WO2024024756A1 - 樹脂組成物、成形体、積層構造体、及び積層構造体の製造方法 - Google Patents

樹脂組成物、成形体、積層構造体、及び積層構造体の製造方法 Download PDF

Info

Publication number
WO2024024756A1
WO2024024756A1 PCT/JP2023/027084 JP2023027084W WO2024024756A1 WO 2024024756 A1 WO2024024756 A1 WO 2024024756A1 JP 2023027084 W JP2023027084 W JP 2023027084W WO 2024024756 A1 WO2024024756 A1 WO 2024024756A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
polymer block
mass
resin
group
Prior art date
Application number
PCT/JP2023/027084
Other languages
English (en)
French (fr)
Inventor
真裕 加藤
大輔 小西
周平 金子
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2024024756A1 publication Critical patent/WO2024024756A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/46Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a resin composition, a molded article, a laminate structure, and a method for producing a laminate structure.
  • block copolymers having a styrene polymer block and a conjugated diene polymer block and hydrogenated products thereof are thermoplastic and can be easily molded, and can also be used as compatibilizers. There is. Further, the above block copolymer and/or its hydrogenated product is blended with a polyurethane block copolymer having a specific addition polymer block and a polyurethane block made of a polyurethane elastomer to form a resin composition. It is also known that there are some materials that exhibit melt adhesion to synthetic resins and metals (for example, Patent Documents 1 to 3).
  • Patent Documents 4 to 6 Techniques using modified polymers such as those disclosed in Patent Documents 4 to 6 have been shown to improve adhesion to highly polar synthetic resins and metals.
  • the fields of use of block copolymers or hydrogenated compounds thereof are expanding, and further improvement in adhesive strength is desired to make them suitable for various uses.
  • the plastic material has excellent physical properties such as flexibility, tensile properties, and moldability, which are necessary for a plastic material.
  • the resin composition disclosed in Patent Document 4 requires injection molding at a high temperature of 260° C., as described in Examples, in order to exhibit excellent adhesive strength.
  • an object of the present invention is to provide a resin composition, a molded article, a laminated structure, and a method for manufacturing the laminated structure, which have excellent tensile properties and strong adhesive strength to synthetic resins, metals, etc. .
  • the present invention is as follows.
  • Modified hydrogen of a block copolymer containing a polymer block (A-1) having a structural unit derived from an aromatic vinyl compound and a polymer block (A-2) having a structural unit derived from a conjugated diene compound Contains an additive (A) and a resin (B),
  • the modified hydrogenated product (A) has at least one functional group selected from the group consisting of a carboxy group, an amino group, a hydroxy group, and an acid anhydride-derived group, and the polymer block (A- 2) the vinyl bond amount is 50 to 99 mol%
  • the resin (B) is at least one selected from the group consisting of an acrylic block copolymer and a thermoplastic polyurethane resin,
  • the mass ratio (A)/(B) of the modified hydrogenate (A) and the resin (B) is 90/10 to 10/90,
  • the melt flow rate measured at a temperature of 230°C and a load of 21N is 5g/10 minutes or more
  • the conjugated diene compound in the polymer block (C-2) contains at least one selected from the group consisting of isoprene, butadiene, and farnesene, according to any one of [2] to [4] above.
  • the content of the polymer block (C-1) in the hydrogenated block copolymer (C) is 5 to 70% by mass, according to any one of [2] to [5] above.
  • Resin composition. [7] The resin composition according to any one of claims 1 to 6, wherein the content of the functional group in the modified hydrogenated product (A) is 0.10 to 5.00 phr.
  • a laminate structure comprising a layer formed from the resin composition according to any one of [1] to [13] above, and a layer formed from a material other than the resin composition.
  • a resin composition a molded article, a laminate structure, and a method for producing a laminate structure, which have excellent tensile properties and strong adhesive strength to synthetic resins, metals, and the like.
  • the resin composition of this embodiment contains a modified hydrogen additive (A) and a resin (B).
  • the present inventors have conducted various studies on formulations for making resin compositions excellent in both tensile properties and adhesive strength. As a result, the present inventors found that it is effective for the modified hydrogenated product (A) to contain a polymer block (A-2) having a specific amount of vinyl bonds.
  • the resin composition contains at least one resin (B) selected from the group consisting of an acrylic block copolymer and a thermoplastic polyurethane resin, and the resin composition exhibits a specific melt flow rate. We found that this is effective.
  • Some conventional resin compositions require molding temperature conditions of about 260° C. or higher in order to obtain sufficient adhesive strength during injection molding.
  • resin compositions that are subject to thermal deterioration due to high temperature conditions of around 260°C or higher.
  • a decrease in tensile elongation or a change in hue due to thermal deterioration can be a factor that lowers the value as a plastic material.
  • low temperature conditions approximately 230°C
  • sufficient adhesive strength cannot be obtained, making it impossible to achieve the original purpose. There wasn't.
  • the resin composition of the present embodiment can exhibit strong adhesive strength even when injection molding is performed at low temperatures (for example, about 230° C.). The reason for this is not necessarily clear, but one of the factors is that the modified hydrogenated product (A) having a reactive functional group contains a polymer block (A-2) having a specific amount of vinyl bonds. It is believed that there is.
  • the resin composition of the present embodiment contains the modified hydrogenated product (A) containing the above-mentioned polymer block (A-2) and the resin (B). It is presumed that more functional groups are present on the surface of the molded product of the resin composition, and the adhesive strength is improved due to the anchor effect.
  • the presence of many of the above functional groups on the surface of the molded product of the resin composition is caused by the favorable effect of the amount of vinyl bonds in the polymer block (A-2), the content of the resin (B), etc. It is thought that the Furthermore, the resin composition of this embodiment exhibits a specific melt flow rate and can exhibit strong adhesive strength even when injection molding is performed under low-temperature conditions, so it can also exhibit excellent tensile elongation. , it is thought that changes in hue can also be suppressed.
  • the modified hydrogenated product (A) comprises a polymer block (A-1) containing a structural unit derived from an aromatic vinyl compound and a polymer block (A-2) containing a structural unit derived from a conjugated diene compound.
  • the modified hydrogen additives (A) may be used alone or in combination of two or more.
  • the polymer block (A-1) contains a structural unit derived from an aromatic vinyl compound.
  • the lower limit of the content of structural units derived from aromatic vinyl compounds in 100 mol% of the polymer block (A-1) is preferably 70 mol% or more, more preferably 80 mol% or more, and Preferably it is 90 mol% or more, even more preferably 95 mol% or more, particularly preferably 100 mol%.
  • the upper limit of the content of the structural unit derived from the aromatic vinyl compound in 100 mol% of the polymer block (A-1) may be 100 mol% or less, and less than 100 mol%, as long as the effects of the present invention are not impaired. It may be 99 mol% or less.
  • Aromatic vinyl compounds include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, ⁇ -methylstyrene, 2,6-dimethylstyrene, 2,4-dimethylstyrene, ⁇ - Methyl-o-methylstyrene, ⁇ -methyl-m-methylstyrene, ⁇ -methyl-p-methylstyrene, ⁇ -methyl-o-methylstyrene, ⁇ -methyl-m-methylstyrene, ⁇ -methyl-p-methyl Styrene, 2,4,6-trimethylstyrene, ⁇ -methyl-2,6-dimethylstyrene, ⁇ -methyl-2,4-dimethylstyrene, ⁇ -methyl-2,6-dimethylstyrene, ⁇ -methyl-2, 4-dimethylstyrene, o-
  • aromatic vinyl compounds may be used alone or in combination of two or more.
  • the aromatic vinyl compound is preferably styrene, ⁇ -methylstyrene, and p-methylstyrene, and more preferably styrene.
  • the polymer block (A-1) may include structural units derived from other unsaturated monomers other than the aromatic vinyl compound (hereinafter referred to as "other unsaturated monomers”). (sometimes referred to as “monomeric units”), and may contain no other unsaturated monomeric units.
  • the upper limit of the content of other unsaturated monomer units in 100 mol% of the polymer block (A-1) is preferably 30 mol% or less, more preferably 20 mol% or less, and Preferably it is 10 mol% or less, even more preferably 5 mol% or less, particularly preferably 0 mol%.
  • the lower limit of the content of other unsaturated monomer units in 100 mol% of the polymer block (A-1) may be more than 0 mol%, and may be 1 mol% or more, as long as it does not impair the effects of the present invention. It may be.
  • Examples of other unsaturated monomers include butadiene, isoprene, 2,3-dimethylbutadiene, 1,3-pentadiene, 1,3-hexadiene, isobutylene, methyl methacrylate, methyl vinyl ether, ⁇ -pinene, 8, At least one selected from the group consisting of 9-p-menthene, dipentene, methylene norbornene, 2-methylenetetrahydrofuran, and the like.
  • the bonding form is not particularly limited and may be either random or tapered.
  • the modified hydrogenated product (A) only needs to have at least one polymer block (A-1).
  • these polymer blocks (A-1) may be the same or different.
  • “the polymer blocks are different” refers to the monomer units constituting the polymer blocks, the weight average molecular weight, the stereoregularity, and when the polymer blocks have multiple monomer units, the ratio and co-existence of each monomer unit. It means that at least one of the polymerization forms (random, gradient, block) is different.
  • the weight average molecular weight (Mw) of the polymer block (A-1) is the weight of at least one polymer block (A-1) among the polymer blocks (A-1) possessed by the modified hydrogenated product (A).
  • the average molecular weight is preferably 1,000 to 40,000, more preferably 2,000 to 30,000, even more preferably 3,000 to 20,000, even more preferably 4,000 to 15,000.
  • the weight average molecular weight is the weight average molecular weight calculated by gel permeation chromatography (GPC) measurement in terms of standard polystyrene. The detailed measurement method can follow the method described in Examples.
  • the upper limit of the content of the polymer block (A-1) in 100% by mass of the modified hydrogenated product (A) is preferably 40% by mass or less, more preferably 30% by mass or less, even more preferably 20% by mass or less, and more preferably More preferably, it is 15% by mass or less. It is preferable that the content of the polymer block (A-1) is 40% by mass or less because the resin composition tends to exhibit better adhesive strength. Further, the lower limit of the content of the polymer block (A-1) in 100% by mass of the modified hydrogenated product (A) is preferably 5% by mass or more, more preferably 8% by mass or more, and still more preferably 10% by mass or more. It is.
  • the content of the polymer block (A-1) is 5% by mass or more because the resin composition tends to exhibit better tensile properties.
  • the content ratio of each polymer block in the block copolymer is a value determined by 1 H-NMR measurement. The detailed measurement method can follow the method described in Examples.
  • the polymer block (A-2) contains a structural unit derived from a conjugated diene compound.
  • the lower limit of the content of structural units derived from a conjugated diene compound in 100 mol% of the polymer block (A-2) is preferably 70 mol% or more, more preferably 80 mol%.
  • the content is mol % or more, more preferably 90 mol % or more, even more preferably 95 mol % or more, particularly preferably 100 mol %.
  • the upper limit of the content of the structural unit derived from the conjugated diene compound in 100 mol% of the polymer block (A-2) may be 100 mol% or less as long as it does not impair the effects of the present invention, and less than 100 mol%.
  • the content may be 99 mol% or less.
  • Conjugated diene compounds include butadiene, isoprene, hexadiene, 2,3-dimethyl-1,3-butadiene, 2-phenyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, Examples include 1,3-hexadiene, 1,3-octadiene, 1,3-cyclohexadiene, 2-methyl-1,3-octadiene, 1,3,7-octatriene, farnesene, myrcene, and chloroprene. These conjugated diene compounds may be used alone or in combination of two or more.
  • the conjugated diene compound in the polymer block (A-2) preferably contains at least isoprene, for example, isoprene or isoprene. and butadiene.
  • the lower limit of the content of isoprene-derived structural units in 100% by mass of the polymer block (A-2) is preferably 30% by mass. The content is more preferably 40% by mass or more, still more preferably 45% by mass or more, even more preferably 50% by mass or more, and may be 100% by mass.
  • isoprene and butadiene When using isoprene and butadiene together, there is no particular restriction on their blending ratio [isoprene/butadiene] (mass ratio), but preferably 5/95 to 95/5, more preferably 10/90 to 90/10, More preferably 40/60 to 70/30, even more preferably 45/55 to 65/35.
  • the blending ratio [isoprene/butadiene] is expressed as a molar ratio, it is preferably 5/95 to 95/5, more preferably 10/90 to 90/10, and even more preferably 40/60 to 70/30. More preferably, it is 45/55 to 55/45.
  • the polymer block (A-2) may contain a structural unit derived from a polymerizable monomer other than the conjugated diene compound, as long as it does not interfere with the purpose and effects of the present invention. It may not contain.
  • the upper limit of the content of structural units derived from other polymerizable monomers in 100 mol% of the polymer block (A-2) is preferably 30 mol% or less, It is more preferably 20 mol% or less, still more preferably 10 mol% or less, even more preferably 5 mol% or less, particularly preferably 0 mol%.
  • the lower limit of the content of structural units derived from other polymerizable monomers in the polymer block (A-2) may be more than 0 mol%, as long as it does not impair the effects of the present invention, and may be 1 mol. % or more.
  • polymerizable monomers examples include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, pt-butylstyrene, 2,4-dimethylstyrene, N- Aromatic vinyl compounds such as vinyl carbazole, vinylnaphthalene and vinylanthracene, as well as methyl methacrylate, methyl vinyl ether, ⁇ -pinene, 8,9-p-menthene, dipentene, methylenenorbornene, 2-methylenetetrahydrofuran, 1,3-cyclo Preferred examples include at least one compound selected from the group consisting of pentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene, and the like.
  • the modified hydrogenated product (A) only needs to have at least one polymer block (A-2).
  • the bonding form of each of isoprene and butadiene is can be a 1,2-bond, a 1,4-bond in the case of butadiene, and a 1,2-bond, a 3,4-bond, or a 1,4-bond in the case of isoprene. Only one type of these bonding forms may be present, or two or more types may be present.
  • 1,2-bonds and 3,4-bonds are considered vinyl bond units, and the content ratio of vinyl bond units is defined as the amount of vinyl bonds.
  • the content ratio of vinyl bond units to the total amount of structural units derived from isoprene and/or butadiene is defined as the amount of vinyl bonds.
  • the modified hydrogenated product (A) for example, when the structural unit constituting the polymer block (A-2) contains a ⁇ -farnesene unit, ⁇ -farnesene has a 1,2-bond, a 1,13 -bond, 3,13-bond can be taken. Only one type of these bonding forms may be present, or two or more types may be present.
  • 1,2-bonds and 3,13-bonds are considered vinyl bond units, and in this case, the content ratio of vinyl bond units to the total amount of structural units derived from ⁇ -farnesene is defined as the amount of vinyl bonds.
  • the vinyl bond amount is and/or the sum of the content ratio of vinyl bond units to the total amount of structural units derived from butadiene and the content ratio of vinyl bond units to the total amount of structural units derived from ⁇ -farnesene.
  • the amount of vinyl bonds in the polymer block (A-2) is 50 to 99 mol%.
  • the amount of vinyl bonds in the polymer block (A-2) is 50 mol% or more, strong adhesive strength can be exhibited to both synthetic resins and metals.
  • the amount of vinyl bonds in the polymer block (A-2) is 99 mol% or less, the resin composition has flexibility and can exhibit excellent tensile properties.
  • the lower limit of the vinyl bond amount is preferably 55 mol% or more, more preferably 60 mol% or more, more preferably 65 mol% or more, even more preferably 70 mol% or more, even more preferably 72 mol%. More preferably, it is 75 mol% or more.
  • the upper limit of the vinyl bond amount is preferably 95 mol% or less, more preferably 90 mol% or less, still more preferably 88 mol% or less, even more preferably 85 mol% or less.
  • the vinyl bond amount is a value calculated by 1 H-NMR measurement according to the method described in Examples.
  • the amount of vinyl bonds can be adjusted, for example, by adjusting the type and amount of Lewis base used as a cocatalyst (vinylating agent) during polymerization.
  • the weight average molecular weight (Mw) of the polymer block (A-2) is the weight of at least one polymer block (A-2) among the polymer blocks (A-2) possessed by the modified hydrogenated product (A).
  • the average molecular weight is preferably 50,000 to 600,000, more preferably 60,000 to 500,000, even more preferably 80,000 to 400,000, even more preferably 100,000 to 300,000.
  • the upper limit of the content of the polymer block (A-2) in 100% by mass of the modified hydrogenated product (A) is preferably 95% by mass or less, more preferably 92% by mass or less, and even more preferably 90% by mass or less. . If the content of the polymer block (A-2) in 100% by mass of the modified hydrogenated material (A) is 95% by mass or less, it is easier for the resin composition to obtain excellent mechanical strength and moldability. preferred to become.
  • the lower limit of the content of the polymer block (A-2) in the modified hydrogenated product (A) is preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, and even more Preferably it is 85% by mass or more. If the content of the polymer block (A-2) in 100% by mass of the modified hydrogenated material (A) is 60% by mass or more, it will be easier for the resin composition to exhibit excellent adhesive strength. preferred.
  • the lower limit of the hydrogenation rate of carbon-carbon double bonds in the polymer block (A-2) is preferably 80 mol% or more, more preferably 85 mol%.
  • the content is more preferably 88 mol% or more, and even more preferably 90 mol% or more.
  • the upper limit of the hydrogenation rate is not particularly limited and may be 100 mol% or less, 99.9 mol% or less, or 99.5 mol% or less.
  • the bonding mode of the modified hydrogenated product (A) is not limited as long as the polymer block (A-1) and the polymer block (A-2) are bonded, and may be linear, branched, or radial. , or a combination of two or more of these. Among these, the bonding mode between the polymer block (A-1) and the polymer block (A-2) is preferably linear.
  • the above bonding mode is a diblock copolymer represented by AB, A- A triblock copolymer represented by B-A or B-AB, a tetra-block copolymer represented by A-B-A-B, A-B-A-B-A or B-A-B- Examples include pentablock copolymers represented by AB, (AB) n Z-type copolymers (Z represents a coupling agent residue, and n represents an integer of 3 or more).
  • linear triblock copolymers, pentablock copolymers, or diblock copolymers are preferred, and ABA type triblock copolymers are preferred from the viewpoint of flexibility, ease of production, etc. It is preferably used from Specifically, ABA type triblock copolymers include styrene-hydrogenated butadiene/isoprene-styrene copolymer, styrene-hydrogenated butadiene-styrene copolymer, and styrene-hydrogenated isoprene-styrene copolymer. Examples include polymers.
  • this type of polymer block containing a coupling agent residue is treated as described above, so, for example, a polymer block containing a coupling agent residue and strictly speaking A-B-Z-B-A ( A block copolymer to be written as ABA (Z represents a coupling agent residue) is treated as an example of a triblock copolymer.
  • the modified hydrogenated product (A) may contain other polymer blocks other than the polymer blocks (A-1) and (A-2), as long as they do not interfere with the purpose and effects of the present invention. It may not contain other polymer blocks.
  • the lower limit of the total content of the polymer block (A-1) and the polymer block (A-2) is preferably 90% by mass or more, more preferably 95% by mass. Above, it is particularly preferable that the content is substantially 100% by mass. A content of 90% by mass or more is preferable because the resin composition more easily exhibits excellent mechanical strength, moldability, and adhesive strength.
  • the upper limit of the total content of the polymer block (A-1) and the polymer block (A-2) is preferably 100% by mass or less.
  • the modified hydrogenate (A) has at least one functional group selected from the group consisting of a carboxy group, an amino group, a hydroxy group, and a group derived from an acid anhydride.
  • the resin composition of the present embodiment can exhibit strong adhesive strength to synthetic resins and metals.
  • the acid anhydride-derived group include maleic anhydride-derived groups.
  • the "group derived from maleic anhydride” is a group having a structure in which one of the carbon atoms forming the double bond of the ring of maleic anhydride serves as a bond.
  • the modified hydrogenated product (A) has at least one functional group selected from the group consisting of a carboxy group and an acid anhydride-derived group. is preferably a functional group, and more preferably a group derived from an acid anhydride. Further, the modified hydrogenated product (A) preferably has the above-mentioned functional group in the side chain, and more preferably has the above-mentioned functional group in the side chain of the polymer block (A-2).
  • the adhesive strength of the resin composition can be improved. Note that the method for producing the modified hydrogenated product (A) is specifically as described below.
  • the lower limit of the content of the functional group in the modified hydrogenated product (A) is preferably 0.10 phr or more, more preferably 0.15 phr or more, still more preferably 0.20 phr or more, even more preferably 0.30 phr or more. be.
  • the upper limit of the content of functional groups in the modified hydrogenated product (A) is preferably 5.00 phr or less, more preferably 4.00 phr or less, still more preferably 3.00 phr or less, even more preferably 2.00 phr or less. , even more preferably 1.50 phr or less, even more preferably 1.00 phr or less, and may be 0.90 phr or less.
  • the content of the functional group for the modified hydrogenated compound (A) is within the above range, the adhesive strength of the resin composition containing the modified hydrogenated compound (A) can be easily improved, and the tensile properties are even better. It is preferable because it becomes a good thing. It is preferable that the content of the functional group in the modified hydrogenated product (A) is below the upper limit of the above range because gelation can be suppressed.
  • the content of functional groups (phr) means parts by mass of functional groups based on 100 parts by mass of the modified hydrogenated product (A). The content of functional groups in the modified hydrogenated product (A) can be calculated by neutralization titration.
  • the functional group possessed by the modified hydrogenated product (A) is at least one functional group selected from the group consisting of a carboxy group and an acid anhydride-derived group.
  • the content of functional groups in the modified hydrogenated product (A) is measured in more detail according to the method described in the Examples.
  • the modified hydrogenated product (A) first uses at least an aromatic vinyl compound and a conjugated diene compound as monomers, converts these into a block copolymer through a polymerization reaction, and then converts the block copolymer into a block copolymer before hydrogenation or hydrogenation. After addition, it can be manufactured through a step of carrying out a modification reaction using a modifying agent.
  • the above polymerization reaction can be carried out, for example, by a solution polymerization method, an emulsion polymerization method, a solid phase polymerization method, or the like.
  • solution polymerization is preferred, and known methods such as ionic polymerization such as anionic polymerization and cationic polymerization, and radical polymerization can be applied.
  • anionic polymerization is preferred.
  • an aromatic vinyl compound and a conjugated diene compound are sequentially added in the presence of a solvent, an anionic polymerization initiator, and a Lewis base as necessary to obtain a block copolymer, and coupling is performed as necessary. What is necessary is just to add an agent and make it react.
  • dilithium compounds that can be used as anionic polymerization initiators include naphthalene dilithium, dilithiohexylbenzene, and the like.
  • Examples of coupling agents include dichloromethane, dibromomethane, dichloroethane, dibromoethane, dibromobenzene, phenyl benzoate, tetramethoxysilane, methyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, 3-glycidyloxypropyltrimethoxysilane. , 3-glycidyloxypropyltriethoxysilane and the like.
  • the amounts of these anionic polymerization initiators and coupling agents to be used are appropriately determined depending on the desired weight average molecular weight of the modified hydrogenated product (A).
  • anionic polymerization initiators such as organolithium compounds and dilithium compounds are used in a proportion of 0.01 to 0.2 parts by mass per 100 parts by mass of monomers such as aromatic vinyl compounds and conjugated diene compounds used for polymerization.
  • a coupling agent it is preferably used in a proportion of 0.001 to 0.8 parts by weight per 100 parts by weight of the total monomers.
  • the solvent there are no particular restrictions on the solvent as long as it does not adversely affect the anionic polymerization reaction, and examples include aliphatic hydrocarbons such as cyclohexane, methylcyclohexane, n-hexane, and n-pentane; aromatic hydrocarbons such as benzene, toluene, and xylene. etc.
  • the polymerization reaction is usually carried out at a temperature of 0 to 100°C, preferably 10 to 70°C, for 0.5 to 50 hours, preferably 1 to 30 hours.
  • the amount of vinyl bonds can be increased by adding a Lewis base as a cocatalyst during polymerization of the conjugated diene compound.
  • Lewis bases include ethers such as dimethyl ether, diethyl ether, tetrahydrofuran, and 2,2-di(2-tetrahydrofuryl)propane (DTHFP); ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, Glycol ethers such as tetraethylene glycol dimethyl ether; Amines such as triethylamine, N,N,N',N'-tetramethylenediamine, N,N,N',N'-tetramethylethylenediamine, N-methylmorpholine; Sodium Sodium or potassium salts of aliphatic alcohols such as t-butyrate, sodium t-amylate or sodium isopentylate, or sodium or potassium salts of alicyclic alcohols such as dialkyl
  • Lewis bases it is preferable to use tetrahydrofuran and DTHFP from the viewpoint of easy control of the amount of vinyl bonding.
  • DTHFP is used because it can have a high vinyl bond content, easily achieve a high hydrogenation rate without using an excessive amount of hydrogenation catalyst, and can achieve both better tensile properties and adhesive strength. It is more preferable.
  • These Lewis bases can be used alone or in combination of two or more.
  • the amount of Lewis base added is arbitrarily determined depending on the degree to which the amount of vinyl bonds in the polymer block (A-2) is controlled. Therefore, there is no strict limit to the amount of Lewis base added, but it is usually 0.1 to 1,000 mol per gram atom of lithium contained in the organic lithium compound or dilithium compound used as a polymerization initiator. It is preferable to use the amount within the range of 1 to 100 mol.
  • a block copolymer can be obtained by adding an active hydrogen compound such as an alcohol, a carboxylic acid, or water to stop the polymerization reaction.
  • a hydrogenated block copolymer By hydrogenating the block copolymer obtained in the above step, a hydrogenated block copolymer can be obtained.
  • the hydrogenation reaction (hydrogenation reaction) is performed in an inert organic solvent in the presence of a hydrogenation catalyst.
  • the hydrogenation reaction the carbon-carbon double bond derived from the conjugated diene compound in the polymer block (A-2) in the block copolymer is hydrogenated, and a hydrogenated product of the block copolymer can be obtained.
  • the hydrogenation reaction can be carried out at a hydrogen pressure of about 0.1 to 20 MPa, preferably 0.5 to 15 MPa, more preferably 0.5 to 5 MPa.
  • the hydrogenation reaction can be carried out at a reaction temperature of about 20 to 250°C, preferably 50 to 180°C, more preferably 70 to 180°C. Further, the hydrogenation reaction can be carried out for a reaction time of usually 0.1 to 100 hours, preferably 1 to 50 hours.
  • Hydrogenation catalysts include, for example, Raney nickel; heterogeneous catalysts in which metals such as Pt, Pd, Ru, Rh, and Ni are supported on carriers such as carbon, alumina, and diatomaceous earth; transition metal compounds and alkyl aluminum compounds, and organic lithium compounds. Examples include Ziegler catalysts in combination with compounds; metallocene catalysts, and the like.
  • Ziegler-based catalysts are preferred, more preferably Ziegler-based catalysts consisting of a combination of a transition metal compound and an alkyl aluminum compound, and still more preferably a nickel compound and an alkyl aluminum compound. It is a Ziegler catalyst (Al/Ni Ziegler catalyst) consisting of a combination with an aluminum compound.
  • the hydrogenated block copolymer thus obtained can be precipitated by pouring the polymerization reaction solution into methanol, etc., and then drying with heat or under reduced pressure, or by pouring the polymerization reaction solution into hot water with steam. It can be obtained by performing so-called steam stripping to azeotropically remove the solvent and then drying by heating or under reduced pressure.
  • the modified hydrogenated product (A) can be produced by introducing the above-mentioned functional group before or after hydrogenating the block copolymer.
  • introducing a functional group by a radical reaction from the viewpoint of reaction control, it is preferable to hydrogenate the block copolymer to form a hydrogenated product and then introduce the specific functional group.
  • the reaction of introducing the above-mentioned functional group into the hydrogenated product to modify it (hereinafter sometimes referred to as "modification reaction”) can be performed by a known method.
  • a hydrogenated block copolymer is dissolved in an organic solvent, various modifiers capable of adding the above-mentioned functional groups are added thereto, and the temperature is about 50 to 300°C, 0.5 to This can be carried out by reacting for about 10 hours.
  • the above-mentioned modification reaction can be carried out, for example, by melting the hydrogenated block copolymer using an extruder or the like without using a solvent, and adding various modifiers.
  • the temperature of the modification reaction is usually from the glass transition temperature of the hydrogenated product of the block copolymer to 400°C or less, preferably from 90 to 350°C, more preferably from 100 to 300°C.
  • the reaction time for the modification reaction is usually about 0.5 to 10 minutes.
  • a radical initiator when carrying out the above-mentioned modification reaction in a molten state, and an anti-aging agent may be added from the viewpoint of suppressing side reactions.
  • a radical initiator may be added also in the reaction in which the above-mentioned functional group is introduced and modified before hydrogenating the block copolymer.
  • the above-mentioned modification reaction is preferably carried out by the latter method of modifying in a molten state from the viewpoint of improving workability and thermal stability. That is, a preferred embodiment of the method for producing the modified hydrogenated product (A) is to hydrogenate the block copolymer to form a hydrogenated product, and then use a radical initiator on the hydrogenated product in a molten state, The method includes a step of introducing at least one functional group selected from the group consisting of a carboxy group, an amino group, a hydroxy group, and a group derived from an acid anhydride.
  • Modifiers that can add the above functional groups include vinylbenzyldiethylamine, vinylbenzyldimethylamine, 1-glycidyl-4-(2-pyridyl)piperazine, 1-glycidyl-4-phenylpiperazine, 1-glycidyl-4 -Methylpiperazine, 1-glycidyl-4-methylhomopiperazine, 1-glycidylhexamethyleneimine, and tetraglycidyl-1,3-bisaminomethylcyclohexane, 1-dodecanol, cetanol (cetyl alcohol), stearyl alcohol, oleyl alcohol, etc.
  • unsaturated carboxylic anhydrides such as maleic anhydride, citraconic anhydride, 2,3-dimethylmaleic anhydride, and itaconic anhydride can also be used as modifiers.
  • a modifier capable of adding the above-mentioned functional group may be employed.
  • the above-mentioned modifiers can be used alone or in combination of two or more.
  • the amount of the modifier to be added may be appropriately determined so as to obtain the desired content of the above-mentioned functional groups, but the amount of the modifier is usually 0.01 to 10 parts by mass per 100 parts by mass of the block copolymer or its hydrogenated material.
  • the amount is about parts by weight, preferably 0.01 to 5 parts by weight, more preferably 0.01 to 3 parts by weight, and even more preferably 0.05 to 2 parts by weight.
  • organic peroxides or organic peresters such as dialkyl peroxides, diacyl peroxides, peroxyesters, peroxyketals, dialkyl peroxides, and hydroperoxides can be used.
  • azo compounds such as azobisisobutyronitrile and dimethylazoisobutyrate can also be used.
  • organic peroxides are preferred, and dialkyl peroxides are more preferred.
  • the amount of the radical initiator to be added may be appropriately determined depending on the combination of the block copolymer or its hydrogenated product and the modifier;
  • the amount of the initiator is usually about 0.01 to 10 parts by weight, preferably 0.01 to 5 parts by weight, more preferably 0.01 to 3 parts by weight, and still more preferably 0.05 to 2 parts by weight.
  • the modified hydrogenate (A) has a lower limit of melt flow rate measured at a temperature of 230°C and a load of 21N, preferably 1 g/10 minutes or more, more preferably 5 g/10 min. It is 10 minutes or more, more preferably 10 g/10 minutes or more.
  • the upper limit of the melt flow rate of the modified hydrogenated material (A) is preferably 30 g/10 minutes or less, more preferably 26 g/10 minutes or less, and still more preferably 23 g/10 minutes or less. If the melt flow rate of the modified hydrogen additive (A) is within the above numerical range, the resin composition will have excellent moldability and even better tensile properties.
  • the lower limit of the weight average molecular weight of the modified hydrogenated compound (A) is preferably 50,000 or more, more preferably 80,000 or more, still more preferably 100,000 or more, and even more Preferably it is 130,000 or more.
  • the upper limit of the weight average molecular weight of the modified hydrogenated compound (A) is preferably 400,000 or less, more preferably 350,000 or less, and still more preferably 300,000 or less. , even more preferably 200,000 or less.
  • Modified hydrogen additive (A) was measured in accordance with JIS K 7244-10:2005 under the following conditions: strain amount 0.1%, frequency 1Hz, measurement temperature -70 to +120°C, heating rate 3°C/min.
  • the peak top intensity of tan ⁇ is preferably 1.0 to 3.0.
  • the peak top intensity of tan ⁇ is measured by pressurizing the modified hydrogenated material (A) at a temperature of 230°C and a pressure of 10 MPa for 3 minutes to prepare a single layer sheet with a thickness of 1.0 mm. This can be carried out using a test piece cut out of a sheet into a disk shape.
  • the modified hydrogenated product (A) has a tan ⁇ peak top intensity lower limit of preferably 1.0 or more, preferably 1.5 or more, and even 1.9 or more as determined by the above measurement. There is also. Further, the upper limit of the peak top intensity of tan ⁇ is not particularly limited, and may be 3.0 or less, 2.5 or less, or 2.3 or less. The higher the peak top intensity of tan ⁇ , the better the physical properties such as vibration damping properties at that temperature.
  • the peak top temperature of tan ⁇ of the modified hydrogenated product (A) is determined by the same method as the peak top intensity of tan ⁇ . Furthermore, the lower limit of the tan ⁇ peak top temperature of the modified hydrogenated product (A) is preferably -25°C or higher, more preferably -10°C or higher, and even more preferably 0°C or higher. Further, the upper limit of the peak top temperature of tan ⁇ may be within a range that does not impair the effects of the present invention, and may be below +40°C or below +35°C. If the peak top temperature of tan ⁇ of the modified hydrogenated product (A) is within the above range, it is preferable because the resin composition tends to have better adhesive strength and tensile properties.
