WO2024024788A1 - 電池及び電極材料 - Google Patents

電池及び電極材料 Download PDF

Info

Publication number
WO2024024788A1
WO2024024788A1 PCT/JP2023/027223 JP2023027223W WO2024024788A1 WO 2024024788 A1 WO2024024788 A1 WO 2024024788A1 JP 2023027223 W JP2023027223 W JP 2023027223W WO 2024024788 A1 WO2024024788 A1 WO 2024024788A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
opening
pouch
electrode
positive electrode
Prior art date
Application number
PCT/JP2023/027223
Other languages
English (en)
French (fr)
Inventor
昭人 福永
英二郎 岩瀬
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024024788A1 publication Critical patent/WO2024024788A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to batteries and electrode materials.
  • a problem to be solved by an embodiment of the present disclosure is to provide a battery whose size can be appropriately adjusted without using a special device or the like and which has excellent energy density.
  • Another problem to be solved by another embodiment of the present disclosure is to provide an electrode material that can be applied to the battery described above.
  • the specific means to solve the problem are as follows. ⁇ 1> Equipped with multiple electrode materials,
  • the electrode material includes a first pouch, a first current collector, a positive electrode, a separator, a negative electrode, a second current collector, and a second pouch in this order, At least one of the adjacent electrode materials has a first opening between the first pouch and the first current collector, and a first opening between the second pouch and the second current collector. at least one of the second openings between; At least the other of the adjacent electrode materials has at least one of a first insertion part formed by the first current collector and a second insertion part formed by the second current collector, Adjacent electrode materials are joined by at least one of inserting the first insertion part into the first opening and inserting the second insertion part into the second opening.
  • the length of the first insertion portion is 1 mm to 10 mm smaller than the length of the first current collector other than the first insertion portion
  • the length of the second insertion portion is 1 mm to 10 mm smaller than the length of the first current collector other than the first insertion portion.
  • a first pouch, a first current collector, a positive electrode, a separator, a negative electrode, a second current collector, and a second pouch are provided in this order, a first opening between the first pouch and the first current collector; a second opening between the second pouch and the second current collector; Further comprising one or more selected from the group consisting of a first insertion part made of a current collector and a second insertion part made of the second current collector, electrode material.
  • the size can be adjusted as appropriate without using a special device or the like, and it is possible to provide a battery with excellent energy density. Further, according to another embodiment of the present disclosure, an electrode material that can be applied to the battery described above can be provided.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of an electrode material.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of an electrode material.
  • FIG. 3 is a schematic cross-sectional view showing one embodiment of a battery.
  • FIG. 4 is a top view of the electrode material shown in FIG. 3.
  • FIG. 5 is a top view of one embodiment of a battery.
  • FIG. 6 is a top view of one embodiment of a battery.
  • FIG. 7 is a schematic cross-sectional view for explaining one embodiment of the method for manufacturing the electrode material shown in FIG. 2.
  • a numerical range expressed using " ⁇ " means a range that includes the numerical values written before and after " ⁇ " as lower and upper limits.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the value shown in the Examples.
  • the term "process” includes not only an independent process but also a process that is not clearly distinguishable from other processes, as long as the intended purpose of the process is achieved. .
  • the amount of each component in the composition means the total amount of the multiple substances present in the composition, unless otherwise specified. .
  • a combination of two or more preferred aspects or forms is a more preferred aspect or form.
  • the term “solid component” refers to a component that is solid at 25°C and 1 atm
  • the term “liquid component” refers to a component that is liquid at 25°C and 1 atm.
  • the battery of the present disclosure includes a plurality of electrode materials,
  • the electrode material includes a first pouch, a first current collector, a positive electrode, a separator, a negative electrode, a second current collector, and a second pouch in this order, At least one of the adjacent electrode materials has a first opening between the first pouch and the first current collector and a second opening between the second pouch and the second current collector. having at least one opening; At least the other of the adjacent electrode materials has at least one of a first insertion part formed by a first current collector and a second insertion part formed by a second current collector, Adjacent electrode materials are joined by at least one of the insertion of the first insertion part into the first opening and the insertion of the second insertion part into the second opening.
  • the size can be adjusted as appropriate without using any special equipment, and the battery has excellent energy density.
  • the battery of the present disclosure includes a plurality of electrode materials and has a structure in which an insertion portion of the other electrode material is inserted into an opening of one of the adjacent electrode materials.
  • the size of the battery can be adjusted by increasing or decreasing the number of electrode materials used.
  • the distance between adjacent electrode materials can be made smaller than that in the case where a plurality of conventional solid-state batteries or the like are arranged, and it is presumed that the energy density can be improved.
  • the battery of the present disclosure may include an adhesive layer between the first pouch and the first current collector and between the second pouch and the second current collector.
  • the distance between the positive electrodes and between the negative electrodes (i.e., the distance between the electrodes) of the adjacent electrode materials is preferably 20 mm or less, respectively, from the viewpoint of improving energy density. , more preferably 10 mm or less, even more preferably 5 mm or less, and particularly preferably 0 ⁇ m (contacting).
  • the distance between the electrodes can be measured using a caliper, a scale, or the like. Specifically, calipers conforming to JIS B 7507 (2013) can be used.
  • the ratio of the thickness of the first current collector to the thickness of the positive electrode is preferably less than 1, more preferably 0.05 to 0.1, and 0.05 to 0.1. It is more preferably from 0.01 to 0.5, particularly preferably from 0.01 to 0.1.
  • the thickness is the arithmetic average of the thicknesses at three locations measured by cross-sectional observation. In cross-sectional observation, a known microscope (for example, a scanning electron microscope) can be used.
  • the battery of the present disclosure includes a plurality of electrode materials, it is preferable that the first pouch and the second pouch included in the electrode material arranged at the end are bonded together.
  • the first pouch and the second pouch can contain a thermoplastic resin.
  • Thermoplastic resins include polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), cyclic olefin polymer, triacetyl cellulose (TAC), polyimide (PI), polyamide (PA), and ethylene-vinyl acetate copolymer.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PE polyethylene
  • PE polyethylene
  • TAC triacetyl cellulose
  • PI polyimide
  • PA polyamide
  • EVA ethylene-vinyl acetate copolymer
  • EVA ethylene vinyl alcohol copolymer
  • PVDC polyvinylidene chloride
  • nylon ONY
  • the content of the thermoplastic resin with respect to the total mass of the pouch is not particularly limited, and may be 50% by mass or more, 70% by mass or more, or 90% by mass or more. , 100% by mass.
  • the pouch may contain additives such as pigments, dyes, ultraviolet absorbers, light stabilizers, and antioxidants.
  • the thickness of the pouch is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, and preferably 10 ⁇ m or more from the viewpoint of supporting the first current collector etc. well and the transportability. More preferred. From the viewpoint of flexibility and lightness, the thickness is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the materials, thickness, etc. constituting the first pouch and the second pouch may be the same or different.
  • the first current collector can contain a conventionally known material contained in a positive electrode current collector.
  • the first current collector preferably contains one or more metals selected from the group consisting of aluminum, aluminum alloys, stainless steel, nickel, and titanium; It is more preferable to contain one or more metals.
  • the first current collector may have a coating layer containing one or more of carbon, nickel, titanium, silver, gold, platinum, and vanadium oxide on the surface.
  • the thickness of the first current collector is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and particularly preferably 10 ⁇ m or more from the viewpoint of transportability. From the viewpoint of flexibility and lightness, the thickness is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the positive electrode can contain a positive electrode active material.
  • the positive electrode active material is preferably a material that can reversibly insert and release lithium ions.
  • the positive electrode active material examples include transition metal oxides and elements that can be composited with lithium (for example, sulfur). Among the above, the positive electrode active material is preferably a transition metal oxide.
  • the transition metal oxide is at least one transition metal element selected from the group consisting of Co (cobalt), Ni (nickel), Fe (iron), Mn (manganese), Cu (copper), and V (vanadium).
  • element Ma is preferably a transition metal oxide.
  • the molar ratio of Li to Ma (Li/Ma) is preferably 0.3 to 2.2.
  • transition metal oxides include Group 1 elements other than lithium, Group 2 elements, Al (aluminum), Ga (gallium), In (indium), Ge (germanium), Sn (tin), Pb ( At least one transition metal element (hereinafter referred to as "element Mb") selected from the group consisting of lead), Sb (antimony), Bi (bismuth), Si (silicon), P (phosphorus), and B (boron). .) may be included.
  • element Mb transition metal element selected from the group consisting of lead
  • Sb antimony
  • Bi bismuth
  • Si silicon
  • P phosphorus
  • B boron
  • transition metal oxides include transition metal oxides having a layered rock salt structure, transition metal oxides having a spinel structure, lithium-containing transition metal phosphate compounds, lithium-containing transition metal halide phosphate compounds, and lithium-containing transition metal oxides.
  • transition metal oxides having a layered rock salt structure transition metal oxides having a spinel structure
  • lithium-containing transition metal phosphate compounds lithium-containing transition metal halide phosphate compounds
  • lithium-containing transition metal oxides examples include silicic acid compounds.
  • transition metal oxides having a layered rock salt structure examples include LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 2 O 2 (lithium nickel oxide), LiNi 0.85 Co 0.10 Al 0.05 O 2 (nickel Lithium cobalt aluminate [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobalt oxide [NMC]), LiNi 0.5 Mn 0.5 O 2 (lithium manganese nickel oxide) etc.
  • LiCoO 2 lithium cobalt oxide [LCO]
  • LiNi 2 O 2 lithium nickel oxide
  • LiNi 0.85 Co 0.10 Al 0.05 O 2 nickel Lithium cobalt aluminate [NCA]
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 nickel manganese lithium cobalt oxide [NMC]
  • LiNi 0.5 Mn 0.5 O 2 lithium manganese nickel oxide
  • transition metal oxides having a spinel structure examples include LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 , Li 2 NiMn 3 O 8 and the like.
  • lithium-containing transition metal phosphate compounds include olivine-type iron phosphates (e.g., LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 ), iron pyrophosphates (e.g., LiFeP 2 O 7 ), and cobalt phosphate. salts (for example, LiCoPO 4 ), monoclinic nasicon type vanadium phosphate salts (for example, Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate)), and the like.
  • olivine-type iron phosphates e.g., LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3
  • iron pyrophosphates e.g., LiFeP 2 O 7
  • cobalt phosphate. salts for example, LiCoPO 4
  • monoclinic nasicon type vanadium phosphate salts for example, Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate)
  • lithium-containing transition metal halogenated phosphate compounds include iron fluorophosphates (e.g., Li 2 FePO 4 F), manganese fluorophosphates (e.g., Li 2 MnPO 4 F), and cobalt fluorophosphates. (For example, Li 2 CoPO 4 F).
  • lithium-containing transition metal silicate compound examples include Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 CoSiO 4 , and the like.
  • the transition metal oxide is preferably a transition metal oxide having a layered rock salt structure, such as LiCoO 2 (lithium cobalt oxide [LCO]), LiNi 0.85 Co 0.10 Al 0.05 O 2 (nickel cobalt oxide), Lithium aluminate [NCA]), and LiNi 1/3 Co 1/3 Mn 1/3 O 2 (lithium nickel manganese cobalt oxide [NMC]). preferable.
  • LiCoO 2 lithium cobalt oxide [LCO]
  • LiNi 0.85 Co 0.10 Al 0.05 O 2 nickel cobalt oxide
  • NCA Lithium aluminate
  • NMC lithium nickel manganese cobalt oxide
  • the positive electrode active material may be a commercially available product or a synthetic product manufactured by a known method (for example, a calcination method).
  • the positive electrode active material obtained by the calcination method may be washed using water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the positive electrode active material may have a carbon film on its surface.
  • the shape of the positive electrode active material is not limited, but from the viewpoint of ease of handling, it is preferably particulate.
  • the volume average particle size of the positive electrode active material is not limited, and can be, for example, 0.1 ⁇ m to 50 ⁇ m.
  • the volume average particle size of the positive electrode active material is preferably 0.3 ⁇ m to 40 ⁇ m, more preferably 0.5 ⁇ m to 30 ⁇ m.
  • the volume average particle size of the positive electrode active material is 0.3 ⁇ m or more, the positive electrode can be easily formed, and the material constituting the positive electrode can be prevented from scattering during handling.
  • the volume average particle size of the positive electrode active material is 40 ⁇ m or less, the thickness of the electrode material can be easily adjusted, and the generation of voids can be suppressed during the molding process.
  • the volume average particle size of the positive electrode active material is measured by the following method.
  • a dispersion containing 0.1% by mass of positive electrode active material is prepared by mixing the positive electrode active material and a solvent (eg, heptane, octane, toluene, or xylene).
  • a dispersion liquid irradiated with 1 kHz ultrasonic waves for 10 minutes is used as a measurement sample.
  • a laser diffraction/scattering particle size distribution analyzer for example, LA-920 manufactured by Horiba, Ltd.
  • data is acquired 50 times at a temperature of 25° C. to determine the volume average particle size.
  • a quartz cell is used as the measurement cell.
  • the above measurement is performed using five samples, and the average of the measured values is taken as the volume average particle diameter of the positive electrode active material.
  • JIS Z 8828:2013 refers the volume average particle diameter of the positive electrode active material.
  • Examples of methods for adjusting the particle size of the positive electrode active material include methods using a crusher, a crusher, and a classifier. Further, as a method for adjusting the particle size of the positive electrode active material, a known milling method may be applied.
  • the positive electrode may contain one type of positive electrode active material, or may contain two or more types of positive electrode active materials. Further, even when the positive electrode includes one type of positive electrode active material, positive electrode active materials having different particle sizes may be used in combination.
  • the content of the positive electrode active material relative to the total volume of the positive electrode is preferably 35% to 75% by volume, more preferably 40% to 75% by volume, and preferably 45% to 75% by volume. More preferred.
  • the surface of the positive electrode active material may be coated with a surface coating agent.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Si, or Li.
  • the metal oxides include spinel titanate, tantalum oxides, niobium oxides, and lithium niobate compounds.
  • the positive electrode may contain an inorganic solid electrolyte from the viewpoint of improving battery performance (discharge capacity, output characteristics, etc.).
  • solid electrolyte means a solid electrolyte that can move ions inside.
  • the inorganic solid electrolyte is included in the solid component.
  • inorganic solid electrolytes do not contain organic substances as their main ionic conductivity material, they are not suitable for organic solid electrolytes (for example, polymer electrolytes represented by polyethylene oxide (PEO), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). It is clearly distinguished from organic electrolyte salts represented by ). Furthermore, since the inorganic solid electrolyte is solid in a steady state, it is not dissociated or liberated into cations or anions.
  • organic solid electrolytes for example, polymer electrolytes represented by polyethylene oxide (PEO), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). It is clearly distinguished from organic electrolyte salts represented by ). Furthermore, since the inorganic solid electrolyte is solid in a steady state, it is not dissociated or liberated into cations or anions.
  • inorganic electrolyte salts for example, LiPF 6 , LiBF 4 , lithium bis(fluorosulfonyl)imide (LiFSI), LiCl
  • LiPF 6 lithium bis(fluorosulfonyl)imide
  • LiFSI lithium bis(fluorosulfonyl)imide
  • the inorganic solid electrolyte is not limited as long as it has conductivity for ions of metal elements belonging to Group 1 or Group 2 of the periodic table, and generally does not have electronic conductivity.
  • the inorganic solid electrolyte preferably has ion conductivity for lithium ions.
  • the inorganic solid electrolyte examples include sulfide-based inorganic solid electrolytes and oxide-based inorganic solid electrolytes.
  • the inorganic solid electrolyte is preferably a sulfide-based inorganic solid electrolyte from the viewpoint of forming a good interface between the active material and the inorganic solid electrolyte.
  • the inorganic solid electrolyte is preferably particulate.
  • the volume average particle size of the inorganic solid electrolyte is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more.
  • the upper limit of the volume average particle size of the inorganic solid electrolyte is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the volume average particle size of the inorganic solid electrolyte is measured by a method similar to the method for measuring the volume average particle size of the positive electrode active material.
  • the positive electrode may contain one type of inorganic solid electrolyte alone, or may contain two or more types of inorganic solid electrolytes.
  • the content of the inorganic solid electrolyte with respect to the total volume of the positive electrode is 25% to 35% by volume. More preferably, it is % by volume.
  • the positive electrode preferably contains a conductive additive from the viewpoint of improving the electronic conductivity of the positive electrode active material.
  • the conductive aid is not limited, and any known conductive aid can be used.
  • the conductive aid is included in the solid component.
  • Examples of conductive aids include graphite (e.g. natural graphite, artificial graphite), carbon black (e.g. acetylene black, Ketjen black, furnace black), amorphous carbon (e.g. needle coke), carbon fiber (e.g. gas phase grown carbon fibers, carbon nanotubes), other carbonaceous materials (e.g. graphene, fullerenes), metal powders (e.g. copper powder, nickel powder), metal fibers (e.g. copper fibers, nickel fibers), conductive polymers (e.g. Examples include polyaniline, polypyrrole, polythiophene, polyacetylene, polyphenylene derivatives, etc.).
  • graphite e.g. natural graphite, artificial graphite
  • carbon black e.g. acetylene black, Ketjen black, furnace black
  • amorphous carbon e.g. needle coke
  • carbon fiber e.g. gas phase grown carbon fibers, carbon nanotubes
  • the positive electrode may contain one type of conductive aid alone, or may contain two or more types of conductive aid.
  • the content of the conductive additive is 0.5% to 5.0% by volume based on the total volume of the positive electrode from the viewpoint of improving the electronic conductivity of the positive electrode active material. It is preferably 1.0% to 4.5% by volume, and even more preferably 2.0% to 4.0% by volume.
  • the positive electrode may contain an electrolyte.
  • the electrolyte is included in the liquid component.
