间将即可实现不良芯片与基板的分离,且激光的能量主要被有机材料吸收并释放,这使实际作用在驱动基板的第一电连接件上能量较低,避免了第一电连接件受到激光辐照的损伤,使原键合焊点可继续使用,且具有较高的不良芯片去除效率。
2.本申请提供的微型倒装芯片的转移方法,所述微型倒装芯片包括Micro-LED芯片。上述微型倒装芯片的转移方法使第一电连接件能够用于电学连接替换芯片,从而使原键合位置能够用于显示图像,有利于提高Micro-LED显示技术的显示效果。
3.本申请提供的微型倒装芯片的转移方法,通过限定所述第一键合件的厚度为2μm~10μm,不仅保证了微型倒装芯片与驱动基板的稳定键合,还缩短了激光作用在第一键合件的时间,保证了去除不良芯片的效率。
4.本申请提供的微型倒装芯片的转移方法,通过限定所述导电胶内导电颗粒的体积分数为10%~40%,不仅保证了微型倒装芯片与驱动基板的稳定键合,还有利于微型倒装芯片与驱动基板的电连接效果。
5.本申请提供的微型倒装芯片的转移方法,所述有机胶液的材料可选为热固性材料,即,第一键合件与第二键合件中的有机材料可选为热固性材料,热固性材料在第一次加热固化后即得到稳定的结构,在使用过程中不会由于环境温度过高而软化,保证了微型倒装芯片与驱动基板的稳定键合。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-图2为一种选择性激光修复技术的示意图;
图3为本申请实施例提供的微型倒装芯片的转移方法的工艺流程图;
图4-图16为本申请实施例微型倒装芯片的转移过程中的结构示意图;
附图标记说明:
1-驱动基板;11-接触电极;12-第一初始凸点;13-第一凸点;2-临时基板;21-粘接层;3-微型倒装芯片;31-第二凸点;32-不良芯片;4-第一键合件;41-导电胶液;5-激光;6-替换芯片;7-第二键合件;1'-驱动基板;11'-接触电极;13'-第一凸点;3'-微型倒装芯片;31'-第二凸点;32'-不良芯片;5'-激光。
具体实施方式
正如背景技术所述,采用现有选择性激光修复技术去除不良芯片导致原键合位置无法重 复使用。
具体的,通常通过驱动基板的第一电连接件与微型倒装芯片的第二电连接件的合金化实现微型倒装芯片与驱动基板的键合。示例性的,如图1所示,所述第一电连接件包括位于所述驱动基板1'的一侧表面的接触电极11'以及位于所述接触电极11'背离驱动基板1'的一侧表面的第一凸点13',所述第一电连接件包括所述微型倒装芯片3'的电极(图中未示出)以及覆盖所述电极的第二凸点31',第一凸点13'与第二凸点31'的连接处形成了合金,对合金处进行激光5'照射;如图2所示,待激光照射合金一定时间之后,合金发生熔解破坏从而实现不良芯片32'的脱落,此时第一电连接件不具有最初的形貌,即,第一电连接件的形貌被破坏,无法用来连接替换芯片以满足修复键合的要求,也即,原键合位置无法重复使用;同时,由于合金的熔点较高,激光照射相对较长的时间才能够使其发生熔接破裂,这一定程度上限制了不良芯片的去除效率。
为此,参见图3,本实施例提供一种微型倒装芯片的转移方法,包括:
S1、提供驱动基板,所述驱动基板的一侧表面形成有第一电连接件;
S2、提供临时基板,所述临时基板的一侧表面粘接有若干微型倒装芯片,所述微型倒装芯片背离所述临时基板的一侧表面形成有第二电连接件;
S3、在所述微型倒装芯片的第二电连接件背离所述临时基板的一侧表面形成第一键合件,所述第一键合件的材料为导电胶;