  • the peak top intensity and peak top temperature of tan ⁇ can be controlled by methods such as optimizing the selection and content ratio of monomers used in the modified hydrogenated product (A), or suitably adjusting the amount of vinyl bonds. It is.
  • the glass transition temperature of the modified hydrogenate (A) is preferably -30 to +40°C, more preferably -20 to +30°C, even more preferably -5 to +25°C. If the glass transition temperature of the modified hydrogenated material (A) is within the above range, it is preferable because the resin composition tends to have better adhesive strength and tensile properties. In this specification, the glass transition temperature is a value measured using a differential scanning calorimeter (DSC) measuring device.
  • DSC differential scanning calorimeter
  • the resin (B) is at least one selected from the group consisting of acrylic block copolymers and thermoplastic polyurethane resins.
  • the resin composition of this embodiment can be made stronger against synthetic resins, metals, etc. It is possible to develop strong adhesive strength.
  • the resin composition contains an acrylic block copolymer, it is preferable to use the acrylic block copolymer in that the resin composition has significantly superior adhesion to metal.
  • the acrylic block copolymer is a copolymer having a plurality of polymer blocks containing structural units derived from (meth)acrylic acid ester. From the viewpoints of flexibility, weather resistance, and adhesive strength, among acrylic block copolymers, a polymer block (D1) containing structural units derived from acrylic esters and a polymer block containing structural units derived from methacrylic esters are preferred. An acrylic block copolymer having a combined block (E1) is preferred.
  • the polymer block (D1) contains structural units derived from acrylic ester.
  • acrylic esters (d-2) acid esters
  • Examples of the organic group having 1 to 3 carbon atoms represented by R 1 include alkyl groups having 1 to 3 carbon atoms such as methyl group, ethyl group, n-propyl group, and isopropyl group; methoxyethyl group, hydroxyethyl group, Examples include organic groups having a total number of carbon atoms of 1 to 3 and containing an element other than carbon such as oxygen, such as an aminoethyl group and a glycidyl group.
  • acrylic ester (d-1) examples include acrylic esters without functional groups such as methyl acrylate, ethyl acrylate, isopropyl acrylate, and n-propyl acrylate; 2-methoxyethyl acrylate; Examples include acrylic esters having functional groups such as 2-hydroxyethyl acrylate, 2-aminoethyl acrylate, and glycidyl acrylate.
  • Examples of the organic group having 4 to 12 carbon atoms represented by R 2 include butyl group, amyl group (pentyl group), hexyl group, cyclohexyl group, ethylhexyl group, octyl group, decyl group, isobornyl group, lauryl group, etc.
  • Alkyl groups with 4 to 12 carbon atoms aromatic ring groups with 6 to 12 carbon atoms such as phenyl and benzyl groups; non-carbon atoms such as oxygen such as ethoxyethyl, tetrahydrofurfuryl, diethylaminoethyl, and phenoxyethyl groups
  • aromatic ring groups with 6 to 12 carbon atoms such as phenyl and benzyl groups
  • non-carbon atoms such as oxygen such as ethoxyethyl, tetrahydrofurfuryl, diethylaminoethyl, and phenoxyethyl groups
  • non-carbon atoms such as oxygen such as ethoxyethyl, tetrahydrofurfuryl, diethylaminoethyl, and phenoxyethyl groups
  • acrylic ester (d-2) examples include n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, amyl acrylate, isoamyl acrylate, n-hexyl acrylate, Acrylic acid esters without functional groups such as 2-ethylhexyl acrylate, n-octyl acrylate, isooctyl acrylate, decyl acrylate, isobornyl acrylate, lauryl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, etc.
  • Examples include acrylic esters having functional groups such as 2-ethoxyethyl acrylate, 2-(diethylamino)ethyl acrylate, tetrahydrofurfuryl acrylate, and 2-phenoxyethyl acrylate.
  • acrylic esters other than acrylic ester (d-1) and acrylic ester (d-2) include acrylic esters without functional groups such as octadecyl acrylate.
  • acrylic esters (d-1) from the viewpoint of flexibility of the resulting resin composition, acrylic esters without functional groups are preferred, methyl acrylate and ethyl acrylate are more preferred, and methyl acrylate is more preferred. More preferred.
  • the proportion of acrylic ester (d-1) contained in the polymer block (D1) [(d-1)/(D1)] is preferably 10 to 100% by mass, and preferably 30 to 100% by mass. It is more preferable that the amount is 50 to 100% by mass. Further, the proportion of the acrylic ester (d-1) contained in the polymer block (D1) may be 100% by mass. By being within the above range, the molding processability of the resin composition of this embodiment becomes good.
  • the content of the acrylic ester (d-1) and the polymer block (D1) can be determined by 1 H-NMR, and specifically by the method described in Examples.
  • the phase separation between the polymer block (D1) and the polymer block (E1) is more clear, so it exhibits high cohesive force when made into a resin composition.
  • acrylic esters having no functional group are preferred, alkyl acrylates having an alkyl group having 4 to 12 carbon atoms are more preferred, and n-butyl acrylate and 2-ethylhexyl acrylate are even more preferred. Further, n-butyl acrylate is more preferred since the resulting resin composition exhibits stable durability over a wide temperature range.
  • the above acrylic esters may be used alone or in combination of two or more.
  • the lower limit of the content of structural units derived from acrylic acid ester in 100% by mass of the polymer block (D1) is preferably 60% by mass or more, more preferably 80% by mass or more, even more preferably 90% by mass or more, It may be 100% by mass.
  • the acrylic ester used in the polymer block (D1) preferably contains at least one selected from acrylic esters (d-1) and at least one selected from acrylic esters (d-2). It is a mode.
  • the mass ratio (d-1)/(d-2) of the structural unit derived from the acrylic ester (d-1) and the structural unit derived from the acrylic ester (d-2) is 90/10. ⁇ 10/90 is preferred, 80/20 to 20/80 is more preferred, 70/30 to 30/70 is even more preferred, and 60/40 to 40/60 is more preferred. More preferred.
  • Examples of the combination of acrylic ester (d-1) and acrylic ester (d-2) used in the polymer block (D1) include methyl acrylate/n-butyl acrylate. At this time, the acrylic ester (d-1) and acrylic ester (d-2) used have a difference in solubility parameter of 0.3. ⁇ 2.5 (MPa) 1/2 is preferable.
  • the solubility parameters are described in "POLYMER HANDBOOK Forth Edition", VII, pages 675-714 (Wiley Interscience, published in 1999) and “Polymer Engineering and Science", 1974, Volume 14, pages 147-154 It can be calculated using the method described.
  • the combination of acrylic esters forming the polymer blocks (D1) may be the same or different. You can.
  • the polymer block (D1) is a copolymer containing both acrylic ester (d-1) units and acrylic ester (d-2) units, acrylic ester (d-1) and It may consist of a random copolymer of acrylic acid ester (d-2), it may consist of a block copolymer, it may consist of a gradient copolymer, but it usually consists of a random copolymer. Something is desirable.
  • the acrylic block copolymer contains two or more polymer blocks (D1), the structures of these polymer blocks (D1) may be the same or different.
  • the lower limit of the total proportion of acrylic esters (d-1) and (d-2) contained in the polymer block (D1) is 60% by mass or more in 100% by mass of the polymer block (D1). It is preferably 80% by mass or more, more preferably 90% by mass or more, and may be 100% by mass.
  • the glass transition temperature of the polymer block (D1) is preferably -100 to +30°C, more preferably -80 to +10°C, even more preferably -70 to 0°C, and even more preferably -60 to +30°C. Most preferably -10°C. When the glass transition temperature is within the above range, the resin composition of this embodiment tends to have excellent adhesive strength at room temperature.
  • the polymer block (E1) contains structural units derived from methacrylic acid ester.
  • methacrylic esters include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate, and methacrylate.
  • n-hexyl acid Containing functional groups such as n-hexyl acid, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate, isobornyl methacrylate, phenyl methacrylate, and benzyl methacrylate.
  • functional groups such as n-hexyl acid, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate, isobornyl methacrylate, phenyl methacrylate, and benzyl methacrylate.
  • Methacrylic esters containing functional groups such as methoxyethyl methacrylate, ethoxyethyl methacrylate, diethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, 2-aminoethyl methacrylate, glycidyl methacrylate, tetrahydrofurfuryl methacrylate, etc.
  • Examples include methacrylic acid esters.
  • the polymer block (E1) is preferably a methacrylic ester having no functional group, such as methyl methacrylate, ethyl methacrylate, More preferred are tert-butyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, isobornyl methacrylate, phenyl methacrylate, and benzyl methacrylate.
  • methyl methacrylate is used as the polymer block (E1).
  • the polymer block (E1) may be composed of one type of these methacrylic acid esters, or may be composed of two or more types. Further, it is preferable that the acrylic block copolymer has two or more polymer blocks (E1) from the viewpoint of further increasing mechanical strength. In that case, these polymer blocks (E1) may be the same or different.
  • the peak top molecular weight (Mp) of the polymer block (E1) is not particularly limited, but is preferably in the range of 1,000 to 50,000, more preferably in the range of 2,000 to 30,000. If the Mp of the polymer block (E1) is within the above range, there is no fear that the resulting acrylic block copolymer will lack cohesive strength, and the melt viscosity of the resulting acrylic block copolymer will not become too high. Productivity when manufacturing a resin composition tends to be good. Note that Mp is the molecular weight at the peak apex position in the differential molecular weight distribution curve obtained by GPC measurement.
  • the lower limit of the content of structural units derived from methacrylic acid ester in 100% by mass of the polymer block (E1) is preferably 60% by mass or more, more preferably 80% by mass or more, even more preferably 90% by mass or more, and 100% by mass. It may be %.
  • the glass transition temperature of the polymer block (E1) is preferably 80 to 140°C, more preferably 90 to 130°C, even more preferably 100 to 120°C. When the glass transition temperature is within the above range, the polymer block (E1) acts as a physical pseudo-crosslinking point at the normal usage temperature of the resulting resin composition, and tends to have excellent adhesive strength, durability, and heat resistance. Become.
  • the polymer block (D1) may contain a structural unit derived from a methacrylic acid ester to the extent that the effects of the present invention are not impaired. Further, the polymer block (E1) may contain a structural unit derived from an acrylic ester within a range that does not impair the effects of the present invention. Further, if necessary, a structural unit derived from a monomer other than (meth)acrylic acid ester may be contained.
  • Examples of such other monomers include vinyl monomers having a carboxyl group such as (meth)acrylic acid, crotonic acid, maleic acid, and fumaric acid; styrene, ⁇ -methylstyrene, p-methylstyrene, m - Aromatic vinyl monomers such as methylstyrene; Conjugated diene monomers such as butadiene and isoprene; Olefin monomers such as ethylene, propylene, isobutene, and octene; Lactone monomers such as ⁇ -caprolactone and valerolactone Monomers include (meth)acrylamide, (meth)acrylonitrile, maleic anhydride, vinyl acetate, vinyl chloride, vinylidene chloride, and the like.
  • the above monomer is preferably 40% by mass or less, more preferably 20% by mass, based on the total mass of monomers used in each polymer block in the acrylic block copolymer. It is used in an amount of not more than 10% by weight, more preferably not more than 10% by weight.
  • the acrylic block copolymer may have other polymer blocks as necessary.
  • Such other polymer blocks include, for example, styrene, ⁇ -methylstyrene, p-methylstyrene, m-methylstyrene, acrylonitrile, methacrylonitrile, ethylene, propylene, isobutene, butadiene, isoprene, octene, vinyl acetate, anhydrous
  • examples include polymer blocks or copolymer blocks containing structural units derived from monomers such as maleic acid, vinyl chloride, and vinylidene chloride; polymer blocks containing polyethylene terephthalate, polylactic acid, polyurethane, and polydimethylsiloxane.
  • the other polymer blocks include hydrogenated polymer blocks containing structural units derived from conjugated diene compounds such as butadiene and isoprene.
  • a polymer block (D1) is D1
  • a polymer block having a structure different from that of the polymer block (D1) (excluding the polymer block (E1)) is D1'
  • a polymer block (D1) is D1'.
  • block (E1) is represented by E1, it is preferably represented by the following general formula.
  • n is an integer from 1 to 30
  • Z is the coupling site (the coupling site after the coupling agent reacts with the polymer terminal to form a chemical bond
  • "-" is the coupling site of each polymer block. (indicates a bond).
  • D1 and E1 when a plurality of D1 and E1 are included, they may be polymer blocks of the same structure or may be polymer blocks of different structures.
  • n is preferably 1 to 15, more preferably 1 to 8, and even more preferably 1 to 4.
  • a linear block copolymer represented by D1' is preferred, a diblock copolymer represented by E1-D1, a triblock copolymer represented by E1-D1-D1', and a polymer block.
  • (E1), the polymer block (D1), and the polymer block (E1) in this order a triblock copolymer represented by E1-D1-E1 is more preferable, and is represented by E1-D1-E1. More preferred are triblock copolymers.
  • the peak top molecular weight (Mp) of the acrylic block copolymer is preferably 50,000 to 250,000.
  • the above Mp is more preferably 55,000 to 230,000, even more preferably 60,000 to 220,000, and even more preferably 60,000 to 200,000.
  • 60,000 to 150,000 is particularly preferable.
  • the molecular weight distribution (Mw/Mn) of the acrylic block copolymer is preferably 1.00 to 1.40. From the viewpoint of excellent mechanical strength when made into a resin composition, Mw/Mn is more preferably 1.00 to 1.35, even more preferably 1.00 to 1.30, and 1. It is even more preferably from 00 to 1.25, and particularly preferably from 1.00 to 1.20.
  • the peak top molecular weight (Mp), number average molecular weight (Mn), and weight average molecular weight (Mw) regarding the acrylic block copolymer are values determined by gel permeation chromatography in terms of standard polystyrene, and the molecular weight distribution ( Mw/Mn) is a value calculated from the above values of Mw and Mn.
  • the mass ratio [(E1)/(D1)] of the content of the polymer block (E1) and the content of the polymer block (D1) in the acrylic block copolymer is 10/90 to 55/45. It is preferably from 15/85 to 55/45, even more preferably from 20/80 to 53/47, and particularly preferably from 25/75 to 52/48.
  • the content of the polymer block (D1) and the polymer block (E1) can be determined by 1 H-NMR, and specifically by the method described in Examples.
  • the method for producing the above-mentioned acrylic block copolymer is not particularly limited as long as a polymer satisfying the above-mentioned conditions can be obtained, and methods according to known methods can be adopted.
  • a method for obtaining a block copolymer with a narrow molecular weight distribution is a method of living polymerization of monomers serving as structural units.
  • Such living polymerization methods include, for example, a living polymerization method using an organic rare earth metal complex as a polymerization initiator (see JP-A-06-093060), a method using an organic alkali metal compound as a polymerization initiator, and a method using an alkali metal or alkaline earth metal complex as a polymerization initiator.
  • a method of living anionic polymerization in the presence of mineral acid salts such as salts of similar metals see Japanese Patent Publication No. 05-507737
  • living anionic polymerization in the presence of an organic aluminum compound using an organic alkali metal compound as a polymerization initiator see JP-A-11-335432
  • atom transfer radical polymerization (ATRP) see Macromolecular Chemistry and Physics, 2000, Vol. 201, p. 1108-1114).
  • the method of living anionic polymerization using an organic alkali metal compound as a polymerization initiator in the presence of an organic aluminum compound provides a block copolymer with high transparency, low residual monomer content, and low odor. This is preferable because it suppresses the generation of air bubbles when molding the resin composition. It is also preferable because the molecular structure of the polymer block (E1) becomes highly syndiotactic, which has the effect of increasing the heat resistance of the resin composition.
  • acrylic block copolymer commercially available ones may be used. Specific examples include “Clarity (registered trademark)” (trade name) manufactured by Kuraray Co., Ltd. and “Nano Strength (registered trademark)” (trade name) manufactured by Arkema Corporation.
  • thermoplastic polyurethane resin for example, a thermoplastic polyurethane obtained by a reaction of a polymeric diol, an organic diisocyanate, and a chain extender can be used.
  • the polymer diol used to form the thermoplastic polyurethane resin preferably has a number average molecular weight of 1,000 to 6,000. Thereby, a resin composition having excellent mechanical strength, heat resistance, etc. can be obtained.
  • the number average molecular weight of the polymeric diol referred to in this specification is the number average molecular weight calculated based on the hydroxyl value measured by SITE in accordance with JIS K 1557-1:2007.
  • polymer diols used in the production of thermoplastic polyurethane resins include polyester diol, polyether diol, polyester ether diol, polycarbonate diol, polyester polycarbonate diol, and the like. These polymeric diols may be used alone or in combination of two or more.
  • the polyester diol used in the production of thermoplastic polyurethane resin is obtained by reacting at least one dicarboxylic acid component selected from the group consisting of aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and esters thereof with a low-molecular-weight diol.
  • dicarboxylic acid component selected from the group consisting of aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and esters thereof with a low-molecular-weight diol.
  • the polyester diol includes, for example, aliphatic dicarboxylic acids having 6 to 12 carbon atoms such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid; terephthalic acid.
  • thermoplastic polyurethane resin examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and the like.
  • the polycarbonate diol used in the production of the thermoplastic polyurethane resin includes at least one aliphatic diol such as 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and 1,8-octanediol.
  • polycarbonate diols obtained by reacting seeds with carbonic esters such as diphenyl carbonate and alkyl carbonates, or phosgene.
  • the organic diisocyanate used in the production of the thermoplastic polyurethane resin is not particularly limited, but at least one selected from the group consisting of aromatic diisocyanates, alicyclic diisocyanates, and aliphatic diisocyanates with a molecular weight of 500 or less is preferable.
  • organic diisocyanates include 4,4'-diphenylmethane diisocyanate, toluene diisocyanate, p-phenylene diisocyanate, xylylene diisocyanate, naphthalene diisocyanate, and hydrogenated 4,4'-diphenylmethane diisocyanate (4,4'-dicyclohexylmethane diisocyanate).
  • isophorone diisocyanate hexamethylene diisocyanate, etc.
  • 4,4'-diphenylmethane diisocyanate is preferred.
  • the chain extender used in the production of thermoplastic polyurethane resins any chain extender conventionally used in the production of thermoplastic polyurethane resins can be used, and the type thereof is not particularly limited.
  • the chain extender is preferably at least one selected from the group consisting of aliphatic diols, alicyclic diols, and aromatic diols.
  • chain extenders include ethylene glycol, diethylene glycol, 1,4-butanediol, 1,5-pentanediol, 2-methyl-1,3-propanediol, 1,6-hexanediol, neopentyl glycol, Examples include diols such as 1,9-nonanediol, cyclohexanediol, and 1,4-bis( ⁇ -hydroxyethoxy)benzene. Among these, aliphatic diols having 2 to 6 carbon atoms are preferred, and 1,4-butanediol is more preferred. These chain extenders may be used alone or in combination of two or more.
  • there is no sudden increase in melt viscosity during melt molding such as extrusion molding or injection molding of the resin composition of this embodiment, and products such as target molded articles and laminated structures can be smoothly manufactured. Furthermore, the resulting product has good heat resistance.
  • the thermoplastic polyurethane resin preferably has a hardness (type A hardness; measured at 25° C.) of 55 to 95.
  • a hardness type A hardness; measured at 25° C.
  • the hardness of the thermoplastic polyurethane resin is 55 or more, products such as molded articles and laminated structures obtained from the resin composition will have good mechanical strength. Further, when the hardness of the thermoplastic polyurethane resin is 95 or less, the flexibility of products such as molded articles and laminated structures obtained from the resin composition will be high.
  • the method for producing the thermoplastic polyurethane resin is not particularly limited, and may be produced by either a prepolymer method or a one-shot method using the above-mentioned polymer diol, organic diisocyanate, and chain extender, and utilizing a known urethanization reaction. You may. Among these, it is preferable to carry out melt polymerization in the substantial absence of a solvent, and it is particularly preferable to carry out continuous melt polymerization using a multi-screw extruder.
  • thermoplastic polyurethane resins may be used. Specific examples include “Elastran (registered trademark)” (trade name) manufactured by BASF Polyurethane Elastomers Co., Ltd., "Miractran (registered trademark)” (trade name) manufactured by Nippon Miractran Co., Ltd., and Dainichiseika Kagyo Co., Ltd. Examples include “Lethermin P” (trade name) manufactured by Asahi Glass Co., Ltd., "U-Fine (registered trademark) P” (trade name) manufactured by Asahi Glass Co., Ltd., and the like.
  • the resin composition of this embodiment preferably contains a hydrogenated block copolymer (C).
  • the hydrogenated block copolymer (C) consists of a polymer block (C-1) containing a structural unit derived from an aromatic vinyl compound and a polymer block (C-2) containing a structural unit derived from a conjugated diene compound. and has. Further, the hydrogenated block copolymer (C) and the modified hydrogenated product (A) are different types of resins.
  • the hydrogenated block copolymer (C) does not have a carboxy group, an amino group, a hydroxy group, or a group derived from an acid anhydride.
  • the hydrogenated block copolymer (C) may contain any one of an epoxy group, a silanol group, an aldehyde group, a carbonyl group, a nitro group, a cyano group, and an ether bond.
  • the hydrogenated block copolymer (C) may be used alone or in combination of two or more.
  • the polymer block (C-1) contains a structural unit derived from an aromatic vinyl compound.
  • the structural units constituting the polymer block (C-1), the content of the structural units, and the type of compound from which the structural units are derived are the same as those for the polymer block (A-1) described above.
  • the weight average molecular weight (Mw) of the polymer block (C-1) is not particularly limited, but at least one polymer among the polymer blocks (C-1) possessed by the hydrogenated block copolymer (C)
  • the weight average molecular weight of block (C-1) is preferably 3,000 to 80,000, more preferably 4,000 to 70,000, even more preferably 5,000 to 60,000, even more preferably 6, 000 to 50,000.
  • the hydrogenated block copolymer (C) has at least one polymer block (C-1) having a weight average molecular weight within the above range, the mechanical strength of the resin composition is further improved, and moldability is improved. It also makes it easier to excel.
  • the upper limit of the content of the polymer block (C-1) in 100% by mass of the hydrogenated block copolymer (C) is preferably 70% by mass or less, more preferably 65% by mass or less, and even more preferably 40% by mass or less. , and even more preferably 35% by mass or less. It is preferable that the content of the polymer block (C-1) is 70% by mass or less because the resin composition easily exhibits appropriate flexibility.
  • the lower limit of the content of the polymer block (C-1) in 100% by mass of the hydrogenated block copolymer (C) is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 15% by mass. % or more. It is preferable that the content of the polymer block (C-1) is 5% by mass or more because the mechanical strength such as tensile elongation of the resin composition can be more easily improved.
  • the polymer block (C-2) contains a structural unit derived from a conjugated diene compound.
  • the structural units constituting the polymer block (C-2), the content of the structural units, and the type of compound from which the structural units are derived are the same as those for the polymer block (A-2) described above.
  • the conjugated diene compound in the polymer block (C-2) is preferably at least one selected from the group consisting of isoprene, butadiene, and farnesene.
  • blending ratio [isoprene/butadiene] mass ratio
  • the blending ratio [isoprene/butadiene] is expressed as a molar ratio, it is preferably 5/95 to 95/5, more preferably 10/90 to 90/10, more preferably 20/80 to 80/20, and more preferably The ratio is preferably 30/70 to 70/30, more preferably 40/60 to 70/30, even more preferably 45/55 to 55/45.
  • 1,2-bonds and 3,4-bonds are considered vinyl bond units, and the content ratio of vinyl bond units is defined as the amount of vinyl bonds.
  • the content ratio of vinyl bond units to the total amount of structural units derived from isoprene and/or butadiene is defined as the amount of vinyl bonds.
  • the hydrogenated block copolymer (C) for example, when the structural unit constituting the polymer block (C-2) is a ⁇ -farnesene unit, a 1,2-bond, a 1,13-bond, a 3-bond, , 13-bond can be taken. Only one type of these bonding forms may be present, or two or more types may be present.
  • 1,2-bonds and 3,13-bonds are considered vinyl bond units, and the content ratio of vinyl bond units is defined as the amount of vinyl bonds.
  • the content ratio of vinyl bond units to the total amount of structural units derived from ⁇ -farnesene is defined as the vinyl bond amount.
  • the vinyl bond amount is and/or the sum of the content ratio of vinyl bond units to the total amount of structural units derived from butadiene and the content ratio of vinyl bond units to the total amount of structural units derived from ⁇ -farnesene.
  • the lower limit of the amount of vinyl bonds in the polymer block (C-2) is preferably 1 mol% or more, more preferably 3 mol% or more, even more preferably 5 mol% or more, even more preferably 6 mol% or more. It is preferable that the lower limit of the amount of vinyl bonds in the polymer block (C-2) is 1 mol % or more because the resin composition can easily exhibit better tensile properties. Further, the upper limit of the amount of vinyl bonds in the polymer block (C-2) is preferably 85 mol% or less, more preferably 75 mol% or less, even more preferably 65 mol% or less, even more preferably 55 mol% or less, Particularly preferably, it is 45 mol% or less.
  • the amount of vinyl bonds in the polymer block (C-2) may be The upper limit is more particularly preferably 35 mol% or less, still more particularly preferably 30 mol% or less, and most preferably 25 mol% or less. It is preferable that the amount of vinyl bonds in the polymer block (C-2) is 85 mol% or less because the resin composition tends to exhibit better flexibility.
  • the hydrogenated block copolymer (C) may be used alone or in combination of two or more.
  • a polymer block (C-2) containing a low amount of vinyl bonds may be used. It is preferable to use at least one hydrogenated block copolymer (C).
  • the amount of vinyl bonds in the polymer block (C-2) having a low amount of vinyl bonds is preferably 1 to 30 mol%, more preferably 3 to 20 mol%, and still more preferably 5 to 10 mol%.
  • the weight average molecular weight (Mw) of the polymer block (C-2) is determined by gel permeation chromatography (GPC) measurement.
  • the weight average molecular weight (Mw) of the polymer block (C-2) is determined by the weight average molecular weight (Mw) of at least one polymer block (C-2) among the polymer blocks (C-2) possessed by the hydrogenated block copolymer (C).
  • the weight average molecular weight of be When the hydrogenated block copolymer (C) has at least one polymer block (C-2) having a weight average molecular weight within the above range, the tensile properties of the resin composition are further improved and the adhesive strength is also excellent. This is preferable because it makes it easier.
  • the upper limit of the content of the polymer block (C-2) in 100% by mass of the hydrogenated block copolymer (C) is preferably 95% by mass or less, more preferably 90% by mass or less, and even more preferably 85% by mass or less. It is. It is preferable that the content of the polymer block (C-2) is 95% by mass or less because the resin composition easily exhibits excellent mechanical strength and moldability.
  • the lower limit of the content of the polymer block (C-2) in 100% by mass of the hydrogenated block copolymer (C) is preferably 30% by mass or more, more preferably 45% by mass or more, and still more preferably 60% by mass. % or more, more preferably 70% by mass or more. It is preferable that the content of the polymer block (C-2) is 30% by mass or more because the resin composition tends to exhibit excellent flexibility.
  • the lower limit of the hydrogenation rate of carbon-carbon double bonds in the polymer block (C-2) is preferably 80 mol% or more, more preferably 85 mol%.
  • the content is more preferably 88 mol% or more, and even more preferably 90 mol% or more.
  • the upper limit of the hydrogenation rate is not particularly limited and may be 100 mol% or less, 99.9 mol% or less, or 99.5 mol% or less.
  • the hydrogenation rate of carbon-carbon double bonds in the polymer block (C-2) can be calculated by 1 H-NMR measurement of the polymer block before and after hydrogenation. Specifically, it is determined by the following formula.
  • Hydrogenation rate (mol%) of hydrogenated block copolymer (C) ⁇ 1-(number of moles of carbon-carbon double bonds contained per mol of hydrogenated block copolymer (C))/(hydrogen Number of moles of carbon-carbon double bonds contained per mole of hydrogenated block copolymer (C) before addition) ⁇ 100
  • the bonding mode between the polymer block (C-1) and the polymer block (C-2) is the same as the bonding mode between the polymer block (A-1) and the polymer block (A-2) described above.
  • the hydrogenated block copolymer (C) may contain other polymer blocks other than the polymer blocks (C-1) and (C-2), as long as they do not interfere with the purpose and effects of the present invention. , may not contain the polymer block.
  • the lower limit of the total content of polymer block (C-1) and polymer block (C-2) is preferably 90% by mass or more, more preferably 95% by mass. It is particularly preferable that the amount is at least 100% by mass, substantially 100% by mass. It is preferable that the content ratio is 90% by mass or more because the resin composition tends to have excellent mechanical strength and moldability.
  • the upper limit of the total content of the polymer block (C-1) and the polymer block (C-2) is preferably 100% by mass or less.
  • the hydrogenated block copolymer (C) is prepared by performing a polymerization reaction using at least an aromatic vinyl compound and a conjugated diene compound as monomers to obtain a block copolymer, and then hydrogenating the obtained block copolymer. It can be manufactured by The above block copolymer can be produced by the same method as the block copolymer production method in the above-mentioned method for producing the modified hydrogenated product (A). Moreover, the method of hydrogenation is also the same as the method of hydrogenation in the method for producing the modified hydrogenated product (A) described above.
  • the lower limit of the weight average molecular weight of the hydrogenated block copolymer (C) is preferably 50,000 or more, more preferably 60,000 or more, and even more preferably 70,000 or more. , even more preferably 100,000 or more.
  • the upper limit of the weight average molecular weight of the hydrogenated block copolymer (C) is preferably 500,000 or less, more preferably 450,000 or less, and still more preferably 400,000 or less. be.
  • the hydrogenated block copolymer (C) was prepared in accordance with JIS K 7244-10:2005 under the following conditions: strain amount 0.1%, frequency 1Hz, measurement temperature -70 to +120°C, heating rate 3°C/min.
  • the peak top intensity of tan ⁇ measured in is preferably 0.05 to 3.0.
  • the tan ⁇ peak top intensity of the hydrogenated block copolymer (C) can be measured in the same manner as the method described for the modified hydrogenated product (A).
  • the hydrogenated block copolymer (C) has a peak top intensity of tan ⁇ of 0.3 or higher when measured as above, 1.0 or higher when it is higher, and 2.0 or higher when it is even higher. There is also. Further, the upper limit of the peak top intensity of tan ⁇ is not particularly limited, and may be 2.5 or less. The higher the peak top intensity of tan ⁇ , the better the physical properties such as vibration damping properties at that temperature.
  • the lower limit of the tan ⁇ peak top temperature of the hydrogenated block copolymer (C) is preferably -65°C or higher, more preferably -60°C or higher, and even more preferably -55°C or higher.
  • the upper limit of the peak top temperature of tan ⁇ may be within a range that does not impair the effects of the present invention, and may be below +20°C or below +10°C. If the peak top temperature of tan ⁇ of the hydrogenated block copolymer (C) is within the above range, it will be easier for the resin composition to obtain sufficient adhesive strength and tensile properties in the actual usage environment. preferable.
  • the peak top intensity and peak top temperature of tan ⁇ of the hydrogenated block copolymer (C) can be determined by optimizing the selection and content ratio of monomers used in the hydrogenated block copolymer (C), and adjusting the amount of vinyl bonds appropriately. It is possible to control this by methods such as
  • the glass transition temperature of the hydrogenated block copolymer (C) is preferably -70 to +20°C, more preferably -65 to +10°C, even more preferably -60 to +5°C.
  • the glass transition temperature of the hydrogenated block copolymer (C) is within the above range, it is preferable because it becomes easier for the resin composition to obtain sufficient adhesive strength and tensile properties under actual use environments.
  • the mass ratio (A)/(B) of the modified hydrogenated material (A) and the resin (B) is 90/10 to 10/90. If the mass ratio (A)/(B) is within the above numerical range, both tensile properties and adhesive strength are excellent. From the viewpoint of easily exhibiting even better tensile properties and strong adhesive strength, the mass ratio (A)/(B) is more preferably 80/20 to 10/90, and even more preferably 70/30 to 10/90. , even more preferably 60/40 to 10/90, even more preferably 55/45 to 10/90.
  • the content of the modified hydrogen additive (A) is set at 100 parts by mass from the viewpoint of easily exhibiting even stronger adhesive force.
  • the lower limit of the content of the hydrogenated block copolymer (C) is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, and still more preferably 70 parts by mass or more.
  • the content of the modified hydrogenated material (A) is 100% by mass.
  • the upper limit of the content of the hydrogenated block copolymer (C) is preferably 1000 parts by mass or less, more preferably 800 parts by mass or less, still more preferably 700 parts by mass or less.
  • the lower limit of the content of the added block copolymer (C) is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and still more preferably 40 parts by mass or more.
  • the upper limit of the content of the hydrogenated block copolymer (C) is preferably 300 parts by mass or less, more preferably 200 parts by mass or less, even more preferably 150 parts by mass or less.
  • the lower limit of the content of the modified hydrogenated compound (A) in 100% by mass of the resin composition is preferably 5% by mass or more, more preferably 8% by mass. It is at least 12% by mass, more preferably at least 12% by mass.
  • the upper limit of the content of the modified hydrogenated compound (A) in 100% by mass of the resin composition is preferably 70% by mass or less, more preferably It is 60% by mass or less, more preferably 50% by mass or less.
  • the total content of the modified hydrogenated material (A) and the resin (B) in 100% by mass of the resin composition is preferably 95% by mass or more. , more preferably 99% by mass or more, still more preferably 99.5% by mass or more, and the upper limit may be 100% by mass or less.
  • the total content of the modified hydrogenated compound (A), resin (B), and hydrogenated block copolymer (C) in 100% by mass of the resin composition is preferably 95% by mass.
  • the content is preferably 99% by mass or more, further preferably 99.5% by mass or more, and the upper limit may be 100% by mass or less.
  • the total content of the modified hydrogenated compound (A), resin (B), hydrogenated block copolymer (C), and softener in 100% by mass of the resin composition is preferably 95% by mass.