  • the electrolytic solution is not limited, and any known electrolytic solution can be used. Examples of the electrolytic solution include an electrolytic solution containing an electrolyte and a solvent. Specific examples of the electrolytic solution include, for example, an electrolytic solution containing a lithium salt compound as an electrolyte and a carbonate compound as a solvent.
  • the lithium salt compound examples include lithium hexafluorophosphate.
  • the electrolytic solution may contain one type of lithium salt compound alone, or may contain two or more types of lithium salt compounds.
  • carbonate compounds include chain carbonate compounds such as ethyl methyl carbonate (also referred to as EMC), dimethyl carbonate (also referred to as DMC), and diethyl carbonate (DEC), ethylene carbonate (also referred to as EC), and propylene carbonate (PC).
  • chain carbonate compounds such as ethyl methyl carbonate (also referred to as EMC), dimethyl carbonate (also referred to as DMC), and diethyl carbonate (DEC), ethylene carbonate (also referred to as EC), and propylene carbonate (PC).
  • Examples include cyclic carbonate compounds such as (also referred to as).
  • the electrolytic solution may contain one type of carbonate compound alone, two or more types of carbonate compounds, or a combination of one or more types of chain carbonate compounds and one or more types of cyclic carbonate compounds. You may.
  • electrolyte contained in the electrolytic solution examples include the materials described in the section of "Inorganic solid electrolyte" above.
  • an ionic liquid may be used as a component of the electrolytic solution.
  • Ionic liquids can be used either as electrolytes or as solvents.
  • the content of the electrolyte in the total volume of the positive electrode is preferably 70% by volume or less, preferably 60% by volume or less, and more preferably 55% by volume or less.
  • the lower limit of the content of the electrolytic solution in the positive electrode is not limited, and may be 0% by volume or more, or may exceed 0% by volume.
  • the positive electrode may contain, as a liquid component, a solvent other than the solvent included as a component of the electrolytic solution (hereinafter also simply referred to as "solvent").
  • solvent include alcohol compound solvents, ether compound solvents, amide compound solvents, amino compound solvents, ketone compound solvents, aromatic compound solvents, aliphatic compound solvents, and nitrile compound solvents.
  • the boiling point of the solvent is preferably 50°C or higher, more preferably 70°C or higher at normal pressure (ie, 1 atm).
  • the upper limit of the boiling point of the solvent is preferably 250° C. or lower, more preferably 220° C. or lower at normal pressure (ie, 1 atm).
  • the positive electrode may contain one type of solvent alone, or may contain two or more types of solvents.
  • the content of liquid components (i.e., electrolyte and solvent) relative to the total volume of the positive electrode is preferably 70% by volume or less, preferably 60% by volume or less, and more preferably 55% by volume or less. preferable.
  • the content of the liquid component in the positive electrode is 70% by volume or less, it is possible to suppress the liquid component from seeping out when the positive electrode is molded. Further, when the liquid component contains a solvent, deterioration of battery performance can be suppressed.
  • the lower limit of the content of the liquid component in the positive electrode is not limited, and may be 0% by volume or more, or may exceed 0% by volume.
  • the liquid component in the positive electrode is preferably liquid even at -10°C, and is preferably liquid even at -20°C. It is preferable that there be. That is, the component in the positive electrode that is liquid at 25°C is preferably a component that does not solidify at -10°C, and is preferably a component that does not solidify even at -20°C.
  • the positive electrode may contain a binder, the above additives, and the like.
  • the thickness of the positive electrode is preferably 100 ⁇ m to 900 ⁇ m, more preferably 150 ⁇ m to 600 ⁇ m. preferable.
  • separator As the separator, those conventionally used in semi-solid batteries or all-solid batteries can be appropriately selected and used.
  • porous membranes containing resin materials such as polyethylene, polypropylene, polybutene, polyvinyl chloride, polyethylene terephthalate, polyether sulfone, polyamide, polyimide, polyimide amide, polyaramid, polycycloolefin, nylon, polytetrafluoroethylene, etc. can be mentioned.
  • the thickness of the separator is not particularly limited, and can be 0.5 ⁇ m to 40 ⁇ m.
  • the second current collector can contain a conventionally known material contained in a negative electrode current collector.
  • the second current collector preferably contains one or more metals selected from the group consisting of aluminum, copper, copper alloys, stainless steel, nickel, and titanium, and includes aluminum, copper, copper alloys, and stainless steel. It is more preferable to contain one or more metals selected from the group consisting of steel.
  • the second current collector may have a coating layer containing one or more of carbon, nickel, titanium, silver, gold, platinum, and vanadium oxide on the surface.
  • the thickness of the second current collector is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and particularly preferably 10 ⁇ m or more from the viewpoint of transportability. From the viewpoint of flexibility and lightness, the thickness is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the negative electrode can contain a negative electrode active material.
  • the negative electrode active material is preferably a negative electrode active material that can reversibly insert and release lithium ions.
  • negative electrode active materials include carbonaceous materials, metal oxides (e.g., tin oxide), silicon oxide, metal composite oxides, lithium alone, lithium alloys (e.g., lithium aluminum alloy), and metals that can form alloys with lithium (e.g., lithium aluminum alloys). Examples include Sn, Si, In), etc.
  • the negative electrode active material is preferably a carbonaceous material or a lithium composite oxide from the viewpoint of reliability.
  • carbonaceous materials include petroleum pitch, carbon black (e.g. acetylene black), graphite (e.g. natural graphite, artificial graphite (e.g. vapor grown graphite)), hard carbon, synthetic resin (e.g. polyacrylonitrile (PAN)). , furfuryl alcohol resin) and the like.
  • carbonaceous materials carbon fibers (polyacrylonitrile carbon fibers, cellulose carbon fibers, pitch carbon fibers, vapor grown carbon fibers, dehydrated PVA (polyvinyl alcohol) carbon fibers, lignin carbon fibers, glassy carbon fibers, activated carbon fiber, etc.) may also be used.
  • graphite include mesophase microspheres, graphite whiskers, and tabular graphite.
  • "flat plate shape” means a shape having two main planes facing in opposite directions.
  • the metal composite oxide is preferably a metal composite oxide capable of intercalating and deintercalating lithium.
  • the metal composite oxide capable of intercalating and deintercalating lithium preferably contains at least one element selected from the group consisting of titanium and lithium, from the viewpoint of high current density charge/discharge characteristics.
  • the metal oxide and metal composite oxide are particularly preferably amorphous oxides.
  • the metal oxide and metal composite oxide are chalcogenides.
  • Chalcogenides are reaction products of metal elements and elements of group 16 in the periodic table.
  • amorphous oxides of metalloid elements and chalcogenides are preferred, and elements of groups 13 to 15 in the periodic table, Al, Ga, Si, Sn , Ge, Pb, Sb, and Bi, and chalcogenide.
  • the negative electrode active material further contains titanium.
  • a negative electrode containing titanium has excellent rapid charging and discharging characteristics due to small volume fluctuations during intercalation and desorption of lithium ions, and from the viewpoint of suppressing electrode deterioration and extending the life of lithium ion secondary batteries.
  • the active material is preferably Li 4 Ti 5 O 12 (lithium titanate [LTO]).
  • the negative electrode active material may be a commercially available product or a synthetic product produced by a known method (for example, a calcination method).
  • the negative electrode active material obtained by the calcination method may be washed using water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the shape of the negative electrode active material is not limited, but is preferably particulate from the viewpoint of ease of handling and easy control of uniformity during mass production.
  • the volume average particle diameter of the negative electrode active material is preferably 0.1 ⁇ m to 60 ⁇ m, more preferably 0.3 ⁇ m to 50 ⁇ m, and particularly preferably 0.5 ⁇ m to 40 ⁇ m.
  • the volume average particle size of the negative electrode active material is measured by a method similar to the method for measuring the volume average particle size of the positive electrode active material.
  • Examples of methods for adjusting the particle size of the negative electrode active material include a method using a pulverizer or a classifier.
  • the negative electrode may contain only one type of negative electrode active material, or may contain two or more types of negative electrode active materials.
  • the content of the negative electrode active material relative to the total volume of the negative electrode is preferably 30% to 70% by volume, more preferably 40% to 60% by volume, and more preferably 45% to 55% by volume. More preferred.
  • the surface of the negative electrode active material may be coated with the above surface coating agent.
  • the negative electrode may contain the above-mentioned inorganic solid electrolyte from the viewpoint of improving battery performance (discharge capacity, output characteristics, etc.).
  • the negative electrode may contain one type of inorganic solid electrolyte alone, or may contain two or more types of inorganic solid electrolytes.
  • the content of the inorganic solid electrolyte relative to the total volume of the negative electrode is 30% by volume to 70% by volume. It is preferably vol.%, more preferably 40 vol.% to 60 vol.%, even more preferably 45 vol.% to 55 vol.%.
  • the negative electrode contains the above conductive additive from the viewpoint of improving the electronic conductivity of the negative electrode active material.
  • the negative electrode may contain one kind of conductive aid alone, or may contain two or more kinds of conductive aid.
  • the content of the conductive additive is 1.0% by volume from the viewpoint of improving the electronic conductivity of the negative electrode active material, and the content of the inorganic solid electrolyte relative to the total volume of the negative electrode is 1.0% by volume. It is preferably 5.0% by volume, more preferably 1.5% to 4.0% by volume, and even more preferably 2.0% to 3.0% by volume.
  • the negative electrode may contain the above electrolyte.
  • the content of the electrolyte in the total volume of the negative electrode is preferably 70% by volume or less, preferably 60% by volume or less, and more preferably 55% by volume or less.
  • the lower limit of the content of the electrolyte in the negative electrode is not limited, and may be 0% by volume or more, or may exceed 0% by volume.
  • the negative electrode may contain the above solvent.
  • the negative electrode may contain one type of solvent alone, or may contain two or more types of solvents.
  • the content of liquid components (i.e., electrolyte and solvent) relative to the total volume of the negative electrode is preferably 70% by volume or less, preferably 60% by volume or less, and more preferably 55% by volume or less. preferable.
  • the content of the liquid component in the negative electrode is 70% by volume or less, it is possible to suppress the liquid component from seeping out when the negative electrode is molded.
  • the liquid component contains a solvent, deterioration of battery performance can be suppressed.
  • the lower limit of the content of the liquid component in the negative electrode is not limited, and may be 0% by volume or more, or may exceed 0% by volume.
  • the negative electrode may contain a binder, the above additives, and the like.
  • the thickness of the negative electrode is preferably 100 ⁇ m to 900 ⁇ m, and preferably 150 ⁇ m to 600 ⁇ m. is more preferable.
  • At least one of the adjacent electrode materials constituting the battery of the present disclosure has a first opening between the first pouch and the first current collector, and a first opening between the second pouch and the second current collector. and at least one of the second openings between the openings.
  • the first opening and the second opening will also be collectively referred to as openings.
  • FIG. 1 is a schematic diagram showing an embodiment of an electrode material having openings both between the first pouch and the first current collector and between the second pouch and the second current collector. A cross-sectional view is shown.
  • the electrode material 10 has a first opening 15A between the first pouch 11 and the first current collector 12, and a first opening 15A between the second pouch 13 and the second current collector 14.
  • a second opening 15B is provided in between.
  • the first opening 15A and the second opening 15B may be provided at different ends of the electrode material 10 (see FIG. 1), or may be provided at the same end (not shown).
  • the positive electrode is indicated by 16, the separator is indicated by 17, and the negative electrode is indicated by 18. Note that FIG. 1 shows an example in which the first opening etc.
  • FIG. 1 describes an electrode material having a rectangular shape when viewed from above, the electrode material is not limited to this, and may be square or the like.
  • FIG. 1 shows an example in which one first opening and one second opening are provided at the end of the electrode material in the length direction, the present invention is not limited to this. More than one first opening or the like may be provided at one end.
  • an opening may be provided between the adhesive layer and the first current collector or between the adhesive layer and the second current collector.
  • the length of the opening is La
  • the length of the surface where the pouch and the current collector are in contact is Lb
  • Lb is greater than or equal to La.
  • the length of the opening is not particularly limited as long as it is larger than the length of the insertion portion, and may be 5 mm to 20 mm.
  • the length of the first opening 15A is indicated by the symbol L1.
  • the electrode material may have a plurality of openings (for example, two or more openings at one end in the width direction), and the length of the opening described above is a preferable value for each opening. Indicates a range.
  • the height of the opening is not particularly limited as long as it is greater than the thickness of the insertion portion, and may be 0.05 ⁇ m to 5 ⁇ m.
  • the height of the first opening 15A is indicated by the symbol H1.
  • the electrode material may have a plurality of openings (for example, two or more openings at one end in the width direction), and the height of the opening described above is a preferable value for the height of each opening. Indicates a range.
  • the width of the opening is not particularly limited as long as it is larger than the width of the insertion portion, and may be 50 mm to 1000 mm.
  • the electrode material may have a plurality of openings (for example, two or more openings at one end in the width direction), and the width of the opening described above is based on a preferable numerical range of the width for each opening. show.
  • the method of forming the opening is not particularly limited, and for example, when stacking the current collector on the surface of the pouch, the edges of the pouch are bent, etc., and the opening is formed in the area where the pouch and the current collector do not touch. (opening).
  • At least the other of the adjacent electrode materials constituting the battery of the present disclosure has at least one of a first insertion portion formed by a first current collector and a second insertion portion formed by a second current collector.
  • the first insertion section and the second insertion section will also be collectively referred to as the insertion section.
  • the first insertion portion is preferably not provided at the same end as the first opening, and the second insertion portion is preferably not provided at the same end as the second opening. It is preferable.
  • the electrode material may include both an opening and an insert.
  • FIG. 2 shows a schematic cross-sectional view showing an embodiment of an electrode material including a first opening, a second opening, a first insertion part, and a second insertion part.
  • the electrode material 20 includes a first pouch 21, a first current collector 22, a positive electrode 26, a separator 27, a negative electrode 28, a second pouch 23, and a second current collector 24.
  • the electrode material 20 has a first opening 25A between the first pouch 21 and the first current collector 22, and a first opening 25A between the second pouch 23 and the second current collector 24.
  • An opening 25B is provided in between.
  • the electrode material 20 includes a first insertion part 29A formed by the first current collector 22 and a second insertion part 29B formed by the second current collector 24.
  • FIG. 2 shows a configuration in which the first insertion portion 29A and the second insertion portion 29B are provided at different ends of the electrode material 20, the present invention is not limited to this.
  • the first insertion portion 29A and the second insertion portion 29B are shaded.
  • FIG. 2 shows a form in which the first opening 25A and the second opening 25B are provided at different ends of the electrode material 20, the present invention is not limited to this.
  • the electrode material 20 includes a first insertion part 29A formed by the first current collector 22 and a second insertion part 29B formed by the second current collector 24.
  • FIG. 2 shows a configuration in which the first insertion portion 29A and the second insertion portion 29B are provided at different ends of the electrode material 20, the present invention is not limited to this.
  • the first insertion portion 29A and the second insertion portion 29B are shaded.
  • the first insertion part and the second opening are provided at one end in the length direction of the electrode material, and the second insertion part and the first opening are provided at the other end in the length direction.
  • the present invention is not limited to this, and it may be provided at the ends in the width direction, or may be provided at the ends in the length direction and the width direction.
  • FIG. 2 describes an electrode material having a rectangular shape when viewed from above, the shape is not limited to this, and may be a square or the like. Note that FIG. 2 shows an example in which one first opening, one second opening, one first insertion part, and one second insertion part are provided at the end in the length direction of the electrode material.
  • the present invention is not limited thereto, and two or more first openings or the like may be provided at one end.
  • the ratio of the length of the first insertion part to the length of the first opening is set to 0. It is preferably from 6 to 1, more preferably from 0.65 to 1.
  • the ratio of the length of the second insertion part to the length of the second opening is set to 0. It is preferably from 6 to 1, more preferably from 0.65 to 1.
  • the length of the insertion portion is not particularly limited and may be 3 mm to 15 mm.
  • the length of the second insertion portion 29B is indicated by the symbol L2.
  • Ld is greater than or equal to Lc from the viewpoint of supporting the positive electrode or the negative electrode.
  • the length of the insertion part is preferably smaller than the length of the part other than the insertion part of the current collector; It is more preferable that the length is 1 mm to 10 mm smaller than the length of the other portions.
  • the electrode material may have a plurality of insertion parts (for example, two or more insertion parts are provided at one end in the width direction), and the length of the insertion part described above is a preferable value for the length of each insertion part. Indicates a range.
  • the thickness of the insertion portion is preferably 3 ⁇ m to 100 ⁇ m, more preferably 5 ⁇ m to 70 ⁇ m, and particularly preferably 10 ⁇ m to 50 ⁇ m. From the viewpoint of facilitating insertion of the insertion part into the opening, the ratio of the thickness of the insertion part to the height of the opening (thickness of the insertion part/height of the opening) is preferably 0.01 to 1. It is preferably from 0.1 to 0.9.
  • the electrode material may have a plurality of insertion portions (for example, two or more insertion portions are provided at one end in the width direction), and the thickness of the insertion portion described above is a preferable numerical range of the thickness for each insertion portion. show.
  • the width of the insertion portion is preferably 5 mm to 200 mm from the viewpoint of improving bonding stability and energy efficiency.
  • the width of the insertion portion and the opening can be measured by using calipers, scales, and the like. Specifically, calipers conforming to JIS B 7507 (2013) can be used. From the viewpoint of improving electrical stability, it is preferable that the following formula 5 is satisfied, where the width of the first insertion portion is W1A and the width of the first opening is W2A. (Formula 5) W2A>W1A>W2A/2 From the viewpoint of improving electrical stability, it is preferable that the following formula 6 be satisfied, where the width of the second insertion portion is W1B and the width of the second opening is W2B.