S4、将若干所述微型倒装芯片转移至所述驱动基板上,且所述第一键合件连接所述微型倒装芯片的第二电连接件与所述第一电连接件;
S5、对若干所述微型倒装芯片进行检测,确定不良芯片在所述驱动基板上的坏点位置;
S6、激光照射位于所述坏点位置的所述第一键合件,移除所述不良芯片。
上述微型倒装芯片的转移方法,采用导电胶作为电学连接微型倒装芯片与驱动基板的第一键合件,一方面,导电胶能够保证微型倒装芯片与驱动基板的稳定键合,另一方面,位于坏点位置的导电胶中的有机材料在激光照射过程中吸收激光能量发生气化,有机材料气化产生的气流实现不良芯片与驱动基板的分离;而激光照射至导电胶的瞬间将即可实现不良芯片与基板的分离,且激光的能量主要被有机材料吸收并释放,这使实际作用在驱动基板的第一电连接件上能量较低,避免了第一电连接件受到激光辐照的损伤,使原键合焊点可继续使用,且具有较高的不良芯片去除效率。
激光照射使不良芯片脱离的具体原理如下:激光照射第一键合件后,第一键合件中的有机材料吸收光子,光子促使有机大分子发生化学键断裂而形成有机小分子。由于激光中光子密度较高,第一键合件中化学键断裂的速率超过化学键重新复合的速率,致使第一键合件中的有机大分子迅速分解成有机小分子。这些有机小分子的存在导致第一键合件的比容积突然增大、压强急剧升高,体积迅速膨胀,最终发生体爆炸,使不良芯片脱离并带走过剩热量。
进一步地,所述微型倒装芯片包括Micro-LED芯片。上述微型倒装芯片的转移方法使第一电连接件能够用于电学连接替换芯片,从而使原键合位置能够用于显示图像,有利于提高Micro-LED显示技术的显示效果。
具体的,所述第一电连接件包括:阵列排布的接触电极,所述接触电极位于所述驱动基板的一侧表面;位于所述接触电极背离驱动基板的一侧表面的第一凸点。所述第二电连接件为所述微型倒装芯片的电极;或者,所述第一电连接件包括:所述微型倒装芯片的电极以及覆盖所述电极的第二凸点。
下面以所述第二电连接件包括微型倒装芯片的电极以及覆盖所述电极的第二凸点为例,结合图4-图16对本申请的技术方案进行清楚、完整地描述。
参见图4,提供驱动基板1,在所述驱动基板1的一侧表面形成阵列排布的接触电极11。
参见图5,在所述接触电极11背离驱动基板1的一侧表面形成第一初始凸点12。
具体的,所述第一初始凸点12的材料包括但不限于In、Sn、Ag、Au、Cu中的至少一种。
参见图6,对第一初始凸点12进行回流焊,使第一初始凸点12形成第一凸点13。
参见图7,提供临时基板2,所述临时基板2的一侧表面形成有粘接层21。
参见图8,将微型倒装芯片3阵列分类转移至临时基板2上,微型倒装芯片3与粘接层21粘接,且微型倒装芯片3的电极以及覆盖所述电极的第二凸点31均背离临时基板2,所述电极和第二凸点31构成第二电连接件。
参见图9-图10,在所述微型倒装芯片3的第二电连接件背离所述临时基板2的一侧表面形成第一键合件4,所述第一键合件4的材料为导电胶。
具体的,在所述微型倒装芯片3的第二电连接件背离所述临时基板2的一侧表面形成第一键合件4的步骤包括:参见图9,将所述微型倒装芯片3的第二凸点31背离所述临时基板的一侧表面浸渍至导电胶液41中;参见图10,将所述微型倒装芯片3从所述导电胶液41 中移出,所述微型倒装芯片3的第二凸点31的一侧表面包覆有导电胶。
进一步地,所述导电胶包括有机胶液和均匀分散在所述有机胶液中的微纳级的导电颗粒。所述有机胶液的材料可以为热固性材料或热塑性材料,如环氧树脂、氰酸酯树脂、聚酰亚胺、聚酰亚胺、氰基丙烯酸酯、硅胶;所述导电颗粒包括金属颗粒或复合金属颗粒,所述复合金属颗粒包括颗粒主体以及包裹所述颗粒主体的金属层,所述金属颗粒的材料包括但不限于银、镍、铜,所述金属层的材料包括银,所述颗粒主体的材料包括但不限于镍、铜、碳纳米管中的至少一种。