  • the content may be at least 99% by mass, more preferably at least 99.5% by mass, and the upper limit may be at most 100% by mass.
  • the resin composition of this embodiment does not need to contain a softener.
  • the resin composition of the present embodiment may contain a softener.
  • the softener is preferably used when the resin composition contains the hydrogenated block copolymer (C).
  • a softener may be used when the resin composition does not contain the hydrogenated block copolymer (C).
  • softeners generally used for rubber and plastics can be used.
  • Softeners include, for example, paraffinic, naphthenic, and aromatic process oils; phthalic acid derivatives such as dioctyl phthalate and dibutyl phthalate; white oil; mineral oil; liquid cooligomer of ethylene and ⁇ -olefin; liquid paraffin; Examples include polybutene; low molecular weight polyisobutylene; and the like.
  • the softener is preferably at least one selected from the group consisting of paraffinic process oils, naphthenic process oils, and aromatic process oils.
  • the lower limit of the content of the softener is the hydrogenated block copolymer (C).
  • the amount is preferably 5 parts by mass or more, more preferably 30 parts by mass or more, still more preferably 50 parts by mass or more, even more preferably 80 parts by mass or more.
  • the upper limit of the content of the softener is preferably 200 parts by mass or less per 100 parts by mass of the hydrogenated block copolymer (C). , more preferably 150 parts by mass or less, still more preferably 120 parts by mass or less.
  • the resin composition of this embodiment may contain additives as long as the effects of the present invention are not impaired.
  • additives may be contained in addition to the modified hydrogenated material (A) and the resin (B), and the modified hydrogenated material (A), the resin (B), and the hydrogenated block copolymer ( In addition to C), additives may be contained, and in addition to the modified hydrogenated material (A), the resin (B), and the softener, additives may be contained, and the modified hydrogenated material (A), In addition to the resin (B), the hydrogenated block copolymer (C), and the softener, it may contain additives.
  • Additives include modified hydrogen additives (A), resins (B), thermoplastic polymers other than hydrogenated block copolymers (C), antioxidants, inorganic fillers, tackifying resins, and light stabilizers. , processing aids, flame retardants, antistatic agents, matting agents, antiblocking agents, ultraviolet absorbers, mold release agents, foaming agents, antibacterial agents, antifungal agents, fragrances, and coloring agents such as pigments and pigments. It will be done.
  • the additives may be used alone or in combination of two or more.
  • the resin composition of this embodiment further contains an antioxidant.
  • the antioxidant include hindered phenol-based, phosphorus-based, lactone-based, and hydroxyl-based antioxidants. Among these, hindered phenolic antioxidants are preferred.
  • the content of the antioxidant is preferably in a range that does not cause coloration when the resin composition is melt-kneaded.
  • the content of the antioxidant is preferably 0.001 to 5 parts by mass based on 100 parts by mass of the total content of the modified hydrogen additive (A), resin (B), and hydrogenated block copolymer (C). It is.
  • the content of the antioxidant is 100% of the total content of the modified hydrogenated material (A) and the resin (B). It is preferably 0.001 to 5 parts by mass.
  • the method includes a modified hydrogen additive (A), a resin (B), a hydrogenated block copolymer (C) that can be used as necessary, a softener, It may be manufactured by any method as long as it can mix the additives and additives, and known means can be used.
  • the resin composition may be manufactured by mixing the constituent components of the resin composition using a mixer such as a Henschel mixer, a V blender, a ribbon blender, a tumbler blender, or a conical blender. Further, after the mixing, it may be produced by melt-kneading at about 80 to 350° C.
  • a kneader such as a single-screw extruder, twin-screw extruder, kneader, Banbury mixer, or roll.
  • the melt-kneading method is preferred from the viewpoint of making the constituent components of the resin composition compatible.
  • the resin composition has a melt flow rate of 5 g/10 minutes or more when measured at a temperature of 230° C. and a load of 21 N in accordance with JIS K 7210:2014.
  • the melt flow rate of the resin composition is 5 g/10 minutes or more, it tends to have flexibility and excellent tensile properties, and also has excellent adhesive strength. Moreover, the moldability of the resin composition also becomes better.
  • the lower limit of the melt flow rate of the resin composition is preferably 10 g/10 minutes or more, more preferably 20 g/10 minutes or more, and even more preferably 30 g/10 minutes or more.
  • the upper limit of the melt flow rate of the resin composition is preferably 200 g/10 minutes or less, more preferably 150 g/10 minutes or less, and even more preferably 100 g/10 minutes or less.
  • a method for adjusting the melt flow rate of the resin composition within the above range includes, for example, blending the modified hydrogenated compound (A), the resin (B), and the hydrogenated block copolymer (C) used as necessary. Preferred examples include a method of appropriately setting the amount, a method of adjusting the degree of polymerization of each resin component used in the resin composition, and a method of adjusting the type of monomer used for each resin component.
  • the tensile elongation at break of the resin composition of the present embodiment measured according to ISO37:2017 is preferably 220 to 800%, more preferably 300 to 800%, still more preferably 400 to 750%, even more preferably 500%. ⁇ 700%. It is preferable that the tensile elongation at break of the resin composition is within the above numerical range because it provides even better adhesive strength.
  • the tensile elongation at break can be measured according to the method described in Examples.
  • the lower limit of the tensile strength at break measured according to ISO37:2017 is preferably 1.0 MPa or more, more preferably 1.5 MPa or more, and still more preferably 2.0 MPa or more.
  • the upper limit of the tensile strength at break of the resin composition of the present embodiment is not particularly limited, but may be, for example, 200 MPa or less. It is preferable that the tensile strength at break of the resin composition is within the above numerical range because it provides even better adhesive strength. The tensile strength at break can be measured according to the method described in Examples.
  • the peel strength of the resin composition of the present embodiment measured according to JIS K 6854-2:1999 is preferably 5 N/25 mm or more, more preferably 10 N/25 mm or more, and even more preferably 15 N/25 mm or more. Further, the upper limit of the tensile strength at break of the resin composition of the present embodiment is not particularly limited, but may be, for example, 200 N/25 mm or less. It is preferable that the peel strength of the resin composition is within the above numerical range, since the adhesive strength can withstand practical use. The peel strength can be measured according to the method described in Examples.
  • the peel strength with respect to the synthetic resin is 5 N/25 mm or more.
  • the resin composition according to the present embodiment preferably has a peel strength of 3 N/25 mm or more, more preferably 5 N/25 mm or more with respect to aluminum as metal.
  • the resin composition according to the present embodiment preferably has a peel strength of 3 N/25 mm or more, more preferably 5 N/25 mm or more with respect to SUS as a metal.
  • the resin composition of this embodiment can be made into various molded products using a melt-kneading molding machine.
  • the resin composition of this embodiment can be formed into veils, crumbs, pellets, or the like by injection molding, injection compression molding, extrusion molding, blow molding, press molding, vacuum molding, etc.
  • Various molded products can be obtained by a method such as a foam molding method, a foam molding method, or the like.
  • the molding temperature of the resin composition specifically, for example, the cylinder temperature of the extruder during injection molding or extrusion molding, is preferably 160 to 250 ° C. More preferably it is 180 to 230°C.
  • the cylinder temperature can be set appropriately as long as the effects of the present invention are not excessively impaired.
  • the shape, structure, use, etc. of the molded article containing the resin composition of this embodiment are not particularly limited.
  • the resin composition of this embodiment has excellent tensile properties and strong adhesive strength to synthetic resins, metals, etc., it is suitable for use as part of a laminated structure. Can be used.
  • the molded article containing the resin composition of the present embodiment has a tensile elongation at break measured according to ISO37:2017, preferably 220 to 800%, more preferably 300 to 800%, still more preferably 400 to 750%, Even more preferably, it is 500 to 700%. It is preferable that the tensile elongation at break of the resin composition is within the above numerical range because it provides even better adhesive strength. The tensile elongation at break can be measured according to the method described in Examples.
  • the molded article containing the resin composition of the present embodiment has a lower limit of tensile strength at break measured according to ISO37:2017, preferably 1.0 MPa or more, more preferably 1.5 MPa or more, and even more preferably 2.0 MPa. That's all.
  • the upper limit of the tensile strength at break of the molded article containing the resin composition of the present embodiment is not particularly limited, but may be, for example, 200 MPa or less. It is preferable that the tensile strength at break of the molded article containing the resin composition is within the above numerical range because it provides even better adhesive strength.
  • the tensile strength at break can be measured according to the method described in Examples.
  • the molded article containing the resin composition of the present embodiment has a peel strength measured according to JIS K 6854-2:1999, preferably 5 N/25 mm or more, more preferably 10 N/25 mm or more, and even more preferably 15 N/25 mm. It is 25 mm or more.
  • the upper limit of the tensile strength at break of the molded article containing the resin composition of the present embodiment is not particularly limited, but may be, for example, 200 N/25 mm or less. It is preferable if the peel strength of the molded article containing the resin composition is within the above numerical range, since the adhesive strength can withstand practical use.
  • the peel strength can be measured according to the method described in Examples.
  • the molded article containing the resin composition of the present embodiment preferably has a peel strength of 5 N/25 mm or more against synthetic resin.
  • the resin composition according to the present embodiment preferably has a peel strength of 3 N/25 mm or more, more preferably 5 N/25 mm or more with respect to aluminum as metal.
  • the resin composition according to the present embodiment preferably has a peel strength of 3 N/25 mm or more, more preferably 5 N/25 mm or more with respect to SUS as a metal.
  • the laminated structure has a layer formed of the resin composition of this embodiment and a layer formed of a material other than the resin composition (hereinafter referred to as "another layer").
  • the laminated structure has only to have at least one layer formed of a resin composition and another layer, and may have a plurality of layers. Furthermore, when the laminated structure has a plurality of other layers, the plurality of other layers may be made of the same material or may be made of different materials.
  • the resin composition of this embodiment exhibits strong adhesive strength. From this, in the laminated structure, the layer formed of the resin composition of this embodiment is an adhesive layer, and the other layers are adherends.
  • Examples of the material constituting the other layer serving as the adherend include synthetic resins, ceramics, metals, fabrics, and the like.
  • the materials constituting the other layers may be used alone or in combination of two or more. Among these, at least one material selected from the group consisting of synthetic resins and metals is preferable as the material constituting the other layers.
  • Examples of synthetic resins that can be used in the laminated structure of this embodiment include polyamide resin, polyurethane resin, polyester resin, polycarbonate resin, polyphenylene sulfide resin, polyacrylate resin, polymethacrylate resin, polyether resin, and (meth)acrylonitrile-butadiene.
  • -Styrene resin (meth)acrylonitrile-styrene resin, (meth)acrylic acid ester-butadiene-styrene resin, (meth)acrylic acid ester-styrene resin, (meth)acrylic acid ester-butadiene-styrene resin, epoxy resin, phenol Resin, diallyl phthalate resin, polyimide resin, melamine resin, polyacetal resin, polysulfone resin, polyether sulfone resin, polyetherimide resin, polyphenylene ether resin, polyarylate resin, polyether ether ketone resin, polystyrene resin, rubber reinforced polystyrene resin, Examples include polar resins such as syndiotactic polystyrene resin; non-polar resins such as polyolefin resins. These synthetic resins may be used alone or in combination of two or more.
  • polyamide resin examples include polyamide 6 (PA6) and polyamide 66 (PA66).
  • polyolefin resin examples include polyethylene, polypropylene, polybutene-1, polyhexene-1, poly-3-methyl-butene-1, poly-4-methyl-pentene-1, ethylene and ⁇ -carbon atoms having 3 to 20 carbon atoms. Olefins (e.g.
  • propylene 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 3-methyl-1-butene, 4-methyl-1-pentene, 6-methyl-1 - copolymers with one or more of heptene, isooctene, isooctadiene, decadiene, etc.), ethylene-propylene-diene copolymers (EPDM), ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers Examples include polyolefin resins such as polymers. Additives may be added to the layer formed of synthetic resin as necessary, as long as the purpose of the present invention is not impaired.
  • additives include heat stabilizers, light stabilizers, ultraviolet absorbers, antioxidants, lubricants, colorants, antistatic agents, flame retardants, water repellents, waterproofing agents, hydrophilicity imparting agents, and conductivity imparting agents. , a thermal conductivity imparting agent, an electromagnetic shielding imparting agent, a translucency modifier, a fluorescent agent, a sliding property imparting agent, a transparency imparting agent, an anti-blocking agent, a metal deactivator, an antibacterial agent, etc. .
  • the ceramics that can be used in the laminated structure of this embodiment refers to non-metallic inorganic materials, and includes metal oxides, metal carbides, metal nitrides, and the like. Examples include glass, cements, alumina, zirconia, zinc oxide ceramics, barium titanate, lead zirconate titanate, silicon carbide, silicon nitride, and ferrites.
  • metals that can be used in the laminated structure of this embodiment include iron, copper, aluminum, magnesium, nickel, chromium, zinc, and alloys containing these ingredients.
  • the metal that can be used for the laminated structure at least one selected from aluminum alloys and stainless steel is preferable.
  • the layer formed of metal may be a layer having a metal surface formed by plating such as copper plating, nickel plating, chrome plating, tin plating, zinc plating, platinum plating, gold plating, silver plating, etc. .
  • the material of the fabric may be natural fiber, synthetic fiber, or a material made of natural fiber and synthetic fiber.
  • natural fibers include cotton, silk, linen, hair, and the like.
  • synthetic fibers include polyester fibers, acrylic fibers (polyacrylonitrile), polyurethane fibers, polyamide fibers, polyolefin fibers, and vinylon fibers.
  • polyamide fibers include nylon 6 and nylon 66.
  • polyolefin fibers include polyethylene fibers and polypropylene fibers.
  • Method for manufacturing laminated structure of the present invention is not particularly limited, it is preferable to manufacture the resin composition of the present embodiment by melt lamination molding of the other materials mentioned above. Examples include molding methods such as injection insert molding, extrusion lamination, coextrusion, calendar molding, slush molding, press molding, and melt casting.
  • a laminated structure when manufacturing a laminated structure using an injection insert molding method, an adherend formed in a predetermined shape and size is placed in a mold, and the resin composition of the present embodiment is applied thereto.
  • a method of manufacturing a laminated structure by injection molding is adopted.
  • a material having a predetermined shape attached to an extruder is attached to the surface or edge of an adherend that has been previously formed to a predetermined shape and size.
  • a laminated structure can also be manufactured by directly extruding the resin composition of this embodiment in a molten state extruded from a die.
  • the laminate structure can also be manufactured by simultaneously extruding melted resin using two extruders.
  • the resin composition of this embodiment is melted and rolled with a heating roll, and passed through several rolls to bring it into a molten state, and the resin composition is formed into a predetermined shape and size in advance.
  • a laminated structure can also be manufactured by heat-sealing the surface of the adherend.
  • a molded body made of the resin composition of the present invention is molded in advance by an injection molding method or an extrusion molding method, and the molded body is molded into a predetermined shape and shape. It can also be manufactured by heating and pressurizing an adherend formed to a certain size using a press molding machine or the like.
  • Such a molding method is particularly suitable when the adherend is ceramic or metal.
  • the injection insert molding method is preferable as the molding method using melt laminate molding.
  • the laminated structure of this embodiment is preferably manufactured by a method of injection insert molding a resin composition into a layer formed of a material other than the resin composition, and the resin composition is molded at a resin temperature. It is more preferable to manufacture by injection insert molding at 160 to 250°C.
  • the injection molding temperature in the injection insert molding method is preferably 180°C or higher, more preferably 200°C or higher, from the viewpoint of obtaining sufficient adhesive strength. Further, from the viewpoint of achieving both tensile properties and strong adhesive strength and preventing deterioration of hue of the resin composition due to high temperatures, the temperature is preferably 240°C or lower, more preferably 230°C or lower.
  • the resin composition of the present embodiment particularly when a thermoplastic polyurethane resin is used as the resin (B), the resin composition tends to change color and deteriorate tensile properties due to high temperatures.
  • the resin composition constituting the adhesive layer had to be injection-insert molded at a high temperature of over 250° C. in order to obtain adhesive strength, so it was prone to change in hue and deterioration of tensile properties.
  • the conventional resin composition was injection molded at 250° C. or lower, sufficient adhesive strength could not be obtained.
  • the resin composition of the present embodiment preferably at a resin temperature of 160 to 250°C, it can exhibit strong adhesive strength while preventing changes in hue and deterioration of tensile properties, etc. in the resin composition. Since this can be suppressed, the effects of the present invention can be more significantly exhibited. Note that the resin temperature during injection molding can be appropriately set as long as the effects of the present invention are not excessively impaired.
  • the adherend when the adherend is a synthetic resin, both can be melted at the same time and co-extrusion molded or co-injection molded. Further, one side may be formed in advance and then melt-coated or solution-coated may be applied thereto. In addition, two-color molding, insert molding, etc. can also be adopted.
  • the resin composition of this embodiment can be widely applied to various uses.
  • a laminated structure used by adhering the resin composition of this embodiment to various housing materials can be cited as an example.
  • the raw materials for the housing material generally include synthetic resins, synthetic resins containing glass fibers, and light metals such as aluminum and magnesium alloys.
  • Preferred embodiments of the housing material include housing materials for electronic and electrical equipment, OA equipment, home appliances, sporting goods, power tools, automobile parts, and the like. More specifically, preferred embodiments include housings for large displays, notebook computers, mobile phones, personal digital assistants, electronic dictionaries, video cameras, digital still cameras, portable radio cassette players, inverters, and power tools. It is.
  • the layer made of the resin composition of the present embodiment is preferably used as a shock absorbing material, a covering material with an anti-slip function, a waterproofing material, a decorative material, and the like.
  • the resin composition of this embodiment is used as a sealing material. Examples of the above-mentioned sealing materials include sealing materials for joints in molded bodies and structures to which transparent members such as glass are bonded. As the transparent member, resin members such as polycarbonate and PMMA are also preferably used.
  • joints between molded bodies and structures to which transparent members are adhered include joints between glass and aluminum sashes in building windows, joints between glass and metal openings in automobiles, etc. Examples include a joint between glass and a metal frame in a solar cell module, etc.
  • the resin composition of this embodiment can be preferably used as a sealing material applied to the above-mentioned joint.
  • the resin composition of this embodiment can be preferably used for separators of secondary batteries and the like.
  • the separator for the secondary battery is not particularly limited, but preferred examples include separators for secondary batteries used in various information terminal devices such as notebook computers, mobile phones, and video cameras, hybrid vehicles, fuel cell vehicles, etc. .
  • ⁇ -farnesene (purity 97.6% by mass, manufactured by Amyris, Incorporated) is purified using a 3 ⁇ molecular sieve and distilled under a nitrogen atmosphere to produce zingiberene, bisabolene, farnesene epoxide, and farnesol. Hydrocarbon impurities such as isomers, E,E-farnesol, squalene, ergosterol, and several dimers of farnesene were removed and used in the following polymerization.
  • the modified hydrogenated product (A) and the hydrogenated block copolymer (C) were each dissolved in CDCl 3 and subjected to 1 H-NMR measurement [equipment: "AVANCE 400 Nanobay” (manufactured by Bruker), measurement temperature: 30°C ], and calculate the content of the polymer block from the ratio of the peak area derived from styrene to the peak area of isoprene and/or butadiene, or the ratio of the peak area derived from styrene to the peak area derived from farnesene. did.
  • the signals around 3.6 ppm and 3.7 ppm are the ester group (-O-CH 3 ) of the methyl methacrylate unit and the ester group (-O-CH 3 ) of the methyl acrylate unit, respectively.
  • the signal around 4.0 ppm is attributed to the ester group (-O-CH 2 -CH 2 -CH 2 -CH 3 ) of n-butyl acrylate unit or the ester group (-O-CH 2 -CH 2 -CH 3 ) of 2-ethylhexyl acrylate unit.
  • each monomer unit is determined from the ratio of these integral values, and this is The content of each polymer block was calculated by converting into a mass ratio based on the molecular weight of the monomer unit.
  • the weight average molecular weight of the aggregate (C) was measured as follows.
  • the weight average molecular weight (Mw) of the modified hydrogenated product (A) and hydrogenated block copolymer (C) in terms of polystyrene was determined by gel permeation chromatography (GPC) measurement under the following conditions.
  • the weight average weight (Mw) of each polymer block was determined by measuring a sampled liquid by GPC measurement under the following conditions each time the polymerization of each polymer block was completed in the manufacturing process.
  • ⁇ GPC measurement equipment and measurement conditions> ⁇ Device: GPC device “HLC-8020” manufactured by Tosoh Corporation - Separation column: Two “TSKgel G4000HX” manufactured by Tosoh Corporation were connected in series.
  • the hydrogenation rate of the modified hydrogenated material (A) and the hydrogenated block copolymer (C) was measured as follows.
  • the modified hydrogenated product (A) before modification and the hydrogenated block copolymer (C) before and after hydrogenation were each dissolved in CDCl 3 and subjected to 1 H-NMR measurement [device: "AVANCE 400 Nanobay” (manufactured by Bruker). ), measurement temperature: 30°C].
  • the hydrogenation rate of the carbon-carbon double bond in the structural unit derived from the conjugated diene compound in the modified hydrogenated product (A) and the hydrogenated block copolymer (C) before modification was 4.5 in the obtained spectrum.
  • the calculated hydrogenation rate of the modified hydrogenated product (A) before modification is shown in Table 2 as "hydrogenation rate (mol %) in polymer block (A-2)".
  • the calculated hydrogenation rate of the hydrogenated block copolymer (C) is
  • the vinyl bond content of polymer block (A-2) and polymer block (C-2) was measured as follows.
  • the modified hydrogenated product (A) before hydrogenation and the hydrogenated block copolymer (C) before hydrogenation were each dissolved in CDCl 3 and subjected to 1 H-NMR measurement [device: "AVANCE 400 Nanobay” (Bruker Co., Ltd. (Measurement temperature: 30°C).
  • the 3,4-bond unit in the isoprene structural unit and the 1 The amount of vinyl bonds (total content of 3,4-bond units and 1,2-bond units) was calculated from the ratio of the peak areas corresponding to 2-bond units and 1,2-bond units in the butadiene structural unit. .
  • the vinyl bond amount is calculated from the ratio of the peak area corresponding to the 3,13-bond unit and 1,2-bond unit in ⁇ -farnesene to the total peak area of the structural unit derived from ⁇ -farnesene. did.
  • (C5) the ratio of the peak area corresponding to the 1,2-bond unit in the butadiene structural unit to the total peak area of the structural unit derived from isoprene and/or butadiene, and the total peak of the structural unit derived from ⁇ -farnesene.
  • the vinyl bond amount was calculated from the ratio of the peak area corresponding to the 3,13-bond unit and 1,2-bond unit in ⁇ -farnesene to the area.
  • the glass transition temperature of the modified hydrogenated product (A) and hydrogenated block copolymer (C) was measured as follows. Measured using a DSC measuring device (DSC6200 manufactured by Hitachi High-Tech Science Co., Ltd.) under the conditions of a temperature range of -100°C to +350°C and a heating rate of 20°C/min, and the temperature at the inflection point of the baseline shift due to glass transition. was taken as the glass transition temperature.
  • the tan ⁇ peak top temperature and tan ⁇ peak top intensity of the modified hydrogenated product (A) and the hydrogenated block copolymer (C) were measured as follows.
  • the modified hydrogen additive (A) and the hydrogenated block copolymer (C) are each pressurized for 3 minutes at a temperature of 230°C and a pressure of 10 MPa using a press molding device "NF-50T" (manufactured by Shinto Metal Industry Co., Ltd.).
  • NF-50T manufactured by Shinto Metal Industry Co., Ltd.
  • Maleic anhydride modification amount (functional group content (phr)) After dissolving 5 g of modified hydrogen additive (A) in 180 ml of toluene, 20 ml of ethanol was added, titration was performed with a 0.1 mol/L potassium hydroxide solution, and the amount of modification was calculated using the following formula.
  • Maleic anhydride denaturation amount (phr) titration amount x 5.611/sample amount x 98 x 100/56.11 x 1000
  • Modified hydrogen additive (A1) (1) Hydrogenated block copolymer In a pressure-resistant container that has been purged with nitrogen and dried, 50 kg of cyclohexane (solvent) dried with molecular sieves A4 and sec-butyllithium at a concentration of 10.5% by mass as an anionic polymerization initiator are placed. 0.07 kg of cyclohexane solution (substantive amount of sec-butyllithium added: 7.4 g) was charged.
  • Modified hydrogen additives (A2) to (A4) were obtained in the same manner as in Production Example 1, except that each component and its usage amount were changed as shown in Table 1. Further, the results of the above physical property evaluation are shown in Table 2.
  • Acrylic block copolymer (B2) (Step 1) To a pressure-resistant container that has been purged with nitrogen and dried, 50.0 kg of toluene and 0.0998 kg of 1,2-dimethoxyethane are added while stirring at room temperature (23°C), followed by isobutylbis(2, 0.820 kg of a toluene solution containing 412 mmol of 6-di-t-butyl-4-methylphenoxy)aluminum was added, and further 0.121 kg of a sec-butyllithium cyclohexane solution containing 206 mmol of sec-butyllithium was added.
  • Step 2 Subsequently, 1.47 kg of methyl methacrylate was added to this at room temperature while stirring, and stirring was continued for an additional 60 minutes. The reaction solution was initially colored yellow, but became colorless after stirring for 60 minutes.
  • Step 3 After that, the internal temperature of the polymerization liquid was cooled to -30°C, and 6.33 kg of n-butyl acrylate was added dropwise over 4 hours while stirring. After the dropwise addition was completed, stirring was continued for another 5 minutes at -30°C. continued.
  • Step 4 Then, 1.20 kg of methyl methacrylate was added thereto, and the mixture was stirred overnight at room temperature.
  • Step 5 After terminating the polymerization reaction by adding 0.370 kg of methanol, the resulting reaction solution was poured into methanol under stirring to precipitate a white precipitate. The obtained white precipitate was collected and dried to obtain an acrylic block copolymer (B2).
  • Table 3 shows each component, its usage amount, and the results of the above physical property evaluation.
  • styrene Polymerized for hours. Then, 1.32 kg of styrene (second time) was added and polymerized for 60 minutes, and methanol was added to stop the reaction to obtain a reaction solution containing a polystyrene-poly(isoprene/butadiene)-polystyrene triblock copolymer. Ta.
  • a Ziegler catalyst Al/Ni Ziegler catalyst formed from nickel octylate and trimethylaluminum was added as a hydrogenation catalyst under a hydrogen atmosphere, and the mixture was heated under a hydrogen pressure of 1 MPa and 80°C for 5 hours. Made it react.
  • a Ziegler catalyst (Al/Ni Ziegler catalyst) formed from nickel octylate and trimethylaluminum was added as a hydrogenation catalyst under a hydrogen atmosphere, and the mixture was heated under a hydrogen pressure of 1 MPa and 80°C for 5 hours. Made it react. After the reaction solution was allowed to cool and depressurize, the Ziegler catalyst was removed by washing with water, and the hydrogenated block copolymer (C4 ) was obtained. Table 4 shows each component and its usage amount. Further, the results of the above physical property evaluation are shown in Table 5.
  • a Ziegler hydrogenation catalyst formed from nickel octylate and trimethylaluminum was added to the reaction solution in a hydrogen atmosphere, and the mixture was reacted at a hydrogen pressure of 1 MPa and a temperature of 80° C. for 5 hours. After the reaction solution was allowed to cool and depressurize, the catalyst was removed by washing with water and dried under vacuum to obtain a poly( ⁇ -farnesene)-polystyrene-polybutadiene-polystyrene-poly( ⁇ -farnesene) pentablock copolymer. A combined hydrogenated product (C5) was obtained. Table 4 shows each component and its usage amount. Further, the results of the above physical property evaluation are shown in Table 5.
  • MMA-nBA-MMA Methyl methacrylate polymer block - n-butyl acrylate polymer block - Methyl methacrylate polymer block
  • MMA-(nBA/MA)-MMA Methyl methacrylate polymer block - (n- acrylate) Butyl/methyl acrylate) copolymer block - methyl methacrylate polymer block
  • Examples 1 to 14 and Comparative Examples 1 to 3> (1) Preparation of resin composition Each component and its usage amount were used as shown in Table 6 or Table 7, and the premixed composition was prepared using a twin screw extruder (“ZSK26Mc” manufactured by Coperion; number of cylinders: 14). The mixture was melt-kneaded at 230° C. and a screw rotation speed of 200 rpm to obtain a resin composition. Each physical property of the obtained resin composition was evaluated according to the following method. The evaluation results are shown in Table 6 or Table 7. (2) Production of laminate structure A laminate structure was produced by injection insert molding using the following adherend (length 100 mm x width 35 mm x thickness 1 mm) as an insert part.
  • PC Polycarbonate
  • ABS Acrylonitrile-butadiene-styrene resin
  • PA6 Polyolac 700-314
  • UBE Nylon6 1013B manufactured by Ube Industries, Ltd.
  • Aluminum alloy (AL) plate Material “A5052P”
  • (A) component content in Tables 6 and 7 means the content (% by mass) of the modified hydrogenated material (A) in 100% by mass of the resin composition.
  • Examples 1 to 3 have excellent flexibility and moldability. It can be seen that the material exhibited excellent tensile properties. It can also be seen that Examples 1 to 3 had higher peel strength against aluminum, specifically aluminum alloy, than Comparative Examples 1 through 3. Therefore, it can be seen that Examples 1 to 3 exhibited strong adhesion to both synthetic resin and metal even when injection molded at a low temperature of about 230°C. Furthermore, it can be seen from Example 4 that even when two or more types of hydrogenated block copolymers (C) were used, it had excellent tensile properties and exhibited strong adhesive strength to both synthetic resins and metals.
  • C hydrogenated block copolymers
  • Table 7 shows that Examples 5 to 14 exhibited excellent flexibility and moldability, and had excellent tensile properties. Furthermore, it can be seen that Examples 5 to 14 exhibited strong adhesion to both synthetic resin and metal even when injection molded at a low temperature of about 230°C. Moreover, from Example 13, it can be seen that excellent tensile properties and strong adhesive strength can be obtained even when two or more types of hydrogenated block copolymers (C) are used. Moreover, from Example 14, it can be seen that the resin composition can obtain excellent tensile properties and strong adhesive strength by containing the modified hydrogenated substance (A) and the resin (B).
  • the resulting resin composition was filled into the mold under the conditions of a mold temperature of 50°C and a cylinder temperature of 230°C and 250°C, and the surface temperature of the adherend was cooled to 50°C to form a laminated structure. I got a body. Regarding the obtained laminated structure, the adhesive strength (peel strength) of the resin composition was evaluated according to the following method. The results of the evaluation are shown in Table 8.
  • PC Polycarbonate
  • PP Polypropylene
  • PA6 Polypropylene
  • UBE Nylon6 1013B manufactured by Ube Industries Co., Ltd.
  • AL aluminum alloy
  • SUS stainless steel
  • (A) component content in Table 8 means the content (mass %) of the modified hydrogenated material (A) in 100 mass % of the resin composition.
  • Examples 15 to 18 showed sufficient tensile properties and strong adhesion to both synthetic resins and metals (e.g. aluminum alloys and stainless steel), especially when injection molded at 250°C. It can be seen that there was a tendency for the adhesive strength to improve. Therefore, Examples 15 to 18 exhibited excellent flexibility and moldability even when injection molded at either temperature of 230°C or 250°C, and had both excellent tensile properties and strong adhesive strength. I understand that.
  • the resulting resin composition was filled into a mold under conditions of a mold temperature of 50°C and a cylinder temperature of 230°C, and the surface temperature of the adherend was cooled to 50°C to obtain a laminated structure.
  • the adhesive strength (peel strength) of the resin composition was evaluated according to the following method. The results of the evaluation are shown in Table 9.
  • PC Polycarbonate
  • PP Polypropylene
  • PA6 Polypropylene
  • UBE Nylon6 1013B manufactured by Ube Industries Co., Ltd.
  • AL aluminum alloy
  • SUS stainless steel
  • (A) component content in Table 9 means the content (mass %) of the modified hydrogenated material (A) in 100 mass % of the resin composition.
  • Examples 19-23 exhibited sufficient tensile properties and strong adhesion to both synthetic resins and metals (eg, aluminum alloys and stainless steel). It can be seen that Comparative Example 4 did not exhibit strong adhesion to synthetic resins and metals (particularly stainless steel) as compared to Examples 19 to 23.
  • the resin composition of this embodiment has excellent tensile properties and strong adhesive strength to synthetic resins, metals, and the like. Therefore, the laminated structure to which the resin composition of the present embodiment is adhered can be used, for example, in large displays, notebook computers, mobile phones, personal digital assistants, electronic dictionaries, video cameras, digital still cameras, and portable radio cassette players. It can be used for parts such as shock-reducing materials, anti-slip coatings, waterproof materials, and decorative materials that are bonded to the housings of machines, inverters, power tools, etc.