  • the electrode material may have a plurality of insertion portions (for example, two or more insertion portions are provided at one end in the width direction), and the width of the insertion portion described above is based on a preferable numerical range of the width for each insertion portion. show.
  • the first insertion part and the second insertion part can be provided by setting the lengths of the first current collector and the second current collector to be larger than the lengths of the positive electrode, separator, etc. Furthermore, the first insertion portion and the second insertion portion can be provided by adjusting the arrangement position of the current collector. In addition, when stacking the current collector on the surface of the pouch, the first insertion part and the second insertion part are formed by bending the ends of the pouch, etc., to form a part where the pouch and the current collector do not contact. One method is to do so. When the insertion part is formed by bending the end of the pouch, it is preferable to bend or cut the end of the pouch when inserting it into the opening so that it does not interfere with the insertion of the insertion part into the opening.
  • the battery of the present disclosure may include an adhesive layer between the first pouch and the first current collector and between the second pouch and the second current collector. Thereby, the adhesion between the pouch and the current collector can be improved.
  • the adhesive layer can contain the above thermoplastic resin.
  • the content of the thermoplastic resin with respect to the total mass of the adhesive layer is not particularly limited, and may be 50% by mass or more, 70% by mass or more, or 90% by mass or more. It may be 100% by mass.
  • the adhesive layer may contain the above additives.
  • the thickness of the adhesive layer is not particularly limited, and can be 0.1 ⁇ m to 3 ⁇ m.
  • FIG. 3 adjacent electrode materials are indicated by 30A and 30B, and the battery is indicated by 30C.
  • the electrode materials 30A, 30B include first pouches 31A, 31B, first current collectors 32A, 32B, positive electrodes 36A, 36B, separators 37A, 37B, negative electrodes 38A, 38B, second pouches 33A, 33B, and second current collectors 34A and 34B. As shown in FIG.
  • the electrode material 30A has a first opening 35A between the first pouch 31A and the first current collector 32A, and a first opening 35A between the second pouch 33A and the second current collector 34A. A second opening 35B is provided in between.
  • FIG. 3 shows a configuration in which the first opening 35A and the second opening 35B are provided at different ends of the electrode material 30A, the invention is not limited to this.
  • the electrode material 30A includes a first insertion portion 39A formed by a first current collector 32A and a second insertion portion 39B formed by a second current collector 34A.
  • FIG. 3 shows a configuration in which the first insertion portion 39A and the second insertion portion 39B are provided at different ends of the electrode material 30A, the invention is not limited to this.
  • the first insertion portion 39A and the second insertion portion 39B are shaded.
  • the electrode material 30B has a first opening 35C between the first pouch 31B and the first current collector 32B, and a second opening in the second pouch 33B and the second current collector 34B. Equipped with 35D.
  • FIG. 3 shows a form in which the first opening 35C and the second opening 35D are provided at different ends of the electrode material 30B, the invention is not limited to this.
  • the electrode material 30B includes a first insertion portion 39C formed by the first current collector 32B and a second insertion portion 39D formed by the second current collector 34B.
  • FIG. 3 shows a configuration in which the first insertion portion 39C and the second insertion portion 39D are provided at different ends of the electrode material 30B, the present invention is not limited to this. Moreover, in FIG. 3, the first insertion portion 39C and the second insertion portion 39D are shaded. As shown in FIG. 3, the first insertion part 39A of the electrode material 30A is inserted into the first opening 35C of the electrode material 30B, and the second insertion part 39D of the electrode material 30B is inserted into the first opening 35C of the electrode material 30B. It is inserted into the second opening 35B of the electrode 30A, and adjacent electrode materials are joined.
  • FIG. 3 shows an example in which the first opening etc. are provided at the end in the length direction of the electrode material, the invention is not limited to this, and it may be provided in the end in the width direction. It may be provided at the ends in the length direction and the width direction.
  • FIG. 4 is a top view of the battery 30C shown in FIG. 3.
  • FIGS. 3 and 4 show an example of a battery using two electrode materials, the present invention is not limited to this, and a battery may use three or more electrode materials.
  • the first insertion portion 39A and the first opening 35C are each indicated by a dotted line.
  • the width of the first insertion section 39A is indicated by W1
  • the width of the first opening 35C is indicated by W2.
  • FIG. 4 shows an example in which one first insertion portion 39A is provided at the end of the electrode material 30A
  • the present invention is not limited to this, and two or more first insertion portions may be provided. 39A may be provided.
  • FIG. 4 shows an example in which one first opening 35C is provided at the end of the electrode material 30B, the present invention is not limited to this, and two or more first openings 35C are provided at the end of the electrode material 30B. may be provided.
  • the electrode materials may be arranged in one direction, as shown in FIG. 5, or in multiple directions, as shown in FIG.
  • the electrode materials are designated by 40A, 40B, 40C, 40D, 40E, 40F
  • the battery is designated by 40G.
  • the electrode materials are designated by 50A, 50B, 50C, 50D, 50E, 50F
  • the battery is designated by 50G.
  • the battery of the present disclosure can be manufactured by arranging a plurality of electrode materials and inserting the insertion portion of the other electrode material into the opening of one of the adjacent electrode materials.
  • the first pouch and the second pouch provided with the electrode material disposed at the ends may be bonded together.
  • the bonding method is not particularly limited, and can be performed by using a pressure roller or the like. After inserting the insert, the opening may be collapsed by applying pressure.
  • a plurality of batteries of the present disclosure may be stacked and crushed by the weight of the batteries.
  • the opening may be crushed by packaging it in an aluminum exterior body and performing vacuum degassing.
  • the electrode material of the present disclosure includes a first pouch, a first current collector, a positive electrode, a separator, a negative electrode, a second current collector, and a second pouch in this order, a first opening between the first pouch and the first current collector; a second opening between the second pouch and the second current collector; and a second insertion portion formed by a second current collector. Since each member constituting the electrode material has been described above, description thereof will be omitted here.
  • FIGS. 7(A) to 7(C) show an embodiment of the method for manufacturing the electrode material 20 shown in FIG. 2, but the method for manufacturing the electrode material is not limited thereto.
  • the first current collector 22 is provided on the surface of the first pouch 21 with the end portion bent, and the first pouch 21 and the first current collector A first opening 25A is formed between the opening 22 and the opening 25A.
  • a second current collector 24 is provided on the surface of the second pouch 23 with its end bent, and a second opening is formed between the second pouch 23 and the second current collector 24.
  • a portion 25B is formed.
  • the length of the first current collector 22 is greater than the length of the first pouch 21, and a first insertion portion 29A is provided at the end of the first current collector 22.
  • the length of the second current collector 24 is greater than the length of the second pouch 23, and a second insertion portion 29B is provided at the end of the second current collector 24.
  • a positive electrode 26 is provided on the surface of the first current collector 22, and a negative electrode 28 is provided on the surface of the second current collector 24.
  • the length of the first current collector 22 is adjusted to be greater than the length of the positive electrode 26, and the length of the second current collector 24 is adjusted to be greater than the length of the negative electrode 28.
  • the electrode material 20 can be obtained by sandwiching the separator 27 between the positive electrode 26 and the negative electrode 28 and stacking them.
  • first pouch As the first pouch, the second pouch, the first current collector, and the second current collector, those manufactured by a conventionally known method may be used, or commercially available ones may be used.
  • a polyethylene terephthalate film is prepared as the first pouch and an aluminum foil is prepared as the first current collector, and these are laminated using an adhesive layer such as an ethylene-vinyl acetate copolymer film.
  • a first current collector can be provided on the surface of one pouch.
  • the method of folding the ends of the first pouch and the second pouch is not particularly limited. Examples include a method of sandwiching a non-adhesive film or the like between the pouch and the electric body, a method of sandwiching the ends of the first pouch and the second pouch with clips, etc., and holding the pouch in a bent state.
  • the method of forming the positive electrode on the surface of the first current collector and the method of forming the negative electrode on the surface of the second current collector are not particularly limited, and can be performed by conventionally known methods.
  • a positive electrode or a negative electrode can be formed by applying an electrode material containing the above-described positive electrode active material or negative electrode active material to the surface of the first current collector or the second current collector.
  • the method of sandwiching and stacking the separator between the positive electrode and the negative electrode is not particularly limited, and can be performed by a conventionally known method. For example, there is a method using a pressure roller.
  • composition for positive electrode (1) After mixing 0.9 mol/L LiPF 6 solution (electrolyte) into a mixed solution of ethylene carbonate, propylene carbonate, and diethyl carbonate, vinylene carbonate (VC) is further mixed, It was set as electrolyte solution X1. (2) 2 g of conductive additive (Ketjen Black) and 174 g of positive electrode active material (lithium iron phosphate) were mixed at 1500 rpm (revolutions per The mixture was stirred for 30 seconds (hereinafter the same) to prepare a kneaded product Y1 (176 g).
  • LiPF 6 solution electrolyte solution
  • VC vinylene carbonate
  • electrolyte solution X1 2 g of conductive additive (Ketjen Black) and 174 g of positive electrode active material (lithium iron phosphate) were mixed at 1500 rpm (revolutions per The mixture was stirred for 30 seconds (hereinafter the same) to prepare a kneaded product
  • Electrolyte X1 64 g was added to kneaded material Y1 (176 g), and stirred at 1500 rpm for 120 seconds using a mixer (Awatori Rentaro ARE-310, manufactured by Shinky Co., Ltd.) to form a positive electrode composition. I got something.
  • PET Polyethylene terephthalate
  • the adhesive was applied to the surface of the PET film and dried to form an 8 ⁇ m thick adhesive layer. Both ends in the length direction and both ends in the width direction of the PET film are bent, and aluminum foil (first current collector, thickness 20 ⁇ m, length 215 mm, width 159 mm, surface roughness Ra0.5 ⁇ m, carbon coating), and a first opening A at one end in the length direction, a first opening B at one end in the width direction, and a first opening B at the other end in the length direction. A first insertion portion B was formed at the other end of the insertion portion A in the width direction. The length of the first opening A was 15 mm, the height was 100 ⁇ m, and the width was 149 mm.
  • the length of the first opening B was 15 mm, the height was 100 ⁇ m, and the width was 205 mm.
  • the length of the first insertion portion A was 10 mm, the thickness was 20 ⁇ m, and the width was 144 mm.
  • the length of the first insertion portion B was 10 mm, the thickness was 10 ⁇ m, and the width was 200 mm.
  • a positive electrode composition was applied to a portion of the first current collector other than the first insertion portion to form a positive electrode with a thickness of 600 ⁇ m.
  • the adhesive was applied to the surface of the PET film and dried to form an 8 ⁇ m thick adhesive layer. Both ends in the length direction and both ends in the width direction of the PET film are bent, and a copper foil (second current collector, thickness 10 ⁇ m, length 217 mm, width 161 mm, surface roughness Ra0.55 ⁇ m), and a second opening A at one end in the length direction, a second opening B at one end in the width direction, and a second insertion part A at the other end in the length direction. , a second insertion portion B was formed at the other end in the width direction.
  • the length of the second opening A was 15 mm, the height was 100 ⁇ m, and the width was 151 mm.
  • the length of the second opening B was 15 mm, the height was 100 ⁇ m, and the width was 207 mm.
  • the second insertion portion A had a length of 10 mm, a thickness of 10 ⁇ m, and a width of 146 mm.
  • the second insertion portion B had a length of 10 mm, a thickness of 10 ⁇ m, and a width of 202 mm.
  • a negative electrode composition was applied to a portion of the second current collector other than the second insertion portion to form a negative electrode with a thickness of 500 ⁇ m.
  • a polyethylene separator (thickness: 20 ⁇ m) was prepared as a separator.
  • the separator was sandwiched between the positive and negative electrodes and pressed using a flat plate press to obtain an electrode material.
  • the electrode material has a first opening A and a second insertion part A at one end in the length direction, and a second opening A and a first insertion part A at the other end in the length direction.
  • a first opening B and a second insertion part B are provided at one end in the width direction
  • a second opening B and a first insertion part B are provided at the other end in the width direction.
  • PET Polyethylene terephthalate
  • the adhesive was applied to the surface of the PET film and dried to form an 8 ⁇ m thick adhesive layer. Both ends of the PET film in the width direction are bent, and aluminum foil (first current collector, thickness 20 ⁇ m, length 215 mm, width 149 mm, surface roughness Ra 0.5 ⁇ m) is laminated on the surface of the adhesive layer. A first opening was formed at one end in the width direction, and a first insertion portion was formed at the other end in the width direction. The length of the first opening was 15 mm, the height was 100 ⁇ m, and the width was 149 mm. The length of the first insertion part was 10 mm, the thickness was 144 ⁇ m, and the width was 20 mm.
  • a positive electrode composition was applied to a portion of the first current collector other than the first and third insertion portions to form a positive electrode with a thickness of 600 ⁇ m.
  • the adhesive was applied to the surface of the PET film and dried to form an 8 ⁇ m thick adhesive layer. Both ends of the PET film in the width direction are bent, and a copper foil (second current collector, thickness 10 ⁇ m, length 217 mm, width 151 mm, surface roughness Ra 0.55 ⁇ m) is laminated on the surface of the adhesive layer. A second opening was formed at one end in the width direction, and a second insertion portion was formed at the other end in the width direction. The length of the second opening was 15 mm, the height was 100 ⁇ m, and the width was 151 mm. The length of the second insertion part was 10 mm, the thickness was 10 ⁇ m, and the width was 146 mm.
  • a negative electrode composition was applied to a portion of the second current collector other than the second insertion portion to form a negative electrode with a thickness of 500 ⁇ m.
  • a polyethylene separator (thickness: 20 ⁇ m) was prepared as a separator.
  • the separator was sandwiched between the positive and negative electrodes and pressed using a flat plate press to obtain an electrode material.
  • the electrode material includes a first opening and a second insertion portion at one end in the width direction, and a second opening and the first insertion portion at the other end in the width direction.
  • PET Polyethylene terephthalate
  • An adhesive containing an ethylene-vinyl acetate copolymer was applied to the surface of the PET film and dried to form an 8 ⁇ m thick adhesive layer.
  • Aluminum foil (first current collector, thickness 20 ⁇ m, length 205 mm, width 149 mm, surface roughness Ra 0.5 ⁇ m, carbon coating) was laminated on the surface of the adhesive layer.
  • a positive electrode composition was applied to the surface of the first current collector to form a positive electrode with a thickness of 600 ⁇ m.
  • An adhesive containing an ethylene-vinyl acetate copolymer was applied to the surface of the PET film and dried to form an 8 ⁇ m thick adhesive layer.
  • a copper foil (second current collector, thickness 10 ⁇ m, length 207 mm, width 151 mm, surface roughness Ra 0.55 ⁇ m) was laminated on the surface of the adhesive layer.
  • a negative electrode composition was applied to the surface of the second current collector to form a negative electrode with a thickness of 500 ⁇ m.
  • a polyethylene separator (thickness: 20 ⁇ m) was prepared as a separator.
  • the separator was sandwiched between the positive and negative electrodes and pressed using a flat plate press to obtain a battery.
  • the battery did not have an opening or an insert.
  • Example 1 Four electrode materials manufactured in Example 1 were prepared and joined through openings and insertion portions provided at both ends in the length direction and width direction to manufacture a battery with a length of 450 mm and a width of 318 mm. The distance between positive electrodes and the distance between negative electrodes of adjacent electrode materials was 0 mm. At the time of joining, the end of the pouch where the insertion part was formed was bent so as not to interfere with insertion of the insertion part into the opening, and after joining, it was cut. The first pouch and the second pouch at the longitudinal and widthwise ends of the manufactured battery were pasted together using a vacuum laminator, and housed in an aluminum exterior body. The total volume of the batteries housed in the exterior body was 0.21L.
  • Two electrode materials manufactured in Example 2 were prepared and joined through openings and insertion portions provided at both ends in the width direction to manufacture a battery with a length of 450 mm and a width of 169 mm.
  • the end of the pouch where the insertion part was formed was bent so as not to interfere with insertion of the insertion part into the opening, and after joining, it was cut.
  • the first pouch and the second pouch at the lengthwise and widthwise ends of the manufactured battery were bonded together using a vacuum laminator.
  • the distance between positive electrodes and the distance between negative electrodes of adjacent electrode materials was 0 mm.
  • Two of the above batteries were arranged in the length direction to have a size of 450 mm in length x 318 mm in width. After the two batteries were lined up, they were housed in an aluminum housing.
  • the total volume of the batteries housed in the exterior body was 0.20L.
  • the above-described bonding of the electrode materials is performed by inserting the first insertion portion of one of the adjacent electrode materials into the first opening of the other electrode material, and inserting the first insertion portion of the other electrode material into the first opening of one of the adjacent electrode materials. This was done by inserting the second insertion portion of the other electrode material into the opening of No. 2.
  • the first pouch and the second pouch at the ends in the length direction and width direction of the battery manufactured in Comparative Example 1 were pasted together using a vacuum laminator, and four of these were prepared, and two pouches were prepared in the length direction and width direction. They were lined up one by one and had a size of 450 mm in length x 318 mm in width. After arranging the four batteries, they were housed in an aluminum case. The distance between positive electrodes and the distance between negative electrodes of adjacent batteries was 10 mm. The total volume of the batteries housed in the exterior body was 0.23L.
  • the potential of the batteries of Example 1, Example 2, and Comparative Example 1 was all 3.2 V, and the total capacity was 43 Wh.
  • the energy density (Wh/L) of the batteries of Example 1, Example 2, and Comparative Example 1 was determined by dividing the total capacity of the battery by the total volume.
  • the ratio of the energy density (Wh/L) of the batteries of Example 1 and Example 2 to the energy density (Wh/L) of the battery of Comparative Example 1 (hereinafter referred to as energy density ratio) was evaluated based on the following evaluation criteria.
  • the evaluation results are summarized in Table 1. (Evaluation criteria)
  • C Energy density ratio was less than 1.05.
  • the size of the battery of the present disclosure can be adjusted as appropriate by joining the electrode materials without using any special equipment or the like. Further, from Table 1, it can be seen that the battery of the present disclosure has excellent energy density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