作为一种可选的实施方式,所述有机胶液的材料为热固性材料,即,第一键合件4中的有机材料可选为热固性材料。热固性材料在第一次加热固化后即得到稳定的结构,在使用过程中不会由于环境温度过高而软化,保证了微型倒装芯片3与驱动基板1的稳定键合。
进一步地,所述导电胶内导电颗粒的体积分数为10%~40%。示例性的,所述导电颗粒的体积分数可以为10%、15%、20%、25%、30%、35%或40%。导电颗粒的体积分数过小,则有机胶液的体积分数过大,这虽然有利于微型倒装芯片3与驱动基板1的稳定键合,但导致键合件的导电性较差,从而限制了微型倒装芯片3与驱动基板1的电连接效果;导电颗粒的体积分数过大,则有机胶液的体积分数过小,虽然有利于微型倒装芯片3与驱动基板1的电连接效果,但是不利于微型倒装芯片3与驱动基板1的连接稳定性。通过限定所述导电胶内导电颗粒的体积分数为10%~40%,不仅保证了微型倒装芯片3与驱动基板1的稳定键合,还有利于微型倒装芯片3与驱动基板1的电连接效果。
可选的,所述导电颗粒呈片状,所述导电颗粒的纵向尺寸小于所述导电颗粒的横向尺寸,所述横向尺寸为1μm~20μm。示例性的,所述导电颗粒的横向尺寸为1μm、2.5μm、5μm、7.5μm、10μm、12.5μm、15μm、17.5μm或20μm。
进一步地,所述导电胶可以选用各向同性导电胶,也可以选用各向异性导电胶。可选的,所述导电胶选用各向同性导电胶,各向同性导电胶能够保证第一键合件4的电连接能力。
需要理解的是,也可以通过在第二凸点31表面涂覆导电胶形成所述第一键合件4,或者其他微纳加工方式形成所述第一键合件4。
进一步地,所述第一键合件4的厚度为2μm~10μm。示例性的,所述第一键合件4的厚度可以为2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm或10μm。当第一键合件4过薄时,则微型倒装芯片3与驱动基板1的粘接稳定性无法得到保证;当第一键合件4过厚时,则需要激光5照射第一键合件4较长的时间才能实现不良芯片的分离,降低了去除不良芯片 的效率。通过限定所述第一键合件4的厚度为2μm~10μm,不仅保证了微型倒装芯片3与驱动基板1的稳定键合,还缩短了激光5作用在第一键合件4的时间,保证了去除不良芯片的效率。
参见图11-图12,将若干所述微型倒装芯片3转移至所述驱动基板1上,且所述第一键合件4连接所述微型倒装芯片3的第二电连接件与所述第一电连接件,使所述微型倒装芯片3与驱动基板1键合在一起。
具体的,参见图11,将临时基板2与驱动基板1相对设置,使微型倒装芯片3一侧的第一键合件4与驱动基板1表面的第一凸点13键合;参见图12,移除临时基板2,所述临时基板2的一侧表面的粘接层21也一同移除。将若干所述微型倒装芯片3转移至驱动基板1的工艺包括但不限于激光转移工艺、弹性印章转移工艺。
在所述微型倒装芯片3与驱动基板1键合在一起之后,对驱动基板1上的若干微型倒装芯片3进行检测,确定不良芯片在所述驱动基板1上的坏点位置。具体的,所述检测包括光学检测与电学检测;在确定不良芯片在所述驱动基板1上的坏点位置之后,获取坏点位置在所述驱动基板1上的坐标值,所述坐标系以驱动基板1的边缘作为坐标轴。
参见图13-图14,激光5照射位于所述坏点位置的所述第一键合件4,移除所述不良芯片32。