Abstract

芳香族ビニル化合物に由来する構造単位を有する重合体ブロック(A-1)及び共役ジエン化合物に由来する構造単位を有する重合体ブロック(A-2)を含むブロック共重合体の変性水素添加物(A)と、樹脂(B)とを含み、前記変性水素添加物(A)は、カルボキシ基、アミノ基、ヒドロキシ基、及び酸無水物由来の基からなる群より選ばれる少なくとも1種の官能基を有し、かつ前記重合体ブロック(A-2)のビニル結合量が50~99モル%であり、前記樹脂(B)が、アクリル系ブロック共重合体及び熱可塑性ポリウレタン樹脂からなる群より選ばれる少なくとも1種であり、前記変性水素添加物(A)及び前記樹脂(B)の質量比(A)/(B)が90/10~10/90であり、JIS K7210:2014に準拠して、温度230℃、荷重21Nの条件で測定したメルトフローレートが5g/10分以上である樹脂組成物。

Description

樹脂組成物、成形体、積層構造体、及び積層構造体の製造方法
 本発明は、樹脂組成物、成形体、積層構造体、及び積層構造体の製造方法に関する。
 スチレン系重合体ブロックと共役ジエン系重合体ブロックとを有するブロック共重合体及びその水素添加物は、熱可塑性であり成形加工が容易であって、さらに相容化剤として使用できることが知られている。また、上記ブロック共重合体及び/又はその水素添加物は、特定の付加重合系重合体ブロック、及び、ポリウレタンエラストマーからなるポリウレタンブロックを有するポリウレタン系ブロック共重合体とブレンドして樹脂組成物とすることで、合成樹脂や金属に対し溶融接着性を示すものがあることも知られている(例えば、特許文献1~3)。
 また、合成樹脂や金属に対する接着力のさらなる向上のために、上記ブロック共重合体及び/又はその水素添加物を含む樹脂組成物の改良が行われている。その改良方法の一つとして、例えば、上記ブロック共重合体及び/又はその水素添加物を変性して、反応性を有する官能基を導入した変性重合体を用いる技術が知られている(例えば、特許文献4~6)。
特開平11-302495号公報 特開2003-041089号公報 特開2004-346109号公報 特開2018-024776号公報 特開2021-181561号公報 国際公開2021/215255号
 特許文献4~6等の変性重合体を用いる技術によって、極性の高い合成樹脂や金属に対する接着力の向上が見られる。しかし、ブロック共重合体又はその水素添加物の利用分野が広がり、様々な用途に適するように、接着力のさらなる向上が望まれる。加えて、プラスチック材料として必要な柔軟性、引張特性、成形加工性等の物性にも優れることが望まれる。
 例えば、射出成形でのオーバーモールディングにおいて、金属と合成樹脂の両方に対して優れた接着力を示すことは容易ではない。具体的に、特許文献4に開示された樹脂組成物は、優れた接着力を発揮させるため、実施例に記載されているように260℃といった高温での射出成形が必要である。しかし、この様な高温での射出成形は、引張伸びや色相等の物性を低下させるおそれがある。一方、優れた引張伸び等の引張特性を発揮させるため、従来技術の樹脂組成物を260℃よりも低温(例えば、230℃程度)で射出成形すると、接着力が低下するおそれがある。この様な状況において、上記ブロック共重合体及び/又はその水素添加物を含む樹脂組成物は、優れた接着力と引張伸び等の引張特性とを両立することが望まれる。
 そこで本発明は、引張特性に優れ、合成樹脂及び金属等に対して強固な接着力を有する樹脂組成物、成形体、積層構造体、及び積層構造体の製造方法を提供することを課題とする。
 上記課題を解決すべく鋭意検討した結果、本発明者らは下記本発明を想到し、当該課題を解決できることを見出した。
 すなわち、本発明は下記のとおりである。
[1] 芳香族ビニル化合物に由来する構造単位を有する重合体ブロック(A-1)及び共役ジエン化合物に由来する構造単位を有する重合体ブロック(A-2)を含むブロック共重合体の変性水素添加物(A)と、樹脂(B)とを含み、
 上記変性水素添加物(A)は、カルボキシ基、アミノ基、ヒドロキシ基、及び酸無水物由来の基からなる群より選ばれる少なくとも1種の官能基を有し、かつ上記重合体ブロック(A-2)のビニル結合量が50~99モル%であり、
 上記樹脂(B)が、アクリル系ブロック共重合体及び熱可塑性ポリウレタン樹脂からなる群より選ばれる少なくとも1種であり、
 上記変性水素添加物(A)及び上記樹脂(B)の質量比(A)/(B)が90/10~10/90であり、
 JIS K7210:2014に準拠して、温度230℃、荷重21Nの条件で測定したメルトフローレートが5g/10分以上である、
樹脂組成物。
[2] 芳香族ビニル化合物由来の構造単位を含有する重合体ブロック(C-1)と、共役ジエン化合物由来の構造単位を含有する重合体ブロック(C-2)とを有する水添ブロック共重合体(C)をさらに含有する、上記[1]に記載の樹脂組成物。
[3] 上記重合体ブロック(C-2)のビニル結合量が、1~85モル%である、上記[2]に記載の樹脂組成物。
[4] 上記重合体ブロック(C-2)中の炭素-炭素二重結合の水素添加率が、80~100モル%である、上記[2]又は[3]に記載の樹脂組成物。
[5] 上記重合体ブロック(C-2)における共役ジエン化合物が、イソプレン、ブタジエン、及びファルネセンからなる群より選ばれる少なくとも1種を含有する、上記[2]~[4]のいずれかに記載の樹脂組成物。
[6] 上記水添ブロック共重合体(C)における上記重合体ブロック(C-1)の含有割合が、5~70質量%である、上記[2]~[5]のいずれかに記載の樹脂組成物。
[7] 上記変性水素添加物(A)に対する上記官能基の含有量が、0.10~5.00phrである、請求項1~6のいずれか1項に記載の樹脂組成物。
[8] 上記重合体ブロック(A-2)中の炭素-炭素二重結合の水素添加率が、80~100モル%である、上記[1]~[7]のいずれかに記載の樹脂組成物。
[9] 上記重合体ブロック(A-2)におけるイソプレン由来の構造単位の含有割合が、30質量%以上である、上記[1]~[8]のいずれかに記載の樹脂組成物。
[10] 上記重合体ブロック(A-2)における共役ジエン化合物が、イソプレン及びブタジエンを含有する、上記[1]~[9]のいずれかに記載の樹脂組成物。
[11] 上記変性水素添加物(A)における上記重合体ブロック(A-1)の含有割合が、5~40質量%である、上記[1]~[10]のいずれかに記載の樹脂組成物。
[12] 上記水添ブロック共重合体(C)100質量部に対し、軟化剤を5~200質量部含有する、上記[2]~[6]のいずれかに記載の樹脂組成物。
[13] 上記軟化剤が、パラフィン系プロセスオイル、ナフテン系プロセスオイル、及び芳香族系プロセスオイルからなる群より選ばれる少なくとも1種である、上記[12]に記載の樹脂組成物。
[14] 上記[1]~[13]のいずれかに記載の樹脂組成物を含有する成形体。
[15] 上記[1]~[13]のいずれかに記載の樹脂組成物で形成された層、及び上記樹脂組成物以外の他の材料で形成された層を有する、積層構造体。
[16] 上記他の材料が、合成樹脂及び金属からなる群より選ばれる少なくとも1種である、上記[15]に記載の積層構造体。
[17] 上記[15]又は[16]に記載の積層構造体の製造方法であって、
 上記樹脂組成物以外の他の材料で形成された層に対して、上記樹脂組成物を射出インサート成形する、積層構造体の製造方法。
 本発明によれば、引張特性に優れ、合成樹脂及び金属等に対して強固な接着力を有する樹脂組成物、成形体、積層構造体、及び積層構造体の製造方法を提供することができる。
 以下、本発明の実施形態の一例に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための例示であって、本発明は以下の記載に限定されない。
 また本明細書において、実施形態の好ましい形態を示すが、個々の好ましい形態を2つ以上組み合わせたものもまた、好ましい形態である。数値範囲で示した事項について、いくつかの数値範囲がある場合、それらの下限値と上限値とを選択的に組み合わせて好ましい形態とすることができる。
 なお、本明細書において、「XX~YY」との数値範囲の記載がある場合、「XX以上YY以下」を意味する。
 本明細書において「(メタ)アクリロニトリル」とは、「アクリロニトリル又はメタクリロニトリル」を意味する。また、「(メタ)アクリル」とは、「アクリル又はメタクリル」を意味する。
 本実施形態の樹脂組成物は、変性水素添加物(A)及び樹脂(B)を含有する。
 本発明者らは、樹脂組成物が引張特性及び接着力の両方に優れるための処方について種々検討を行った。その結果、本発明者らは、変性水素添加物(A)が特定のビニル結合量を有する重合体ブロック(A-2)を含むことが、有効であることを見出した。加えて、樹脂組成物がアクリル系ブロック共重合体及び熱可塑性ポリウレタン樹脂からなる群より選ばれる少なくとも1種である樹脂(B)を含有すること、及び樹脂組成物が特定のメルトフローレートを示すことが、有効であることを見出した。
 従来の樹脂組成物の中には、射出成形において十分な接着力を得るために、260℃程度又はそれ以上の成形温度条件を要するものがあった。しかし、260℃程度又はそれ以上の高温条件により熱劣化を受ける樹脂組成物があり、例えば、熱劣化による引張伸びの低下や色相の変化等は、プラスチック材料としての価値を下げる要因になり得た。一方、上記樹脂組成物を、引張伸びの低下や色相の変化等を引き起こしにくい低温(230℃程度)条件で射出成形する場合、十分な接着力を得ることができないため、本来の目的を達成できなかった。
 本実施形態の樹脂組成物は、低温(例えば230℃程度)条件で射出成形する場合であっても、強固な接着力を発揮できる。この理由は必ずしも明らかではないが、要因の一つとして、反応性の官能基を有する変性水素添加物(A)が、特定のビニル結合量を有する重合体ブロック(A-2)を含むためであると考えられる。本実施形態の樹脂組成物は、上記重合体ブロック(A-2)を含む変性水素添加物(A)、及び樹脂(B)を含有することにより、変性水素添加物(A)に含まれる上記官能基が、樹脂組成物の成形体表面に多く存在するようになり、アンカー効果によって接着力が向上するものと推測される。このように、上記官能基が樹脂組成物の成形体表面に多く存在することは、重合体ブロック(A-2)のビニル結合量や、樹脂(B)を含有すること等が好適に作用しているものと考えられる。また、本実施形態の樹脂組成物は、特定のメルトフローレートを示し、かつ、低温条件で射出成形を行った場合でも強固な接着力を発揮することができるので、優れた引張伸びも発揮でき、色相の変化も抑えることができると考えられる。
<樹脂組成物>
[変性水素添加物(A)]
 変性水素添加物(A)は、芳香族ビニル化合物由来の構造単位を含有する重合体ブロック(A-1)と、共役ジエン化合物由来の構造単位を含有する重合体ブロック(A-2)とを有する。
 変性水素添加物(A)は、1種単独で用いてもよく、2種以上を用いてもよい。
 〈重合体ブロック(A-1)〉
 重合体ブロック(A-1)は、芳香族ビニル化合物由来の構造単位を含有する。
 機械的強度の観点から、重合体ブロック(A-1)100モル%における芳香族ビニル化合物由来の構造単位の含有割合の下限は、好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、よりさらに好ましくは95モル%以上、特に好ましくは100モル%である。重合体ブロック(A-1)100モル%における芳香族ビニル化合物由来の構造単位の含有割合の上限は、本発明の効果を損なわなければ、100モル%以下であってもよく、100モル%未満であってもよく、99モル%以下であってもよい。
 芳香族ビニル化合物としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、β-メチルスチレン、2,6-ジメチルスチレン、2,4-ジメチルスチレン、α-メチル-o-メチルスチレン、α-メチル-m-メチルスチレン、α-メチル-p-メチルスチレン、β-メチル-o-メチルスチレン、β-メチル-m-メチルスチレン、β-メチル-p-メチルスチレン、2,4,6-トリメチルスチレン、α-メチル-2,6-ジメチルスチレン、α-メチル-2,4-ジメチルスチレン、β-メチル-2,6-ジメチルスチレン、β-メチル-2,4-ジメチルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、2,6-ジクロロスチレン、2,4-ジクロロスチレン、α-クロロ-o-クロロスチレン、α-クロロ-m-クロロスチレン、α-クロロ-p-クロロスチレン、β-クロロ-o-クロロスチレン、β-クロロ-m-クロロスチレン、β-クロロ-p-クロロスチレン、2,4,6-トリクロロスチレン、α-クロロ-2,6-ジクロロスチレン、α-クロロ-2,4-ジクロロスチレン、β-クロロ-2,6-ジクロロスチレン、β-クロロ-2,4-ジクロロスチレン、o-t-ブチルスチレン、m-t-ブチルスチレン、p-t-ブチルスチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、o-クロロメチルスチレン、m-クロロメチルスチレン、p-クロロメチルスチレン、o-ブロモメチルスチレン、m-ブロモメチルスチレン、p-ブロモメチルスチレン、シリル基で置換されたスチレン誘導体、インデン、ビニルナフタレン、N-ビニルカルバゾール等が挙げられる。これらの芳香族ビニル化合物は、1種単独で用いてもよく、2種以上を用いてもよい。
 なかでも製造コストと物性バランスの観点から、芳香族ビニル化合物は、好ましくはスチレン、α-メチルスチレン、及びp-メチルスチレンであり、より好ましくはスチレンである。
〔芳香族ビニル化合物以外の単量体〕
 本発明の目的及び効果の妨げにならない限り、重合体ブロック(A-1)は、芳香族ビニル化合物以外の他の不飽和単量体に由来する構造単位(以下、「他の不飽和単量体単位」と称すことがある。)を含有してもよく、他の不飽和単量体単位を含有しなくてもよい。
 機械的強度の観点から、重合体ブロック(A-1)100モル%における他の不飽和単量体単位の含有割合の上限は、好ましくは30モル%以下、より好ましくは20モル%以下、さらに好ましくは10モル%以下、よりさらに好ましくは5モル%以下、特に好ましくは0モル%である。重合体ブロック(A-1)100モル%における他の不飽和単量体単位の含有割合の下限は、本発明の効果を損なわなければ、0モル%超であってもよく、1モル%以上であってもよい。
 他の不飽和単量体としては、例えば、ブタジエン、イソプレン、2,3-ジメチルブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、イソブチレン、メタクリル酸メチル、メチルビニルエーテル、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフラン等からなる群から選択される少なくとも1種が挙げられる。重合体ブロック(A-1)が他の不飽和単量体単位を含有する場合の結合形態は特に制限はなく、ランダム、テーパー状のいずれでもよい。
 変性水素添加物(A)は、重合体ブロック(A-1)を少なくとも1つ有していればよい。変性水素添加物(A)が、重合体ブロック(A-1)を2つ以上有する場合には、それら重合体ブロック(A-1)は、同一であっても異なっていてもよい。
 なお、本明細書において「重合体ブロックが異なる」とは、重合体ブロックを構成するモノマー単位、重量平均分子量、立体規則性、並びに複数のモノマー単位を有する場合には各モノマー単位の比率及び共重合の形態(ランダム、グラジェント、ブロック)のうち少なくとも1つが異なることを意味する。
  (重合体ブロック(A-1)の重量平均分子量)
 重合体ブロック(A-1)の重量平均分子量(Mw)は、変性水素添加物(A)が有する重合体ブロック(A-1)のうち、少なくとも1つの重合体ブロック(A-1)の重量平均分子量が、好ましくは1,000~40,000、より好ましくは2,000~30,000、さらに好ましくは3,000~20,000、よりさらに好ましくは4,000~15,000である。変性水素添加物(A)が、上記範囲内の重量平均分子量である重合体ブロック(A-1)を少なくとも1つ有することにより、樹脂組成物の機械的強度がより向上し、成形性にも優れやすくなる。
 なお、本明細書において、重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)測定によって求める標準ポリスチレン換算の重量平均分子量である。詳細な測定方法は実施例に記載の方法に従うことができる。
  (重合体ブロック(A-1)の含有割合)
 変性水素添加物(A)100質量%における重合体ブロック(A-1)の含有割合の上限は、好ましくは40質量%以下、より好ましくは30質量%以下、さらに好ましくは20質量%以下、よりさらに好ましくは15質量%以下である。重合体ブロック(A-1)の含有割合が、40質量%以下であれば、樹脂組成物がより優れた接着力を発現しやすくなるために好ましい。また、変性水素添加物(A)100質量%における重合体ブロック(A-1)の含有割合の下限は、好ましくは5質量%以上、より好ましくは8質量%以上、さらに好ましくは10質量%以上である。重合体ブロック(A-1)の含有割合が、5質量%以上であれば、樹脂組成物がより優れた引張特性を発現しやすくなるために好ましい。
 なお、本明細書において、ブロック共重合体における各重合体ブロックの含有割合は、H-NMR測定により求める値である。詳細な測定方法は実施例に記載の方法に従うことができる。
 〈重合体ブロック(A-2)〉
〔共役ジエン化合物〕
 重合体ブロック(A-2)は、共役ジエン化合物由来の構造単位を含有する。
 樹脂組成物の引張特性及び接着力の観点から、重合体ブロック(A-2)100モル%における共役ジエン化合物由来の構造単位の含有割合の下限は、好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、よりさらに好ましくは95モル%以上、特に好ましくは100モル%である。重合体ブロック(A-2)100モル%における共役ジエン化合物由来の構造単位の含有割合の上限は、本発明の効果を損なわなければ、100モル%以下であってもよく、100モル%未満であってもよく、99モル%以下であってもよい。
 共役ジエン化合物としては、ブタジエン、イソプレン、ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロヘキサジエン、2-メチル-1,3-オクタジエン、1,3,7-オクタトリエン、ファルネセン、ミルセン及びクロロプレン等が挙げられる。これらの共役ジエン化合物は、1種単独で用いてもよく、2種以上を用いてもよい。
 なかでも、樹脂組成物が優れた引張特性及び接着力を両立する観点から、重合体ブロック(A-2)において、共役ジエン化合物は、少なくともイソプレンを含むことが好ましく、例えば、イソプレン、又は、イソプレン及びブタジエンを含有することが好ましい。
 また、樹脂組成物が優れた引張特性及び接着力を発現しやすい観点から、重合体ブロック(A-2)100質量%における、イソプレン由来の構造単位の含有割合の下限は、好ましくは30質量%以上、より好ましくは40質量%以上、さらに好ましくは45質量%以上、よりさらに好ましくは50質量%以上であり、100質量%であってもよい。
 イソプレンとブタジエンとを併用する場合、それらの配合比率[イソプレン/ブタジエン](質量比)に特に制限はないが、好ましくは5/95~95/5、より好ましくは10/90~90/10、さらに好ましくは40/60~70/30、よりさらに好ましくは45/55~65/35である。なお、当該配合比率[イソプレン/ブタジエン]をモル比で示すと、好ましくは5/95~95/5、より好ましくは10/90~90/10、さらに好ましくは40/60~70/30、よりさらに好ましくは45/55~55/45である。
〔共役ジエン化合物以外の単量体〕
 本発明の目的及び効果の妨げにならない限り、重合体ブロック(A-2)は、共役ジエン化合物以外の他の重合性の単量体に由来する構造単位を含有してもよく、当該構造単位を含有しなくてもよい。
 樹脂組成物の機械的強度の観点から、重合体ブロック(A-2)100モル%における他の重合性の単量体に由来する構造単位の含有割合の上限は、好ましくは30モル%以下、より好ましくは20モル%以下、さらに好ましくは10モル%以下、よりさらに好ましくは5モル%以下、特に好ましくは0モル%である。重合体ブロック(A-2)における他の重合性の単量体に由来する構造単位の含有割合の下限は、本発明の効果を損なわなければ、0モル%超であってもよく、1モル%以上であってもよい。
 他の重合性の単量体としては、例えばスチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン、2,4-ジメチルスチレン、N-ビニルカルバゾール、ビニルナフタレン及びビニルアントラセン等の芳香族ビニル化合物、並びにメタクリル酸メチル、メチルビニルエーテル、β-ピネン、8,9-p-メンテン、ジペンテン、メチレンノルボルネン、2-メチレンテトラヒドロフラン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1,3-シクロヘプタジエン、1,3-シクロオクタジエン等からなる群から選択される少なくとも1種の化合物が好ましく挙げられる。
 変性水素添加物(A)は、重合体ブロック(A-2)を少なくとも1つ有していればよい。変性水素添加物(A)が重合体ブロック(A-2)を2つ以上有する場合には、それら重合体ブロック(A-2)は、同一であっても異なっていてもよい。
  (重合体ブロック(A-2)のビニル結合量)
 変性水素添加物(A)において、例えば、重合体ブロック(A-2)を構成する構造単位が、イソプレン単位、イソプレン及びブタジエンの混合物単位のいずれかである場合、イソプレン及びブタジエンそれぞれの結合形態としては、ブタジエンの場合には1,2-結合、1,4-結合、イソプレンの場合には1,2-結合、3,4-結合、1,4-結合のビニル結合をとることができる。これらの結合形態の1種のみが存在していても、2種以上が存在していてもよい。このうち、1,2-結合及び3,4-結合をビニル結合単位とし、ビニル結合単位の含有割合をビニル結合量とする。この場合、イソプレン及び/又はブタジエン由来の構造単位の全量に対する、ビニル結合単位の含有割合をビニル結合量とする。
 また、変性水素添加物(A)において、例えば、重合体ブロック(A-2)を構成する構造単位が、β-ファルネセン単位を含む場合、β-ファルネセンは、1,2-結合、1,13-結合、3,13-結合をとることができる。これらの結合形態の1種のみが存在していても、2種以上が存在していてもよい。このうち、1,2-結合及び3,13-結合をビニル結合単位とし、この場合、β-ファルネセン由来の構造単位の全量に対するビニル結合単位の含有割合をビニル結合量とする。
 変性水素添加物(A)において、例えば、重合体ブロック(A-2)を構成する構造単位が、イソプレン単位及び/又はブタジエン単位と、β-ファルネセン単位とを含む場合、ビニル結合量は、イソプレン及び/又はブタジエン由来の構造単位の全量に対するビニル結合単位の含有割合と、β-ファルネセン由来の構造単位の全量に対するビニル結合単位の含有割合との合計とする。
 重合体ブロック(A-2)のビニル結合量は、50~99モル%である。
 重合体ブロック(A-2)のビニル結合量が50モル%以上である場合、合成樹脂及び金属の両方に対して強固な接着力を発現することができる。一方、重合体ブロック(A-2)のビニル結合量が99モル%以下である場合、樹脂組成物が柔軟性を有し優れた引張特性を発現することができる。
 接着力の観点から、ビニル結合量の下限は好ましくは55モル%以上、より好ましくは60モル%以上、より好ましくは65モル%以上、さらに好ましくは70モル%以上、よりさらに好ましくは72モル%以上、よりさらに好ましくは75モル%以上である。
 また、柔軟性及び引張特性の観点から、ビニル結合量の上限は好ましくは95モル%以下、より好ましくは90モル%以下、さらに好ましくは88モル%以下、よりさらに好ましくは85モル%以下である。
 本明細書において、ビニル結合量は、実施例に記載の方法に従って、H-NMR測定によって算出される値である。
 本実施形態において、ビニル結合量は、例えば、重合の際に共触媒(ビニル化剤)として使用するルイス塩基の種類や添加量を調整することにより、調整することができる。
  (重合体ブロック(A-2)の重量平均分子量)
 重合体ブロック(A-2)の重量平均分子量(Mw)は、変性水素添加物(A)が有する重合体ブロック(A-2)のうち、少なくとも1つの重合体ブロック(A-2)の重量平均分子量が、好ましくは50,000~600,000、より好ましくは60,000~500,000、さらに好ましくは80,000~400,000、よりさらに好ましくは100,000~300,000である。変性水素添加物(A)が、上記範囲内の重量平均分子量である重合体ブロック(A-2)を少なくとも1つ有することにより、引張特性がより向上し、樹脂組成物が優れた接着力を発現しやすくなる。
  (重合体ブロック(A-2)の含有割合)
 変性水素添加物(A)100質量%における重合体ブロック(A-2)の含有割合の上限は、好ましくは95質量%以下、より好ましくは92質量%以下、さらに好ましくは90質量%以下である。変性水素添加物(A)100質量%における重合体ブロック(A-2)の含有割合が、95質量%以下であれば、樹脂組成物が優れた機械的強度及び成形性を得ることがより容易になるために好ましい。また、変性水素添加物(A)における重合体ブロック(A-2)の含有割合の下限は、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、よりさらに好ましくは85質量%以上である。変性水素添加物(A)100質量%における重合体ブロック(A-2)の含有割合が、60質量%以上であれば、樹脂組成物が優れた接着力を発現することがより容易になるために好ましい。
  (重合体ブロック(A-2)の水素添加率)
 樹脂組成物の耐熱性及び耐候性の観点から、重合体ブロック(A-2)中の炭素-炭素二重結合の水素添加率の下限は、好ましくは80モル%以上、より好ましくは85モル%以上、さらに好ましくは88モル%以上、よりさらに好ましくは90モル%以上である。水素添加率の上限値に特に制限はなく、100モル%以下であってもよく、99.9モル%以下であってもよく、99.5モル%以下であってもよい。
 なお、本明細書において、水素添加率は、重合体ブロック中の共役ジエン化合物由来の構造単位中の炭素-炭素二重結合の含有量を、水素添加前後の重合体ブロックのH-NMR測定によって求めることで算出することができる。具体的には、下記式により求められる。
 変性前の変性水素添加物(A)の水素添加率(モル%)={1-(変性前の変性水素添加物(A)1モルあたりに含まれる炭素-炭素二重結合のモル数)/(水素添加前における、変性前の変性水素添加物(A)1モルあたりに含まれる炭素-炭素二重結合のモル数)}×100
水素添加率は、より詳細には実施例に記載の方法に従って測定される。
  (重合体ブロック(A-1)と重合体ブロック(A-2)の結合様式)
 変性水素添加物(A)は、重合体ブロック(A-1)と重合体ブロック(A-2)とが結合している限り、その結合様式は限定されず、直鎖状、分岐状、放射状、又はこれらの2つ以上が組合わさった結合様式のいずれでもよい。中でも、重合体ブロック(A-1)と重合体ブロック(A-2)の結合様式は直鎖状であることが好ましい。
 上記結合様式は、例えば、重合体ブロック(A-1)をA、また重合体ブロック(A-2)をB、で表したときに、A-Bで示されるジブロック共重合体、A-B-A又はB-A-Bで示されるトリブロック共重合体、A-B-A-Bで示されるテトラブロック共重合体、A-B-A-B-A又はB-A-B-A-Bで示されるペンタブロック共重合体、(A-B)Z型共重合体(Zはカップリング剤残基を表し、nは3以上の整数を表す)等を挙げることができる。中でも、直鎖状のトリブロック共重合体、ペンタブロック共重合体又はジブロック共重合体が好ましく、A-B-A型のトリブロック共重合体が、柔軟性、製造の容易性等の観点から好ましく用いられる。
 A-B-A型のトリブロック共重合体として具体的には、スチレン-水添ブタジエン/イソプレン-スチレン共重合体、スチレン-水添ブタジエン-スチレン共重合体、スチレン-水添イソプレン-スチレン共重合体等が挙げられる。
 ここで、本明細書においては、同種の重合体ブロックが二官能のカップリング剤等を介して直線状に結合している場合、結合している重合体ブロック全体は一つの重合体ブロックとして取り扱われる。これに従い、上記例示も含め、本来、厳密にはY-Z-Y(Zはカップリング残基を表す)と表記されるべき重合体ブロックは、特に単独の重合体ブロックYと区別する必要がある場合を除き、全体としてYと表示される。本明細書においては、カップリング剤残基を含むこの種の重合体ブロックを上記のように取り扱うので、例えば、カップリング剤残基を含み、厳密にはA-B-Z-B-A(Zはカップリング剤残基を表す)と表記されるべきブロック共重合体はA-B-Aと表記され、トリブロック共重合体の一例として取り扱われる。
  (重合体ブロック(A-1)及び(A-2)の含有割合)
 変性水素添加物(A)は、本発明の目的及び効果の妨げにならない限り、重合体ブロック(A-1)及び(A-2)以外の他の重合体ブロックを含有してもよく、当該他の重合体ブロックを含有しなくてもよい。
 変性水素添加物(A)100質量%において、重合体ブロック(A-1)及び重合体ブロック(A-2)の合計含有割合の下限は、好ましくは90質量%以上、より好ましくは95質量%以上、実質的に100質量%であることが特に好ましい。90質量%以上であれば、樹脂組成物が、優れた機械的強度、成形性及び接着力をより発現しやすくなるために好ましい。変性水素添加物(A)において、重合体ブロック(A-1)及び重合体ブロック(A-2)の合計含有割合の上限は、好ましくは100質量%以下である。
 〈官能基〉
 変性水素添加物(A)は、カルボキシ基、アミノ基、ヒドロキシ基、及び酸無水物由来の基からなる群より選ばれる少なくとも1種の官能基を有する。
 本実施形態の樹脂組成物が、上記官能基を有する変性水素添加物(A)を含むことにより、合成樹脂及び金属に対して強固な接着力を発現することができる。
 酸無水物由来の基は、例えば、無水マレイン酸由来の基が挙げられる。ここで、「無水マレイン酸由来の基」とは、無水マレイン酸の環の二重結合を構成していた炭素の一方が結合手となった構造を有する基である。樹脂組成物の接着力の観点、特に金属に対する接着力の観点からは、変性水素添加物(A)が有する官能基が、カルボキシ基及び酸無水物由来の基からなる群より選ばれる少なくとも1種の官能基であることが好ましく、酸無水物由来の基であることがより好ましい。
 また、変性水素添加物(A)は、側鎖に上記官能基を有することが好ましく、重合体ブロック(A-2)の側鎖に上記官能基を有することがより好ましく、これにより本実施形態の樹脂組成物の接着力を向上させることができる。なお、変性水素添加物(A)の製造方法は、具体的には後述のとおりである。
 変性水素添加物(A)に対する上記官能基の含有量の下限は、好ましくは0.10phr以上、より好ましくは0.15phr以上、さらに好ましくは0.20phr以上、よりさらに好ましくは0.30phr以上である。また、変性水素添加物(A)に対する官能基の含有量の上限は、好ましくは5.00phr以下、より好ましくは4.00phr以下、さらに好ましくは3.00phr以下、よりさらに好ましくは2.00phr以下、よりさらに好ましくは1.50phr以下、よりさらに好ましくは1.00phr以下であり、0.90phr以下であってもよい。
 変性水素添加物(A)に対する官能基の含有量が上記範囲である場合、変性水素添加物(A)を含む樹脂組成物の接着力を容易に向上させることができ、また引張特性がより優れたものとなるために好ましい。変性水素添加物(A)に対する官能基の含有量が上記範囲の上限以下である場合、ゲル化を抑えることができるため好ましい。
 なお、官能基の含有量(phr)は、変性水素添加物(A)100質量部に対する官能基の質量部を意味する。
 変性水素添加物(A)における官能基の含有量は、中和滴定により算出することができる。上述の通り、変性水素添加物(A)が有する官能基が、カルボキシ基及び酸無水物由来の基からなる群より選ばれる少なくとも1種の官能基であることが好ましい実施形態である。変性水素添加物(A)に対する官能基の含有量は、より詳細には実施例に記載の方法に従って測定される。
 〈変性水素添加物(A)の製造方法〉
 変性水素添加物(A)は、まず少なくとも芳香族ビニル化合物及び共役ジエン化合物をモノマーとして用い、これらを重合反応によってブロック共重合体とし、次に、当該ブロック共重合体を水素添加する前又は水素添加した後に、変性剤を用いて変性反応する工程を経て、製造することができる。
  (重合反応)
 上記重合反応は、例えば、溶液重合法、乳化重合法、又は固相重合法等により行うことができる。中でも溶液重合法が好ましく、例えば、アニオン重合、カチオン重合等のイオン重合法、ラジカル重合法等の公知の方法を適用できる。中でも、アニオン重合法が好ましい。アニオン重合法では、溶媒、アニオン重合開始剤、及び必要に応じてルイス塩基の存在下、芳香族ビニル化合物及び共役ジエン化合物を逐次添加して、ブロック共重合体を得、必要に応じてカップリング剤を添加して反応させればよい。
 アニオン重合開始剤として使用し得る有機リチウム化合物としては、例えばメチルリチウム、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ペンチルリチウム等が挙げられる。また、アニオン重合開始剤として使用し得るジリチウム化合物としては、例えばナフタレンジリチウム、ジリチオヘキシルベンゼン等が挙げられる。
 カップリング剤としては、例えばジクロロメタン、ジブロモメタン、ジクロロエタン、ジブロモエタン、ジブロモベンゼン、安息香酸フェニル、テトラメトキシシラン、メチルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピルトリエトキシシラン等が挙げられる。
 これらのアニオン重合開始剤及びカップリング剤の使用量は、変性水素添加物(A)の所望とする重量平均分子量により適宜決定される。通常は、有機リチウム化合物、ジリチウム化合物等のアニオン重合開始剤は、重合に用いる芳香族ビニル化合物及び共役ジエン化合物等の単量体の合計100質量部あたり0.01~0.2質量部の割合で用いられるのが好ましく、カップリング剤を使用する場合は、単量体の合計100質量部あたり0.001~0.8質量部の割合で用いられるのが好ましい。
 溶媒としては、アニオン重合反応に悪影響を及ぼさなければ特に制限はなく、例えば、シクロヘキサン、メチルシクロヘキサン、n-ヘキサン、n-ペンタン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。
 また、重合反応は、通常0~100℃、好ましくは10~70℃の温度で、0.5~50時間、好ましくは1~30時間行う。
 また、共役ジエン化合物の重合の際に共触媒としてルイス塩基を添加する方法により、ビニル結合量を高めることができる。
 用いることのできるルイス塩基としては、例えば、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、2,2-ジ(2-テトラヒドロフリル)プロパン(DTHFP)等のエーテル類;エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等のグリコールエーテル類;トリエチルアミン、N,N,N’,N’-テトラメチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N-メチルモルホリン等のアミン類;ナトリウムt-ブチレート、ナトリウムt-アミレート又はナトリウムイソペンチレート等の脂肪族アルコールのナトリウム又はカリウム塩、あるいは、ジアルキルナトリウムシクロヘキサノレート、例えば、ナトリウムメントレートのような脂環式アルコールのナトリウム又はカリウム塩等の金属塩;等が挙げられる。上記ルイス塩基の中でも、ビニル結合量の制御が容易である観点から、テトラヒドロフラン及びDTHFPを用いることが好ましい。また、高いビニル結合量とすることができ、過剰量の水添触媒を用いずとも高い水素添加率を達成しやすく、より優れた引張特性と接着力の両立を実現し得ることからDTHFPを用いることがより好ましい。