複数の電極材料を備え、電極材料は、第1のパウチと、第1の集電体と、正電極と、セパレータと、負電極と、第2の集電体と、第2のパウチとをこの順に備え、隣り合う電極材料の少なくとも一方は、第1のパウチと第1の集電体との間の第1の開口部、及び、第2のパウチと第2の集電体との間の第2の開口部の少なくとも一方を有し、隣り合う電極材料の少なくとも他方は、第1の集電体による第1の挿入部、及び、第2の集電体による第2の挿入部の少なくとも一方を有し、第1の開口部への第1の挿入部の挿入、及び第2の開口部への第2の挿入部の挿入の少なくとも一方により、隣り合う電極材料が接合されている、電池、並びに電池に適用される電極材料。

Description

電池及び電極材料
 本開示は、電池及び電極材料に関する。
 近年、半固体電池又は全固体電池の開発が検討されている。
 通常、半固体電池及び全固体電池は、その用途等に応じて、所望のサイズに適宜カットして使用される(特開2020-564419号公報参照)。
 所望のサイズの半固体電池及び全固体電池を製造する装置、又は、半固体電池及び全固体電池をカットする装置の設計及び開発には多くの費用、時間等が必要となる。
 また、本発明者らは、半固体電池又は全固体電池を複数個並べて使用する場合に、半固体電池又は全固体電池のサイズによっては、電池間に隙間が生じ、エネルギー密度が低下する虞があるとの知見を得た。
 本開示の一実施形態が解決しようとする課題は、サイズを特別な装置等を使用することなく、適宜調整することができ、エネルギー密度に優れる電池を提供することである。
 また、本開示の他の一実施形態が解決しようとする課題は、上記電池に適用される電極材料を提供することである。
 課題を解決するための具体的手段は以下の通りである。
<1> 複数の電極材料を備え、
 上記電極材料は、第1のパウチと、第1の集電体と、正電極と、セパレータと、負電極と、第2の集電体と、第2のパウチとをこの順に備え、
 隣り合う上記電極材料の少なくとも一方は、上記第1のパウチと上記第1の集電体との間の第1の開口部、及び、上記第2のパウチと上記第2の集電体との間の第2の開口部の少なくとも一方を有し、
 隣り合う上記電極材料の少なくとも他方は、上記第1の集電体による第1の挿入部、及び、上記第2の集電体による第2の挿入部の少なくとも一方を有し、
 上記第1の開口部への上記第1の挿入部の挿入、及び上記第2の開口部への上記第2の挿入部の挿入の少なくとも一方により、隣り合う上記電極材料が接合されている、
 電池。
<2> 隣り合う上記電極材料が備える上記正電極同士、及び上記負電極同士が接する、上記<1>に記載の電池。
<3> 上記正電極の厚みに対する上記第1の集電体の厚みの比、及び上記負電極の厚みに対する上記第2の集電体の厚みの比が、1未満である、上記<1>又は<2>に記載の電池。
<4> 隣り合う上記電極材料が備える上記正電極の厚みをそれぞれA1、A2とし、隣り合う上記電極材料が備える上記負電極の厚みをそれぞれB1、B2としたとき、下記式1及び式2を満たす、上記<1>~<3>のいずれか1つに記載の電池。
(式1)0.8≦A1/A2≦1.2
(式2)0.8≦B1/B2≦1.2
<5> 隣り合う上記電極材料が備える上記第1の集電体の厚みをそれぞれC1、C2とし、隣り合う上記電極材料が備える上記第2の集電体の厚みをそれぞれD1、D2としたとき、下記式3及び式4を満たす、上記<1>~<4>のいずれか1つに記載の電池。
(式3)0.8≦C1/C2≦1.2
(式4)0.8≦D1/D2≦1.2
<6> 上記第1の挿入部の長さが、上記第1の集電体の上記第1の挿入部以外の部分の長さよりも1mm~10mm小さく、且つ、上記第2の挿入部の長さが、上記第2の集電体の上記第2の挿入部以外の部分の長さよりも1mm~10mm小さい、上記<1>~<5>のいずれか1つに記載の電池。
<7> 上記第1の挿入部の幅をW1A、上記第1の開口部の幅をW2Aとしたとき、以下の式5を満たし、且つ、上記第2の挿入部の幅をW1B、上記第2の開口部の幅をW2Bとしたとき、以下の式6を満たす、上記<1>~<6>のいずれか1つに記載の電池。
(式5)W1A>W2A/2
(式6)W1B>W2B/2
<8> 端部に配置された上記電極材料が備える上記第1のパウチ及び上記第2のパウチが貼り合わせられている、上記<1>~<7>のいずれか1つに記載の電池。
<9> 第1のパウチと、第1の集電体と、正電極と、セパレータと、負電極と、第2の集電体と、第2のパウチとをこの順に備え、
 上記第1のパウチと上記第1の集電体との間の第1の開口部、上記第2のパウチと上記第2の集電体との間の第2の開口部、上記第1の集電体による第1の挿入部、及び、上記第2の集電体による第2の挿入部からなる群より選択される1つ以上を更に備える、
 電極材料。
 本開示の一実施形態によれば、サイズを特別な装置等を使用することなく、適宜調整することができ、上記エネルギー密度に優れる電池を提供することができる。
 また、本開示の他の一実施形態によれば、上記電池に適用される電極材料を提供することができる。
図1は、電極材料の一実施形態を示す模式断面図である。 図2は、電極材料の一実施形態を示す模式断面図である。 図3は、電池の一実施形態を示す模式断面図である。 図4は、図3に示す電極材料の上面図である。 図5は、電池の一実施形態を示す上面図である。 図6は、電池の一実施形態を示す上面図である。 図7は、図2に示す電極材料の製造方法の一実施形態を説明するための模式断面図である。
 以下、本開示の実施形態について図面を参照して説明する。本開示は、以下の実施形態に何ら制限されず、本開示の目的の範囲内において、適宜変更を加えて実施することができる。各図面において同一の符号を用いて示す構成要素は、同一の構成要素であることを意味する。各図面において重複する構成要素、及び符号については、説明を省略することがある。図面における寸法の比率は、必ずしも実際の寸法の比率を表すものではない。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範
囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本開示において、2以上の好ましい態様又は形態の組み合わせは、より好ましい態様又は形態である。
 本開示において、「固体成分」とは、25℃、1気圧下において固体状である成分を意味し、「液体成分」とは、25℃、1気圧下において液体状である成分を意味する。
 本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
[電池]
 本開示の電池は、複数の電極材料を備え、
 電極材料は、第1のパウチと、第1の集電体と、正電極と、セパレータと、負電極と、第2の集電体と、第2のパウチとをこの順に備え、
 隣り合う電極材料の少なくとも一方は、第1のパウチと第1の集電体との間の第1の開口部、及び、第2のパウチと第2の集電体との間の第2の開口部の少なくとも一方を有し、
 隣り合う電極材料の少なくとも他方は、第1の集電体による第1の挿入部、及び、第2の集電体による第2の挿入部の少なくとも一方を有し、
 第1の開口部への第1の挿入部の挿入、及び第2の開口部への第2の挿入部の挿入の少なくとも一方により、隣り合う電極材料が接合されている。
 本開示の電池によれば、サイズを特別な装置等を使用することなく、適宜調整することができ、エネルギー密度に優れる。
 上記効果が奏される理由は明らかではないが、以下のように推定される。
 本開示の電池は、複数の電極材料を備え、且つ隣り合う電極材料の一方が備える開口部へ、他方の電極材料が備える挿入部が挿入される構造を有している。
 上記構造によれば、電池のサイズは、使用する電極材料の数を増減させることにより調整することができる。また、上記構造によれば、隣り合う電極材料同士の距離を、従来の固体電池等を複数並べる場合に比べて小さくすることができ、エネルギー密度を向上することができると推測する。
 本開示の電池は、第1のパウチと第1の集電体との間、及び第2のパウチと第2の集電体との間に接着層を備えていてもよい。
 本開示の電池において、隣り合う上記電極材料が備える正電極同士、及び負電極同士の距離(すなわち、電極間の距離)は、エネルギー密度を向上する観点から、それぞれ、20mm以下であることが好ましく、10mm以下であることがより好ましく、5mm以下であることが更に好ましく、0μm(接している)ことが特に好ましい。
 本開示において、上記電極間の距離は、ノギス、スケール等を使用することにより測定することができる。具体的には、JIS B 7507(2013)に準拠するノギスを使用することができる。
 本開示の電池が備える電極材料において、正電極の厚みに対する第1の集電体の厚みの比(第1の集電体の厚み/正電極の厚み)、及び負電極の厚みに対する第2の集電体の厚みの比(第2の集電体の厚み/負電極の厚み)は、それぞれ、1未満であることが好ましく、0.05~0.1であることがより好ましく、0.01~0.5であることが更に好ましく、0.01~0.1であることが特に好ましい。
 本開示において、厚みは、断面観察によって測定される3か所の厚みの算術平均とする。断面観察においては、公知の顕微鏡(例えば、走査型電子顕微鏡)を用いることができる。
 本開示の電池において、隣り合う電極材料が備える正電極の厚みをそれぞれA1、A2とし、隣り合う電極材料が備える負電極の厚みをそれぞれB1、B2としたとき、エネルギー密度を向上する観点から、下記式1及び式2を満たすことが好ましい。
(式1)0.8≦A1/A2≦1.2
(式2)0.8≦B1/B2≦1.2
 本開示の電池において、隣り合う電極材料が備える第1の集電体の厚みをそれぞれC1、C2とし、隣り合う電極材料が備える第2の集電体の厚みをそれぞれD1、D2としたとき、エネルギー密度を向上する観点から、下記式3及び式4を満たすことが好ましい。
(式3)0.8≦C1/C2≦1.2
(式4)0.8≦D1/D2≦1.2
 本開示の電池は、電極材料を複数備えているが、端部に配置された電極材料が備える第1のパウチ及び第2のパウチは貼り合わせられていることが好ましい。
(第1のパウチ及び第2のパウチ)
 第1のパウチ及び第2のパウチ(以下、まとめて、パウチともいう。)は、熱可塑性樹脂を含有することができる。熱可塑性樹脂としては、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)、環状オレフィンポリマー、トリアセチルセルロース(TAC)、ポリイミド(PI)、ポリアミド(PA)、エチレン-酢酸ビニル共重合体(EVA)、エチレンビニルアルコール共重合体(EVOH)、ポリ塩化ビニリデン(PVDC)、ナイロン(ONY)等が挙げられる。
 パウチの総質量に対する熱可塑性樹脂の含有率は、特に限定されるものではなく、50質量%以上であってもよく、70質量%以上であってもよく、90質量%以上であってもよく、100質量%であってもよい。
 パウチは、顔料、染料、紫外線吸収剤、光安定化剤、酸化防止剤等の添加剤を含有してもよい。
 パウチの厚みは第1の集電体等を良好に支持する観点、及び搬送性の観点等からは、5μm以上であることが好ましく、7μm以上であることがより好ましく、10μm以上であることが更に好ましい。
 上記厚みは、柔軟性、及び軽量性の観点から、100μm以下であることが好ましく、70μm以下であることがより好ましく、50μm以下であることが更に好ましい。
 第1のパウチ及び第2のパウチを構成する材料、厚み等については同一であってもよく、異なっていてもよい。
(第1の集電体)
 第1の集電体は、正極集電体に含有される従来公知の材料を含有することができる。第1の集電体は、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、及びチタンからなる群より選択される1種以上の金属を含有することが好ましく、アルミニウム、及びアルミニウム合金からなる群より選択される1種以上の金属を含有することがより好ましい。
 また、第1の集電体は、表面に、カーボン、ニッケル、チタン、銀、金、白金、及び酸化バナジウムの1以上を含む被覆層を有していてもよい。
 第1の集電体の厚みは、搬送性等の観点から、3μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることが特に好ましい。
 上記厚みは、柔軟性、及び軽量性の観点から、100μm以下であることが好ましく、70μm以下であることがより好ましく、50μm以下であることが更に好ましい。
(正電極)
 正電極は、正極活物質を含有することができる。正極活物質は、可逆的にリチウムイオンを挿入及び放出できる物質であることが好ましい。
 正極活物質としては、遷移金属酸化物、及びリチウムと複合化できる元素(例えば、硫黄)が挙げられる。上記の中でも、正極活物質は、遷移金属酸化物であることが好ましい。
 遷移金属酸化物は、Co(コバルト)、Ni(ニッケル)、Fe(鉄)、Mn(マンガン)、Cu(銅)、及びV(バナジウム)からなる群より選択される少なくとも1種の遷移金属元素(以下、「元素Ma」という。)を含む遷移金属酸化物であることが好ましい。
 遷移金属酸化物がLi及び元素Maを含む場合、Maに対するLiのモル比(Li/Ma)は、0.3~2.2であることが好ましい。
 また、遷移金属酸化物は、リチウム以外の第1族の元素、第2族の元素、Al(アルミニウム)、Ga(ガリウム)、In(インジウム)、Ge(ゲルマニウム)、Sn(スズ)、Pb(鉛)、Sb(アンチモン)、Bi(ビスマス)、Si(ケイ素)、P(リン)、及びB(ホウ素)からなる群より選択される少なくとも1種の遷移金属元素(以下、「元素Mb」という。)を含んでいてもよい。
 元素Mbの含有量は、元素Maの物質量に対して、0mol%~30mol%であることが好ましい。
 遷移金属酸化物としては、層状岩塩型構造を有する遷移金属酸化物、スピネル型構造を有する遷移金属酸化物、リチウム含有遷移金属リン酸化合物、リチウム含有遷移金属ハロゲン化リン酸化合物、リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 層状岩塩型構造を有する遷移金属酸化物としては、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5(マンガンニッケル酸リチウム)等が挙げられる。
 スピネル型構造を有する遷移金属酸化物としては、LiCoMnO、LiFeMn、LiCuMn、LiCrMn、LiNiMn等が挙げられる。
 リチウム含有遷移金属リン酸化合物としては、オリビン型リン酸鉄塩(例えば、LiFePO、及びLiFe(PO)、ピロリン酸鉄塩(例えば、LiFeP)、リン酸コバルト塩(例えば、LiCoPO)、単斜晶ナシコン型リン酸バナジウム塩(例えば、Li(PO(リン酸バナジウムリチウム))等が挙げられる。
 リチウム含有遷移金属ハロゲン化リン酸化合物としては、フッ化リン酸鉄塩(例えば、LiFePOF)、フッ化リン酸マンガン塩(例えば、LiMnPOF)、フッ化リン酸コバルト塩(例えば、LiCoPOF)等が挙げられる。
 リチウム含有遷移金属ケイ酸化合物としては、LiFeSiO、LiMnSiO、LiCoSiO等が挙げられる。
 遷移金属酸化物は、層状岩塩型構造を有する遷移金属酸化物であることが好ましく、LiCoO(コバルト酸リチウム[LCO])、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、及びLiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])からなる群より選択される少なくとも1種の化合物であることがより好ましい。