具体的,参见图13,激光5经不良芯片32照射至第一键合件4,且激光光斑的尺寸与微型倒装芯片3的尺寸相适应,即,激光光斑的尺寸大于等于微型倒装芯片的尺寸,且仅覆盖一个微型倒装芯片。示例性的,若干微型倒装芯片呈阵列排布,相邻微型倒装芯片的中轴线之间的间距(Pitch)相同,微型倒装芯片的阵列基板上的投影呈矩形(a×b),则激光光斑的尺寸大于等于a×b且小于等于(Pitch×2-a)×(Pitch×2-b);当a=15μm,b=25μm,Pitch=35μm时,激光光斑的尺寸则大于等于15μm×25μm且小于等于55μm×45μm。
进一步地,所述激光5的能量密度为100mJ/cm2~800mJ/cm2。示例性的,所述激光5的能量密度可以为100mJ/cm2、200mJ/cm2、300mJ/cm2、400mJ/cm2、500mJ/cm2、600mJ/cm2、700mJ/cm2或800mJ/cm2
进一步地,所述激光5可以为紫外激光。第一键合件4中的有机材料对紫外光具有强烈吸收作用,使不良芯片32具有较高的脱离效率。可选的,所述激光5的波长为240nm~380nm;示例性的,所述激光5的波长可以为248nm、266nm、280nm、355nm、365nm或375nm。
进一步地,所述激光5为单脉冲激光,脉宽为纳秒或皮秒量级。
参见图15,提供替换芯片6,所述替换芯片的一侧表面形成有所述第二电连接件;在所述替换芯片6的第二电连接件的一侧表面形成第二键合件7,所述第二键合件7的材料为导电胶。替换芯片6与坏点位置的原微型倒装芯片的结构相同。
具体的,在所述替换芯片6的第二电连接件的一侧表面形成所述第二键合件7的步骤包括:将所述替换芯片6的第二凸点的一侧表面浸渍至导电胶液41中;将所述替换芯片6从所述导电胶液41中移出,所述替换芯片6的第二凸点的一侧表面包覆有导电胶。也可以通过在所述替换芯片6的第二凸点的一侧表面涂覆导电胶形成所述第二键合件7。形成所述第二键合件7的方法包括但不限于上述方式。
进一步地,所述第二键合件7可以采用与第一键合件4相同的材料,在此不再赘述。
进一步地,所述第二键合件7的厚度为2μm~10μm。示例性的,所述第二键合件7的厚度可以为2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm或10μm。通过限定所述第二键合件7的厚度为2μm~10μm,不仅保证了微型倒装芯片3与驱动基板1的稳定键合,还使激光作用在第二键合件7后产生足够气流,保证了去除不良芯片32的效率。
参见图16,在移除所述不良芯片32之后,将所述替换芯片6转移至所述坏点位置,所述第二键合件7连接所述替换芯片6的第二电连接件以及位于所述坏点位置的第一电连接件。
具体的,将所述替换芯片6转移至所述坏点位置的工艺包括但不限于激光转移工艺、弹性印章转移工艺。
需要理解的是,可以在移除所述不良芯片32之前,在所述替换芯片6的第二凸点的表面形成所述第二键合件7;在移除所述不良芯片32之后,直接将替换芯片6转移至所述坏点位置,有利于缩短时间。
需要理解的是,对驱动基板上的微型倒装芯片进行检测、不良芯片去除以及替换芯片转移组成了原位修复步骤,在将替换芯片转移至坏点位置之后,可以重复进行原位修复步骤,直至驱动基板表面不具有坏点。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。在本申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。