 これらのルイス塩基は、1種単独で又は2種以上を組み合わせて用いることができる。
 ルイス塩基の添加量は、上記重合体ブロック(A-2)中のビニル結合量をどの程度に制御するかにより任意に決定される。そのため、ルイス塩基の添加量に厳密な意味での制限はないが、重合開始剤として用いられる有機リチウム化合物又はジリチウム化合物に含有されるリチウム1グラム原子あたり、通常0.1~1,000モル、好ましくは1~100モルの範囲内で用いるのが好ましい。
 上記した方法により重合を行なった後、アルコール類、カルボン酸類、水等の活性水素化合物を添加して重合反応を停止させることにより、ブロック共重合体を得ることができる。
  (水素添加)
 上記工程で得られたブロック共重合体を水素添加することにより、ブロック共重合体の水素添加物を得ることができる。
 ブロック共重合体を水素添加する場合、不活性有機溶媒中で水添触媒の存在下に水素添加反応(水添反応)を行う。水添反応により、ブロック共重合体における重合体ブロック(A-2)中の共役ジエン化合物由来の炭素-炭素二重結合が水素添加され、ブロック共重合体の水素添加物とすることができる。
 水添反応は、水素圧力を0.1~20MPa程度、好ましくは0.5~15MPa、より好ましくは0.5~5MPaとして実施することができる。また、水添反応は、反応温度を20~250℃程度、好ましくは50~180℃、より好ましくは70~180℃として実施することができる。また、水添反応は、反応時間を通常0.1~100時間、好ましくは1~50時間として実施することができる。
 水添触媒としては、例えば、ラネーニッケル;Pt、Pd、Ru、Rh、Ni等の金属をカーボン、アルミナ、珪藻土等の担体に担持させた不均一系触媒;遷移金属化合物とアルキルアルミニウム化合物、有機リチウム化合物等との組み合わせからなるチーグラー系触媒;メタロセン系触媒等が挙げられる。中でも、芳香族環の核水添を抑制しやすい観点から、好ましくはチーグラー系触媒、より好ましくは遷移金属化合物とアルキルアルミニウム化合物との組み合わせからなるチーグラー系触媒であり、さらに好ましくはニッケル化合物とアルキルアルミニウム化合物との組み合わせからなるチーグラー系触媒(Al/Ni系チーグラー触媒)である。
 このようにして得られたブロック共重合体の水素添加物は、重合反応液をメタノール等に注ぐことにより析出させた後、加熱又は減圧乾燥させるか、重合反応液をスチームと共に熱水中に注ぎ、溶媒を共沸させて除去するいわゆるスチームストリッピングを施した後、加熱又は減圧乾燥することにより取得することができる。
  (変性反応)
 ブロック共重合体を水素添加する前又は後に上述の官能基を導入して、変性水素添加物(A)を製造することができる。ラジカル反応により官能基を導入する場合は、反応制御の観点から、ブロック共重合体を水素添加して水素添加物とした後、特定の官能基を導入することが好ましい。
 水素添加物に上述の官能基を導入して変性する反応(以下、「変性反応」と称すことがある)は、公知の方法で行うことができる。
 変性反応は、例えば、ブロック共重合体の水素添加物を有機溶媒に溶解し、そこへ上述の官能基を付加することができる各種変性剤を添加し、50~300℃程度、0.5~10時間程度で反応させることにより行うことができる。
 また上記変性反応は、例えば、ブロック共重合体の水素添加物を、溶媒を用いずに押出機等を使用して溶融状態にし、各種変性剤を添加することにより行うことができる。この場合、変性反応の温度は、通常ブロック共重合体の水素添加物のガラス転移温度以上から400℃以下であり、好ましくは90~350℃、より好ましくは100~300℃である。変性反応の反応時間は、通常0.5~10分程度である。
 また、溶融状態で上記変性反応を行う際にラジカル開始剤を添加することが好ましく、副反応を抑制する観点等から老化防止剤を添加してもよい。
 なお、ブロック共重合体を水素添加する前に上述の官能基を導入して変性する反応においても、ラジカル開始剤を添加してもよい。
 上記変性反応は、作業性や熱安定性が優れやすくなる観点から、後者の溶融状態で変性する方法により行うことが好ましい。
 すなわち、変性水素添加物(A)の製造方法の好ましい態様は、上記ブロック共重合体を水素添加して水素添加物とした後、溶融状態の当該水素添加物に、ラジカル開始剤を用いて、カルボキシ基、アミノ基、ヒドロキシ基、及び酸無水物由来の基からなる群より選ばれる少なくとも1種の官能基を導入する工程を有することである。
 上記官能基を付加することができる変性剤としては、ビニルベンジルジエチルアミン、ビニルベンジルジメチルアミン、1-グリシジル-4-(2-ピリジル)ピペラジン、1-グリシジル-4-フェニルピペラジン、1-グリシジル-4-メチルピペラジン、1-グリシジル-4-メチルホモピペラジン、1-グリシジルヘキサメチレンイミン、及びテトラグリシジル-1,3-ビスアミノメチルシクロヘキサン、1-ドデカノール、セタノール(セチルアルコール)、ステアリルアルコール、オレイルアルコール等が挙げられ、また変性剤として、無水マレイン酸、無水シトラコン酸、無水2,3-ジメチルマレイン酸、無水イタコン酸等の不飽和カルボン酸無水物も用いることができる。さらに、特開2011-132298号公報に記載の変性剤から、上記官能基を付加することができる変性剤を採用してもよい。上記変性剤は、1種単独で又は2種以上を組み合わせて用いることができる。
 変性剤の添加量は、所望する上記官能基の含有量となるように適宜決定すればよいが、ブロック共重合体又はその水素添加物100質量部に対し、変性剤は通常0.01~10質量部程度、好ましくは0.01~5質量部、より好ましくは0.01~3質量部、さらに好ましくは0.05~2質量部である。
 ラジカル開始剤としては、ジアルキルパーオキサイド類、ジアシルパーオキサイド類、パーオキシエステル類、パーオキシケタール類、ジアルキルパーオキサイド類、及びハイドロパーオキサイド類等の有機パーオキサイド又は有機パーエステルを用いることができ、またアゾビスイソブチロニトリル、及びジメチルアゾイソブチレート等のアゾ化合物等も用いることができる。上記ラジカル開始剤のなかでも、好ましくは有機パーオキサイドであり、より好ましくはジアルキルパーオキサイド類である。
 変性反応において、ラジカル開始剤の添加量は、ブロック共重合体又はその水素添加物と変性剤との組み合わせにより適宜決定すればよいが、ブロック共重合体又はその水素添加物100質量部に対しラジカル開始剤は、通常0.01~10質量部程度、好ましくは0.01~5質量部、より好ましくは0.01~3質量部、さらに好ましくは0.05~2質量部である。
 〈変性水素添加物(A)のメルトフローレート〉
 変性水素添加物(A)は、JIS K 7210:2014に準拠して、温度230℃、荷重21Nの条件で測定したメルトフローレートの下限が、好ましくは1g/10分以上、より好ましくは5g/10分以上、さらに好ましくは10g/10分以上である。また、変性水素添加物(A)のメルトフローレートの上限は、好ましくは30g/10分以下、より好ましくは26g/10分以下、さらに好ましくは23g/10分以下である。
 変性水素添加物(A)のメルトフローレートが、上記数値範囲であれば、樹脂組成物は、成形性に優れ、引張特性により一層優れる。
 〈変性水素添加物(A)の重量平均分子量〉
 樹脂組成物の機械的強度の観点から変性水素添加物(A)の重量平均分子量の下限は、好ましくは50,000以上、より好ましくは80,000以上、さらに好ましくは100,000以上、よりさらに好ましくは130,000以上である。
 樹脂組成物の成形性及び接着力の観点から、変性水素添加物(A)の重量平均分子量の上限は、好ましくは400,000以下、より好ましくは350,000以下、さらに好ましくは300,000以下、よりさらに好ましくは200,000以下である。
 〈変性水素添加物(A)のtanδのピークトップ強度、ピークトップ温度〉
 変性水素添加物(A)は、JIS K 7244-10:2005に準拠して、歪み量0.1%、周波数1Hz、測定温度-70~+120℃、昇温速度3℃/分の条件で測定したtanδのピークトップ強度が、好ましくは1.0~3.0である。
 本実施形態においてtanδのピークトップ強度の測定は、変性水素添加物(A)を温度230℃、圧力10MPaで3分間加圧することで、厚み1.0mmの単層シートを作製し、当該単層シートを円板形状に切り出した試験片を用いて行うことができる。
 なお、本実施形態においてtanδの測定装置に特に制限はないが、回転式レオメータ「ARES-G2」(TAインスツルメント社製)等を使用し、直径8mmの平面プレートに上記試験片を挟んで試験することができる。より詳細には実施例に記載のとおりである。
 変性水素添加物(A)は、上記測定により、tanδのピークトップ強度の下限が、好ましくは1.0以上になり得、より高いものでは1.5以上、さらには1.9以上となるものもある。また、tanδのピークトップ強度の上限値は、特に制限されなく、3.0以下であってもよいし、2.5以下であってもよいし、2.3以下であってもよい。tanδのピークトップ強度が高い程、その温度における制振性等の物性に優れることを示す。
 変性水素添加物(A)の、tanδのピークトップ温度は前記tanδのピークトップ強度と同じ方法で求められる。
 また、変性水素添加物(A)は、tanδのピークトップ温度の下限が、好ましくは-25℃以上、より好ましくは-10℃以上、さらに好ましくは0℃以上である。また、上記tanδのピークトップ温度の上限値は、本発明の効果を損なわない範囲であればよく、+40℃以下であってもよく、+35℃以下であってもよい。変性水素添加物(A)のtanδのピークトップ温度が、上記範囲であれば、樹脂組成物の接着力及び引張特性がより優れやすいために好ましい。
 tanδのピークトップ強度及びピークトップ温度は、変性水素添加物(A)に用いるモノマーの選択や含有割合を最適化したり、ビニル結合量を好適に調整したりする等の方法によりコントロールすることが可能である。
 〈変性水素添加物(A)のガラス転移温度〉
 変性水素添加物(A)のガラス転移温度は、好ましくは-30~+40℃、より好ましくは-20~+30℃、さらに好ましくは-5~+25℃である。
 変性水素添加物(A)のガラス転移温度が上記範囲であれば、樹脂組成物の接着力及び引張特性がより優れやすいために好ましい。
 本明細書において、ガラス転移温度は、示差走査熱量計(DSC)測定装置を用いて測定した値である。
[樹脂(B)]
 樹脂(B)は、アクリル系ブロック共重合体及び熱可塑性ポリウレタン樹脂からなる群より選ばれる少なくとも1種である。
 樹脂(B)として、アクリル系ブロック共重合体及び熱可塑性ポリウレタン樹脂からなる群より選ばれる少なくとも1種を用いることにより、本実施形態の樹脂組成物は、合成樹脂及び金属等に対してより強固な接着力を発現することができる。樹脂組成物がアクリル系ブロック共重合体を含む場合、当該樹脂組成物は金属に対する接着力がさらに顕著に優れたものとなる点において、アクリル系ブロック共重合体を用いることが好ましい。
 〈アクリル系ブロック共重合体〉
 アクリル系ブロック共重合体は、(メタ)アクリル酸エステル由来の構造単位を含有する重合体ブロックを複数有する共重合体である。柔軟性、耐候性、接着力の観点から、アクリル系ブロック共重合体の中でも、アクリル酸エステル由来の構造単位を含有する重合体ブロック(D1)と、メタクリル酸エステル由来の構造単位を含有する重合体ブロック(E1)とを有するアクリル系ブロック共重合体が好ましい。
 〔重合体ブロック(D1)〕
 重合体ブロック(D1)は、アクリル酸エステル由来の構造単位を含有する。かかるアクリル酸エステルは、一般式CH=CH-COOR(X)(式(X)中、Rは炭素数1~3の有機基を表す)で示されるアクリル酸エステル(以下、「アクリル酸エステル(d-1)」と称する。)、一般式CH=CH-COOR(Y)(式(Y)中、Rは炭素数4~12の有機基を表す)で示されるアクリル酸エステル(以下、「アクリル酸エステル(d-2)」と称する。)、これら以外のアクリル酸エステルに大別される。
 上記Rが示す炭素数1~3の有機基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基などの炭素数1~3のアルキル基;メトキシエチル基、ヒドロキシエチル基、アミノエチル基、グリシジル基などの、酸素等の炭素以外の元素を含む炭素数の合計が1~3である有機基などが挙げられる。かかるアクリル酸エステル(d-1)としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n-プロピルなどの官能基を有さないアクリル酸エステル;アクリル酸2-メトキシエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-アミノエチル、アクリル酸グリシジルなどの官能基を有するアクリル酸エステルなどが挙げられる。
 上記Rが示す炭素数4~12の有機基としては、例えば、ブチル基、アミル基(ペンチル基)、ヘキシル基、シクロヘキシル基、エチルヘキシル基、オクチル基、デシル基、イソボルニル基、ラウリル基などの炭素数4~12のアルキル基;フェニル基、ベンジル基などの炭素数6~12の芳香族環基;エトキシエチル基、テトラヒドロフルフリル基、ジエチルアミノエチル基、フェノキシエチル基などの酸素などの炭素以外の元素を含む炭素数の合計が4~12である有機基などが挙げられる。かかるアクリル酸エステル(d-2)としては、例えば、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸イソオクチル、アクリル酸デシル、アクリル酸イソボルニル、アクリル酸ラウリル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジルなどの官能基を有さないアクリル酸エステル;アクリル酸2-エトキシエチル、アクリル酸2-(ジエチルアミノ)エチル、アクリル酸テトラヒドロフルフリル、アクリル酸2-フェノキシエチルなどの官能基を有するアクリル酸エステルなどが挙げられる。
 アクリル酸エステル(d-1)及びアクリル酸エステル(d-2)以外のアクリル酸エステルとしては、例えば、アクリル酸オクタデシルなどの官能基を有さないアクリル酸エステルなどが挙げられる。
 アクリル酸エステル(d-1)の中でも、得られる樹脂組成物の柔軟性の観点から、官能基を有さないアクリル酸エステルが好ましく、アクリル酸メチル、アクリル酸エチルがより好ましく、アクリル酸メチルがさらに好ましい。
 (d-1)/(D1)
 重合体ブロック(D1)中に含まれるアクリル酸エステル(d-1)の割合[(d-1)/(D1)]は、10~100質量%であることが好ましく、30~100質量%であることがより好ましく、50~100質量%であることがさらに好ましい。また、重合体ブロック(D1)中に含まれるアクリル酸エステル(d-1)の割合は100質量%であってもよい。上記範囲にあることにより、本実施形態の樹脂組成物の成形加工性が良好になる。
 アクリル酸エステル(d-1)、重合体ブロック(D1)の含有量は、H-NMRによって求めることができ、具体的には実施例に記載の方法で求めることができる。
 アクリル酸エステル(d-2)の中でも、重合体ブロック(D1)と重合体ブロック(E1)との相分離がより明瞭となるため、樹脂組成物としたときに高い凝集力を発現する点から、官能基を有さないアクリル酸エステルが好ましく、炭素数4~12のアルキル基を有するアクリル酸アルキルがより好ましく、アクリル酸n-ブチル及びアクリル酸2-エチルヘキシルがさらに好ましい。また、得られる樹脂組成物が広い温度範囲で安定した耐久性を発現する点から、アクリル酸n-ブチルがより好ましい。
 上記アクリル酸エステルは単独で用いてもよく、2種以上を併用してもよい。また、重合体ブロック(D1)100質量%中のアクリル酸エステル由来の構造単位の含有割合の下限は、60質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、100質量%であってもよい。
 上記アクリル酸エステルの中でも、アクリル系ブロック共重合体と変性水素添加物(A)との相容性が高まり、安定した接着力、成形加工性を発現する点から、アクリル酸エステル(d-1)及びアクリル酸エステル(d-2)からなる群より選ばれる少なくとも1種であることが好ましい。
 上記重合体ブロック(D1)に用いるアクリル酸エステルは、アクリル酸エステル(d-1)から選ばれる少なくとも1種とアクリル酸エステル(d-2)から選ばれる少なくとも1種とを含むことが好ましい一態様である。その場合、アクリル酸エステル(d-1)に由来する構造単位及び上記アクリル酸エステル(d-2)に由来する構造単位の質量比(d-1)/(d-2)は、90/10~10/90であることが好ましく、80/20~20/80であることがより好ましく、70/30~30/70であることがさらに好ましく、60/40~40/60であることがよりさらに好ましい。
 (d-1)/(d-2)が上記範囲にあることにより、アクリル系ブロック共重合体と変性水素添加物(A)との相容性が高まり、安定した接着力、成形加工性を発現しやすくなる。なお、アクリル酸エステル(d-1)及びアクリル酸エステル(d-2)の質量比はH-NMR測定により求めることができる。
 上記重合体ブロック(D1)に用いるアクリル酸エステル(d-1)及びアクリル酸エステル(d-2)の組み合わせとしては、例えば、アクリル酸メチル/アクリル酸n-ブチルなどが挙げられる。このとき、用いるアクリル酸エステル(d-1)及びアクリル酸エステル(d-2)としては、アクリル酸エステル(d-1)及びアクリル酸エステル(d-2)の溶解度パラメーターの差が0.3~2.5(MPa)1/2であることが好ましい。なお、かかる溶解度パラメーターは、"POLYMER HANDBOOK Forth Edition"、VII 675頁~714頁(Wiley Interscience社、1999年発行)及び"Polymer Engineering and Science"、1974年、第14巻、147頁~154頁に記載の方法で計算することができる。また、上記アクリル系ブロック共重合体に、重合体ブロック(D1)が2つ以上含まれる場合には、それら重合体ブロック(D1)となるアクリル酸エステルの組み合わせは、同一であっても異なっていてもよい。
 上記重合体ブロック(D1)が、アクリル酸エステル(d-1)単位及びアクリル酸エステル(d-2)単位の両方を含む共重合体である場合には、アクリル酸エステル(d-1)及びアクリル酸エステル(d-2)のランダム共重合体からなるものでもよいし、ブロック共重合体からなるものでもよいし、グラジェント共重合体からなるものでもよいが、通常ランダム共重合体からなるものが望ましい。上記アクリル系ブロック共重合体に、重合体ブロック(D1)が2つ以上含まれる場合には、それら重合体ブロック(D1)の構造は、同一であっても異なっていてもよい。また、重合体ブロック(D1)中に含まれるアクリル酸エステル(d-1)及び(d-2)の合計単位の割合の下限は、重合体ブロック(D1)100質量%中、60質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、100質量%であってもよい。
 上記重合体ブロック(D1)のガラス転移温度は-100~+30℃であることが好ましく、-80~+10℃であることがより好ましく、-70~0℃であることがさらに好ましく、-60~-10℃であることが最も好ましい。ガラス転移温度が上記範囲にあると、本実施形態の樹脂組成物は、常温での優れた接着力を有しやすくなる。
 〔重合体ブロック(E1)〕
 重合体ブロック(E1)は、メタクリル酸エステル由来の構造単位を含有する。かかるメタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n-プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸sec-ブチル、メタクリル酸tert-ブチル、メタクリル酸n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸n-オクチル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、メタクリル酸イソボルニル、メタクリル酸フェニル、メタクリル酸ベンジルなどの官能基を有さないメタクリル酸エステル;メタクリル酸メトキシエチル、メタクリル酸エトキシエチル、メタクリル酸ジエチルアミノエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-アミノエチル、メタクリル酸グリシジル、メタクリル酸テトラヒドロフルフリル等の官能基を有するメタクリル酸エステルなどが挙げられる。
 これらの中でも、得られる樹脂組成物の耐熱性、耐久性を向上させる観点から、重合体ブロック(E1)としては、官能基を有さないメタクリル酸エステルが好ましく、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸tert-ブチル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸イソボルニル、メタクリル酸フェニル、メタクリル酸ベンジルがより好ましい。重合体ブロック(D1)と重合体ブロック(E1)との相分離がより明瞭となり、得られる樹脂組成物の機械的強度が良好になる観点から、重合体ブロック(E1)としては、メタクリル酸メチルがさらに好ましい。重合体ブロック(E1)は、これらメタクリル酸エステルの1種から構成されていてもよく、2種以上から構成されていてもよい。また、上記アクリル系ブロック共重合体は、重合体ブロック(E1)を2つ以上有することが機械的強度をより高める観点から好ましい。その場合、それら重合体ブロック(E1)は、同一であっても異なっていてもよい。
 重合体ブロック(E1)のピークトップ分子量(Mp)は特に限定されないが、1,000~50,000の範囲にあることが好ましく、2,000~30,000の範囲にあることがより好ましい。重合体ブロック(E1)のMpが上記範囲であれば、得られるアクリル系ブロック共重合体の凝集力が不足するおそれがなくなり、得られるアクリル系ブロック共重合体の溶融粘度が高くなりすぎず、樹脂組成物を製造する際の生産性が良好になる傾向にある。なお、Mpは、GPC測定により得られた微分分子量分布曲線において、ピークの頂点の位置の分子量である。
 重合体ブロック(E1)100質量%中のメタクリル酸エステル由来の構造単位の含有割合の下限は、60質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、100質量%であってもよい。
 上記重合体ブロック(E1)のガラス転移温度は80~140℃であることが好ましく、90~130℃であることがより好ましく、100~120℃であることがさらに好ましい。ガラス転移温度が上記範囲にあると、得られる樹脂組成物の通常の使用温度において、重合体ブロック(E1)は物理的な疑似架橋点として作用し、接着力、耐久性、耐熱性に優れやすくなる。
 上記重合体ブロック(D1)には、本発明の効果を損なわない範囲で、メタクリル酸エステル由来の構造単位が含有されていてもよい。また、重合体ブロック(E1)には、本発明の効果を損なわない範囲で、アクリル酸エステル由来の構造単位が含有されていてもよい。
 また、必要に応じて(メタ)アクリル酸エステル以外の単量体由来の構造単位を含有してもよい。かかる他の単量体としては、例えば、(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸等のカルボキシル基を有するビニル系単量体;スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレン等の芳香族ビニル系単量体;ブタジエン、イソプレン等の共役ジエン系単量体;エチレン、プロピレン、イソブテン、オクテン等のオレフィン系単量体;ε-カプロラクトン、バレロラクトン等のラクトン系単量体;(メタ)アクリルアミド、(メタ)アクリロニトリル、無水マレイン酸、酢酸ビニル、塩化ビニル、塩化ビニリデンなどが挙げられる。上記単量体を用いる場合、アクリル系ブロック共重合体中の各重合体ブロックに使用する単量体の全質量に対して、上記単量体は、好ましくは40質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下の量で使用される。
 上記アクリル系ブロック共重合体は、上記重合体ブロック(D1)及び重合体ブロック(E1)の他に、必要に応じて他の重合体ブロックを有していてもよい。かかる他の重合体ブロックとしては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレン、アクリロニトリル、メタクリロニトリル、エチレン、プロピレン、イソブテン、ブタジエン、イソプレン、オクテン、酢酸ビニル、無水マレイン酸、塩化ビニル、塩化ビニリデン等の単量体由来の構造単位を含有する重合体ブロック又は共重合体ブロック;ポリエチレンテレフタレート、ポリ乳酸、ポリウレタン、ポリジメチルシロキサンからなる重合体ブロックなどが挙げられる。また、上記他の重合体ブロックには、ブタジエン、イソプレンなどの共役ジエン化合物由来の構造単位を含有する重合体ブロックの水素添加物も含まれる。
 上記アクリル系ブロック共重合体は、重合体ブロック(D1)をD1、重合体ブロック(D1)とは異なる構造の重合体ブロック(ただし、重合体ブロック(E1)を除く)をD1’、重合体ブロック(E1)をE1で表したときに、下記一般式で表されるものであることが好ましい。
  (E1-D1)
  (E1-D1)-E1
  D1-(E1-D1)
  (E1-D1)-D1’
  (E1-D1)-Z
  (D1-E1)-Z
 上記一般式中、nは1~30の整数、Zはカップリング部位(カップリング剤が重合体末端と反応して化学結合を形成した後のカップリング部位、「-」は各重合体ブロックの結合手を示す。)を表す。なお、上記一般式中、複数のD1、E1が含まれる場合には、それらは同一構造の重合体ブロックであってもよいし、異なる構造の重合体ブロックであってもよい。
 ここで、「異なる構造」とは、重合体ブロックを構成するモノマー単位、分子量、分子量分布、立体規則性、及び複数のモノマー単位を有する場合には各モノマー単位の比率及び共重合の形態(ランダム、グラジェント、ブロック)のうち少なくとも1つが異なる構造を意味する。
 また上記nの値は、1~15であることが好ましく、1~8であることがより好ましく、1~4であることがさらに好ましい。
 上記の構造の中でも、樹脂組成物の機械的強度により優れる観点から、(E1-D1)、(E1-D1)-E1、D1-(E1-D1)、(E1-D1)-D1’で表される直鎖状のブロック共重合体が好ましく、E1-D1で表されるジブロック共重合体、E1-D1-D1’で表されるトリブロック共重合体、及び重合体ブロック(E1)、上記重合体ブロック(D1)、上記重合体ブロック(E1)の順にブロックを有するE1-D1-E1で表されるトリブロック共重合体がより好ましく、E1-D1-E1で表されるトリブロック共重合体がさらに好ましい。
 上記アクリル系ブロック共重合体のピークトップ分子量(Mp)は50,000~250,000であることが好ましい。中でも、樹脂組成物の流動性を良好にする点から、上記Mpは55,000~230,000がより好ましく、60,000~220,000がさらに好ましく、60,000~200,000がよりさらに好ましく、60,000~150,000が特に好ましい。
 上記アクリル系ブロック共重合体の分子量分布(Mw/Mn)は1.00~1.40であることが好ましい。樹脂組成物とした際に機械的強度に優れる観点から、Mw/Mnは、1.00~1.35であることがより好ましく、1.00~1.30であることがさらに好ましく、1.00~1.25であることがよりさらに好ましく、1.00~1.20であることが特に好ましい。
 なお、アクリル系ブロック共重合体に関するピークトップ分子量(Mp)、数平均分子量(Mn)及び重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィーにより標準ポリスチレン換算で求めた値であり、分子量分布(Mw/Mn)は上記Mw及びMnの値から算出された値である。
 上記アクリル系ブロック共重合体中の重合体ブロック(E1)の含有量と重合体ブロック(D1)の含有量の質量比[(E1)/(D1)]は、10/90~55/45であることが好ましく、15/85~55/45であることがより好ましく、20/80~53/47であることがよりさらに好ましく、25/75~52/48であることが特に好ましい。
 重合体ブロック(D1)、重合体ブロック(E1)の含有量は、H-NMRによって求めることができ、具体的には実施例に記載の方法で求めることができる。
 〔アクリル系ブロック共重合体の製造方法〕
 上記アクリル系ブロック共重合体の製造方法は、上述した条件を満足する重合体が得られる限りにおいて特に限定されることなく、公知の手法に準じた方法を採用することができる。一般に、分子量分布の狭いブロック共重合体を得る方法としては、構造単位となる単量体をリビング重合する方法が取られる。このようなリビング重合の手法としては、例えば、有機希土類金属錯体を重合開始剤としてリビング重合する方法(特開平06-093060号公報参照)、有機アルカリ金属化合物を重合開始剤としアルカリ金属又はアルカリ土類金属の塩などの鉱酸塩の存在下でリビングアニオン重合する方法(特表平05-507737号公報参照)、有機アルミニウム化合物の存在下で、有機アルカリ金属化合物を重合開始剤としリビングアニオン重合する方法(特開平11-335432号公報参照)、原子移動ラジカル重合法(ATRP)(Macromolecular Chemistry and Physics、2000年、201巻、p.1108~1114参照)などが挙げられる。
 上記製造方法のうち、有機アルミニウム化合物の存在下で有機アルカリ金属化合物を重合開始剤としてリビングアニオン重合する方法は、得られるブロック共重合体の透明性が高いものとなり、残存単量体が少なく臭気が抑えられ、樹脂組成物を成形する際、気泡の発生を抑制できるため好ましい。また、重合体ブロック(E1)の分子構造が高シンジオタクチックとなり、樹脂組成物の耐熱性を高める効果がある点からも好ましい。
 アクリル系ブロック共重合体としては、市販のものを用いてもよい。具体例としては、株式会社クラレ製の「クラリティ(登録商標)」(商品名)、アルケマ株式会社製の「ナノストレングス(登録商標)」(商品名)等を挙げることができる。
 〈熱可塑性ポリウレタン樹脂〉
 熱可塑性ポリウレタン樹脂は、例えば、高分子ジオール、有機ジイソシアネート及び鎖伸長剤の反応により得られる熱可塑性ポリウレタンを用いることができる。熱可塑性ポリウレタン樹脂の形成に用いられる高分子ジオールは、その数平均分子量が1,000~6,000であることが好ましい。これにより、機械的強度、耐熱性等に優れる樹脂組成物を得ることができる。
 ここで、本明細書でいう高分子ジオールの数平均分子量は、JIS K 1557-1:2007に準拠してSITE測定した水酸基価に基づいて算出した数平均分子量である。
 熱可塑性ポリウレタン樹脂の製造に用いる高分子ジオールの例としては、ポリエステルジオール、ポリエーテルジオール、ポリエステルエーテルジオール、ポリカーボネートジオール、ポリエステルポリカーボネートジオール等を挙げることができる。これらの高分子ジオールは、1種を単独で又は2種以上を併用してもよい。
 熱可塑性ポリウレタン樹脂の製造に用いる上記ポリエステルジオールとしては、脂肪族ジカルボン酸、芳香族ジカルボン酸及びそれらのエステルからなる群から選ばれる少なくとも1種のジカルボン酸成分と低分子ジオールとの反応により得られるポリエステルジオール、ラクトンの開環重合により得られるポリエステルジオール等を挙げることができる。より具体的には、上記ポリエステルジオールとしては、例えば、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の炭素数6~12の脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、オルトフタル酸等の芳香族ジカルボン酸及びそれらのエステルからなる群から選ばれる少なくとも1種と、例えばエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-1,8-オクタンジオール等の炭素数2~10の脂肪族ジオールの少なくとも1種と、を重縮合反応させて得られるポリエステルジオール、ポリカプロラクトンジオール、ポリバレロラクトンジオール等を挙げることができる。
 熱可塑性ポリウレタン樹脂の製造に用いる上記ポリエーテルジオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等を挙げることができる。
 熱可塑性ポリウレタン樹脂の製造に用いる上記ポリカーボネートジオールとしては、例えば1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール等の脂肪族ジオールの少なくとも1種と、炭酸ジフェニル、炭酸アルキル等の炭酸エステル又はホスゲンとを反応させて得られるポリカーボネートジオールを挙げることができる。
 熱可塑性ポリウレタン樹脂の製造に用いる有機ジイソシアネートは、特に限定されないが、分子量500以下の芳香族ジイソシアネート、脂環式ジイソシアネート及び脂肪族ジイソシアネートからなる群から選ばれる少なくとも1種が好ましい。有機ジイソシアネートの具体例としては、4,4’-ジフェニルメタンジイソシアネート、トルエンジイソシアネート、p-フェニレンジイソシアネート、キシリレンジイソシアネート、ナフタレンジイソシアネート、水素化4,4’-ジフェニルメタンジイソシアネート(4,4’-ジシクロヘキシルメタンジイソシアネート)、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート等を挙げることができ、これらの中でも、4,4’-ジフェニルメタンジイソシアネートが好ましい。
 熱可塑性ポリウレタン樹脂の製造に用いる鎖伸長剤としては、熱可塑性ポリウレタン樹脂の製造に従来から用いられている鎖伸長剤のいずれもが使用でき、その種類は特に限定されない。それらの中でも、鎖伸長剤は、脂肪族ジオール、脂環式ジオール及び芳香族ジオールからなる群から選ばれる少なくとも1種が好ましい。鎖伸長剤の具体例としては、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、2-メチル-1,3-プロパンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,9-ノナンジオール、シクロヘキサンジオール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン等のジオールを挙げることができる。これらの中でも、炭素数2~6の脂肪族ジオールが好ましく、1,4-ブタンジオールがより好ましい。これらの鎖伸長剤は、1種を単独で又は2種以上を併用してもよい。
 熱可塑性ポリウレタン樹脂は、高分子ジオール、鎖伸長剤及び有機ジイソシアネートを、高分子ジオールのモル数:鎖伸長剤のモル数=1:0.2~8の範囲であり、かつ[高分子ジオールと鎖伸長剤の合計モル数]:[有機ジイソシアネートのモル数]=1:0.98~1.04の範囲となるようにして反応させて得られる熱可塑性ポリウレタン樹脂が好ましい。これにより、本実施形態の樹脂組成物の押出成形、射出成形等の溶融成形時に溶融粘度の急激な上昇がなく、目的とする成形品や積層構造体等の製品を円滑に製造することができ、さらにそれにより得られる製品の耐熱性が良好なものとなる。
 熱可塑性ポリウレタン樹脂は、硬度(タイプA硬度;25℃で測定)が55~95であることが好ましい。熱可塑性ポリウレタン樹脂の硬度が55以上であると、樹脂組成物から得られる成形品や積層構造体等の製品の機械的強度が良好なものとなる。また、熱可塑性ポリウレタン樹脂の硬度が95以下であると樹脂組成物から得られる成形品や積層構造体等の製品の柔軟性が高くなる。