 正極活物質は、市販品であってもよく、公知の方法(例えば、焼成法)によって製造された合成品であってもよい。例えば、焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、又は有機溶剤を用いて洗浄されていてもよい。
 また、正極活物質は、その表面にカーボン被膜を有していてもよい。
 正極活物質の形状は、制限されないが、取扱性の観点から、粒子状であることが好ましい。
 正極活物質の体積平均粒径は、制限されず、例えば、0.1μm~50μmとすることができる。正極活物質の体積平均粒径は、0.3μm~40μmであることが好ましく、0.5μm~30μmであることがより好ましい。
 正極活物質の体積平均粒径が0.3μm以上であることで、正電極を容易に形成することができ、また、取り扱いの際に正電極を構成する材料が飛散することを抑制できる。正極活物質の体積平均粒径が40μm以下であることで、電極材料の厚みを容易に調節することができ、また、成形過程において空隙の発生を抑制することができる。
 正極活物質の体積平均粒径は、以下の方法により測定する。
 正極活物質と溶剤(例えば、ヘプタン、オクタン、トルエン、又はキシレン)とを混合することによって、0.1質量%の正極活物質を含む分散液を調製する。1kHzの超音波を10分間照射した分散液を測定試料とする。レーザ回折/散乱式粒度分布測定装置(例えば、株式会社堀場製作所製のLA-920)を用いて、温度25℃の条件下でデータの取り込みを50回行い、体積平均粒径を求める。測定用のセルには、石英セルを用いる。上記測定を5つの試料を用いて行い、測定値の平均を正極活物質の体積平均粒径とする。その他の詳細な条件については、必要に応じて、「JIS Z 8828:2013」を参照する。
 正極活物質の粒径を調整する方法としては、例えば、粉砕機、解砕機、分級機を用いる方法が挙げられる。また、正極活物質の粒径を調整する方法としては、公知のミリング法を適用してもよい。
 正電極は、1種単独の正極活物質を含んでいてもよく、2種以上の正極活物質を含んでいてもよい。
 また、正電極が1種の正極活物質を含む場合であっても、粒径の異なる正極活物質を組み合わせて使用してもよい。
 正電極の全体積に対する正極活物質の含有率は、35体積%~75体積%であることが好ましく、40体積%~75体積%であることより好ましく、45体積%~75体積%であること更に好ましい。
 正極活物質の表面は、表面被覆剤で被覆されていてもよい。表面被覆剤としては、例えば、Ti、Nb、Ta、W、Zr、Si、又はLiを含む金属酸化物が挙げられる。上記金属酸化物としては、例えば、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、及びニオブ酸リチウム系化合物が挙げられる。
 正電極は、電池性能(放電容量、出力特性等)の向上という観点から、無機固体電解質を含有してもよい。
 ここで、「固体電解質」とは、内部においてイオンを移動させることができる固体状の電解質を意味する。
 無機固体電解質は、固体成分に含まれる。
 無機固体電解質は、主たるイオン伝導度材料として有機物を含むものではないことから、有機固体電解質(例えば、ポリエチレンオキシド(PEO)に代表される高分子電解質、及びリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)に代表される有機電解質塩)とは明確に区別される。
 また、無機固体電解質は、定常状態では固体であるため、カチオン若しくはアニオンに解離又は遊離していない。よって、電解液、ポリマー中でカチオン若しくはアニオンに解離又は遊離している無機電解質塩(例えば、LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiCl)とも明確に区別される。
 無機固体電解質は、周期律表における第1族又は第2族に属する金属元素のイオンの伝導性を有する無機固体電解質であれば制限されず、電子伝導性を有しないことが一般的である。
 電池がリチウムイオン電池に用いられる場合、無機固体電解質は、リチウムイオンのイオン伝導性を有することが好ましい。
 無機固体電解質としては、例えば、硫化物系無機固体電解質、酸化物系無機固体電解質が挙げられる。上記の中でも、無機固体電解質は、活物質と無機固体電解質との間に良好な界面を形成できるという観点から、硫化物系無機固体電解質であることが好ましい。
 無機固体電解質は、粒子状であることが好ましい。
 無機固体電解質の体積平均粒径は、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。無機固体電解質の体積平均粒径の上限は、100μm以下であることが好ましく、50μm以下であることがより好ましい。
 無機固体電解質の体積平均粒径の測定は、上記正極活物質の体積平均粒径の測定方法に準ずる方法により測定する。
 正電極は、1種単独の無機固体電解質を含んでいてもよく、2種以上の無機固体電解質を含んでいてもよい。
 正電極が無機固体電解質を含む場合、界面抵抗の低減、及び電池特性維持効果(例えばサイクル特性の向上)の観点から、正電極の全体積に対する無機固体電解質の含有率は、25体積%~35体積%であること更に好ましい。
 正電極は、正極活物質の電子伝導性の向上という観点から、導電助剤を含むことが好ましい。導電助剤としては、制限されず、公知の導電助剤を利用できる。
 導電助剤は、固体成分に含まれる。
 導電助剤としては、黒鉛(例えば、天然黒鉛、人造黒鉛)、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック)、無定形炭素(例えば、ニードルコークス)、炭素繊維(例えば、気相成長炭素繊維、カーボンナノチューブ)、他の炭素質材料(例えば、グラフェン、フラーレン)、金属粉(例えば、銅粉、ニッケル粉)、金属繊維(例えば、銅繊維、ニッケル繊維)、導電性高分子(例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体等)が挙げられる。
 正電極は、1種単独の導電助剤を含んでいてもよく、2種以上の導電助剤を含んでいてもよい。
 正電極が導電助剤を含む場合、導電助剤の含有量は、正極活物質の電子伝導性の向上という観点から、正電極の全体積に対し、0.5体積%~5.0体積%であることが好ましく、1.0体積%~4.5体積%であることより好ましく、2.0体積%~4.0体積%であること更に好ましい。
 正電極は、電解液を含んでいてもよい。
 電解液は、液体成分に含まれる。
 電解液としては、制限されず、公知の電解液を利用できる。電解液としては、例えば、電解質と、溶剤と、を含む電解液が挙げられる。具体的な電解液としては、例えば、電解質としてリチウム塩化合物と、溶剤としてカーボネート化合物と、を含む電解液が挙げられる。
 リチウム塩化合物としては、例えば、ヘキサフルオロリン酸リチウムが挙げられる。電解液は、1種単独のリチウム塩化合物を含んでいてもよく、2種以上のリチウム塩化合物を含んでいてもよい。
 カーボネート化合物としては、例えば、炭酸エチルメチル(EMCともいう)、炭酸ジメチル(DMCともいう)、炭酸ジエチル(DEC)等の鎖状カーボネート化合物、及び、炭酸エチレン(ECともいう)、炭酸プロピレン(PCともいう)等の環状カーボネート化合物が挙げられる。電解液は、1種単独のカーボネート化合物を含んでいてもよく、2種以上のカーボネート化合物を含んでいてもよいし、1種以上の鎖状カーボネート化合物と1種以上の環状カーボネート化合物とを併用してもよい。
 電解液に含まれる電解質としては、例えば、上記「無機固体電解質」の項において説明した材料も挙げられる。
 電解液の成分として、例えば、イオン液体を用いてもよい。イオン液体は、電解質として用いても溶剤として用いてもよい。
 正電極の全体積に対する電解液の含有率は、70体積%以下であることが好ましく、60体積%以下であることが好ましく、55体積%以下であることがより好ましい。正電極における電解液の含有量が70体積%以下であることで、正電極を成形した際に電解液が滲み出ることを抑制することができる。
 正電極における電解液の含有率の下限は、制限されず、0体積%以上であってもよく、0体積%を超えてもよい。
 正電極は、液体成分として、電解液の成分として含まれる溶剤以外の溶剤(以下、単に「溶剤」ともいう。)を含んでいてもよい。
 溶剤としては、例えば、アルコール化合物溶剤、エーテル化合物溶剤、アミド化合物溶剤、アミノ化合物溶剤、ケトン化合物溶剤、芳香族化合物溶剤、脂肪族化合物溶剤、及びニトリル化合物溶剤が挙げられる。
 溶剤の沸点は、常圧(即ち1気圧)において、50℃以上であることが好ましく、70℃以上であることがより好ましい。溶剤の沸点の上限は、常圧(即ち1気圧)において、250℃以下であることが好ましく、220℃以下であることがより好ましい。
 正電極は、1種単独の溶剤を含んでいてもよく、2種以上の溶剤を含んでいてもよい。
 正電極の全体積に対する液体成分(即ち、電解液及び溶剤)の含有率は、70体積%以下であることが好ましく、60体積%以下であることが好ましく、55体積%以下であることがより好ましい。
 正電極における液体成分の含有量が70体積%以下であることで、正電極を成形した際に液体成分が滲み出ることを抑制することができる。また、液体成分が溶剤を含む場合には、電池性能の劣化を抑制することができる。
 正電極における液体成分の含有率の下限は、制限されず、0体積%以上であってもよく、0体積%を超えてもよい。
 なお、正電極中の液体成分、即ち、正電極中の25℃で液体状である成分は、-10℃であっても液体状であることが好ましく、-20℃であっても液体状であることが好ましい。つまり、正電極中の25℃で液体状である成分は、-10℃で固化しない成分であることが好ましく、-20℃でも固化しない成分であることが好ましい。
 正電極は、バインダー、上記添加剤等を含有してもよい。
 集電箔及びパウチの使用部材量を減らすことによる軽量化及びコストの観点、並びに電池性能の観点から、正電極の厚みは、100μm~900μmであることが好ましく、150μm~600μmであることがより好ましい。
(セパレータ)
 セパレータとしては、半固体電池又は全固体電池に従来使用されるものを適宜選択して使用することができる。セパレータとしては、ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂材料を含む多孔質膜等が挙げられる。
 セパレータの厚みは、特に限定されるものではなく、0.5μm~40μmとすることができる。
(第2の集電体)
 第2の集電体は、負極集電体に含有される従来公知の材料を含有することができる。第2の集電体は、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル、及びチタンからなる群より選択される1種以上の金属を含有することが好ましく、アルミニウム、銅、銅合金、及びステンレス鋼からなる群より選択される1種以上の金属を含有することがより好ましい。
 また、第2の集電体は、表面に、カーボン、ニッケル、チタン、銀、金、白金、及び酸化バナジウムの1以上を含む被覆層を有していてもよい。
 第2の集電体の厚みは、搬送性等の観点から、3μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることが特に好ましい。
 上記厚みは、柔軟性、及び軽量性の観点から、100μm以下であることが好ましく、70μm以下であることがより好ましく、50μm以下であることが特に好ましい。
(負電極)
 負電極は、負極活物質を含有することができる。負極活物質は、可逆的にリチウムイオンを挿入及び放出できる負極活物質であることが好ましい。
 負極活物質としては、炭素質材料、金属酸化物(例えば、酸化スズ)、酸化ケイ素、金属複合酸化物、リチウム単体、リチウム合金(例えば、リチウムアルミニウム合金)、リチウムと合金を形成可能な金属(例えば、Sn、Si、In)等が挙げられる。
 上記の中でも、負極活物質は、信頼性の観点から、炭素質材料、又はリチウム複合酸化物であることが好ましい。
 炭素質材料としては、石油ピッチ、カーボンブラック(例えば、アセチレンブラック)、黒鉛(例えば、天然黒鉛、人造黒鉛(例えば、気相成長黒鉛))、ハードカーボン、合成樹脂(例えば、ポリアクリロニトリル(PAN)、フルフリルアルコール樹脂)等を焼成してなる材料が挙げられる。
 炭素質材料として、炭素繊維(ポリアクリロニトリル系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等)を使用してもよい。
 黒鉛としては、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等も挙げられる。
 本開示において、「平板状」とは、反対方向を向く2つの主平面を有する形状を意味する。
 金属複合酸化物としては、リチウムを吸蔵及び放出可能な金属複合酸化物であることが好ましい。
 リチウムを吸蔵及び放出可能な金属複合酸化物は、高電流密度充放電特性の観点から、チタン及びリチウムからなる群より選択される少なくとも1種の元素を含むことが好ましい。
 金属酸化物、及び金属複合酸化物は、特に非晶質酸化物であることが好ましい。
 金属酸化物、及び金属複合酸化物は、カルコゲナイドであることも好ましい。カルコゲナイドは、金属元素と周期律表における第16族の元素との反応生成物である。
 非晶質酸化物、及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドが好ましく、周期律表における第13族~15族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb、及びBiからなる群より選択される少なくとも1種の元素を含む酸化物、並びにカルコゲナイドがより好ましい。
 負極活物質は、チタンを更に含むことも好ましい。リチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、そして、電極の劣化が抑制されることでリチウムイオン二次電池の寿命向上が可能となる観点から、チタンを含む負極活物質は、LiTi12(チタン酸リチウム[LTO])であることが好ましい。
 負極活物質は、市販品であってもよく、公知の方法(例えば、焼成法)によって製造された合成品であってもよい。例えば、焼成法によって得られた負極活物質は、水、酸性水溶液、アルカリ性水溶液、又は有機溶剤を用いて洗浄されていてもよい。
 負極活物質の形状は、制限されないが、取り扱い易く、そして、量産の際に均一性を管理しやすいという観点から、粒子状であることが好ましい。
 負極活物質の体積平均粒径は、0.1μm~60μmであることが好ましく、0.3μm~50μmであることがより好ましく、0.5μm~40μmであることが特に好ましい。
 負極活物質の体積平均粒径は、上記正極活物質の体積平均粒径の測定方法に準ずる方法により測定する。
 負極活物質の粒径を調整する方法としては、例えば、粉砕機、又は分級機を用いる方法が挙げられる。
 負電極は、1種単独の負極活物質を含んでいてもよく、2種以上の負極活物質を含んでいてもよい。
 負電極の全体積に対する負極活物質の含有率は、30体積%~70体積%であることが好ましく、40体積%~60体積%であることより好ましく、45体積%~55体積%であること更に好ましい。