Claims (21)

  1. 一种微型倒装芯片的转移方法,其特征在于,包括:
    提供驱动基板,所述驱动基板的一侧表面形成有第一电连接件;
    提供临时基板,所述临时基板的一侧表面粘接有若干微型倒装芯片,所述微型倒装芯片背离所述临时基板的一侧表面形成有第二电连接件;
    在所述微型倒装芯片的第二电连接件背离所述临时基板的一侧表面形成第一键合件,所述第一键合件的材料为导电胶;
    将若干所述微型倒装芯片转移至所述驱动基板上,且所述第一键合件连接所述微型倒装芯片的第二电连接件与所述第一电连接件;
    对若干所述微型倒装芯片进行检测,确定不良芯片在所述驱动基板上的坏点位置;
    激光照射位于所述坏点位置的所述第一键合件,移除所述不良芯片。
  2. 根据权利要求1所述的微型倒装芯片的转移方法,其特征在于,在所述微型倒装芯片的第二电连接件背离所述临时基板的一侧表面形成第一键合件的步骤包括:在所述微型倒装芯片的第二电连接件背离所述临时基板的一侧表面涂覆导电胶;
    或者,将所述微型倒装芯片的第二电连接件背离所述临时基板的一侧表面浸渍至导电胶液中;将所述微型倒装芯片从所述导电胶液中移出,所述微型倒装芯片的第二电连接件的一侧表面包覆有导电胶。
  3. 根据权利要求1或2所述的微型倒装芯片的转移方法,其特征在于,所述第一键合件的厚度为2μm~10μm。
  4. 根据权利要求1-3任一项所述的微型倒装芯片的转移方法,其特征在于,还包括:
    提供替换芯片,所述替换芯片的一侧表面形成有所述第二电连接件;
    在所述替换芯片的第二电连接件的一侧表面形成第二键合件,所述第二键合件的材料为导电胶;
    在移除所述不良芯片之后,将所述替换芯片转移至所述坏点位置,所述第二键合件连接所述替换芯片的第二电连接件与位于所述坏点位置的第一电连接件。
  5. 根据权利要求4所述的微型倒装芯片的转移方法,其特征在于,在所述替换芯片的第二电连接件的一侧表面形成所述第二键合件的步骤包括:在所述替换芯片的第二电连接件的 一侧表面涂覆导电胶;
    或者,将所述替换芯片的第二电连接件的一侧表面浸渍至导电胶液中;将所述替换芯片从所述导电胶液中移出,所述替换芯片的第二电连接件的一侧表面包覆有导电胶。
  6. 根据权利要求4所述的微型倒装芯片的转移方法,其特征在于,将所述替换芯片转移至所述坏点位置的工艺包括激光转移工艺、弹性印章转移工艺。
  7. 根据权利要求4或5所述的微型倒装芯片的转移方法,其特征在于,所述第二键合件的厚度为2μm~10μm。
  8. 根据权利要求2或4或5所述的微型倒装芯片的转移方法,其特征在于,所述导电胶包括有机胶液和均匀分散在所述有机胶液中的微纳级的导电颗粒,所述导电胶内导电颗粒的体积分数为10%~40%。
  9. 根据权利要求8所述的微型倒装芯片的转移方法,其特征在于,所述导电胶包括各向同性导电胶。
  10. 根据权利要求8所述的微型倒装芯片的转移方法,其特征在于,所述导电颗粒包括金属颗粒或复合金属颗粒,所述复合金属颗粒包括颗粒主体以及包裹所述颗粒主体的金属层。
  11. 根据权利要求10所述的微型倒装芯片的转移方法,其特征在于,所述金属颗粒的材料包括银、镍、铜,所述金属层的材料包括银,所述颗粒主体的材料包括镍、铜、碳纳米管中的至少一种。
  12. 根据权利要求10所述的微型倒装芯片的转移方法,其特征在于,所述导电颗粒呈片状,所述导电颗粒的纵向尺寸小于所述导电颗粒的横向尺寸,所述横向尺寸为1μm~20μm。
  13. 根据权利要求8所述的微型倒装芯片的转移方法,其特征在于,所述有机胶液的材料为热固性材料或热塑性材料。
  14. 根据权利要求13所述的微型倒装芯片的转移方法,其特征在于,所述有机胶液的材料为热固性材料。
  15. 根据权利要求13或14所述的微型倒装芯片的转移方法,其特征在于,所述热固性材料包括环氧树脂、氰酸酯树脂、聚酰亚胺。
  16. 根据权利要求1所述的微型倒装芯片的转移方法,其特征在于,所述激光的能量密度为100mJ/cm2~800mJ/cm2
  17. 根据权利要求16所述的微型倒装芯片的转移方法,其特征在于,所述激光为紫外激光。
  18. 根据权利要求16所述的微型倒装芯片的转移方法,其特征在于,所述激光的波长为240nm~380nm。
  19. 根据权利要求1所述的微型倒装芯片的转移方法,其特征在于,将若干所述微型倒装芯片转移至驱动基板的工艺包括激光转移工艺、弹性印章转移工艺。
  20. 根据权利要求1所述的微型倒装芯片的转移方法,其特征在于,所述第一电连接件包括:阵列排布的接触电极,所述接触电极位于所述驱动基板的一侧表面;位于所述接触电极背离驱动基板的一侧表面的第一凸点;
    所述第二电连接件为所述微型倒装芯片的电极;或者,所述第一电连接件包括:所述微型倒装芯片的电极以及覆盖所述电极的第二凸点。
  21. 根据权利要求1-20中任一项所述的微型倒装芯片的转移方法,其特征在于,所述微型倒装芯片包括Micro-LED芯片。
PCT/CN2023/088493 2022-08-02 2023-04-14 一种微型倒装芯片的转移方法 WO2024027201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210922999.X 2022-08-02
CN202210922999.XA CN115274942B (zh) 2022-08-02 2022-08-02 一种微型倒装芯片的转移方法