 熱可塑性ポリウレタン樹脂の製造方法は特に限定されず、上述の高分子ジオール、有機ジイソシアネート及び鎖伸長剤を用いて、公知のウレタン化反応を利用して、プレポリマー法、ワンショット法のいずれで製造してもよい。これらの中でも、実質的に溶剤の不存在下に溶融重合することが好ましく、特に多軸スクリュー型押出機を用いて連続溶融重合により製造することがより好ましい。
 熱可塑性ポリウレタン樹脂として、市販のものを用いてもよい。具体例としては、BASFポリウレタンエラストマーズ株式会社製の「エラストラン(登録商標)」(商品名)、日本ミラクトラン株式会社製の「ミラクトラン(登録商標)」(商品名)、大日精化工業株式会社製の「レザミンP」(商品名)、旭硝子株式会社製の「ユーファイン(登録商標)P」(商品名)等を挙げることができる。
[水添ブロック共重合体(C)]
 優れた引張特性及び強固な接着力を維持しつつ硬度の調整をより容易にする観点から、本実施形態の樹脂組成物は、水添ブロック共重合体(C)を含有することが好ましい。
 水添ブロック共重合体(C)は、芳香族ビニル化合物由来の構造単位を含有する重合体ブロック(C-1)と、共役ジエン化合物由来の構造単位を含有する重合体ブロック(C-2)とを有する。
 また、水添ブロック共重合体(C)と変性水素添加物(A)とは異なる種類の樹脂である。水添ブロック共重合体(C)は、カルボキシ基、アミノ基、ヒドロキシ基、及び酸無水物由来の基を有しないことが好ましい。水添ブロック共重合体(C)はエポキシ基、シラノール基、アルデヒド基、カルボニル基、ニトロ基、シアノ基、エーテル結合のいずれか1つを含んでいてもよい。
 水添ブロック共重合体(C)は、1種単独で用いてもよく、2種以上を用いてもよい。
 〈重合体ブロック(C-1)〉
〔芳香族ビニル化合物〕
 重合体ブロック(C-1)は、芳香族ビニル化合物由来の構造単位を含有する。
 重合体ブロック(C-1)を構成する構造単位、構造単位の含有割合、上記構造単位の由来となる化合物の種類は、上述した重合体ブロック(A-1)と同様である。
  (重合体ブロック(C-1)の重量平均分子量)
 重合体ブロック(C-1)の重量平均分子量(Mw)は、特に制限はないが、水添ブロック共重合体(C)が有する重合体ブロック(C-1)のうち、少なくとも1つの重合体ブロック(C-1)の重量平均分子量が、好ましくは3,000~80,000、より好ましくは4,000~70,000、さらに好ましくは5,000~60,000、よりさらに好ましくは6,000~50,000である。水添ブロック共重合体(C)が、上記範囲内の重量平均分子量である重合体ブロック(C-1)を少なくとも1つ有することにより、樹脂組成物の機械的強度がより向上し、成形性にも優れやすくなる。
  (重合体ブロック(C-1)の含有割合)
 水添ブロック共重合体(C)100質量%における重合体ブロック(C-1)の含有割合の上限は、好ましくは70質量%以下、より好ましくは65質量%以下、さらに好ましくは40質量%以下、よりさらに好ましくは35質量%以下である。重合体ブロック(C-1)の含有割合が70質量%以下であれば、樹脂組成物が適度な柔軟性を発現しやすくなるために好ましい。また、水添ブロック共重合体(C)100質量%における重合体ブロック(C-1)の含有割合の下限は、好ましくは5質量%以上、より好ましくは10質量%以上、さらに好ましくは15質量%以上である。重合体ブロック(C-1)の含有割合が5質量%以上であれば、樹脂組成物の引張伸び等の機械的強度がより向上しやすくなるために好ましい。
 〈重合体ブロック(C-2)〉
〔共役ジエン化合物〕
 重合体ブロック(C-2)は、共役ジエン化合物由来の構造単位を含有する。
 重合体ブロック(C-2)を構成する構造単位、構造単位の含有割合、上記構造単位の由来となる化合物の種類は、上述した重合体ブロック(A-2)と同様である。
 一方、製造コストと物性バランスの観点から、重合体ブロック(C-2)における共役ジエン化合物は、好ましくはイソプレン、ブタジエン、及びファルネセンからなる群より選ばれる少なくとも1種である。
 イソプレンとブタジエンとを併用する場合、それらの配合比率[イソプレン/ブタジエン](質量比)に特に制限はないが、好ましくは5/95~95/5、より好ましくは10/90~90/10、さらに好ましくは40/60~70/30、よりさらに好ましくは45/55~65/35である。なお、当該配合比率[イソプレン/ブタジエン]をモル比で示すと、好ましくは5/95~95/5、より好ましくは10/90~90/10、より好ましくは20/80~80/20、さらに好ましくは30/70~70/30、さらに好ましくは40/60~70/30、よりさらに好ましくは45/55~55/45である。
  (重合体ブロック(C-2)のビニル結合量)
 本発明の効果を損なわない限りにおいて、共役ジエン化合物の結合形態に特に制限はない。
 水添ブロック共重合体(C)において、例えば、重合体ブロック(C-2)を構成する構造単位が、イソプレン単位、イソプレン及びブタジエンの混合物単位のいずれかである場合、イソプレン及びブタジエンそれぞれの結合形態としては、ブタジエンの場合には1,2-結合、1,4-結合、イソプレンの場合には1,2-結合、3,4-結合、1,4-結合のビニル結合をとることができる。これらの結合形態の1種のみが存在していても、2種以上が存在していてもよい。このうち、1,2-結合及び3,4-結合をビニル結合単位とし、ビニル結合単位の含有割合をビニル結合量とする。この場合、イソプレン及び/又はブタジエン由来の構造単位の全量に対する、ビニル結合単位の含有割合をビニル結合量とする。
 また、水添ブロック共重合体(C)において、例えば、重合体ブロック(C-2)を構成する構造単位が、β-ファルネセン単位の場合、1,2-結合、1,13-結合、3,13-結合をとることができる。これらの結合形態の1種のみが存在していても、2種以上が存在していてもよい。このうち、1,2-結合及び3,13-結合をビニル結合単位とし、ビニル結合単位の含有割合をビニル結合量とする。この場合、β-ファルネセン由来の構造単位の全量に対するビニル結合単位の含有割合をビニル結合量とする。
 変性水素添加物(A)において、例えば、重合体ブロック(C-2)を構成する構造単位が、イソプレン単位及び/又はブタジエン単位と、β-ファルネセン単位とを含む場合、ビニル結合量は、イソプレン及び/又はブタジエン由来の構造単位の全量に対するビニル結合単位の含有割合と、β-ファルネセン由来の構造単位の全量に対するビニル結合単位の含有割合との合計とする。
 重合体ブロック(C-2)のビニル結合量の下限は、好ましくは1モル%以上、より好ましくは3モル%以上、さらに好ましくは5モル%以上、よりさらに好ましくは6モル%以上である。重合体ブロック(C-2)におけるビニル結合量の下限が1モル%以上であれば、樹脂組成物がより優れた引張特性を発現しやすくなるために好ましい。
 また、重合体ブロック(C-2)におけるビニル結合量の上限は、好ましくは85モル%以下、より好ましくは75モル%以下、さらに好ましくは65モル%以下、よりさらに好ましくは55モル%以下、特に好ましくは45モル%以下である。樹脂組成物の柔軟性を向上させて被着体との密着性を向上させることによって優れた接着力を実現することを重視する場合には、重合体ブロック(C-2)におけるビニル結合量の上限は、より特に好ましくは35モル%以下、さらに特に好ましくは30モル%以下、最も好ましくは25モル%以下である。重合体ブロック(C-2)におけるビニル結合量が85モル%以下であれば、樹脂組成物がより優れた柔軟性を発現しやすくなるために好ましい。
 水添ブロック共重合体(C)は、1種単独で用いてもよく、2種以上を用いてもよい。例えば、本実施形態の樹脂組成物からなる成形体を低温環境下で使用する場合や、成形体に高い耐衝撃性が求められる場合、ビニル結合量が低い重合体ブロック(C-2)を含む水添ブロック共重合体(C)を少なくとも1種用いることが好ましい。当該ビニル結合量が低い重合体ブロック(C-2)におけるビニル結合量は、好ましくは1~30モル%、より好ましくは3~20モル%、さらに好ましくは5~10モル%である。
  (重合体ブロック(C-2)の重量平均分子量)
 重合体ブロック(C-2)の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)測定により、求められる。
 重合体ブロック(C-2)の重量平均分子量(Mw)は、水添ブロック共重合体(C)が有する重合体ブロック(C-2)のうち、少なくとも1つの重合体ブロック(C-2)の重量平均分子量が、好ましくは30,000~600,000、より好ましくは40,000~500,000、さらに好ましくは45,000~450,000、よりさらに好ましくは50,000~400,000である。水添ブロック共重合体(C)が、上記範囲内の重量平均分子量である重合体ブロック(C-2)を少なくとも1つ有することにより、樹脂組成物の引張特性がより向上し、接着力も優れやすくなるために好ましい。
  (重合体ブロック(C-2)の含有割合)
 水添ブロック共重合体(C)100質量%における重合体ブロック(C-2)の含有割合の上限は、好ましくは95質量%以下、より好ましくは90質量%以下、さらに好ましくは85質量%以下である。重合体ブロック(C-2)の含有割合が95質量%以下であれば、樹脂組成物が優れた機械的強度、及び成形性を発現しやすくなるために好ましい。また、水添ブロック共重合体(C)100質量%における重合体ブロック(C-2)の含有割合の下限は、好ましくは30質量%以上、より好ましくは45質量%以上、さらに好ましくは60質量%以上、よりさらに好ましくは70質量%以上である。重合体ブロック(C-2)の含有割合が30質量%以上であれば、樹脂組成物が優れた柔軟性を発現しやすくなるために好ましい。
  (重合体ブロック(C-2)の水素添加率)
 樹脂組成物の耐熱性及び耐候性の観点から、重合体ブロック(C-2)中の炭素-炭素二重結合の水素添加率の下限は、好ましくは80モル%以上、より好ましくは85モル%以上、さらに好ましくは88モル%以上、よりさらに好ましくは90モル%以上である。水素添加率の上限に特に制限はなく、100モル%以下であってもよく、99.9モル%以下であってもよく、99.5モル%以下であってもよい。重合体ブロック(C-2)中の炭素-炭素二重結合の水素添加率は、水素添加前後の重合体ブロックのH-NMR測定によって求めることで算出することができる。具体的には、下記式により求められる。
 水添ブロック共重合体(C)の水素添加率(モル%)={1-(水添ブロック共重合体(C)1モルあたりに含まれる炭素-炭素二重結合のモル数)/(水素添加前における、水添ブロック共重合体(C)1モルあたりに含まれる炭素-炭素二重結合のモル数)}×100
  (重合体ブロック(C-1)と重合体ブロック(C-2)の結合様式)
 重合体ブロック(C-1)と重合体ブロック(C-2)の結合様式は、上述した重合体ブロック(A-1)と重合体ブロック(A-2)の結合様式と同様である。
  (重合体ブロック(C-1)及び(C-2)の含有割合)
 水添ブロック共重合体(C)は、本発明の目的及び効果の妨げにならない限り、重合体ブロック(C-1)及び(C-2)以外の他の重合体ブロックを含有してもよく、当該重合体ブロックを含有しなくてもよい。
 水添ブロック共重合体(C)100質量%において、重合体ブロック(C-1)及び重合体ブロック(C-2)の合計含有割合の下限は、好ましくは90質量%以上、より好ましくは95質量%以上、実質的に100質量%であることが特に好ましい。上記含有割合が90質量%以上であれば、樹脂組成物が優れた機械的強度及び成形性を有しやすくなるために好ましい。水添ブロック共重合体(C)において、重合体ブロック(C-1)及び重合体ブロック(C-2)の合計含有割合の上限は、100質量%以下であることが好ましい。
 〈水添ブロック共重合体(C)の製造方法〉
 水添ブロック共重合体(C)は、モノマーとして少なくとも芳香族ビニル化合物及び共役ジエン化合物を用い、重合反応を行ってブロック共重合体を得た後、得られたブロック共重合体を水素添加することにより、製造することができる。
 上記ブロック共重合体は、上述した変性水素添加物(A)の製造方法におけるブロック共重合体の製造方法と同様の方法により製造することができる。また、水素添加の方法も上述した変性水素添加物(A)の製造方法における水素添加の方法と同様である。
 〈水添ブロック共重合体(C)の重量平均分子量〉
 樹脂組成物の機械的強度の観点から、水添ブロック共重合体(C)の重量平均分子量の下限は、好ましくは50,000以上、より好ましくは60,000以上、さらに好ましくは70,000以上、よりさらに好ましくは100,000以上である。
 樹脂組成物の成形性の観点から、水添ブロック共重合体(C)の重量平均分子量の上限は、好ましくは500,000以下、より好ましくは450,000以下、さらに好ましくは400,000以下である。
 〈水添ブロック共重合体(C)のtanδのピークトップ強度、ピークトップ温度〉
 水添ブロック共重合体(C)は、JIS K 7244-10:2005に準拠して、歪み量0.1%、周波数1Hz、測定温度-70~+120℃、昇温速度3℃/分の条件で測定したtanδのピークトップ強度が、好ましくは0.05~3.0である。
 水添ブロック共重合体(C)のtanδのピークトップ強度の測定は、変性水素添加物(A)に記載の方法と同様に行うことができる。
 水添ブロック共重合体(C)は、上記測定により、tanδのピークトップ強度が、高いものでは0.3以上、より高いものでは1.0以上、さらに高いものでは2.0以上となるものもある。また、tanδのピークトップ強度の上限は、特に制限されなく、2.5以下であってもよい。tanδのピークトップ強度が高い程、その温度における制振性等の物性に優れることを示す。
 また、水添ブロック共重合体(C)は、tanδのピークトップ温度の下限が、好ましくは-65℃以上、より好ましくは-60℃以上、さらに好ましくは-55℃以上である。また、上記tanδのピークトップ温度の上限は、本発明の効果を損なわない範囲であればよく、+20℃以下であってもよく、+10℃以下であってもよい。水添ブロック共重合体(C)のtanδのピークトップ温度が、上記範囲であれば、樹脂組成物が、実使用環境下において充分な接着力及び引張特性を得ることがより容易になるために好ましい。
 水添ブロック共重合体(C)のtanδのピークトップ強度及びピークトップ温度は、水添ブロック共重合体(C)に用いるモノマーの選択や含有割合を最適化したり、ビニル結合量を好適に調整したりする等の方法によりコントロールすることが可能である。
 〈水添ブロック共重合体(C)のガラス転移温度〉
 水添ブロック共重合体(C)のガラス転移温度は、好ましくは-70~+20℃、より好ましくは-65~+10℃、さらに好ましくは-60~+5℃である。
 水添ブロック共重合体(C)のガラス転移温度が上記範囲であれば、樹脂組成物が、実使用環境下において充分な接着力及び引張特性を得ることがより容易になるために好ましい。
[各成分の含有量]
 変性水素添加物(A)及び樹脂(B)の質量比(A)/(B)は、90/10~10/90である。
 質量比(A)/(B)が上記数値範囲内であれば、引張特性及び接着力の両方に優れる。より一層優れた引張特性及び強固な接着力を発揮しやすい観点から、質量比(A)/(B)は、より好ましくは80/20~10/90、さらに好ましくは70/30~10/90、よりさらに好ましくは60/40~10/90、よりさらに好ましくは55/45~10/90である。
 本実施形態の樹脂組成物が、水添ブロック共重合体(C)を含有する場合、より一層強固な接着力を発揮しやすい観点から、変性水素添加物(A)の含有量100質量部に対し、水添ブロック共重合体(C)の含有量の下限は、好ましくは20質量部以上、より好ましくは50質量部以上、さらに好ましくは70質量部以上である。
 また、本実施形態の樹脂組成物が、水添ブロック共重合体(C)を含有する場合、より一層優れた引張特性を発揮しやすい観点から、変性水素添加物(A)の含有量100質量部に対し、水添ブロック共重合体(C)の含有量の上限は、好ましくは1000質量部以下、より好ましくは800質量部以下、さらに好ましくは700質量部以下である。
 本実施形態の樹脂組成物が、水添ブロック共重合体(C)を含有する場合、より一層強固な接着力を発揮しやすい観点から、樹脂(B)の含有量100質量部に対し、水添ブロック共重合体(C)の含有量の下限は、好ましくは10質量部以上、より好ましくは20質量部以上、さらに好ましくは40質量部以上である。
 また、本実施形態の樹脂組成物が、水添ブロック共重合体(C)を含有する場合、より一層優れた引張特性を発揮しやすい観点から、樹脂(B)の含有量100質量部に対し、水添ブロック共重合体(C)の含有量の上限は、好ましくは300質量部以下、より好ましくは200質量部以下、さらに好ましくは150質量部以下である。
 樹脂組成物がより一層強固な接着力を示す傾向にある観点から、樹脂組成物100質量%における変性水素添加物(A)の含有割合の下限は、好ましくは5質量%以上、より好ましくは8質量%以上、さらに好ましくは12質量%以上である。
 また、安定して良好な接着力と引張特性の両方を得る観点から、樹脂組成物100質量%における変性水素添加物(A)の含有割合の上限は、好ましくは70質量%以下、より好ましくは60質量%以下、さらに好ましくは50質量%以下である。
 水添ブロック共重合体(C)及び後述の軟化剤を含まない場合、樹脂組成物100質量%における変性水素添加物(A)及び樹脂(B)の合計含有割合は、好ましくは95質量%以上、より好ましくは99質量%以上、さらに好ましくは99.5質量%以上であり、上限は100質量%以下であってよい。
 後述の軟化剤を含まない場合、樹脂組成物100質量%における変性水素添加物(A)、樹脂(B)、及び水添ブロック共重合体(C)の合計含有割合は、好ましくは95質量%以上、より好ましくは99質量%以上、さらに好ましくは99.5質量%以上であり、上限は100質量%以下であってよい。
 後述の軟化剤を含む場合、樹脂組成物100質量%における変性水素添加物(A)、樹脂(B)、水添ブロック共重合体(C)、及び軟化剤の合計含有割合は、好ましくは95質量%以上、より好ましくは99質量%以上、さらに好ましくは99.5質量%以上であり、上限は100質量%以下であってよい。
[軟化剤]
 本実施形態の樹脂組成物は、軟化剤を含有しなくてもよい。一方、樹脂組成物が優れた成形性及び柔軟性を発現することがより容易になる観点から、本実施形態の樹脂組成物は、軟化剤を含有してもよい。軟化剤は、樹脂組成物が水添ブロック共重合体(C)を含有する場合に用いられることが好ましい。軟化剤は、樹脂組成物が水添ブロック共重合体(C)を含有しない場合に用いられてもよい。
 軟化剤は、一般にゴム、プラスチックスに用いられる軟化剤を使用できる。軟化剤は、例えば、パラフィン系、ナフテン系、芳香族系のプロセスオイル;ジオクチルフタレート、ジブチルフタレート等のフタル酸誘導体;ホワイトオイル;ミネラルオイル;エチレンとα-オレフィンとの液状コオリゴマー;流動パラフィン;ポリブテン;低分子量ポリイソブチレン;等が挙げられる。
 変性水素添加物(A)と樹脂(B)との相容性の観点又は変性水素添加物(A)及び水添ブロック共重合体(C)の両者と樹脂(B)との相容性の観点から、軟化剤は、パラフィン系プロセスオイル、ナフテン系プロセスオイル、及び芳香族系プロセスオイルからなる群より選ばれる少なくとも1種が好ましい。
 樹脂組成物が水添ブロック共重合体(C)及び軟化剤を含有する場合、樹脂組成物の成形加工性の観点から、軟化剤の含有量の下限は、水添ブロック共重合体(C)の含有量100質量部に対し、好ましくは5質量部以上、より好ましくは30質量部以上、さらに好ましくは50質量部以上、よりさらに好ましくは80質量部以上である。また、樹脂組成物からの軟化剤のブリートアウトを避ける観点から、軟化剤の含有量の上限は、水添ブロック共重合体(C)の含有量100質量部に対し、好ましくは200質量部以下、より好ましくは150質量部以下、さらに好ましくは120質量部以下である。
[添加剤]
 本実施形態の樹脂組成物は、本発明の効果を損なわない限りにおいて、添加剤を含有してもよい。具体的には、変性水素添加物(A)及び樹脂(B)以外に、添加剤を含有してもよく、変性水素添加物(A)、樹脂(B)、及び水添ブロック共重合体(C)以外に、添加剤を含有してもよく、変性水素添加物(A)、樹脂(B)、及び軟化剤以外に、添加剤を含有してもよく、変性水素添加物(A)、樹脂(B)、水添ブロック共重合体(C)、及び軟化剤以外に、添加剤を含有してもよい。
 添加剤は、変性水素添加物(A)、樹脂(B)、及び水添ブロック共重合体(C)以外の熱可塑性重合体、酸化防止剤、無機充填材、粘着性付与樹脂、光安定剤、加工助剤、難燃剤、帯電防止剤、艶消し剤、ブロッキング防止剤、紫外線吸収剤、離型剤、発泡剤、抗菌剤、防カビ剤、香料、顔料や色素等の着色剤等が挙げられる。
 添加剤は、1種単独で用いてもよく、2種以上を用いてもよい。
〈酸化防止剤〉
 本実施形態の樹脂組成物は、酸化防止剤をさらに含有することが好ましい。
 酸化防止剤としては、例えば、ヒンダードフェノール系、リン系、ラクトン系、ヒドロキシル系の酸化防止剤等が挙げられる。これらの中でも、ヒンダードフェノール系酸化防止剤が好ましい。
 酸化防止剤を含有させる場合、酸化防止剤の含有量は、樹脂組成物を溶融混練する際に着色しない範囲であることが好ましい。酸化防止剤の含有量は、変性水素添加物(A)、樹脂(B)及び水添ブロック共重合体(C)の合計含有量100質量部に対して、好ましくは0.001~5質量部である。なお、本実施形態の樹脂組成物が水添ブロック共重合体(C)を含有しない場合は、酸化防止剤の含有量は、変性水素添加物(A)及び樹脂(B)の合計含有量100質量部に対して、好ましくは0.001~5質量部である。
[樹脂組成物の製造方法]
 本実施形態の樹脂組成物の製造方法に特に制限はなく、変性水素添加物(A)及び樹脂(B)、必要に応じて用いることができる水添ブロック共重合体(C)、軟化剤、及び添加剤を混合し得る方法であればいずれの方法で製造してもよく、公知の手段を利用することができる。
 例えば、ヘンシェルミキサー、Vブレンダー、リボンブレンダー、タンブラーブレンダー、コニカルブレンダー等の混合機を用いて、樹脂組成物の構成成分を混合することによって製造してもよい。また、当該混合の後、一軸押出機、二軸押出機、ニーダー、バンバリーミキサー、ロール等の混練機を用いて80~350℃程度で溶融混練することよって製造してもよい。樹脂組成物の構成成分を相容化しやすい観点から、溶融混練法が好ましい。
[樹脂組成物のメルトフローレート]
 樹脂組成物は、JIS K 7210:2014に準拠して、温度230℃、荷重21Nの条件で測定したメルトフローレートが、5g/10分以上である。樹脂組成物のメルトフローレートが5g/10分以上であれば、柔軟性を有し優れた引張特性が得られ、接着力にも優れる傾向にある。また、樹脂組成物の成形性も良好になる。
 引張特性及び接着力により一層優れる観点から、樹脂組成物のメルトフローレートの下限は、好ましくは10g/10分以上、より好ましくは20g/10分以上、さらに好ましくは30g/10分以上である。
 また、引張特性及び成形性の観点から、樹脂組成物のメルトフローレートの上限は、好ましくは200g/10分以下、より好ましくは150g/10分以下、さらに好ましくは100g/10分以下である。
 樹脂組成物のメルトフローレートを上記範囲に調整する方法としては、例えば、変性水素添加物(A)及び樹脂(B)、並びに必要に応じて用いられる水添ブロック共重合体(C)の配合量を適切に設定する方法、樹脂組成物に用いる各樹脂成分の重合度を調節する方法、及び各樹脂成分に用いるモノマーの種類を調整する方法等が好ましく例示される。
[引張破断伸び]
 本実施形態の樹脂組成物について、ISO37:2017に準じて測定した引張破断伸びは、好ましくは220~800%、より好ましくは300~800%、さらに好ましくは400~750%、よりさらに好ましくは500~700%である。
 樹脂組成物の引張破断伸びが上記数値範囲であれば、接着力により一層優れるために好ましい。
 引張破断伸びの測定方法は、実施例に記載の方法に従うことができる。
[引張破断強度]
 本実施形態の樹脂組成物について、ISO37:2017に準じて測定した引張破断強度の下限は、好ましくは1.0MPa以上、より好ましくは1.5MPa以上、さらに好ましくは2.0MPa以上である。また、本実施形態の樹脂組成物についての引張破断強度の上限は特に限定されないが、例えば、200MPa以下であっても良い。
 樹脂組成物についての引張破断強度が上記数値範囲であれば、接着力により一層優れるために好ましい。
 引張破断強度の測定方法は、実施例に記載の方法に従うことができる。
[剥離強度]
 本実施形態の樹脂組成物について、JIS K 6854-2:1999に準じて測定した剥離強度は、好ましくは5N/25mm以上、より好ましくは10N/25mm以上、さらに好ましくは15N/25mm以上である。また、本実施形態の樹脂組成物についての引張破断強度の上限は特に限定されないが、例えば、200N/25mm以下であっても良い。
 樹脂組成物についての剥離強度が上記数値範囲であれば、実用に耐え得る接着力であるために好ましい。
 剥離強度の測定方法は、実施例に記載の方法に従うことができる。
 本実施形態に係る樹脂組成物について、合成樹脂に対する上記剥離強度が5N/25mm以上であることが好ましい。本実施形態に係る樹脂組成物について、金属としてのアルミニウムに対する上記剥離強度が3N/25mm以上であることが好ましく、より好ましくは5N/25mm以上である。本実施形態に係る樹脂組成物について、金属としてのSUSに対する上記剥離強度が3N/25mm以上であることが好ましく、より好ましくは5N/25mm以上である。
<成形体>
 本実施形態の樹脂組成物は、溶融混練成形機により、各種成形体とすることができる。また、本実施形態の樹脂組成物は、当該樹脂組成物をベール、クラム、あるいはペレット等にした後、射出成形法、射出圧縮成形法、押出成形法、ブロー成形法、プレス成形法、真空成形法、及び発泡成形法等により、各種成形体とすることができる。
 より一層優れた引張特性と接着力の両立の観点から、樹脂組成物の成形温度、具体的には、例えば射出成形又は押出成形の際の押出機のシリンダー温度は、好ましくは160~250℃、より好ましくは180~230℃である。本発明の効果が過度に損なわれない限り、シリンダー温度は適宜設定できる。
 本実施形態の樹脂組成物を含有する成形体は、形状、構造、用途等は特に制限されない。一方、本実施形態の樹脂組成物は、引張特性に優れ、合成樹脂及び金属等に対して強固な接着力を有することから、本実施形態の樹脂組成物を積層構造体の一部として好適に用いることができる。
[引張破断伸び]
 本実施形態の樹脂組成物を含有する成形体は、ISO37:2017に準じて測定した引張破断伸びが、好ましくは220~800%、より好ましくは300~800%、さらに好ましくは400~750%、よりさらに好ましくは500~700%である。
 樹脂組成物の引張破断伸びが上記数値範囲であれば、接着力により一層優れるために好ましい。
 引張破断伸びの測定方法は、実施例に記載の方法に従うことができる。
[引張破断強度]
 本実施形態の樹脂組成物を含有する成形体は、ISO37:2017に準じて測定した引張破断強度の下限が、好ましくは1.0MPa以上、より好ましくは1.5MPa以上、さらに好ましくは2.0MPa以上である。また、本実施形態の樹脂組成物を含有する成形体の引張破断強度の上限は特に限定されないが、例えば、200MPa以下であっても良い。
 樹脂組成物を含有する成形体の引張破断強度が上記数値範囲であれば、接着力により一層優れるために好ましい。
 引張破断強度の測定方法は、実施例に記載の方法に従うことができる。
[剥離強度]
 本実施形態の樹脂組成物を含有する成形体は、JIS K 6854-2:1999に準じて測定した剥離強度が、好ましくは5N/25mm以上、より好ましくは10N/25mm以上、さらに好ましくは15N/25mm以上である。また、本実施形態の樹脂組成物を含有する成形体の引張破断強度の上限は特に限定されないが、例えば、200N/25mm以下であっても良い。
 樹脂組成物を含有する成形体の剥離強度が上記数値範囲であれば、実用に耐え得る接着力であるために好ましい。
 剥離強度の測定方法は、実施例に記載の方法に従うことができる。
 本実施形態の樹脂組成物を含有する成形体は、合成樹脂に対する上記剥離強度が5N/25mm以上であることが好ましい。本実施形態に係る樹脂組成物について、金属としてのアルミニウムに対する上記剥離強度が3N/25mm以上であることが好ましく、より好ましくは5N/25mm以上である。本実施形態に係る樹脂組成物について、金属としてのSUSに対する上記剥離強度が3N/25mm以上であることが好ましく、より好ましくは5N/25mm以上である。
<積層構造体>
 積層構造体は、本実施形態の樹脂組成物で形成された層、及び当該樹脂組成物以外の他の材料で形成された層(以下、「他の層」という。)を有する。
 上記積層構造体は、樹脂組成物で形成された層、及び他の層を、それぞれ少なくとも一層有していればよく、複数層有していてもよい。また、積層構造体が、他の層を複数有する場合、当該複数の他の層は、同一材料からなる層であってもよく、異なる材料からなる層であってもよい。
 本実施形態の樹脂組成物は強固な接着力を示す。このことから、積層構造体において、本実施形態の樹脂組成物で形成された層は接着層であって、他の層は被着体となる。
 被着体となる他の層を構成する材料は、合成樹脂、セラミックス、金属、布帛等が挙げられる。他の層を構成する材料は、1種単独で用いてもよく、2種以上を用いてもよい。これらの中でも、他の層を構成する材料は、合成樹脂及び金属からなる群より選ばれる少なくとも1種が好適である。
 本実施形態の積層構造体に用い得る合成樹脂は、例えば、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂、ポリアクリレート樹脂、ポリメタクリレート樹脂、ポリエーテル樹脂、(メタ)アクリロニトリル-ブタジエン-スチレン樹脂、(メタ)アクリロニトリル-スチレン樹脂、(メタ)アクリル酸エステル-ブタジエン-スチレン樹脂、(メタ)アクリル酸エステル-スチレン樹脂、(メタ)アクリル酸メチル-ブタジエン-スチレン樹脂、エポキシ樹脂、フェノール樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、メラミン樹脂、ポリアセタール樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリフェニレンエーテル樹脂、ポリアリレート樹脂、ポリエーテルエーテルケトン樹脂、ポリスチレン樹脂、ゴム強化ポリスチレン樹脂、シンジオタクティックポリスチレン樹脂等の極性樹脂;ポリオレフィン樹脂等の非極性樹脂が挙げられる。これらの合成樹脂は、1種を単独で又は2種以上を併用してもよい。
 上記ポリアミド樹脂としては、例えば、ポリアミド6(PA6)、ポリアミド66(PA66)等が挙げられる。
 上記ポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン-1、ポリヘキセン-1、ポリ-3-メチル-ブテン-1、ポリ-4-メチル-ペンテン-1、エチレンと炭素数3~20のα-オレフィン(例えばプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテン、6-メチル-1-ヘプテン、イソオクテン、イソオクタジエン、デカジエン等)の1種又は2種以上との共重合体、エチレン-プロピレン-ジエン共重合体(EPDM)、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体等のポリオレフィン樹脂が挙げられる。
 合成樹脂で形成された層には、本発明の目的を損なわなければ、必要に応じて添加剤を添加してもよい。添加剤は、例えば、熱安定剤、光安定剤、紫外線吸収剤、酸化防止剤、滑剤、着色剤、帯電防止剤、難燃剤、撥水剤、防水剤、親水性付与剤、導電性付与剤、熱伝導性付与剤、電磁波シールド性付与剤、透光性調整剤、蛍光剤、摺動性付与剤、透明性付与剤、アンチブロッキング剤、金属不活性化剤、防菌剤等が挙げられる。
 本実施形態の積層構造体に用い得るセラミックスは、非金属系の無機材料を意味し、金属酸化物、金属炭化物、金属窒化物等が挙げられる。例えば、ガラス、セメント類、アルミナ、ジルコニア、酸化亜鉛系セラミックス、チタン酸バリウム、チタン酸ジルコン酸鉛、炭化ケイ素、窒化ケイ素、フェライト類等が挙げられる。
 本実施形態の積層構造体に用い得る金属は、例えば、鉄、銅、アルミニウム、マグネシウム、ニッケル、クロム、亜鉛、及びそれらを成分とする合金等が挙げられる。積層構造体に用い得る金属としては、アルミニウム合金及びステンレス鋼から選択される少なくとも1種が好ましい。また、金属で形成された層は、銅メッキ、ニッケルメッキ、クロムメッキ、錫メッキ、亜鉛メッキ、白金メッキ、金メッキ、銀メッキ等のメッキによって形成された金属の表面を持つ層であってもよい。
 本実施形態の積層構造体に用い得る布帛の生地の種類に特に制限はないが、例えば、織物、編物、フェルト、不織布等が挙げられる。
 また、布帛の素材としては、天然繊維であってもよいし、合成繊維であってもよいし、天然繊維と合成繊維とからなるものであってもよい。特に制限されるものではないが、天然繊維としては、綿、絹(シルク)、麻、及び毛等が挙げられる。
 また、合成繊維としては、例えば、ポリエステル繊維、アクリル繊維(ポリアクリロニトリル)、ポリウレタン繊維、ポリアミド繊維、ポリオレフィン繊維、及びビニロン繊維等が挙げられる。ポリアミド繊維としては、ナイロン6、ナイロン66等が挙げられる。ポリオレフィン繊維としては、ポリエチレン繊維、ポリプロピレン繊維等が挙げられる。
[積層構造体の製造方法]
 本発明の積層構造体の製造方法は特に制限されないが、本実施形態の樹脂組成物を、上記他の材料に対して溶融積層成形により製造することが好ましい。例えば、射出インサート成形法、押出ラミネーション法、共押出成形法、カレンダー成形法、スラッシュ成形法、プレス成形法、溶融注型法等の成形法が挙げられる。
 例えば、射出インサート成形法により積層構造体を製造する場合には、あらかじめ所定の形状及び寸法に形成しておいた被着体を金型内に配置し、そこに本実施形態の樹脂組成物を射出成形して積層構造体を製造する方法が採用される。
 押出ラミネーション法により積層構造体を製造する場合には、あらかじめ所定の形状及び寸法に形成しておいた被着体の表面、又はその縁に対して、押出機に取り付けられた所定の形状を有するダイスから押出した溶融状態の本実施形態の樹脂組成物を直接押出して積層構造体を製造することもできる。
 共押出成形法により積層構造体を製造する場合には、2台の押出機を使って同時に溶かした樹脂を押し出して、積層構造体を製造することもできる。
 カレンダー成形法により積層構造体を製造する場合には、加熱ロールで溶融、圧延し、数本のロールを通して溶融状態にした本実施形態の樹脂組成物と、あらかじめ所定の形状及び寸法に形成しておいた被着体の表面とを熱融着により積層構造体を製造することもできる。
 プレス成形法により積層構造体を製造する場合には、射出成形法や押出成形法により、予め本発明の樹脂組成物からなる成形体を成形しておき、その成形体を、あらかじめ所定の形状及び寸法に形成しておいた被着体に、プレス成形機等を用いて、加熱及び加圧して製造することもできる。このような成形法は、被着体がセラミックス、金属である場合に特に適している。
 溶融積層成形による成形法としては、射出インサート成形法が好ましい。
 特に、本実施形態の積層構造体は、樹脂組成物以外の他の材料で形成された層に対して、樹脂組成物を射出インサート成形する方法により製造することが好ましく、樹脂組成物を樹脂温度160~250℃にて射出インサート成形する方法により製造することがより好ましい。