 負極活物質の表面は、上記表面被覆剤で被覆されていてもよい。
 負電極は、電池性能(放電容量、出力特性等)の向上という観点から、上記無機固体電解質を含有してもよい。
 負電極は、1種単独の無機固体電解質を含んでいてもよく、2種以上の無機固体電解質を含んでいてもよい。
 負電極が無機固体電解質を含む場合、界面抵抗の低減、及び電池特性維持効果(例えばサイクル特性の向上)の観点から、負電極の全体積に対する無機固体電解質の含有率は、30体積%~70体積%であることが好ましく、40体積%~60体積%であることがより好ましく、45体積%~55体積%であることが更に好ましい。
 負電極は、負極活物質の電子伝導性の向上という観点から、上記導電助剤を含むことが好ましい。
 負電極は、1種単独の導電助剤を含んでいてもよく、2種以上の導電助剤を含んでいてもよい。
 負電極が導電助剤を含む場合、導電助剤の含有量は、負極活物質の電子伝導性の向上という観点から、負電極の全体積に対する無機固体電解質の含有率は、1.0体積%~5.0体積%であることが好ましく、1.5体積%~4.0体積%であることより好ましく、2.0体積%~3.0体積%であること更に好ましい。
 負電極は、上記電解液を含んでいてもよい。
 負電極の全体積に対する電解液の含有率は、70体積%以下であることが好ましく、60体積%以下であることが好ましく、55体積%以下であることがより好ましい。負電極における電解液の含有量が70体積%以下であることで、負電極を成形した際に電解液が滲み出ることを抑制することができる。
 負電極における電解液の含有率の下限は、制限されず、0体積%以上であってもよく、0体積%を超えてもよい。
 負電極は、上記溶剤を含んでいてもよい。
 負電極は、1種単独の溶剤を含んでいてもよく、2種以上の溶剤を含んでいてもよい。
 負電極の全体積に対する液体成分(即ち、電解液及び溶剤)の含有率は、70体積%以下であることが好ましく、60体積%以下であることが好ましく、55体積%以下であることがより好ましい。
 負電極における液体成分の含有量が70体積%以下であることで、負電極を成形した際に液体成分が滲み出ることを抑制することができる。また、液体成分が溶剤を含む場合には、電池性能の劣化を抑制することができる。
 負電極における液体成分の含有率の下限は、制限されず、0体積%以上であってもよく、0体積%を超えてもよい。
 負電極は、バインダー、上記添加剤等を含有してもよい。
 集電箔及びパウチの使用部材量を減らすことによる軽量化及びコストの観点、並びに電池性能の観点の観点から、負電極の厚みは、100μm~900μmであることが好ましく、150μm~600μmであることがより好ましい。
(第1の開口部及び第2の開口部)
 本開示の電池を構成する隣り合う電極材料の少なくとも一方は、第1のパウチ及び第1の集電体との間の第1の開口部、及び第2のパウチ及び第2の集電体との間の第2の開口部の少なくとも一方を備える。以下、第1の開口部及び第2の開口部を、まとめて開口部ともいう。
 図1に、第1のパウチ及び第1の集電体との間、及び第2のパウチ及び第2の集電体との間の両方に開口部を備える電極材料の一実施形態を示す模式断面図を示す。
 図1示すように、電極材料10は、第1のパウチ11及び第1の集電体12との間に第1の開口部15A、並びに第2のパウチ13及び第2の集電体14との間に第2の開口部15Bを備える。
 第1の開口部15A及び第2の開口部15Bは、電極材料10の異なる端部に設けられていてもよく(図1参照)、同一端部に設けられていてもよい(図示せず)。
 なお、図1において、正電極は符号16、セパレータは符号17、負電極は符号18で示す。
 なお、図1においては、第1の開口部等が電極材料の長さ方向の一端部に第1の開口部が、長さ方向の他端部に第2の開口部が設けられた例を示したが、これに限定されるものではなく、幅方向の端部に設けられていてもよく、長さ方向及び幅方向の端部に設けられていてもよい。
 なお、図1においては、上方から見たときの形状が長方形である電極材料について説明したが、これに限定されるものではなく、正方形等であってもよい。
 なお、図1においては、第1の開口部及び第2の開口部が電極材料の長さ方向の端部に1つ設けられた例を示したが、これに限定されるものではなく、2つ以上の第1の開口部等が一端部に設けられていてもよい。
 本開示の電池が、接着層を備える場合、開口部は、接着層と第1の集電体との間、接着層と第2の集電体との間に設けられていてもよい。
 開口部の長さをLa、パウチと集電体とが接する面の長さをLbとしたとき、LbはLa以上であることが好ましい。
 開口部の長さは、挿入部の長さよりも大きい限り、特に限定されるものではなく、5mm~20mmとすることができる。
 なお、図1において、第1の開口部15Aの長さは符号L1で示す。
 なお、電極材料は開口部を複数備えていてもよく(例えば、幅方向の一端に2以上の開口部を備える)、上記した開口部の長さは、各開口部についての長さの好ましい数値範囲を示す。
 開口部の高さは、挿入部の厚みより大きい限り、特に限定されるものではなく、0.05μm~5μmとすることができる。
 なお、図1において、第1の開口部15Aの高さは符号H1で示す。
 なお、電極材料は開口部を複数備えていてもよく(例えば、幅方向の一端に2以上の開口部を備える)、上記した開口部の高さは、各開口部についての高さの好ましい数値範囲を示す。
 開口部の幅は、挿入部の幅よりも大きい限り、特に限定されるものではなく、50mm~1000mmとすることができる。
 なお、電極材料は開口部を複数備えていてもよく(例えば、幅方向の一端に2以上の開口部を備える)、上記した開口部の幅は、各開口部についての幅の好ましい数値範囲を示す。
 開口部の形成方法は、特に限定されるものではなく、例えば、パウチの表面に集電体を積層する際、パウチの端部を折り曲げる等しておき、パウチと集電体とが接しない部分(開口部)を形成する方法が挙げられる。
(第1の挿入部及び第2の挿入部)
 本開示の電池を構成する隣り合う電極材料の少なくとも他方は、第1の集電体による第1の挿入部及び第2の集電体による第2の挿入部の少なくとも一方を有する。以下、第1の挿入部及び第2の挿入部を、まとめて挿入部ともいう。
 なお、第1の挿入部は、第1の開口部と同一端部には設けられていないことが好ましく、第2の挿入部は、第2の開口部と同一端部には設けられていないことが好ましい。
 電極材料は、開口部及び挿入部を共に備えていてもよい。
 図2に、第1の開口部、第2の開口部、第1の挿入部及び第2の挿入部を備える電極材料の一実施形態を示す模式断面図を示す。
 図2において、電極材料20は、第1のパウチ21、第1の集電体22、正電極26、セパレータ27、負電極28、第2のパウチ23、及び第2の集電体24を備える。
 図2に示すように、電極材料20は、第1のパウチ21及び第1の集電体22の間に第1の開口部25A、並びに第2のパウチ23及び第2の集電体24の間に開口部25Bを備える。図2においては、第1の開口部25A及び第2の開口部25Bが、電極材料20の異なる端部に設けられる形態を示したがこれに限定されるものではない。
 図2に示すように、電極材料20は、第1の集電体22による第1の挿入部29A及び第2の集電体24による第2の挿入部29Bを備える。図2においては、第1の挿入部29A及び第2の挿入部29Bが、電極材料20の異なる端部に設けられる形態を示したがこれに限定されるものではない。また、図2においては、第1の挿入部29A及び第2の挿入部29Bに斜線を付した。
 なお、図2においては、電極材料の長さ方向の一端部に第1の挿入部及び第2の開口部、長さ方向の他端部に第2の挿入部及び第1の開口部が設けられた例を示したが、これに限定されるものではなく、幅方向の端部に設けられていてもよく、長さ方向及び幅方向の端部に設けられていてもよい。
 なお、図2においては、上方から見たときの形状が長方形である電極材料について説明したが、これに限定されるものではなく、正方形等であってもよい。
 なお、図2においては、第1の開口部、第2の開口部、第1の挿入部及び第2の挿入部が電極材料の長さ方向の端部に1つ設けられた例を示したが、これに限定されるものではなく、2つ以上の第1の開口部等が一端部に設けられていてもよい。
 エネルギー密度を向上する観点から、第1の開口部の長さに対する第1の挿入部の長さの比(第1の挿入部の長さ/第1の開口部の長さ)は、0.6~1であることが好ましく、0.65~1であることがより好ましい。
 エネルギー密度を向上する観点から、第2の開口部の長さに対する第2の挿入部の長さの比(第2の挿入部の長さ/第2の開口部の長さ)は、0.6~1であることが好ましく、0.65~1であることがより好ましい。
 挿入部の長さは、特に限定されるものではなく、3mm~15mmとすることができる。
 なお、図2において、第2の挿入部29Bの長さは符号L2で示す。
 挿入部の長さをLc、集電体の挿入部以外の部分の長さをLdとしたとき、正電極又は負電極を支持する観点からは、Ldは、Lc以上であることが好ましい。
 正電極又は負電極を支持する観点からは、挿入部の長さは、集電体の挿入部以外の部分の長さよりも小さいことが好ましく、挿入部の長さは、集電体の挿入部以外の部分の長さよりも1mm~10mm小さいことがより好ましい。
 なお、電極材料は挿入部を複数備えていてもよく(例えば、幅方向の一端に2以上の挿入部を備える)、上記した挿入部の長さは、各挿入部についての長さの好ましい数値範囲を示す。
 挿入部の厚みは、3μm~100μmであることが好ましく、5μm~70μmであることがより好ましく、10μm~50μmであることが特に好ましい。
 開口部への挿入部の挿入を容易とする観点から、開口部の高さに対する挿入部の厚みの比(挿入部の厚み/開口部の高さ)は、0.01~1であることが好ましく、0.1~0.9であることがより好ましい。
 なお、電極材料は挿入部を複数備えていてもよく(例えば、幅方向の一端に2以上の挿入部を備える)、上記した挿入部の厚みは、各挿入部についての厚みの好ましい数値範囲を示す。
 挿入部の幅は、接合安定性及びエネルギー効率を向上する観点からは、5mm~200mmであることが好ましい。
 本開示において、挿入部及び開口部の幅は、ノギス、スケール等を使用することにより測定することができる。具体的には、JIS B 7507(2013)に準拠するノギスを使用することができる。
 電気的な安定性を向上する観点から、第1の挿入部の幅をW1A、第1の開口部の幅をW2Aとしたとき、以下の式5を満たすことが好ましい。
(式5)W2A>W1A>W2A/2
 電気的な安定性を向上する観点から、第2の挿入部の幅をW1B、第2の開口部の幅をW2Bとしたとき、以下の式6を満たすことが好ましい。
(式6)W2B>W1B>W2B/2
 なお、電極材料は挿入部を複数備えていてもよく(例えば、幅方向の一端に2以上の挿入部を備える)、上記した挿入部の幅は、各挿入部についての幅の好ましい数値範囲を示す。
 第1の挿入部及び第2の挿入部は、第1の集電体及び第2の集電体の長さを、正電極、セパレータ等の長さよりも大きく設定することにより設けることができる。また、集電体の配置位置を調整することによっても第1の挿入部及び第2の挿入部を設けることができる。また、第1の挿入部及び第2の挿入部は、パウチの表面に集電体を積層する際、パウチの端部を折り曲げる等しておき、パウチと集電体とが接しない部分を形成する方法が挙げられる。パウチの端部を折り曲げることにより挿入部を形成した場合、開口部への挿入時には、パウチの端部が開口部への挿入部の挿入の障害とならないよう、折り曲げる、又はカットすることが好ましい。
(接着層)
 本開示の電池は、第1のパウチと第1の集電体との間、及び第2のパウチと第2の集電体との間に接着層を備えていてもよい。これにより、パウチと集電体との密着性を向上することができる。
 接着層は、上記熱可塑性樹脂を含有することができる。
 接着層の総質量に対する熱可塑性樹脂の含有率は、特に限定されるものではなく、50質量%以上であってもよく、70質量%以上であってもよく、90質量%以上であってもよく、100質量%であってもよい。
 接着層は、上記添加剤を含有してもよい。
 接着層の厚みは、特に限定されるものではなく、0.1μm~3μmとすることができる。
 以下、図3~図6を参照し、本開示の電池の一実施形態を説明する。なお、本開示の電池は、以下に限定されるものではない。
 図3において、隣り合う電極材料を30A、30Bで示し、電池を30Cで示す。電極材料30A、30Bは、第1のパウチ31A、31B、第1の集電体32A、32B、正電極36A、36B、セパレータ37A、37B、負電極38A,38B、第2のパウチ33A、33B、及び第2の集電体34A、34Bを備える。
 図3に示すように、電極材料30Aは、第1のパウチ31A及び第1の集電体32Aの間に第1の開口部35A、並びに第2のパウチ33A及び第2の集電体34Aの間に第2の開口部35Bを備える。図3においては、第1の開口部35A及び第2の開口部35Bが、電極材料30Aの異なる端部に設けられる形態を示したがこれに限定されるものではない。
 図3に示すように、電極材料30Aは、第1の集電体32Aによる第1の挿入部39A、及び第2の集電体34Aによる第2の挿入部39Bを備える。図3においては、第1の挿入部39A及び第2の挿入部39Bが電極材料30Aの異なる端部に設けられる形態を示したがこれに限定されるものではない。また、図3においては、第1の挿入部39A及び第2の挿入部39Bに斜線を付した。
 また、電極材料30Bは、第1のパウチ31B及び第1の集電体32Bの間に第1の開口部35C、並びに第2のパウチ33B及び第2の集電体34Bに第2の開口部35Dを備える。図3においては、第1の開口部35C及び第2の開口部35Dが、電極材料30Bの異なる端部に設けられる形態を示したがこれに限定されるものではない。
 図3に示すように、電極材料30Bは、第1の集電体32Bによる第1の挿入部39C、及び第2の集電体34Bによる第2の挿入部39Dを備える。図3においては、第1の挿入部39C及び第2の挿入部39Dが、電極材料30Bの異なる端部に設けられる形態を示したがこれに限定されるものではない。また、図3においては、第1の挿入部39C及び第2の挿入部39Dに斜線を付した。
 図3に示すように、電極材料30Aが備える第1の挿入部39Aが、電極材料30Bが備える第1の開口部35Cに挿入され、電極材料30Bが備える第2の挿入部39Dが、電極材料30Aが備える第2の開口部35Bに挿入され、隣り合う電極材料が接合される。
 なお、図3においては、第1の開口部等が電極材料の長さ方向の端部に設けられた例を示したが、これに限定されるものではなく、幅方向の端部に設けられていてもよく、長さ方向及び幅方向の端部に設けられていてもよい。
 図4は、図3に示す電池30Cの上面図である。図3及び図4においては、2個の電極材料を使用した電池の例を示したが、これに限定されるものではなく、3個以上の電極材料を使用した電池であってもよい。
 図4において、第1の挿入部39A及び第1の開口部35Cは、それぞれ点線で示した。
 第1の挿入部39Aにおいて、第1の挿入部39Aの幅を符号W1、第1の開口部35Cの幅をW2で示す。
 なお、図4においては、電極材料30Aの端部に1つの第1の挿入部39Aが設けられた例を示したが、これに限定されるものではなく、2つ以上の第1の挿入部39Aが設けられていてもよい。