Publications (1)

Publication Number Publication Date
WO2024027201A1 true WO2024027201A1 (zh) 2024-02-08

Family

ID=83746963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088493 WO2024027201A1 (zh) 2022-08-02 2023-04-14 一种微型倒装芯片的转移方法

Country Status (2)

Country Link
CN (1) CN115274942B (zh)
WO (1) WO2024027201A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115274942B (zh) * 2022-08-02 2023-06-27 厦门大学 一种微型倒装芯片的转移方法
CN115911240B (zh) * 2022-12-29 2024-01-26 重庆惠科金渝光电科技有限公司 显示面板及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103295893A (zh) * 2013-05-29 2013-09-11 华进半导体封装先导技术研发中心有限公司 一种晶圆级微组装工艺
CN108493154A (zh) * 2018-04-28 2018-09-04 深圳市华星光电技术有限公司 Micro LED显示面板的制作方法及Micro LED显示面板
CN110148655A (zh) * 2019-05-21 2019-08-20 北京易美新创科技有限公司 微型led芯片巨量转移方法
CN111489991A (zh) * 2020-04-22 2020-08-04 京东方科技集团股份有限公司 显示面板及制作方法
JP2021110875A (ja) * 2020-01-14 2021-08-02 三星電子株式会社Samsung Electronics Co., Ltd. ディスプレイ装置の製造方法、ディスプレイ装置、およびディスプレイ装置製造用中間体
CN115274942A (zh) * 2022-08-02 2022-11-01 厦门大学 一种微型倒装芯片的转移方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110660681A (zh) * 2018-06-28 2020-01-07 上海怡英新材料科技有限公司 一种倒装芯片组件及其封装方法
CN113450681A (zh) * 2020-03-24 2021-09-28 重庆康佳光电技术研究院有限公司 一种微发光二极管显示器生产检测方法及其显示器
CN113690149A (zh) * 2020-05-16 2021-11-23 佛山市国星光电股份有限公司 一种芯片键合结构、方法及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103295893A (zh) * 2013-05-29 2013-09-11 华进半导体封装先导技术研发中心有限公司 一种晶圆级微组装工艺
CN108493154A (zh) * 2018-04-28 2018-09-04 深圳市华星光电技术有限公司 Micro LED显示面板的制作方法及Micro LED显示面板
CN110148655A (zh) * 2019-05-21 2019-08-20 北京易美新创科技有限公司 微型led芯片巨量转移方法
JP2021110875A (ja) * 2020-01-14 2021-08-02 三星電子株式会社Samsung Electronics Co., Ltd. ディスプレイ装置の製造方法、ディスプレイ装置、およびディスプレイ装置製造用中間体
CN111489991A (zh) * 2020-04-22 2020-08-04 京东方科技集团股份有限公司 显示面板及制作方法
CN115274942A (zh) * 2022-08-02 2022-11-01 厦门大学 一种微型倒装芯片的转移方法

Also Published As

Publication number Publication date
CN115274942B (zh) 2023-06-27
CN115274942A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2024027201A1 (zh) 一种微型倒装芯片的转移方法
JP6533838B2 (ja) マイクロ発光ダイオードの搬送方法、製造方法、装置及び電子機器
US11404403B2 (en) Micro LED display module and method of manufacturing the same
KR101666214B1 (ko) 이방성 도전 필름, 이의 제조 방법 및 이를 포함하는 표시 장치
KR20180024099A (ko) 접합 조립체 및 이를 포함하는 표시 장치
JP2021110875A (ja) ディスプレイ装置の製造方法、ディスプレイ装置、およびディスプレイ装置製造用中間体
TW201301301A (zh) 連接方法、連接體之製造方法、連接體
US11916041B2 (en) Method for repairing a light-emitting device and a method for manufacturing an LED panel
WO2018221372A1 (ja) 残渣層除去方法、残渣層除去装置、及び表示モジュール
KR20200136807A (ko) 디스플레이 장치, 소스 기판 구조체, 구동 기판 구조체, 및 디스플레이 장치의 제조 방법
US11508780B2 (en) Method of manufacturing display apparatus, display apparatus, and structure for manufacturing display apparatus
WO2014125536A1 (ja) 半導体モジュールおよび半導体チップ実装方法
JPH01132138A (ja) Icチップの電気的接続方法、樹脂バンプ形成材料および液晶表示器
CN1885514A (zh) 薄膜上倒装片封装结构
JP3055193B2 (ja) 回路の接続方法及び液晶装置の製造方法
JPH01209736A (ja) 半導体素子の交換方法
KR100792555B1 (ko) 개선된 패턴 전극의 본딩 구조 및 그 본딩 방법
KR20010064618A (ko) 레이저를 이용한 유리 기판에서의 회로 소자 접합 및 탈착방법
KR101524975B1 (ko) 칩 제거용 공구 및 이를 이용한 칩 제거 방법
CN109673110A (zh) Led芯片的固晶方法及具有其的显示模组的封装方法
KR102286348B1 (ko) 마이크로 led 패키지 구조 및 조립방법
US20240179842A1 (en) Display screen and manufacturing method thereof
CN115172191B (zh) 微器件巨量转移方法及显示面板
CN101916736B (zh) 修补线路的方法
US20230073010A1 (en) Method for mass transfer, led display device, and display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23848912

Country of ref document: EP

Kind code of ref document: A1