 射出インサート成形法における射出成形温度は、十分な接着力を得る観点から、好ましくは180℃以上、より好ましくは200℃以上である。また、引張特性と強固な接着力が両立でき、樹脂組成物の高温による色相悪化を防止する観点から、好ましくは240℃以下、より好ましくは230℃以下である。
 本実施形態の樹脂組成物において、特に、樹脂(B)として熱可塑性ポリウレタン樹脂を用いる際、樹脂組成物は高温による色相の変化や引張特性等の劣化が生じやすい。従来、接着層を構成する樹脂組成物は、接着力を得るために250℃を超える高温にて射出インサート成形する必要があったため、色相の変化や引張特性等の劣化が生じやすかった。一方、従来の当該樹脂組成物を250℃以下にて射出インサート成形した場合、十分な接着力を得ることができなかった。
 しかし、本実施形態の樹脂組成物は、好ましくは樹脂温度160~250℃にて射出成形することで、強固な接着力を発現しつつ、樹脂組成物における色相の変化や引張特性等の劣化を抑制することができるので、本発明の効果がより顕著に発揮される。なお、本発明の効果が過度に損なわれない限り、射出成形時の樹脂温度は適宜設定できる。
 また、被着体が合成樹脂である場合は、両者を同時に溶融させて共押出成形したり、共射出成形したりすることができる。また、予め一方を成形しておき、その上に溶融コーティングしてもよいし、溶液コーティングしてもよい。他に、二色成形やインサート成形等も採用することができる。
<用途>
 本実施形態の樹脂組成物は、様々な用途に広く適用することができる。例えば、各種ハウジング材に本実施形態の樹脂組成物を接着して用いられる積層構造体が一例として挙げられる。上記ハウジング材の原材料には、一般的に、合成樹脂、ガラス繊維を含有する合成樹脂の他、アルミニウム及びマグネシウム合金といった軽金属が用いられる。上記ハウジング材は、電子及び電気機器、OA機器、家電機器、スポーツ用品、電動工具、自動車用部材等のハウジング材が好ましい実施形態として挙げられる。より具体的には、大型ディスプレイ、ノート型パソコン、携帯用電話機、携帯情報端末、電子辞書、ビデオカメラ、デジタルスチルカメラ、携帯用ラジオカセット再生機、インバーター、及び電動工具等のハウジングが好ましい実施形態である。これらのハウジング材に対して、本実施形態の樹脂組成物が接着することで、積層構造体として用いることができる。上記積層構造体において、本実施形態の樹脂組成物からなる層は、衝撃緩和材、滑り止め防止機能を持った被覆材、防水材、及び意匠材等として好ましく用いられる。
 また、別の好ましい実施形態では、本実施形態の樹脂組成物はシーリング材として用いられる。上記シーリング材の例としては、ガラスなどに代表される透明な部材が接着された成型体及び構造体などにおける、接合部のシーリング材などが挙げられる。上記透明な部材としては、ポリカーボネート及びPMMAのような樹脂製部材も好ましく用いられる。透明な部材が接着された成型体及び構造体の接合部の具体的な例としては、建築物の窓におけるガラスとアルミニウムサッシとの接合部、自動車におけるガラスと金属開口部等との接合部、及び太陽電池モジュール等におけるガラスと金属製枠体との接合部などが例示される。本実施形態の樹脂組成物は、上述の接合部に適用するシーリング材として好ましく用いることができる。
 さらに別の好ましい実施形態では、本実施形態の樹脂組成物は、二次電池のセパレーターなどに好ましく用いることができる。上記二次電池のセパレーターは特に限定されないが、ノート型パソコン、携帯電話、ビデオカメラ等の各種情報端末機器や、ハイブリッド自動車、燃料電池自動車等に用いられる二次電池のセパレーターなどが好ましく例示される。
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。
 なお、β-ファルネセン(純度97.6質量%、アミリス,インコーポレイティド社製)は、3Åのモレキュラーシーブにより精製し、窒素雰囲気下で蒸留することで、ジンギベレン、ビサボレン、ファルネセンエポキシド、ファルネソール異性体、E,E-ファルネソール、スクアレン、エルゴステロール及びファルネセンの数種の二量体等の炭化水素系不純物を除き、以下の重合に用いた。
<各成分>
 実施例及び比較例に使用される各成分は次のとおりである。
[変性水素添加物(A)]
 (A1)~(A4):後述の製造例1-1~1-4の変性水素添加物
 (A5):無水マレイン酸変性エチレン-ブテン共重合体(商品名:タフマー(登録商標)MH5020、三井化学株式会社製、変性量1.0phr、メルトフローレート1.2g/10分(カタログ値、ASTM D1238,230℃))
 (A6):無水マレイン酸変性ポリプロピレン(商品名:アドマー(登録商標)QF500、三井化学株式会社製、変性量0.8phr)
 ただし、(A4)、(A5)及び(A6)は比較例用である。
[樹脂(B)]
 (B1):熱可塑性ポリウレタン樹脂(商品名:エラストラン(登録商標)C80A、BASFジャパン株式会社製、タイプA硬度80)
 (B2)~(B4):後述の製造例2-1~2-4のアクリル系ブロック共重合体
[水添ブロック共重合体(C)]
 (C1)~(C5):後述の製造例3-1~3-5の水添ブロック共重合体
[軟化剤]
 軟化剤:パラフィン系プロセスオイル(商品名:ダイアナプロセスオイルPW-90、出光興産株式会社製)
[酸化防止剤]
 ヒンダードフェノール系酸化防止剤(商品名:アデカスタブAO-60、株式会社ADEKA製)
<測定方法>
 また、製造例における各測定方法の詳細は次のとおりである。
(1)重合体ブロックの含有量
〔変性水素添加物(A)及び水添ブロック共重合体(C)〕
 重合体ブロック(A-1)及び重合体ブロック(C-1)の含有量を次のとおり測定した。
 変性水素添加物(A)及び水添ブロック共重合体(C)を、それぞれCDClに溶解してH-NMR測定[装置:「AVANCE 400 Nanobay」(Bruker社製)、測定温度:30℃]を行い、スチレンに由来するピーク面積とイソプレン及び/又はブタジエンのピーク面積との比、又は、スチレンに由来するピーク面積とファルネセン由来のピーク面積との比から上記重合体ブロックの含有量を算出した。
〔樹脂(B):アクリル系ブロック共重合体〕
 アクリル系ブロック共重合体を構成する重合体ブロック(E1)及び重合体ブロック(D1)の含有量は、H-NMR測定[装置:核磁気共鳴装置「JNM-ECX400」(日本電子株式会社製)、測定温度:30℃、重溶媒:重水素化クロロホルム]によって次のとおり測定し、算出した。算出した重合体ブロック(E1)及び重合体ブロック(D1)の含有量から、質量比(E1)/(D1)を算出した。
 H-NMRスペクトルにおいて、3.6ppm、3.7ppm付近のシグナルは、それぞれ、メタクリル酸メチル単位のエステル基(-O-CH)、アクリル酸メチル単位のエステル基(-O-CH)に帰属され、4.0ppm付近のシグナルは、アクリル酸n-ブチル単位のエステル基(-O-CH-CH-CH-CH)又はアクリル酸2-エチルヘキシル単位のエステル基(-O-CH-CH(-CH-CH)-CH-CH-CH-CH)に帰属され、これらの積分値の比から各単量体単位のモル比を求め、これを単量体単位の分子量をもとに質量比に換算することによって各重合体ブロックの含有量を算出した。
(2)重量平均分子量
〔変性水素添加物(A)及び水添ブロック共重合体(C)〕
 重合体ブロック(A-1)、重合体ブロック(A-2)、重合体ブロック(C-1)、重合体ブロック(C-2)、変性水素添加物(A)、及び水添ブロック共重合体(C)の重量平均分子量を次のとおり測定した。
 下記条件のゲルパーミエーションクロマトグラフィー(GPC)測定により、変性水素添加物(A)及び水添ブロック共重合体(C)のポリスチレン換算の重量平均分子量(Mw)を求めた。
 また、各重合体ブロックの重量平均分量(Mw)は、製造工程において各重合体ブロックの重合が終了する都度、サンプリングした液を下記条件のGPC測定により測定することで求めた。
〈GPC測定装置及び測定条件〉
・装置    :東ソー株式会社製のGPC装置「HLC-8020」
・分離カラム :東ソ-株式会社製の「TSKgel G4000HX」2本を直列に連結した。
・溶離液   :テトラヒドロフラン
・溶離液流量 :0.7mL/分
・サンプル濃度:5mg/10mL
・カラム温度 :40℃
・検出器:示差屈折率(RI)検出器
・検量線:標準ポリスチレンを用いて作成
〔樹脂(B):アクリル系ブロック共重合体〕
 アクリル系ブロック共重合体のピークトップ分子量(Mp)及び分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)測定により、標準ポリスチレン換算分子量で、下記条件のGPC測定により測定することで求めた。
〈GPC測定装置及び測定条件〉
・装置    :東ソー株式会社製のGPC装置「GPC8020」
・分離カラム :東ソー株式会社製の「TSKgel GMHXL」、「G4000HXL」及び「G5000HXL」を直列に連結した。
・溶離液   :テトラヒドロフラン
・溶離液流量 :1.0mL/分
・サンプル濃度:5mg/10mL
・カラム温度 :40℃
・検出器   :東ソー株式会社製「RI-8020」
・検量線:標準ポリスチレンを用いて作成
(3)水素添加率
 変性水素添加物(A)及び水添ブロック共重合体(C)の水素添加率を次のとおり測定した。
 変性前の変性水素添加物(A)及び水添ブロック共重合体(C)の水素添加前後を、それぞれCDClに溶解してH-NMR測定[装置:「AVANCE 400 Nanobay」(Bruker社製)、測定温度:30℃]を行った。
 変性前の変性水素添加物(A)及び水添ブロック共重合体(C)中の共役ジエン化合物由来の構造単位における炭素-炭素二重結合の水素添加率は、得られたスペクトルの4.5~6.0ppmに現れる炭素-炭素二重結合が有するプロトンのピークから、下記式により算出した。
 変性前の変性水素添加物(A)の水素添加率(モル%)={1-(変性前の変性水素添加物(A)1モルあたりに含まれる炭素-炭素二重結合のモル数)/(水素添加前における、変性前の変性水素添加物(A)1モルあたりに含まれる炭素-炭素二重結合のモル数)}×100
 水添ブロック共重合体(C)の水素添加率(モル%)={1-(水添ブロック共重合体(C)1モルあたりに含まれる炭素-炭素二重結合のモル数)/(水素添加前における、水添ブロック共重合体(C)1モルあたりに含まれる炭素-炭素二重結合のモル数)}×100
 算出した変性前の変性水素添加物(A)の水素添加率を表2に「重合体ブロック(A-2)における水素添加率(モル%)」として示した。算出した水添ブロック共重合体(C)の水素添加率を表5に「重合体ブロック(C-2)における水素添加率(モル%)」として示した。
 尚、水素添加率は変性の前後で変化しない。
(4)ビニル結合量
 重合体ブロック(A-2)及び重合体ブロック(C-2)のビニル結合量を次のとおり測定した。
 水添前の変性水素添加物(A)及び水添前の水添ブロック共重合体(C)を、それぞれCDClに溶解してH-NMR測定[装置:「AVANCE 400 Nanobay」(Bruker社製)、測定温度:30℃]を行った。
 (A1)~(A4)、(C1)、(C3)、(C4)の場合、イソプレン及び/又はブタジエン由来の構造単位の全ピーク面積に対する、イソプレン構造単位における3,4-結合単位及び1,2-結合単位並びにブタジエン構造単位における1,2-結合単位に対応するピーク面積の比から、ビニル結合量(3,4-結合単位と1,2-結合単位の含有量の合計)を算出した。
 (C2)の場合、β-ファルネセン由来の構造単位の全ピーク面積に対する、β-ファルネセンにおける3,13-結合単位及び1,2-結合単位に対応するピーク面積の比から、ビニル結合量を算出した。
 (C5)の場合、イソプレン及び/又はブタジエン由来の構造単位の全ピーク面積に対する、ブタジエン構造単位における1,2-結合単位に対応するピーク面積の比と、β-ファルネセン由来の構造単位の全ピーク面積に対する、β-ファルネセンにおける3,13-結合単位及び1,2-結合単位に対応するピーク面積の比とから、ビニル結合量を算出した。
(5)(メルトフローレート(MFR))
 変性水素添加物(A)について、JIS K 7210:2014に準じて、メルトインデクサを用い、温度230℃、荷重21Nの条件下で、流出速度(g/10分)を測定した。
(6)ガラス転移温度
 変性水素添加物(A)及び水添ブロック共重合体(C)のガラス転移温度を次のとおり測定した。
 DSC測定装置(株式会社日立ハイテクサイエンス製DSC6200)を用い、温度範囲-100℃~+350℃、昇温速度20℃/分の条件にて測定し、ガラス転移によるベースラインシフトの変曲点の温度をガラス転移温度とした。
(7)tanδピークトップ温度及びtanδピークトップ強度
 変性水素添加物(A)及び水添ブロック共重合体(C)のtanδピークトップ温度及びtanδピークトップ強度を次のとおり測定した。
 変性水素添加物(A)及び水添ブロック共重合体(C)を、それぞれプレス成形装置「NF-50T」(株式会社神藤金属工業所製)により、温度230℃、圧力10MPaで3分間加圧することで、厚み1.0mmのシートを作製し、当該シートを直径8mmの円板形状に切り出したものを試験片とした。
 測定装置として、JIS K7244-10:2005に基づいて、ゆがみ制御型動的粘弾性装置である回転式レオメータ「ARES-G2」(TAインスツルメント社製)を使用し、直径8mmの平面プレートに上記試験片を挟み、歪み量0.1%、周波数1Hzで振動を与え、-70℃から120℃まで3℃/分で昇温して試験した。
 上記試験によって、最大ピーク強度が得られた温度(ピークトップ温度)、tanδの最大ピーク強度(ピークトップ強度)を求めた。
(8)無水マレイン酸変性量(官能基の含有量(phr))
 変性水素添加物(A)5gをトルエン180mlに溶解した後、エタノール20mlを加え、0.1モル/L水酸化カリウム溶液で滴定し、下記計算式を用い変性量を算出した。
 無水マレイン酸変性量(phr)=滴定量×5.611/サンプル量×98×100/56.11×1000
<製造例>
[製造例1-1]
変性水素添加物(A1)
(1)水添ブロック共重合体
 窒素置換し、乾燥させた耐圧容器に、モレキュラーシーブスA4にて乾燥したシクロヘキサン(溶媒)50kg、アニオン重合開始剤として濃度10.5質量%のsec-ブチルリチウムのシクロヘキサン溶液0.07kg(sec-ブチルリチウムの実質的な添加量:7.4g)を仕込んだ。
 耐圧容器内を50℃に昇温した後、スチレン(1回目)1.00kgを加えて60分間重合させた後、40℃に降温し、ルイス塩基として2,2-ジ(2-テトラヒドロフリル)プロパン(DTHFP)0.033kgを加えてから、イソプレン8.17kg及びブタジエン6.49kgの混合液を5時間かけて加え、2時間重合させた。その後、50℃に昇温し、スチレン(2回目)1.00kgを加えて30分間重合させ、メタノールを投入して反応を停止し、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレンのトリブロック共重合体を含む反応液を得た。
 上記反応液に、オクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系触媒(Al/Ni系チーグラー触媒)を水素雰囲気下で添加し、水素圧力1MPa、80℃の下、5時間反応させた。上記反応液を放冷及び放圧させた後、水洗により上記チーグラー系触媒を除去し、真空乾燥させることにより、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレンのトリブロック共重合体の水添添加物を得た。
(2)変性水素添加物
 Coperion社製二軸押出機「ZSK26mc」(26mmφ、L/D=56)を下記押出条件にて使用し、上記で得られた水添添加物10kg、ラジカル開始剤として2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(パーヘキサ25B-40、日本油脂株式会社製)を0.01kg、変性剤として無水マレイン酸0.1kgを配合して溶融状態とし、変性反応を行い、変性水素添加物(A1)を得た。
 各成分及びその使用量について、表1に示した。また、上記物性評価の結果を表2に示した。
[製造例1-2~1-4]
変性水素添加物(A2)~(A4)
 各成分及びその使用量を表1に記載のとおりに変更したこと以外は製造例1と同様にして、変性水素添加物(A2)~(A4)を得た。また、上記物性評価の結果を表2に示した。
[製造例2-1]
アクリル系ブロック共重合体(B2)
(工程1)窒素置換し、乾燥させた耐圧容器に、室温(23℃)で撹拌しながら、トルエン50.0kgと1,2-ジメトキシエタン0.0998kgを加え、続いて、イソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウム412mmolを含有するトルエン溶液0.820kgを加え、さらにsec-ブチルリチウム206mmolを含有するsec-ブチルリチウムのシクロヘキサン溶液0.121kgを加えた。
(工程2)続いて、これにメタクリル酸メチル1.47kgを撹拌下、室温で加え、さらに60分間撹拌をつづけた。反応液は当初、黄色に着色していたが、60分間撹拌後には無色となった。
(工程3)その後、重合液の内部温度を-30℃に冷却し、撹拌下、アクリル酸n-ブチル6.33kgを4時間かけて滴下し、滴下終了後-30℃でさらに5分間撹拌を続けた。
(工程4)その後、これにメタクリル酸メチル1.20kgを加え、一晩室温にて撹拌した。
(工程5)メタノール0.370kgを添加して重合反応を停止した後、得られた反応液を撹拌下のメタノール中に注ぎ、白色沈殿物を析出させた。得られた白色沈殿物を回収し、乾燥させることにより、アクリル系ブロック共重合体(B2)を得た。
 各成分及びその使用量、上記物性評価の結果を表3に示した。
[製造例2-2~2-4]
アクリル系ブロック共重合体(B3)及び(B4)
 各成分及びその使用量を表3に記載のとおりに変更したこと以外は製造例2-1と同様にして、アクリル系ブロック共重合体(B3)及び(B4)及び(B5)を得た。また、上記物性評価の結果を表3に示した。
[製造例3-1]
水添ブロック共重合体(C1)
 窒素置換し、乾燥させた耐圧容器に、モレキュラーシーブスA4にて乾燥したシクロヘキサン(溶媒)50kg、アニオン重合開始剤として濃度10.5質量%のsec-ブチルリチウムのシクロヘキサン溶液0.03kg(sec-ブチルリチウムの実質的な添加量:3.2g)を仕込んだ。
 耐圧容器内を50℃に昇温した後、スチレン(1回目)1.32kgを加えて60分間重合させた後、イソプレン3.44kg及びブタジエン2.73kgの混合液を5時間かけて加え、2時間重合させた。その後、スチレン(2回目)1.32kgを加えて60分間重合させ、メタノールを投入して反応を停止し、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレンのトリブロック共重合体を含む反応液を得た。
 上記反応液に、水添触媒として、オクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系触媒(Al/Ni系チーグラー触媒)を水素雰囲気下で添加し、水素圧力1MPa、80℃の下、5時間反応させた。上記反応液を放冷及び放圧させた後、水洗により上記チーグラー系触媒を除去し、真空乾燥させることにより、ポリスチレン-ポリ(イソプレン/ブタジエン)-ポリスチレンのトリブロック共重合体の水添ブロック共重合体(C1)を得た。
 各成分及びその使用量について、表4に示した。また、上記物性評価の結果を表5に示した。
[製造例3-2及び3-3]
水添ブロック共重合体(C2),(C3)
 各成分及びその使用量を表4に記載のとおりに変更したこと以外は製造例3-1と同様にして、水添ブロック共重合体(C2),(C3)を得た。また、上記物性評価の結果を表5に示した。
[製造例3-4]
水添ブロック共重合体(C4)
 窒素置換し、乾燥させた耐圧容器に、モレキュラーシーブスA4にて乾燥したシクロヘキサン(溶媒)50kg、アニオン重合開始剤として濃度10.5質量%のsec-ブチルリチウムのシクロヘキサン溶液0.10kg(sec-ブチルリチウムの実質的な添加量:10.5g)を仕込んだ。
 耐圧容器内を50℃に昇温した後、スチレン(1回目)1.67kgを加えて60分間重合させた後、容器内温度40℃に降温し、ルイス塩基としてテトラヒドロフラン0.29kgを加えてから、イソプレン13.33kgを5時間かけて加え、2時間重合させた。その後、50℃に昇温し、スチレン(2回目)1.67kgを加えて60分間重合させ、メタノールを投入して反応を停止し、ポリスチレン-ポリイソプレン-ポリスチレンのトリブロック共重合体を含む反応液を得た。
 上記反応液に、水添触媒として、オクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系触媒(Al/Ni系チーグラー触媒)を水素雰囲気下で添加し、水素圧力1MPa、80℃の下、5時間反応させた。上記反応液を放冷及び放圧させた後、水洗により上記チーグラー系触媒を除去し、真空乾燥させることにより、ポリスチレン-ポリイソプレン-ポリスチレンのトリブロック共重合体の水添ブロック共重合体(C4)を得た。
 各成分及びその使用量について、表4に示した。また、上記物性評価の結果を表5に示した。
[製造例3-5]
水添ブロック共重合体(C5)
 窒素置換し、乾燥させた耐圧容器に、溶媒としてシクロヘキサン50kg、アニオン重合開始剤として濃度10.5質量%のsec-ブチルリチウムのシクロヘキサン溶液227g(sec-ブチルリチウムの実質的な添加量:23.9g)、ルイス塩基としてテトラヒドロフラン100gを仕込んだ。
 耐圧容器内を50℃に昇温した後、β-ファルネセン7.4kgを加えて2時間重合を行い、引き続いてスチレン(1回目)3.0kgを加えて1時間重合させ、更にブタジエン4.6kgを加えて1時間重合を行った。続いてこの重合反応液にカップリング剤として安息香酸フェニル100gを加え1時間反応させることで、ポリ(β-ファルネセン)-ポリスチレン-ポリブタジエン-ポリスチレン-ポリ(β-ファルネセン)ペンタブロック共重合体を含む反応液を得た。
 該反応液に、オクチル酸ニッケル及びトリメチルアルミニウムから形成されるチーグラー系水素添加触媒を水素雰囲気下で添加し、水素圧力1MPa、80℃の条件で5時間反応させた。該反応液を放冷及び放圧させた後、水洗により上記触媒を除去し、真空乾燥させることにより、ポリ(β-ファルネセン)-ポリスチレン-ポリブタジエン-ポリスチレン-ポリ(β-ファルネセン)ペンタブロック共重合体の水素添加物(C5)を得た。
 各成分及びその使用量について、表4に示した。また、上記物性評価の結果を表5に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3中の各表記は下記のとおりである。
  MMA-nBA-MMA:メタクリル酸メチル重合体ブロック-アクリル酸n-ブチル重合体ブロック-メタクリル酸メチル重合体ブロック
  MMA-(nBA/MA)-MMA:メタクリル酸メチル重合体ブロック-(アクリル酸n-ブチル/アクリル酸メチル)共重合体ブロック-メタクリル酸メチル重合体ブロック
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
<実施例1~14及び比較例1~3>
(1)樹脂組成物の作製
 各成分及びその使用量を、表6又は表7に示すとおり用い、予備混合した組成物を二軸押出機(Coperion社製「ZSK26Mc」;シリンダー数14)を用いて230℃及びスクリュー回転数200rpmの条件下で溶融混練し、樹脂組成物を得た。得られた樹脂組成物について、各物性を、下記方法に従い評価した。評価の結果を表6又は表7に示した。
(2)積層構造体の作製
 下記の被着体(長さ100mm×幅35mm×厚さ1mm)をインサート部品として、射出インサート成形法により積層構造体を作製した。
 被着体が合成樹脂の場合は、メタノールを含浸させたガーゼで被着体の両面を拭き取って脱脂し自然乾燥した。
 被着体が金属の場合は、被着体の両面を、界面活性剤水溶液、蒸留水をこの順に用いて洗浄し、100℃で乾燥した。
 上記の通り前処理をした各被着体を真空ラインによって金型内に固定した。金型温度50℃、シリンダー温度230℃の条件にて、得られた樹脂組成物を金型内に充填し、被着体の表面温度を50℃まで冷却することによって積層構造体を得た。得られた積層構造体について、樹脂組成物の接着力(剥離強度)を、下記方法に従い評価した。評価の結果を表6又は表7に示した。
 なお、積層構造体の作製に用いた被着体の詳細は以下のとおりである。
・ポリカーボネート(PC)板:商品名「ユーピロンS-3000R」、三菱エンジニアリングプラスチックス株式会社製
・アクリロニトリル-ブタジエン-スチレン樹脂(ABS)板:商品名「トヨラック700-314」、東レ株式会社製
・ナイロン6(PA6)板:商品名「UBE Nylon6 1013B」、宇部興産株式会社製
・アルミニウム合金(AL)板:材質「A5052P」
<評価方法>
 実施例及び比較例における各評価方法の詳細は次のとおりである。
[メルトフローレート(MFR)]
 実施例及び比較例で得られた樹脂組成物について、JIS K 7210:2014に準じて、メルトインデクサを用い、温度230℃、荷重21Nの条件下で、流出速度(g/10分)を測定した。
 なお、比較例2は、メルトフローレートが0.1g/10分未満となり測定困難であったため、表6中「<0.1」と表記した。
[硬度及び引張特性]
(1)シートの作製
 実施例及び比較例で得られた樹脂組成物を、射出成形機(東芝機械株式会社製「EC75SX;75トン」)を使用して、シリンダー温度230℃及び金型温度50℃の条件下で射出成形し、縦100mm、横35mm、厚み2mmのシートを作製した。
(2)硬度
 上記で得られたシートから、JIS K 6251:2010に準拠した打ち抜き刃を用い、ダンベル3号形試験片を得た。
 得られた試験片を3枚重ねて厚み6mmとして、JIS K 6253-2:2012のタイプAデュロメータ法により、測定直後(0秒後)、測定3秒後、測定15秒後の値を求めた。
 測定値の経時変化が大きいほど、良好な柔軟性、弾性、機械的強度が得られやすく、強固な接着力を示しやすくなる傾向にある。
(3)引張特性
 上記で得られたダンベル3号形試験片をJIS K 6251:2010に準じて、100%モジュラス、引張破断強度、及び引張破断伸びを測定した。
 100%モジュラス、引張破断強度、及び引張破断伸びのいずれも、測定結果の数値が高いほど引張特性に優れる。
[接着力(■離強度)]
 実施例及び比較例で得られた積層構造体について、インストロン社製「インストロン5566」を使用して、JIS K 6854-2:1999に準じて、剥離角度180°、引張速度200mm/分の条件で剥離試験を行い、剥離強度を測定した。剥離強度は、合計4回の平均値として算出した。
 剥離強度の数値は高いほど被着体に対する接着力が高い。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表6及び表7中の「(A)成分含有割合」は、樹脂組成物100質量%における変性水素添加物(A)の含有割合(質量%)を意味する。
 表6において、変性水素添加物(A)の種類のみが異なっている実施例1~3と比較例1~3とを比較すると、実施例1~3は、優れた柔軟性及び成形加工性を示し、かつ引張特性に優れていたことがわかる。また、実施例1~3は比較例1~3に比べ、アルミニウム具体的にはアルミニウム合金に対して剥離強度が高かったことがわかる。よって、実施例1~3は、230℃程度の低温条件で射出成形しても、合成樹脂及び金属の両方に対して強固な接着力を示したことがわかる。また、実施例4から、2種以上の水添ブロック共重合体(C)を用いても、引張特性に優れ、合成樹脂及び金属の両方に対して強固な接着力を示したことがわかる。
 表7において、実施例5~14は、優れた柔軟性及び成形加工性を示し、かつ引張特性に優れていたことがわかる。また、実施例5~14は、230℃程度の低温条件で射出成形しても、合成樹脂及び金属の両方に対して強固な接着力を示したことがわかる。また、実施例13から、2種以上の水添ブロック共重合体(C)を用いても、優れた引張特性及び強固な接着力が得られることがわかる。また、実施例14から、樹脂組成物は変性水素添加物(A)及び樹脂(B)を含有することによって、優れた引張特性及び強固な接着力が得られることがわかる。
<実施例15~18>
(1)樹脂組成物の作製
 各成分及びその使用量を、表8に示すとおり用い、予備混合した組成物を前述の二軸押出機「ZSK26Mc」を用いて230℃及びスクリュー回転数200rpmの条件下で溶融混練し、樹脂組成物を得た。得られた樹脂組成物について、各物性を、下記方法に従い評価した。評価の結果を表8に示した。
(2)積層構造体の作製
 下記の被着体(長さ100mm×幅35mm×厚さ1mm)をインサート部品として、射出インサート成形法により積層構造体を作製した。被着体については、前述と同様に前処理を行ったものを用意した。
 各被着体を真空ラインによって金型内に固定した。金型温度50℃、シリンダー温度230℃及び250℃のそれぞれの条件にて、得られた樹脂組成物を金型内に充填し、被着体の表面温度を50℃まで冷却することによって積層構造体を得た。得られた積層構造体について、樹脂組成物の接着力(剥離強度)を、下記方法に従い評価した。評価の結果を表8に示した。
 なお、積層構造体の作製に用いた被着体の詳細は以下のとおりである。
・ポリカーボネート(PC)板:商品名「ユーピロンS-3000R」、三菱エンジニアリングプラスチックス株式会社製
・アクリロニトリル-ブタジエン-スチレン樹脂(ABS)板:商品名「トヨラック700-314」、東レ株式会社製
・ポリプレピレン(PP)板:商品名「プライムポリプロ J106G」、株式会社プライムポリマー製
・ナイロン6(PA6)板:商品名「UBE Nylon6 1013B」、宇部興産株式会社製
・アルミニウム合金(AL)板:材質「A5052P」
・ステンレス鋼(SUS)板:材質「SUS304」
<評価方法>
 実施例及び比較例における各評価方法の詳細は次のとおりである。
[メルトフローレート(MFR)]
 前述の項目[メルトフローレート(MFR)]に記載の方法及び条件と同一の方法及び条件で、流出速度(g/10分)を測定した。
[硬度及び引張特性]
(1)シートの作製
 実施例15~18で得られた樹脂組成物を、前述の射出成形機「EC75SX」を使用して、金型温度50℃、シリンダー温度230℃及び250℃のそれぞれの条件下で射出成形し、縦100mm、横35mm、厚み2mmのシートを作製した。
(2)硬度
 上記で得られたシートから、JIS K 6251:2010に準拠した打ち抜き刃を用い、ダンベル3号形試験片を得た。
 得られた試験片を3枚重ねて厚み6mmとして、JIS K 6253-2:2012のタイプAデュロメータ法により、測定直後(0秒後)、測定3秒後、測定15秒後の値を求めた。
(3)引張特性
 上記で得られたダンベル3号形試験片をJIS K 6251:2010に準じて、100%モジュラス、引張破断強度、及び引張破断伸びを測定した。
[接着力(■離強度)]
 実施例15~18で得られた積層構造体について、前述の「インストロン5566」を使用して、JIS K 6854-2:1999に準じて、剥離角度180°、引張速度200mm/分の条件で剥離試験を行い、剥離強度を測定した。剥離強度は、合計4回の平均値として算出した。
Figure JPOXMLDOC01-appb-T000008
 表8中の「(A)成分含有割合」は、樹脂組成物100質量%における変性水素添加物(A)の含有割合(質量%)を意味する。
 表8において、実施例15~18は、十分な引張特性、並びに、合成樹脂及び金属(例えばアルミニウム合金及びステンレス鋼)の両方に対して強固な接着力を示し、特に250℃の条件で射出成形すると接着力が向上する傾向にあったことがわかる。よって、実施例15~18は、230℃及び250℃のいずれの温度で射出成形しても、優れた柔軟性及び成形加工性を示し、優れた引張特性及び強固な接着力が両立されていたことがわかる。
<実施例19~23及び比較例4>
(1)樹脂組成物の作製
 各成分及びその使用量を、表9に示すとおり用い、予備混合した組成物を前述の二軸押出機「ZSK26Mc」を用いて230℃及びスクリュー回転数200rpmの条件下で溶融混練し、樹脂組成物を得た。得られた樹脂組成物について、各物性を、下記方法に従い評価した。評価の結果を表9に示した。
(2)積層構造体の作製
 下記の被着体(長さ100mm×幅35mm×厚さ1mm)をインサート部品として、射出インサート成形法により積層構造体を作製した。被着体については、前述と同様に前処理を行ったものを用意した。
 各被着体を真空ラインによって金型内に固定した。金型温度50℃、シリンダー温度230℃の条件にて、得られた樹脂組成物を金型内に充填し、被着体の表面温度を50℃まで冷却することによって積層構造体を得た。得られた積層構造体について、樹脂組成物の接着力(剥離強度)を、下記方法に従い評価した。評価の結果を表9に示した。
 なお、積層構造体の作製に用いた被着体の詳細は以下のとおりである。
・ポリカーボネート(PC)板:商品名「ユーピロンS-3000R」、三菱エンジニアリングプラスチックス株式会社製
・アクリロニトリル-ブタジエン-スチレン樹脂(ABS)板:商品名「トヨラック700-314」、東レ株式会社製
・ポリプレピレン(PP)板:商品名「プライムポリプロ J106G」、株式会社プライムポリマー製
・ナイロン6(PA6)板:商品名「UBE Nylon6 1013B」、宇部興産株式会社製
・アルミニウム合金(AL)板:材質「A5052P」
・ステンレス鋼(SUS)板:材質「SUS304」
<評価方法>
 実施例及び比較例における各評価方法の詳細は次のとおりである。
[メルトフローレート(MFR)]
 前述の項目[メルトフローレート(MFR)]に記載の方法及び条件と同一の方法及び条件で、流出速度(g/10分)を測定した。
[硬度及び引張特性]
(1)シートの作製
 実施例19~23及び比較例4で得られた樹脂組成物を、前述の射出成形機「EC75SX」を使用して、金型温度50℃、シリンダー温度230℃の条件下で射出成形し、縦100mm、横35mm、厚み2mmのシートを作製した。
(2)硬度
 上記で得られたシートから、JIS K 6251:2010に準拠した打ち抜き刃を用い、ダンベル3号形試験片を得た。
 得られた試験片を3枚重ねて厚み6mmとして、JIS K 6253-2:2012のタイプAデュロメータ法により、測定直後(0秒後)、測定3秒後、測定15秒後の値を求めた。
(3)引張特性
 上記で得られたダンベル3号形試験片をJIS K 6251:2010に準じて、100%モジュラス、引張破断強度、及び引張破断伸びを測定した。
[接着力(■離強度)]
 実施例19~23及び比較例4で得られた積層構造体について、前述の「インストロン5566」を使用して、JIS K 6854-2:1999に準じて、剥離角度180°、引張速度200mm/分の条件で剥離試験を行い、剥離強度を測定した。剥離強度は、合計4回の平均値として算出した。
Figure JPOXMLDOC01-appb-T000009
 表9中の「(A)成分含有割合」は、樹脂組成物100質量%における変性水素添加物(A)の含有割合(質量%)を意味する。
 表9において、実施例19~23は、十分な引張特性、並びに、合成樹脂及び金属(例えばアルミニウム合金及びステンレス鋼)の両方に対して強固な接着力を示したことがわかる。比較例4は、実施例19~23に比べて、合成樹脂及び金属(特にはステンレス鋼)に対して強固な接着力を示さなかったことがわかる。
 本実施形態の樹脂組成物は、引張特性に優れ、合成樹脂及び金属等に対して強固な接着力を有する。よって、本実施形態の樹脂組成物が接着された積層構造体として、例えば、大型ディスプレイ、ノート型パソコン、携帯用電話機、携帯情報端末、電子辞書、ビデオカメラ、デジタルスチルカメラ、携帯用ラジオカセット再生機、インバーター、及び電動工具等のハウジングに接着される、衝撃緩和材、滑り止め防止機能を持った被覆材、防水材、及び意匠材等の部分に利用することが可能である。