 また、図4においては、電極材料30Bの端部に1つの第1の開口部35Cが設けられた例を示したがこれに限定されるものではなく、2つ以上の第1の開口部35Cが設けられていてもよい。
 3個以上の電極材料を使用した電池の場合、図5に示すように、電極材料は一方向に並べられてもよく、図6に示すように、複数の方向に並べられてもよい。
 図5において、電極材料は符号40A、40B、40C、40D、40E、40Fで示し、電池は符号40Gで示す。
 図6において、電極材料は符号50A、50B、50C、50D、50E、50Fで示し、電池は符号50Gで示す。
 本開示の電池は、複数の電極材料を並べ、隣り合う電極材料の一方が備える開口部に、他方が備える挿入部を挿入することにより製造することができる。
 端部に配置された電極材料が備える第1のパウチ及び第2のパウチを貼り合わせてもよい。貼り合わせ方法は、特に限定されるものではなく、加圧ローラー等を使用することにより行うことができる。
 挿入部を挿入した後、開口部は、圧力を加え潰してもよい。また、本開示の電池を複数積層し、電池の重みにより潰してもよい。また、アルミニウム製の外装体に包装し、真空脱気を行うことにより開口部を潰してもよい。
[電極材料]
 本開示の電極材料は、第1のパウチと、第1の集電体と、正電極と、セパレータと、負電極と、第2の集電体と、第2のパウチとをこの順に備え、
 第1のパウチと第1の集電体との間の第1の開口部、第2のパウチと第2の集電体との間の第2の開口部、第1の集電体による第1の挿入部、及び、第2の集電体による第2の挿入部からなる群より選択される1つ以上を更に備える。
 電極材料を構成する各部材については、上記したため、ここでは記載を省略する。
 図7(A)~図7(C)を参照し、電極材料の製造方法の一実施形態を説明する。
 図7(A)~図7(C)においては、図2に示す電極材料20の製造方法の一実施形態を示すが、電極材料の製造方法は、これに限定されるものではない。
 まず、図7(A)に示すように、端部を折り曲げた状態の第1のパウチ21の表面に、第1の集電体22を設け、第1のパウチ21及び第1の集電体22との間に第1の開口部25Aを形成する。同様に、端部を折り曲げた状態の第2のパウチ23の表面に、第2の集電体24を設け、第2のパウチ23及び第2の集電体24との間に第2の開口部25Bを形成する。
 また、第1の集電体22の長さは、第1のパウチ21の長さより大きいものとし、第1の集電体22の端部に第1の挿入部29Aを設ける。同様に、第2の集電体24の長さは、第2のパウチ23の長さより大きいものとし、第2の集電体24の端部に第2の挿入部29Bを設ける。
 次いで、図7(B)に示すように、第1の集電体22の表面に正電極26を設け、且つ第2の集電体24の表面に負電極28を設ける。
 第1の集電体22の長さは、正電極26の長さより大きく、且つ第2の集電体24の長さは、負電極28の長さより大きくなるよう調整する。
 次いで、図7(C)に示すように、セパレータ27を、正電極26及び負電極28により挟み込み、積層することにより、電極材料20を得ることができる。
 第1のパウチ、第2のパウチ、第1の集電体及び第2の集電体は、従来公知の方法により製造したものを使用してもよく、市販されるものを使用してもよい。
 例えば、第1のパウチとしてポリエチレンテレフタレートフィルムを、第1の集電体としてアルミニウム箔を用意し、これらをエチレン-酢酸ビニル共重合体フィルム等の接着層を使用して、積層することにより、第1のパウチ表面に第1の集電体を設けることができる。
 第1のパウチ及び第2のパウチの端部を折り曲げる方法は、特に限定されるものではなく、第1のパウチと第1の集電体との間、及び第2のパウチと第2の集電体との間に、非接着性のフィルム等を挟む方法、第1のパウチ及び第2のパウチの端部をクリップ等で挟み、折り曲げた状態で保持する方法などが挙げられる。
 第1の集電体表面への正電極の形成方法、及び第2の集電体表面への負電極の形成方法は、特に限定されるものではなく、従来公知の方法により行うことができる。例えば、上記した正極活物質又は負極活物質を含む電極材料を、第1の集電体又は第2の集電体表面に塗布することにより、正電極又は負電極を形成することができる。
 セパレータを、正電極及び負電極により挟み込み、積層する方法は、特に限定されるものではなく、従来公知の方法により行うことができる。例えば、加圧ローラーを使用する方法等が挙げられる。
 以下、上記実施形態を実施例により具体的に説明するが、上記実施形態はこれらの実施例に限定されるものではない。
(正電極用組成物の調製)
(1)炭酸エチレンと、炭酸プロピレンと、炭酸ジエチルと、を混合した混合液に、0.9mol/LのLiPF溶液(電解質)を混合した後に、更に、ビニレンカーボネート(VC)を混合し、電解液X1とした。
(2)導電助剤(ケッチェンブラック)2gと、正極活物質(リン酸鉄リチウム)174gと、をミキサー(あわとり練太郎ARE-310、(株)シンキー製)にて、1500rpm(revolutions per minute、以下同じ)で30秒撹拌し、混練物Y1(176g)を調製した。
(3)混練物Y1(176g)に電解液X1(64g)を加え、ミキサー(あわとり練太郎ARE-310、(株)シンキー製)にて、1500rpmで120秒撹拌して、正電極用組成物を得た。
(負電極用組成物の調整)
(1)正電極用組成物の調整で用いたものと同じ電解液X1(64g)を調製した。
(2)導電助剤(カーボンブラック)6.5gと、負極活物質は黒鉛152.5gと、をミキサー(あわとり練太郎ARE-310、(株)シンキー製)にて、900rpmで18秒撹拌し、混練物Z1を調製した。
(3)混練物Z1(159g)に電解液X1(64g)を加え、ミキサー(あわとり練太郎ARE-310、(株)シンキー製)にて、900rpmで30秒撹拌して、負電極用組成物を得た。
<実施例1>
 第1のパウチ及び第2のパウチとして、厚み12μm、長さ235mm、幅169mmのポリエチレンテレフタレート(PET)フィルムを用意した。
 接着剤を、PETフィルム表面に塗布し、乾燥させ、厚み8μmの接着層を形成させた。
 PETフィルムの長さ方向の両端部、及び幅方向の両端部を折り曲げておき、上記接着層表面に、アルミニウム箔(第1の集電体、厚み20μm、長さ215mm、幅159mm、表面粗さRa0.5μm、炭素被覆)を積層すると共に、長さ方向の一端部に第1の開口部A、幅方向の一端部に第1の開口部B、長さ方向の他端部に第1の挿入部A、幅方向の他端部に第1の挿入部Bを形成した。
 第1の開口部Aの長さは15mm、高さは100μm、幅は149mmであった。
 第1の開口部Bの長さは15mm、高さは100μm、幅は205mmであった。
 第1の挿入部Aの長さは10mm、厚みは20μm、幅は144mmであった。
 第1の挿入部Bの長さは10mm、厚みは10μm、幅は200mmであった。
 第1の集電体の第1の挿入部以外の部分に、正電極用組成物を塗布し、厚み600μmの正電極を形成した。
 接着剤を、PETフィルム表面に塗布し、乾燥させ、厚み8μmの接着層を形成させた。
 PETフィルムの長さ方向の両端部、及び幅方向の両端部を折り曲げておき、上記接着層表面に、銅箔(第2の集電体、厚み10μm、長さ217mm、幅161mm、表面粗さRa0.55μm)を積層すると共に、長さ方向の一端部に第2の開口部A、幅方向の一端部に第2の開口部B、長さ方向の他端部に第2の挿入部A、幅方向の他端部に第2の挿入部Bを形成した。
 第2の開口部Aの長さは15mm、高さは100μm、幅は151mmであった。
 第2の開口部Bの長さは15mm、高さは100μm、幅は207mmであった。
 第2の挿入部Aの長さは10mm、厚みは10μm、幅は146mmであった。
 第2の挿入部Bの長さは10mm、厚みは10μm、幅は202mmであった。
 第2の集電体の第2の挿入部以外の部分に、負電極用組成物を塗布し、厚み500μmの負電極を形成した。
 セパレータとして、ポリエチレンセパレータ(厚み20μm)を用意した。
 セパレータを上記正電極及び負電極により挟み込み、平板プレスにより、加圧し、電極材料を得た。
 電極材料は、長さ方向の一端部に第1の開口部A及び第2の挿入部Aを備え、長さ方向の他端部に第2の開口部A及び第1の挿入部Aを備え、幅方向の一端部に第1の開口部B及び第2の挿入部Bを備え、幅方向の他端部に第2の開口部B及び第1の挿入部Bを備える。
<実施例2>
 第1のパウチ及び第2のパウチとして、厚み12μm、長さ235mm、幅169mmのポリエチレンテレフタレート(PET)フィルムを用意した。
 接着剤を、PETフィルム表面に塗布し、乾燥させ、厚み8μmの接着層を形成させた。
 PETフィルムの幅方向の両端部を折り曲げておき、上記接着層表面に、アルミニウム箔(第1の集電体、厚み20μm、長さ215mm、幅149mm、表面粗さRa0.5μm)を積層すると共に、幅方向の一端部に、第1の開口部、幅方向の他端部に、第1の挿入部を形成した。
 第1の開口部の長さは15mm、高さは100μm、幅は149mmであった。
 第1の挿入部の長さは10mm、厚みは144μm、幅は20mmであった。
 第1の集電体の第1、3の挿入部以外の部分に、正電極用組成物を塗布し、厚み600μmの正電極を形成した。
 接着剤を、PETフィルム表面に塗布し、乾燥させ、厚み8μmの接着層を形成させた。
 PETフィルムの幅方向の両端部を折り曲げておき、上記接着層表面に、銅箔(第2の集電体、厚み10μm、長さ217mm、幅151mm、表面粗さRa0.55μm)を積層すると共に、幅方向の一端部に、第2の開口部、幅方向の他端部に、第2の挿入部を形成した。
 第2の開口部の長さは15mm、高さは100μm、幅は151mmであった。
 第2の挿入部の長さは10mm、厚みは10μm、幅は146mmであった。
 第2の集電体の第2の挿入部以外の部分に、負電極用組成物を塗布し、厚み500μmの負電極を形成した。
 セパレータとして、ポリエチレンセパレータ(厚み20μm)を用意した。
 セパレータを上記正電極及び負電極により挟み込み、平板プレスにより、加圧し、電極材料を得た。
 電極材料は、幅方向の一端部に第1の開口部及び第2の挿入部を備え、幅方向の他端部に第2の開口部及び第1の挿入部を備える。
<比較例1>
 第1のパウチ及び第2のパウチとして、厚み12μm、長さ235mm、幅169mmのポリエチレンテレフタレート(PET)フィルムを用意した。
 エチレン-酢酸ビニル共重合体を含む接着剤を、PETフィルム表面に塗布し、乾燥させ、厚み8μmの接着層を形成させた。
 上記接着層表面に、アルミニウム箔(第1の集電体、厚み20μm、長さ205mm、幅149mm、表面粗さRa0.5μm、炭素被覆)を積層した。
 第1の集電体の表面に、正電極用組成物を塗布し、厚み600μmの正電極を形成した。
 エチレン-酢酸ビニル共重合体を含む接着剤を、PETフィルム表面に塗布し、乾燥させ、厚み8μmの接着層を形成させた。
 上記接着層表面に、銅箔(第2の集電体、厚み10μm、長さ207mm、幅151mm、表面粗さRa0.55μm)を積層した。
 第2の集電体の表面に、負電極用組成物を塗布し、厚み500μmの負電極を形成した。
 セパレータとして、ポリエチレンセパレータ(厚み20μm)を用意した。
 セパレータを上記正電極及び負電極により挟み込み、平板プレスにより、加圧し、電池を得た。
 電池は、開口部及び挿入部を備えていないものであった。
<<エネルギー密度評価>>
 実施例1において製造した電極材料を4つ用意し、長さ方向及び幅方向の両端部に設けられた開口部及び挿入部により接合し、長さ450mm×幅318mmの電池を製造した。隣り合う電極材料が備える正電極同士の距離、負電極同士の距離は0mmであった。
 なお、接合の際、挿入部が形成されたパウチの端部は、挿入部の開口部への挿入の障害とならないよう折り曲げておき、接合後、カットした。
 製造した電池の長さ方向及び幅方向の端部における第1のパウチ及び第2のパウチを真空ラミネーターにより貼り合わせ、アルミニウム製の外装体に収容した。外装体に収容した電池の総容積は0.21Lであった。
 実施例2において製造した電極材料を2つ用意し、幅方向の両端部に設けられた開口部及び挿入部により接合し、長さ450mm×幅169mmの電池を製造した。
 なお、接合の際、挿入部が形成されたパウチの端部は、挿入部の開口部への挿入の障害とならないよう折り曲げておき、接合後、カットした。
 製造した電池の長さ方向及び幅方向の端部における第1のパウチ及び第2のパウチを真空ラミネーターにより貼り合わせた。隣り合う電極材料が備える正電極同士の距離、負電極同士の距離は0mmであった。
 上記電池を長さ方向に2つ並べ、長さ450mm×幅318mmのサイズとした。
 2つの電池を並べた後、これらをアルミニウム製の外装体に収容した。外装体に収容した電池の総容積は0.20Lであった。
 なお、上記した電極材料の接合は、隣り合う電極材料の一方が備える第1の開口部へ、他方の電極材料が備える第1の挿入部を挿入し、且つ隣り合う電極材料の一方が備える第2の開口部へ、他方の電極材料が備える第2の挿入部を挿入することにより行った。
 比較例1において製造した電池の長さ方向及び幅方向の端部における第1のパウチ及び第2のパウチを真空ラミネーターにより貼り合わせ、これを4つ用意し、長さ方向及び幅方向に2個ずつ並べ、長さ450×幅318mmのサイズとした。4つの電池を並べた後、これらをアルミニウム製の外装体に収容した。隣り合う電池が備える正電極同士の距離、負電極同士の距離は10mmであった。外装体に収容した電池の総容積は0.23Lであった。
 実施例1、実施例2及び比較例1の電池の電位はいずれも3.2V、総容量は43Whであった。
 電池の総容量を、総容積で除することにより、実施例1、実施例2及び比較例1の電池のエネルギー密度(Wh/L)を求めた。
 比較例1の電池のエネルギー密度(Wh/L)に対する、実施例1及び実施例2の電池のエネルギー密度の比(以下、エネルギー密度比という)を下記評価基準に基づいて、評価した。評価結果を表1にまとめた。
(評価基準)
A:エネルギー密度比が1.1以上であった。
B:エネルギー密度比が1.05以上、1.1未満であった。
C:エネルギー密度比が1.05未満であった。
 実施例から、本開示の電池は、電極材料を接合することにより、サイズを特別な装置等を使用することなく、適宜調整することができることが分かる。
 また、表1から本開示の電池は、エネルギー密度に優れていることが分かる。
 [符号の説明]
 10、20、30A、30B、40A、40B、40C、40D、40E、40F、50A、50B、50C、50D、50E、50F:電極材料、30C、40G、50G:電池、11、21、31A、31B:第1のパウチ、12、22、32A、32B:第1の集電体、13、23、33A、33B:第2のパウチ、14、24、34A、34B:第2の集電体、15A、25A、35A、35B:第1の開口部、15B、25B、35C、35D:第2の開口部、16、26、36A、36B:正電極、17、27、37A、37B:セパレータ、18、28、38A、38B:負電極、29A、39A、39B:第1の挿入部、29B、39C、39D:第2の挿入部、L1:第1の開口部の長さ、L2:第2の挿入部の長さ、H1:第1の開口部の高さ、W1:第1の挿入部の幅、W2:第1の開口部の幅
 2022年7月28日に出願された日本国特許出願2022-120968号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。
 

Claims (9)

  1.  複数の電極材料を備え、
     前記電極材料は、第1のパウチと、第1の集電体と、正電極と、セパレータと、負電極と、第2の集電体と、第2のパウチとをこの順に備え、
     隣り合う前記電極材料の少なくとも一方は、前記第1のパウチと前記第1の集電体との間の第1の開口部、及び、前記第2のパウチと前記第2の集電体との間の第2の開口部の少なくとも一方を有し、
     隣り合う前記電極材料の少なくとも他方は、前記第1の集電体による第1の挿入部、及び、前記第2の集電体による第2の挿入部の少なくとも一方を有し、
     前記第1の開口部への前記第1の挿入部の挿入、及び前記第2の開口部への前記第2の挿入部の挿入の少なくとも一方により、隣り合う前記電極材料が接合されている、
     電池。
  2.  隣り合う前記電極材料が備える前記正電極同士、及び前記負電極同士が接する、請求項1に記載の電池。
  3.  前記正電極の厚みに対する前記第1の集電体の厚みの比、及び前記負電極の厚みに対する前記第2の集電体の厚みの比が、1未満である、請求項1又は請求項2に記載の電池。
  4.  隣り合う前記電極材料が備える前記正電極の厚みをそれぞれA1、A2とし、隣り合う前記電極材料が備える前記負電極の厚みをそれぞれB1、B2としたとき、下記式1及び式2を満たす、請求項1又は請求項2に記載の電池。
    (式1)0.8≦A1/A2≦1.2
    (式2)0.8≦B1/B2≦1.2
  5.  隣り合う前記電極材料が備える前記第1の集電体の厚みをそれぞれC1、C2とし、隣り合う前記電極材料が備える前記第2の集電体の厚みをそれぞれD1、D2としたとき、下記式3及び式4を満たす、請求項1又は請求項2に記載の電池。
    (式3)0.8≦C1/C2≦1.2
    (式4)0.8≦D1/D2≦1.2
  6.  前記第1の挿入部の長さが、前記第1の集電体の前記第1の挿入部以外の部分の長さよりも1mm~10mm小さく、且つ、前記第2の挿入部の長さが、前記第2の集電体の前記第2の挿入部以外の部分の長さよりも1mm~10mm小さい、請求項1又は請求項2に記載の電池。
  7.  前記第1の挿入部の幅をW1A、前記第1の開口部の幅をW2Aとしたとき、以下の式5を満たし、且つ、前記第2の挿入部の幅をW1B、前記第2の開口部の幅をW2Bとしたとき、以下の式6を満たす、請求項1又は請求項2に記載の電池。
    (式5)W2A>W1A>W2A/2
    (式6)W2B>W1B>W2B/2
  8.  端部に配置された前記電極材料が備える前記第1のパウチ及び前記第2のパウチが貼り合わせられている、請求項1又は請求項2に記載の電池。
  9.  第1のパウチと、第1の集電体と、正電極と、セパレータと、負電極と、第2の集電体と、第2のパウチとをこの順に備え、
     前記第1のパウチと前記第1の集電体との間の第1の開口部、前記第2のパウチと前記第2の集電体との間の第2の開口部、前記第1の集電体による第1の挿入部、及び、前記第2の集電体による第2の挿入部からなる群より選択される1つ以上を更に備える、
     電極材料。
PCT/JP2023/027223 2022-07-28 2023-07-25 電池及び電極材料 WO2024024788A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-120968 2022-07-28
JP2022120968 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024024788A1 true WO2024024788A1 (ja) 2024-02-01

Family

ID=89706437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027223 WO2024024788A1 (ja) 2022-07-28 2023-07-25 電池及び電極材料

Country Status (1)

Country Link
WO (1) WO2024024788A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940470A (ja) * 1982-08-30 1984-03-06 Fuji Elelctrochem Co Ltd 積層電池
JPH11345604A (ja) * 1998-06-03 1999-12-14 Hitachi Ltd リチウム2次電池及び電池モジュール
JP2001185096A (ja) * 1999-12-22 2001-07-06 Sony Corp 電池およびその製造方法
JP2004111098A (ja) * 2002-09-13 2004-04-08 Nissan Motor Co Ltd 二次電池モジュール及びその製造方法
JP2006019214A (ja) * 2004-07-05 2006-01-19 Mitsubishi Electric Corp ラミネート外装電池装置
JP2008016368A (ja) * 2006-07-07 2008-01-24 Nec Corp フィルム外装電池および組電池
WO2012077707A1 (ja) * 2010-12-08 2012-06-14 財団法人三重県産業支援センター リチウム二次電池の製造方法、積層電池の製造方法及び複合体の製造方法
JP2019216102A (ja) * 2019-08-06 2019-12-19 エリーパワー株式会社 組電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940470A (ja) * 1982-08-30 1984-03-06 Fuji Elelctrochem Co Ltd 積層電池
JPH11345604A (ja) * 1998-06-03 1999-12-14 Hitachi Ltd リチウム2次電池及び電池モジュール
JP2001185096A (ja) * 1999-12-22 2001-07-06 Sony Corp 電池およびその製造方法
JP2004111098A (ja) * 2002-09-13 2004-04-08 Nissan Motor Co Ltd 二次電池モジュール及びその製造方法
JP2006019214A (ja) * 2004-07-05 2006-01-19 Mitsubishi Electric Corp ラミネート外装電池装置
JP2008016368A (ja) * 2006-07-07 2008-01-24 Nec Corp フィルム外装電池および組電池
WO2012077707A1 (ja) * 2010-12-08 2012-06-14 財団法人三重県産業支援センター リチウム二次電池の製造方法、積層電池の製造方法及び複合体の製造方法
JP2019216102A (ja) * 2019-08-06 2019-12-19 エリーパワー株式会社 組電池

Similar Documents

Publication Publication Date Title
JP7545441B2 (ja) 半固体正極及び高エネルギー密度負極を有する非対称型電池
US11600818B2 (en) Prelithiated and methods for prelithiating an energy storage device
US8486566B2 (en) Positive electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
CN111758176B (zh) 负极活性物质的预掺杂方法、负极的制造方法、以及蓄电装置的制造方法
KR101829528B1 (ko) 전극, 비수전해질 전지 및 전지 팩
US5759715A (en) Lithium ion batteries containing pre-lithiated electrodes
WO2019188487A1 (ja) 全固体二次電池及びその製造方法
JP2015084320A (ja) 電池用活物質材料、電極、非水電解質電池及び電池パック
JP6127528B2 (ja) 電極、全固体電池、およびそれらの製造方法
US20110064980A1 (en) Cathodic active material , cathode, and nonaqueous secondary battery
WO2022038835A1 (ja) リチウム2次電池
WO2013042421A1 (ja) 二次電池
JP4867218B2 (ja) リチウムイオン二次電池
JP2022082060A (ja) 二次電池
WO2024024788A1 (ja) 電池及び電極材料
JP7524872B2 (ja) 全固体電池
KR102660860B1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2024024787A1 (ja) 電池の製造方法
Obayi et al. Lithium-Ion Batteries: From the Materials' Perspective
WO2023171746A1 (ja) 電池モジュール及び電池モジュールの製造方法
JPWO2019244933A1 (ja) リチウムイオン二次電池用正極材料、正極活物質層、及びリチウムイオン二次電池
US20240128433A1 (en) Electrode for All-Solid-State Battery, All-Solid-State Battery, and Method of Producing Electrode for All-Solid-State Battery
JP7524873B2 (ja) 全固体電池
WO2023058458A1 (ja) 二次電池およびその製造方法
WO2023048179A1 (ja) 二次電池およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846518

Country of ref document: EP

Kind code of ref document: A1