Claims (17)

  1.  芳香族ビニル化合物に由来する構造単位を有する重合体ブロック(A-1)及び共役ジエン化合物に由来する構造単位を有する重合体ブロック(A-2)を含むブロック共重合体の変性水素添加物(A)と、樹脂(B)とを含み、
     前記変性水素添加物(A)は、カルボキシ基、アミノ基、ヒドロキシ基、及び酸無水物由来の基からなる群より選ばれる少なくとも1種の官能基を有し、かつ前記重合体ブロック(A-2)のビニル結合量が50~99モル%であり、
     前記樹脂(B)が、アクリル系ブロック共重合体及び熱可塑性ポリウレタン樹脂からなる群より選ばれる少なくとも1種であり、
     前記変性水素添加物(A)及び前記樹脂(B)の質量比(A)/(B)が90/10~10/90であり、
     JIS K7210:2014に準拠して、温度230℃、荷重21Nの条件で測定したメルトフローレートが5g/10分以上である、
    樹脂組成物。
  2.  芳香族ビニル化合物由来の構造単位を含有する重合体ブロック(C-1)と、共役ジエン化合物由来の構造単位を含有する重合体ブロック(C-2)とを有する水添ブロック共重合体(C)をさらに含有する、請求項1に記載の樹脂組成物。
  3.  前記重合体ブロック(C-2)のビニル結合量が、1~85モル%である、請求項2に記載の樹脂組成物。
  4.  前記重合体ブロック(C-2)中の炭素-炭素二重結合の水素添加率が、80~100モル%である、請求項2又は3に記載の樹脂組成物。
  5.  前記重合体ブロック(C-2)における共役ジエン化合物が、イソプレン、ブタジエン、及びファルネセンからなる群より選ばれる少なくとも1種を含有する、請求項2~4のいずれか1項に記載の樹脂組成物。
  6.  前記水添ブロック共重合体(C)における前記重合体ブロック(C-1)の含有割合が、5~70質量%である、請求項2~5のいずれか1項に記載の樹脂組成物。
  7.  前記変性水素添加物(A)に対する前記官能基の含有量が、0.10~5.00phrである、請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  前記重合体ブロック(A-2)中の炭素-炭素二重結合の水素添加率が、80~100モル%である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  前記重合体ブロック(A-2)におけるイソプレン由来の構造単位の含有割合が、30質量%以上である、請求項1~8のいずれか1項に記載の樹脂組成物。
  10.  前記重合体ブロック(A-2)における共役ジエン化合物が、イソプレン及びブタジエンを含有する、請求項1~9のいずれか1項に記載の樹脂組成物。
  11.  前記変性水素添加物(A)における前記重合体ブロック(A-1)の含有割合が、5~40質量%である、請求項1~10のいずれか1項に記載の樹脂組成物。
  12.  前記水添ブロック共重合体(C)100質量部に対し、軟化剤を5~200質量部含有する、請求項2~6のいずれか1項に記載の樹脂組成物。
  13.  前記軟化剤が、パラフィン系プロセスオイル、ナフテン系プロセスオイル、及び芳香族系プロセスオイルからなる群より選ばれる少なくとも1種である、請求項12に記載の樹脂組成物。
  14.  請求項1~13のいずれか1項に記載の樹脂組成物を含有する成形体。
  15.  請求項1~13のいずれか1項に記載の樹脂組成物で形成された層、及び前記樹脂組成物以外の他の材料で形成された層を有する、積層構造体。
  16.  前記他の材料が、合成樹脂及び金属からなる群より選ばれる少なくとも1種である、請求項15に記載の積層構造体。
  17.  請求項15又は16に記載の積層構造体の製造方法であって、
     前記樹脂組成物以外の他の材料で形成された層に対して、前記樹脂組成物を射出インサート成形する、積層構造体の製造方法。
     
PCT/JP2023/027084 2022-07-25 2023-07-25 樹脂組成物、成形体、積層構造体、及び積層構造体の製造方法 WO2024024756A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022117905 2022-07-25
JP2022-117905 2022-07-25
JP2022211316 2022-12-28
JP2022-211316 2022-12-28

Publications (1)

Publication Number Publication Date
WO2024024756A1 true WO2024024756A1 (ja) 2024-02-01

Family

ID=89706391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027084 WO2024024756A1 (ja) 2022-07-25 2023-07-25 樹脂組成物、成形体、積層構造体、及び積層構造体の製造方法

Country Status (1)

Country Link
WO (1) WO2024024756A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166787A (ja) * 1992-03-26 1994-06-14 Kuraray Co Ltd 熱可塑性樹脂組成物
JPH11189716A (ja) * 1997-12-26 1999-07-13 Porimatec Kk 用紙等を搬送するローラ用組成物
JP2006052364A (ja) * 2004-08-16 2006-02-23 Shinwako Kasei Kk 樹脂組成物及びその成形体並びに樹脂製品
JP2016180026A (ja) * 2015-03-23 2016-10-13 日本ゼオン株式会社 樹脂組成物及び複合成形体
WO2020235662A1 (ja) * 2019-05-22 2020-11-26 株式会社クラレ 樹脂組成物、樹脂組成物の製造方法、及び、成形品
WO2022149574A1 (ja) * 2021-01-08 2022-07-14 株式会社クラレ 樹脂組成物、接着剤、及び、相容化剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166787A (ja) * 1992-03-26 1994-06-14 Kuraray Co Ltd 熱可塑性樹脂組成物
JPH11189716A (ja) * 1997-12-26 1999-07-13 Porimatec Kk 用紙等を搬送するローラ用組成物
JP2006052364A (ja) * 2004-08-16 2006-02-23 Shinwako Kasei Kk 樹脂組成物及びその成形体並びに樹脂製品
JP2016180026A (ja) * 2015-03-23 2016-10-13 日本ゼオン株式会社 樹脂組成物及び複合成形体
WO2020235662A1 (ja) * 2019-05-22 2020-11-26 株式会社クラレ 樹脂組成物、樹脂組成物の製造方法、及び、成形品
WO2022149574A1 (ja) * 2021-01-08 2022-07-14 株式会社クラレ 樹脂組成物、接着剤、及び、相容化剤

Similar Documents

Publication Publication Date Title
KR101430770B1 (ko) 열가소성 수지 조성물 및 그것으로 이루어지는 플로어 타일
JP5998154B2 (ja) 熱可塑性重合体組成物および成形品
KR102465037B1 (ko) 열가소성 엘라스토머 조성물, 성형품, 적층 구조체 및 그 적층 구조체의 제조 방법
JP6866993B2 (ja) 熱可塑性エラストマー組成物、積層構造体及び該積層構造体の製造方法
KR20130097167A (ko) 열가소성 중합체 조성물 및 성형품
JP5802669B2 (ja) 熱可塑性重合体組成物および成形品
KR20130094731A (ko) 열가소성 중합체 조성물 및 성형품
KR20130012580A (ko) 열가소성 중합체 조성물 및 그것으로 이루어지는 성형체
WO2022230482A1 (ja) 熱可塑性エラストマー組成物、成形品、積層構造体及び該積層構造体の製造方法
JP3887341B2 (ja) 積層体
JP3839773B2 (ja) 重合体組成物
WO2024024756A1 (ja) 樹脂組成物、成形体、積層構造体、及び積層構造体の製造方法
WO2023106368A1 (ja) 熱可塑性エラストマー組成物
TW202413524A (zh) 樹脂組成物、成形體、積層構造體、及積層構造體之製造方法
US20230235162A1 (en) Thermoplastic elastomer composition, laminate structure and method for producing said laminate structure
JP7152633B1 (ja) 粘着剤組成物、積層体及び表面保護フィルム
JP2021143334A (ja) 粘着剤組成物、積層体及び表面保護フィルム
JP4528094B2 (ja) ガスケット用樹脂組成物およびそれを用いた医療用器具
WO2023106367A1 (ja) 熱可塑性エラストマー組成物
JP2023085861A (ja) 熱可塑性エラストマー組成物
TW202348715A (zh) 熱塑性樹脂組成物、成形品、及積層構造體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846486

Country of ref document: EP

Kind code of ref document: A1